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FOREWORD

Thirteen years ago the Office of Ordnance Research (now the Army
Research Office-Durham) organized an OOR Liaason Group on Computers,
Two meetings of this group were held, one in 1959 and the other in
1960, to cvchange information of interest to managers of ordnance
computers, The Army Mathematics Steering Committee decided that these
meetings should be revived ou an Army~wide basis, and asked Dr, John H.
Giese, Chairman of its subcommittee on Numerical Analysis and Digital
Computers, to draw up a format for, and take charge of, the new series
of conferences., Dr, Giese thought these meetings should "establish a
way to exchange ideas on the Army's desires, capabilities, and interest
in the field of 'other-than business' applications of computers'; and
they should provide the AMSC and ARO with information on the Army's
needs for computers, requirements for assistance in research and numeri-
cal analysis and other kinds of mathematics. He also suggested that
the title of the conferences should be the "ARO Working Group on Compu-
ters", Two meetings, one in 1962 and the other in 1964, were held under
this title, Starting in 1965 these conferences have been held yearly
under the title "Army Numerical Analysis Conference",

Dr, Giese has served as chairmnp of all these conferences, Members
of the subcommittee on Numerical Anaiyaia and Digital Computers have
agsisted him on some of the planning detafiq of the meetings. However,
most of the responsibilities of the arrangements were in his hands,
Thanks to his continuing efforts, all of the meetings have been held at

a high scientific level. Speakers and attendees at these conferences
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would like to show their appreciation for all of your eiforts, John,
by dedicating these Proceedings to you, They are sorry that you will
no longer be serving as chairman, but they do feel you have done more
than your share of work in promoting these conferences. We certainly
hope you will continue to participate in future conferences in this
area,

The theme of the 1972 Army Numerical Analysis Conference was Systems
Identification, This meeting was held on 20-21 April 1972 at the Bio-
medical Laboratory at Edgewood Arsenal, Maryland, Dr, William J. Sacco
served as Chairman on Local Arrangements., All those in attendance are
indebted to him for a well-planned conference and for selection of some
of the invited speakers,

The Army Mathematics Steering Committee, the sponsor of those
conferences, has asked that chese Proceedings be issued to Army scientists
and to others interested in the science and application of numerical
analysis to applied problems, Members of this committee would like to
extend their thanks to the speakers for their interesting papers, and
to the ‘chairmen and all others who participated in the conduction of

this meeting,
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INITIAL VALUE METHODS FOR NONLINEAR BOUNDARY VALUE
PROBLEMS AND INTEGRAL EQUATIONS

Robert Kalaba
Biomedical Engineering Program
Department of Electrical Engineering
University of Southern California
Los Angeles, California

SUMMARY

A technique has been developed for transforming nonlinear boundary
value problems and integral equations into Cauchy systems, This provides an
analytical approach to nonlinear problems which is different from the usual
successive approximation and series expansion schemes, It is also signifi-
cant computationally, for modern analog and digital computing machines can
solve initial value problems with considerable speed and accuracy. There
are implications for stochastic nonlinear equatioms,

Applications of this new approach in biology, physics, and engineering,
both analytically and computationally, are sketched,

1. Introduction

During the early 1950's I recognized that computing machines would be
able to solve large systems of nonlinear ordinary differential equations,
provided that a complete set of initial conditions is known., The study of
some physical systems leads directly to such initial value problems; the
study of others does not. Clearly, an important task would be the transforma-
tion of integral equations and boundary value problems into initial value
problems to take advantage of this great new computational ability. There
were two early hints that this could be done: Ambarzumian showed that the
reflecting properties of a slab could be found without first determining
the entire internal field (1], and Davidenko [2] showed that nonlinear
transcendental equations could be reduced to initial value problems.

In a long series of papers [3-8)] my colleagues and I have shown how to
transform many important integral equations and boundary value problems of
applied mathematics into Cauchy systems, These ideas have been productive
both computationally and analytically, For the most part these systematic
earlier considerations have been for linear systems, though there have been
some exceptions [9].

