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LiH Potential Curves and Wavefunctions for X '2+, A ls+, B «n, »2+, and «n* 

KATE K. DocKENt AND JUERGKN HINZE 

Depnilmenl of Chemistry, Univernly o] Chicago, Chicago, lUinois 60637 

(Received 3 August 1972) 

Ab ir.itio multiconfiguration self-consistent-field calculations are reported for the potential curves and 
electronic wave functions of the states X '2+, A lS+, B 'n, 'Z*, and 01 of LiH. In this calculation, tho 
outer two electrons are correlated, while the \a shell, essentially a K shell on Li, is left uncorrelated. The 
obtained dissociation energies, with the known expefimental values in parentheses, are ^.(X'Z4)- 
2.411(2.5154) eV, Ö.U '2+) =■ 1.048 (1.0765) eV, ^.(B'n)-0.017 (0.035) eV and £>.(»n) =0.226 eV. 

INTRODUCTION 

As the smallest neutral heteropolar molecule, LiH 
has been a favorite molecule for theoretical investiga- 
tion. Since a reasonable amount of accurate spectro- 
scopic data is available for LiH, detailed calculations 
can give a good assessment of a giver computational 
procedure, and at the same time, information which 
can aid in the understanding of the observed data. 
Until recently, most theoretical work done on LiH 
(and on molecules in general)  concentrated on de- 
scribing the ground state and its properties only. The 
experimental information available goes beyond this 
and a more complete theoretical study should include 
the calculation of wavefunctions, potential curves, and 
properties of ground as WPII as excited states. It is with 
this aim that we set out to compute the five valence 
excited states X «2+, A «S"1-, B 'IT, »2+, and »11 of LiH. 
This allows one to evaluate the capability of th3 multi- 
configuration self-consistent-field   (MCSCF)   method 
to yield accurate potential curves, term values and 
molecular properties for ground and excited states. 
In addition one can expect to obtain a more detailed 
understanding of some of the observed anomalies in 
the LiH spectrum. 

A careful spectroscopic analysis of the A 12+-X ,2+ 

band system of LiH and LiD by Crawford and Jorgen- 
senIS revealed that theG{v) andB, values of the A '2+ 
state do not show the normally expected decrease with 
increasing v. Instead they rise initially, before the nor- 
mal decrease sets in, yielding anomalous negative values 
for w,x, and a,. The same anomaly is observed for the 
A *?.+ states of other alkali hydrides. On the basis of 
their observation, Crawford and Jorgensen concluded 
that this anomaly must be ascribed to peculiarities of 
the potential energy curve of the A l2+ state alone.' 
Mulliken4 explained the exceptional shape of the A 12+ 

potential curve as being due to an avoided crossing 
of the zero-order curves of LiH and Li+H-. However, 
more recently Jenö* argued that the anomalous character 
of the A '2+ states of the alkali hydrides should be 
ascribed to nonadiabatic effects, i.e., a breakdown of 
the Born-Oppenheimer approximation. 

In addition to the A Xlf-X •2+ band system, Velasco8 

identified in 1957 the B 'II-X 'S* system, characterizing 
the Bxll state as weakly bound (I>,= 0.03 eV). No 
theoretical study to date has yielded a bound potential 

curve for this state. Also the corresponding '11 state, 
which is expected to lie below the singlet state has not 
as yet been identified. 

In the following paragraphs we will give a brief out- 
line of the MCSCF method used in the present cal- 
culations, together with some computational details 
such as basis function choice and selection of configura- 
tions. This will be followed by a presentation and dis- 
cussion of the calculated wavefunctions, potential 
curves and expectation values of various one electron 
operators. A more detailed spectroscopic analysis, in- 
cluding the calculation of rotation-vibrational wave- 
functions, energies, term values and vibrationally 
averaged properties will be presented in a forthcoming 
publicalion. 

