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FOREUOKD 

Thirteen years ago the Office of Ordnance Research (now the Army 

Research Office-Durham) organized an 00R Liaason Group on Computers. 

Two meetings of this group were held, one in 1959 and the other in 

1960, to «.-^change information of interest to managers of ordnance 

computers. The Army Mathematics Steering Committee decided that these 

meetings should be revived ou an Araywlde basis, and asked Dr. John H. 

Giese, Chairman of its subcommittee on Mufeerical Analysis and Digital 

Computers, to draw up a format for, and take charge of, the new series 

of conferences. Dr. Giese thought these meetings should "establish a 

way to exchange ideas on the Army's desires, capabilities, and interest 

in the field of 'other-than business' applications of computers"; and 

they should provide the AMSC and ARO with information on the Army's 

needs for computers, requirements for assistance in research and numeri- 

cal analysis and other kinds of mathematics.  He also suggested that 

the title of the conferences should be the "ARO Working Group on Compu- 

ters", Two meetings, one in 1962 and the other in 1964, were held under 

this title.  Starting in 1965 these conferences have been held yearly 

under the title "Army Numerical Analysis Conference". 

Dr. Giese has served as chairman of all these conferences. Members 

of the subcommittee on Numerical Analysis and Digital Computers have 

assisted him on some of the planning details of the meetings. However, 

most of the responsibilities of the arrangements were in his hands. 

Thanks to his continuing efforts, all of the meetings have been held at 

a high scientific level. Speakers and attendees at these conferences 
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would like to show their appreciation for all of your efforts, John, 

by dedicating these Proceedings to you. They are sorry that you will 

no longer be serving as chairman, but they do feel you have done more 

than your share of work in promoting these conferences.  We certainly 

hope you will continue to participate in future conferences in this 

area. 

The theme of the 1972 Army Numerical Analysis Conference was Systems 

Identification. This meeting was held on 20-21 April 1972 at the Bio- 

medical Laboratory at Edgewood Arsenal, Maryland. Dr. William J. Sacco 

served as Chairman on Local Arrangements. All those in attendance are 

indebted to him for a well-planned conference and for selection of some 

of the invited speakers. 

The Army Mathematics Steering Committee, the sponsor of those 

conferences, has asked that these Proceedings be issued to Army scientists 

and to others interested in the science and application of numerical 

analysis to applied problems. Members of this committee would like to 

extend their thanks to the speakers for their interesting papers, and 

to the chairmen and all others who participated in the conduction of 

this meeting. 
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INITIAL VALUE METHODS FOR NONLINEAR BOUNDARY VALUE 
PROBLEMS AND INTEGRAL EQUATIONS 

Robert Kalaba 
Blomedlcal Engineering Program 

Department of Electrical Engineering 
University of Southern California 

Los Angeles, California 

SUMMARY 

A technique has been developed for transforming nonlinear boundary 
value problems and Integral equations into Cauchy systems. This provides an 
analytical approach to nonlinear problems which is different from the usual 
successive approximation and series expansion schemes.  It is also signifi- 
cant computationally, for modern analog and digital computing machines can 
solve initial value problems with considerable speed and accuracy. There 
are Implications for stochastic nonlinear equations. 

Applications of this new approach in biology, physics, and engineering, 
both analytically and computationally, are sketched. 

1.  Introduction 

During the early 1950's I recognized that computing machines would be 
able to solve large systems of nonlinear ordinary differential equations, 
provided that a complete set of initial conditions is known. The study of 
some physical systems leads directly to such initial value problems; the 
study of others does not. Clearly, an important task would be the transforma- 
tion of integral equations and boundary value problems into initial value 
problems to take advantage of this great new computational ability. There 
were two early hints that this could be done: Ambarzumlan showed that the 
reflecting properties of a slab could be found without first determining 
the entire internal field [1], and Davidenko [2] showed that nonlinear 
transcendental equations could be reduced to initial value problems. 

In a long series of papers [3-8] my colleagues and I have shown how to 
transform many Important integral equations and boundary value problems of 
applied mathematics into Cauchy systems. These ideas have been productive 
both computationally and analytically. For the most part these systematic 
earlier considerations have been for linear systems, though there have been 
some exceptions [9]. 

In recent months we have found general methods for converting nonlinear 
boundary value problems and nonlinear integral equations into Cauchy systems. 
No use of the usual successive approximation or series expansion techniques 
is made. Let us now take up a special case to indicate the approach. Then in 
§ 3 we cover numerical aspects. Next stochastic equations and nonlinear 
integral equations are treated.  Initial value problems in one parameter are 
transformed into an initial value problem in another in §6. A broad program 
of applications in biology, physics and engineering is presented in §7. 

I 

The remainder of this paper has been reproduced photographically from 
the author's manuscript. 

- 
,,...,._. ,: 

■■i rniiiiiüiri -- ■■ .^^ >-<^   .   ^- ■   -:■■■ : ■    ■...■■     ■  ■ ^ 



mmmi^mmmmmmmn mmmmmMmmmk>mmi wmmfmmmmmmmmmmm. 

2.   A Nonlinear Boundary Value Problem [lO] 

To illustrate the reduction of a nonlinear boundary value problem to 

a Cauchy system we consider the problem 

(1) Ü (t) = Xf (u(t)). 

(2) u(0) = u(l) = 0   , 

0 < t < 1, 

and assume that a unique solution exists for 0 < X < A.    As usual,  the dots 

over a variable indicate differentiation with respect to t.    Since the solution 

u is a function of X, as well as t, we shall write 

(3) u = u(t,X)   , 0 < t < 1   , 

0 < X< A   . 

Equations (1) and (2) become,  in this expanded notation, 

(4) ü(t,X) = Xf(u(t,X)), 0< t < 1   , 

(5) u(0,X) = u(l.X) = 0   . 

Assuming appropriate differentiability properties we find that the function u, 

satisfies the linear boundary value problem 

(6) Cux(t,xr  =f(u(t,X)) + Xf'Mt.XNu^t.X)   , 

0< t< 1   , 

(7) ux(0,X) =ux(l,X) = 0   , 

where,  as usual,  the subscript denotes a partial derivative with respect to X. 

To solve equations (6) and (7) for u,  consider the function w,  the solution 

of the linear problem 

iiiiiMiiittiiiiiiiiilliiiiii 
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(8) w(t,X) = g(t,X)+ Xf,(u(t,X))w(t, X)   , 

0< t< 1   , 

(9) w(O.X) =w(l, X) = 0   . 

In terms of an appropriate Green's function G, for an arbitrary forcing 

function g the function w is given as 

1 
(10) w(t,X) = J" Ga.y'.X^y'.Xjdy'   , 

0 
0 < t < 1   , 

0 < X <   A . 

It follows that the function u, rnay be represented in the form 

1 
ux(t,X) =   f   Ga.y'.Xlf^y'.Xndy'   , 

0 < t < 1   . 

(11) 

0 < X < A . 

This is viewed as a differential equation for the function u,  the independent 

variable being X.    The initial condition at X = 0 is 

(12)        u(t,0) = 0, 0 < t < 1   , 

according to equations (4) and (5). 

Next we obtain a differential equation and an initial condition for the 

Green's function G.    From equation (10) we notice that 

1 
(13)        wx(t,X)  =   f   G^t.y'.Xjg^'.XJdy' 

1 
+ jGU.y'.XJg^y'.XMy'   . 

On the other hand,  we obtain a two point boundary value problem for the 

function w,   from equations (8) and (9).    It is 

j^^^ ■      it^^^—I 
'    -      - [11 Mil =- J 



I"*"* '"•—-■ lllPIHWPiPllWBSpW^I"JUIWMIWilKill|i-<lW^ III. I.Ji.I J. .KIlilliHJJUlilll 

(14) [wx(t. X)] "  = gx(tf X) + f'(u(t, X))w{t. X) 

+ Xf"(u(t,X))ux(t,X)w(t, X) 

+ Xf,(u(t,X))wx(t, X)   , 

(15) wx(0, X) = wx(I, X) = 0   . 

According to equations (8),   (9) and (10) the solution of equations (14) and (15) is 

(16)        w,(t. X) = J' Gft.y'.XjCg^y', X) + (ffufy', X)) 
A. 0 

+ Xf"(u(y,,X))u,(y^ X))w(y,.X)]dy,   . 

It is now convenient to introduce the auxiliary variable M, 

(17)        M(t, X) = f'(u(t, X)) + Xf"(u(t, X))ux(t, X ) 

f'Wt, X)) + Un(M(t, X)) J" G(t, y', X) fMy', X)) dy'   . 
0 

0 < t <   1   , 

0 < X < A . 

Equation (16) then becomes 

1 
(18) wx(t,X) = J"   G(t,y,.X)g (y'.Xjdy1 

A. 0 

1 
+ I G^.y« .X^y'.X^y', XMy' 

= J    G(t,y,,X)gx(y,,X)dy ' 
0 

1 1 
+ J   GU.y'.XjlvKy'.X) J' G(y^y,X)g(y,X)dydy,   . 

0 0 

' 
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In view of the two representations for the function w, in equations 

(13) and (18) and the arbitrariness of the function g, we see that 

1 
(19)        GWt.y.X) = J Gft.y'.XJMfy', X) Gfy'.y.Mdy'   . 

0 

0 < t,  y < 1 , 

0 < X < A , 

where the function M is given in equation (17).    The initial condition on the 

Green's function G at X = 0 is known to be 

y(t-l),        0<y<t, 
(20)       G(t,y.0) = 

t(y-l),        t < y < 1 . 

The desired Cauchy system for the functions u and G consists of the 

differential equations in equations (11) and (19), the auxiliary relation (17) 

for the variable M, and the initial conditions in equations (12) and (20). 

It is a straightforv/ard matter to establish that a solution of the 

Cauchy system provides a solution of the original two point boundary value 

problem. 

3.    Numerical Aspects 

Based on much previous experience [3,4,8] we believe that the method 

of lines [12]  provides an effective approach to the numerical solution of the 

Cauchy system just given.    The basic idea is to approximate the integrals on 

the interval (0,1) by means of a quadrature formula.   In that way the differ- 

ential-integral equations are approximated by a system or ordinary differential 

equations for which the independent variable is X.   Since a complete set of 

initial values for u and G known, at X  =0, the original boundary value problem 

is reduced to a system of ordinary differential equations subject to known 

initial conditions.   Modern digital, analog and hybrid computers are well- 

^•-'M*;;"- MiiiiiriMilftilir-''^1 



4IJH>,IUi.JiUWWWW^^^ 

suited for this task.    We routinely integrate systems of order 10   or so in the 

year 1972. 

Let us use the approximation 

1 N 
(1) J  ffy'tfy' =   E f(r ) w    . 

0 i=1 

Then equation (11) of the previous section is approximated by the ordinary 

differential equations 

N 
(2) du.(X)/dX  =   S G..(X)f(u.(X)) w   , 

i j=1   ij J J 

i = 1, 2,.. . , M , 

where 

(3) u.(X) ^(r-.X) 

and 

(4) G .(X) = G(r ,r .X)   , 

i,j = 1.2 N 

Equation (19) becomes 

N 
(5) dG..(X)/dX =    S G.    (X) M    (X) G    .(X) w 
»   ' 4JX   ' im mv mi IJ m=l 

im m'       mj'        m 

i.j = 1,2,... ,N   , 

in an obvious notation.    Thus there are N    + N ordinary differential equations 

with evident initial conditions from equations  (22) and (20).    In addition the 

analogue of equation (17) is required. 

We have done [lO] trial computations with f(u) = exp(u).    We approxi- 

mated the integrals by using Simpson's rule with twent/ intervals.    The 

""■a;"""^'J^— ■—■ 
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resulting system of ordinary differential equations was integrated for 0 .f ^ ^ 1 

and gave accuracy to within one part in five thousand.    This demonstrates the 

computational feasibility of the method.    In view of the known discontinuity in 

the derivative of G(t, y, X) with respect to y at y = t, it would be desirable to 

find ways to make the computation as efficient as possible and to compare it 

against other standard methods such as quasilinearization [13],    Where the 

parameter study in X is required,  the efficiency of the proposed method is 

beyond dispute.    Even if the solution of the nonlinear boundary value problem 

is desired for only X = A, the proposed method is interesting analytically and 

possibly numerically, for no solving of linear algebraic equations is required. 

4.    Nonlinear Stochastic Equations and Other Matters 

In the previous section we have indicated how to produce numerically 

the function u(t, X),  0 < t < 1, for 0 < X  < A, where u is the solution of the 

nonlinear two-point boundary value problem in equations (1) and (2).    There 

are at least three advantages in being able to produce the function u for all 

of these values of X.   In the first place, it automatically provides a "parameter 

study" which is often required in engineering and biological applications. 

Secondly,  it provides a way of treating stochastic nonlinear boundary 

value problems.    First determine u = u(t, X) as above for 0 < X  < A.    Then 

suppose that X  is a random variable having the probability density function 

p = p(X) for 0 <  X < A.    Let the m     moment of u(t) be denoted by M    (t), 

0 < t < 1.    Then we have 

(1) Mm{t) = J'um(t,X)p(X)dX. 
m 

0 < t < 1   , 

which is readily evaluated numerically. 

Thirdly,  a uniform approach to system identification problems is 

provided.   Suppose that b1,b2,..., b_ are observed values of u(t.), and we wish 

tiMaillllMiiT'ia iStHiiTTfciMliU'rJlfcr 
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to select \ so that we minimize 

R , 
(2) S(X) =   £ [u(t.,X) -b.r   . 

1=1        1 1 

where equations  (I) and (2) of    2 hold. 

Transforming the boundary value problem into a Cauchy system,  as 

we have explained,  puts the problem in a form for which much is known [13]. 

It also makes possible the use of gradient techniques for effecting the mini- 

mization. 

5.    Nonlinear Integral Equations [l4] 

A broad and important class of nonlinear integral equations has the 

form 

1 
(1) u(t) = g(t,M + X   J   k(t,y, X,u(y)) dy   , 

0 

0 < t < 1   . 

The parameter X may lie in an interval (0, A).    To emphasize the dependence 

of the unknown function u upon the parameter X,  as well as upon the variable t, 

we shall write 

1 
(2) u(t.X) = g (t.x) + x r k(t, y, X,u{y, X)) dy   , 

0 < t < 1   , 

0 <  X < A. 

Then, under suitable regularity properties, it is possible to demonstrate the 

equivalence between the ronlinear integral equation, Eq. (2), and the Cauchy 

system for u and the auxiliary function K 

1 
(3) ux(t, X) = f(t,X) + X J K^y'.Xmy'.XHy'   , 
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(4) Kx(t,y.X) = Q(t,y,X) + X jK^y'. X)Q(y,.y, X)dy,   , 

0 < t, y < 1   , 

0 < X<  A   , 

(5) u(t,0) = g(t.O)   , 

(6) K(t,y,0) = ku(t.y,0, g(y>0))   , 

0 < t,  y < 1   , 

where the functions Y and Q are certain functionals on u and K. 

Preliminary numerical experiments in which g(t,X) = 1 - (X/2)t and 

Mt»y»X,u) = tyu   have shown the feasibility of the method.    That X  = 3/2 

is a bifurcation point is obtained effortlessly, for the auxiliary function K 

becomes infinite there.    How to continue the solution through such a point 

is a matter of great interest. 

6.    Initial Value Problems 

Consider the Cauchy system 

(1) i(t,X) = f(x(t,X),X), 0<t<T 

(2) x(0,x) = c. 

where X is a parameter lying in the interval (0, A).    Frequently we desire a 

parameter study in X of the Swlutlon of the equations  (1) and (2).    One procedure, 

of course, is to solve the system as an initial value problem in t for various 

values of X.   However,  there is an alternative:   transform the system (1) and 

(2) into a Cauchy system in which X becomes the time-like variable.    Such a 

system is 

.-.'.JiijiijiJ/.jJj-jifl^ i. 
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(3) 

(4) 

(5) 

(6) 

(7) 

Xx(t. X) = M(t, X) 

t 
M(t, X) =   f [qp(t, X)/cp(y, X)]f (x(y, X), X)dy 

0 K 

x(t, 0) = g(t) 

t 
cpx{t, X) =   I" [cp (t, X)/cp(y, \ )] Y(yf X) dy 

Yft, X) = fxx(x(t, X).X)M(t.X) 

+ fxX(x(t.X),X)cp(t,X) 

(8) cp(t, 0) = h(t), 

0 < X < A , 

0 < t < T . 

The initial conditions at X = 0 in equations (5) and (8) are obtained by 

integrating equations (1) and (2) for X  = 0 and by integrating the system 

(9) cp{t,0) = fx(x(t,0),0)cp(t,0),       0<t<T, 

(10)       cp(0,0) = 1. 

Under some circumstances it might be preferable numerically to solve the 

system (3) - (10) rather than the system (1) and (2).    This remains to be 

investigated. 

There are similar discussions for the conversion of initial value 

problems for partial differential equations into Cauchy systems in which a 

selected parameter becomes the time-like variable. 

7.   Applications 

I have in mind applications in physics,  engineering, and biology. 

Electromagnetic theory and radiative transfer should be investigated.    One 
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of the principal nonlinear integral equations of radiative transfer is 

(i)       ^(n) = I + ^TICP(TI) J l^-ds, 

0<   Tl   <   1 , 

o < x < i. 

A start on the study of this nonlinear integral equation using initial value 

methods has been made [15 ]; in fact,  successful calculations have been 

performed,  but much remains to be investigated.    The behavior of the 

solution of the associated Cauchy system near X = 1,  a bifurcation point,  is 

interesting. 

The theory of optimal filtering, detection,  and control abounds with 

integral equations, many of which are nonlinear [16],    These should be 

studied with emphasis on filtering of physiological data, as well as communi- 

cation and radar signals.    The detection of arrhythmias in coronary patients 

is a possibility. 

The theory of thin shells of revolution [l?] depends upon solving 

nonlinear systems of coupled integral equations.    Here we have to derive 

the appropriate Cauchy systems and then do test calculations.    This is an 

extension of our work on the linear integral equations of elasticity theory [18]. 

Applications to biomechanics should be stressed,  especially the study of 

trauma due to a blow to the head. 

Nonlinear integral equations are used to describe lateral inhibition 

in neural systems Cl9J.    The dependent variable is a function of several spatial 

variables.    Computational solution using initial value methods is a challenge. 

Nonlinear boundary value problems and integral equations abound in 

the study of fluid and electrolyte transport in physiological systems [20,21,22]. 

■ 
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Here the biological interpretation of the Cauchy system will be particularly 

interesting. 

A nonlinear differential equation with nonlinear boundary conditions 

is treated in [23]. 

8.    Discussion 

In the previous pages I have adumbrated a uniform approach to non- 

linear boundary value problems and integral equations.    I feel that it will 

become as effective for nonlinear problems, in this age of computing machines, 

as the eigenfunction expansion technique was for linear problems in pre- 

computer days.    It possesses the great merits of being simple in concept, 

broad in application and effective in computation. 
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OPTOELECTRONIC COMPUTATIONAL TECHNIQUES FOR FAST PICTURE PROCESSING 

JENNY BRAMLEY 

Geographic Information Systems Division 
U. S. Army Engineer Topographic Laboratories 

Fort Belvoir, Virginia    22060 

In an earlier report1,  I have shown how the use of analog TV- 

type  techniques can greatly reduce both the cost of operation and 

the time required for the processing of pictorial information.     The 

inherent limitation on the precision of a TV-type computer is not 

serious  in this case since  there is  a comparable limitation on the 

accuracy of the experimentally obtained picture data.    That earlier 

procedure was strictly sequential.     The relatively high processing 

speed was the result of the elimination of drawbacks inherent in 

the digital computer, namely the delays in the input and output func- 

tions  and the need for piecewise operation due to the inadequacy of 

the memory for the amount of data being processed. 

Further consideration of possible analog approaches  indicated 

that the addition of state-of-the-art  (though not necessarily off- 

the-shelf) optoelectronic devices allows an increase in the previous 

operating speed by three orders of magnitude.    Thus this report 

makes  the earlier one obsolete.    The speed-up is due to the use of 

parallel or near-parallel processing techniques. 

To keep this presentation within a reasonable length,  I 

restrict the discussion to the following four operations: 

X 
V 
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(1) convolution, (2) Fourier transforms, (3) filtering, 

(4) algorithms. 
* 

(1) The basis of the convolution approach, as well as of the 

other operations, is the imparting of information to a light beam 

by passing it through a transparency. Consider two transparencies 

A and B with fiducial marks to determine registry and relative 

orientation. Lat resolution element (x, y) of A have an absorption 

a.  -  -log f, (x, y) > 0 (assuming that the function f. (x, y) < 1). 

The intensity U of a beam of parallel light passing through (x, y) 

is transformed into Uf (x, y). Similarly, if the element of B 

superimposed on element (x, y) of A is specified by (s-x, t-y) and 

has an absorption a» = -log f (s-x, t-y), then after passing through 

the set, the light beam has an intensity Uf (x, y)f (s-x, t-y). The 

total amount of light transmitted through the set AB (usually 

measured by a photomultiplier) is: 

1(8, t) = Js j üP1(x, y)f2(s-x, t-y)dxdy 

The  integration is performed over the area S being investigated. 

The function I(s,  t) is the convolution integral. 

In principle,  the change in the relative positions of A and 

B, which would give rise to different values of s and t, could be 

achieved by mechanical means.    However,  for an operation of 

interest in picture processing,  this brute force approach is grossly 

inadequate from the point of view of achievable speed and the spec- 

ification of relative orientation.    I propose replacing it with the 

16 
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following optoelectronic arrangement; 

photocathode magnetic deflection coil phosphor screen 

X 

FIGURE 1 

Image Converter Tube 

My "central processor" is a magnetically focused image converter 

tube (schenattz'id in Fig. 1) with flat fiber optics plates at input 

and output. This is an off-the-shelf item. Transparency A is 

mounted directly in front of the faceplate, and transparency B, 

which is several times smaller than A--to permit its correlations 

with different portions of A--i8 mounted directly in front of the 

photocathode.  This arrangement eliminates the use of lenses with 

attendant loss of light and provides for compactness.  Transparency B 

is illuminated and forms the input on the photocathode.  A deflection 

coil, such as used in the Goodyear Correlatron, permits scanning the 

luminescent output image across the faceplate in any desired pattern. 

At each position, the light from the luminescent image of B passes 

through A and is picked up by a photomultiplier in an arrangement 
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that Is conventional for flying spot scanners. The position of A 

is specified by fiducial marks, that of B is determined by the 

current passinw; through the deflection coil. The output of the 

photomultiplier can be recorded or displayed in any conventional 

manner to specify the occurrence and magnitude of the maximum. 

The determination of each correlation value can proceed at 

rates standard for a flying spot scanner, no matter how large the 

area being correlated. The limiting speed factor is the phosphor 

decay time.  In the case of a P16 phosphor screen, a high degree 

of accuracy may call for a rate somewhat slower than conventional 

TV time per deflection, e.g., ^ p,sec per correlation. Allowing 

for retrace times, this provides more than 2000 correlations per 

millisecond. The main time delay arises in changing pictures because 

rigorous alignment of picture A is critical. Since picture B is 

displayed on an image converter tube, the controls are electronic 

and more easily achieved. However, with suitable fiducial marks, 

the alignment of picture A can probably be automated to require 

only a fraction of a second. 

1 

; 

(2) The Fourier transform of a picture can be treated as a 

special case of correlation, based on the following mathematics: 

Let g(n, m) (n, m=l , ... , N) represent the intensity at every 

point (n, m) of a picture NX N elements considered as a matrix. 

The first index numbers the rows and the second one the columns. Take 

the cosine transform as an example. The coefficients in it are defined 
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by 

C(n, m) =  ^T    g(n,  ^cosZirniifi/N, 

(m) 
or in terms of a positive processing function f   (|i) = 1 + cos2Tr m\i/H 

c 

N (m)     N 
C(n, tn) = V" g(n, h)f   (p,) - yT  g(n, p,) 

^,-1 |j,-i 

(1) 

The first term on the right-hand side of Eq. (1) is a convolution— 

expressed as a finite sum. Using an image converter tube and an 

optical processing plate, all the multiplications and additions in 

Eq. (1) can be performed in parallel. The processing plate is a 

transparency of N+l parallel strips, each strip having the width 

of a resolution element of the picture and a length N times the width. 

The transmittivities of the successive strips are kf   , kfc  ,...j kf 
(N) 

k, k(l + cos 2^/10^(1 + cos UTT^/H),   ... , 2k    k < 0.5 

where ^ is the running index, which assumes all integer values from 1 

to N.  The quantity k is a constant of the plate. While the prepara- 

tion of such a plate entails time and expense, it is a onetime operation. 

To obtain the coefficients C(n, m) of the transform, line n of 

the picture is projected successively on the N+l transmissive strips. 

The light is then focussed on a photomultiplier as in the correlation 

operation. In suitable units, the total amount of light transmitted 

through strips 1, 2, and m+1 is 

X 19 
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N N (1) 
JZ     g(n, *) - In.     ^    f ^;(j*)l(n. ^  

(2) 

^1    c 

respectively. 

Hence  to obtain the coefficients C(n, tn) of the Fourier transform 

for any value of m (and a given line n), we store g    and take the 

difference between the photomultiplier output after illumination of the 

line m+1 and the stored signal g  .    The proportionality coefficient k 

can be determined by calibration. 

This scheme allows each transform coefficient to be obtained in 

a single step instead of requiring N successive multiplications as in 

the case of a conventional serial computer.    To implement it, we use 

the same  arrangement as for convolution.     The processing plate is 

picture A, while picture B is a transparency of N X N resolution 

elements.     (N/N/1000).    It is illuminated one horizontal resolution 

line at a time and is imaged on the photocathnde of the image 

converter tube.    By means of magnetic deflection,  it is placed 

successively in front of each strip.    The light transmitted represents 

the operations in Eqs.   (2).    To minimize errors due to phosphor 
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persistence, about 0.2 p,sec should be allowed per deflection. 

But even at this "slow" speed, we obtain 5 Fourier transform 

coefficients per microsecond, and the one-dimensional transform 

of a 1000 X 1000 picture requires only about 0.2 sec. Parallel 

processing for Fourier coefficients eliminates the need for any 

algorithms of the Cooley-Tukey type. 

(3) As far as filtering Is concerned, a number of factors 

must be considered. As a rule, the objective is to try a number 

of filters with the same picture. Therefore, in the arrangement 

described for convolution, the filter stands for picture B, 

ahead of picture A which is to be filtered.  The parallel output 

can be used for direct viewing, or photographed (with all the 

processing delays Involved), or it can be recorded on the cathodo- 

chromic screen of an additional image converter tube.  (This also 

takes time.) For all other uses, a sequential output is essential. 

If the filter is available in sequential form on video tape, 

transcribed, e. g., from the output of a digital computer or of a 

flying spot scanner, it is presented on the screen of a cathode 

ray tube rather than of an image converter tube. The light emitted 

by B and transmitted through A is picked up by a photomultlplier 

separately for every resolution element and Is recorded in conven- 

tional fashion. 

H(n, m) = G(n, m)S(m) 
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The problem is  to find h,  the inverse transform of H.    The derivation 

shown appears to be self-explanatory 

JL . J* „        2TTi/N „N      , 
G(n, m) = ^    g(n, ^iT W - e W   = 1 

LL = 1 

--2.. v  -"»(p-Lj,) .      . 
if n < P,     2».   s(m^w = 8(p"^ 

m=l 

N -m(p-a)       JL S   -m(N+p-n) 
if ^P       ZI   S(m)W "  Z     S(m)W 

m=l m=l 

s(N+p-|j,)  since N+p-^. 

. N .mp N -mp 
h(n,  p)  =  2Z      H(n' m)W        =   51   G(n' in)S^W 

m=l ni=l 

N. JL -m(p-u) 

m=l 

p-1 N 

= 1 
g(n,   n)»(p-ii) +*2Z     g(n'  M'^^+P'M') 

H=P 

To see more clearly what is involved in implementing this approach 

we write a few of the coefficients h(n,  0) explicitly 
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h(n, 1) - gin, l)8(N)+g(n, 2)8(N-l)+g(n, 3)s(N-2)+.. .+g(n, N)s(l) 

h(n, 2) =g(n, UsC^+gCn, 2)8(N)+«(n, 3)s(N-l)+ ....+g(iv, N)8(2) 

h(n,  3)   =g(n,   l)s(2)+«(n,  2)8(l)-fs(n,  3)8(N)+.. .+g(n, N)8(3) 

hCn, N) = g(n,   l)8(N-l)+g(n,  2)s(N-2)4«(n,  3)s(N-3)+.. .+g(n, N)8(N) 

As the index p changes by one unit,  the  transformed filter 

coefficients s(m)  are translated cyclically by one unit;  i.e.: 

s(N) s(N-l) ... 8(3) s(2) s(l) 

s(N-l) s(N-2) ... s(2) 8(1) 8(N) 

s(N-2) s(N-3) ... s(l)  s(N:i  s(N-l) 

I 

To obtain the intensity h(n, 1) of the first resolution element 

on line n of the filtered picture, we present the first sequence 

of the transformed filter coefficients in luminous form on the face 

of a cathode ray tube and shine this filter function through line n 

of the original picture.  The light transmitted through all the 

resolution elements is picked up and integrated by a photomultiplier. 

The operation is repeated after a one-step cyclic translation is 

performed on the coefficients 8(m). The only way I envision of 

performing this cyclic translation is to store the coefficients s(N), . 

s(l) on a scan converter tube in a circular scan made up of N elements. 

The readout also follows a circular pattern, but for each successive 

scan line, the scanning starts at the same element where the preceding 
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scan terminated.    Writing and reading rates for a scan converter 

tube can be real time or slower so that there is no problem in 

recording the coefficients s(m)  as they are obtained by a 

Fourier transform from the frequency filter S(m).     As  indicated 

above,  the determination of each coefficient h(n,  p)  calls for 

the scanning of one line of the picture.    This can be done in real 

time.    Thus an entire  line of a transformed picture is obtained 

per TV frame time.    This means that starting with a 1000X1000 

element picture and a line frequency filter, we obtain a filtered 

picture in little over half a minute. 

(4)    In the digital processing of images, masking operation 

and statistical analysis of neighboring areas have proved very 

successful in extracting information.    The drawback has been the 

length of time required to perform these operations.    An equivalent 

approach has been tried with a special type of tube,   the image 

storage tube, where each step of the algorithm is performed 

sequentially but all points in the picture are handled in parallel. 

In principle,  this would be the ideal solution,  but it was not 

made to work in practice except under very restrictive conditions 

which destroyed the usefulness of the method. 