In recent months we have found general methods for converting nonlinear
bouindary value problems amd nonlinear integral equations into Cauchy systems,
No use of the usual successive approximation or series expansion techniques
is made, Let us now take up a special case to indicate the approach. Then in
§ 3 we cover numerical aspects, Next stochastic equations and nonlinear
integral equations are treated, Initial value problems in one parameter are
transformed into an initial value problem in another in §6, A broad program
of applications in biology, physics and engineering is presented in §7.

The remainder of this paper has been reproduced photographically from
the author's manuscript, 1




2. A Nonlinear Boundary Value Problem [10]

To illustrate the reduction of a nonlinear boundary value problem to

a Cauchy systém we consider the problem
(1) 1 (t) = M(t), 0<t<1l,
(2) u(0) =ul) =0,

and assume that a unique solution exists for 0 < A< A. Asusual, the dots
over a variable indicate differentiation with respect to t. Since the solution

u is a function of A, as well as t, we shall write

(3) u=uft,\) , 0<t<1,

Equations (1) and (2) become, in this expanded notation,
(4)  u(t,\) = Mu(t,N), 0<t<1,
(5) u{0,X) =u(l,A) =0 .

Assuming appropriate differentiability properties we find that the function uy

satisfies the linear boundary value problem

6)  Luyt, )7 = fa(t, 1) + '@t My (&, 1)

0<t<1,
(7) uy (0,}) =uy(1,A) =0 ,

where, as usual, the subscript denotes a partial derivative with respect to A,

To solve equations (6) and (7) for uy consider the function w, the solution 4

of the linear problem




8)  wit,\) = g(t,\) + Af'(u(t, V) wit,}) ,

0o<t<1,
(9) w(0,X) =w(l,X)=0 .

In terms of an appropriate Green's function G, for an arbitrary forcing

function g the function w is given as

1

(10)  wi(t,\) = [ G(t,y", M) gly', Ndy'
0

0<t<1,

0<A< A,

It follows that the function u, may be represented in the form

1
(1) ul(t.m=g‘ Git,y', M) flu(y', \) dy'

0<t<1,

0<A<A.

This is viewed as a differential equation for the function u, the independent

variable being A\. The initial condition at A = 0 is

(12) u(t,0) =0, 0<t<1,

according to equations (4) and (5).
Next we obtain a differential equation and an initial condition for the

Green's function G. From equation (10) we notice that
1
(13)  wy(,) = 6[ Gy (t,y', }) gly', }) dy'
1
+ 6[ Git,y', \) gy (y's \) dy' .

On the other hand, we obtain a two point boundary value problem for the

function w, from equations (8) and (9). It is




Cwy (6,017 = gy(t, A) + £'(u(t, AIwit, 2)
+ M"(ult, 1) uy (£, }) w(t, )
+ ' (ult, MIw, (£, 1)

(15) wk(o, A) = w)\(l, \)=0 .
According to equations (8), (9) and (10) the solution of equations (14) and (15) is

1
(16)  w,(t,2) = (J) Git,y', Mg, (y's M) + (' (uly's 1))

+ My, M) uy(y's M) wiy', A)ldy' .
It is now convenient to introduce the auxiliary variable M,

(17) M(t, }) = £f'(u(t, })) + AMf"(u(t, )\))u)\(t, A)

1
= £'(u(t, \)) + AM"(u(t, A)) (J) G(t,y', \) fu(y', 1)) dy'

o<t<1,

0< A< A,

Equation (16) then becomes

1
(18)  w,(t,\) = | Gt,y' 2 gyly', Mdy'
0

1
+ J G(t,y', A) M(y', A) w(y', \) dy'

1
=] Git,y', M gyly', M) dy !
0

1

1
*é G(t.y'.k)M(y'.Mg Gly'sy, M) gly, \) dy dy' .