THE MCSCF METHOD 

It is essential in a computation of the present scope 
to obtain correlated electronic wavefunctions and 
energies, since the correlation energy is expected to be 
significantly different at different internuclear distances 
as well as for the different states. It is well known that 
a configuration interaction (CI) type wavefunction 

t 
(1) 

is capable of representing correlation effects exactly, 
provided the CI expansion is carried far enough. It is 
obvious that the convergence of this CI expansion will 
depend critically on the appropriateness of the exp^n- 
siou functions */. In the conventional CI methods as 
here, the *'s are configuration state functions (CSF's), 
i.e., specific linear combinations of Slater determinants 
(SD's), such that they are eigenfunctions of the sym- 
metry operators of the system. The SD's themselves 
are constructed from symmetry adapted orbitals. The 
expansion functions */ and thus the convergence of 
(1) will depend therefore on the type of orbitals which 
are used in their construction, as well as on the de- 
tailed functional shape of the orbitals. It is here where 
the difference between conventional CI and MCSCF 
lies. In conventional CI only the expansion coefficients 
Ci are optimized variationally, while the MCSCF also 
optimizes variationally the detailed shape of all the 
orbitals entering the total wavefunction. Thus one 
obtains a wavefi'action which will give the lowest pos- 
sible energy with the given number and type of CSF's. 

4928 
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The procedure for computation is then to 

(1) select initial orbitals and configuration types, 
(2) solve the CI problem for the state desired, 
(3) construct the SCF equations from the first and 

second order density matrices of the selected state 
of (2); 

(4) solve the SCF equations. 

Steps (2)-(4) are iterated to convergence. If we select 
in (2) always the Kth lowest root, then one will obtain 
an upper bound to the true energy of the Kth state 
of a given symmetry. Unfortunately this process does 
not always work except for the lowest state of a given 
symmetry. The reason for this is as follows. Since the 
orbitals are optimized in the field corresponding to 
state K, this state will be described beUer and its 
energy lowered. However if one of the lower states, for 
instance, state J, has a very different charge distribu- 
tion than state K, thus requiring quite different orbitals, 
it follows that the orbitals obtained for state K will 
be poorer for state /. Thus the energy of state J, orig- 
inally below state K, will be raised. This may eventually 
lead to a flipping of the energy order of these two states, 
preventing convergence of the MCSCF process. Such 
a state flipping will always happen when the excited 
state desired has a state of the same symmetry only a 
little lower in energy, but with a b'bstantially different 
charge distribution. This is exactly the case for the 
A '2+ state of LiH, the X 'S"1" state being lower by only 
a few eV. It is possible in this case to optimize the 
orbitals in the averaged field of both states, obtaining 
compromise orbitals which will describe both states 
equally well, however neither optimally. Fortunately 
it is possible to make up for the deficiency in these com- 
promise orbitals by the addition of a few singly excited 
configurations. This will become clear in the discussion 
on configuration selection. The details of the MCSCF 
method as well as the "averaged field method" are 
described explicitly elsewhere.7 

CHOICE OF CONFIGURATIONS 

It appears reasonable that in LiH the correlation 
energy of the l<r shell, essentially the K shell of lithium, 
rp-nains nearly constant as the potential curves are 
traversed and as the outer electrons are excited. There- 
fore we have chosen to correlate only the outer two 
valence electrons, which simplifies the problem sig- 
nificantly. In the two electron correlation problem 
singly excited configurations do not contribute; there- 
fore it is possible to account for the correlation energy 
of the B ln, »11 and *& states by using only doubly 
excited ccuifigurations. The particular ones chosen for 
these three states are presented in Table I, where the 
bold configuration signifies the dominant one in each 
state for all Intemuclear distances calculated. 

The configuration choice for the averaged field cal- 
culation of X l2+ and i4 ^ is not as straightforward. 

TABLE I. Types of valence configuratioiw used. 

