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1.0    COULD YOU USE THESE PROBLEMS? 

The purpose of this paper Is  to describe the development,   Implementa- 

tion,  and availability of a computer program for generating a variety of 

feasible large scale L.P.  problems which are generally termed network problems. 

Among  the most frequently discussed network problems which the code can 

generate are capacitated and uncapacltated transportation and minimum cost flow 

(pure) network problems;as well as the slmplir    forms such as assignment, 

shortest path, and maximum flow problems.    In addition    to generating struc- 

turally different classes of network problems the code permits the user to 

vary structural characteristics within a class.    The user controls the size 

of the problem ao well as various parameters.    In particular,the user controls 

the size by specifying the number of pure sources  (origins), pure sinks 

(destinations), transhipment nodes with supply  (transhipment source nodes), 

transhipment nodes with demand  (transhipment sink nodes),  transhipment nodes 

with no supply or demand  (pure transhipment nodes), and the total number of 

arcs  (cells) in the problem.    The user has additional control of   the structure 

through the use of such parameters as:    total supply, cost range, upper ca- 

pacity range (the lower capacity of an arc is always zero), percentage of arcs 

tu be capacitated, and another parameter which implicitly controls solution 

difficulty.    Another feature of the program Is the inclusion of a random num- 

ber generator [4,22] with a user supplied seed.    This feature allows the code 

to regenerate the same problem if every input parameter is the same.    Thus, if 

one researcher wants to solve the same problems that another has solved, he may 

do so by using the same input parameters.     (Because of differences in word size 

and hardware arithmetic this may not be true across all computers.)  Since re- 

searchers can generate identical networks, another purpose cf the paper Is to 

provide problems benchmarked on several codes currently available.    While the set of 

benchmarked problems is small  (40 problems) their characteristics are widely diversified. 



*BP 

2.0 MORE PROBLEMS - WHO NEEDS 'EM? 

Since the earliest computational experiments with network computer 

codes both users and developers have been faced with the necessity of eval- 

uating such codes as to their capacity, speed, effectiveness (with respect 

to problem structure), and accuracy.  Initially most efforts were directed 

toward determining solution accuracy, however, more recently attention has 

been focused on the other attributes. This is due in Itrge part to the 

availability of competing algorithms [1,2,3,6,8,10,11,12,13,14,15,16,17,19, 

20], the development of larger network models, the increased use of network 

models in government and industrial applications, and new techniques for 

converting problems which otherwise appear to be unamenable to network for- 

mulation. Current computational studies [1, 2, 13, 14, 16, 20] have concentrated 

on problem size and solution time (relative to a particular class of networks) 

1/ 
because of the Interest of potential users to minimize their computer costs. 

Also some models are not being Implemented in Industry due Co the prohibitive 

21 
solution time and lack of computer codes to handle extremely large problems.- 

Further Interest in reducing solution time is stimulated by the fact that 

network problems often occur as subproblems in larger problems such as 

warehouse location problems, multi-commodity network problems, fixed charge 

transportation problems, and constrained transportation problems-. 

The problem of adequately "benchmarking" even the most thoroughly de- 

bugged codes arises, of course, in a variety of applications of computers to 

mathematical and scientific problems. However, many network problems involve 

quite large node-arc Incidence matrices (say 1500 by 10,000; that 1H, lr>0M 

nodes and 10,000 arcs). Consequently, the data handling and generation of test prob- 

lems become severe even for problems with well-known topologlcal characteristics. 

For this reason, tasks like the comparison of performance of network codes 
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must be carried out with Che raw material (I.e. test problems) at hand. 

Thus, one of the areas wherein our contribution lies Is that of pro- 

viding yardsticks for the evaluation of a number of overall performance 

characteristics of reasonably well debugged codes. Perhaps one of the most 

useful applications of our code Is that of measuring the solution time and 

accuracy of some well-known and widely used network codes when employed to 

solve very large problems (e.g.,the code could easily be used to create 

10,000 node problems of any desired arc density). Further, since this 

generator can be used to recreate problems, developers of new codes could 

use several standard "benchmarks" to compare their codes. Also, the avail- 

I 
ability. In quantity, of a meaningful variety of test problems» may help to 

Influence the Implementation of new solution techniques for network problems. 

