AD-758 128

TRANSIENT AXIAL RESPONSE GF A GUN LAUNCH-
ED ROCKET MOTOR CASE DURING LAUNCH

David Salinas, et al

Naval Postgraduate School
Monterey, California

29 January 1973

g YA

DISTRIBUTED BY:

National Technical Infermation Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




B
:
Ii

=0 A

NPS - 59Zc73011A

NAVAL POSTGRADUATE SCHOOL

Monterey, California

TRANSIENT AXIAL RESPONSE OF A GUN LAUNCHED
ROCKET MOTOR CASE DURING LAUNCH

by
DAVID SALINAS

and
ROBERT E. BALL

29 January 1973

Approved for public release; distribution unlimited.

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Comnierce
Springrield VA 22151




T

NAVAL POSTGRADUATE SCHOOL
Mcnterey, California

Rear Admiral Mason Freeman
Superintendent

ABSTRACT :

M. U. Clauser
Academic Dean

An analysis for the transient axial response of a gun launched motor
case with unbonded prop=1lant is performed. The present effort extends a
previous work by including higher harmonics in the representation of the
breech force at the aft end of the motor case. Including the higher har-
monics leads to a more accurate representation of the actual breech force.
The results of the anelysis indicate that the dynamic effects on the in-
ternal axial force in the case are negligitle for a breech force duration
of 0.026 seconds. This is the same cunclusion that was made in the pre-
vious work based upon a simple representation of the breech force.

This task was supported by:

David Salinas, Assistant Professor
of Mechanical Engineering

Approved by:

R. W. Bell, Chairmah
Department of Aerorautics

T 9 e

Robert H. Nunn, Chairman )
Department of Mechanical Engineering

Naval Weapons Center, China Lake,
California, Work Request No. 2-3128

fertt~ Z1%Rf
Robert E. Ball, Associate Professor
of A2ronautical Engineering

(%AL»‘W\}?%V"*ﬁt

Jgﬁ% M. Wozencraft ’
Dean of Research

NPS-59Zc73011A

| &~




R

TABLE OF CONTENTS

Abstract

Notation

Introduction

Analysis

Results and Discussion

Conclusions

References

ii

10




NOTATION

area of motor case cross section
Fourier cosine coefficients of breech force
Fourier sine coefficients of breech force
speed of wave propagation

axial strain

Young's modulus of elasticity

axial force

constant

length

mass of motor case

breech force

time

deformation

displacement

rigid body displacement

transformation variable

transformation variable

coordinate axes

coordinate axes

time duration of breech force

constant

mass density of the motor case material
axial stress

constant
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INTRODUCTION

This report examines the transient axial response of a gun-launched
rocket motor, with unbonded propellant, during the launch phase. It is
part of a continuing effort to develop structural design procedures for
gun-launched rockets. In a previous report (Ref. 1), an analysis for the
time-dependent axial force distribution in the motor case was performed
in which the force at the breech end of the case was approximated by a
one-half sine wave over the duration of the loading. Tkat analysis estab-
lished that for the one-half sine wave input, a time duration of .012
seconds leads to negligible dynamic effects, i.e., for a one half sine
wave of .012 seconds duration, the internal axial force at any location
along the case appears as a duplicate of the breech force, but of smaller
magnitude. 1t was shown, however, that decreasing the time of the force
duration to .0012 seconds leads to significant dynamic effects. This re-
sult indicated that higher harmonics in the breech force could cause im-
portant dynamic effects. Since the actual breech force is 10t a simple
haif sine wave, but in fact is a complicated function of tise, an investi-
gation ~as made to consider the problem further.

To account for the higher harmonics in the breech-foice, the analysis
decomposes the actual force into a Fourier series with 27 terms. This
force is applied to the case, and the internal axial force is computed at
several locations along the case over the duration of the 1nading. This
analysis then establishes the contribution of the higher heérmonics in the
breech force to the dynamic stresses in the bar. The analysis is restricted

to the free-free motor case.




ANALYSIS

In the figure helow, AB is the motor case, treated as a one-
dimensional bar, under the applied breech force P(t). The actual
displacement of any point of the bar with respect to the X, Y,
fixed coordinate System is denoted 4. This motion consists of two

parts, a rigid body motion u and a strain-causing deformation u.

Y
Then
A B Uu=u+u (1)
—=—0— X
P(t)
If mis the total mass of the bar, then the rigid body
motion is
% | P(t) (2)
dtl T om .