The following approach,  illustrated on a very simple example, 

provides a means  for convenient parallel handling in the vicinity 

of any particular point,   though the different points in a picture 

are handled sequentially.    Consider a resolution element symbolized 

by a point  (0, 0)  of a picture and assume that the processing 
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affects Its 8 nearest neighbors as well. The intensities at that 

point and its vicinity constitute the array {g}. In the type of 

algorithm considered, the intensity at every point of the area is 

multiplied by a preselected number, positive or negative, forming 

the array j b | . 

81-1  81 0  Sl 1 
b    bn rt  b, , 
1-1   10   11 

'^ " 8o-i 8o o 8o i  ^b^   bo-i bo o bo 1 

8-l-l 8-l 0 8-i 1 
b    b , ^  b 
-1-1  -10   -11 

The products are added together to form 

+1    +1 

J = 2L   2-.    g b 
ji—l  Y =-1    M-Y ^Y 

which represents a convolution of arrays {g| and jbj.  if aii  tjie 

numbers of array |b| are positive, it can be used to form a 

transparency with the appropriate intensity values and apply the 

techniques described above for convolution. Otherwise, every 

quantity has to be measured from a bias level, which makes tne new 

array positive. An appropriate bias function has then to be subtracted 

from the final result. This is a standard operation. 

A more flexibile approach to the same problem and one that does 

not require photographic registry of the algorithm on a transparency 

calls for a multibeam cathode ray tube. In such a tube, the entire 

array |b| is written in parallel, on the screen and is then scanned 
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across the entire picture to be processed. Such tubes have been 

built by Litton Industries and by Sylvania and (based on a different 

principle) are under consideration by the Stanford Research 

Institute. Arrays of up to 5 X 7 beams have been fabricated, but 

a redesign is necessary to insure that the array consists of adjoining 

intensity squares rather than an array of discrete luminescent spots. 

The techniques for accomplishing this are well known. 

In comparing optoelectronic and purelv digital image processing, 

we must take into account that the former has speed on its side 

while the latter one has high precision. But while only minor 

improvements in the components could increase the precision of 

optoelectronic processing to the extent that the system is no 

longer the limiting factor, it requires a breakthrough in the speed 

and storage capability of a digital computer to make it competitive 

in these areas. If cost effectiveness is a consideration, we 

should concentrate on the implementation of optoelectronic system 

designs. 

REFERENCES: 

1. j. Bramley, Proc. 1971 Army Num. Anal. Conf., p. 11. 
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AN ALGORITHM FOR RAPIDLY PARSING 
AUTOMATICALLY DIGITIZED DRAWINGS * 

Charles M. Williams 
VISICON,  Inc. 

State College, Pennsylvania 

The potential for the breadth of applicability of computer graphics 
is demonstrated to some degree by the variety of the figures which appear 
in this paper.  Such potential, however, cannot be realized until pictures 
and drawings can routinely be entered into computers and manipulated 
there with a minimum of human effort and drudgery. The purpose of this 
paper is to describe a working process which contributes a step toward 
this goal. 

The drawings in this paper were all automatically digitized and 
transduced into a digital computer by means of the Visicon AD-1 Automatic 
Digitizing System shown in Figure 1. This system can process an 11" x 17" 
document in 58 seconds at a resolution of 100 samples per inch, or 116 
seconds at 200 samples per inch. The digital output usually goes to 
magnetic tape, but can alternatively go directly into a computer. The 
digitizer itself weighs roughly 75 pounds and can fit on a desk top. 

Figures 2 through 4 were reproduced directly from the digitized image 
onto an electrostatic (raster) plotter. A close inspection of these images 
will reveal that lines on them are composed of individual points. Each 
image is actually formed from a mosiac (raster) of black and white dots 
which are represented in a computer by means of ones and zeros. The 
reasons for digitizing such drawings are manifold. The resultant data may 
be transmitted over telephone lines. Inserted into computer files, analyzed, 
or may even serve as a mechanism for controlling machinery or computer 
software. 

The EEC of Figure 2, for example, was digitized so that a computer 
could make a frequency analysis for medical diagnoses.  Such data can 
also be imput into a computer with a manual digitizer or a data tablet 
by laboriously retracing the lines of the drawing. The drudgery of such 
retracing, however, results in poor human performance when attempted over 
extended periods of time.  The work is monotonous and yet requires meticulous 
hand and eye coordination.  One can imagine the difficulty of detecting and 
removing those frequencies introduced into EEC data during the tracing 
process by the vagaries of the human muscular motor response. 

*This research was funded in part by a grant from VISICON, Incorporated 
to Small Industries Research, The Pennsylvania State University. 
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The printed circuit and typed lettering shown in Figures 3 and 4 
Indicate the quality of the digitized image.  Such information can be 
inserted into computer archival storage where it is accessible to inter- 
active updating, computer analysis, or optical character recognition. 

A common requirement for processing such digitized images is the 
ability to abstract line information from them. That is, the raflter of 
disassociated black and white points must be collated into sets of lines 
strokes. As digitization can generate 40,000 data points per square inch 
of drawing, such line isolation and identification must be affected by a 
very efficient process. The graphic collation (on an IBM 360/65) which 
yielded the digital plots shown in Figures 5 through 10 were accomplished 
in times essentially proportional to the total line length on the drawing 
and independent of its complexity. 

The digitized data for the map shown in Figure 5 required 23 seconds 
of computer time to collect constituent digitized points into lines, thin 
such lines to individual pen strokes, and generate plot commands. Figure 
6 required 183 seconds of computer time and reveals the results obtained 
by processing a far more complex drawing.  In this instance, thin lines 
were reproduced as individual strokes and thicker symbols were represented 
by their peripheries. 

Figure 7 shows the results obtained by digitizing cardboard cutouts 
for garment patterns at 200 samples per inch. The computer processing 
time required to generate the plotting commands was six seconds per 
pattern.  Such plotting commands could just as easily have been used to 
direct a cloth or metal cutting machine. The drawing then would have 
served as the direct source of instructions for a numerically controlled 
tool. 

The input to this graphic collator is the raw digitized data, 
output is a sequence of triples (X, Y, I): 

The 

X,Y the Cartesian coordinates in inches of a line 
point 

I    an indicator which is 0 if the point is the beginning 
of a line segment and is 1 otherwise 

The indicator, I, plays the role of the "pen code" commonly employed 
in digital plotter commands. This set of triples forms a complete 
geometric description of the lines which constitute the drawing. The 
format of this output can easily be modified to interface with a large 
variety of digital plotters, computer display scopes, and numerically 
controlled tools.  In addition, this output may be further processed by 
the computer to yield a smoother or more compact analytic representation 
of the data for transmission or storage in computer files. 
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In many applications, computer analysis of drawings Is a very 
Important requirement.  In these cases, It becomes necessary to abstract 
and categorize the Important features of each picture.  Such a process 
Is quite similar In concept to the grammatical parsing of sentences Into 
component parts of speech.  In essence, a drawing Is reduced to Its com- 
ponent line segments to yield a network description of the original. 

The structure of the process Is very similar to that employed by 
programming language compilers on digital computers. The Initial phase 
of graphic collation has been described and Involves the collection of 
raw data points Into component lines. Attendant to this Is the process 
of graphical lexical analysis In which lines are segmented Into component 
parts, and the Interrelationship of separate lines Is detected and noted. 
Basically, this involves isolating and measuring points where lines 
terminate. Intersect, or exhibit slope discontinuities. The locations of 
these features along with a path description of the lines between them 
constitute a network description of the original drawing which can be used 
to regenerate or categorize it. 

- 5 

gOc.y) 

The drawing above, for example, can be represented by the line terminal 
points 1, 3, 5, and 6; the line intersection point 4; and the line slope 
discontinuity point 2; along with the tabular or analytic descriptions f,g, 
and h which categorize the curve shapes between these points. The output 
from the graphical lexical analyzer for this drawing can be represented in 

tabular form: 

\ V X 
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r- 

Initial Point Terminal Point 

(X2fY2) 

Curve 

&v\) f 

(X2,Y2) (X4,Y4) g 
(X3,Y3) (X4,Y4) h 

(X4.Y4) (X5,Y5) h 

(X4.Y4) <X6'Y6) 8 

This r^itwork description has all the information of an interconnection 
matrix and contains the geometric constraints of the system as well. 
This description can thus serve to reproduce the drawing or provide input 
for specialized analysis programs. The network of Figure 8 for example, 
was used on an interactive graphics terminal to generate an electrical 
network description of the circuit in a format which could be directly 
input to circuit analysis programs for computer simulation or diagnostics.' 
The curves in this instance were represented by polynomial approximations. 

The output of the graphic lexical analyzer can also serve as data 
for a graphic syntax analyzer. Figures 9 and 10 exemplify the results of 
such syntactic analyses. The lines and important features of Figure 9 
were detected and isolated by the graphic collator and graphic lexical 
analyzer to produce a network description of the drawing. This data was 
then processed by a graphic syntactic analyzer specially constructed to 
recognize circles, squares, and rectangles. The results shown in Figure 
10 are lines plotted from the appropriate words to the proper figures on 
the drawing. This analyzer was readily constructed as it had to work 
only on the fixed format data structures of the network rather than on 
the imperfect raw data itself. The system works on rough drawings whose 
allowable deviations from perfect geometric figures is specifiable by 
parameters. 

In summary, the automatic digitizing software system can be 
categorized as consisting of three distinct sections which perform the 
following functions: 

1. Graphic Collator - collects and sorts digitized raster 
points into lines 

2. Graphic Lexical Analyzer - translates lines into a 
descriptive network of nodal 
poinrs and connecting paths 

3. Graphic Syntactic Analyzer - parses and recognizes 
graphic symbols using the 
network formed by the 
Graphic Lexical Analyzer 

Joseph Novoshielski, An Interactive Program for Automated Network 
Description, unpublished Master's paper. Computer Science Department, 
The Pennsylvania State University, University Park, Pa.  16802, 1972 
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1 

The system described here is capable of automatically and economically 
reducing drawings to a format which can be used as direct input to 
systems for computer graphics, numerically controlled tools, data trans- 
mission, network analysis, pattern recognition, or design analysis. The 
value of such processing is that the accuracy of the result is independent 
of the complexity of the original drawing and is a function only of the 
resolution of the digitizing operation. Humans in attempting to perform 
the same tasks manually will inevitably omit some data and interject 
inaccuracies into the rest. The detection and correction of such errors 
involves as much work as does the original digitizing. 

i 
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Digital plot of a garment pattern generated by the Graphic Collator. 

Figure 7 
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CIRCLE      R E C T SQUARE 

Drawing dlgitliod by a VISICÜN AD-1 Syotem and replotted on a digital platter fror data guurated fro« 
the Graphic Lexical Analyzer.    The Graphic eyofactic Analyser haa located, identified, and 

measured the circlea,  rectangles, and aquarea in me picture (original drawing ehown in Figur« 9) 

Figure 10 
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EVALUATION OF THE ROOTS 
OF CROSS-PRODUCT BESSEL FUNCTIONS 

Shih-Chi Chu & Philip D. Benzkofer 
Research Directorate 

Weapons Laboratory at Rock Island 
U. S. Army Weapons Command 

Rock Island, Illinois 

ABSTRACT 

A difficulty frequently encountered in the solving of ordinary 

and partial differential equations in the problems of heat transfer, 

electricity, fluid and solid mechanics involving an annular region 

(such as a gun tube) subjected to Dirichlet, Neumann, or mixed type 

boundary conditions is that of obtaining the roots of nonlinear 

cross-product Bessel functions. By use of Implicit Iterative tech- 

niques, a digital computer program was prepared by personnel in 

the Research Directorate of the Weapons Laboratory at Rock Island 

to overcome this difficulty and thus to provide all necessary roots 

for cross-product Bessel functions. Tables of roots of certain 

particular cross-product Bessel functions with varying order are 

given. These tables are particularly useful for gun-tube heat 

transfer analysis and can be used directly by a designer for the 

calculation of transient truiperature distribution, and thermal stresses 

and strains in a small or large caliber gun barrel. 

The remainder of this article was reproduced photographically from 
the author's manuscript. 
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1.     INTRODUCTION 

Cross-product Bessel  functions are frequently encountered 
in  solving  Bessel's equation  in the problems of heat  transfer, 
electricity,  hydrodynamics,  and mechanics.     Laslett and 
Lewish1  studied cross-product Bessel  functions of the types 

Jn{3a)Yn(ßb)  - Jn(3b)Yn(3a)  = 0 (1) 

where J„, Y„ are Bessel functions of the first and second n  n 
kinds of order n, respectively, and 

0 (2) j;{ßa)Y;(ßb) a;(ßb)Y;(ßa) 

where J', Y' are derivatives of the Bessel functions Jn, Yn 

respectively, with respect to their total arguments. 

Kirkham2 graphed various conibinations of Equations 1 and 
2 given above.  Extensive tables of roots of Equation 2 are 
given by Bridge and Angrist.3  Other authors have solved for 
the roots of different types of cross-product Bessel 
functions. A general form of cross-product Bessel functions 
that could be reduced to many specific cases would obviously 
be most advantageous.  The purpose of this paper is to 
present several general cross-product Bessel functions that 
can be reduced to specific cases with proper selection of 
constants and parameters. 

2.  EVALUATION OF THE BESSEL FUNCTIONS 

To solve the various cross-product Bessel functions, one 
must solve the individual functions J and Y„. The first n     n 
kind of Bessel function, J (x), is evaluated by use of the 
recurrence relation k * 

Fn + 1(x) + F^Cx) = (2n/a)Fn(x) 

Then the desired Bessel function is given by 

Jn(x) = Fn(x)/a 

where 
M-2 

a = F fx) + 2 I  F9m(x) 
m=l 2m' 

(3) 

(4) 

(5) 
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M is initialized at M0, where M0 is the greater of MA and Mg, 

where 

M, [x + 6];      x < 5 
[1 .4x + 60/x]; x > 5 

and 

MB = [n + x/4 + 2] 

(6) 

(7) 

, FM -, ..., F«, F,, Fn are evaluated by use of Equation M-Z' "M-S 1 ' ' 0 
3 with FM = 0 and FM_-| = lO"30. Incrementing M by 3 and again 

evaluating J , and if 

Jn(x)M " Jn(x)M+3 
< 6 JR(x)M+3i (8) 

is satisfied, then J  is within the required accuracy range 
n 

determined by a given 6 > 0.  If this condition is not met, 
M is again incremented by 3, and the same procedure is used 
until the desired accuracy is obtained, with a default value 
for  M given  by 

M [20 +  lOx   -  x2/3];   x  <   15 
max "  [90 + x/2]; x > 15 (9) 

Similarly, the recurrence relationship for Yn is given by 

Yn + 1(x) = (2n/x)Yn(x) - Y^U) (10) 

For x > 4, the Y0 and Y-, Bessel functions are given by the 

asymptotic relationships 

Y0(x) = /| (P0(x)Sin(x-TT/4) + Q0(X)COS{X-TT/4) )     (11) 

Yl(x) = 'r* (-Pi(x)Cos(x-Tr/4) + Q1(x)Sin(x-iT/4)     (12) 

where  P0(x),  P^x),  QQ(X)  and  Q^x)  are defined5,   but  are too 

lengthy to  include  in this discussion. 

For  x  < 4, 

15 
2    ': i   ,.ni,„,,,2in      1 ^ [Log(x/2)  + Y.Hm]    (13) Yn   (X)  - -4-   Z   (-l),M(x/2)' 

m=0 TUTiT 
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where 

H 

dnd 

and 

m 
J  .-! h  ■ > 1 

m   r-I r   — 

0  ; m = 0 

(14) 

Y- Euler's Constant = .5772156649 

v1u) = -if^J'(-'r,(x/2)2™tiffni7TTr 

i 
(15) 

[Log(x/2) +   y-   Hm  +  ^ 

Then the Yn's fjr n >1 can be obtained from Equation 10 for 
any value of x. The two subroutines for the solving of 
Bessel functions are available at the University of Iowa 
Computer Center in their subroutine package; both subroutines 
were entirely workable in all cases. 

3.  DISCUSSION OF THE NUMERICAL METHOD 

A.  NEWTON-RAPHSON METHOD 

The calculation of the roots of cross-product Bessel 
functions was accomplished mainly by use of the efficient 
Newton-Raphson method. The iteration technique for the 
Newton Method is defined by 

Xn+1 
= Xn " ntJWJl   n = 0. 1. 2. (16) 

The graph of the function F is approximated by its tangent 
at the point X , that is, F(X) is replaced by 

F(Xn) + (X-Xn)F'(Xn) (17) 

The first problem encountered with this method was that 
of finding a c,ood first estimate for X.  Since the shape of 
the cross-product Bessel functions is not generally known, 
this first estimate is difficult to make.  The problem Is 
avoided by the checking of function values for increasing X 
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Thus, with the computer program developed to solve for the 
roots of cross-product Bessel functions, any number of roots 
can be found for virtually any type of cross-product Bessel 
function. The specific cases can then be fitted into the 
following general equation forms: 

F(x) ■ [C^Cbx) + C2xJn+1(bx)][C3Yn(ax) + C4xYn+1(ax)] 

- [C5Jn{ax) + C6xJn+1(ax)][C7Yn(bx) + C8xYn+1{bx)]   (18) 

and 

F(x) = [C^^bx) + C2xJ|;+1(bx)][C3Y|;(ax) + C^Y^, (ax)] 

-[C5J;(ax) + C6xj;+1(ax)][C7Y;(bx) + C8xY;+1(bx)]   (19) 

, Co are constants or parameters, and J„, 
o ■ n 

where C-,, Cy* 
Y„, Jl and Y' are as defined previously. If the cross- n  n     n 
product Bessel function cannot be fitted into the general 
form of Equations 18 and 19, one could simply supply a new F 
and F*.  Several functions have been tabulated to illustrate 
how one can determine any number of roots for any order n. 
Each table gives but only partially because of lack of space, 
the magnitude of n and the number of roots. 

4.  ROOTS OF SPECIFIC CROSS-PRODUCT BESSEL FUNCTIONS 

Suppose one sets C, = C5 = -1, C- » C, = 1, and Cp = C. = 

Cg = Cg = 0 in Equation 18.  One obtains identically Equation 

1.  Since this specific cross-product Bessel function is 
commonly found in various fields, the roots of Equation 1 
are tabulated for order n = 0 through n = 10 in Table I. 

Another common type of cross-product Bessel function 
that has identical coefficients as assigned above, but 
applied to Equation 19 is tabulated in Table II. 

Thus, with the use of the computer program developed 
in this study, one can find any number of roots of a given 
cross-product Bessel function. 
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APPLICATION OF PATTERN RECOGNITION TO SHOCK-TRAUMA STUDIES 

W. S. Copes 
US Army Materiel Systems Analysis Agency 

Aberdeen Proving Ground, Maryland 

A. R, Cowley 
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Baltimore, Maryland 

C. Masaltls 
Ballistic Research Laboratories 
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W, J. Sacco 
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Blomedlcal Laboratory 

Edgewood Arsenal, Maryland 

ABSTRACT. This paper reports the results of a study to determine pattern 
vectors (Profiles) composed of physiological and biochemical measurements 
which reflect the severity of Injury to traumatized Individuals, Profile«, 
selected by clinicians at the University of Maryland Center for the Stuiy 
of Trauma, were obtained from the Center data bank and subjected to pa tern 
analyses using OLPARS, an on-line pattern analysis and recognition systeui, 
located at Rome Air Development Center. Prognosis regions were delineated 
in the Eigenvector Plane and the Discriminant Plane. The time courses of 
individual patients were plotted in the Eigenvector Plane. 

INTRODUCTION.  Shock is usually associated with severe injury to the soft 
tissues, the skeleton, and to specific organs. Tissue injury, hemorrhage, 
and pain cause a multidimensional and widespread body response to injury 
which can involve every organ system within the body. Moreover, the 
responses are interconnected in a very complex way. 

The Center for the Study of Trauma at the University of Maryland 
Hospital was established to study the effect of inadequate tissue perfusion 
Induced by Injury at the organ and tissue level by assessing physiological 
and biochemical responses. 
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In support of this objective, several analyses using pattern recog- 
nition techniques have been conducted by clinicians and researchers from 
the Center, together with analysts from the Biomedical Laboratory (Edge- 
wood Arsenal, Maryland) and the Army Materiel Systems Analysis Agency 
(Aberdeen Proving Ground, Maryland). 

A data bank at the Center contains clinical, cardiovascular, metabolic, 
and therapeutic data on over a thousand patients. 

The initial step in the study was to determine pattern vectors composed 
of physiological and biochemical measurements which reflect the severity of 
a patient's traumatic state, that is, to determine prognosis regions of the 
pattern space and to analyze the time course of patients as a function of 
therapy. 

A candidate pattern profile, selected by the clinicians, was subjected 
to pattern analysis routines, using OLPARS (an On-Line Pattern Recognition 
System belonging to Rome Air Development Center), in an effort to find 
some structure in the data and to delineate various prognosis regions. 
The pattern profile consisted of 12 measurements, so in this instance, the 
condition of each patient was characterized by a 12-dimensional vector 
X = (x1,x„,..,,x1„), From the data bank profiles were retrieved on 140 

patients, 70 of whom ultimately recovered, and 70 of whom ultimately died 
in the Center. The methods and results of the analyses will now be described. 

METHODS 

Patien^ Sample and Data 

Included in this study were initial and final measurements from 
140 patients, 70 of whom died, and 70 of whom survived. For each patient, 
the first measurement on each variable was called the initial value and 
the last measurement before death or discharge, the final value. The 
set. of 12 measurements used in this study* were systolic blood pressure 
(SBP), diastolic blood pressure (DBP), hemoglobin (Hgl), hematocrit (Hmt), 
serum fibrinogen (Fib), serum sodium (Na), serum potassium (K), serum 
chloride (Cl), serum osmolality (Osm), blood urea nitrogen (BUN), 
glucose (Gl), and serum creatinine (Cr). 

The set of measurements will be called a profile or a patter vector. 
Throughout the study the vectors were considered as belonging to classes 
A, B, L, and D where: 

A is the set of 70 vectors composed of final measurements 
on the surviving patients; 

*Re8ults of a study of organ system profiles will be reported in another 
paper. 
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B is the set of 70 vectors composed of final measurements 
on the dying patients; 

L is the set of 70 vectors composed of initial measurements 
of the surviving patients; and 

D is the set of 70 vectors composed of initial measurements 
of the dying patients. 

Subsequent to the start of the study nine vectors from Class A were 
discarded. These vectors came from patients who were still seriously ill 
when they left the Center 

Analyses 

In this study Class A was considered to be the control set. Indeed, 
the vectors in Class A are the final measurements of patients who recovered 
and should be close (and in this case are) to normal values. The means 
and standard deviations for the measurements in Class A are given in Table 1. 

All of the dat:a were normalized with respect to the vectors of Class 
A, More specifically let the pattern vector X = (x.,.., ,x. -). Let 
A    A 

x, and S. be tue mean and standard deviation of x. with respect to Class 

A, Then each X vector was transformed into a new X vector whose component 
new 

was defined by the relationship 

new 
old   A 

x.  -xi 

The normalized mean values for each class and the total data set are 
given in Table 2, 

Profile Analyses 

The normalized vectors from all four classes were subjected to a 
detailed structure analysis. Several mathematical transformations including 
Non-Linear Mapping, Eigenvector Plane Mapping^ and Discriminant Plane 
Mapping were used in an effort to uncover some revealing aspects of the 
inherent data structure. For this data set the latter two mappings 
appeared to provide the better settings for delineating prognosis regions. 
The Eigenvector Plane Mapping projects the original data onto a plane 
which "best" fits the data in the linear least squares sense. Minimizing 
the sum of the squared distance from a two-dimensional subspace of the 
original space requires the solution for the eigenvectors of the lumped 
data «rv-iriance matrix. The eigenvector plane is defined by the two 
eigenvectors E1, E« corresponding to the two largest eigenvalues of the 
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matrix. The Discriminant Plane Mapping projects two-class data onto a 
plane which enhances discrimination between data classes.  The plane is 
defined by the discriminant vector D.. (which is the direction which 

maximizes the projected between class scatter relative to the sum of 
projected within class scatter) and a vector D-, where D-is that direction 

orthogonal to D. which maximizes the projected between class scatter 

relative to the sum of the projected within class scatter.  For a more 
complete description of these techniques see Reference 1.  The eigen- 
vectors E1 and E„ are given in Table 3.  The discriminant vectors for the 

four classes taken two at a time (namely, A-B, A-L, A-D, B-L, B-D, L-D) 
are given in Table 4. All of the eigenvectors and discriminant vectors 
are unit vectors. Therefore, the mapping of a vector X to a point 
(YI»Yo) in the Eigenvector Plane, say, is given by the scalar products 

E1,X' y2 
E -X. The Eigenvector Plane Plot is given in Figure 1. 

Figure 2 gives a count of the number of vectors from each class which 
are located in each square of the grid appearing in Figure 1. The 
Discriminant Plane Plots for pairs A-B and A-D are given in Figures 
3 and 4. 

Measurement Reduction 

In solving a pattern classification problem it is desitable to 
use the minimum number of measurements to achieve a satisfactory solution. 
The OLPARS system provides two functionals (Discriminant Measure and 
Confusion Probability) for ranking the measurements. 

The functionals were used to evaluate the discriminatory power of 
each individual measurement.  The measurements which ranked high with 
respect: to both functionals were systolic blood pressure, hematocrit, 
fibrinogen, potassium, osmolality, and creatinine. The original profile 
was reduced to these six measurements.  Structure analyses were repeated 
on the reduced vectors.  Little loss in discriminating among various data 
classes was noted by comparing the Discriminant Plane Plots. For example. 
Figure 5 is the Discriminant variables. The reader may compare this plot 
with Figure 3, the corresponding plot based on 12 variables. 

Delineation of Good and Poor Prognosis 
Regions and Patient Trajectories 

Figure 6 gives the Eigenvector Plane PTot for the six-dimensional 
profile. This plot was used to delineate prognosis regions, with good 
(9) and poor (P) regions as indicated. Region G contains 46 vectors 
from Class A, 2 vectors from B, 31 vectors from L, and 14 vectors from 
D. The regions labeled with a P contain 14 vectors from A, 68 from B, 
39 from L, and 56 from D. 
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The Eigenvector Plane is also being used to observe the time courses 
of patients. Indeed, let X , X_f..., be a time-ordered sequence of 

pattern vectors obtained from a patient. Let Y ,Y ,..,, be the corres- 

ponding points in the Eigenvector Plane, We shall call this latter 
sequence a trajectory, From the trajectory we can observe a patient's 
current state and the raze of change of the state.  From a family of 
trajectories we may compute transition probabilities from region to 
region as functions of therapy. Figures 7 to 10 show sample trajectories 
of daily profiles of various patients some who survived (designated S) 
and some who expired (designated D). Each trajectory is labeled 
1,2,..., for Dayp Day-,..., respectively. 

SUMMARY AND OBSERVATIONS. A pattern profile consisting of 12 physio- 
logical and biochemical measurements was used to reflect the severity 
of a patient's traumatic state. Prognosis regions were delineated in 
the Eigenvector Plane and Discriminant Plane based on initial and final 
measurements from 140 patients, 70 of whom ultimately recovered and 70 
of whom died in the Cemter. The original profile was reduced to 6 
variables with little apparent alteration of prognosis regions. The 
Eigenvector Plane Plot based on the 6-dimensloiial profile was used to 
exhibit sample trajectories of several patients. 

The Discriminant Plane may be used as well for plotting trajectories. 
Indeed, we are currently converting the data from over 1,000 patients 
into trajectories in the Eigenvector Plane and the Discriminant Plane. 
In addition, we are computing trajectories based on "distance" from 
normality using original variables for various profiles. Some of this 
work is directed toward isolating a small but efficient set of measure- 
ments which can be used as a basis for initiating and evaluating 
therapies. We call this set an "Action Profile." Clinicians are polled 
to determine their preferences. Since each clinician usually has his 
own priorities, we would like to establish the smallest set which is 
sufficient to regulate, say, 90% of patients suffering from trauma, 
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TABLE 1' 

Means and Standard Deviations for 

Measurements from Class A 

.STANDARD 
MEAN DEVIATION 

Systolic Blood Pressure 129.5 16.3 

Diastolic Blood Pressure 79.14 12.7 

Hemoglobin 12.24 2.03 

Hematocrit 35.87 5.79 

Fibrinogen 350.0 139.0 

Sodium 141.5 6.37 

Potassium 4.426 0.910 

CWoride 100.6 8.85 

Osmolality 302.2 18.4 

Blood Urea Nitrogen 22.7 16.7 

Glucose 128.7 59.2 

Creatinine 1.40 1.38 
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TABLE 2 

Normalized Mean Values 

SBP 

DBP 

Hgl 

Hmt 

Fib 

Na 

K 

Cl 

Osm 

BUN 

Gl 

Cr 

CLASS/MEASUREMENT 

Total Data Set    Class L   Class D   Class A   Class B 

-1.609 -1.301 -1.423 0 -3.505 

-.9356 -.7051 -.9724 0 -1.990 

-.1418 .1684 .06782 0 -.7850 

-.1332 .2643 .07497 0 -.8549 

-.4457 -.5592 -.4726 0 -.6957 

-.1461 -.1113 -.3868 0 -.06754 

.1707 -.1953 .092^7 0 .7641 

-.2870 -.00326 -.3836 0 -.7243 

1.107 .3724 1.435 0 2.4E0 

1.018 .3448 1.376 0 2.220 

1.041 .9485 1.372 0 1.708 

1.062 .4428 1.175 0 2.495 
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TABLE 3 

Eigenvectors 

MEASUREMENTS 

SBP 

DBP 

Hgl 

Hmt 

Fib 

Na 

K 

Cl 

Osro 

BUN 

Gl 

Cr 

60 

E, 

.145 .600 

.0936 .595 

.0739 .121 

.0857 .0926 

.0136 .0525 

.0796 -.0488 

.149 .0252 

.0141 -.0238 

.353 -.182 

.378 -.0909 

.0525 -.318 

-.811 .338 
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TABLE 4 - Discriminant Vectors 

MEASUREMENT/ 
CLASS PAIRS 

A- •B A-L A-D 
Dl D2 Dl D2 Dl D2 

SBP .847 .121 -.364 -.203 -.431 -.0835 

DBF -.120 .115 .0396 -.136 -.123 -.387 

Hgl -.0106 .671 -.154 .671 .0268 -.167 

Hmt .198 -.648 .383 -.568 -.00573 .224 

Fib .169 .141 -.443 -.249 -.489 ,366 

Na .254 -.0626 -.00577 -.0315 -.174 -.180 

K .0592 -.146 -.421 -.0591 -.141 .0716 

Cl .115 .102 -.0883 -.113 -.163 -.289 

Osm -.342 -.0798 -.0372 -.0597 .0136 .392 

BUN -.0221 -.154 .0280 -.0140 .265 .454 

Gl -.0372 -.129 .435 .257 .228 .287 

Cr -.0231 -.00698 .349^ .136 .601 -.263 

B- L B-D L-D 
Dl D2 Dl D2 Dl 

p 

SBP .442 .439 .689 .434 -.0788 -.448 

DBF -.00652 -.0125 -.0835 -.0497 .319 .226 

Hgl -.382 .623 -.151 .761 ^.462 .530 

Hint .587 -.399 .605 -.430 .507 -.471 

Fib .128 .111 .224 .115 .0159 .0576 

Na .173 .128 .0733 -.00767 .204 .226 

K -.193 -.118 -.222 -.127 -.123 .0274 

Cl .333 .256 .135 .0835 .375 .260 

Osm -.330 -.353 -.0266 -.0592 -.274 -.274 

BUN -.0842 -.139 -.0608 -.0646 -.382 -.485 

Gl -.0627 -.0892 -.Olli -.0285 -.0593 -.113 

Cr -.000989 -.000203 -.0498 -.0534 -.0215 -.0580 
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AERODYNAMIC PARAMETER IDENTIFICATION 
IN BALLISTIC RANGE TESTS 

Gary T. Chapman 

Ames Research Center, NASA 
Moffett Field, California 

INTRODUCTION.  In general, the problem of aerodynamic parameter identifi- 
cation has as its goal the determination of certain aerodynamic forces 
and moments that will be used to predict the dynamic behavior of some 
full-scale vehicle or projectile as it flies through the atmosphere. 
Here then the problem of parameter identification must not only be con- 
cerned with the problem of determining the aerodynamics in laboratory 
tests, hvt  must also consider how those results can be applied to a 
geometrically similar but larger vehicle flying at some altitude above 
sea level. The purpose of this paper is to consider a "real" world 
problem and trace through the various steps that may be required to 
obtain the aerodynamic data needed to calculate the dynamic behavior of 
the vehicle.  In this approach I will concern myself with both the 
physical world and a mathematical world. A simplified box diagram of 
the basic process that will be discussed is shown in Figure 1. The 
left-hand series of boxes represents physics, the right-hand boxes 
mathematics. The physical world problem is at the top left, with its 
corresponding mathematical counterpart on the top right. As we move 
down the chart to the second box, we simplify the problem until we 
arrive at a satisfactory experiment and corresponding mathematical model, 
that is depicted by the thxrd box down. The data from the experiment 
are combined with the mathematical model in what is classically called 
the parameter identification step. From this step we get not only 
results that will be applied to the real problem but also information 
on experimental errors that can be fed back into the experiment to 
improve the data and information about the accuracy of the mathematical 
model that should be fed back to improve the mathematical model. Note 
also that there are dotted lines connecting the physical side of the 
chart to the mathematical side. This is used to indicate that the model 
selection process arises from the joint flow of information back and 
forth between laboratory and mathematical considerp^tions. 