All too often with new algorithms, an elegant theory has been a substitute 

for, rather than gone hand-ln-hand with, effective performance in practice. 

Some other attributes of having such a code available ar«: 

1. To permit codes developed for a more general class of problems to 

be easily tested on special subclasses. For Instance, codes developed to 

sol/e general minimum cost flow network problems could also be easily bench- 

marked on transportation and assignment problems, thus providing ways to 

evaluate the relative worth of the more specialized codes. To illustrate 

num erous algorithms exist for solving transportation problems and minimum 

cost flow network problems. Theoretically these problems are equivalent 

since any minimum cost flow network problem can be reformulated as a trans- 

portation problem. However, the question arises, "Is It worth developing 

and maintaining separate codes for each of these problem types, or should 

only one of the codes be developed? If only one, whicfe type should be 

developed?" From a theoretical standpoint, the O.R. literature reflects 

the feeling that both types of algorithms should be pursued. Similar 
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questions are relevant between algorithms for these problems and assignment 

problems or maximum flow problems. 

2. To encourage standardization of data specification for all types 

of network problems. One of the problems we encountered in trying to 

benchmark codes based on different methodologies (e.g., codes based on cir- 

culation networks such as out-of-kilter [2,3,17] and codes based on Che 

simplex method [6,12,13,14,20] )siui codes designed to solve different types 

of problems was their lack of uniformity far. iapat specification. To 

illustrate, out-of-kilter implementations assume that the input will be an 

arc at a time and that the network is a circulation network. The simplex 

based codes assume that the Initial Inputs will be the supply ßm.  demand of 

each node followed by the arcs; however, even this Is not standard, since 

some transportation codes assume that the supplies and demands are followed 

by the cost matrix and upper capacity matrix (if the problem is capacitated). 

Within this framework some codes assume the input of a complete cost matrix 

while others assume the input is by origin with a cost and dsstlnatlon node 

number for each admissible cell in the problem. To edd more confusion and 

frustration some of these codes assume the destinations are numbered starting 

at 1 and others from the number of origine plue one. This non-standardizacion 

of problem specification (in terms of input format) Is most frustrating and 

has hampered benchmarking since researchere are reluctant to re-code their 

input routines. Thus it is sssentiel to eetabllsh a stsndard way of speci- 

fying ell types of network problems se well as nstwork problems within e 

class. In order to achieve this stsndardization with minimum user Incon- 

venience, we use a network spseification which is compatibls with 8IAU 

[3,17] out-of-klltsr sines this Is probsbly the most widely used nstwork 

format. (See Appendix.) 
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3. To facilitate computational studies on the effect of parameter 

variation—such as changing the cost range, total supply, percentage of 

arcs capacitated, number of arcs, and capacity range, etc. 

A.    To generate problems which will test various parts of a code. 

Since till the problems generated by this code are feasible, it  is clear 

that wc can not generate problems capable of testing all parts of network 

solution codes.    In general,  the validation phases in the construction of 

large scale network codes present numerous challenges for adequately testing 

all parts of the cod«.    While establishing problems which will accomplish 

this is virtually untracked territory, we have tried to design this code to 

generate problems which will provide various challenges to solution codes. 

For example,  the code is capable of generating different network topologies 

(e.g., assignment, transportation, and general network problems) with dif- 

fering characteristics within each problem type.    Thus good programming 

practice and tie use of this generator can help to svert future fiascos, 

similar to those which are undocumented but which have become legend in 

the folklore. (An early example is the L.P.  "nut mix code", so called because 

of its ability to speedily solve this textbook problem, which had been used 

as a test problem during code development, and to solve no other problems .) 

3.0   The Creation Process 

With these thoughts in mind we turn our sttention to a more specific 

description of the methodology and other salient features of the generator. 

Having read th« input parameters(which are described in the Appendix) the 

size, type, and characteristics of the problem are fixed.   The program then 

creates a network problem within this framework. 
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Th« ov«Mll program can b* dlvldad into two Mlo parttv tat-fitafpart^tiates 

vhat la callad a akalaton natwork and la concamad with obtaining the proper 

nunbar of nodea of each type, Insuring the correct total supply, and guar- 

anteeing that the resulting problan will be connected and feasible.    The 

aecond part conpletea the problan while inauring that the rcoainlng specl- 

ficatlona are mat, such aa total number of area, coat range, upper bound range, 

and percentage of area capacitated. 