The differential equation of motion for any point of the bar is

2. 2

3 2 57U
— - =%5=0 (3)
at2 ax

where ¢ is the speed of wave propagation, and x is a coordinate

axis parallel to x moving with velocity d. The constant c is

cwfg (4)

where E is Young's modulus of elasticity of the bar material and

given by

p its specific gravity. Combining equations ‘1) and (3) gives

2 2

3 - 2 3"u
__2.(u+u)_c __.._=0
at ax2
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Substituting for th from (2) yields,

2
B_g+_£_LPt_c23_yz.=o_
at L 3x

. azg ) 32§ )
With the notation ( )xx denoting , and ( )tt denoting

ax2 at2 ’

the governing differential equation is

T czu = . Mt t>0,

ti XX m (5)
0<x <t
The initial conditions and boundary conditions for the free-free
system are
I.C.'s: u(x,0) = 2 u (x,0) = o (6)
] . & P t =
B.C.'s: ux(o,t) ﬂé_l' ux(E,t) 0 (7)

The solution of quations {(5) through (7) gives the deformation of
any point for any time greater than zero. The stress is then simply
obtained from Hooke's Law, o = Eux.
The solution method proceeds by transformation of the given system to
a system with homogeneous boundary conditions. This is achieved by
considering a solution in the form

u(x,t) = v(x,t) + U(x,t). (8)

Boundary condition equations (7) become

vx(o,t) = géﬁl-- Ux(o,t)
9)
vx(ﬁ,t) = -Ux(E,t)
These equations become homogeneous when U(x,t) is taken as
2
_ X P(t)
U(X,t) = (X = -277 ) AE (]0)




With equations (8) and (10), governing equations (5) through (7)

; become
2
Vi = €V, = FX,t) (11)
: I.C.'s: v(x,0) = -U(x,0) v,(x,0) = -U(x,0)  (12)
( B.C.'s: v, (0,t) = 0 vile,t) = o (13)
] where
" - 2, _ P(t)
14
= - (y = £2_ ) E_t'_ = _2_.P_
28 AE pLA

A Fourier series solution which satisfies boundary conditi~is (13) is

assuwed for v(x, t), i.e.,

8

Ny
v(x,t) = vn(t) cos -7 (15)

dv_(t)
—;j—t-z"—— + mﬁvn(t) =f(t) n=1,2, .. (16)
I.C.'s: v (o) 0

l=
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o
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where

nnx

f (t cos —7r-dx, (18)

LY

and

En ST (19)




To this point the analysis is identical to that presented in reference

1. In that analysis,

P(t) was approximated ac a half sine wave P Sin nt/a;

here, the breech force is approximated by the Fourjer expansion,

For the linear system, the response due to equation (20)

N

[ 2krt

2knt
a
k=1

is obtained by

superpesition of individual terms.

(1)

(i1)

for the uniform force AO:

From equation (14), f(x,t) = - E%K - Then equation (18) gives
fn =0 for all n. The initial conditions are vV, = 0, and
Vn = 0 from equation (17}, and hence vn(t) = 0. Then the
stress is
= = = - Xy Ag
o=Fu =E =(] 2)1\— (21)

This is the stress due to the "rigid body" acceleration for

constant force.

for the cosine terms, A cos Zgﬁt :

From equation (14) we obtain,

R |

Then equations (17) and (18) give
%; v (o) =0 (22)
f(t) = - s%;%E;- A cos ZE"t (23)
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With equations (22) and (23), the solution of equation (16)

is K aZAk
v (t) =X { cos Zknt CoS w t } (24)
n ﬂz(erl - ]) a n
where
2L
U n2a2EA
and
w
"n = ZEH (26)
e
Then the stress associated with Ak cos 2:"t terms is
g = EuX = E(vX + Ux)
= A
= E: 2 k 2knt . onTX
= T N Sa— cos - C0S w. t - sin —=
n=| i (Yn - ]) 1 ¢ . } £
+(1 - %-) K cos Zs"t (27)

The Tatter term in equation (27) is the contribution associ-

ated with the "rigid body" acceleration.
2knt |
—

for sine terms, Bk sin
Equaticn (14) aives

x2 2

[4
e o '(2kn2 R B
{ A a EAZ | % ©05 =]