In the following sections we will discuss briefly the pressures that 
cause one to move to simpler modeling (both mathematical and physical). 
We will then discuss in detail the interacting of the experiment and 
mathematical model through parameter identification. Where possible, 
concrete examples of all the steps will be given. In any one case all 
of the steps are not followed; hence a single set of data cannot be 
followed throughout, but rather the various ideas are illustrated by 
representative data. Much of the information we will describe is 
contained in detail in Reference 1. 

Preceding page blank 73 

i 

mm 



""™- mmmmmmvmm' !mmm^mmmm»>»w 

1 ^ 
1 Lü ^ 

c/) 
_J 

-J ÜJ 

Sq O LÜ 
UJ 

T
H

  
 M

O
 

W
O

R
L 

IA
TH

  
M

( 
SP

A
C

 
I 

< 1 S 2 2 
CD ae 

1 4 A  A 25 <=> ■ 

>         i i       i  ■ 

—J ct: 
LU uj 

- o  - 

E
T

E
 

C
A

T 
R

A
M

 
T

IF
I 

CO 
1— 

1     * 
1              1        SB 

^^ CO '                    1 - "-• 

LU 1              1 —^ 

LU Cd 
i i ♦ ♦ Q_ as 

x ce f 
LU LU 

!zö H 
_J F. < oF. 
<I r^ UJ ü_ — u 

Y
S

IC
 

O
R

LI
 

2 en 
^ _i 
LU rT, 

1 
x o -5c 
UJ5 LÜ i 

•H 

a) 
> 
o 

H 

o 
H 

PM 

■H 
tu 

74 

i^i ■■-■. 
■r... -  ......   ... 



wm mmmm mmm ■"-' wmm WPWI ttmmmfvmw^'Wi^i mm 

PROBLEM DEFINITION. The physical problem we will try to find answers to 
will be: What are the forces and moments that act on a full scale 
vehicle flying in an arbitrary atmosphere? One's first thought might be 
that there must be theoretical prediction techniques available to compute 
the aerodynamic forces and moments, and there are, but they are not 
sufficiently good at this time to risk a multimillion dollar vehicle on 
the results from them. The next question may be: Would it be possible 
to construct a theoretical procedure that would be accurate enough? The 
answer is yes in principle, but we lack the large-scale computer required 
to make the calculation. The ILLIAC IV computer presently being installed 
at Ames Research Center may be able to provide such results but, even 
there, we would want some supporting information particularly for turbulent 
or separated flows. Hence, we are left with the need to test, but not the 
full-scale vehicle for it is expensive. Therefore we must consider smaller- 
scale experiments. This step away from the real physical problem takes us 
into what will be referred to here as the experimental modeling space and 
correspondingly the mathematical modeling space. 

Modeling Space 

We referred to the step of subscale modeling as a modeling space 
because there still remain options as to which particular model will 
best meet the needs within any constraints that may exist. There may be 
no unique answer to the question of which modeling method is best; in 
fact, some of the techniques may be complementary. 

The first step one might consider is to test a one-half to one- 
fourth scale model of the vehicle with the internal systems greatly 
simplified. Even here, the cost is prohibitive in all but a very few 
cases. Next, we consider ground-based tests such as in a wind tunnel or 
a ballistic range. These two approaches are not necessarily exclusive. 
Availability normally dictates which will be used, but one should be 
aware of the limitations and advantages of each because the results may be 
altered significantly by the choice. For example, in a wind tunnel, it 
is easy to measure force and moments but the presence of a model support 
may affect the data. The wind tunnel may also be limited in its ability 
to simulate the proper environment at very high speeds. In the ballistic 
range, on the other hand, force and moment results are difficult to obtain; 
they have to be inferred from the measured motion of a small model as it 
flies through a suitably instrumented range. The ballistic range test 
however can simulate the flight conditions better and there are no support 
effects to worry about. Figure 2 shows a typical ballistic range shadow- 
graph from which the motion measurements must be made. For the remainder 
of the work we will assume that the ballistic range has been selected. 
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Dimensional Analysis 

No matter which technique had been selected, we would be faced with 
the first major problem that parameter identification must deal with; 
that is, how are results obtained on small-scale models in a laboratory 
facility applicable to full-scale flight? Hence, we must understand 
scaling and simulation rules. We will take a brief look at this from 
the standpoint of dimensional analysis,^ To be speoiiic, we will look 
at the drag of our vehicle to see what we must simulate and how we must 
treat the results. The basic idea of dimensional analysis is as follows: 
In the functional relationship between the quantity of interest, (drag, 
in this case) to other important variables of the problem, such as air 
density p, flight velocity U, reference length L, vehicle configuration 
C, and vehicle orientation OR, the important variables must appear in 
combinations such as to yeild the same dimensions as the quantity of 
interest. 

Equation (1) 

Drag = D(p,U,L;C,OR) 

shows such a functional relationship,  and Equation  (2) 

(1) 

CD = 

(l/2)pU2L2 

= CD(C,0R) (2) 

shows the particular grouping of p, U, and L that yield the dimensions 
of drag.  In this case they have been used to nondimensionallze the 
drag and hence produce a drag coefficient that in principle depends only 
on the remaining two nondimensional quantities C and OR.  (The 1/2 

appealing in the denominator arises historically because the quantity 
2 

(1/2) pU is a term that appears in simple fluid mechanic problems and is 
referred to as the fynamic pressure.) The dependence shown in Equation 
(2) is found not to be sufficient in practice. The fluid viscosity (y) 
and speed of sound (a) have also been found to be important.  When these 
two quantities are incorporated we get 

Drag ■ D(p,U,L,M,a;C,OR). (3) 

Since we have already established a group of terms which had the same 
units as the drag, the remaining variables must form nondimensional 
groups. When we do this, we get the results shown in Equation (A), 
where the drag coefficient CL is shown to be a function rr the configu- 

ration, the orientation and two parameters; one called the Reynolds number 
Re, and the other the Mach number M. 
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CD = 

(l/2)pU^ A 

= CD(M,Re;C,OR). (A) 

Where M - U/a and Re ■ pUL/p, The Reynolds number is an indication of the 
viscous drag effects, and the Mach number, the compressibility effects 
brought on by flying at speeds other than those much less than the speed 
of sound. Note also that a reference area A has been used in place of 
2 

L . This last functional relationship [Equation (4)] tells us that as 
long as our laboratory test is of a model with the same configuration and 
at the same orientation as the full-scale vehicle and flying at the same 
Mach number and Reynolds number, then the drag coefficients for the two 
cases are the same and we can use laboratory tests to establish full- 
scale results. All other aerodynamic forces and moments must be treated 
in a similar manner. This then is the basis for going from laboratory 
tests to full scale; it has limitations that are not considered here but 
they will not influence our discussion (see Ref. 2 for more details). 
It might seem that we have not considered the mathematical modeling here 
but it has been implicit that both experience and theory are used to 
determine what variables are important. 

Experiment 

We will now consider the ballistic range test in sufficient detail 
to obtain a better understanding of the physical and mathematical models 
that we will be considering in the classical parameter identification 
step which terminates the formal job of obtaining the aerodynamic para- 
meters for our full-scale vehicle. 

The ballistic range consists of a gun from which a small-scale 
model of the vehicle is launched into an instrument range. The instru- 
mentation consists of a series of orthogonal shadowgraph stations at which 
spark shadowgraphs are taken.  In addition, the time at which each shadow- 
graph is taken is recorded. An example of a shadowgraph of this type was 
shown in Figure 2,  From the shadowgraphs one obtains the position and 
orientation of the model as a function of time or distance. A set of data 
from an actual flight is shown in Figure 3(a), (b), (c). The distance x 
is along the range and the distances y and z make up an orthogonal set; 
z is positive downward in the verticle direction. The angle of yaw is 4» 
and the angle of pitch, 6. The roll angle $  is not shown but was essen- 
tially constant. 

Here the first thing wa notice is that we are dealing with a problem 
involving six degrees of freedom. Hence the mathematical modeling problem 
could be very difficult.  Second, although it is not obvious at this point, 
there is experimental error present in the data; that is, the data points 
define some exact trajectory with error superimposed. These errors should 
mostly be statistical with zero mean but, as we will see later, this is not 
always so. 
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(b)  Swerve measurements. 

Fig. Z.-  Continued. 
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9, deg 

^, deg 

(c)    Angular orientation measurements. 

Fig.  3.- Concluded. 
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The mathematical modeling of this six degree of freedom dynamic 
system consists of two sets of three second-order differential equations, 
one set for linear momentum, Equation (5) and one set for angular 
momentum. Equation (6). 

(5a) 

(5b) 

(5c) 

(6a) 

(6b) 

(6c) 

m 
dt2 

F 
X 

m 
dt2 

F 
y 

m d2z 

dt2 
F 

z 

I p - qr(I - I ) = Mn 

I q - pr(I - I ) - M 
y^  r  z   x    m 

Ir-pq(I -I)=M 
z   ^ x   y    n 

where F , F , and F represent the forces (aerodynamic and gravity) 

that on a body of mass m, and M , M , M are the aerodynamic moments 

that act on the body about principal axes that have moments of inertia 
1,1, and I , respectively. Note that the angular velocities p, q, 

and r are related to the pitch, yaw, and roll angles (see Ref. 1), 

These two sets of equations would be decoupled except for the aero- 
dynamic forces and moments that occur. It has been found from inspection 
and experience with data that the coupling in some directions is weak or 
can be accounted for in an after-the-fact manner. This weak coupling can 
and should be exploited in setting up the mathematical models for para- 
meter identification. 

The equation of motion in the x direction is completely decoupled 
from the remainder of the equations if F is independent of orientation. 

X 3 Even if it does depend on orientation,   Seiff and Wilkins    have shown that 
the dependence can be accounted for in an after-the-fact manner.    This will 
be considered in detail later.    Next a major decoupling is brought about 
by transforming the remaining equations from time as the independent 
variable to distance along the direction of flight x.    When this has been 
done,  the equations of angular momentum depend only weakly on the equations 
of linear momentum but the coupling in the opposite direction is strong. 
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The weak coupling can be accounted for in an iterative manner or neglected 
entirely in many cases. Furthermore within the set of angular momentum 
equations there is some weak coupling that can be exploited. This latter 
coupling depends on the set of angles that are used to describe the motion. 

The aerodynamic forces and moments are unknown functions of angular 
orientations and angular rates. This is the information that we are try- 
ing to find.  It is also the area where much modeling needs to be done. 
At present most modeling consists of polynomial expressions in terms of 
the angles and angular rates. Two approaches have been used here. The 

classical approach uses conventional concepts of angle of attack and 
angle of sideslip. The other uses a resultant angle approach.5 The 
latter includes nonlinear terms in a simpler and often more natural way. 

PARAMETL, IDENTIFICATION, 
cation step, namely the b 
mathematical model to ded 
must fit our equations to 
conditions and aerodynami 
here is meant in the leas 
sum of the squares of the 
mentally determined funct 

We now take up the classical parameter identifi- 
ringing together of experimental data and i- 
uce some aerodynamic parameters. In this step we 
the measured motions and determine the initial 

c parameters that give the "best fit". "Best fit" 
t square sense. Hence our starting point is the 
difference between discrete points of an experi- 

ion f  and the calculated function f This is 

written as 

N 
SSR = E 

i=l 
- f (7) 

where i is the index of the measuring station and N is the number of 
these stations. We will now consider three cases of increasing complexity 
of the function f . 

Simple Case - Drag 

For a projectile fired horizontally in a ballistic range, the gravity 
term can be dropped and the equation for drag is 

Ö-sPf (8) 

where K = pA/2m. The solution to Equation (8) for the case of constant 
CDi8 

V KCn o D 

KC_x 
e D . (9) 
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Equation (9) cannot be used for f  In Equation (7) to give a normal 
Ci 

closed form least squares solution btcause C appears in a trancendental 

manner. Hence we must consider some other alternative and an iterative 
application of the conventional procedure will suffice. To start this 
we need a first approximation for CL. This can be obtained by noting 

from experience that KC is normally small resulting in the following 

approximation for Equation (9), 

t = t + rr- 
o  V 2V (10) 

Since this is a polynomial in x, the straightforward least squares 
procedure readily leads to a value of C , This value is normally within 

a few percent of the value obtained using Equation (9), To obtain the 
value of Cn consistent with Equation (9), this approximate value of C 

is substituted into Equation (9) and the standard least square procedure 
is used to determine the leading constant and the multiplier on the 
exponential (these appear in a linear manner). The value of SSR is then 
calculated; Cn is now changed by a small amount and the process repeated. 

This entire procedure is repeated, always looking for the value of C 

that yields the minimum value of SSR, This search can be carried out in 
many ways, A simple and fast way is to repeat the process for three 
values of C_, fit a parabola to the values of Cn and SSR and determine a 

minimum. This value of C can be the starting place to repeat the process, 

with smaller changes in C , if more accuracy is required. 

Variable Drag Coefficient 

In most cases of interest drag depends on the angular orientation. 
Seiff and WilkinsJ have shown that for axis-symmetric bodies when the 
drag coefficient depends on the resultant angle of attack, a, as 

+ C„ (ID 

the drag coefficient determined as though it were constant is the correct 
value at the root mean square angle-of-attack for that flight. If this 
is so, values of C determined assuming constant C when plotted as a 

function of the mean squared angle of attack should result in a straight 
line whose intercept is C  and whose slope is C Two examples of such 
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data are shown in Figure 4, Here we see that we do indeed obtain a 
straight line. Note also that in this case the intercept is in good 
agreement with theoretical values. 

Data Comparison 

To show that data obtained in ground facilities are applicable to 
a full-scale flight we have made a comparison of wind tunnel, ballistic 
range, and full-scale data.  The full-scale flight was for a 55° 
blunted cone approximately one meter in diameter.  Onboard accelerometer 
measurements were combined with meteorological measurements of density 
to determine the drag coefficients. The ballistic range data were ob- 
tained by Robert Sammonds and Robert Kruse of Ames Research Center.  The 
wind tunnel results are complied for several sources.  Comparison of 

Note C is plotted versus Mach number these data are shown in Figure 5. 

but since the full-scale flight experienced a particular Reynolds number 
and angle of attack at each Mach number, the wind tunnel and ballistic 
range results are for the appropriate Reynolds number and angle of attack. 
It can be seen that while the agreement is not perfect, it is within 
2-4% for most of the range of conditions. This is well within the 
accuracy of the full-scale measurements. 

Transcendental or Nonlinear Case - Linear Stability 

The next most complicated parameter identification problem arises 
when some of the parameters occur in a transcendental or nonlinear 
manner. An important example of this in ballistic range testing is the 
solution of the equations of angular momentum when linear aerodynamics 
and constant roll rate have been assumed for an axisymmetric body with 
small asymmetries.  The equation of motion for that case is. 

£" + AS' + BC = Ce 
ipx 

(12) 

where 5 = 6 + ia, ß is the angle of sideslip, and a,  is the angle of 
attack. The solution to Equation (12) is 

(n, + iujx     (n0 - iu0)x 
5 = ^e  1    1  + K2e 

2    2  + K3e
lpX (13) 

which is called the tricyclic equation because it is equivalent to three 
rotating vectors in the a - ß plane. This equation was first derived by 

9 
Nicholaides.  Here the n's and u'a are related to the important aero- 
dynamic parameters, damping and pitching moments, respectively. Equation 
(13) can be written in terms of components as 
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tolerance. The starting solution for this case is obtained using the 

Prony method.   It will be discussed briefly in a later section involving 
starting solutions. Some examples of fits to experimental a,3 data 
using Equation (13), Some values of the aerodynamic pitching moment..- 
curve slope, c , obtained from similar fits, are shown in Figure 7. 

m 
a 

Note C      is related to co1   and u„ as 
m 12 a 

m 
1 2 y 

pAL 
(17) 

We see in Figure 7 that C  appears to be nearly constant (i.e., C is 
a 

linear) for small angles of attack and hence the use of Equation (13) 
is justified but, as the angles become large, C  starts to decrease 

a 
and our assumption of linear aerodynamics is no longer valid. This can 

13 
be handled in a quasilinear manner, as developed by Murphy  and Rasmussen 

and Kirk. 
14 

These methods relate the values of C  determined from a 
m 
a 

linear analysis using Equation (13) for several flights at different 
amplitudes to the best nonlinear polynomial representations of pitching 
moment C . When the procedure of Reference 14 is applied to the data 

for Mach number 11.5 of Figure (7), we get the results shown in Figure (8) 

The method of quasilinear analysis does not handle nonlinear damping 
very well and entails some other approximations that prevent it from 
having complete generality. Hence, we are led to the final and most 
general case of parameter identification. 

Differential Equation Case - Nonlinear Stability 

The most general case of parameter identification occurs when the 
mathematical model is of sufficient complexity to prohibit the possibility 
of finding a closed-form solution. To illustrate how a solution for this 
problem proceeds we will consider the planar motion of a vehicle governed 
by nonlinear static and dynamic aerodynamic moments. The equation for 
this case is 

S + (C1 + C2ct2) a + (C + C4a
2)a = 0 (18) 

with the initial conditions 
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4(o) 

a(o) = C,. 

To apply least squares to this we first use the method of differen- 
tial corrections (Equation (16)). Note f is replaced by a and there 

are only six unknowns to consider. What is needed is an initial solution 
a      if six approximate values of the C's are known by straightforward 

o 
integration (a Runge-Kutta integration procedure works well). To obtain 
the derivatives of a      with respect to the C's we apply parametric 

15 Co 

differentiation. 

PARAMETRIC DIFFERENTIATION. Parametric differentiation starts by differ- 
entiation of the equation of interest ( Equation (18)) with respect to 
each of the parameters to be determinedi^ For example, for C_, defining 

G- ■ 3ot/3C3 we obtain 

G3 + (^ + C2ct2)G3 + 2C2a&G3 + (C3 + 3C4a
2) G3 = -a (19) 

with initial conditions 

G3(o) = 0 

G3(o) = 0. 

There are six of these equations. Using appropriate values for the C's we 
must integrate simultaneously the six equations for the G.'s and the one 

for a  with appropriate initial conditions. We now have all of the infor- 
mation to proceed with out least square by differential correction 
procedure, 

Beforfe proceeding with some results we will discuss an important 
factor that affects how the above procedure is applied, 

INFORMATION CONTENT, In any single test in a ballistic range where the aero- 
dynamics may be nonlinear there is normally not enough data (information) 
to determine, with any degree of confidence, the individual nonlinear terms. 
This will be illustrated with the wave form of a planar oscillation.  In 
Figure 9 we have plotted the wave form of the pitching motion for two cases 
having the same wave length and with the amplitude normalized out. The 
upper curve is for linear aerodynamic moment and is a sine wave. The 

mm. 
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other curve is for a pure cubic pitching moment. Note that there is not 
much difference between the two, particularly when only a few discrete 
data points on the curve are considered and these contain experimental 
error. All two-term linear-cubic pitching moments where both terms are 
stabilizing produce wave forms that fall between these two.  Hence we 
see that the only important way of detecting nonlinearity when the pitch- 
ing moment is nonlinear is that the wave length is a function of amplitude, 
In many ballistic range tests however a model may be only lightly damped 
(small change in amplitude) and/or only a few wave lengths of motion are 
observed.  Therefore the only way to discover the nonlinearity is to 
reduce simultaneously data from several flights with different amplitudes. 
In doing this, the aerodynamics (coefficients C. - C.) are assumed to be 

constant from flight to flight but the initial conditions (C, and C,) 

are different.  Hence, for example, in fitting four tests simultaneously, 
we must solve for twelve unknowns - four aerodynamic parameters and eight 
Initial conditions. The fit of Equation (18) to four ballistic range 
tests of a Gemini capsule is shown in Figure 10. The static pitching 
moment curves deduced from these flights are shown in Figure 11.  Shown 
for comparison is the result deduced using the quasilinear approach.^-^ 
The -jlight difference can possibly be attributed to the inclusion of a 
non-inear damping. Also included to show the sensitivity is a curve 
generated with only three runs; one of the small angle runs was deleted. 

Comparison of C m 

To complete the discussion of stability we will again make a compari- 
son of wind tunnel, ballistic range, and full-scale flight.  The date are 
from the same sources as the drag comparison (Figure 5), The comparison 
shown in Figure 12 is seen to be very good for most of the Mach number 
range. Again we see that the data from the small-scale tests can be used 
with confidence in a full-scale test. 

Additional Cases 

Two additional cases that have employed parametric differentation 
will be considered briefly to illustrate the versatility of the method. 
The first involves the data reduction for a ballistic range test of the 
X-15 airplane.  In this case only linear aerodynamics have been used but 
because the body is not axially symmetric, there are many more unknown 
aerodynamic parameters. A curve fit of the a  and ß data using Equations 
7,97 and 7,98 of Reference 1 is shown in Figure 13, Note the odd behavior 
that is exhibited by the X-15 model and yet the curve fit is very good. 
Aerodynamic data obtained from the test agree well with flight test 
results. When this particular test was made in the late 1950's, it could 
be reduced with more approximate techniques. 
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A second example is that of an axisymmetric body trimmed near 90° 
angle of attack. For this case the equation for the resultant angle 
assuming no swerve (Equation &,46 of Reference 1) was used with a non- 
linear pitching moment and a constant damping parameter, A curve fit 
of the data from this test is shown in Figure 14. Here again we see a 
good fit to the data. An important point to be made here is that the 
choice of equation for the fitting procedure can simplify the problem 
greatly. 

Associated Topics 

There are several topics associated with parameter identification 
that have been passed over or only touched on briefly. We will now con- 
sider five of these; starting solutions, convergence of iteration procedure, 
modeling of forces and moments, experimental errors, and sensitivity of 
results and experiment design. 

STARTING SOLUTIONS. The problem of obtaining a good starting solution for 
the differential correction procedure can be very important to obtaining 
the correct converged solution (i.e., there may be multiple minimums in a 
nonlinear multiparameter problem). There are probably as many ways to 
get starting solutions as there are problems. We will briefly mention a 
few that have been found to be useful in ballistic work. The first 
approach would be to look for a linear solution. This was done in the 
case of drag for small values of Ken, The next case arises when the 

solution is written as a sum of exponentials as in the linear stability 

case. Here the Prony procedure can be applied. The basic approach 
here is that for equally spaced data points a recursion formula can be 
written at a prior data point. This procedure leads to a linear set of 
equations that is readily solved. If the data are not equally spaced, 
as is the normal case, a set of equally spaced data can be constructed 
from the original set either by hand oi machine-fairing of the data. 

For cases where parametric differentiation is employed one can use 
quasilinear analysis of Reference 13 or Reference 14 to determine start- 
ing values of the static stability parameters, or one can formally inte- 
grate the equations and obtain implicit integral equations for a and 3. 
If the integrals in these equations are determined by fairing the data 
and performing the indicated integration graphically, a set of linear 
equations can be constructed to evaluate the unknown parameters. This 
method was originally used in Reference 17 and is described in Reference 
16. 

Other sources of starting solutions are existing data, theoretical 
determination of aerodynamic parameters, and finally, probably the 
most important, the experience of the analyst. 

CONVERGENCE AND STABILITY.  In the Iterative procedures discussed one 
normally has to prescribe some realistic criterion by which to judge con- 
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1 
vergence. One can either require that the change In the sum of the 
squares of the residuals Is less than some amount or that the changes 
In the parameters being sought are smaller than some prescribed values. 
The latter Is probably a better criterion but the prior requires fewer 
convergence tests per Iteration and Is normally used.  In either case 
one has to be careful that the convergence criteria are not so strict as 
to be within the calculation error bound (round off, truncation, etc.). 

In some cases the Iterative procedure Is unstable. This Instabil- 
ity normally arises because some corrections obtained In the differential 
correction procedure are so large as to violate the two-term Taylor 
Series expansion. An obvious way to prevent this from happening Is to 
retard the corrections in a systematic way when necessary. This can be 
accomplished with what Is referred to here as the "Marquardt Algorithm." 
It starts with the following alternative equation for the sum of the 
square of the residuals. 

N 

SSR •I 
1-1 

+ X 

R  3fc 

1     O   j=l   3 

R
 /^l Aa. 

Aa. 

(20) 

where R is the number of unknowns and X is an arbitrary positive constant, 
usually small. The first term in brackets is the conventional least 
squares by differential correction term. When SSR is minimized with just 
this term, the Aa.'s are adjusted to obtain the minimum difference between 

experiment and calculation. The addltioaal terra represents the change from 
the initial solution to the new calculated solution. If we add a small 
amount of this term (determined by adjusting X) to be minimized at the 
same time as the first term, we in effect slow down the rate at which the 
Aa 's change and hence keep our solution within the range of validity of 

the two-term Taylor Series expansion. The value of X required for most 
-3 

cases Is on the order of 10 . However values as large as order 10 have 
sometimes been required. It is important to note that the choice of X 
will have no effect on the converged solution since it affects only inter- 
mediate steps (i.e., the path and rate of convergence are altered but not 
the end point). This latter is not strictly true if the new path would by 
chance take the solution to the neighborhood of some other nearby minimum. 

102 

niiMii inn 



  
'    ■"— I—I—"^~   '*'^^m*mm^m9m^^^m^f*t^*m*.M 

The resulting matrix equation for the least squares solution of 
Equation (20) can be written as 

AAa = r (21) 

or 

Aa ■ A r 

where A , - (1 + X)A'  and A,, - A' , , J + k. Hence the A'  and the 
JJ jj     Jk    jk» jj 

are the matrix elements when only the first term of Equation (20) 

Is retained (conventional least squares with differential correction). 
Note the simple way the "Marquardt Algorithm" is added to the problem; 
the diagonal elements are multiplied by (1 + X). Additional coding is 
required to determine when and how large X should be. One procedure is 

_3 
to use it only when SSR Increases and then start with X ■ 1 x 10 ; if 
this fails, square (1 + X); If this falls again, cube (1 + X) and so 
on.  When the convergence is reestablished, return X to 0 and proceed 
until it is required again. 

MODELING FORCES AND MOMENTS.  It was noted earllei that modeling of forces 
and moments was an important area of work to be done and that normally 
polynomial representations were used. The parametric differentiation 
approach to the problem is much more general; for example, the moment 
could be composed of a series of pier.ewlse linear segments. The possib- 
ilities are many and I will not pursue the point further.  What I will 
illustrate briefly is the sensitivity to the form of the expression. 
This will be Illustrated by a set of results that was obtained using the 

13 1A 
quasilinear method. '" *   (Similar results would be expected to apply 
to the parametric differentiation approach.)  In that study Kirk and 

18 
Miller   used a four-term polynomial; the first term was always the 
linear term in angle of attack, the remaining three terms were various 
combinations of powers from 2 to 7. This resulted in 20 possible 
polynomials. The best five polynomials are shown in Figure 15. All 
other polynomials produced fits that had considerable larger residuals. 
It is not really necessary to choose a best representation from these 
five polynomials as they give nearly Identical results within the ampli- 
tude range of the experiment. 