First, all nodes are given a number (integer) between one and the 

number of nodea, and the nodea are grouped into aeta by type (i.e., pure 

aource, transhipment source, pure tranahlpment, pure sink, and tranahipment 

alnk>.    During thla part of the program, tranahipmenc sources and sinke are 

treated aa pure sources and sinks, respectively.    The total supply is then 

randomly diattlbuted among the sources as follows:    (The program uaes random 

numbera from a uniform probability dlatributlon [4,22].)    the total supply 

ia divided by the number of aourcea and each aource la initially aaslgned 

the integer part of thla «mount.    Subsequently, the amount aaaigned to each 

source is randomly apllt into two integer amounts.    Bach aource retains one 

part of the split and ths other part is assigned to a sourcs chosen at random. 

The aupply of each aource la, thus, equal to the eum of the perts aaaigned to 

it.    Since the intitel division of the totel supply was truncated to equal 

integer portions, eny unasslgnsd supply is also aaaigned to a randonly chosen 

aource. 

Nest, a tree le randomly creeted from each aource node by generating 

erca involving the aource node end e rendom number of pure trenahipment 

nodea.    Thaee treea (called chains due to their etructure) are peirwiee 

dlejoint and mutually exhauative of all nodea «wept sinke«    In each chain 
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there is a single directed path from the source node to every pure tranship- 

ment node  In the chain. 

After the chains have been created,  each chain is connected to a 

random number of randomly chosen sinks.     During this procedure the last 

node in each chain is always connected to a sink while the remaining sinks 

picked for a chain are connected to members of the chain chosen at random. 

Simultaneously,  the demand amounts are accumulated for each sink by randomly 

distributing the supply of the unique source among the sinks connected  to the 

chain, in a manner analogous .to the distribution of tthe'total supply.     Since two 

or more chains may be connected to the same sink,  the demands of the sinks 

are successively accumulated as new chains are attached. 

In the case of transportation and assignment problems, since they contain 

no pure transhipment nodes, each chain contains only a source (origin) node. 

For transportation problems the origins are connected directly to a random 

number of sinks  (destinations) and the demands are created by distributing 

the supply as above.    For assignment problems each origin is randomly con- 

nected to a unique destination and each origin is given a supply of one and 

each destination is given a demand of one. 

At this point the network has the correct number of sources, sinks, 

transhipment nodes, and total supply.    Also the network is guaranteed to be 

connected and feasible (without capacities).    This partial network Is called 

the skeleton and its generation completes the first part of the program. 

Observe that the skeleton will only contain a few more arcs than is required 

to have a connected graph.    Thus,one of the major attributes of this procedure 

is its ability to create networks of extremely low density.    It should  be 

noted, however,  that problems with extremely low density will possess similar 

-7- 
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structural features due to this nrocess. 

The second part of the program begins by determining the costs and 

capacities for the arcs in the skeleton.    Using the percentage of arcs to be 

capacitated   (supplied In the Input), certain arcs in the skeleton are ran- 

domly chosen to be capacitated.    The upper capacity of each randomly chosen 

arc is set equal to the larger of the supply of the unique source of the 

chain In which the arc appears and the user supplied minimum upper bound. 

The remaining arcs in the skeleton are left uncapacltated.     (Note that the 

capacity of arcs In the skeleton may be higher than the largest upper capacity 

supplied by the user.)   A percentage (one of the input parameters) of the arcs 

in the skeleton (the specific ones are chosen randomly) are assigned the 

maximum cost.    Other arcs are assigned a cost randomly chosen between the lower 

and upper limits.    The flexibility to set the costs of a percentage of the 

skeleton arcs large is intended to discourage the use of these arcs In an 

optimal solution,  thus,  (possibly) making the network more difficult to solve. 

Figure 1 contains the skeleton generated by the code using the input speci- 

fications contained in Table I. 