From equations (17) and (18),

f(x,t) =

r 4k¢B,
- _ L 28
dt 'n’° EAnzna (%)
2
_ 8k™¢ 2knt
fn(t) = m Bk sin 5 (29)
6




The solution of equation (16) with equations (28) and
(29) is

2 2
2K kB, o [(y- -2 K B
_ - n k n : n "k . 2kat .,
vn(t) e 7T prsinet+ 5> sin = (20)
R w Y, =1 (v, - 1)
n n ‘Tn
where
W
_'n
Rn ® Tle (31)
: , . 2kat .
The stress associated with Bk sin = is
2B Y, - 2
°7 E: — { Zk (-%}———-) Sin w t + ——— gip 2Kt }si X
ol nrA Rn Y - 1 n Yi -1 £
B
Xy K . 2knt
* -9 sin £ (32)

Again the latter term in equation (32) results from the "rigid
body" acceleration.
The stress at any point is obtained as the superposition of

equations (21), (27), and (32).




RESULTS AND DISCUSSION

Equations (21), (27), and (32) for the stress have been evaluated
on the NPS - IBM 360/67 digital comouter for specific values of Ak and
Bk cbtained by a Fourier decompositicn of the given breech force. This
decomposition is done by the IBM subroutine FORIT on the computer. The
bresent analysis resolved the breech force into 26 sine and cosine har-

monics, i.e.,

The magnitude of the harmonic coefficients Ak and Bk depend upon the
nature of the breech force. For this analysis, the force given in Fiz.
1 of Ref. 2 was used. Approximation of that force by equation (32) jeads

to

k Ay B, k A B,
0 14.1680 0. 14 -.3164 -.0186
1 -8.6082  9.6138 15 -.1682 -.0940
2 -3.2336  -4.3103 16 -.0552 .0146
3 1.3139 -.8107 17 -.1202 .0983
4 -.1162 1077 18 -. 2053 .0899
5 .1089 -.1257 19 -.1821 . 0827
6 -.2036 .339%4 20 -.2162 .0815
7 -.3478 -.0886 21 -.2723 .0286
8 -.3001 -.1664 22 -.2164 -.0294
9 -.2229 -.3071 23 -.1599 .0250
10 1728 -.2293 24 -.2146 .0638
1 .2260 .1067 25 -.2589 -.0065
12 -. 0425 .3243 26 -.2162 .0034
13 -.3157 . 2287
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A plot of equation (33) with the ahove values of Ak and B, is
given in Fig. 1 for a .026 second time dura“*~n of breech force.
Figures 2 through 5 are the results for the stress in the bar due to
the breech force shown in Fig. 1 as a function of time for %-ratios
of 0, 1/4, 1/2, and 3/4, respectively. (The analysis is for the 5 in.
steel shell of 0.19 in. thickness). Comparing Fig. 1 with Figs. 2
through 5 rcveals that the internal force appears as a duplicate of
the breech force, with the stress curves scaled versions of the force
input. In Figs. 6 through 8, the contributing harmonics are individu-
ally displ ed. The elastic dynamic effects are the small oscillations
about each harmonic itself.

Figures !0 through 14 are the results of the analysis for a
*ime duration of 0.0052 seconds for the brech force. This is a re-
duction in the actual duration by a factor of five. This sample prob-
lem was considered in order to assess the influence of the magnitude
of the force duration. The elastic dyramic effects can be clearly
seen in these figures., Note that the magnitude of stress has been

significantly changed by the dynamic effects.

CONCLUSIONS

The results of this analysis (Figs. 1-5) show that dynamic
effects are negligible for the breech force of 0.026 seconds time
duration of Figure 1, Reference 2. Hence, when the propellant is
not bonded to the motor case, the case responds to the breech force
as if it were applied in a static sense, i.e., the maximum internal

axial load in the case can be computed on the basis of the mass

|
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distribution and the maximum rigid body acceleration of the rocket.
This is the same conclusion arrived at in Ref. 1 based on a simple
one-half sine wave pulse; hence, accounting for the more complicated
actual breech pressure pulse confirmed the original conciusion.
Further investigation (Figs. 10-14) verified the dependence
of the dynamic effects or the presence of significant higher harmonic
terms in the breech force. Such harmonics may be the result of shor-
tening the time duration cf loading, or by the presence of a local
rapid perturbation of force on an otherwise acceptable smooth breech

force input.
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