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ABSTRACT: 

An analysis for the transient axial response of a gun launched motor 
case with unbonded propallant is performed.    The present effort extends a 
previous work by including higher harmonics in the representation of the 
breech force at the aft. end of the motor ease.    Including the higher har- 
monics leads to a more accurate representation of the actual breech force. 
The results of the analysis indicate that the dynamic effects on the in- 
ternal axial force in the case are negligible for a breech force duration 
of 0.026 seconds.   This is the same conclusion that was made in the pre- 
vious work based upon a simple representation of the breech force. 
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NOTATION 

A area of motor case cross section 

\ Fourier cosine coefficients of breech force 

Bk Fourier sine coefficients of breech force 

c speed of wave propagation 

e axial  strain 

E Young's modulus of elasticity 

f axial force 

K constant 

l length 

m mass of motor case 

P breech force 

t time 

u deformation 

ü displacement 

u rigid body displacement 

U transformation variable 

V transformation variable 

x, y coordinate axes 

X, Y coordinate axes 

a time duration of breech force 

Y constant 

P mass density of the motor case material 

a axial stress 

to constant 
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INTRODUCTION 

This report examines the transient axial response of a gun-launched 

rocket motor, with unbonded propellant, during the launch phase.    It is 

part of a continuing effort to develop structural design procedures for 

gun-launched rockets.    In a previous report (itef. 1), an analysis for the 

time-dependent axial force distribution in the motor case was performed 

in which the force at the breech end of the case was approximated by a 

one-half sine wave o\er the duration of the loading.    That analysis estab- 

lished that for the one-half sine wave input, a time duration of .012 

seconds leads to negligible dynamic effects, i.e., for a one half sine 

wave of .012 seconds duration, the internal axial force at any location 

along the case appears as a duplicate of the breech force, but of smaller 

magnitude.    It was shown, however, that decreasing the time of the force 

duration to .0012 seconds leads to significant dynamic effects.    This re- 

sult indicated that higher harmonics in the breech force co.Jld cause im- 

portant dynamic effects.    Since the actual breech force is  lot a simple 

half sine wave, but in fact is a complicated function of ti.ie, an investi- 

gation was made to consider the problem further. 

To account for the higher harmonics in the breech-force, the analysis 

decomposes the actual  force  into a Fourier series with 27 terms.    This 

force is applied to the case, and the internal axial force is computed at 

several locations along the case over the duration of the loading.    This 

analysis then establishes the contribution of the higher hfrmonics in the 

breech force to the dynamic stresses in the bar.    The analysis is restricted 

to the free-free motor case. 
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ANALYSIS 

In the figure below, AB is the motor case, treated as a one- 

dimensional bar, under the applied breech force P(t).   The actual 

displacement of any point of the bat with respect to the X, Y, 

fixed coordinate system is denoted il.   This motion consists of two 

parts, a rigid body motion u and a strain-causing deformation u. 

+ Y 

Then 

A B ü = ü + u (1) 
■n     . Y 

P(t) 

If m is the total mass of the bar, then the rigid body 

motion is 

&   -   EM 
dt2   "    m 

The differential equation of motion for any point of the bar is 

at2 

.2 a2u 

ax 
■ 0 

3(U   +u)   -   C2^ 
ar ax^ 

(2) 

(3) 

where c is the speed of wave propagation, and x is a coordinate 

axis parallel  to x moving with velocity u.    The constant c is 

given by 

c ■ yi (4) 

where E is Young's modulus of elasticity of the bar material and 

P its specific gravity.    Combining equations (1) and (3) gives 

2 a2u 

^ 



- 

3 U 
Substituting for ^2    from (2) yields, 

4- + EM. c2 in - 0 
-^2 "i , 2 U- 9t 3X 

2 ? 
With the notation (  )xx denoting ^-L± , and ( )ff denoting ^-^ , 

ax 

the governing differential equation is 

u.. - c u tt XX 
Pill 

m 

'tt 

t > 0, 

0 < x < I 

3t' 

(5) 

The initial conditions and boundary conditions   for the free-free 

system are 

I.C.'s:    u(x,o) = o u,(x,o) = o (6) 

B.C.'s:    ux(o,t)  = jj^   ux(£,t)  = o (7) 

The solution of equations (5) through (7) gives the deformation of 

any point for any time greater than zero.    The stress is then simply 

obtained from Hooke's Law, a = Eu  . 