L«><<uuuin-r*.«tii«l. *■(■•• «IN § »I» •    «Ufft*    •    MWCCS      •      •!>«»        »Nl CMT» €*»«€»•      «I». ,     •      »««        •    Hf".     * 

HUMTtTT*      !<• 3 « ♦•      3t*       IM    I*** 

Table I 
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Once the skeleton Is complete, the problem is guaranteed to be feasible 

regardlecs of the number, locetion, or characteristics of any additional 

arcs.    Therefore, all that remains is to randomly generate and distribute 

the required number of additional arcs.    (It is during this phase of the 

program that arcs are permitted to emanate from a transhipment sink and 

terminate at a transhipment source).    For each node, except pure sink nodes, 

a random number of additional arcs are created from this node to other 

randomly selected nodes, while insuring that no duplicate arcs are created. 

The number of nodes to which a given node is connected,  is randomly chosen 

from a range selected such that the final network will contain approximately 

the correct number of arcs.    This range is dynamically adjusted, as each 

node is successively considered, in order to reflect the number of nodes 

remaining for consideration and the number of arcs remaining to be created. 

During this process a cost is randomly chosen (within the proper range) for 

each arc created and the given percentage of them are given an upper capacity 

randomly chosen within its range.    This essentially completes the network except 

for adding a super-source (numbered one larger than the total number of nodes), 

and a super-sink (numbered two larger than the total number of nodes) in order to 

circularize the network.     (The nodes and the arcs added for the purpose of creating 

a circulation network arc not counted in the total number of nodes and arcs. 

They are Inserted for compatibility with SHARE  [3,17]   input format only.) 

Figure 2 illustrates the final network completed from the skeleton appearing 

in Figure 1.     (The dashed lines in Figure 2 correspond to the arcs added 

in order to cltcularize the network..    The dotted lines correspond to the 

skeleton arcs.) The costs and capacities of each arc are given in Table II 

in the same format as they appear on the problem file.     (See Appendix.) 
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TABLE II - Arc Parameters 

FROM TO UPPER LOWER 
NODE NODE COST CAPACITY CAPACITY 

13 1 0 300 
13 2 0 163 
13 3 0 287 
1 7 29 300 
1 5 93 750 
1 6 16 100 
6 12 20 750 
6 11 100 300 
6 10 25 100 
6 7 89 750 
6 4 24 100 
7 6 45 300 
7 9 85 750 
7 5 93 100 
7 8 74 750 
2 8 100 163 
2 10 11 100 
2 5 93 100 
8 11 35 163 
8 9 44 163 
8 4 27 100 
3 4 65 287 
3 8 93 100 
3 7 99 100 
4 5 21 287 
4 9 63 750 
4 12 27 287 
4 3 91 100 
5 11 47 750 
5 10 81 287 
5 7 39 100 
9 14 0 360 
9 12 65 100 

10 14 0 40 
10 5 32 100 
10 6 78 750 
10 8 56 100 
11 14 0 188 
12 14 0 162 
14 13 0 750 750 
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Not« that all arcs have an uppar bound, hovavar thoae arcs 

which ara conaldarad uncapacltatad have their upper bound set equal to 

the total supply. Mao, observe that all arcs have a lover capacity of 

zero (blank field), except the arc connecting the super-sink to the super* 

source which lias both upper and lower bound set to the total supply. 

One of the more salient features of the code and the one chlafly 

responsible for its ability to create large networks is the way the network 

is stored. The skeleton is the only part of the network stored in core. 

Further, it is stored as a set of linked lists, each list corresponding to 

a chain. The demand for each sink and all of the arcs in the skeleton, 

except for the arcs connecting the chains to the sinks, are contained in 

one node length array. (All additional arcs are output to the problem file 

as they are cceated.) There are three other arrays (each one is at most node 

length in size) whoae sole purpose Is to insure non-duplication of arcs. The 

program contains only two other arrays. One contains the bupplies of each 

source; the other is an array whose size is equal to the number of sinks and 

is used in connecting chains to sinks. Thus, the total array core require- 

ments of the code is at most 5 times the number of nodes,which accountR for 

our ability to generate problems with thousands of nodes and an unlimited 

number of arcs. This is in contrast to the rudimentary network genetators 

which use a node x node incidence matrix. The improvement in the ait-i  ca- 

pability is in addition to the flexibility and generality discussed earlier. 

Thus, the generator should prove to be quite helpful to practitioners and 

reHearchers for many years since no existing codes are capable of solving 

such large networks. 