XlZ+ l(^>{2<7)+4<71-t-S<7,-t-6a»+l1r1^-21rI-|-l«,-^-2«, 

and 

A l£+ 2<r3ff-|-4<TS<r-|-4ff3<r+5<r3(r+6(T3(r+lT27r+l«2«) 

B m lff«(2dl«+3<r2)r-|-4<T3T+2Tl«+3irl«) 

'n l(T»(2<Jljt+3(r2T-|-4(r37r+2irl«-|-3jrlÄ) 

•2+ I<r'(2<l3d+4<rbc+lir2)r+l«28) 

Fifteen configurations  were used and are given in 
Table I. The lowest energy configuration of '2+ sym- 
metry at intermediate R values is lc22(r2, and of neces- 
sity ionic (Li+H-). The la is a Is H" type orbital. The 
configuration of next lowest energy in the intermediate 
R range is WlaSa. In this case the la orbital is a much 
more contracted Is H-like orbital, and the 3a is a diffuse 
2s-2p hybrid on Li. Because of the double occupation 
in the ground state, the 2a orbital determined in the 
averaged field calculations is essentially that for the 
ground state. Thus it is too diffuse in nature to describe 
adequately the 2a orbital in the A '2+ state. The pur- 
pose of the thirteen additional configurations was to 
correlate the ground and first excited state and to make 
up for the 2a orbital deficiency in the excited state. 
Because of the doubly occupied configurations, the 
ia, 5a, and 6a orbitals essentially contribute to in-out 
and left-right correlation of the ground state. By not 
including a So2 configuration which would attempt to 
correlate the ground 2a also, we tried to make the 3a 
orbital an orbital of the excited state only. By consider- 
ing 2aA 1i+=2ax 1i++4<r+5o+6ff in order to make up 
for orbital deficiency, the configurations 3a4<r, 3a5a, 
and 3a6a arise. The doubly occupied JT and 6 configura- 
tions primarily introduce angular correlation into the 
ground state, while the 1x2«- and U28 configurations 
are more effective in correlating the A 12+ state. A 
discussion of the orbitals and important configurations 
in the wavefunctions of these two ,2+ states at several 
internuclear distances is postponed until the ne\t sec- 
tion. 

It was found both convenient and time 3<iving to 
move across the potential curves in one direction using 
the converged orbital coefficients for each state at the 
preceding internuclear distance to begin the calcula- 
tion at each point. No convergence difficulties in solving 
the SCF equations were encountered in the calculation 
of the B 'II, '11 and '2+ states. These states retained 
the same dominant configuration all across the potential 
curves, the orbitals of the additional configurations 
being solely used to correlate the valence electrons. 
In the averaged field calculation of the A l2+ and X I2+ 

states, convergence difficulties, characterized mainly 
by orbital flipping among the valence sigma orbitals, 
could be avoided when the R step size through the 
curve-crossing regions was made small enough. It is 

MBMHfl iMMl 



^■» 

4930 K.   DOCKEN   AND   J.   HINZE 

TABLE II. Basis set of Slater-type orbitals: 23ffX8irX4«. 

N M Zeta 

1 1 1 0 0 4.6351 
2 2 1 0 0 :».4730 
3 3 2 0 0 1.0330 
4 4 2 0 0 0.8237 
S 5 2 0 0 0.5100 
6 6 3 0 0 2.6811 
7 7 2 0 3.9004 
8 8 2 0 2 1109 
9 9 2 0 1.0758 
10 10 2 0 0.7359 
11 11 2 0 0.5100 
12 12 2 G 0.3500 
13 13 3 2 0 1.4974 
14 14 3 2 0 0.9866 
15 15 4 3 0 1.7748 
16 16 1 0 0 2 1.9S83 
17 17 1 0 0 2 1.0000 
18 18 1 0 0 2 0.7000 
19 19 1 0 0 2 0.4000 
20 20 2 0 0 2 2.2425 
21 21 2 0 2 1.0633 
22 22 2 0 2 0.5480 
23 23 3 0 2 1.5774 
24 1 2 1 1.5600 
25 2 2 1 0.7800 
26 3 2 1 0.5472 
27 4 2 1 0.3500 
28 5 3 1 1.0000 
29 6 2 2 2.0000 
30 7 2 2 1.0000 
31 8 3 2 2.1000 
32 1 3 2 1 1.0000 
33 2 3 2 1 0.5000 
34 3 3 2 2 2 2.0000 
35 4 3 2 2 2 1.0000 

felt that the dual role of these orbitals—that of cor- 
relating the ground state 2a and making up for de- 
ficiencies in the excited state 2a—imposed a strain. The 
valence sigma orbitals were attempting to optimize 
simultaneously in several different regions of space. 