EXPERIMENTAL ERROR.  Errors always exist in experimental data. Most of 
them are random, but they often may be correlated because of some cali- 
bration errors or facility problem. The latter can and should be elimi- 
nated and the magnitudes of random ones known at least insofar as standard 
deviations are concerned. A detailed evaluation of the errors is possible 
on a continued basis when data are being reduced in large quantities. 
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This is accomplished by saving the residuals from each curve fit and 
periodically examining them. The residuals obtained from a series of 
tests in the Ames hypervelocity Free Flight Aerodynamic Facility are 
shown plotted in Figure 16.^ The number of times an error fell between 

-0.00013 cm about a value of Az is indicated by the number of dots 
plotted at that level. This is done for each station. Curves are faired 
over each of these distributions. We can see that all of the stations 
appear to have similar distributions but few are centered at zero. This 
bias is thought to be associated with the facility. The test section is 
made in sections each composed of four or five windows. If each section 
were twisted relative to the other, a slightly different optical distor- 
tion would occur in each window. These nonzero means can be taken out of 
the experimental data by a calibration constant. A periodic facility 
calibration can be obtained if a heavy sphere is launched at very low 
pressure in the facility; its trajectory, which is a straight line except 
for gravity, can be used to calibrate the facility. Continued collection 
of residual information from ongoing tests can be used to check for 
reading errors, calibration changes, and modeling errors, 

SENSITIVITY AND EXPERIMENT DESIGN. The last point to be considered is the 
sensitivity of deduced results to experimental setup and error. This 
could be done using a Monte Carlo approach, by perturbing all the data 
points in a random manner, analyzing the results, and repeating this 
process many times to see what the statistical effect on the results 
is. This process is time-consuming and not really required. When the 
differential correction procedure is used, the inverse of the A matrix 
represents the variance and co-variance of the parameter being determined, 
hence all of the information that is required to determine the sensitivity 
of the parameters is present when the solution is obtained. 

The above procedure can also be looked at in a different manner; 
namely, what combination of test procedures will minimize the error in 
a particular parameter. This was done for a simple damped sine wave 
with some further simplification to allow a closed-form expression to 

19 
be obtained for the expected error in parameter of interest. '  The 
results of this are plotted in Figure 17 ofr the damping parameter £. 
The expected error in the damping parameter is plotted versus number of 
cycles of motion observed, N, for various number of data points per 
cycle, n. Also shown are some data obtained by a Monte Carlo approach. 
From this we see that, if the number of stations of data are fixed, we 
are better off with many cycles of motion and only a few points per 
cycle. Thus we see that we can also use our data reduction procedure 
to help design optimum experiments. 

CONCLUSION. In the foregoing material we have covered in a rather 
comprehensive manner most aspects of parameter identification as it 
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applies to ballistic range data reduction. There are many areas where 
much work remains to be done but the procedures are sufficiently well- 
defined to allow aerodynamic results to be obtained with a high degree 
of confidence in their validity. 

ACKNOWLEDGEMENTS. The present paper contains the experience and work 
of many people accumulated over several years at Ames Research Center. 
In particular, I would like to thank Donn Kirk, who helped in the deve- 
lopment of much of the material discussed. 

REFERENCES 

1. Ballistic-Range Technology. Edited by T. M. Canning, A. Sieff and 
C. S. James. AGARDograph No. 138 1970. 

2. Bridgman, P. W.:  Dimensional Analysis. Paperbound ed., Yale 
University Press, New Haven and London. 1963. 

3. Seift, Alvin and Wilkins, Max E.:  Experimental Investigation of 
a Hypersonic Glider Configuration at Mach Number of 6 and Full- 
Scale Reynolds numbers. NASA TN D-341, 1961. 

4. Maple, C. G. and Synge, J. L.: Aerodynamic Symmetry of Projectiles 
Quarterly of Appl. Math., Vol. VI, No. 4 Jan. 1949. 

5. Tobak, Murray, Schiff, Lewis B., and Peterson, Victor L.: Aerodynamics 
of Bodies of Revolution in Coning motion. AIAA Journal Vol. 7, No. 1, 
Jan. 1969. 

6. Intrieri, Peter F., Kirk, Donn B,, Chapman, Gary T. and Terry, James 
E.: Ballistic Range Test of Ablating and Nonablating Slender Cones. 
AIAA Journal Vol. 8, No. 3, March, 1970. 

7. Unpublished data from the Planetary Atmosphere Experiment Test (PAET). 
Data was analyzed by Donn Kirk of Ames Research Center. 

8. Unpublished data from Ames Research Center 1' x 3' and 2' x 2' Wind 
Tunnels, together with Severr/j. other Sources too numerous to mention, 
were used. The compilation was done by Robert Sammonds and Robert 
Kruse both of Ames Research Center. 

9. Nicholaides, John D.: On The Free-Flight Motion of Missiles Having 
Slight Configurational Asymmetries. BRL Rep. 858, June 1953. 

10. Bevington, P. R.; Data Reduction and Error Analysis for the Physical 
Sciences. McGraw Hill Book Company 1969. 

108 

'iw* -- 'timiaM IM II        I IIIMiMmilllllflll 



wmm mmmU'wm., W!ip)»i^f:**.i.i"'-i!!i,ifci|awiiiiwi|  muit uniiipiiiwiiijimini« Ji i     ■■ Ml liWIIIIHIIHiail 

11. Shlnbrot, Marvin: A Least Square Curve Fitting Method with Applica- 
tion to the Calculation of Stability Coefficients From Transient 
Response Data. NASA TN-2341, 1951. 

12. Intrieri, Peter F.: Experimental Stability and Drag of a Pointed 
and a Blunted 30° Half Angle Cone at Mach Numbers from 11.5 to 34 
in Air.  NASA TN D-3193, Jan. 1966. 

13. Murphy, Charles H.: The Effect of Strongly Nonlinear Static Moment 
on the Combined Pitching and Yawing Motion of a Symmetric Missile. 
BRL Rep. 114, Aberdeen Proving Ground, Md., Aug. 1960. 

14. Rasmussen, Maurice L. and Kirk, Donn B.: On the Pitching and Yawing 
Motion of a Spinning Symmetric Missile Governed by an Arbitrary Non- 
linear Restoring Moment. NASA TN D-2135, 1964. 

15. Rubert, Peter E. and Landahl, Martin T.: Solution of Transonic Air- 
foil Problem through Parametric Differentiation. AIAA Journal Vol. 
5, No. 3, March 1967. 

16. Chapman, Gary T. and Kirk, Donn B.:  A Method for Extraction at Aero- 
dynamic Coefficients from Free-Flight Data. AIAA Journal Vol. 8, 
No. 4, April 1970. 

17. Boissevain, A. G. and Intrieri, P*ter F.:  Determination of Stability 
Derivatives From Ballistic Range Test of Rolling Aircraft Models. 
NASA TM X-399, 1961. 

18. Kirk, Donn B. and Miller, Robert J.: Aerodynamic Characteristics of 
a Truncated-Cone Lifting Reentry Body at Mach numbers from 10 to 21. 
NASA TM X-786, 1963. 

19. Chapman, Gary T. and Kirk, Donn B.: Obtaining Accorat Aerodynamic 
Force and Memento Results from Ballistics Tests. AGARD Conference 
Proceedings No. 10. The Fluid Dynamic Aspects of Ballistics. Sept. 1966. 

109 

m «^;....,..»J,.ihf,.,. ■<..:M,..| -'■'•■■■'■■- .atli'.nnni,.,. 



PWi|«(«IWWW»( inuinimMiMniiiiijiiiiiiiiiii j iiii.i«iniiJiiJ.iii»i '■■»■"i i ■■ m m   »■iiinaiii i mii.iiinjiiiiiiii 

THE WSMR BEST ESTIMATE OF TRAJECTORY - AN OVERVIEW 

William S. Agee & Robert H. Turner 
Analysis & Computation Division 

National Range Operations Directorate 
White Sands Missile Range, New Mexico 

INTRODUCTION 

The Special Projects Section of the Analysis and Computation Division 
at WSMR has developed a Best Estimate of Trajectory (BET) program for use 
in post-flight data reduction. The first question that might be asked is 
why did we develop a BET program? One reason is because of requests from 
Range Users (we are currently using the BET for LANCE, SAM-D, and the 
forthcoming 621B Navigational Satellite Tests),  However, besides these 
requests, BET has several advantages over the conventional single instru- 
mentation system data reduction programs currently in use.  In order to 
see these advantages It is easiest to first review the conventional post- 
flight reduction procedure and note its deficiencies. 

The primary instrumentation systems at WSMR are radar, cinetheodolite 
or fixed camera, and dovap.  In the traditional method of post-flight 
reduction independent estimates of trajectory parameters (Cartesian • 
components of position, velocity, and acceleration) are obtained for each 
of the primary systems observing the trajectory.  In some cases all three 
of the primary systems will be tracking so that there would be three 
independent sets of positioi, velocity, and acceleration. These independ- 
ent estimates are bound to disagree. This disagreement presents a 
difficult problem for the trajectory analyst. Another difficulty is that 
each of the primary systems provides measurements only for a portion of 
the trajectory. For example, a radar often will not provide valid track- 
ing data during the boost phase of a missile,  the optical measuring 
systems run out of film, dovap provides unreliable data at low altitudes. 
Thus, none of the independent trajectory estimates cover the entire 
trajectory.  In addition, requirements on accuracy and precision some- 
times cannot be met by reducing data from a single instrumentation system. 
Instead of developing and procuring new instrumentation to meet these 
requirements it may be possible and certainly more economical to satisfy 
the requirements by extending the capability of existing instrumentation 
by combining data from the various instrumentation systems. Telemetered 
or in-flight recorded data can also be included in the BET solution to 

The remainder of this paper has been reproduced photographically 
from the author's manuscript. 
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extend the capability of existing instrumentation. In summary, we have 

pointed out three serious deficiencies of the conventional single instru- 

mentation system type of data reduction procedure. 

1. No single set of trajectory parameter estimates is obtained. 

2. None of independent sets of trajectory parameter estimates cover 

the entire trajectory. 

3. The inefficient use of measuring resources. 

The removal of these deficiencies are the basic advantages we hope 

to gain by use of a BET program. In addition to the above advantages 

the BET will provide feedback to the instrumentation people in the form 

of a plotted time history of instrumentation system performance. Time 

histories of measurement bias, variance, and residual are a natural out- 

put of the BET program. These are plotted for each measurement partici- 

pating in the trajectory solution. 

TRAJECTORY MODELLING 

As stated previously one of our primary reasons for ieveloping a BET 

at WSMR is to provide a single estimate of positionjvelocity, and acceler- 

ation through the combination of all available range measurements. Any 

technique developed for this application must apply to most of the flight 

test programs at WSMR for which there are data reduction requirements. 

Obviously, this requires the use of a rather general dynamic model of the 

flight test trajectory. 

One model which meets this requirement is the second order polynomial 

model presently used in the data reduction process.  In state variable 

form this model is 

Xi» 

X5 

X6 

X7 

f(x) =      X« 

0 

0 

0 

XI = X 

X2 = y 

xs 3 z 

XI, ■ • 
X 

X5 = 
• 
y 

X6 = 
• 
z 

X7 ■ a 
X ■ y 

X = 2 
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This very simple model has been used with some success in situations 

where dynamics of the process are not too severe such as aircraft tracking 

and free flight missile trajectories. 

We have had much more success with a dynamic model which, rather than 

x, y, and z as states, uses acceleration components close to "where the 

action is" namely tangent and normal to the trajectory. Let A_ (tangent- 

ial acceleration) be tangent to the trajectory, /L. (normal acceleration) 

be normal to A_ and lie in the vertical plane, and Ar be normal to the A- 

and AN directions and complete right-handed system. 

We assume that these acceleration components do not contain the effect of 

gravity. Using these accelerations we define the following dynamic model. 
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XI = X 

X2 = y 

X3 = Z 

X* ~ X 

X5 = y 

X6 = Z 

X7 = AT 

x, = AN 

X9 = A. 

x = f(x) = 

XI, 
■ 

X5 

xc 

X1.X7 

V 
- xtxexe 

V + X5X9 
V 

XSX7 
V 

- xsxexa + XSX9 
V 

X6X7 
T + xeVG + 

V  * g 

0 

0 

0 

where 

VG = (x^+X5
2)V2 

V = (X*2+X52+X62)^ 

This is the model which we presently use in the BET program. Wote that 

we are still using a constant acceleration assumption as in the quadratic 

model but that the present model is nonlinear. One reason that this model 

is considerably more useful is that acceleration measurements, which are 

made aboard the test vehicle, are usually much easier to model in terms 

of tangential, normal, and lateral accelerations. 
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MEASUREMENT MODELLING 

Besides modelling the trajectory, the measurement must also be modelled 

in terms of the trajectory state variables. Thus, for each measurement 

we must specify a nonlinear measurement function h(x) which relates the 

ideal measurement to the trajectory state. He assume that the position 

and velocity state variables (x^, afc, xj, *,, xj, xe) of the trajectory 

are with respect to a coordinate system which we will call the launch 

system. 

RADAR MEASUREMENTS 

Radar observations are usually from the FPS-16 instrumentation radars. 

These radars measure range, azimuth, and elevation of a target in a 

local radar Cartesian coordinate system. Some of the radars also measure 

the range rate of the target. The observed range, azimuth, and elevation 

(RAE) are first corrected for calibration and refraction. Direction 

cosines are computed from these corrected observations and then related 

to the launch coordinate system where azimuth and elevation angles are 

recomputed. In terms of the trajectory state variables which are in the 

launch coordinate system the radar measurement functions are: 

RANGE 

hjU) = [(x1-x1)
2+(x2-yI)

2i>(Ks-«I)
2]1/2 

AZIMUTH 

hAx)  = tan -i 
xrxi 
V^l 

ELEVATION 

hg(x) = tan" 
X3-ZI 

[(Xj^-Xj) •*(x2-yI) ] 

where (x-, yT, z ) are the coordinates of radar in the launch coordinate 

system. 
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RANGE RATE 

hu(x) = 
x|4(x1-xI )+x5(x2-yI )+x6(x3-zI) 

h1(x) 

OPTICAL MEASUREMENTS 

The fixed cameras and tracking cameras measure azimuth and elevation 

of the line-of-sight to the target. The observed angles are corrected 

for calibrations and refractions. The measurement functions for the 

cameras are the same as for the radar azimuth and elevation measurements. 

h-(x) = tan 
•i xrxi 

h3(x) = tan" 
VZI 

[(x^Xj^+Cxj-yj)2]^2 

where (x-, y., z.) are coordinates of camera station in the launch 

coordinate system. 

DOVAP MEASUREMENTS 

The dovap measuring system is a two-way doppler system. The basic 

digitized measurement is the doppler cycle count over the sampling 

interval (t,, t-), which when properly scaled yields the change in loop 

range from transmitter to target to receiver. If in addition the measure- 

ment is divided by (to'*!^» the result ^s "the average loop range rate over 

the interval which approximates the instantaneous loop range rate at 

Vt2 

] 
: 

Following this procedure we represent the dovap observation by the 

measurement function 

h5(x) (5?-a?)".( 2 •'T VRV /V
!
T VM 

M      R»    R„ I  5\  RT    RR y  6V  Rr" 

where (x-, yT, z_) and 6cR, yR, z_) are the coordinates of the dovap trans- 

mitter and receiver. The quantities R_ and R. are 

';/ 
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y [(x1-itT)
2t(x2-yT)

2t(x3-iT)
2]1/2 

h - «»iV*^-^'2*« vv2]1/2 

VELOCIMETER MEASUREMENTS 

The velocimeter is much like the dovap except that it is a one-way 

doppler system. Again the cycle count is scaled and divided by the 

sampling interval, (tj-t.), and the result interpreted as the instantan- 

eous range rate at (t.+t2)/2.  The resulting measurement function is 

x^-XjHxj-Uj-yjHxgUg-Zj) 
h-ix) =  = 5 TT7? 
6    C(x1-X1)S(>c2-yI)

Z+(x3-8I)
Zr,Z 

ACCELERATION MEASUREMENTS 

Several types of acceleration measurements are possible. Often only 

the lo igitudional body acceleration of a missile is measured and telemeter- 

ed. If the missile is assumed to have zero angle of attack, which is 

often a good assumption, the measurement function is equal to the tangent- 

ial acceleration A_ which is the seventh component of the state vector. 

Thus 

h7(x) = x_ (zero angle of attack) 

Sometimes three orthogonal components of missile body accelerations are 

measured and telemetered as below 

If the missile is assumed to have zero angle of attack and zero roll 

angle, an assumption which must be given careful consideration for each 

individual case, the measurement functions are 
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h7(x) * x7 =  \ 

h8(x) = X8 •s 
h9(x) = X9 MkL 

Another important class of acceleration measurements comes from inertial 

measurement units (IM'J). This is the type of measurements on the 621B 

Navigational Satellite Tests. Ihre are many configurations for IMU 

measurements. Some IMU's make acceleration measurements in a coordinate 

system slaved to the local vertical, some in anincrtial coordinate sys- 

tem setup at a launch point, etc. In addition to acceleration measure- 

ments attitude measurements of the body with respect to the reference 

coordinate system are also available. 

One simple type of IMU measurements which we have processed with 

the BET program came from a purely inertial system. In this case the 

inertial system was aligned with the aircraft at a specified time. The 

future accelerations were then measured in this coordinate system. This 

measurement configuration is shown below 

/ 

K A. 

Acceleration measurements made 
in fln inertial system established 
her«. Aircraft Trajectory 

Although inertial platform misalignments and drifts, accelerometer 

scale factor errors, and accelerometer zero set errors must be modeled 

and estimated, we assume these to be zero for the present discussion. 

In absence of these errors the acceleration measurements may be modelled 

in terms of the trajectory accelerations as 
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LA3J 

le et 
3x3 3x3 

N 

Where H- is the rotation matrix from the earth fixed launch coordinate 
le 

system to the inertial system and M  is the velocity dependent rotation 

matrix from the trajectjry coordinate system to the launch coordinate 

system. In any case the scalar acceleration measurements are linear 

functions of the trajectory accelerations 

h -(x) = M1 

1x3 

T 

AN 

where the vector M = M(x) is state dependent. 

EXTENDED KALMAN FILTER 

Our BET program is basically an extended Kaiman filter. For the 

case of systems whose dynamics are linear, the measurement functions are 

linear and all uncertainties have Gaussian statistics, the Kaiman filter 

is known to provide the optimal recursive estimate of the state. For 

nonlinear systems the extended Kaiman filter obtained by linearizing 

the nonlinear functions about the cxirrent estimate of the state has 

become a popular and highly useful estimation procedure for nonlinear 

systems. 

For our extended Kaiman filter we assume the dynamic trajectory 

model 

x = f(x) + w 

where f(x) was previously given and w is a white noise term with zero 

mean and covariance Q. The presence of the state noise w or rather its 

covariance is used to compensate the filter gains for the errors made 

in modelling, in particular for the errors in the trajectory model due 

to the constant acceleration assumption. 
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Observations z(K) are available, at discrete instants of time t . We 

assume that the zdO's are statistically independent scalar observations. 

The processing of scalar observations provides a numerically efficient 

as well as intuitively appealing method of processing the observations. 

The assumption of statistical independence of the observations can be re- 

moved if necessary. The scalar observations are represented as 

Z(K) = h(x(K))+v(K) 

where v(K) is a measurement noise term assumed to have zero mean and 
2 

variance r (K). 

Let x*(KlK-l) denote the filtered estimate at time tK after processing 

all observations through t,, ,, and x*(K) the filtered estimate at t,. after 

processing all observations through t . Assuming that the state estimate 

x*(K-l) has been computed, the predicted state estimate for the next 

measurement time tK is computed by numerically integrating the trajectory 

model x = f(x) using a second order Taylor series integration procedure 

where 

and 

x*(K|K-l) = x*(K-l)+f(x*(K-l))At1.+J(x*(K-l))f(x*(K-l))(At   V 

AtK " Wl 

r» ■ m 9x9 L '""J x*(K-l) 

The covariance matrix of the predicted state estimate, which satisfies a 

matrix Ricatti differential equation between t„ . and t„, is computed by 

using a trapezoidal integration procedure. Let P* . denote the covariance 

of x*C. ) and Pjiwi the covariance matrix of x*(K|K-l). Then we compute 

P*i 
KIK-1 by 

P8lK-l a ♦K(Pl!-l+-5QAtK)*K+-5QAtK 

where                                                                ^ .2 

♦K = I+J(x*(K-l))AtK+J2(x*(K-l)) ^— 
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and Q is the covariance of the additive state noise w. 

Our extended Kaiman filter employs a matrix square root formulation 

of the covariance equations, see   Ref    1.    we have found that the square 

root formulation not only provides a numerically stable estimation 

procedure but it is computationally efficient as well.    For the predicted 

covariance matrix P5,K i  computed above, the matrix square root Lj..^ , 

such that 

P* 
KIK-1 LKIK-1LK1K-1 

is computed by means of a Choleski decomposition, see Reference 4. 

For each scalar observation occurring at the new time tK an updated 

state estimate and an updated square root of the covariance matrix are 
i * \ 

computed. Let x*  (K) denote the state estimate after processing the 
. • f i \ 

i  scalar observation at t,, and let L   denote the square root of the 
(' ^ 

covariance of x*  (K). These quantities are computed from 

(i-l)TT(i-l) 

X (K) ■ X (K) + 

r:(K)+H.L 
iL K LK    Hi 

(0) X?K) x*(KIK-1) 

i = 1, m = # of observations at t. 

Hi 
1X9 

(i) 

i(x) 

ft<i-l) 
(k) 

(0) 

ei = 

"KlK-l 

1 + 
r.CK) 

(^(K)^1-^^1-1^)^2 

,. .(i-l)rT(i-l)HT 
HiLK   LK    Hi 
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MEASUREMENT BIAS ESTIMATION 

So far we have neglected to discuss one of the most important con- 

siderations in the development of a BET program, namely to account for the 

inconsistencies produced by bias errors in the measurements. There is a 

natural way of including bias terms in the extended Kaiman filter; one 

merely adds an additional state variable for each bias term to be consider- 

ed and forms the optimal estimate of the biases in the .same way as for the 

trajectory state variables. This technique is fine for cases where there 

are only a few bias terms to be estimated.  However, a typical applica- 

tion of our BET program has a large number of measurements involved.  For 

example, a LANCE flight test might have two radars, 28 dovap receivers, 

eight fixed cameras, and eight cinetheodolites. Considering only one bias 

term per measurement this results in 66 additional state variables to be 

estimated. With a trajectory state dimension of nine we then would have 

to compute estimates for 75 state variables. An ordinary Kaiman filtering 

program using 75 dimensional state vector is computationally prohibitive 

at the present time. Fortunately, Friedland, see Ref 2, has developed 

a decomposition technique for Kaiman filters which we were able to adapt 

and extend to the measurement bias estimation problem at WSMR. The appli- 

cation of this decomposition procedure has resulted in a computationally 

feasible BET program which includes estimation of measurement biases. 

We will call the filter described previously the zero bias filter 

and the estimates x^j.. obtained from this filter the zero bias estimates. 

Let b denote a p-vector of bias terms. We revise our previous measure- 

ment model to include these terms. 

2.(K) = h.(x(K))+gT(x(K))b+v.(K) 
1     l 1]Xp    1 

Thus, we allow the bias of each measurement to be a linear function of 

several bias variables.    For example, a model for the bias of a radar 

azimuth measurement might be 

T AA = g b = b +b2tanE0sinA0+b3tanE0cosA0+blttanE0+b5secE0+b6A0 
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He assume the constant dynamic model for the bias 

b(K+l) = b(K) 

Note that we have not included a state noise term in the bias dynamics 

to account for the possible misassumption that the biases are constant. 

The reason for not including a state noise term will become evident 

later. 

Now let the bias state vector b be adjoined to the trajectory state 

x to form the augmented state vector y 

x' 

y ■ 
b 
(p+9)xi 

We could proceed directly and obtain a new extended Kaiman filter giving 

the state estimate 

y = 

However, as previously mentioned this is computationally prohibitive for 

large p.  Instead we employ the filter decomposition procedure developed 

by Friedland. This procedure attempts to write the optimal estimate x, 

which includes the effect of biases, as 

x(K) = x*(K)+T(K)b(K) 

where x*(K) is the zero-bias estimate already obtained and T(K) is a 9xp 

matrix to be determined. Upon examination we find that the decomposition 

holds if the filter satisfies certain restrictive conditions. The details 

of the derivation are tedious and will not be presented. The restriction 

imposed by the decomposition procedure is merely an assumption we have 

already made: The bias dynamics must not include a state noise term. 

This may not seer.i like much of a restriction since it was assumed to 

begin with, but this was hindsight. Indeed, this is a very severe 

restriction  siuce  tue üidle  nulse  uuvorlctiice   la  aattü aS an  aujuakoi/lc 

filter parameter to account for mismodelling errors.    Fortunately, there 
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Is another way of accounting for mlsmodelling errors in the bias dynamics 

for which the decomposition does hold.    Specifically, we have been able 

to extend the decomposition procedure to the case of a fading memory 

Kaiman filter in which deweighting of past observations is accomplished 

by exponentially weighting past residuals.    We use small fading factors 

to account for bias mismodelling errors and use the state noise covariance 

of the zero-bias filter to account for trajectory mismodelling errors. 

The form of the bias filter is almost identical to the zero bias 

filter with the residuals from the zero-bias filter forming the observa- 

tions.    Again we employ the square root formulation for the filter.    At 

a new observation time we have the prediction equations 

b(KlK-l) = b(K-l) 

(^(KIK-1) = Cb(K-l) 

T(KIK-l) = ^TdC-l) 

where C. (K) is the square root of the covariance of b(K), ♦„ is the trans- 

ition matrix from the zero-bias filter and T(K) is the combining matrix 

of the decomposition. For each observation Z.(K) at the new observation 
A. 1 

time new bias estimates b (K) and the souare root of its covariance 
,(i) C^*'(K) are computed from 

b  (K) - b(K) + w<i)(K)(rf(K)-sJ(K)b;j-
1)) 

where 

r?(K) = zi(K)-hfx*j^
1M = residual from zero bias filter 

and Wv^'CK) is the vector Kaiman gain given by 

w<i)(K) * -|      
b 

ai'(K)fiiCb 
orrnr^mi «K (K)«, 

aJ(K) = pJdS)*^!^1'1^1"1^]: s variance of residual 
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i = 1, m * # observations at TK 

Th^ square root of the covariance matrix is updated at an observation by 

(^(K) = C^i"1)(K)fl-eicJi"1)(K)8i(K)8j(K)cJi"1)(K)) 

0 1 + J(K)cJi"1)(K)cJ(i"1)(K)8i(K) 
(ai

2
+.Tc<i-1)Oc)cJ(i-VK).i(K))1'/2J 

For each measurement the combining matrix is updated according to 

Ti(K) = T
i.l

(K)"Wö>8i(K) 

T(K) = T (K) m 

T0(K) s T(KIK-I) 

Where wi    (K) is the vector gain from the zero-bias filter. 
(i) The optimal state estimate x      (K) is computed as 

;(i>(K) = x*(i) (K)+Ti(K)b(i)(K) 

To modify the above equations for the fading memory filter, first 

choose a fading factor \^}-    The above equations are then replaced by 

(^(KlK-l) = «^(K-l) 

P (KlK-1) = \(\?  (K-l)+.5QATK)*J+.5QArK 

COMPUTATION OF OBSERVATION VARIANCES 

For each of the scalar measurements Zi(K) a measurement noise variance 

ri (K) must be available for use by the Kaiman filter    Several possibilities 

exist for supplying the variance.    An immediately obvious method is use the 

variance values given in specifications of the instrument or to use variance 

values computed from past performance history of the instrument.    These 

methods are most useful when the measurement variance is stable from dav 

to day and mission to mission.    Another method which is often used is to 
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compute variances from measurement residuals 

Pi(K) = ri(K)-8T(K)bi(K-l) 

produced in the BET program. A method for computing variances from the re- 
siduals wnicn is economical in üoth computing time and storage is the tarlinf» 

memory variance estimate defined by the following equations 

(p (n^p.Cn-l)) 
L(n) = p^n-1) + > 

i  p 
1 '- 

P = 1 + wP ,, P = 1 n       n-1' 1 

S^n) = wSi(n-l)+/l-pyp.(n)-pi(n-l) 

H n 

P -H /P n n n 

l+w2H ., H. =1 n-l' 1 

2 Si(n) 

n 

In the above p.(n) is the estimate of the residual mean, w, o<w<l is a 

fading factor, and 6.   (n) is the variance estimate for the i     measurement. 

An optional approach to the estimation of the measurement variance is 

the fading memory variate difference technique, see    Ref    3,    Let y.(n) 

be the k      backward difference of the observation Z..     If we assume the 

mean of the K      differences are zero the following equations define the 

fading memory variate difference method 

S^n) = wS^n-D+y^n) 

F    = wF n M?) 
2 Si(n) 
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A COMPUTER PROGRAM TO INVESTIGATE 
EXO-ATMOSPHERIC ENGAGEMENTS OF INTERCEPTORS 

AND RE-ENTRY VEHICLES 

LTC M.L. Roberson, CPT C. Van Nostrand and W.A. Barbieri 
Development Branch, ACS/Studies and Analysis 

HQ, US Air Force, Washington, D.C. 

Computer modeling of military problems is accomplished by a variety 
of techniques.  The most common is monte carlo. There are disadvantages 
in the use of all techniques and three frequently cited in the use of 
monte carlo are; the failure to calculate the number of replications re- 
quired, disregarding the effects of events that occur only at extreme 
ends of distributions, and the large amount of computer time that may be 
required. The technique of building a variance-covariance matrix to cal- 
culate total distribution effects from one iteration minimizes these 
disadvantages while maintaining the flexibility of application that is 
characteristic of monte carlo models. This presentation describes the 
application of this technique to the problem of Investigating the inter- 
actions involved in a "one on one" engagement of an anti-ballistic 
missile (ABM) versus a re-entry vehicle (RV) in the exo-atmosphere. 
First, the physical aspects of the problem will be described. Then the 
application of the solution method will be discussed. Finally, the 
computer program will be outlined. 

Assume that the probability of kill of an RV by an ABM is a function 
of the miss distance resulting from the geometry associated with a given 
Impact point.  Figure one presents the environment as defined by the 
problem. From launch to impact the RV trajectory is Keplerian on a 
round non-rotating earth.  The launch and initial impact point, the 
Missile Site Radar (MSR) location, the Parimeter Acquisition Radar (PAR) 
location, and the ABM launch location are specified in latitude and 
longitude. 

When the RV is within the specified maximum range, maximum off- 
boreslght angle, and minima elevation angle, the PAR begins tracking. 
The quality of each tracking point is a function of RV radar cross- 
section, off-boreslght angle, range, and the radar quality parameters 
such as bandwidth, antenna gain, and wave-length. 

Similarly when the RV is within maximum MSR range, maximum off- 
boresight angle, and minimum elevation angle, the MSR begins tracking. 
Again the quality of each tracking point is a function of RV radar cross- 
section, off-boreslght angle, range, and the radar quality parameters. 
Tracking data is taken from detection until the last mldcourse correction 
of the ABM. 

Preceding page blank 129 
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Constraints may be placed on the ABM launch such as, minimum track 
time, minimum Intercept altitude, Intercept within MSR coverage, etc. 
When these constraints are fulfilled the ABM Is launched.    From burnout 
to Intercept the trajectory Is assumed to be nearly Keplerlan.    Tracking 
data Is taken from burnout to the last mldcourse correction. 