-13- 
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4.0   Benchmark« 

To help establish a small set of problems which researchers can use to 

benchmark their codes, we have generated  and    solved 40 network problems 

using 4 network codes.    Table III contains the specifications of these 40 

problems as required on the Input cards.    Problems 1-5 are 100 x 100 trans- 

portation problems; problems 6-10 are 150 x 150 transportation problems. 

The parameter specifications of tne first ten were picked to correspond with 

the problems in [1,13]  to provide a basis for comparison.      Problems 11-15 

are 200 x 200 assignment problems. 

Problems 16-27 are 400 node capacitated network problems; problems 28-35 

are uncapacltated 1000 and 1500 node network problems.    The parameter spe- 

cifications of these problems, like the transportation problems, were picked 

to correspond with the problems in [1].    (The problems in [1] were generated 

using a preliminary version of this network generator.) 

To facilitate and encourage the development of large scale codes,we have 

included a few problems (problems 36-40) which are at the frontier of large 

scale solution code capability.    These problems are small, however, compared 

with the capability of the network generator. 

The four codes which we used to solve the problems are those of SHARE 

[3,17], Boeing, SUPERK  [1], and PNET.    The first three codes are out-of-kilter 

codes while the last code is the special purpose simplex network code referenced 

In footnote If.    The Boeing code, which was obtained through Chris Witzgall, 

was developed at the Boeing research laboratories.    Table IV contains the 

solution times (lot including input and output)   and optimal objective function 

value for each of the problems.     (The objective function values are included 

'to help code developers verify the solution accuracy of their codes.) 

-14- 
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TABLE IV 

Solution Times (sec) and Optimal Objective Function Value 

Problems PNET SUPEPK SHARE Boeing Objective Function Value 

1 1.30 5.68 17.76 30.25 2,153,303 
2 1.49 6.47 21.34 21.59 1,950,881 
3 1.94 6.87 26.16 31.47 1,565,928 
A 1.64 6.57 25.13 36.47 1,462,732 
5 1.88 6.77 ^0.97 47.73 1,342,058 
6 3.55 11.05 46.40 46.64 2,302,477 
7 4.06 12.86 65.92 113.12 2,046.034 
8 4.72 13.69 81.00 175.10 2,155,354 
9 4.80 13.40 81.21 186.99 1,775,454 

10 5.88 14.13 84.24 184.75 2.145,687 
11 3.52 6.44 19.93 30.39 4563 
12 4.87 6.47 21.17 22.08 3389 
13 5.52 7.25 25.81 20.02 3070 
14 6.02 6.95 24.95 23.11 2754 
15 6.50 7.56 27.05 21.08 2721 
16 2.40 5.27 21.51 15.05 69,612,156 
17 3.11 8.36 32.40 64.64 46,831,850 
18 1.92 5.13 20.06 18.31 68,197,261 
19 3.60 8.49 31.75 61.07 45,816,193 
20 2.67 4.69 18.11 25.72 65,940,530 
21 2.76 7.96 32.60 61.39 48,575,656 
22 2.22 4.60 17.91 24.84 65,770,640 
23 3.00 7.91 32.66 67.96 48,503.656 
24 3.12 5.59 25.27 21.57 ^2,612,577 
25 4.17 8.37 33.19 48.40 60,418,740 
26 4.45 5.51 25.05 19.34 82,612,189 
27 4.42 7.50 30.45 41.98 56,665,337 
28 6.35 13.91 53.87 83.98 122,582,531 
29 7.39 14.51 52.55 117.83 105,050,119 
30 9.08 16.00 61.33 152.21 86,331,458 
31 9.59 17.05 61.33 135.73 82,561.499 
32 15.70 22.88 78.63 553.93 174,279,219 
33 20.20 25.89 101.92 210.14 195,931.070 
34 17.10 25.42 92.25 248.16 160,007.929 
35 19.39 29.96 DNR DNR 162,270.303 
36 384.081 NA NA NA 860.372.467 
37 245.404 NA NA NA 351,773.733 
38 140.982 NA NA NA 8.»,886,945 
39 193.426 NA NA NA 512,111,082 
40 105.097 NA NA NA 130,366,881 

NA - Code and data would not fit In 104,000 words of memory. 
DNR- Did not run. 
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Th« tints reported In Table IV were obtained on e CDC 6600 uelng the 

FORTRAN RUN compiler.    The euthore have eolved tome of theee problons on 

a UNIVAC 1108 uelng the FORTRAN V compiler, and on the IBM 360/6S using 

the H compiler.    The times on the UNIVAC HOSvere about 10X slower, while 

the times on the IBM 360/65 were about 12X elower. 