CHOICE OF BASIS SET 

The importance of choosing a good basis set cannot 
be underestimated in a multiconfiguration technique, 
for, in the limit that all configurations are included, 
the basis set determines the quality of the calculation. 
Since the same basis set of Slater-type functions (STF's) 
was used for four of the five states of LiH, the following 
factors were considered important in selecting it: 

(1) how well it reproduced the ground state Hartree- 
Fock 

(2) how adequate it was for description of correlating 
orbitals 

(3) in the averaged field case, how it could com- 
pensate for orbital deficiencies 

(4) how well it could describe the excited states. 

Utilizing the same basis set for all states is economi- 
cal, in that integrals have to be calculated only once at 
each intemuclear distance. Also, it ensures that the 
representation of the core orbital does not change from 
one state to another. The calculation of the transition 
moment, in addition, is considerably simplified. Since 
one of our primary interests was in accurately calculat- 
ing the ground and firs* excited W states, we knew 
that we needed a large and flexible basis set. It seemed 
reasonable, therefore, that with few extra functions 
added the basis would be sufficient for the IT states 
also. 

The basis set used in our final calculation is listed 
in Table II. A subset of 2\a, 7ir and 4« STF's (all the 
listed functions except for those nuinbf red 12, 19, 27) 
was optimized at the equilibrium inte. nuclear distance 
for the A' 'Z-*- state with the 2a shell correlated. Pre- 
liminary calculations were carried out with this re- 
duced basis and it was found necessary to add the three 
additional diffuse functions (12, 19, and 27) in order 
to describe better the A '2+ state and the IT states. 
The '2+ state, however, was not recalculated. The 
total basis set yielded for the X '2+ s'-Ue the Hartree- 
Fock energy of -7.987317 hartree at 3.0 bohr, essen- 
tially the Hartree-Fock limit. 

CALCULATED POTENTIAL CURVES 

The potential curves obtained are given in Tables 
III and IV and displayed in Fig. 1. Within the frame- 
work of the Hartree-Fock model the X '2+ state with 
configuration lff22(r2 will dissociate to ions, Li+(15) + 

TABLE III. Potential curves for four states of LiH. 

R XW, ^'2+ Bin, «n, 
(bohre) jE(hartrees)   £(hartrees)    £(hartree8)    £(hartrees) 

2.00 -7.948461 •-7.804494 -7.7667212 -7.7857226 
2.25 -7.986659 7.841651 -7.8048017 -7.8225261 
2.50 -8.007771 -7.865183 -7.8288091 -7.8452320 
2.75 -8.017994 -7.880054 -7.8438361 -7.8588998 
3.00 -8.021254 -7.889358 -7.8531226 -7.8667765 
3.25 -8.020163 -7.895156 -7.8587516 -7.8709706 
3.50 -8.016339 -7.898690 -7.8620695 -7.8728632 
4.00 -8.004649 -7.902121 -7.8649605 -7.8730600 
4.50 -7.990950 -7.903239 -7.8656627 -7.8714465 
5.00 -7.977741 -7.903563 -7.8656819 -7.8696445 
5.50 -7.965892 -7.903427 -7.8655471 -7.8681780 
6.00 -7.955901 -7.902660 -7.8654140 -7.8671223 
6.S0 -7.948031 -7.900999 -7.86i3134 -7.8664058 
7.50 -7.W8476 -7.894651 -7.8651918 -7.8656261 
8.50 -7.934672 -7.Ü85984 -7.8651279 -7.8652968 
10.00 -7.933082 -7.874234 -7.8650787 -7.8651187 
12.00 -7.932752 -7.866665 -7.8650508 -7.8650565 