The problem does not Include details such as blackout or allocation 
of radar power although the approach taken to the model makes it readily 
accept modifications and additional equations.    The four major areas of 
concern in the model are; 

1. 

2. 
3. 
4. 

The geometrical considerations in general such as locations, 
fly-out curves and times, and performance constraints. 
The RV tracking points and position prediction error. 
The ABM tracking points and position prediction error. 
Determing the P. based en predictior. errors. 

KEND AND EPERAN 

In this presentation I will describe the mathematical basis for two 
of the subroutines KEND and EPERAN used in EXO-1, rather than describe 
them in detail or show results of running them.  [See Chart 1] 

KENDALL 

The basic work was published in a Rand Report  for ARPA by Dr. William 
Kendall in February 1963 in a paper entitled "The Probability Distribution 
of Anti-Missile Missile Miss Distance Due to Observsitions and Guidance 
Noise."    In the preface he mentioned the problem stemmed from setting 
accuracy specifications for the observing Instruments of a mid-course 
Intercept system Intended to operate against submarine-launched ballistic 
missiles and that results could be applied to a wide variety of intercept 
situations. 

In the problem,  it is assumed that the position of the target at some 
future time is estimated from a set of measurements   (possible correlated) 
of any type, and that the error in the future position estimate is related 
to the errors in the measurements by the usual linear relation.    This 
implies that if measurement errors are Gaussian,   future position errors 
will also be jointly Gaussian.     It is also assumed that the noise in the 
interceptor guidance system leads to uncertainty In the interceptor's 
position at intercept characterized by a three-dimensional Gaussian distri- 
bution.    Under these assumptions,  the probability that the miss distance 
between interceptor and target will be less than any given amount is 
determined analytically.    An important feature of the solution is that the 
effects of interceptor guidance error, and of the tactical geometry and 
measurement accuracies can be separated. 
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Here is the situation at intercept. [See Chart 2] The target actually 
moves along the solid line and at the time of intercept is at position T. 
The measurement system takes its measurements at an earlier time, and 
estimates th't  the target will be at position W at the time of intercept. 
The interceptor is aimed at the targets estimated position at time tt but 
due to guidance errors actually arrives at position I, Z is the interceptor 
guidance error, the difference between where it was aimed and where it 
arrived. X is the target position error at intercept. The difference 
between where it is and where it was predicted to be, Y is the distance 
between actual locations, the miss distance and the vector sum of the two 
errors. 

In chart 3 we state the mathematical problem. If measurement errors 
have jointly Gaussian distribution, then to a usually good approximation, 
errors in W, i,e.,X, are jointly Gaussian with covariance matrix cap X, 
The guidance noise Induced errors in the rectangular coordinates of the 
AMM are assumed to be jointly Gaussian random variables with zero means 
and covariance matrix Z, Thus the rectangular coordinates of the difference 
in actual positions is x + z = y, which is Gaussian, zero mean, and assuming 
statistical independence of the target position estimate and interceptor 
errors, has covariance matrix X + Z « Y, 

The miss distance squared is shown in terms of its components. [Charts 
4 and 5] 

re (8)    (1) Moments related to cumulants 

Vl = kl 

v2-.k +4 

v3 = k3 + 3k.k2 + k ' 

Cumulants defined by 

-  (jv)1^ 
An (j) (v) = I 

1-1   U 

(2) Take log of *(v) 
Identify relating det[I-2jvY] to 

exp {-z (Zjv)1^ Yl} 

inf series in 

(jv)1 

z 1-1 
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re (9) This is of the form of the generalized chl-squared distri- 
bution with 

2 
2 (v. , )  degrees of freedom. 

1 1 2 (v1/0)
2<. q 

Parametric solution curves are displayed in chart 6. 

This is one of several convenient graphs from Kendall's report. On 
the ordlnate is the probability that the miss distance is less than some 
value k and as the abscissa the parameter k/Ja,    Curves are parametric in 
v and a and these in turn are simple functions of the covariance matrix 
of Y. The effects of target position prediction and interceptor position 
are separable. 

Application to our problem 

2 
In order to determine v. and a we must know trY and trY where [See 

Chart 7] 

Y - X + Z 

Kendall's paper also deals with the sensitivities of the errors in 
measurements and predicted target position.  In our case EPERAN provides 
the covariance matrix of the target, X, directly. Assume that noise in 
Interceptor is such that the position uncertainty at time t has spherical 
symmetry (e.g., when only the rms value of the interceptor miss distance 
is known) then 

Z = (a/q)I 

where a is mean squared miss distance due to interceptor guidance noise. 
This is a useful approximation when the interceptor guidance errors are 
much smaller than target position error, and the non-spherical nature of 
the Interceptor error is unimportant. 

2 
Trace of Y is the sum of three terms.  The first two are immediately 

available. The last requires a matrix multiplication of known 3x3, 

That completes the description of the calculation of the probability 
distribution miss distance.  I will know describe the subroutine EPERAN 
which provides the covariance matrices.  [Chart 8] 

EPERAN is a computer program for determining the accuracy of instru- 
mentation used in estimating the position and velocity of a vehicle in 
near-Kiplerian motion. 
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An early version of EPERAN was described In a Project Rand Report by 
Gabler, Belcher, and Johnson In April 1963, entitled "A Computing Program 
for Determining Certain Statistical Parameters Associated With Position 
and Velocity Errors for Orbiting and Re-entering Space Vehicles'.'. An 
Improved version appeared two years later in RM-4740-PR by Gabler and 
Belcher, entitled "A Computer Program for Tracking Error Analysis of Keplerian 
Trajectories". With some minor modification, this is the version that was 
used in this application. 

Any computer program that relates errors in a series of measurements 
to the covarlance matrix of position errors at the time of intercept can, 
of course, be used. EPERAN was chosen as the simplest program that provided 
the needed calculation.  It was readily available, well documented, and had 
been checked against other models because of its use in range instrumentation 
analysis, and in studies of space tracking. 

In EPERAN It is assumed that estimates for orbital parameters have 
been made by a general least squares (differential correction) routine 
which weights observations Inversely with their assigned standard deviations. 
All partial derivatives used in error propagation are obtained from 
analytic formulas. Provision is made for multiple tracking stations that 
move along great circle paths. The results are given in terms of a co- 
ordinate system associated with the trajectory plane of the tracked vehicle. 

CALCULATION TECHNIQUE 

In the process of statistical estimation of parameters by maximum like- 
lihood or by general least squares, a covarlance matrix is usually obtained 
as a representation of the error in the parameters. The Inverse of this 
variance-covarlance matrix is called the information matrix.  [Chart 9] 
It was found to be more convenient to use the information matrix than the 
variance-covarlance matrix. When it is non-singular, the Information 
matrix may be inverted to give the variance-covarlance matrix. 

The information matrix associated with a column vector X is pro- 
pagated to a column vector y by the transformation 

V T 
AS A 

x 

where S is the Information matrix for vector x, Sy for vector y and A is 

the matrix of partial derivatives. 

Each piece of tracking data contributes to the final information matrix 
associated with the error at intercept time. The contribution is determined 
by the variance of the measurement and the functional relationship between 
the measurement and the estimated parameters. 

: 
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form 
For example, each range measurement has an assigned variance of the 

v + d0 c.osÖ + d. 
3    e   4 

where the d. are functions of the (radar) or other measurement isystem. 0 

is the elevation angle,  [Chart 10] The forms allow for range dependent or 
independent errors, and can be gotten either from experimental data or from 
theoretical expressions involving signal to noise ratio and pulse shape 
factors. The information is measured by the reciprocal of the variance 

P  a2 
1 
P 

The information is propagated through a succession of column vectors 
arranged according to the functional relations in accordance with equations 
of Chart 11. 

Finally, the contribution of each piece of tracking data to the final 
information matrix is accumulated in S and at the end of the time interval 

R = S  inverted to give the variance-covariance matrix of position and 
velocity errors. 

J1 is the required covariance matrix of position errors. 

Eigen values and 50 and 95 percent confidence regions associated with 
position and velocity errors are also determined. 

Chart 12 shows a typical input setup. Chart 13 shows an intermediate 
tracking point printout and the R natrix. 

In summary, then, the probability of kill distribution is found in 
terms of covariance matrices of target and interceptor errors. The covar- 
iance matrices are calculated from the set of measurements. 

Colonel Roberson will now describe other aspects of the computer model. 

PART IV 

The scenario for EXO-1 has been described and the method for calculating 
the effects of error in position has been presented.  I will describe the 
model organization and show characteristic results. 

The EXO-1 Model, simulating (ABM) interceptors controlled by radar 
engaging a ballistic missile re-entry vehicle (RV), was configured from 
several existing programs. These programs, outlined on Chart 14, are: 
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Redstone Arsenal's "Fast Look Analysis Program" (acronym FLAP); Rand 
Corporation's programs for tracking error analysis (EPERAN) and compu- 
tation of ABM probability of kill (KEND). A routine was written to pro- 
duce the geometry of the ABM flyout curves (GEOM). 

Flap constructs the scenario to be studied and calculates the RV 
Keplerian track up to the earliest possible ABM Interception point. 
Flap also calculates initial detection time. This procedure is repeated 
for each point desired around the maximum intercept foot print. A 
system parameter may then be modified and the new set of detection and 
intercept points and times will be calculated. 

Eperan determines the accuracy of estimating the position and velocity 
of a vehicle in Keplerian motion by the method just discussed. To com- 
pute that portion of the total error that is attributed to errors in the 
prediction of the position of the RV at expected time of intercept, Eperan 
gets the initial tracking conditions (detection position, velocity and time) 
and ending time (intercept time) from FLAP. The initial tracking condi- 
tions for the ABM are not produced by FLAP. Therefore an intermediate 
program (GEOM) is used to calculate the burnout velocity vector of an ABM 
boost profile to the RV interception point. The assumptions made in GEOM 
are: 

1. All of the ABM's fuel is consumed. 
2. Flight of the interceptor after burnout is in a vacuum. 
3. The earth is spherical and not rotating. 
4. Linear interpolation between values of parameters defining 

trajectories to two adjacent points will define an additional 
realizable trajectory to a point In-between. 

From Geom and Flap, Eperan gets sufficient conditions to compute the 
error in the prediction of the position of the ABM at expected time of 
intercept. Eperan also requires RV and ABM cross sections and radar des- 
cription parameters. The output from Eperan in each case is a variance 
co-variance matrix of position errors.  This information is used by the 
KEND program to calculate the mean and standard deviation of the miss 
distance.  Finally, the probability of kill for the given weapon radius 
is computed and printed. 

Chart 15 shows a maximum coverage foot print that is a result of 
FLAP. The additional information that can be obtained from EXO-1 is 
shown on Chart 16 with isoquants super-imposed over the maximum coverage 
contour. 

What we have presented is a problem that was solved by simulation. 
However, from the start it appeared to us, that the use of the Monte 
Carlo technique would require such extensive computer time that use of 
the model would be greatly restricted.  The analytical solution via the 
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variance co-variance technique eliminated this problem.    EXO-l on the 
GE-635 computer requires about 1 minute of central processor time to 
produce the probability of kill at one point.    A similar program for 
endo-atmospheric interceptions generating 30 Monte Carlo iterations 
requires 10 minutes per point.    We estimate that the effort required to 
build a computer model for a new application of  this technique could be 
as much as two man years. 

We are Interested In any solution method that may be used as an 
alternate to Monte Carlo which will produce reliable Information in 
less computer time. 
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THE WINP TUNNEL FREE FLIGHT TESTING TECHNIQUE 

A. S. Platou 
Research AeroBpace Engineer 

U. S. Army Ballistic Research Laboratories 
Aberdeen Proving Ground, Maryland 

Symbols 

Speed of sound, ft/sec 
Model reference diameter, ft 
Axial moment of inertia of model 

Transverse moment of inertia of model 

Axial radius of gyration of model = /I /md 

Transverse radius of gyration of model ■ 

/I /md2 
y 

Total length of flight, ft 
Mass of model,  slugs or grams 
Mach No. Uja. 

See section entitled. The Yaw Reduction 

Spin re.te of model radians per second or 
revolutions per minute 
Tunnel stagnation pressure, psia 

Free stream dynamic pressure = g p U 
cr missile angular rotation 
Dimensionless distance along flight path = 

L J     " 
dt 

2 2 2 
Area - nd1"/1* feet    or inches 
lime,  seconds or milliseconds o 
Tunnel stagnation temperature,    R 

o 
Tunnel static temperature,    R 
Free  stream tunnel air velocity 

Model velocity in X direction 
Coordinates axes,  X is along tunnel axis, 
positive upstream;  Y is horizontal and per- 
pendicular to X;  Z is  vertical and perpen- 
dicular to X, positive down;  (right hand 
rule applies to directions and rotations) 
Air density, slugs per ft3 
Angle of attack in X Z plane 
Angle of attack in X Y plane 
Total angle of attack or yaw 
Sin 6 !  rW2   2 
Mean square yaw = T- 6 

L")-L/2 

Pd/2Uco 

Roll angle 

ee1* 
Viscosity 
Drag coefficient = 

Drag at zero lift 

e 

ds 

D/q s 

Lift curve slope = L/q s sin 6 

Nonnal force coefficient « N/q s sin 6 

Magnus fore? coefficient = M,F./q s v sin 6 

Pitching moment coefficient = M/q s d sin 6 

'V 
Magnus moment coefficient ■ M^/q s d v sin 6 

+ C,    6 Rolling moment coefficient ■ t/ q s d 

((id/2V) "M, 

d/u 

Damping moment coeffi- 
cient = M/q s d 

■"P    -"J 
C^    (qd/2V) 

q 
Re = p U 

C.G.  Location of C.G. from model base, ^ of 
length 

*   p sd 
c(i) ' arc(i) 

Abstract 

The free flight wind tunnel technique has been 
used successfully to obtain aerodynamic coeffi- 
cients on a variety of configurations with and with- 
out spin.    High mass to moment of inertia ratio 
models are electroformed as  .001 inch thick nickel 
shells with tungsten cores at the center of gravity. 
This permits wide C.G. variations and provides 
models which can withstand the high speed, high 
temperature flows.    The model launcher is based on 
the principle of an inverted pea shooter.    A ^--inch 
diameter tube is inserted into the aft portion of 
the model through the model base, and compressed 
air acting through the tube on the tungsten core 
propels the model forward.    Spin can be imparted to 
the model with an air turbine just prior to launch. 
Cones have been launched with success up to 10,000 
rpm, while high fineness ratio models have been 
launched at 40,000 rpm with moderate success. 

Introduction 

In recent years a free flight wind tunnel test- 
ing 'technique has been developed which is advanta- 
geous for obtaining aerodynamic data on certain 
configurations1.    The largest and most desirable 
advan;age over other wind tunnel testing techniques 
is the sting interference-free data, and relative 
ease of testing long bodies.    Advantages over range 
testing techniques are the large number of cycles 
per flight, the large number of photographic sta- 
tions  (up to 500) per flight, and the  low model 
accelerations necessary to launch the model.    The 
effective range  vUoo + V)t for this type of testing 
is 200 to kOO feet, depending on the tunnel Mach 
number and  the  time of flight.    The most popular 
use of this free flight technique has been for 
dynamic stability data; however,  it also appears 
attractive for Magnus and roll data on spinning 
configurations. 

Magnus data have been obtained in wind tunnels 
on some ballistic shapes using sting supported 
models and strain gage balances^; however,  in some 
cases sting interference is indicated.    In hyper- 
sonic tunnels the complication of cooling both 
bearings and balances is a further deterrent to 
standard type Magnus testing.    Roll damping mea- 
surements in a wind tunnel have depended on low 
friction air bearings, and hire again free flight 

This paper appeared In the Proceedings of the AIAA Third Aerodynamic Testing Conference 
held in San Francisco, California on 8-10 April 1968. We would like to thank the 

American Institute of Aeronautics and Astronautics for permission to photographically 
reproduce this article. ^55 
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testing avoids this complication.    It is the object 
of this paper to present the BRL  (Ballistic 
Research Laboratories) plans for free flight test- 
ing of spinning and nonsplnning balliitic shapes in 
our hypersonic wind tunnel. 

It is possible to obtain all of these measure- 
ments (dynamic stability, Magnus force and moment, 
and roll damping) from one flight,  for each of 
these .measurements requires a model having low 
moments of inertia and small mass.    Dynamic stabil- 
ity measurements require low transverse moments of 
inertia; Magnus measurements require low mass, and 
low transverse moments of inertia and roll damping 
require low axial moments of inertia.    Models of 
this type are built as thin, lightweight shells 
containing a heavy metal core close to the center 
of gravity of the model.    The only change between 
a nonsplnning dynamic stability model and a spin- 
ning one to obtain all three pieces of data is the 
addition of spin rate counting pins in the base of 
the model or darkening of one side of the model. 

The Optical System 

The optical system is used to obtain a series of 
consecutive pictures of the model in flight so that 
the trajectory including the angle of attack histo- 
ry of the model can be examined.    It is a dual path 
orthogonal system so that three dimensional coordi- 
nates of the model are recorded during the flight. 
The orthogonal system makes it possible to obtain 
data on all types of ballistic shapes including 
spinning and nonsplnning bodies having both planar 
and nonplanar motions. 
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Figure 1.    Instrumentation for Free Flight Testing 
in the BRL Hypersonic Tunnel 

The optical system requires two 35nini Fastex 
cameras mounted  (Figure l) with the side view 
camera photographing the vertical motion of the 
model and the top view camera photographing the 
horizontal motion.    Both views see a silhouette of 
the model against lighted, white screens containing 
the measuring reference lines  (Figure 1).    Optical 
alignment of the cameras is made before each test 
period and is such that the model coordinates in 
each individual frame can be read to   ,03 inch. 
Each of the screens is illuminated by three 1000-W 
photographic Sun Gun lights located approximately 
k feet from the screens.    For correct exposure of 
the film (Tri-X-Negative), the camera lens is set 
at /8, using a 2 inch lens.    The cameras are 
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approximately 60 inehof. from the tunnel centerline. 
Identical one-millisecc.id timing marks, which are 
coded from a prescribeo zero time, are placed on 
each film during the flight.    In this manner the 
time-motion histories from each film can be linked 
together so that the three dimensional time-motion 
history of the model can be obtained. 

The Models 

The construction of the models is based on the 
fact that they must be lightweight, have low axial 
and transverse moments of inertia, and have a high 
mass  to moment of inertia ratio.    These character- 
istics are obtained by forming the model as a 
lightweight, thin-skin shell, with a heavy metal 
core placed around the model center of gravity 
(Figure 2).    These models, however, must withstand 
the rigors of exposure to hypersonic flow for a 
short time, so that certain precautions must be 
taken to insure this.    First, it is estimated that 
portions of the model may reach 800oF during the 
flight; and second, the pressure distributions over 
the model may be quite severe as the model emerges 
from the launch chamber into the main tunnel flow. 

Figure 2.    Free Flight Model Design 

A survey of the field shows that there are a 
number of materials which will withstand the expect- 
ed temperatures; however, there are only a few of 
these which are sufficiently lightweight to keep 
the moments of inertia low.    The most numerous high 
temperature lightweight materials found are a series 
of porous materials made by Emerson and Cuming 
Company.    These materials have specific gravities 
from  .Zh to   .75 and will withstand temperatures of 
at least 8000F, and in some cases 3000oF.    They are 
quite fragile though, having flexural strengths 
between 500 and 1000 psi, and therefore, must be 
reinforced in order to withstand the pressure dis- 
tributions . 

The first models used in our experiments were 
made of thin walled steel or aluminum tubing 
machined dor'.n to 3 mil walls with the nose and tail 
being made .of the high temperature porous material. 
Later mode is have been made by electroforming 
nickel on an aluminum mandrel to a thickness of 1 
or 2 mils and then eroding the mandrel leaving the 
nickel shell.    It is believed that thin skinned 
electroformed models can be made for any configura- 
tion for which an aluminum mandrel can be machined. 
To date, electroformed models of 10° half angle 
cones, 20 and 30 caliber cone cylinder flares and 
a finned configuration  (Figure 3) have been made. 

The first models used lead for the metal core, 
while later models have used tungsten.    Lead is 
easier to machine but has a lower mass to moment of 
inertia ratio than tungsten for the same geometric 
configuration.    Lead also lowers the maximum allow- 
able model temperature,  thereby increasing the risk 
of losing a model during the prelaunch period in 
the hypersonic tunnel.    To secure the model to the 
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launcher, one end of a 5 mil copper wire is imbed- 
ded into th» metal core. 

■4 

Figure 3- An Example of the Models Used with the 
Free Flight Launcher 

The Launcher 

After several attempts at launching models into 
the hypersonic test section were made, it became 
apparent that a number of precautions must be taken 
in order that successful launches occur a large, 
percentage of the time.    The launcher and model 
must be protected from the hot high speed tunnel 
air by inclosing it within an, insulated air cooled 
chamber.    Doors on the front of the chamber must 
open and close automatically during the launch 
cycle.    Symmetric flow conditions in the door 
region is required to hold down velocity attenua- 
tion and lateral Jump.    Some type of guidance to 
maintain model attitude during the acceleration 
phase is necessary.    For spinning models a turbine 
drive must be incorporated. 

Figure h.    Free Flight Launcher 

A launcher design  (Figure k), which incorporates 
the above features, has been developed and used by 
the Ballistic Research Laboratories  for several 
months.    The launcher is housed in an insulated, 
air-cooled chamber which keeps the ambient tempera- 
ture below 2000F, while the tunnel stagnation 

temperature is  1300 F.    Doors on the front of the 
chamber automatically open before the launch and 
close after the launch so that the chamber tempera- 
tures remain low.    The launcher is mechanically 
simple and contains very few moving parts.    It is 
unique in  that no part other th*n the model is 
accelerated forward during the launch, and the model 
is guided during the full period of acceleration by 
an internal push tube.    The launcher will accept any 
shape model from i-inch diameter up to at least 1 
inch diameter, and up to 7? inches long;  the only 
requirement on these models being that they will 
accept a 3/16-inch minimum diameter cy' 'cal push 
tube mounted through the model base, an ,ting 
againpt the metal t.l.''? which is common to all of 
these models.    Each model requires a pretest assem- 
bly and wire lashing to the cylindrical tube, but 
can be readily installed on the launcher just prior 
to launch.    The launcher is a single-shot launcher, 
but means of reloading it while the tunnel is run- 
ning are being considered now. 

The principle of operation of the launcher is 
that of a shock tube.    A normal shock is generated 
by breaking, with a pricker, an aluminum foil dia- 
phragm which is mounted at one end of a small diam- 
eter, hollow cylinder  (Figure ^t) called the push 
tube.    Thg strength of the normal shock and, in 
turn,  the model launch velocity is governed by the 
initial pressure in thp supply chamber behind the 
diaphragm.    The normal shock travels the length of 
the push tube and reflects  from the model metal 
core which is lashed to the other end of the push 
tube.    The lashing is accomplished by imbedding a 
5-mil diameter knotted copper wire in the metal core 
and soldering the other end of the wire to an island 
mounted in the center of the push tube.    When the 
aluminum diaphragm is broken, the increased pressure 
on the metal core base breaks the wire at the knot, 
and the model is launched.    The exact aerodynamic 
action which takes place during the several milli- 
seconds required for the model to leave the push 
tube is quite complicated; however, it is known that 
the shock is traveling at much higher velocities 
than  the model,  so that several shock reflections 
must take place in the push tube during the launch 
time.    The strength and number of shock reflections 
are a function of the cylinder and supply chamber 
configuration, and therefore, each launcher config- 
uration must be calibrated to determine the correct 
pressures for launching models at the correct veloc- 
ity.    The launcher will launch models with speeds 
from 20 feet per second to 75 feet per second. 

To adapt the nonspinning launcher to a spinning 
launcher requires that a custom-built air turbine be 
inserted between the aluminum diaphragm and the push 
tube.    The air turbine is designed the same as a 
dental air drill, except that it is approximately 
four times larger (Figure k).    The enlargement is 
necessary so that the main shaft can be hollow and 
form the first portion of the push tube.    Also, the 
enlarged turbine blades increase the available 
torque and  lower the maximum allowable spin rate. 
Since the dental drills have been developed for spin 
rates of ^00,000 rpm, the enlarged version will 
still easily spin up to 50,000 rpm.    It is necessary 
to place a labyrinth seal between the spinning tur- 
bine shaft and the stationary diaphragm in order to 
prevent large attenuation of the launch pressure 
after  the diaphragm is broken.    The remainder of the 
push tube,  including the model, rotates with the 
turbine,  so that once the supply air passes through 
the diaphragm it is subject to a rotating wall 
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boundary condition. Monitoring of the prelaunch 
spin rate will be accomplished using a photoelec- 
tric pick-up, while the actual spin rate during 
flight will be read from the high speed .notion 
pictures. 

velocity imparted by the motion of the launcher is 
to increase the launch velocity, V , thus increasing 

the required launch pressures insuring breakage' of 
the lashing wire. 

The launching procedure for both the nonspinning 
and the spinning launcher is essentially the same. 
In both cases the model is placed on the launcher, 
the tunnel is started and brought up to the desired 
temperature and pressure. Just prior to launch the 
predicted supply pressure is set, and in the case 
of a spinning launch the model is brought up to the 
desired spin rate. At this point the actual launch 
is actuated by a six-channel timer which controls 
the photographic lights, the launch pricker, the 
cameras, the timing mark coder and the launcher 
doors. The launch is triggered by the pricker rup- 
turing the diaphragm; however, all of these events 
must be triggered accurately so that the flight is 
photographed on the high speed portion of the film. 

In launching models into the tunnel airstream we 
wish to obtain flights in which the model will 
oscillate through the maximum number of cycles. 
The number of cycles is given by 

,,  1 / mor  d  m  „\ N = n IcT x 2 x I x S>) 

C      and  CL are fixed by the configuration being 

tested, d and m/l are maximized by making the model 
as  large as possible and by concentrating as much 
mass as possible close to the  C.G.,  S is maximized 
by finding the longest path or the  longest flight 
time.    The longest flight path,is obtained by ad- 
justing the launch velocity so that the model 
reaches  the upper portion of the test rhombus and 
return" downstream before gravity has time to pull 
the model out of the test rhombus.    The launch 
velocity for constant deceleration is V    = V2S D/m 

and the time of flight  is t 
UTm 

For the 10 half angle cone models the D/m 
values range from 150 to 300 ft/sec2 for the cases 
tested. The launch velocities are hO to  50 ft/sec 
and the flight times are such that the models would 
not quite fall through the test rhombus due to 
gravity. For the high fineness ratio models the 
D/m values range from 50 to 100 ft/sec2, and the 
launch velocities are in the range 15 to 25 ft/sec. 
This plus the relatively long push tube, especially 
for the 30 caliber models, decreased the launch 
pressure such that breaking of the lash wire is 
marginal. 

To oveicome this, the launching system is being 
modified so that the launch occurs in two steps. 
First, the present launcher is given a vertical and 
a downstream, horizontal velocity. Second, the 
present launcher is activated so that the resulting 
model launch motion is forward and upward with the 
model at low angle of attack. 

The model will be launched from tie lower down- 
stream portion of the test rhombus such that the 
motion will carry the model to the top forward 
portion of the rhombus before gravity and the drag 
pull the model down towards the launch point. 

The reason for the initial horizontal downstream 

Data Reduction 

Data reduction of each model launched in the wind 
tunnel is accomplished by fitting the time motion 
history of the flight to the equations of motion for 
a ballistic missile. The reduction is basically the 
same reduction used by the BRL aerodynamic ranges^»4. 
However, due to differences in methods of recording 
the data and other characteristics of the test, some 
changes in the reduction procedure are necessary. 
The time motion history is obtained from the orthog- 
onal high speed films while the equations of motion 
for the free flight missiles are derived in refer- 
ence h.    Fitting the equations of motion to the data 
has been programmed on the BRL high speed computer, 
BRLESQUE, so that rapid reduction of the data to 
aerodynamic coefficients is possible. The reduction 
is separated into several steps so that various 
aspects of the flight can be considered separately. 

-Tunnel Aerodynamic Conditions 

This portion of the program concerns the reduc- 
tion of the tunnel operating conditions to param- 
eters which can be used for reduction of the model 
geometric data to aerodynamic coefficients. The 
tunnel aerodynamic reduction uses the'compressible 
fluid flow equations for a de Laval nozzle which are 
outlined and tabularized in reference 5- Quantities 
which are either set during the tunnel test or com- 
puted from the tunnel conditions are: Mach number, 
stagnation pressure, temperature, dynamic pressure, 
test section air velocity and Reynolds number. 

Model Geometric Reduction 

The geometric data reduction consists of the 
evaluation of the motion of the model to define the 
space coordinates of the model center of gravity and 
the variation of angle of attack (ß + ia) as a 
function of time. The x, y and z coordinates of the 
model nose and base are read from each of the Fastex 
films (Figure 5)'using an optical film comparator. 
These data are used to determine the lateral motion 
of the model center of gravity and the angle of 
attack motion of the model. The film speed or the 
frame time is obtained from the 1000 cycle timing 
marks which have been placed on r.he side of each 
film during the operation of the Fastex cameras. 
The time histories obtained in the geometric data 
reduction define the complex yaw (ß + io) and com- 
plex swerve motion (y + iz) of the model in flight 
and, also, define the velocity and spin variation 
with time. Examples of this information are 
presented in Figures 7,8,9 and 10.  The data 
accuracy is governed by the resolution of the Fastex 
cameras, which in this case, correspond to coordi- 
nate accuracies of 0.03 inch. The results of the 
model geometric data reduction are used as input 
information for the remainder of the data reduction. 

158 

iilMiilÜfl   ttk _ 



Figure 5. High Speed Photographs Taken for 
Measuring the Model Coordinates 

Drag and Roll Reduction 

The drag and roll reduction are two separate 
reductions; however, since the procedures are the 
same and their reductions are independent of the 
remaining reductions, they can be discussed as a 
group. 

The average drag force acting on the model 
during the flight can be obtained by assuming con-
stant deceleration during the flight. Constant 
deceleration is not strictly true for it will vary 
with angle of attack; however, this variation is 
within the accuracy of the data. Computing the 
deceleration (least square fit) from the velocity 
time curve (Figure 6) and using Newtons equation 

-m X 

S =fi 

*1 < 

i :] 
•I L. 

Figure 6. Velocity-Time Curve 

Along with the average drag computation it is 
necessary to compute the mean square yaw so that 
the drag curve for the configuration can be obtain-
ed. The mean square yaw is obtained from: 

62 d s 

and since (L = C-. • CL o 
D D0 u6 

we can obtain CD once, two or more flights of the 
0 

same configuration have been made at different mean 
square yaw values (Figures 10 and 11). 