The solution method proceeds by transformation of the given system to 

a system with homogeneous boundary conditions.    This is achieved by 

considering a solution in the form 

u(x,t) = v(x,t) + U(x,t). (8) 

Boundary condition equations (7) become 

*>.t) =pii)-- U°.t) EÄ 

vxU,t) - -Ux(£,t) 
(9) 

These equations become homogeneous when U(x,t) is taken as 

U(x,t) = (x 21 
P(t) 
AE (10) 



With equations (8) and (10), governing equations (5) through (7) 

become 

vtt - c2vxx - f(x.t) (ID 

I.C.'s:    v(x,o) = -U(x,o)     vt(x,o) = -Ut(x,o)       (12) 

B.C.'s:    vx(o,t) =  o Mtil,t) = o (13) 

where 

f (x t\ ■ -U     + r2U     - P\W ux.t;       uu + c uxx     plA 

-      (y      £)    !"..    2P 
" "  [        11 '    AE p^A 

(14) 

where 

and 

(15) 

A Fourier series solution which satisfies boundary conditi^is (13) is 

assumed for v(x, t), i .e., 

v(x,t) =     /   vn(t) C0Ü ^jr 

Accordingly, equations (11) and (12) become 

d2yn(t) 9 

-J—   +    VnW^V»       n = 1'2'  ••• (16) 
at 

I.C.'s:    vn(o) =o 

£"(„>. 2   f    1111 I   ^icos^dx (17) 
dt   K '     l I EA dt l 

fn(t) ■   J   /      f(x.t) cos^dx, (18) 

nnc 
^n = T (19) 



To this point tne analysis is identical  to that presented in reference 

1.    In that analysis» P(t) was approximated as a half sine wave P sin wt/a; 

here, the breech force is approximated by the Fourier expansion, 

N 

P(t) = Ao + 

k=l 

A   cos &* + B.   sin äsi 
K a k a 

(20) 

For the linear system, the response due to equation (20) is obtained by 

superposition of individual terms. 

(i) for the uniform force A : 
o 

2P From equation (14), f(x,t) = - -jr .    Then equation (18) gives 

f = o for all n. The initial conditions are v = o, and 

v - o from equation (17), and hence v (t) = o. Then the 

stress is 

o = Eux . EUX ■ (1 - J) Jo 
(21) 

This is the stress due to the "rigid body" acceleration for 

constant force. 

(ii) for the cosine terms, A, cos ^^ • 
K a 

From equation (14) we obtain, 

f(x,t) 
EA 

2krr 
a  J 

\2 
2c_ 
EU 

2   i 

\ • A.   cos ÜSSt 
K a 

Then equations  (17) and (18) give 

d        /  \ 
dt vn<°> =0 

V*> 
8k2£ 

a n^EA 
A,  cos &&■ 

K a 

(22) 

(23) 
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With equations (22) and (23), the solution of equation (16) 

I cos — - cos Unt j (24) 

is K Q2A 

v (t) =   H° _k I „rtC 2knt 

where 

and 

Kn =" 7zk (25) 

Ü) 
Yn =     JL_ n m~   ' (26) 

a 

2kjrt 
a 

Then the stress associated with A,  cos ^- terms i: 

a - Eux = E<vx + u
x> 

A 
V -L . -—E       „nc 2k-rrt . ) 
Li ^"A     72     77   <  cos —— - cos w t L 
^ Yn - 1      I a n   ] 

( 1     j) rcos — (27) 

The latter term in equation (27) is the contribution associ- 

ated with the "rigid body" acceleration. 

2kTTt 
> in 

Equation (14) gives 

iii) for sine terms, B, sin 
K a 

x2 

f(x.t) -   i  x - 2T-    /2k„2\'     2c2 
2cl      A   _ 2kr,t 

1~EA—     lT~j    " EAT   I Ak cos 

From equations (17) and (18), 

Cl 

d       , %        
4k£Bk 

^Vn(°) = '77f~ (2ß) EAnSa 

f ftl - 8k24       R    c<„ 2knt ,    N n       " ~2X7   Bk S1n 77- (29) a   n   tA 



The solution of equation (16) with equations (28) and 

(29) is 

vn(t) = 
2K_kB, u2     f   w2 - 2 \ Tn ' Vuk 

V Yn " ] 

Kna\ 

»(*„-!) 
sin2M   (,0J 

where 

R   -   n 

n ~ JT/^J (31) 

The stress associated with B,   sin ^£t   is 
k a 

ao 

£ 2B 
~n^l nirA   1    R 

2k 

n 
sin to. n t+T-l— sin^t)sin^ 

B, 
+ n     x^ "k   c-in 2k*t + (1 - y) r   sin — 

Again the latter term in equation (32) results from the "rigid 

body" acceleration. 