1 
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H-CS). The ionic dissociation limit lies about 4.64 eV 
above the neuirai atoms. [The ionization potential of 
Li('5) is 5.39 eV8 and the electron affinity of H(s5) is 
taken as 0.75 eV.] The neutral, ground-state atoms 
Li(85) and H(25) can give rise, however, to molecular 
states '2+ and ,S+. By the adiabatic noncrossing rule, 
therefore, the A'I2+ state must dissociate to Li(sS) + 
H(25). Consequently the wavefunction must change 
character from ionic to neutral as the potential curve 
is traversed from small to large R, and this is well de- 
scribed by an MCSCF type wavefunction. 

The A12+ state, with molecular configuration 
laa2a3(r, is predominantly Li-H+ for small R. In the 
region 6.0-10.0 bohr, however, this state interacts 
strongly with the 1/R ionic curve which is dominant 
in the ground state for small R. As the ground state 
becomes more neutral in order to dissociate correctly. 

O) 

-7.76 

i     i      i     i      I      i      ; i    i    T—i—r 

üM's): 
-7.78 "    1 - 
-7.80 ■    I - 
-7.82 '    l\ - 
-7.84 ■ IvV L- 
-7.86 -   K^   'n .^H?S|r 
-7.88 ■ V   5n     ^ 

JJ^^LK'P): 

-7.90 '■   \^JiL~^r - 
-7.92 :    V^_/ H(2S)- 
-7.94 U(2S)- 

-7.96 " \       //^ - 
-7.98 - \     y - 
-8.00 

K^n 
- 

-8.02 ~ i   i /  i   i   i   i i   i   i   i   r 
1.0 2.0 3D 40 5.0 60 7.0 8.0 9.0 OO il.0 \LQ 13.0 

R (bohrs) 
Fio. 1. Potential curves of five states of LiH. Included also 

is a 1/Ä curve, referred to the ionic limit Li++H-, £--7.764 
hartree, a' /{=oi. 

the A '2+ becomes ionic (Li+H-) with dominant con- 
figuration l^ff*. This state would dissocia' e to ions if it 
were not for the fact that the excited atoms Li^P)-!- 
HCS) can also give rise to a 'S* state. This dissociation 
limit lies 1.85 eV above the ground state neutrals— 
almost three electron volts lower than the ionic limit. 
Therefore, i.he A '2+ state imat for large R become 
neutral and dissociate to Li(,P)+H(,5). Two avoided 
crossings which alter the character of the wave function 
occur in this A '2+ state. 

In Table V are listed the four most important con- 
figura ions in the X ^ and A ,2+ calculation and the 
appropriate CI mixing coefficients for each state at 
three different internuclear distances. These distances, 
3.0, 7.5, and 12.0 bohr were chosen to show how the 

TABLE IV. Potential curve points for ,2+.' 

K 
(bohrs) 

Energy 
(hartrees) 

R 
(bohrs) 

Energy 
(hart rets) 

2.0 -7.81863 4.0 -7.91984 
2.5 -7.87889 5.0 -7.92584 
2.9 -7.90027 6.0 -7.92944 
3.0 -7.90366 7.5 -7.93189 
3.1 -7.90655 9.0 -7.93256 
3.5 -7.91442 12.0 -7.93271 

• Calculated using a 21<rX7)rX4« set of STO's given in Table 
III eliminating basis functions 12, 19, and 77. 

character of the wavefunctions for these stales changes 
with R. The orbital expansion coefficients for the 2a, 
3J, and Aa orbitals at the three internuclear distances 
are presented in Tables VI, VII, and VIII, respectively. 
At 3.0 bohr the dominant configuration for the ground 
state is lffä2ffs with the diffuse 2a having most weight 
on basis functions 17, 18, and 19 (Table VI). There 
is some small Li 2s -2p contribution—enough to indicate 
that this is a molecular orbital. The 3a is diffuse 2JU 
with some 2pu and diffuse H~ character—also a mc 
lecular orbital. The 4a character is difficult to pinpoint, 
but it has large contributions on H basis functions to 
correlate the 2a and contributions arising also from 
Li 2s and 2p functions. 