*1 C r fto.com KMi xi) 

Figure 7. Spin-Deceleration Curve 
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Figure 8. Complex Yaw Plot 

The roll reduction depends on measuring the roll 
deceleration of the model during the flight. This 
is done by measuring the rate of rotation of a white 
strip on the model or the counting pins (Figure 7). 
Again, assuming constant deceleration, the rolling 
moment can be obtained from 

I = I 

C. v + C. 6 -7 I. q s d 

C. is the rolling moment due to fin cant and needs 
6 

only to be considered for finned configurations. 
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Figure 9- Swerve Plot 

The Yaw Reduction 

The yaw reduction is designed to obtain from the 
model motion the pitching moment, the damping 
moment, and the Magnus moment coefficients. This 
is accomplished by fitting the complex yawing 
motion of the model (Figure 8) to the equations of 
motion of the model. 

r + (H - i P) ?' " (M + i P T) ? = G 

where  H = [cj - cj - ^  (cj + £ ) J 

too       SCO 
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Figure 10. The Drag of the 10° Half Angle Cone 
d = .9" 

The Swerve Reduction 

The sweive reduction analysis studies the later- 
al motion of the model center of gravity and deter- 
mines the lift, Magnus and damping forces acting on 
the model. The reduction involves fitting the 
equation of motion of the center of gravity lateral 
coordinates to the actual lateral motion of center 
of gravity. This equation of motion is equation 
9.8 of reference k. 

y   + iz e e 
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The above is equation 6.8 of reference h where 
its' derivation is shown.    It is too lengthy to 
present here, and it will have to suffice that it 
is similar to the more familiar planar equation of 
motion 

I   a + |i(i + M = 0 
y 

Equation 6.8 takes into account the nonplanar 
motion of the model and for ease of reduction the 
derivatives have been taken with respect to dis- 
tance rather than with respect to time. 

The fit of the equation of motion to the complex 
yaw data is illustrated in Figure 8. 

r r 
ii •. 

0 0 

e ' ds1 dsp 

B 
0' 

B   are complex constants. 

The Coriolis force term has been omitted because 
in the wind tunnel free flight technique the motion 
of the model with respect to the earth is negligi- 
ble.    An example of the swerve fit to the actual 
motion is shown in Figure 9.    Again, for further 
explanation of this reduction procedure, the reader 
is referred to reference k. 

Single Plane Reduction 

Recently we have started modifying one of our 
supersonic tunnels M = 1.25 to 5.0 so as to in- 
crease our free flight capabilities to the complete 
supersonic speed range.    In order to obtain ortho- 
gonal views,  it would entail considerable effort to 
locate a viewing window in the ceiling of the test 
section.'   In an attempt to eliminate this complica- 
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tion we are investigating the possibility of using 
a single  view reduction system in which only the 
projected coordinates of the model in the X-Z plane 
would be recorded.    By solving only the imaginary 
part of the eplcyclic equations of motion 

r  +  (H -  i P) ?' -  (M + i PT) ? = G 

the aerodynamic coefficients will be obtained.    The 
ease and accuracy of this solution is now being 
compared  for us with the full viewing system method 
by the University of Notre Dame. 
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Figure 11. Drag of Cone Cylinder Flare 
Configuration 

Model Flights and Aerodynamic Data 

A number of flights of 10 half angle cone 
models and high fineness ratio cone cylinder flare 
models have been reduced and analyzed. Most of the 
flights have been made at M = 9.2 and have included 
variable Reynolds number, variable center of 
gravity and variable spin. The cone models includ- 
ed both flat base and hemispherical base configura- 
tions in order to determine the variation in the , 
pitch damping moment due to the base configuration , 
and the cone cylinder flare models included length 
to diameter ratios of 15 to 30. Launching the 
cones proved to be quite successful. However, some 
difficulties were experienced in launching the high 
fineness ratio bodies. The longer launching dis- 
tance and in the case of spinning models, difficulty 
of controlling the dynamic balance proved to be 
critical. Long models having shorter launch dis- 
tances and better balance are now being fabricated. 

The aerodynamic data obtained on these model» is 
shown in Figures 10, 11, 12 and 13- The drag coef- 
ficients are linear with the mean square yaw for 
the cone cylinder flare configuration and up to 15 
for the 10° cone. The pitching moment coefficients 
for all of the models are constant over the Reynolds 
number range tested (Figures 12 and 13), while the 
pitch damping coefficients for all models vary with 
Reynolds number. The flat base cone pitch damping 
increases wjth Reynolds number, while the hemisphe- 
rical base cone data indicate decreased damping 
with Reynolds number, but a large increase in damp- 
ing over the flat base cone. The data also indi- 
cate that the cone base configuration may not in- 
fluence the pitch damping at higher Reynolds num- 
bers. These data also agree with data obtained at 

7 8 
The cone cylinder flare pitch damping 
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Figure L".    Reynolds Number Variation of Pitching 
and Damping Moments on the 10° Half 
Angle Core M = 9-2 
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Figure 13.    Reynolds Number Variation of 
Pitching and Damping Moments on the 
15 Caliber Cone Cylinder Flare 
Configuration M » 9.2 

coefficients decrease with Reynolds number and the 
indication is that the pitch damping w^ll become 
positive at slightly higher Reynolds numbers. 
Magnus and roll derivatives have also been obtained 
but are so far too few to be presented here. 
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While analyzing the epicyclic motion of these 
models, it became apparent that the epicyclic arm 
rates of rotation ranged from 5 to 60 revolutions 
per second. These rates are in the same range as 
a considerable amount of the turbulence of most 
wind tunnels which indicates the possibility of 
turbulence influence on the epicyclic motion and 
the computed aerodynamic coefficients. An examina- 
tion of the pitching moments and pitch damping 
moments, of the flights obtained to date indicate 
that the tunnel turbulence can influence these coef- 
ficients provided that the arm rates are below 20 
cycles. Further tests where the tunnel turbulence 
level is lower are planned for the future. 

Ooncluslons 

The analysis of the flights made to date are 
very encouraging. The free flight technique per- 
mits the evaluation of damping, Magnus, and roll 
deri.itives on all types of configurations without 
the presence of a sting. Flights in the BKL wind 
tunnel have included spinning models with spin 
rates up to Uo,000 rpm. So far, configurations 
have been limited to 10° half angle cones, 1 inch 
base diameter, and 15 to 30 caliber cone cylinder 
flares, i inch body diameter.  Low model weights 
and low moments of inertia have been achieved by 
electroforming the model shells from .001 inch 
thick nickel. The model fabrication technique 
assures us of being able to electrofonn any model 
shape for which an electroforming mandrel can be 
made. The reduction procedure permits computation 
of all of the aerodynamic coefficients including 
the damping, Magnus and roll derivatives. 
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SCME ASPECTS OF REGULARIZATION AND APPROXIMATION OF 

SOLUTIONS OF ILL-POSED OPERATOR EQUATIONS1 

M. Z. Nashed2 

Mathematics Research Center 
The University of Wisconsin, Madison 

ABSTRACT. In this paper we attempt a classification of the various 
approaches that have been proposed for the investigation (solutions and 
approximations) of ill-posed problems. The classification is only descrip- 
tive; we do not go into technical details. The author hopes to prepare a 
more extensive survey of regularization methods for operator equations 
where the technical aspects will be considered. The bibliography, although 
extensive, is not intended to be complete. 

1.  ILL-POSED PROBLEMS; REMARKS AND EXAMPLES. The notion of a well- 
posed (correct properly-posed) problem introduced by Hadamard at the 
beginning of this century plays an important role in the theory and num- 
erical approximation of various operator equations arising from problems 
of mathematical physics, engineering, and analysis. 

Let X and Y be two metric spaces, and let A be an operator on X into 
Y, The operator equations Ax = y is said to be well-posed by Hadamard's 
definition if the following conditions hold: 

(i) there exists a solution of the equation for all y e Y; 

(ii)  the solution is unique in the space X; 

(iii)  the solution depends continuously on the right-hand side y. 

If any of these conditions are not satisfied, then the operator equation 
is said to be ill-posed (incorrect, improperly posed). 

The first requirement of well-posedness means that the problem is not 
overdetermined, and superflows conditions are not Imposed. The third require- 
ment of well-posedness is important in problems of mathematical physics 
and natural phenomena since the data y is obtained from measurements made 
with instruments and is therefore known only approximately. The requirement 
guarantees that a small error in y cannot produce a big change in the 
solution x. 

Sponsored by the United States Army under Contract No.: DA-31-124-ARO- 
D-462, while the author was a visiting member of the Mathematics Research 
Center. 
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It should be emphasized that the notion of a well-posed problem for 
a given operator depends on the spaces considered. Thus the operator 
equation Ax=y may be well-posed relative to the spaces(X,Y)t while being 
ill-posed relative to the spaces (X'jY1), i.e. when A is considered as 
a map on X1 into Y1, so that the data is drawn from Y', and the notion of 
continuity is that induced by the metrics on X' and Y', Mathematically 
this is clear since a mapping may be continuous relative to one topology 
while failing to be so in another. Physically, this gives a clue as to 
the type of measurements that are meaningful, and provides a framework 
where small errors in measurements are tolerable, 

Hadamard gave an example of a problem (the Cauchy problem for 
Laplace's equation), which has now become classical, which is ill-posed 
in any of the usual function spaces (the space of continuously differenti- 
able functions, L spaces, Sobolev spaces Vr spaces H^ of analytic functions 

on the unit disc,,etc.). On the basis of this example, Hadamard concluded 
that this problem, and other problems exhibiting a similar dependence of 
the solution on the data, do not correspond to any real formulations, i.e. 
they are not problems of mathematical physics. In other words, there is 
something wrong with the mathematical model and not with the physical 
problems which it portrays. It was discovered later, however, that 
Hadamard's conclusion was erroneous and that many situations in physics 
and in the study of natural phenomena, as well as in some areas of 
analysis, lead to problems which are ill-posed. We mention next some 
examples of ill-posed problems which appear frequently in the literature. 
Some of these were cited by the Soviet Academician A.N. Tikhonov in his 
invited address at the International Congress of Mathematicians in 
Moscow in 1966. 

Some Classes of Ill-Posed Problems in Analysis 

1. Determination of a uniform approximation to the derivative u' 
under approximate data in the metric of the space of continuous functions. 

2. Determination of the sum of a Fourier aeries at a given point in 
terms of arbitrary values in the space Ä,» for the Fourier coefficients. 

3. Uniform approximations of solutions of integral equations of the 
first kind and other problems leading to them (analytic continuation, 
conformal mapping, operational calculus in the real domain) under perturba- 
tion of the data in the metric of L- (the space of square-integrable functions), 

4. Numerical inversion of Laplace transforms. 

5. The problem of determining the input to a system when we know the 
impulse response and the output. 

6. A wide range of unstable problems of optimization (unstable 
problems of optimal control and filtering, linear and dynamic programming). 
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7, Linear problems on the spectrum under the usual supplementary 
conditions determining a unique solution, 

8, Ill-conditioned algebraic systems, Fredholm alternative problems 
with nonuniqueness, etc, 

9, Some classes of "inverse problems", A typical situation here 
is of finding Z, which is rot accessible to direct measurement, from a 
physically determined manifestation u of Z, where u = AZ, and A is a 
completely continuous operator. Then the inverse of A, is not continuous. 

Note that there is a considerable overlap among the classes mentioned 
above, and that from the operator-theoretic point of view many of these 
classes share the same characteristic. 

Some Areas of Real Phenomena Which Lead to Ill-Posed Problems 

(1) Some classical problems of mathematical physics: for example 
the Cauchy problem for nonnegative time, the nonhyperbollc cauchy problem 
for the wave equations, etc, (see John [93], Lavrentiev [111], and 
Mikhlin [133] for an elucidation of some of these examples). These 
include problems from potential theory, hydrodynamics, magnetohydrodynamics, etc. 

(2) Problems arising from geophysics, atmospheric studies, meteorology, 
reservoir engineering^seismology^fete.  The bibliography contains numerous 
references on such applications, 

(3) Problems of control of a system governed by partial differential 
equations where the control appears on the boundary, and boundary-value 
problems with overabundant data on one part of the boundary and insufficient 
data on the rest of the boundary, 

2,  SOME APPROACHES TO THE INVESTIGATION OF ILL-POSED PROBLEMS.  The lack 
of a continuous dependence of the solution in an ill-posed problem, or the 
lack of uniqueness (or even of the existence of a solution in the classical 
sense) make direct investigation (and particularly approximation) of ill- 
posed problems difficult. The "regularizatlon" of such problems has been 
cited by Bellman as one of the important concepts of modern analysis. 
Intuitively speaking, what this means is to analyze an ill-posed problem 
via an analysis of a well-posed, or a sequence of well-posed problems, 
provided this analysis gives a suitable approximation to the given problem. 
This suggests several approaches which are, generally speaking, based on 

(a) a change of the concept of a solution; 

(b) a change of the spaces in question; 

(c) a change of the operator itself; 

(d) the concept of a regularlzer or "regularizatlon operators"; 

(e) probability or well-posed stochastic extensions of ill-posed 
problems. 
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These intuitive ideas manifest themselves explicitly in several 
approaches which are available at the present for the investigation and 
approximation of ill-posed problems; 

(1) The earliest approach, due to Tikhonov [188J,is based on the 
assumption that there exists a prior information restricting the class of 
solutions to a compact set U. In this case the operator equation is well- 
posed if the operator A is considered as a map from U onto A(U). An 
investigation of the various problems which are amenable to this approach 
was carried out by Lavrentiev [111], John [92] and others (see the biblio- 
graohy in [111]). 

(2) Another approach is based on changing the notion of a "solution" 
of a problem (for instance to "quasisolution", Ivanov [81]; a brief 
exposition of this approach is given in the monographs of Holmes [77] and 
Lavrentiev [111]; or to the notion of least squares solution of minimal 
norm in the case the underlying spaces are Hilbert spaces; see for instance 
Nashed [144], Kammerer and Nashed [95], the latter approach lends itself 
readily to mathematical programming. 

(3) The use of regularizing parametric operators introduced by 
Tikhonov [188], and further explored by Bakusinskii [11], [12], Nashed 
and Wahba [200], and others. 

(4) Another approach closely related to (3) is that of replacing the 
operator equation by a stable minimization problem depending on a parameter 
(see Bellman, Glicksberg and Gress [22], [23], Phillipn [162], Ribiere 
[166] and others). 

(5) Stochastic and probabilistic approaches involve questions of 
measurement of error and distrubances, and provide well-posed extensions 
of ill-posed problems (see for instance Franklin [58], Lavrentiev [111] 
and Bakusinskii [13]). 

(6) The method of quasirevisibility of Lattes and Lions [107] is 
based on the idea of modifying the differential or integrodifferential 
operators arising in boundary-value problems and unstable control and 
optimization problems, in order to impart regularity. This approach Is 
closely connected with some of the preceding approaches. 

(7) A new approach to regularization based on the notion of 
pseudosolution (least squares solution of minimal norm) in reproducing 
kernel Hilbert spaces has been proposed and investigated recently by 
Nashed and Wahba [200], [147], This approach coincides in philosophy 
with some of the approaches mentioned above (in the sense that the notion 
of a solution is changed and the problem is considered in new spaces), 
even though it differs sharply in technical details. In this approach the 
geometry of reproducing kernel Hilbert spaces is exploited (in an optimal 
way), and the results obtained are the best possible in this context. 

Some of the above approaches are easily carried out on computing 
machines thereby providing effective methods for the numerical solution 
of a wide class of problems. This remark applies in particular to the 
approaches (2), (3), (4), (6), and (7), 
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68 Y. BARD AND L. LAPIDUS 

One of the more important problems that a chemist or chemical 
engineer may encounter is the determination of the mechanism and/ 
or model for a chemical reaction system.  This problem may be en- 
compassed within the broader area of identification |30-32] which 
ranges from the one extreme where no a priori information regard- 
ing the system representation is known, to the other extreme where 
much is known about the system. The development of a suitable 
chemk-ai kinetic representation for the experimental reaction system 
lies somewhere between these two extremes.  This results from the 
fact that there usually exist certain postulated models to represent 
experimental kinetic data; however, the determination of the best 
constants in these mechanistic models and perhaps the discrimina- 
tion among a number of alternative models usually remain as vexing 
questions. 

We shall adopt the view here that for any given reaction system 
there exists a large but finile number of permissible mechanisms, 
i.e., mathematical models which, in an a priori basis, could de- 
scribe the reaction. While this number may be formidable, the in- 
vestigator can usually focus his attention on only those selected mod- 
els which he considers appropriate to analyze in detail. The results 
of this analysis produce one or more plausible models which are ad- 
equate descriptions of the experimental data. If there is only one 
such model, the investigator might, after further consideration, ac- 
cept this as the correct model. More often than not, there are sev- 
eral models which are adequate. These must be subjected to further 
study, perhaps along with other models not previously studied. 
Through this additional study, including more extensive experimen- 
tation and other independent information, the investigator hopes to 
be able to discriminate among alternative models to find the correct 
m )del, assuming one exists. 

The difficulties of this analysis are numerous. They rest, for ex- 
ample, on the proper design of experiments which is used to generate 
the data. Box and co-workers |8-14| and Blakemore and Hoerl [5] 
have emphasized the need for appropriately designed experiments 
since the damage of poor design is irreparabl. and may negate the 
subsequent analysis no matter how ingenious this analysis. Assum- 
ing several models satisfy all the features of the analysis, the selec- 
tion of an adequate model can be made only tentatively. Fui ^her ex- 
perimentation must be conducted or independent information brought 
to bear to attempt to discriminate among competitive models and 
thus to determine that model which best fits the data; 

In this context, one can recognize the process of kinetic investi- 
gation as an iterative one in which experimentation and a proposed 
model lead to data analysis, which in turn leads to further experi- 
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KINETICS ANALYSIS 69 

mentation. This combined approach continues in a presumably con- 
verging cycle between analysis and experimentation toward a choice 
of the most adequate model. Since the investigation cannot be exhaus- 
tive in examining all possibilities, no proof exists that the correct 
model has been found. The investigator must be satisfied that he has 
determined only the most adequate representation of the experimental 
kinetic data. 

It is apparent that the advent of the modern digital computer has 
greatly enlarged the scope of methods for such data analysis and 
model construction and discrimination. In the present article we 
shall point out how the high-speed capabilities of the computer can 
be used as an integral part of the overall cyclic procedure mentioned 
above. In other words we shall show how the computer may first be 
used to construct the kinetic models (nonlinear parameter estimation) 
which represent in a statistical sense the experimental kinetic data. 
Application to both homogeneous and heterogeneous kinetic systems 
will be discussed as wellasa variety of alternative statistical formu- 
lations. It will then be shown how the computer can be used to spec- 
ify the experimental conditions for obtaining further kinetic data so 
as to aid the discrimination among the alternative models or to im- 
prove the accuracy of a single model. 

I. KINETIC AND MODEL DEFINITIONS 

To characterize the models which we shall consider in this arti- 
cle, we shall first specify the types of variables and then the forms 
of equations relating the variables, and we shall finally show how the 
kinetic equations are encompassed within this formulation. Thus we 
define the following types of variables: 

1. Parameters. These are constants within a model whose numer- 
ical values are unknown. The (column) vector of p parameters is de- 
noted by e ={6^6 ep}. 

2. Independent Variables. These are variables which are either 
fixed arbitrarily for each experiment or which are known precisely 
for each experimental observation. Typical independent parameters 
in a kinetics experiment might be the reaction time or the space 
velocity. The (column) vector of k independent variables for the nth 
experiment is denoted by x^ = {x^,, x^a,..., x^kl- 

3. Dependent Variables. These are the variables which the model 
will predict on the basis of known values of the parameters and inde- 
pendent variables. Thus, given a specified set of parameter values 
and reaction time, the model will predict a concentration of a com- 
ponent in the kinetic model. The (column) vector of n dependent 
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variables is denoted by V ^{Vi, Vv ••■, ^nl- 
4. Observed Variables. Those dependent variables which are ac- 

tually measured in an experiment are called the observed variables. 
The (column) vector of r observed variables for the ßth experiment 
is denoted by yM = {yMl, y^,..., yMr}. 

An experiment consists of the measurement of all observed vari- 
ables for a given set of values of the independent variables. 

The models which we shall consider relate the dependent variables 
to the independent variables and the parameters. In concise form we 
may write the model as 

q(^.xM,e)=o     a =1,2,.. m (1) 

where q is a vector of functions of dimension equal to that of the de- 
pendent variables and m the number of experiments. An alternative 
formulation is to write the reduced form 

»?M«f(xM,«)       M=1.2 m (2) 

While Eqs. (1) and (2) are equivalent mathematically, care must be 
used in terms of computer algorithms since parameter estimates 
may not be invariant under the transformation from one form to the 
other. 

Let us now show how kinetic rate equations fit into the formulation 
of Eqs. (1) or (2). Suppose we have a unidirectional, unimolecular 
homogeneous reaction of the type 

For isothermal conditions the rate equation for this reaction is 

dfN] _ 
-ar ~" k[N] (3) 

where [N] is the concentration or partial pressure, t the reaction 
time, and k the reaction velocity constant. Integrating this equation 
with a given initial [N] at time t = 0, [Nj, we have 

[N] = [N0] exp(-kt) (4) 

If we now relate »? ={[N]}, x = {t,(N0]}, and * = {k} (the subscript JJ 
has been dropped for convenience), we see that Eq. (4) is equivalent 
to Eq. (2). Now consider the isothermal rate equations corresponding 
to the reaction 

k,     k2 
A-B-C 
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They are 

^l-MAl-MB] 

d[Cl = 
dt ^[B] 

When initial conditions are established such as 

[AJ = 1, [BJ = [CJ = 0       t»0 

the corresponding integrated forms are given by 

[A] =exp{-k1t} 

[B] = [Mdc, - k^Cexpi-kjt} - exp{-lt,t}) 

[C] = 1 - fl/(k, - M(k. exp{-kit} - k, expf-v}) 

Now defining the vectors J; = {[A],[B],[C] }, x = {t}, and 0 ={kj.kj}, 
we see that we have once again the form of Eq. (2). 

A feature of this comparison which deserves some further con- 
sideration is that in both cases the rate equations can be integrated 
analytically. Under this requirement we may ascertain the resulting 
form without any difficulty. But what if we introduce a temperature- 
dependent velocity constant or nonunimolecular reactions. The prob- 
ability of an analytical integration decreases to zero rapidly. How- 
ever, since we shall always consider that we have a digital computer 
available, this need not distress us greatly. We can always integrate 
the set of rate equations numerically to yield values of i; at any se- 
lected x. Stated in another way, once we have the rate equations it is 
in a sense immaterial whether we integrate these rate equations an- 
alytically or numerically. The end result of either path is a func- 
tional equation of the form of Eq. (2). 

Let us now briefly turn to a heterogeneous-type kinetic system. 
As an example, the following bimolecular reversible reaction in the 
gas-solid phase is considered 

A + R ■== B + C 
k2 

If the controlling mechanism is that of surface reaction on dual sites 
without dissociation, the Langmuir-Hinshelwood expression becomes 
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d[A]/d(W/FA)=rA (1 +KA|AJ +KR|RJ +KB(B] +KC[C])
2 

where the dependent variables denoted by concentrations are normally 
expressed as partial pressures, the independent variable is recipro- 
cal space velocity, W/FA, and the parameters, in addition to those 
previously encountered, include the adsorption equilibrium coeffi- 
cients, KA, KR,KB,and Kc. 

As compared with homogeneous noncatalytic reactions, it is appar- 
ent that W/FA assumes the same role as t, that the numerator in the 
rate expression is identical, and that the only substantial difference 
lies in the introduction of the denominator term. Thus, in functional 
notation, if we define v = {[A],[R],(B],[C]}, x ={w/FAl[A0],[Rj)[B0]([C0]}, 
and 6 = {k1,k2,KA,KR)KB,Kc}, we have the equivalent of Eq. (2). 

Let us close out this section with one further example to illustrate 
the models which can be encompassed within the form of Eq. (2). Con- 
sider that we have three components in a homogeneous reaction and 
that it is postulated that the rate equations are 

d^ 
dt = -Mi^ +M3-Mi 

■gi» = -k17?lT?2 + M3 + Mi 

^ = Mi»?« - M3 

(5) 

where rjj, ?j2, and r]3 correspond to, e.g., [A], |B], and [C] used pre- 
viously. In addition we have a set of unknown initial concentrations: 

^i =a 

^ =b 

ij, = 1 - a - b 

t =0 (6) 

At time t (representing the /ith experiment) we withdraw three sam- 
ples from the reaction mixture and perform the following tests: 

a. We determine r;^ = ^(t^) directly by titration. 
b. A different person independently determines fy i by titration. 
c. We determine the light absorptivity of the sol^don, assuming 

this to be a linear function with unknown coefficients of the concen- 
trations. 
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Denoting the results of these three measurements as y^, y^j, 
and yßS, we have 

Equations (5)-(7) together constitute the model; functionally these 
are related by the equation 

Yß =h(J?M,9) =tixß,9) (8) 

where $ ={a,b,k1,k2,K'ßo<ßi>ßa,ß3] and x^ ={tß}. Equation (8) has 
a slightly different form than Eq. (2) because we have written the 
left-hand side in terms of the observed variables and not the model 
dependent variables. This is of no importance, since dependent var- 
iables which are not observed play no role in the parameter estima- 
tion procedure. 

Thus we see that the kinetic models under consideration in this 
work may be written in ihe functional form of Eq. (1) or (2) [or (8)] 
and that all kinetic rate equations can, in one form or another, be 
encompassed within this formulation. 

II. PARAMETER ESTIMATION 

Haviiig established the form of our predictive model and assuming 
that experimental data are available, the next area of discussion here 
is to outline efficient methods for determining the parameters 9 
such that the model fits the data. Due to errors in the measurements 
and inaccuracies in the model, it is impossible to hope fo' an exact 
fit. Instead we shall try to find values of 9 which minimizt some 
appropriate measure of the errors involved. This is parameter es- 
timation. Such a minimization may be carried out in a number of 
ways, but here we wish to point out the prodigious increase in our 
ability to do this estimation via computer analysis. 

To illustrate the available procedures, It* us rewrite our model 
equation in the form 

yM =f(x(i,«) +tß (9) 

where e^ is the vector of errors, or residuals, between the observa- 
tions and the predicted dependent variables. Parameter estimation 

189 

1 

irrtriTiiiifrimfrfirrliBilli'i riiihtltfiill'ir- 



p?*" '''^mm^wmm'W^^^w^'mm^m^ir ^pgiy^ii4i|W^i.i^^K^»ipit<;j#yjW!!i^PII|PP^ WltWWÄWlWÄWpMS^'llii'UlllipipHW 

74 Y. BARD AND L. LAPIDUS 

then tries to find a set of parameters 9 such that some scalar func- 
tion of the errors is minimized. In general we shall write this func- 
tion as S(9) to indicate the dependence on the chosen parameters. 

A. Least-Squares Minimization 

In the least-squares approach to this minimization the function 
S(9) is defined by the sum of squares of the errors or 

(10) 

One seeks to find those 9 which minimize SLS(0); the resulting 'best" 
parameters are indicated by 6- 

It is possible to recognize two cases associated with Eq. (10). In 
the first case the parameters 9 enter in t(Xß,9) in a linear fashion 
(the result of the minimization is then referred to as linear least 
squares); in the second case no such linearity occurs and we have 
nonlinear least squares. 

1. Linear Least Squares 

Linear least squares is also known as multiple linear regression. 
The approach generally treated in most kinetic books deals with the 
very special case where the parameters enter the model equations in 
a linear fashion. In such a case the model need only be substituted 
into Eq. (10), the derivative of S{9) taken with respect to 9 and the 
result set equal to zero. This yields p linear algebraic equations 
corresponding to the p parameters (called the normal equations). By 
means of a single matrix inversion it is then possible to solve for 
the best §■ 

If the E^ are independently and identically distributed errors with 
zero means, then by this procedure the tf are efficient linear unbiased 
estimates of 9. In other words the parameter estimates which mini- 
mize the sum of squares of the residuals will, on the average, equal 
the true values of the parameters (unbiased) and will be estimated 
with maximum precision (minimum variance). 

Unfortunately this method has a number of decided defects. Fore- 
most among these is the fact that few kinetic models of any com- 
plexity occur in the desired linear form. As a result the model equa- 
tions must be linearized or rearranged to be handled by this method. 
Thus for the familiar expression [see Eq. (4)] 

j; = exp{-kt} 
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a conventional logarithmic transformation leads to 

rf =log 7;= -kt 

which is linear in the parameter k and is therefore amenable to 
treatment by linear least squares. However, if the corresponding 
error equation for the original expression is given by 

yM =exp{-ktM} + cß 

it is apparent that the logarithmic transformation does not preserve 
the original distribution of errors which might have been judged ap- 
propriate. 

This situation is further aggravated when a temperature-depen- 
dency condition is introduced through the Arrhenius relation. Then a 
two-step estimation process with logarithmic transformation for 
each step is required. 

From log T; = -kt, estimate k 

From log k = In k,, - (E/R)(l/T), estimate kj, and E 

A similar difficulty ensues whea heterogeneous catalytic reactions 
represented by the Langmuir-Hinshelwood relations are studied by 
linear least squares. Thus suppose the model of a heterogeneous re- 
action is taken as 

r* = lt'(PA-PRPs/Kequil) 
(1 + KApA + KRpR + Ksps)a 

(11) 

where the pA are partial pressures and Kequilis a known con- 
stant. Obviously the parameters k', KA, KR, and Ks do not appear 
linearly in the equation. If, however, the equation is rearranged to 
ehe form 

[(PA-PRPs/Kequil)/rA]1/i! »p + -p— + -jp— + -p—   (12) 

or 

T/A = »1 + ÖJPA + öjPn + ßjps 

then combinations of parameters occur linearly. However, now the 
partial pressures appear on both sides of the equation and therefore 

191 

w^M**i^***u.^.;^,..:-i~ ■,. - 



vnmimm  ■'     m^m 

76 Y, BARD AND L. LAPIDUS 

play the role of both dependent and independent variables. Further- 
more, the errors of Eq. (12) are minimized and not the errors of 
Eq. (11). 

As a result of such transformations the method of linear least 
squares will give parameter estimates which guarantee neither a 
best prediction of reaction rates [the left side of Eq. (11)] nor rea- 
sonably satisfactory extrapolations. Furthermore, in models involv- 
ing several competing reactions, linearization is usually quite im- 
possible. 