The stress at any point is obtained as the superposition of 

equations (21),  (27), and (32). 

(32) 



RESULTS AND PISOBSMN 

Equations (21), (27), and (32) for the stress have been evaluated 

on the NPS - IBM 360/67 digital ccmjuter for specific values of A. and 

Bk obtained by a Fourier decomposition of the given breech force. This 

decomposition is done by the IBM subroutine FORIT on the computer. The 

present analysis resolved the breech force into 26 sine and cosine har- 

monics, i.e., 

Pi 
26 

«>-*o+I    (   \ cos 2k!  ♦B, sin 321} (33) 
k=l    L 

The magnitude of the harmonic coefficients A.  and B.  depend upon the 

nature of the breech force.    For this analysis, the force given in Fi^. 

1 of Ref. 2 was used.   Approximation of that force by equation (33) leads 

to 

|       k 

0 

Ak Bk 

14.1680 0. 

1 -8.6082 9.6^38 

2 -3.2336 -4.3103 

3 1.3139 -.8107 

4 -.1162 .1077 

5 .1089 -.1257 

6 -.2036 .3394 

7 -.3478 -.0886 

8 -.3001 -.1664 

9 -.2229 -.3071 

10 .1728 -.2293 

11 .2260 .1067 

12 -.0425 .3243 

13 -.3157 .2287       J 

14 -.3164 -.0186 

15 -.1682 -.0940 

16 -.0552 .0146 

17 -.1202 .0983 

18 -.2053 .0899 

19 -.1821 .0827 

20 -.2162 .0815 

21 -.2723 .0286 

22 -.2164 -.0294 

23 -.1599 .0250 

24 -.2146 .0638 

25 -.2589 -.0065 

26 -.2162 .0034 



A plot of equation (33) with the above values of A.  and B.   is 

given in Fig. 1 for a .026 second time dura^'** of breech force. 

Figures 2 through 5 are the results for the stress in the bar due to 

the breech force shown in Fig. 1 as a function of time for 4 ratios 

of 0, 1/4, 1/2, and 3/4, respectively,    (The analysis is for the 5 in. 

steel  shell of 0.19 in. thickness).    Comparing Fig. 1 with Figs. 2 

through 5 reveals that the internal force appears as a duplicate of 

the breech force, with the stress curves scaled versions of the force 

input.    In Figs. 6 through 8, the contributing harmonics are individu- 

ally displ    ed.    The elastic dynamic effects are the small oscillations 

about each harmonic itself. 

Figures  !0 through 14 are the results of the analysis for a 

^ime duration of 0.0052 seconds for the brech force.    This is a re- 

duction in the actual duration by a factor of five.    This sample prob- 

lem was considered  in order to assess the influence of the magnitude 

of the force duration.    The elastic dynamic effects can be clearly 

seen in these figures.    Note that the magnitude of stress has been 

significantly changed by the dynamic effects. 

CONCLUSIONS 

The results of this analysis (Figs. 1-5) show that dynamic 

effects are negligible for the breech force of 0.026 seconds time 

duration of Figure 1, Reference 2.    Hence, when the propellant is 

not bonded to the motor case, the case responds to the breech force 

as if it were applied in a static sense,  i.e., the maximum internal 

axial  load in the case can be computed on the basis of the mass 
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distribution and the maximum rigid body acceleration of the rocket. 

This is the same conclusion arrived at in Ref. 1 based on a simple 

one-half sine wave pulse; hence, accounting for the more complicated 

actual breech pressure pulse confirmed the original conclusion. 

Further investigation (Figs. 10-14) verified the dependence 

j of the dynamic effects on the presence of significant higher harmonic 

terms in the breech force.    Such harmonics may be the result of shor- 

tening the time duration tf loading, or by the presence of a local 

rapid perturbation of force on an otherwise acceptable smooth breech 

force input. 
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