In view of the two representations for the function w, in equations
(13) and (18) and the arbitrariness of the function g, we see that
L
19)  Gylty,}) = g G(t,y', X) M(y", \) Gly',y, \) dy' ,

0<t y<l,

0< A< A,

where the function M is given in equation (17). The initial condition on the
Green's function G at A = 0 is known to be

: Y(t'l)s 0 5 y E t,
F!' (ZO) G(t, Y, 0) =
1 tly-1), t<y<1,.

The desired Cauchy system for the functions u and G consists of the

differential equations in equations (11) and (19), the auxiliary relation (17)

for the variable M, and the initial conditions in equations (12) and (20).

It is a straightforward matter to establish that a solution of the
Cauchy system provides a solution of the original two point boundary value

problem,

3. Numerical Aspects

Based on much previous experience [3,4,8] we believe that the method
of lines [12] provides an effective approach to the numerical solution of the
Cauchy system just given, The basic idea is to approximate the integrals on
the interval (0,1) by means of a quadrature formula., In that way the differ-
ential-integral equations are approximated by a system or ordinary differential
equations for which the independent variable is A, Since a complete set of
initial values for u and G known, at A = 0, the original boundary value problem
is reduced to a system of ordinary differential equations subject to known

initial conditions. Modern digital, analog and hybrid computers are well-




suited for this task. We routinely integrate systems of order 103 or so in the
year 1972,
Let us use the approximation
1 N
(1) | tyhay' = Tir)w, .
0 §=1
Then equation (11) of the previous section is approximated by the ordinary
differential equations
N
(2) dui(l)/dk & j'flGij()\) f(uj()\)) W
i=L,2,...,M,

where
(3) ui()») = u(ri, )
and
4) Gij(k) = G(ri, rj, A) o,
i,j=1,2,...,N .

Equation (19) becomes
N
(5)  dGj(\)/ak = mzzlcim(k) M, (MG w

itj =112»-°-'N »

in an obvious notation. Thus there are N2 + N ordinary differential equations
with evident initial conditions from equations (22) and (20). In addition the
analogue of equation (17) is required.

We have done [10] trial computations with f(u) = exp(u). We approxi-

mated the integrals by using Simpson's rule with twenty intervals. The




resulting system of ordinary differential equations was integrated for 0 < A <1
and gave accuracy to within one part in five thousand. This demonstrates the
computational feasibility of the method. In view of the known discontinuity in
the derivative of G(t,y, A\) with respect to y at y = t, it would be desirable to
find ways to make the computation as efficient as possible and to compare it
against other standard methods such as quasilinearization [13]. Where the
parameter study in A is required, the efficiency of the proposed method is

beyond dispute. Even if the solution of the nonlinear boundary value problem 1

is desired for only A = A, the proposed method is interesting analytically and

possibly numerically, for no solving of linear algebraic equations is required.

4, Nonlinear Stochastic Equations and Other Matters

In the previous section we have indicated how to produce numerically
the function u(t,A), 0< t <1, for 0 < X < A, where u is the solution of the
nonlinear two-point boundary value problem in equations (1) and (2). There
are at least three advantages in being able to produce the function u for all
of these values of \. In the first pluce, it automatically provides a '‘parameter
study' which is often required in engineering and biological applications.,

Secondly, it provides a way of treating stochastic nonlinear boundary
value problems. First determine u = u(t,)) as above for 0 < A < A, Then
suppose that A is a random variable having the probability density function
p=p()for 0< A <A, Let the mth moment of u(t) be denoted by Mm(t),
0< t<1l Then we have

A

1) M_(t) = J u™(t, A) p( d1, 0<t<1,
m 0 o =

which is readily evaluated numerically,
Thirdly, a uniform approach to system identification problems is

provided. Suppose that bl' bZ' 390 bR are observed values of u(ti), and we wish ;(




to select A so that we minimize

R
2) sm=E
i=1

Cut,, ) -bi]z :
where equations (1) and (2) of 2 hold.