In summary, we see that linear least squares is applicable for 
parameter estimation in only very special cases and that it cannot 
be prescribed as a viable method except under special circumstances. 

2. Nonlinear Least Squares 

Since the linear least-squares approach has these obvious defects, 
it seems natural to turn to a method which does not require that the 
model equations be linear in the unknown parameters. We refer to 
this method as nonlinear least squares since the parameters may oc- 
cur in any fashion, linear or nonlinear. 

In a broad-gauged description of this method, one attempts to mini- 
mize S(9) in an iterative fashion rather than in a single step. As such, 
and because of the extensive calculations which are then required, the 
method almost certainly requires implementation via a computer. 
Methods for performing this minimization are described in a subse- 
quent section. 

It is apparent that nonlinear least squares, in which the depen- 
dency of the dependent variables on the parameters is essentially unre- 
stricted, obviates many of the difficulties inherent in linear least 
squares. The kinetic rate equations are used in the form originally 
proposed without imposing arbitrary transformations; the minimiza- 
tion of the sum of squares of errors is appropriate in terms of un- 
transformed variables. Furthermore, the functional rate models may 
be formulated explicitly or implicity, either as integrated or differ- 
ential rate equations. 

Nonlinear least squares, however, does not overcome all problems 
inherent in parameter estimation. It is not valid when several vari- 
ables are observed at each experiment; it does not make sense to add 
together sums of squares in Eq. (10) of, e.g., pressures and temper- 
atures. This problem may be overcome by assigning a weight factor 
to each variable and minimizing the weighted sum of squares, i.e., 
instead of Eq. (10) use 

SWLs(«) = E   E Wi[yMi-fi(xM,«)]2 (13) 
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Unfortunately one usually does not know what weights to assign, i.e., 
what numerical values of Wi to use. On theoretical grounds these 
weights should be inverses of the variances of the measurement er- 
rors, assuming these are known. This problem can be overcome by 
the maximum likelihood approach to be described below which en- 
ables one to estimate not only the parameters but the weights as 
well. 

B. Maximum Likelihood 

The maximum likelihood principle offers a powerful and versatile 
tool to the parameter estimator. A price must be paid, however, in 
that explicit assumptions concerning the form of the probability dis- 
tribution of the errors must be made. Once the form has been as- 
sumed, any parameters appearing in the distribution function may be 
estimated along with the unknown parameters in the model. This is 
really as it should be; the errors in the observations are as much a 
part of physical reality as are the reactions being observed. Mean- 
ingful parameter estimation can proceed only if we provide a mathe- 
matical model not only of the reactions, but also of the errors, and 
a probability distribution is an appropriate mathematical model for 
the errors. 

Suppose we assume P(E,^') to be the joint probability density func- 
tion of all the errors e in the observed variables. Here ip represents 
a set of unknown parameters (e.g., means,variances) which appear 
in the formulas for the distribution. Given any values for the model 
parameters 6, we substitute the residuals y - f(x,e) for the errors E 
in the expression for the probability density. This yields a function 
depending on 0 and \p (the x and y being given by the observations): 

We refer to L(0,i//) as the likelihood function. The maximum likeli- 
hood method simply consists of finding those values of 9 and \f/ which 
maximize L. For reasons of convenience one usually maximizes 
SML 

= 10B L. This is clearly equivalent to maximizing L. Thus, we 
have 

SML(9,^)=logp[y-f(x10),^] (14) 

If, as is frequently assumed, the observation errors in different ex- 
periments are uncorrelated, the joint probability density p is the 
product of the individual experiment probability densities p^, and 

(15) 
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The most frequently used distribution is the normal distribution. 
If the errors of each experiment are normally distributed with zero 
means and covariance matrix V^, then 

PM(CM,VM) = {27r)-
r/2(det VM)-1''2 exp(-KV^EM) (16) 

where det V means the determinant of the matrix V and the super- 
script T means the transpose of e. Substituting Eq. (16) in Eq. (15), 
we obtain 

rm 
SwttoVu) = ~ log 2T -^ Z log(det Vu) 

m (17) 

M"« 

where we have written tß for y^i - f^ = y^ - ^x^,^^); r is the num- 
ber of observed variables and m the number of experiments. 

We shall now apply the maximum likelihood principle to some 
special cases of Eq. (17): 

a. Suppose all the matrices V^ are known. The only nonconstant 
term in Eq. (17) is 

-IE WeM 

and therefore maximizing Eq. (17) is equivalent to minimizing: 
m 

m = E C;JVCM 

*ttt [yßi - fi(xM.«)][yMj - fj(xM,fi)] v-'j. (18) 

whr      V'jj is the i,j element of the matrix V^1. This is the most gen- 
eral form of weighted least squares. 

b. Suppose the covariance matrices for all experiments are iden- 
tical, i.e., V, = V2 = ... = V. Then Eq. (17) becomes 

SML(«.V) =-if log27r - y log(det V) -\ £ cJV'c^ (19) 

Consider first the case where all errors are independent. This is 
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equivalent to saying that the matrix V is diagonal. Let VJ = Vü be 
the ith diagonal element of V. Then Eq. (19) becomes 

rm m 
SML(«.V) - -ö- log 27r - f X; ^g Vi - i   D  S ^jvf1        (20) 

If the Vj are known, we minimize 

E t ^ivr1 

the usual form of weighted least squares. If the Vj are unknown, we 
maximize Eq. (20) first with respect to the Vj by setting (as/avi) 
= 0. Thus 

3S 
"ävi" 

ML m 
2^ -iVf 

Solving for vj we 'ind 

1 ' 
m n*- 2j fr (21) 

and substituting Eq. (21) into Eq. (20), 

rm 
SML(9) = - ^ log 2* - f E log r: £ ^i 

-itdn/S ^1)1) ^i 
i=i      tJ=i       ^=1 

rm,,     .     277.     m A .     v>   , 
= - -^-(l + log —) - T E log L f^i 

Maximizing Eq. (22) is equivalent to minimizing 
l m 

S(8) = S log S J^i 
i=l M«! 

(22) 

(23) 

This may be regarded as solving a weighted least-squares problem 
with unknown weights. Once the maximizing values of 9 have been 
found, the unknown weights can be estimated from Eq. (21). 
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c. Analogously, it can be shown |24] that if V is an unknown, non- 
diagonal matrix, maximizing Eq. (19) is equivalent to minimizing 

S{9) = log (det M) 

where M is the moment matrix of the residuals 

(24) 

Mi] = E E/^iC/ij 

and V is estimated by 

V= —M m (25) 

If the observed variables are linearly dependent (as concentrations 
are related in material balances), the matrix M will be nearly singu- 
lar and minimization of Eq. (24) will be difficult, if not impossible. 
It is thus recommended that Eq. (23) be used instead of Eq. (24) in 
such cases. Alternatively a linearly independent subset of the ob- 
served viiriables may be chosen, and "pseudo-observations" for 
these may be calculated by linear regression from the totality of ob- 
served variables for each experiment. These pseudo-observations 
may then be used safely in Eq. (24). 

C. Bayesian Estimation 

It occurs frequently that even before we start estimating the param- 
eters from current data, some information concerning the values of 
the parameters is available from previous experiments, or from gen- 
eral physical considerations. It is frequently possible to summarize 
this a priori information in the form of a relative probability density 
function p0(fl). If; e.g., Po (öi)/p0 (ö2) = 10, this is interpreted to mean 
that we think 9 = 6lto be 10 times more likely than 6 = 62. We refer 
to po(0) as the prior distribution. The following are typical examples: 

a. A reaction rate constant must be positive. Hence p0(k) = 0 for 
k ^ 0. If we have no further information on k, we set p0(k) = c (a posi- 
tive constant whose value is immaterial) for k > 0. Computationa' 
convenience often requires that an upper bound a be prescribed for k. 
In this case p0(k) = 0 also for k > o. 

b. The ratio K of forward and reverse reaction rate constants may 
have been estimated as being Kgi cr from measurements of equilibrium 
concentrations. It is then reasonable to use the normal prior distri- 
bution 
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Po(K) = 
/Sro 

exp (K - K,,)2 

2a2 

When we come to estimate the parameters on the basis of the new 
data, we take the prior information into account by multiplying the 
likelihood function by the prior distribution. In terms of the loga- 
rithms, we maximize 

S;,:«,.//) --- logp[y - Ux,e),ip] + logp0(«) (26) 

In case (a) above, logp0 is negatively infinite outside the pre- 
scribed bounds. Maximizing Eq. (26) then consists of finding the 
maximum of logp subject to the constraints, e.g., 0 ^ k £ a. 

Sequential estimation, i.e., the reestimation of the parameters 
after the results of each in a series of experiments become avail- 
able, is an important application of the Bayesian technique. Suppose 
after N experiments the parameters are estimated to be 9 = 9S, with 
covariance matrix VN (the matrix is contained in the output of most 
parameter estimation programs). The relevant information con- 
tained in the data from these experiments may be summarized in 
the posterior distribution pN (9) Äcexp[-£(ö- äN)

T
VN

1
(Ö- ÄN)], where 

c is an irrelevant constant. When results of subsequent experiments 
become available, the likelihood function is constructed from these 
alone, and pN(fl) is used as the prior distribution. 

One cannot overstate the importance of using all available prior 
information, in the form of either constraints on the parameters or 
of prior densities. Use of such information frequently spells the dif- 
ference between convergence and nonconvergence of the estimation 
procedure. 

III. METHODS OF NUMERICAL SOLUTION 

In the preceding section the parameter estimation problem was 
formulated as that of finding those values of the parameters (possi- 
bly subject to constraints) which minimize (or maximize) a certain 
objective function, whose explicit form we have derived for a num- 
ber of cases. We now describe a number of numerical methods 
which are suitable for finding the minimum [or maximum; maxi- 
mizing F(x) is equivalent to minimizing -F(x)] of the objoctive func- 
tion. We restrict out attention mainly to unconstrained minimization, 
but where constraints exist, they may be incorporated in the objec- 
tive function by methods discussed below. In the Appendix we detail 
certain computer programs which incorporate the features to be dis- 
cussed. 
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A. Direct-Search Methods 

Methods for finding the minimum of S(ö) that do not require the 
computation of the derivatives 8S/8Ö are known as direct-search 
methods, in contrast to gradient methods, which require derivative 
evaluations. This distinction is not always clean-cut since gradient 
methods in which derivatives are computed by finite difference ap- 
proximations may be regarded as direct-search methods. Among 
proper direct-search methods one may mention those due to Hooke 
and Jeeves [36], Rosenbrock [64], and Powell [61,62], the last refer- 
ence being specific to least-squares problems. Box [15] reported 
particularly favorably on the two Powell methods. The results are 
based, however, on somewhat unrepresentative sample problems. 

At present there exists no conclusive evidence for preferring one 
method, or set of methods, over another. Direct-search methods 
have the obvious advantage of not requiring differentiations, and they 
seem to perform well on well-conditioned problems. In difficult 
problems, however, precise knowledge of the derivatives can be cru- 
cial, and gradient methods tend to be more reliable. For this reason 
we omit any detailed description of the direct-search methods. 

B. Gradient Methods 

1 
I 

1 
I 

The problem under investigation here is to find the minimum of 
S(0). It may help the reader to visualize a set of mountains and the 
need to locate the lowest valley within these mountains. To solve the 
problem we proceed in an iterative sequence: given an initial value 
$0 of the parameters, we seek a new value of ^ which is nearer the 
minimum, in the sense that S(0j) < S(90). Once 9, has been obtained, 
we proceed to find 92, 03,t...: each, in turn, having the property of 
being closer to the minimum. In the class of methods which have 
proved successful for parameter estimation, the formula used for 
finding the new value is 

i 

»i = »o - ^Rg (27) 

where A is a sealer, R a matrix, and g the gradient vector of S, i.e., 
gi = aS/aoj. Gradient methods differ from each other in the choice 
of R and of X and we shall now examine both items. Before doing so, 
however, we see that R when it premultiplies the vector g twists g 
in vector space to produce a new vector; R thus determines the direc- 
tion to go from 90. X, being a scalar, merely defines how far along 
this direction to go and determines the length of the step. 
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1. Choice of Direction 

The choice R = I (the identity matrix), i.e., 8l = 90~ Ag, consti- 
tutes the method of steepest descent. It converges very slowly in 
most practical problems. 

The choice R = Q"1, where Q is the Hessian matrix of S [i.e., Qjj 
= (a2S/8öi8öj)] constitutes the Newton-Raphson method. It performs 
beautifully when one is near the minimum and possesses some de- 
sirable properties elsewhere (see Greenstadt [29]) but suffers from 
two major difficulties; 

1. Except near the minimum, a step taken along the Newton-Raph- 
son direction is not guaranteed to reduce S{$), no matter what value 
is chosen for X. 

2. The method requires computation of the second derivatives of 
S, usually a laborious procedure. 

These difficulties may be overcome in the following ways: 
1. If R is positive-definite and g ^ 0, then one can show that 8(0,) 

< S(0o) for sufficiently small \. Unfortunately Q (and therefore Q'1) 
is not necessarily positive-definite away from the minimum. How- 
ever, let (iv ß2, ..., ßp be the eigenvalues of Q, and let vv v2, ..., Vp 
be the corresponding eigenvectors. The inverse of Q may be com- 
puted from its spectral representation 

Q[| = S %lvkivkj 

where vki is the ith component of vjc. Greenstadt [24,29] has recom- 
mended that one define R by 

Rij = Z>klvkiVkj (28) 
I<=1 

If some Mk = 0. we replace it by a small positive number. As de- 
fined by Eq. (28), R is positive-definite and coincides with Q"1 where 
the latter is also positive-definite. We thus retain all the advantages 
of the Newton-Raphson method, at the cost of having to compute the 
eigenvalues and vectors of Q, instead of simply solving the set of 
simultaneous linear equations QAtf = -g. This cost is often a small 
one, since the computation of S(0) itself is the major time-consuming 
operation. 

An alternative solution, suggested by Levenberg [53], Marquardt 
[54], and Goldfeld et al. [28] is to make R = (Q + uD'K where I is the 
identity matrix. If v is greater in magnitude than the largest negative 
eigenvalue of Q, the matrix R will be positive-definite. The required 
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value of u may be determined by trial and error, without actually 
computing the eigenvalues of Q. 

2. It is fortunately possible in most parameter estimation prob- 
lems to obtain a reasonable approximation to the second-derivative 
matrix Q without computing any second derivatives of the model 
equations. We illustrate this point by means of the least-squares 
criterion, where 

s{9)= S£fi = E [yß-f(*ii,9)Y 
11=1 

9S _ 
301 

m 

ii = i ^86? \iß = f (xM «)] 

Q, = 
9»S m 

= -2E 2 
> )j=i Söj  9öj 

(29) 

If the fit of the model to the experimental data is at all good, the 
c^ will be small, and the first term of Eq. (29) will be negligible 
compared to the second. Thus, we replace Q by the approximation 
Q* (neglect second-order terms): 

% 
2 zHtHii (30) 

Using R = (Q*)"1 constitutes the Gauss-Newton method. An alterna- 
tive interpretation of the method is to view it as replacing the model 
equations by their tangents [i.e., neglecting {d2iß/ddid9j)] and solve 
the resultant linear regressicü problem to obtain the starting point 
for the next iteration. 

The same treatment can be applied to weighted least squares and 
to more general maximum likelihood problems. In all cases dis- 
cussed in the previous section, it can be shown that in the expression 
for (a^/Söi^j). the quantities (a2fMk/a0ia0i) are always multiplied 
by some residual €ß( and may therefore be neglected. Thus the first 
derivatives of the model functions suffice to determine an approxi- 
mation Q* for the matrix Q. 

An alternative approach to approximating Q without calculating 
second derivatives is contained in the Davidon-Fletcher-Powell 
[20,25] method. We start with an arbitrary symmetric positive-def- 
inite matrix R,,. Let flj and gi denote, respectively, the values of the 
parameters and of the gradient of S at the ith iteration. Then 0itl 

= 9i - MRigi, with \i chosen so as to minimize S(tfitl) along the 
chosen direction. Let a[ = BiH - tfj and yj = gi+, - gj. Then 
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n*i Ri   Rmn RJ . gjgj 
YiRiYi 

T 
OiYi 

(31) 

For a well-behaved function S{6). f'te sequence of matrices Rj 
(i = 0,1, 2,..,) converges to Q"1   ihe ; -ecise conditions which S(0) 
must satisfy for the above statement to ue true are not known. How- 
ever, it can be shown that in principle the Rj are positive-definite 
as long as no Xj vanishes. Numerical difficulties, however, require 
that the initial matrix R,, approximate Q'1 at least in the magnitude 
of its diagonal terms. 

In tests on various kinetics models, Bard [2] has found the gen- 
eralized Gauss-Newton method to be somewhat more efficient than 
its competitors. 

2. Choice of Step Length 

In Davidon's method, A is chosen so as to minimize S(0) along 
the chosen direction. However, experience has shown that the ac- 
curacy with which A needs be determined is to about one part in a 
thousand. 

In the original Newton-Raphson method, A = 1. This is usually 
not a satisfactory procedure, except very near the minimum. In 
Marquardt's method also, A = 1 is used. If it turns out that S^) 
a S(0O), the value of y is increased and Bl is recomputed, until S(dj) 
< S($0). 

In the Gauss-Newton method we initially set A = 1 (if there are 
constraints, a smaller initial value may be required to guarantee 
that flj is in the feasible region). If S(0O - ARg) a S(fl0), we choose a 
smaller value of A [e.g., A/2, or the value that would minimize a 
parabolic approximation to S(9) based on its computed values at 
A = 0 and A = 1, and on its gradient at A = 0]. We repeat until 
S(0O - ARg) < S(0O), which will always hold for sufficiently small A. 
In the Newton-like methods discussed above (Davidon's method ex- 
cepted), it seems that an extensive search for the value of A that 
minimizes S($0 - ARg) is not justified. It rarely pays to test more 
than one additional value of A beyond the first one to give an improve- 
ment, 

3. Initiation 

: 

9 

- 

. 

Equation (27), combined with the choices of R and A, defines the 
iterative procedure. To start the procedure, however, we need 
initial estimates or guesses for 90. The success of the minimization 
procedure often depends on these guesses, and it is clearly advan- 
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tageous to make these guesses as close to the true values (the mini- 
mum) as possible. Several methods for arriving at reasonable initial 
guesses have been summarized by Kittrell, et al. [45]. Among these 
are: 

1. Use all available prior information. 
2. Use the results of linear -least-squares estimates based on 

linearized or rearranged equations. 
3. Fix the values of some of the parameters (e.g., those on which 

most prior information is available) and estimate only the other pa- 
rameters. Use these results as initial guesses for estimating all pa- 
rameters simultaneously. 

4. Compute the objective function on a sparse grid of parameter 
values. Use the grid point with optimal objective function value as 
the initial guess. 

5. Use an analog computer to simulate the reaction. Search for 
the optimum by turning the analog elements which set the parameter 
values. This method may also be combined with the grid search des- 
cribed above. 

If the number of unknown parameters is too large to make a grid 
search feasible, it is possible to conduct a random search instead. 

None of these methods are infallible, and which one will work best 
in any given situation can be determined only by experience. 

4. Termination and Convergence 

Once the iterative procedure has been started, it will continue to 
run on the computer until some termination criterion is satisfied. 
At the minimum of S, the gradient g should vanish. Due to round-off 
errors, however, the condition g = 0 can never be attained precisely, 
and cannot be used as a termination criterion. In practice it seems 
preferable to terminate whenever the iterative procedure ceases to 
cause significant changes in the O's, i.e., (as suggested by Marquardt 
[54]) when 

for all elements of 0, where Ej and Ea are predetermined vectors with 
small elements. It will be found that frequently even very close to 
the minimum the gradient still has large elements. A good test of 
stationärity is then given by the dimensionless quantities IgiAiQii I, 
which are all required to be small compared to unity. If the matrix 
Q is available, positivity of all its eigenvalues indicates that the so- 
lution (if stationary) is indeed a (local) minimum. There is usually 
no way of proving that a global minimum has been reached. 
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Failure to converge to a stationary point is usually due to one of 
the following reasons; 

1. A constraint has been reached. If the constraint is one about 
which there is no doubt (e.g., the condition that a rate constant must 
be positive), it is likely that the mechanism chosen is inappropriate. 

2. The matrix R is not, or is insufiiciently, positive-definite. We 
have described above how this problem may be overcome. 

3. The termination criterion 's not stringent enough. Vectors of 
cl and tj with elements of 10"3 and 10'*, respectively, have worked 
well in many problems but may fail with others. 

4. The gradient is computed with insufficient precision. When- 
ever possible, gradients should be computed by analytic differentia- 
tion, rather than by means of finite difference approximations. 

We note that in kinetics analysis the model equations are generally 
given in the form of solutions of differential equations, e.g., 

^ = gi(M) i =1,2, (32) 

The question then is how to obtain analytic derivatives of these so- 
lutions. Differentiating Eq. (32) with respect to Bi, we have, using 
the chain rule, 

a  drfr   A, agj a?^ | agj 

a^j dt    gj dnk 3fj + 8öj 

Interchanging the orders of differentiation yields 

dt 

dlJi 

•0 -E (33) 

linear ordinary differential equations in the 
i] (k = 1,2 n; j = 1,2, ...,p). These may 

Equation (33) is a set o 
unknown functions ar^/t 
be integrated numerically alongside the original Eqs. (32) to obtain 
the desired values of a^k/^j at any time t. Although one can scarcely 
call these 'analytic derivatives, "they will be determined to the same 
accuracy as the T;, themselves, and that is the best one can hope for. 
The alternative procedure is to integrate Eqs. (32) for slightly per- 
turbed values of the 0's, and estimate the i%/*0j by finite differences. 
The total number of integrations performed is the same in both 
methods, with tiie "analytic" one usually providing greater accuracy. 

C. Constraints 

To handle constraints within the framework of unconstrained min- 
imization, it is necessary to adjust the objective function in such a 
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way that on' oavs a penalty whenever one comes near to violating the 
constraint. Carrot's method [16] uses the following device: Let S(9) 
be the function whos>° minimum is to be found subject to a set of con- 
straints giW s 0, i = ?, 2,.... We introduce a new objective function: 

B*(f) "SW+E 
«(I) 

(34) 

where the OJ are suitably chosen small positive constants. As one 
approaches say the jth constraint, gj(Ä) approaches zero, and S*(0) 
increases beyond bounds. At a point far from any constraint, the 
function S*{9) differs but little from S(0), and the minima of the two 
should nearly coincide. After finding the minimum of S*(0), one may 
reduce the ai by, e.g., a factor of 10, find the minimum of the new 
S*(tf), and repeat the procedure until the contribution of the "penalty 
function" 

L Ji at 
■io) 

becorms negligible. If the minimum of S(9) is actually on a con- 
straint, this procedure may approach the true minimum as closely 
as one wishes. 

In many special cases the constraints may be handled by other 
methods. For example, if it is required that 9, a 0, we may substi- 
tute i//2 for 6, and minimize with respect to the unconstrained vari- 
able \j/. As shown by Box [15], similar substitutions are possible in 
many cases but often require considerable ingenuity. 

D. Interpretation of Parameter Estimates 

The best estimated values of the parameters are, in themselves, 
actually of little use. It is essential to know not only what the esti- 
mates are, but also, and more importantly, how reliable they are. 
The observations are random variables, and hence the estimates 
which are computed from them are also random variables; thus it is 
meaningful to try and estimate their probability distribution. For- 
tunately it turns out that the distribution usually approaches the nor- 
mal as the number of observations is increased. The means of the 
estimated distribution constitute the estimated values of the param- 
eters; the covariance matrix of the distribution is a measure of 
the reliability of the estimates. This matrix expresses the manner 
in which variations in the observations would affect the parameter 
estimates. 
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The alternative approach to evaluating the reliability is by ex- 
ploring the dependency of the objective function jn the parameters. 
If the objective function is little affected by charges in a certain pa- 
rameter, one would have doubts concerning itb value. Since at the 
final estimates the objective function has a minimum, its gradient 
vanishes and the effect of the parameters on the objective function 
is summarized in the second derivative matrix. It turns out that 
these two measures of reliability are equivalent; in fact if V is the 
covariance matrix of the estimates, then 

iV-Jij - - 
82 log L 
994861 

where L is the likelihood function. 
Most parameter estimation programs print out estimates of the 

matrix V. The diagonal elements of V are the variances, and their 
square roots are the standard deviations of the parameter estimates. 
Off-diagonal elements indicate the interdependence of the estimates 
of the various parameters. It is convenient to eliminate these de- 
pendencies by finding those linear combinations of the parameters 
which are statistically independent. These are known as principal 
components. Let /jtj be an eigenvalue of V with eigenvector vj, whose 
corrponents are vij. Then the estimate of the quantity i//i = S Vijöj 
has variance ßi, and the estimates of the different I/ZJ are independent. 
The i//j, arc, then, the desired principal components. Examination of 
the ß[ will reveal which linear combinations of the parameters are 
well determined (small ßi) and which are doubtful in value (large ß\). 

Once again we point out that the Appendix contains a discussion 
of available computer programs which have some or all the features 
discussed in this section. 

IV. IMPROVING PARAMETER ESTIMATES BY 
PROPER EXPERIMENTAL DESIGN 

Examination of the posterior distribution (i.e., of the covariance 
matrix of the parameter estimates) will sometimes reveal that some 
of the parameters, or some linear combinations of the parameters, 
are ill determined. We may distinguish three causes for such an oc- 
currence: 

1. The model chosen to fit the data is inappropriate. This will be 
marked by the appearance of large systematic deviations (residuals) 
of the experimentally measured from the predicted values of the ob- 
served variables. The obvious remedy is to modify the model. Those 
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terms whose parameters are the most ill determined should be prime tar- 
gets for elimination or modification. The nature of the deviations of the 
residuals may also hold clues as to how the model should be modified. 
Hunter and co-workers [38,39,44] have provided an excellent example of 
how residual analysis can lead to a systematic modification of the model. 

2. The measurement precision is low. This will be characterized 
by large random residuals. If no improvement of the measurement 
techniques is feasible, the only remedy is to make more measure- 
ments. Unfortunately a tenfold increase in precision may require a 
100-fold increase in the number of experiments. It should be noted, 
however, that the attainable precision in the estimates for a given 
number of experiments is maximized when the experimental con- 
ditions are chosen properly. This point is discussed below. 

3. The experiments were not properly designed. This is the con- 
clusion that must be reached if some parameters have a large vari- 
ance, even though the overall fit is good, i.e., even though the resi- 
duals are small. We cite two examples of how this may happen: 

a. Suppose species A is supposed to decompose, in two parallel 
reactions, to species B and C, with rate constants kj and kj, respec- 
tively. If measurements on the concentrations of A alone are avail- 
able, it is clearly possible to determine kj + kj, but not kj and kj in- 
dividually. While this example may appear trivial, similar effects 
may arise and be less obvious in more complicated situations. 

b. Suppose the model equation is 

y» = 9,x i*-ßi + y,x 2A/i2 

and in all experiments it happened that xMl *xM2. Then the equation 

Vß =(ö, +y2)xMl = e3xM1 (35) 

would represent the data just as well as the original equation. On this 
basis it is impossible to estimate e, and 6, individually, but rather 
only as their sum. 

In both these cases proper planning of the experiments would have 
eliminated the difficulties: in the first case, by measuring concen- 
trations of B and/or C; in the second case, by varying x^, and xß2 
independently. 

When we attempt to systematize the selection of appropriate ex- 
periments, we are naturally led into the realm of information theory. 
This follows from the fact that the purpose of an experiment is to 
gain information. In the case of parameter estimation the relevant 
information is contained in the posterior distribution of the para- 
meters. When one tries to formalize intuitive notions concerning the 
amount of information contained in a given distribution (e.g., a dis- 
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tribution with a small variance contains more information concern- 
ing the value of a parameter than one with a large variance) one is 
led [1] to the following formula: 

I = E(logp) =/p logpd» (36) 

where I is the measure of information, p is the probability density 
function, and E denotes the expected value. If p is a multivariate 
normal distribution with covariance matrix V, then the information 
is given by 

I=C-4 log(det V) (37) 

where C is a constant. To derive the maximum amount of relevant 
information, we must plan our experiments so as to minimize the 
value of (det V), where V is the expected variance of the posterior 
distribution. 

Suppose, now, that we wish to plan a series of, e.g., m experi- 
ments. Our current information on the values of the parameters is 
summarized in a prior distribution PoW, e.g., a normal distribution 
with covariance matrix V0. In many cases, p0(Ä) will actually be the 
posterior distribution obtained by estimating the parameters on the 
basis of experiments conducted to date. Then it follows from Eq. 
(37) that the expected covariance of the posterior distribution is 
given approximately by 

[V-'lij - [V-Jij 
af 
^^lu-'Jki 

861    9öj 
(38) 

where U is the covariance matrix of the observations for each exper- 
iment. The derivatives 9f^k/9öi are to be evaluated at the current 
estimates of the O's. The simplest case occurs when there is only 
one observed variable per experiment. Then the subscripts k and { 
may be omitted, and the matrix U becomes a single number o3, where 
o is the standard deviation of the measurements. Then Eq. (38) be- 
comes 

[v^ijMVhj i 

(PCM 801 80 
y   Mu   8fjLl (39) 

This formula was derived by Draper and Hunter [22]. 
Equation (38) or (39) reveals that (det V) is a very complicated 

function of the x^i, i.e., of the experimental conditions proposed for 
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the m desired experiments. Proper design of these experiments re- 
quires that one select that set of feasible experimental conditions 
xßit M = 1. 2,..., m, that minimizes (det V) [or equivalently maxi- 
mizes (det V" ^j. 

Most of the work in this field to date is contained in a series of 
papers by Box, Hunter, Kittrell, and their co-workers at the Univer- 
sity of Wisconsin [12,14,21,47|. They derive the relevant formulas 
from several alternative points of view and apply them to several 
computer-simulated chemical reaction models. The problem of find- 
ing the maximum of the information function is complicated by the 
fact that it usually possesses multiple local maxima and that its de- 
rivatives are usually too complicated to calculate. Considerable ad- 
ditional work in the field is required. 

V. COMPUTATIONAL RESULTS IN PARAMETER ESTIMATION 

In the previous sections we have developed the conceptual ideas 
associated with nonlinear least squares as applied to kinetic models. 
The present section will outline some of the important results which 
have been obtained to dnte in this area. The depth of coverage is 
minimal but, it is hoped, sufficient to highlight the various points. 