A noteworthy feature of the compuuatlonal results that pervades the entire 

study is that PNET and SÜPERK are decidedly superior to the other codts. 

(Roughly, PNET and SUPERK are at leaat 4 times faster and In many cases 8-10 

times faster than the other codes.)    Furthermore PNET strictly dominates 

SUPERK.     (PNET is roughly twice aa fast as SUPERK.)    This is a surprising 

result elnce a non-extreme point algorithm is generally believed to t-e faster 

especially on assignment problems.  Another advantage of the primal simplex 

approach indicated by the computations, is the core requirements of such a 

code.    Whereas all of the out-of-kllter codes require at least 7 arc length 

arraya and 4 node length arrays, PNET only requires 3 arc length and 8 node 

length arrays.    Thus PNET is capable of salving auch larger problems than 

the other codes. 

One of the unique findings obtained by a joint analysis of the three 

problem types is that assignment problems appear the easiest to solve, fol- 

lowed by general minimum cost flow network problems, and hardest to solve are 

the transportation problems.    This finding la unexpected eince it le a part 

of the folklore that transportation problems are easier to solve than net- 

work probleme. 

Another aspect of these computational results is that the transportation 

problem solution timee on the out-of-kllter codes (particularly the SUPERK timee) 

are substantially longer than (twice as long as) those reported in [1,13].    This 

reHult demonetrateH the neud fur rcHearchers to use a atandard problem generator 

-17- 
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■Inc« tht tflM probl« p«r«i«t«ra war« uMd to gMicrat« both th« problms 

In U»3) «nd eh«M problM« vlth difftrcnt gmaraeora. Slallarly eh« net- 

work probl«« 16-33 w«r« g«n«i'at«d using th« •«»« p«r«a«t«r« and only dlf- 

f«r«nc versions of our ganerator. Howovar, cha solution tiaaa raportad in 

Tabla IV ara slightly longar than thoaa in [13]. 

J 
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Poocnotsi 

1.    Network codas and coaputatlonal atudlaa which ara currantly In prograaa 

Includat 

a) a naw out-of-klltar approach by M. Florian, dapartaant of Information, 

Uaivaralt« Oa Nontraal. 

b) a apacial purpoa« primal alaplax natwork coda by Cravaa, 

and R. Mc Brlda , Graduata School of Buainaaa, Univaralty of 

California at Loa Angalaa. 

c) a ainiaua coat flow natwork coda (tha axact mathodology to ba anployad 

la not known) by Burrougha Corporation. 

d) a naw out-of-klltar approach by tha Taxas Watar Davalopaant Board. 

a)   a coda for wiving transportation problama with concava coat functions 

by 1. Soland, Cradvata School of Buainaaa, Univaralty of Taxaa at Auatin. 

f)   a computational atudy on a primal almplax natwork coda by Clovar, Karnay, 

Klingman, Graduata School of Buainaaa, Univaralty of Taxaa at Auatin. 

2. To illuatrata, Paul Randolph at Naw Haxico SUta Univaralty, in conjunction 

with tha dapartmant of Agriculture has davalopad a 320 origin by 22S0 

daatlnation tranaportation modal with S6,000 admlaalbla calla and twanty 

f ixad charga variablaa for achadullog cotton to gina.    Tha Cantor For Cybar- 

natic Scudiaa (diractad by A. Charnaa) at tha Univaralty of Taxaa at Auatin 

has davalopad a 400 origin by 1500 daatlnation tranaportation modal with 

20,000 admlaalbla calla and 3 axtra conacrainta for achaduling alack pro- 

duction at Farah Manufacturing Corporation.   Alao tha Cantar for Cybarnatic Studlaa 

la davaloplag a funds flow modal for Ganaral Notora with 10,100 orlgina, 

10,000 dastlnations and 500,000 admlaalbla calla. 