Transforming the boundary value problern into a Cauchy system, as
we have explained, puts the problem in a form for which much is known [13].

It also makes possible the use of gradient techniques for effecting the mini-

mization,

5. Nonlinear Integral Equations [14]

A broad and important class of nonlinear integral equations has the
form .
1

(1) u(t) = g(t, A) + A J k(t,y, A, u(y) dy , ]

0<t<1.

The parameter A may lic in an interval (0, A). To emphasize the dependence
of the unknown function u upon the parameter X, as well as upon the variable t,
we shall write

1
() u(t.x)=g(t,k)+x6f k(t,y, A, uly,\)) dy ,

Then, under suitable regularity properties, it is possible to demonstrate the
equivalence between the nonlinear integral equation, Eq. (2), and the Cauchy

system for u and the auxiliary function K

1
(3)  uy(t, M) = YN+ A [ Kit,y', MYy, My,
0




1
(4) Kﬂhwk)=meJ)+kJKMYSMQWHLKMW'.

0<t, y<1,

0<A< A,
(5) u(t, 0) = g(t,0) ,

(6) K(t,y, 0) = ku(ta y, 0, gly, 0)) ,

0_<_tt y<1il,

where the functions Y and Q are certain functionals on u and K,
Preliminary numerical experiments in which g(t,2) =1 - (A/2)t and
kit,y,A,u) = tyu2 have shown the feasibility of the method. That A = 3/2
is a bifurcation point is obtained effortlessly, for the auxiliary function K
becomes infinite there. How to continue the solution through such a point

is 2 matter of great interest.

6. Initial Value Problems

Consider the Cauchy system
M x(t,N) = £x(t, X, A), 0<t<T
(@) x(0,x) = ¢,

where )\ is a parameter lying in the interval (0, A). Frequently we desire a
parameter study in A of the s lution of the equations (1) and (2). One procedure,
of course, is to solve the system as an initial value problem in t for various
values of A. However, there is an alternative: transform the system (1) and

(2) into a Cauchy system in which A\ becomes the time-like variable. Such a

system is




il i I T s st e L

L

x (6 A) = Mt A)

(4)  M(t,A) = gt' [o(t, M)/@(y, N1, (x(y, M), M)y
(5) x(t, 0) = g(t)

(6) @, (t, X) = gt Lo e, M)/o(y, M )] ¥(y, N) dy
(M Y&, = £ 6e(t, A), MM, A)

41 (x(t, M), Mo, 2)

(8) ®(t, 0) = h(t),

The initial conditions at A = 0 in equations (5) and (8) are obtained by

integrating equations (1) and (2) for A = 0 and by integrating the system
(9) P, 0) = £ (x(t,0),00(0), O0Zt<T,
(10) 9(0,0)=1,

Under some circumstances it might be preferable numerically to solve the
system (3) - (10) rather than the system (1) and (2). This remains to be
investigated.

There are similar discussions for the conversion of initial value
problems for partial differential equations into Cauchy systems in which a

selected parameter becomes the time-like variable,

7. Applications

I have in mind applications in physics, engineering, and biology.

Electromagnetic theory and radiative transfer should be investigated., One




of the principal nonlinear integral equations of radiative transfer is

1
A 9
m  em=1+znem f 20 ae,

0<n<l1,

0<r <1,

A start on the study of this nonlinear integral equation using initial value
methods has been made [15 }; in fact, successful calculations have been
performed, but much remains to be investigated. The behavior of the
solution of the associated Cauchy system near A =1, a bifurcation point, is .'f.
interesting. ]
The theory of optimal filtering, detection, and control abounds with
integral equations, many of which are nonlinear [16]. These should be
studied with emphasis on filtering of physiological data, as well as communi-
cation and radar signals., The detection of arrhythmias in coronary patients
is a possibility,
The theory of thin shells of revolution [17] depends upon solving
nonlinear systems of coupled integral equations, Here we have to derive
the appropriate Cauchy systems and then do test calculations, This is an
extension of our work on the linear integral equations of elasticity theory [18].
Applications to biomechanics should be stressed, especially the study of
trauma due to a blow to the head. ;
Nonlinear integral equations are used to describe lateral inhibition :
in neural systems [19]. The dependent variable is a function of several spatial
variables. Computational solution using initial value methods is a challenge.
Nonlinear boundary value problems and integral equations abound in