In going from 3.0 to 7.5 bohr the orbitals of course 
do change character slightly, but not drastically. In- 
dividual changes are difficult to identify with such a 
large basis merely by looking at the orbital expansion 
coefficients. The change in the configuration mixtures 
for the states is to be noted at 7.5 bohr. Now the la*2a3a 
configuration is dominant in the A ,2+ state and the 
A ,2+ state is predominantly la,2as. The ground state 
has become neutral and the first excited state ionic. 

TABLE V. Dominant configurations in the X1S+ and A XZ+ states. 

Configuration mixing coefficients 

IMo1 l»»2<r3<r loM«» 1»«3<^ 

Ä-3.0 bohr 

XV* 0.96 -0.23 -0.10 0.07 
AW 0.24 0.94 -0.03 -0.24 

£-7.5 bohr 

X»2+ -0.40 0.78 0.13 -0.39 
,4 «2+ 0.84 0.44 -0.22 -0.21 

Ä-12 0 bohr 

X'S* -0.07 0.77 0.04 -0.62 
AlS+ 0.84 0.06 -0.54 -0.05 

h^l-. 
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TABLE VI. Comparison of 2a orbital for X and A g states at three intemuclear distances. 

<r Basis functions 
Orbital coefficients 

1 
2 
3 
4 
S 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

N 

1 
1 
2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
3 
3 
4 
1 
1 
1 
1 
2 
2 
2 
3 

0 
0 
n 
0 
0 
0 

2 
2 
3 
0 
0 
0 
0 
0 
1 
! 
2 

.1/ 

0 
0 
0 
0 
0 
0 
a 
o 
o 
0 
0 
0 
0 
o 
0 
0 
0 
0 
0 
0 
0 
0 
0 

A' 

2 
2 
2 
2 
2 
2 
2 
2 

Zeta 

•.V63S1 
2.4730 
1.0330 
0.8.537 
0.5100 
2.6811 
3.9004 
2.1109 
1.0758 
0.7359 
0.5100 
0.3500 
1.497' 
0.986< 
1.774}, 
1.9883 
1.0000 
0.7000 
0.4000 
2.2425 
1.0638 
0.5480 
1.5774 

3.0 bohr 

-0.00305 
-0.12211 
-0.01111 

0.20176 
-0.17579 
-0.03982 

0.00560 
-0.00410 

0.09S21 
0.11922 
0.03258 

-0.01408 
0.00919 
0.01120 
0.00279 
0.07231 
0.26934 
0.40755 
0 13425 
0.01403 

-0.02485 
-0.02622 

0.00344 

7.5 bohr 

-0.00045 
-0.01359 
-0.14824 

0.^4952 
-0.12169 

0.00632 
0.00166 
0.00763 

-0.03667 
0.12243 
0.24619 

-0.05585 
-0.00906 

0.02561 
0.00094 
0.07333 
0.19550 
0.39494 
0.24966 
0.02760 
O.OIO-.J 

-0.05529 
0.00153 

12.0 bohr 

-0.00058 
-0.00412 
-0.01674 
-0.01999 

U.04033 
-0.00305 

0.00103 
0.00783 
0.02540 

-0.03274 
0.61914 

-0.02548 
-0.00143 

o.oon? 
0.00013 
0.01961 
O.S7S31 
0.03894 
0.16892 
0.00469 
0.00765 

-0.01872 
-0.00012 

At 12.0 b the 2a orbital is well represented as a linear 
combination of a diffuse Li 2p function and an H U 
••e., VPU+UH) The 4<r orbital is just the orthoEonal 
component to this, {2pu- hH), Very atomiclike at this 
intemuclear distance, the 3<r orbital is 2su with essen- 

Äm^Äf^S BeCaUSe the A '* dissociates to Li ( F) +H(,.S) and I las no Li 2s character at laree R 
the weights for configurations la«2a3a and 1^3^ are 
very small in this state. One can understand the con- 
figuration mixture for both states from a valence-bond 
standpoint For the A '2+ state the 2a» configuration 
is essen lallv {2pu+Uny whi,e the fa« confi^uratio^ 
mu- Uay enters with thi opposite sign. Thus valence 
bond components 2puhH are enhanced, while the 
lomc components 2pu* and 1JH' ate subtracted. The 
ipuls* description is necessary to be consistent with 
the dissociation limit. 