3. Tha problsma in (1] wara alao uaad In tha forthcoming computational atudy 

dlscuaaad In f of footnota 1. 
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APPENDIX 

INPUT-OUTPUT 

Data Preparation 

The data (input) deck must contain 2 cards  (punched according to the format 

below)  for each problem desired.    The program will generate a separate network 

problem for each pair of cards in the data deck. 

The following are the input requirements for each problem : 

COLUMNS CONTENTS VARIABLE  (TYPE) 

Card 1. 

1-8                8 digit positive integer to initialize ISEED(l) 
the random number generator.     (Must have AND 
at least one non-zero digit in columns ISEED(2) 
1-3 and in columns 4-8 .) (INTEGER) 

Card 2. 

1-5      Total number of nodes  NODES (INTEGER) 
6-10     Total number of source nodes (Including 

transhipment sources)   NSORC (INTEGER) 
11-15     Total number of sink nodes (including 

transhipment sinks)  NSINK (INTEGER) 
16-20     Number of arcs   DENS (INTEGER) 
21-25      Minimum cost for area   MINCST (INTEGER) 
26-30     Maximum cost for arcs   MAXCST (INTEGER) 
31-40      Total supply  ITSUP (INTEGER) 
41-45     Number of transhipment source nodes   NTSORC (INTEGER) 
46-50     Number of transhipment sink nodes   NTSINK (INTEGER) 
51-55     Percentage of skeleton arcs to be given 

the maximum cost   BHICST (REAL) 
56-60     Percentage of arcs to be capacitated   BCAP (REAL) 
61-70     Minimum upper bound for capacitated arcs.. MINCAP (INTEGER) 
71-80     Maximum upper bound for capacitated arcs.. MAXCAP (INTEGER) 

All input values on card 2 must be right - justified in their field. 
The variables BHICST and BCAP should have a decimal point included. 

To generate transportation and assignment problems the number of sources 

plus the number of sinks must equal the total number of nodes and the number 

of transhipment sources and sinks must be equal to zero (I.e., NSORC + NSINK« 
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NODES and NTSORC - NTSINK "0).    In addition, to create assignment problems 

the number of sources must equal the number of sinks and the total supply 

must be equal to the number of sources (i.e., NSORC - NSINK - ITSUP). 

The maximum number of arcs which the program will create Is equal to the 

number of pure sources (NPSORC - NSORC - NTSORC)  times the remaining nodes 

(N0NSORC - NODES - NPSORC)  plus the total number of transhipments (NODES - 

NSORC+NTSORC-NSINK+NTSINK)   times N0NS0RC -1.     If  the user uAa for this 

number uf arcs or greater the network produced will contain this number of 

arcs.     (Note:    A network containing this number of arcs is totally dense.) 

Output Format 

The program writes two files, an output file (printer) and a problem file 

(tape, disk or cards).        The problem file contains all of the problems re- 

quested in. a format compatible with SHARE 13,17]  input format.    Each problem 

consists of a set of card images written as follows (beginning in column 1): 

BEGIN        (additional title information) 

Title card for this problem 

ARCS (additional title Information) 

arc data cards 

END 

SOLVE 

Each of the arc cards is written as follows: 

cols. 1-6 blank 
7-12 number of "from" node 

13-18 number of "to" node 
19-20 blank 
21-30 cost 
31-40 upper capacity 
41-50 lower capacity 
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Table 11 contain« the arc data cards (aa written on the problem file) 

for the problem specification given in Table 1.     (Note, that all the arcs 

emanating from a node appear togetier.)    The three header cards (BEGIN,  title, 

ARCS) for this problem are given below: 

BEGIN RANDOM NUMBER GENERATOR SEED-12345678,  PERCENT HI CST-35.00 

NODES -  12,S0RCE-      3,SINK-      4,ARCS-      32,C0ST-    10- 100,SUPPLY-    750 

ARCS      TS0RCE-      0,TSINK- 2,CAP-    100-        400,PERCENT CAP- 70.00 

A file containing n problems will appear as follows: 

BEGIN 
title card 
ARCS 

arc data cards 

END 
SOLVE 

Problem 1 

BEGIN •% 

title card 
ARCS 

arc data cards ^Pr 

END 
SOLVE 4 

QUIT End of Job 

The output file consists of a summary of the user input specifications 

and the actual number of arcs generated for each problem.    Table I is similar 

to the summary produced by the code. 
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