the study of fluid and electrolyte transport in physiological systems {20,21,22].

11




Here the biological interpretation of the Cauchy system will be particularly
interesting.
A nonlinear differential equation with nonlinear boundary conditions

I is treated in [23].

8. Discussion
In the previous pages I have adumbrated a uniform approach to non-
A linear boundary value problems and integral equations. I feel that it will

become as effective for nonlinear problems, in this age of computing machines,

as the eigenfunction expansion technique was for linear prohlems in pre-
computer days, It possesses the great merits of being simple in concept,

broad in application and effective in computation.
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OPTOELECTRONIC COMPUTATIONAL TECHNIQUES FOR FAST PICTURE PROCESSING

JENNY BRAMLEY

Geographic Information Systems Division
U. S. Army Engineer Topographic Laboratories
Fort Belvoir, Virginia 22060

In an earlier reportl, I have shown how the use of analog TV~

type techniques can greatly reduce both the cost of operation and

the time required for the processing of pictorial information. The

inherent limitation on the precision of a TV-type computer is not

serious in this case since there is a comparable limitation on the

That earlier

accuracy of the experimentally obtained picture data.

procedure was strictly sequential. The relatively high processing

speed was the result of the elimination of drawbacks inherent in

the digital computer, namely the delays in the input and output func-

tions and the need for piecewise operation due to the inadequacy of

the memory for the amount of data being processed.

Further consideration of possible analog approaches indicated

that the addition of state-of-the~art (though not necessarily off-

the-shelf) optoelectronic devices allows an increase in the previous

operating speed by three orders of magnitude. Thus this report

makes the earlier one obsolete. The speed-up is due to the use of

parallel or near-parallel processing techniques.

To keep this presentation within a reasonable length, I

restrict the discussion to the following four operations:




(1) convolution, (2) Fourier transforms, (3) filtering,

(4) algorithms.

(1) The basis of the convolution approach, as well as of the
other operations, is the imparting of information to a light beam
by passing it through a transparency. Consider two transparencies
A and B with fiducial marks to determine registry and relative
orientation. Let resolution element (x, y) of A have an absorption
o = -log fl(x, y) > 0 (assuming that the function fl(x, y) <1).
The intensity U of a beam of parallel light passing through (x, y)
is transformed into Ufl(x, y). Similarly, if the element of B
suﬁerimposed on element (x, y) of A is specified by (s-x, t-y) and
hgs an absorption «

2
the set, the light beam has an intensity Ufl(x, y)fz(s-x, t-y). The

= -log f2(s-x, t-y), then after passing through

total amount of light transmitted through the set AB (usually

measured by a photomultiplier) is:

I(s, t) = j;j.UFl(x, y)fz(s-x, t-y)dxdy

The integration is performed over the area S being investigated.

The function I(s, t) is the convolution integral.