The same sort of argument explains the equal mae- 

S*  4-U vf w^',n ^ermS 0f atomic functions 
2^L1+liH)(2JLi)-(2^1-ljH  2^,). The 2pu2su con- 

tnbuuons cancel, while the 2^ components S3 
gving us what we expect for dissociation to Li(»5) + 

The remaining states arising from the Li('P)+ 
H( S, separated atom limit are B '11, »n and »2+ Of 
th«* we performed calculations on the II states, only 
which have ÜK dominant configuration la'2al,r The 
2+ state we did compute is the lowest of that par- 

ticular symmetry (with configuration 1^2^) and 
b a repulsive state dissociating to ground state neutrals 

In order to calculate dissociation energies from the 
potential cirves for each of the molecular states we 
need the e icrgies of the separated atoms at the dis- 
sociation limits. Because we are not correlating the 
l<r hthium core at all we want the energy of the sepa- 
rated atoms to reflect this. Therefore wc choose to take 

S^IH^owt en<irgi.eS at the dissociati°n ümit 
T   !o +H( 'S) the calculated Hartree-Fock enercy of 
f ,(H icw~J-432726 hartree,0 and the exact ene'rgy 
for H(«5) of £=-0.5 hartree. The sum of these two 
energies, £=.-7.932726 hartree. gives the separated 
atom ground state energy with an uncorrelated Is shell 
on hthium. The X^ and «2+ state dissociate to 
th«c separated atoms. It can be seen from Tables III 
arid IV that at 12.0 boh- both states are virtually at 
this energy limit. ' 

v,^? S^COnd dissociat«on limit of interest is Li (»/>) + 
H «5), involving a 2^2^ excitation of the lithium 

^VTvfpTo fr0m ^ gr0Und state atom- Using 
fe      wi   "artr^-.Fo<:k   energy,    £=-7.365068 

ntsus -i^StT 'T1 energy for Ll^>+ 
S.M i J'8650^ har.tree- An estimate for this limit 
could also be made using the Li(»5) Hartree-Fock 

7? ri-i ^P TltTn ^W-" An e,1ergy about 73 cm higher than that quoted above is obtained 
because this does not account fov a difference in cor- 
relation in the ls*2s versus ls*2p confipurationr. It 
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TABLE VII. Comparison of 3» orbital for X and A lZ+ states at three intefnudear distances. 

• a Ha.-is functions Orbital coefficients 

N M :•: Zeta 3.0 7.5 !2.0 

1 
2 
3 
4 
S 
6 
7 
8 
9 
10 
11 
12 
13 
14 
IS 
16 
17 
18 
19 
20 
21 
22 
23 

1 
1 

2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
3 
3 

0 
0 
0 
0 
0 
0 

2 
2 
3 
0 
0 
0 
0 
0 
1 
1 
2 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 

4.6351 
2.4730 
.'.0330 
0.8237 
0.5100 
2.-5811 
3.9004 
2.1109 
1.0758 
0.7359 
0.5100 
0.3500 
1.4974 
0.9866 
1.7748 
1.9883 
1.0000 
0.7000 
0.4000 
2.2425 
1.0638 
0.5480 
1.5774 