Some of the earlier work in the area of parameter estimation in 
kinetic systems is due to such authors as Box [8], Box and Coutie [9], 
Blakemore and Hoerl [5], Cull and Brenner [18], Hartley [33], Mar- 
quardt [54], Peterson [57,58] and Rubin [65]. In particular we should 
comment on the pioneering works by Box and by Peterson. Both these 
authors pointed out the positive and negative aspects of nonlinear 
parameter estimation and the important advantages associated with 
the use of a digital computer for the analysis. While Peterson's 
work was directed toward the computer aspects. Box derived and 
discussed in detail all the statistical features and developments. In 
these two papers are contained many of the basic ideas for work 
carried out to date in the nonlinear estimation area. 

Blakemore and Hoerl analyzed the famous or infamous hydrogen- 
ation of codimer originally analyzed by Hougen and Watson [37] via 
linear least squares (for a further discussion see a later part of this 
paper). For this system, at '.cast 20 alternative models may be pos- 
tulated as representing the rate-aetermining step. These authors 
showed that it was impossible to select any one model as being the 
best model of the entire set. The need for further and more exten- 
sive experimental data was conclusively shown, thus pointing out that 
once a fixed set of experimental data is available the most sophisti- 
cated analysis of this data may be inadequate to isolate a single 
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model. Cull and Brenner investigated hexane isomerization kinetic s 
via the nonlinear approach. In this case thoy were able to conclude 
that one of their postulated reaction steps was the rate-controlling 
steps within the level of precision of the data. 

In a slightly more recent paper Freeh et al. [27] analyzed the hy- 
drogenation reaction in a stirred reactor. By selecting that model 
whose standard deviation of the fit to experimental datu was lowest, 
they were able to isolate a single model as representative of the re- 
action mechanism. 

In the last few years much of the nonlinear parameter estimation 
in kinetics systems has been carried out by two groups of research- 
ers; the first group includes Lapidus and Peterson [52,59] and the 
second group includes Kittrell, Hunter, Mezaki, and Watson [42-49]. 
In addition, nonlinear estimation methods have been applied in other 
allied areas. Thus the work of Heineken et al. [34] and Bellman el al. 
[4] deal with an analysis of the kinetics of biological reactions via 
some of the computer methods discussed here (see also Refs. [17] and 
[63] for the adaptive control of a batch reactor). 

The work of Peterson [57,58] is worth discussing in some detail 
since it represents a concrete case where nonlinear estimation was 
able to provide new insight into a kinetics mechanism. The integral 
conversion data of both D'Alessandro and Parkas [19] and loffe and 
Sherman [40] on the vapor-phase homogeneous and noncatalytic oxi- 
dation of naphthalene were analyzed. The first study concerned 
naphthalene depletion in which the reaction kinetics were free of ex- 
traneous effects; the second study treated the mechanism of the com- 
plete reaction, including reaction products, and revealed certain 
complicating factors which influence the behavior of the reaction. 

D Alessandro and Parkas obtained data for the vapor-phase oxida- 
tion of naphthalene in the presence of a catalyst consisting of vana- 
dium pentoxide in a flow reactor. Measurements were made directly 
on total anhydride, maleic anhydride, 1,4-naphthoquinone, and off- 
gases. Phthalic anhydride was calculated by difference between total 
and maleic anhydrides. Residual naphthalene in the produce stream 
was determined by overall difference. Thus, concentrations of naph- 
thalene (N), phthalic anhydride (P), maleic anhydride (M), naphto- 
quinone (Q), and off-gases (G) constituted the dependent variables. 

Since no measurement errors were given, equal statistical weights 
were assigned to the observed values of concentration.* Data were 
recorded for a given temperature at various reaction times ranging 
from 0.020-2.44 sec. Temperatures were also explored from 340- 

•The availability of maximum likelihood computer programs would now 
make such an assignment unnecessary. 
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4750C. Six observations were made on each chemical species at 
340oC> five at 37 St, six at 41CC, four at 450qCI and three at 4750C. 
In all, 24 observations were made on each chemical species. 

Naphthalene depletion behavior was analyzed by examining each 
set of data first at constant temperature to determine the specific 
reaction rate at that temperature; second, the kinetics were examined 
for temperature dependency and for the order of the reaction. The 
typical rate equation for the second case is given by 

M=-k0[N]aexp[-E/RT] (40) 

which when integrated yields for a * 1: 

[[NJ1-Vd - a)] [l - ([Nj/W0] = kt (41) 

Typical results are shown in Table 1, indicating satisfactory 
agreement between the nonlinear estimation analysis and that car- 
ried out by D'Alessandro and Parkas; this agreement holds for each 
temperature as well as over the entire temperature range. 

TABLE 1 

Constant-Temperature Kinetics 

k, sec"1 

Temp., Nonlinear D'Alessandro 
°C estimation and Farkas 

340 0.52 0.56 

375 1.84 1.70 
410 7.40 7.36 
450 21.3 20.4 

475 34.8 32.9 

A 

The second phase of this study dealing with an analysis of the 
overall reaction mechanism was next initiated. The mechanism con- 
sidered most plausible by D'Alessandro and Farkas was given by 

•-M 
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To analyze this and possibly other mechanisms, nonlinear esti- 
mation was applied to the experimental data by proceeding from sim- 
ple mechanisms to increasingly more complex ones. The purpose of 
this cautious approach was to treat mechanisms with few parameters 
at the outset which could then be augmented by additional parameters 
as the analysis continued. In this way control could be exercised to 
avoid difficulties in convergence of the nonlinear estimation tech- 
nique for those parameter estimates which were poorly determined. 
The complete analysis is shown in Table 2, where the circled species 
indicate that measurements on these species were taken into account 
over the whole temperature range. In Table 2 k,,', defined as k,,' = k,, 
exp{-E/RT}, was evaluated with 1/T = 1.42 x 10"3 "K'1.  Further- 
more, since values of [N] were derived by differences, these values 
are not independent of other measured concentrations. As a result 
"observations" on [N] were excluded. In all, 96 observations were 
used resulting from the 24 observations made on each of the four 
chemical species. 

Several conclusions can be drawn from these tabulated results. 
First and foremost is that a slightly abbreviated form of the pro- 
posed mechanism is an adequate representation of the data: 

G 

•*-U 

(42) 

The overall fit as measured by the standard deviation of residuals 
s is satisfactory when compared to values of s for other mechanisms. 
Also, the least-squares parameter estimates 0 obtained appear fairly 
well determined as indicated by the values of the associated s..^ndard 
deviations of the parameter estimates sg. 

These results were confirmed further by considering a number of 
alternative mechanisms including the originally proposed one and one 
suggested by Mars and van Krevelen [56] in which the rate-determin- 
ing step is the chemisorption of oxygen. Without presenting the ex- 
plicit data here, we merely state that these additional calculations 
showed that the mechanism proposed by D'Alessandro and Farkas 
was an adequate representation of the experimental data; further- 
more, the reaction rates and activation energies for the primary 
branching of naphthalene to phthalic anhydride and naphthoquinone 
were not equal, particularly at the higher temperatures, in contrast 
to the values determined by D'Alessandro and Farkas which were 
equal over the temperature range. However, it was also shown that 
an equally acceptable model is that proposed by loffe and Sherman 

; 
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TABLE 2 

kj, = k0 exp(-E/RT) 

Mechanism 1 2 3            4            5              6 

© 

'<§) 

ö 8.79       0.842 
s^       0.26       0.163 

6 9.23       0.873       0.833 
S|£       '.26       0.146       0.151 

6 8.10       2.16 0.882      18.8 
s«       0.61       0.59 0.142        7.8 

9 8.10       3.00 0.881      28.0      0.831 
so       0.73       0.74 0.124        8.9      0.221 

0 8.26       3.55 0.926      31.3      0.750 
sS       0.88       1.11 0.142      10.4      0.236 

0 8.09       2.76 1.20        29.2      0.861 
sg       0.72       0.74 0.48 9.0      0.227 

-4.15 
6.10 

[40] in which naphthalene undergoes direct and simultaneous oxida- 
tion to phthalic anhydride and naphthoquinone, but not to evolved 
gases, i.e., involving a binary branching 

N I 
-Q. 

-»►M 

(43) 

loffe and Sherman similarly studied the vapor-phase oxidation of 
naphthalene in the presence of vanadium oxide catalyst. For fixed 
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Mechanism Evaluation 

E' - E/R 

a 12           3              4 5 6 s 

14.5       12.4 
0.4 2.8 

14.6 
0.4 

15.0 
1.0 

15.6 
1.1 

12.7 
2.4 

11,9 
3.2 

13.0 
2.6 

9.68 
2.34 

9.80 
2.09 

8.86 
3.96 

7.41 
5.60 

9.69 
1.80 

16.8 
3.5 

15.9 13.5 9.93 17.6 9.05 1.13 
1.3 2.8 1.85 3.9 3.8 0.15 

15.6 
1.1 

12.8 
2.7 

11.1 
3.2, 

16.6 
3.6 

8.84 
3.90 

10.9 
12.1 

0,0326 

0,0278 

0,0259 

0,0217 

0,0218 

0.0219 

initial concentrations of naphthalene and air of 2.69 x 10'4 and 8.75 
x 10'3 moles/liter, respectively, extensive integral conversion data 
were obtained in a flow reactor under constant volume and tempera- 
ture conditions over a temperature range of 260-400oC and reaction 
times if 0.047-0.499 sec. 

Measured were conversions to phthalic anhydride (P), 1,4-naphtho- 
quinone (Q), maleic anhydride (M), and off-gases (G). Residual 
naphthalene (N) was obtained by difference. For each chemical spe- 
cies, four to seven observations were recorded at each of nine tem- 
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peratures. In all, 55 measurements were obtained for each of the 
chemical species. However, maleic anhydride did not appear in 
measurable quantities except at temperatures ol 380 and 400oC. Be- 
cause- ol omissions in the data of loffe and Sherman, some adjust- 
ments were necessary in this study at the higher temperatures. 

Constant-temperature and then temperature-dependent effects 
were analyzed by nonlinear estimation with the order of the reaction 
both prescribed as first order and left unassigned to be estimated 
from the data. The results obtained were in substantial agreement 
with the proposals of loffe and Sherman, the kinetics being plausibly 
first order. 

Proceeding further, loffe and Sherman suggested that the activa- 
tion energy is not constant with temperature, but decreases from an 
initial value of 27.4 kcal/mole as the temperature rises and that 
while first-order kinetics dominated at low temperatures, internal 
pore diffusion became increasingly important until at about 350oC 
half-order kinetics prevailed. To test this assertion, data from prox- 
imate temperature intervals were examined by nonlinear estimation 
for both first-order and unassigned-order kinetics. The results are 
shown in Table 3. 

TABLE 3 

Temperature-Dependent Kinetics, 
Proximate Temperature Intervals 

■ 

Temp, 
range, °C 

First-order 
kinetics, 

E, kcal/mole 

Unassigned-order kinetics 

E •f fV 85 s 

260-270 28.2 26.6 3,6 0.77 0,24 0,023 
270-290 21,6 19,7 1,8 0,59 0.12 0.030 
290-310 11.2 10.9 2,8 0,91 0,13 0.046 
310-330 17.4 17.4 2.7 1.15 0,12 0.039 
330-350 14,0 14.0 3,2 1.06 0,16 0.042 
350-360 13,2 12.7 4,9 0.85 0.12 0,029 
360-380 12.8 11.4 3,7 0.76 0.15 0.040 
380-400 -1.9 -0.8 1.1 0.32 0.16 0.019 

Estimates of the activation energy confirm the systematic trend 
with temperature. The results also show that a significant change 
occurs in the vicinity of 400oC. Pinchbeck [60], using a similar cat- 
alyst in a fluidized bed, observed this effect at about the same tem- 
perature and attributed the departure to a modification of the mech- 
anism of reaction. Usbakova et al. [68]  demonstrated that the mech- 

214 



PHP»' «SBBiil pmuui ,IIIW-» n    ■"«"I" 

KINETICS ANALYSIS 99 

anism is dependent on the valence state of vanadium and that the 
state of the oxide is not uniform throughout the catalyst. Tandy [67], 
in an investigation of catalysts for the oxidation of sulfur dioxide to 
trioxide, reported an approximate melting point of 400oC for mix- 
tures of vanadium oxide-potassium sulfate. The behavior at this 
elevated temperature is therefore presumed to be related to a 
marked alteration in the physical character of the catalyst. 

Except at the highest temperature, estimates of the order of re- 
action do not confirm the half-order kinetics established by loffe 
and Sherman, but rather support largely first-order kinetics at both 
low and high temperatures. However, the activation energy decreases 
rapidly with temperature to about  one-half the initial value. As 
noted by Wheeler [70], this behavior is consistent with diffusion oc- 
curring in the pores of the catalyst. Because internal pore diffusion 
is present, systematic deviations are evident at the lowest tempera- 
ture, but the anomaly at the highest temperature is obscured by the 
comparatively few observations made. 

As before, the next step in the analysis was consideration of the 
overall reaction mechanism. Nonlinear estimation analysis was 
carried out as previously, starting with simpler mechanisms and 
terminating with the most complex mechanism the data could sup- 
port. Also, as in the previous analysis, "observations" on [N] were 
excluded, yielding a total number of 220 observations, with 55 mea- 
surements made on each of four species, k/was evaluated at 1/T 
= 1.67 x lO"3 "K'1. 

A complete tabulation of results is given in Table 4 where sg 
are omitted for all but the terminal mechanisms. The temperature 
range was initially largely restricted to 260-350oC until maleic an- 
hydride was introduced as a chemical species, at which point the 
temperature range was extended to 260-400oC. These results indi- 
cate that the mechanism proposed by loffe and Sherman [Eq. (43)] is 
plausible. As shown previously there is the possibility that other 
mechanisms such as Eq. (42) will also fit the data. The results for 
the two mechanisms, while not shown here, confirm that each fits 
the data equally well. 

Using these results and others obtained by Peterson, the following 
conclusions can be drawn from the nonlinear estimation analysis: 
(1) Internal pore diffusion is a plausible explanation of the variation 
of activation energy with temperature, although contrary to the anal- 
ysis of loffe and Sherman, first-order kinetics largely dominate 
throughout the temperature range. (2) The mechanism proposed is 
an adequate representation of the data, but equally accrntahle is that 
proposed by D'Alessandro and Parkas in which naphthak le also 
undergoes simultaneous oxidation directly to evolvd gases. (3) The 
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TABLE 4 

Temp, 
range, 

»c 
H 

Mechanism 12                3              4 

N 

t 5 

N |5 

'©*© 

N |5 

®2-<S) 

260-400        9 3.84 0.150 

260-400        S 2.96        8.65 

260-350        6 5.08 

260-350 9 4.40 

260-350 9 4.32 

260-350        9 4.37 

260-400 

260-400 

S9 

4.03 
0.19 

4.01 
0.27 

0.014 
0.013 

0.012 
0.012 

1.47 

3.37 3.44 

3.79        0.73 

3.86        0.94 

3.15 
0.21 

3.02 
0.30 

0.98 
0.18 

1.02 
0.19 

fit of the data for 1,4-naphthoquinone is suspect at temperatures in 
the vicinity of 350oC and suggests the presence of a closely related 
reaction product, 1,2-naphthoquinone, undetermined by loffe and 
Sherman, but later reported by Shelstad [66]. 

The above has been concerned with homogeneous kinetic studies; 
by contrast, Lapidus and Peterson [52,59] considered the heterogen- 
eous case in which Langmulr-Hinshelwood relations were used to 
describe the rcie-controlling mechanism. Two studies were under- 
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Mechanism Evaluation 

F' 

7.27 10.7 

8.81 

6.26        662 

4.98 

9.78 

3.52 9.92 

3.45 9.83 

7.72 3.21 

7.98        8.54 2.80 

7.83        4.18 3.02 

101 

0.062 

0.045 

0.067 

0.201 

0.042 

0.036 

3.51 8.41 22.7 6.34 5.79 4.01 0.042 
0.45 0.40 5.3 0.58 1.62 1.36 

3.28 8.14 23.4 6.45 5.41 4.69 0.9f. 0 042 
0.48 0.47 5.6 0.60 1.61 1.40 0.11 

taken, both relating to ethanol. In the first study the experimental 
data of Kabel [41] on ethanol dehydration were analyzed; in the sec- 
ond study the data of Franckaerts and Froment |26] on the dehydro- 
genation of ethanol were analyzed. In both cases extensive integral 
conversion data were available. 

In the first study four different models were used to represent 
the experimental data. Those included three heterogeneous models 
and one homogeneous model. In the nonlinear estimation analysis, 
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a preliminary screening of data was made made of various mechanisms 
on the basis of obtaining random residuals and a suitable residual 
error variance. Several subsets of the original data were identified 
for further study. A homogeneous-type rate mechanism was found to 
be as adequate in describing the data as the heterogeneous mecha- 
nisms. Using only heterogeneous mechanisms, it proved impossible 
to conclude that any one mechanism was more suitable than another 
unless external information was also used. This conclusion, while 
not unknown to researchers in kinetics and mechanism studies, may 
seem rather surprising since a large amount of data was available 
for estimating relatively few parameters. 

It was thus concluded that no discrimination among mechanisms 
was possible, presumably as a result of either or both of these ef- 
fects: (1) The experimental data examined were constrained to be at 
only one constant pressure. (2) An accidental arrangement of the 
physical parameters led to a degeneracy in the rate equations for 
various heterogeneous mechanisms, which therefore became equiva- 
lent to the homogeneous model. 

In the second study, nonlinear estimation led to substantially the 
same results as the initial rate method combined with linear estima- 
tion. Since fewer assumptions and transformations were involved in 
the analysis by nonlinear estimation, the results are possibly more 
valid. 

It has also been shown that data at different pressures as well as 
different feed compositions measurably improve the ability to dis- 
criminate among mechanisms and provide suitable estimates for 
parameters. Constant -pressure data alone do not appear to be ade- 
quate for the more definitive study of kinetics and mechanism. 

In a most interesting and important series of papers on kinetics 
modeling, Kittrell et al. [42-48] first analyzed the isothermal and 
nonisothermal heterogeneous reduction of nitric oxide via Langmuir- 
Hinshelwood models. Three different models were postulated and 
then approximated to the experimental data by linear and by nonlinear 
least squares. Comparison of the two approaches showed that non- 
linear least squares was more useful for a rational selection of an 
acceptable single model and estimation of its parameters. This was 
particularly true if the rate equations determined by each procedure 
were extrapolated beyond the actual regions of the experimental data; 
here the two approaches yielded rate curves which differed quite 
widely. Also, these authors indicated explicitly the need for further 
data to reduce the confidence regions for the estimated parameters 
and make the analysis even more efficient. 

In a summary p^per [49] these same authors surveyed model 
building techniques in general with a primary emphasis on mecha - 
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nistic models. This work represents a convenient outline of problems 
involved in model   ^presentation of kinetic systems, the methods of 
solution, and the i esults obtained. 

VI. DESIGN OF EXPERIMENTS FOR MODEL DISCRIMINATION 

It was stated above that our efforts to estimate parameters for 
a model may be defeated by data obtained from poorly designed ex- 
periments. The same statement applies with even greater force to 
the problem of sdiecting the best model from among a set of candi- 
dates. 

As was the case with parameter estimation, it is the experimen- 
ter's task at each stage to seek out that experiment which is likely 
to yield the greatest amount of relevant information. For the pur- 
pose of discriminating between two proposed models, a measure of 
the relevant information is (see Kullback [50]) 

I=E(l,logH-+ El2,log2- 
p' p 

(44) 

where E111 denotes exoectation under the assumption that model i is 
true, and p'4' is the probability density function under the same as- 
sumption (i = 1, 2). 

Suppose we have performed N-l experiments and have fitted the 
data to both models 1 and 2, yielding parameter sets 9a) and fl(2>. 
Let xN represent the values of the independent variables for a pro- 
posed Nth experiment. We can compute the predicted values yi/' and 
y}j2> of the observed variables for the proposed experiments under 
hypothesis 1 and 2, respectively: 

yy>=f<i>fxN,^'] 

Let the covariance matrices of these two predictions be V*1' and 
V<2), respectively, that is, 

E(i,[yN-yJ)
i)][yN-yN<i,]T=v(i'     (i = i,2) 

Furthermore, let U(1) = [V*1*]"1. Assuming normal distributions, it 
is easily shown that Eq. (44) reduces to 

I = -r + ^Tr[U<2,V(1)] + ^TrlU^V'2'] (45) 
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where 

Tr(UV)=SUijVij 
i»j 

Application of Eq. (45) requires estimation of the matrices V(i, 

which are measures of the uncertainties in the predicted values yJ^/,. 
There are two sources for these uncertainties: 

1. The uncertainty in the values of the estimated parameters 9i \ 
measured by means of the covariance matrix of the estimates W''. 

2. The difference between the measured values of the variables 
yjj1' and their true values, due to experimental errors. A measure of 
these errors is given by the covariance matrix of the residuals R'1'. 

The matrices W( * and R*1' are obtained as by-products of esti- 
mating the parameters for the ith model, based on the experiments 
already conducted. Now, assuming that these two causes bring about 
independent errors, we have approximately 

v<i,=R<i, Jwiw^'M1 
(I = 1, 2) (46) 

or, written out in full. 

vd) . öd) + y- tyNq W(i) jtyNg 
v a8   nQ6   £-<    rr> vvDa    rr 

(1) 
Nfl_ 

Bflf 

An interesting case is that of a single observed variable, where 
V"' and R'4' are single numbers, a\ and sf, respectively, with 

1     l   M   w8#J»eif 
and Eq. (45) becomes 

(ytf U) _ ^(ri (47) 

If (Jl and o2 do not vary much from one set of experimental conditions 
to another, the information is essentially proportional to fyj/' - yjtf']2, 
i.e., to the square of the difference between the predicted values un- 
der the two hypothesis. The experiment to be performed is the one 
for which this difference is the greatest-a common sense result. 
More generally we seek those feasible values of the independent vari- 
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ables for which the information function (Eqs. (44), (45), or (47)] at- 
tains its maximum. 

Equation (47) has been derived by Box and Hill [13], who have 
been the pioneers in the application of sequential design to kinetics 
experimentation. Hill and Hunter also provide generalizations for 
discrimination among more than two models and for combining the 
parameter estimation and model discrimination criteria in a single 
function [35]. The idea here is to form a linear combination of the 
two criteria, which is initially weighted to favor model discrimina- 
tion. As one model becomes Increasingly favored, the weight Is 
shifted toward estimating the parameters for that model. 

A. Termination of a Sequence of Experiments 

The maximum Information principle permits us to choose the ex- 
perimental conditions for the Nth experiment after N-l experiments 
have been performed. We need a criterion to decide whether the Nth 
experiment should be performed at all, or whether we may already 
prefer one of the models with a sufficient degree of certainty. Such 
a criterion Is provided by Wald's likelihood ratio test [69]: Let L'*' 
be the maximum value of the likelihood function based on model I 
using the data obtained to date. If p = Ln}/L{2\ then we adopt the 
following procedure: 

Ifp 1- a 

1 - a 

, we accept model 1 with confidence o 

If p s , we accept model 2 with confidence a 

If —— < p ^ . _ -, we continue experimentation 

Note: for a confidence level of 99%, we set a = 0.99, 
In the case of a single observed variable with a normal distribu- 

tion, we have, after N experiments, 

fer expite, -p2) 

where ffj Is the standard deviation of the residuals and pi the number 
of parameters In model I. 

B. Numerical Example 

There do not seem to be, as yet, any published results of kinetics 
experiments actually carried out according to the above-detailed 
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prescriptions. Tests on computer-simulated experiments, however, 
show that use of the proper experimental design method can increase 
spectacularly our ability to select a proper model. In a computer- 
simulated experiment, a computer subroutine replaces the laboratory 
equipment. The selected experimental conditions (values of the In- 
dependent variables) are fed as input to the subroutine, which com- 
putes the hypothetical results of the experiment, using one of the al- 
ternative models. The subroutine then adds to these results a pseudo- 
random variable having prescribed statistical properties (e.g., vari- 
ance). These results are accepted by the parameter estimation and 
experimental design programs as though they had been produced by 
an actual experiment. 

A system selected for simulation was that of the catalytic hydro- 
genation of mixed isooctenes, described by Hougen and Watson [37], 
and further analyzed by Blakemore and Hoerl [5]. The latter authors 
reduced the number of acceptable rate equations to two: 

Model 1:    y 

Model 2:    y 

Öi'^x, 

(1 + 9il>vStJ + ö^'x, + e[l%)3 

(2)   _ 9?%X, 
(1 + 0?% + 9i + t^'Xj)2 

where y is the rate of the reaction^ and Xj, x2, and X3 are, respec- 
tively, the partial pressures of hydrogen, isooctene, and isooctane. 
The available experimental data were insufficient for preferring one 
of these models. For the computer-simulated experiments, the par- 
tial pressures of the reactants were confined to the same region as 
in the data used by Blakemore and Hoerl, namely, 

0.1   s x, :£ 2.5 :. 

0.1   £ x2 ^ 3.0 

0.05 ^ X3 s 2.7 

For the first six experiments, the fractional design given in Table 
5 was used and the results (i.e., the rate of the reaction y) were com- 
puted assuming model 1 was correct. Subsequent experiments were 
chosen so as to maximize the information measure given by Eq. (47) 
[in this case, at least, precisely the same results are obtained by 
maximizing (yy - yj?*)2]. The results of those experiments were 
computed assuming model 2 was correct; in this way one desired to 
find out how soon the sequence of experiments would overcome the 
"misleading" results of the first six experiments and choose model 2 

222 



—11 
I 

mmm rmrnm 

KINETICS ANALYSIS 107 

TABLL S 

Experi- 
ment «1 x2 X3 

1 0.1 1.55 1.375 
2 2.6 1.55 1.375 
3 1.3 0.1 1.375 
4 1.3 3.0 1.375 
5 1.3 1.55 0.05 
6 1.3 1.55 2.7 

as the correct one. A total of 27 experiments were "performed." 
Also, 27 experiments constituting a 3 x 3 x 3 factorial design were 
carried out. Table 6 compares the levels of confidence in model 2 
achieved after 27 experiments at various levels of simulated exper- 
imental error. 

As expected, the discrimination power of each procedure dim- 
inishes with increasing experimental error; the factorial designs 
fail completely to discriminate at 3% error, whereas the sequential 
design fails only at 10%. Below this level the performance of the se- 
quential design is spectacularly better than that of the factorial. 

It is interesting to list the number o<;experiments that were 
needed to reach a 90% confidence level by the sequential design. 
These wore 15, 17, and 30 for experimental errors of 1, 3. and 6%, 
respectively. In contrast, the factorial design never exceeded a fi0f? 
level. 

The above results show that sequential experimental design holds 
great promise. Whether this promise will be fulfilled in practice is 
not yet known. The main theoretical question that arises when these 
methods are applied in practice arises from the fact that rarely is 
any of the proposed mechanisms exactly correct, and therefore one 

TABLE 6 

Confidence in model 2 

Experi- 
after 27 experiments, % 

mental Factorial Sequential 
error, ? design design 

1 60 99.8 
3 SO 98 
6 60 80 

10 5fi 50 
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should not exaggerate the confidence placed on any model selected as 
a result of analyzing the data obtained in a series of experiments. 
Clearly, if the correct model is not among those proposed, it cannot 
be the one selected. Frequently, however, the data themselves may lead 
to systematic modifications of the model, until a suitable model is 
found. Such an analysis is described in detail by Hunter and co- 
workers [38,44]. 

APPENDIX 

There is currently available a number of computer programs 
which include some or all of the features discussed in this paper. It 
is felt worthwhile to point out briefly fhese programs and their fea- 
tures. 

1. The Lapidus-Peter son program suitable for the IBM 7090/94 
computers [51]. In brief, this program, which is an extension of an 
earlier nonlinear estimation program [7], consists of three concep- 
tual parts which are linked together to perform the necessary com- 
putations: (a) a kinetics language for input of the kinetics reaction 
model and experimental data; (b) a differential equation solver for 
numerical integration of the rate equations; and (c) a nonlinear esti- 
mation algorithm for obtaining least-squares estimates of the para- 
meters via the Gauss method. First derivatives are obtained in the 
Vrogram by finite difference approximation. 

This program has been found very advantageous since the input 
is entered in a manner which is close to the kineticist's way of think- 
ing and the emphasis is placed on the physical chemistry aspects 
rather than the mathematical formulation. Thus the investigator en- 
ters card formats which typically read as follows: 

Program entry 

A = R+S 

meaning 

A - R + S 

Surface reaction control surface-reaction 
controlling model 

(1 +( )0.28A*0.5)*2 denominator term 
in rate expression 
(1 +0.28p0

A-5)2 

Here KA = 0.28 is a starting value in the nonlinear estimation of KA. 
a = 0.5 and ß = 2.0 are considered fixed in this particular format 
statement, but may al&o be estimated if desired. 
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From this input and additional data such as values of initial con- 
centrations, settings of the independent variables and the observa- 
tions, the computer program automatically (a) develops the kinetic 
rate expression; (b) integrates this expression numerically to yield, 
in effect, a specific form of the model equation; and (c) provides param- 
eter estimates which fit the observations in the least-squares sense. 

As output from the program, various statistics are produced. 
Among those found useful are the parameter estimates 0, the stan- 
dard deviations of the parameter estimates &Q, the standard deviation 
of the errors s, and the residuals between the observed and calcu- 
lated values of the dependent variable G. 

2. The Eisenpress-Greenstadt nonlinear maximum likelihood pro- 
gram suitable for the IBM 7090/94 computers [23]. This program was 
developed originally for large-scale economic problems and has no 
provisions for integrating differential equations. Therefore it is ap- 
plicable to kinetics problems only where differential rate measure- 
ments are available or when analytic solutions to the rate equations 
are available. This program maximizes the likelihood function given 
by Eq. (24), corresponding to the following assumptions: (a) errors 
are normally distributed; (b) errors in different experiments are 
independent; and (c) the same unknown covariance matrix applies to 
the different observed variables in each experiment. This matrix is 
estimated along with the parameters. 

The program uses Greenstadt's modification of the Newton-Raph- 
son method, as described previously. This requires the evaluation 
of the first and second derivatives. The computer itself, using the 
FORM AC system of algebraic formula manipulations [6], performs 
all the required differentiations analytically. 

3. The Bard nonlinear parameter estimation program [3J, suit- 
able for any computer accepting FORTRAN IV programs. It solves 
least-squares, weighted least-squares, maximum likelihood, and 
Bayesian estimation problems of the types discussed above. It in- 
corporates an integration routine and special routines for generating 
the rate equations and their derivatives in kinetics problems. It uses 
the generalized Gauss-Newton method, or, optionally, the Davidon- 
Fletcher-Powell method [20,25]. 

4. The Marguardt program [55], written in FORTRAN IV. It uses 
Marquardt's method [54] and may be coupled easily to integration 
routines. 
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