In principle, the change in the relative positions of A and
B, which would give rise to different values of s and t, could be
achieved by mechanical means. However, for an operation of
interest in picture processing, this brute force approach is grossly

inadequate from the point of view of achievable speed and the spec-

‘ification of relative orientation. I propose replacing it with the




following optoelectronic arrangement:

photocathode magnetic deflection coil phosphor 3creen

~

=

FIGURE 1

Image Converter Tube

My "central processor'" is a magnetically focused image converter
tube (schematized in Fig. 1) with flat fiber optics plates at input
and output. This is an off-the-shelf item. Transparency A is
mounted directly in front of the faceplate, and transparency B,
which is several times smaller than A--to permit its correlations
with different portions of A--is mounted directly in front of the
photocathode. This arrangement eliminates the use of lenses with
attendant loss of light and provides for compactness. Transparency B
is illuminated and forms the input on the photocathode. A deflection
coil, such as used in the Goodyear Correlatron, permits scanning the
luminescent output image across the faceplate in any desired pattern,
At each position, the light from the luminescent image of B passes

through A and is picked up by a photomultiplier in an arrangement




that is conventional for flying spot scanners. The position of A
is spccified by fiducial marks, that of B is determined by the
current passing through the deflection coil. The output of the
photomultiplier can be recorded or displayed in any conventional

manner to specify the occurrence and magnitude of the maximum.

The determination of each correlation value can proceed at
rates standard for a flying spot scanner, no matter how large the
area being correlated. The limiting speed factor is the phosphor

] decay time. 1In the case of a P16 phosphor screen, a high degree
of accuracy may call for a rate somewhat slower than conventional
TV time per deflection, e.g., % usec per correlation. Allowing
for retrace times, this provides more than 2000 correlations per
millisecond. The main time delay arises in changing pictures because
rigorous alignment of picture A is critical. Since picture B is
displayed on an image converter tube, the controls are electronic
and more easily achieved. However, with suvitable fiducial marks,
the alignment of picture A can probably be automated to require

only a fraction of a second.

(2) The Fourier transform of a picture can be treated as a y

special case of correlation, based on the following mathematics:

let g(n, m) (n, m=1, ... , N) represent the intensity at every
point (n, m) of a picture NX N elements considered as a matrix.

The first index numbers the rows and the second one the columns., Take

the cosine transform as an example. The coefficients in it are defined
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C(n, m) = Z g(n, p)cos2mmyu/N,
w=1

(m)

or in terms of a positive processing function £ (uw) =1 + cos2n my /N
c

g(n, u) (1)

N (m)
cm, m) =3 g, WE G -
u=l 1

M=

The first term on the right-hand side of Eq. (1) is a convolution--
expressed as a finite sum. Using an image converter tube and an
optical processing plate, all the multiplications and additions in
Eq. (1) can be performed in parallel. The processing plate is a
transparency of N+l parallel strips, each strip having the width

of a resolution element of the picture and a length N times the width,

(0) 1 (N)

The transmittivities of the successive strips are kfC s KE.T Ty kfc )

k, k(1 + cos 2mu/N), k(1 + cos 4mu/N), ... , 2k k ( 0.5
where p is the running index, which assumes all integer values from 1
to N. 'The quantity k is a constant of the plate. While the piepara-

tion of such a plate entails time and expense, it is a onetime operation.

To obtain the coefficients C(n, m) of the transform, line n of
the picture is projected successively on the N+l transmissive strips.
The light is then focussed on a photomultiplier as in the correlation

operation. In suitable units, the total amount of light transmitted

through strips 1, 2, and m+l is
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respectively.

Hence to obtain the coefficients C(n, m) of the Fourier transform
for any value of m (and a given line n), we store g, and take the
difference between the photomultiplier output after illumination of the
line m+l and the stored signal 8n The proportiomality coefficient

can be determined by calibrationm.

This scheme allows each transform coefficient to be obtained in
a single step instead of requiring N successive multiplications as in
the case of a conventional gserial computer. To implement it, we use
the same arrangement as for convolution. The processing plate is
picture A, while picture B is a transparency of N ¥ N resolution
elements. (N A~s1000). It is illuminated one horizonmtal resolution
1ine at a time and is imaged on the photocathnde of the image
corverter tube. By means of magnetic deflection, it is placed
successively in front of each strip. The light transmitted represents

the operations in Egs. (2). To minimize errors due to phosphor




persistence, about 0.2 ysec should be allowed per deflection.
But even at this '"slow' speed, we obtain 5 Fourier transform
coefficients per microsecond, and the one-dimensional transform
of a 1000 X 1000 picture requires only about 0.2 sec. Parallel
processing for Fourier coefficients eliminates the need for any
algorithms of the Cooley-Tukey type.

(3) As far as filtering is concerned, a number of factors
must be considered. As a rule, the objective is to try a number
of filters with the same picture. Therefore, in the arrangement
described for convolution, the filter stands for picture B,
ahead of picture A which is to be filtered. The parallel output
can be used for direct viewing, or photographed (with all the
processing delays involved), or it can be recorded on the cathodo-
chromic screen of an additional image converter tube. (This also
takes time.) For all other uses, a sequential output is essential.

If the filter is available in sequential form on video tape,
transcribed, e. g., from the output of a digital computer or of a
flying spot scanmner, it is presented on the screen of a cathode
ray tube rather than of an image converter tube. The light emitted
by B and transmitted through A is picked up by a photomultiplier
separately for every resolution element and is recorded in conven-

tional fashion.

H(n, m) = G(n, m)S(m)
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The problem is to find h, the inverse transform of H.

The derivation

shown appears to be self-explanatory

N
G(n, m) = Zl g(n, p)wum W= ezTTi/N N =
u:

N o=
If u <p, EE: S (m)W G s (p=u)

=1
if > p 5 S(m)w-m(p'“) - :f% S(m)w-m(N+P'u)
m=1 =1
= s(N+p-p) since N+p-;>0.
h(n, p) = le H(n, mW © = Z:=1G(n, m)s(m)w'mp

~m(p-u)

N N
}_;_‘ g, ) >_ S(mW
=] m=1

p-1 N
=S e, Wsew) +2 s, wsipey)
=l W=p

To see more clearly what is involved in implementing this approach

we write a few of the coefficients h(n, 0) explicitly
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h(n, 1) = g(n, 1)s(N)4g(n, 2)s(N-1)+g(n, 3)s(N-2)+...4+g(n, N)s(l)

A(n, 2) =g(n, 1)s(1)+g(n, 2)s(N)+g(n, 3)s(N-1)+ ....+g(n, N)s(2)

h(n, 3) =g(n, 1)s(2)+g(n, 2)s(1)+g(n, 3)s(N)+...+g(n, N)s(3)

s e s eps0ss e ees e 0000000
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h(n, N) = g(n, 1)s(N-1)+g(n, 2)s(N-2)+g(n, 3)s(N-3)+...+g(n, N)s(N)

As the index p changes by one unit, the transformed filter

coefficients s(m) are translated cyclically by one unit; i.e.:

s(l)
s(N)
s(N-1)

s(2)
s(1)

s(NY

s(N-1) ... s(3)
s(2)

s(1)

s(N)
s(N-1) s(N=2) ...

s(N-2) s(N-3) ...

To obtain the intensity h(n, 1) of the first resolution element

on line n of the filtered picture, we present the first sequence

of the transformed filter coefficients in luminous form on the face

of a cathode ray tube and shine this filter function through line n

The light transmitted through all the

of the original picture,

resolution elements is picked up and integrated by a photomultiplier.

The operation is repeated after a one-step cyclic translation is

performed on the coefficients s(m). The only way I envision of

performing this cyclic translation is to store the coefficients s(N), ...,

8(1) on a scan converter tube in a circular scan made up of N elements.

The readout also follows a circular pattern, but for each successive

scan line, the scanning starts at the same element where the preceding




scan terminated. Writing and reading rates for a scan converter
tube can be real time or slower so that there is no problem in
recording the coefficients s(m) as they are obtained by a
Fourier transform from the frequency filter S(m). As indicated i
above, the determination of each coefficient h(n, p) calls for

the scanning of one line of the picture. This can be done in real
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