0.00966 
0.10867 
0.24515 

-0.70832 
-0.71703 
0.01010 
0.00135 
0.01054 

-0.01736 
0.19866 
0.29576 

-0.06852 
0.00091 
0.00420 
0.00013 
0.01686 

-0.05517 
-0.02557 

0.44.V1Ü 

0.00412 
0.00393 

-0.03627 
0.00062 

0.01023 
0.15640 
0.41298 

-1.09659 
-0.36182 
0.02160 
0.00024 
0.00477 

-0.00845 
0.02614 
0.20617 

-0.05162 
-0.00326 
0.00895 
0.00025 
0.00356 
0.00899 

-0.06606 
0.16701 
0.00049 

-0.00130 
-0.02082 
0.00062 

0.01039 
0.15903 
0.47360 

-1.19227 
-0.29639 
0.01323 
0.00015 
0 00077 
0.00595 

-O.'JlSU 
0.O802 

-0.01816 
-0.00020 
0.00050 
0.00007 

-O.0O25S 
0.02582 

-0.04177 
0.03730 

-0.00183 
-0.00176 
-0.00494 
0.00022 

may be seen from Table III that the 11 and J?' il states 
have converged to this limit at 12.0 bohr and that the 
A 1S+ state is still slightly below this limit. 

The energy minima of the potential curves for the 
four bound states vere obtained by polynomial inter- 
polation between the calculated points and are listed 
in Table IX. Also listed in this table are the inter- 
nuclear distance at the energy minimum (Ami»), the 
dissociation energies calculated from £min and the dis- 
sociation limits discussed here, and the experimental 
values. The calculated ZVs are all less than the experi- 
mental quantities which is to be expected in a varia- 
tional type calculation where the exact energy eigen- 
value has not yet been reached. 

The experimental ZVs are thought to be relatively 
accurate—to within ±0.0002 eV. The bands observel 
by Velasco" for the JJ'tl-X1^ system showed clear 
breaking off of the rotational structure. This was at- 
tributed to rotational predissociation of the upper 
state. Extrapolation of the limiting curve of dissocia- 
tion yields a dissociation limit for the B 'H state which 
is felt to be accurate to within several wavenumbers. 
Using the 2s-*2p excitation energy, the dissociation 
limit for the ground state was obtained by Velasco 
also. 

The largest difference between our calculated and the 
experimental D, is in the X ^ state. The calculated 
Df is about 845 cm"1 smaller than experiment would in- 
dicate. Thus the minimum of our potential curve for 

this state lies 845 cm-1 too high. This discrepancy in 
the ground state is not surprising for several reasons. 
One factor is the use of the averaged field. At 3.0 bohr, 
using the same set of configurations as in the averaged 
field calculation, the energy for the X '2+ state was ob- 
tained alone. This energy, £= -8.021974 hartree, is 143 
cm-1 below the averaged field X l2+ minimum. Another 
source of error is neglecting to account for the change 
in the intershell correlation. As the potential curve is 
traversed from small to large R, the la* pair breaks 
apart, leaving at the separated at )m limit only two 
lff-2(r (or \s-ls) pairs instead of four. At the potential 
minimum, therefore, we have twice as much correlation 
error due to lo-2<r pairs as at the separated limit. This 
is estimated, from calculations on the K~L shell cor- 
relation energy of the united atom Be," to be not more 
than 500 cm"1. The largest error, however, is probably 
due to incomplete correlation of the 2a shell. We esti- 
mate, from calculations of comparable accuracy using 
the MCSCF method for two- and four-electron atomic 
systems," that 90%-95% of the correlation energy of 
the 2<r pah was obtained. Therefore somewhere between 
400 and 800 cm-1 of correlation energy is still unac- 
counted for. Our error of 845 cm-1 is thus easily at- 
tributed to a combination of the three factors Just dis- 
cussed. 

The other two states for which experimental ZVs are 
known, the B '11 and A 12+, are shown to be too shallow 
by 143 and 232 enr1, respectively. Although we have 
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TASLK VIII. Comparison of ia orbital for A' and A 'Lf states at three internuclear distances. 

<r Basis functions Orbital coefficients 

N L M         K         Zeta 3.0 7.5 12.0 

1 1 0 0           1 4.6351 0.006S4 -0.00154 -0.00061 
2 1 0 0          1 2.4730 -0.14538 -0.02034 -0.00513 
3 2 0 0          1 1.033C 0.14033 -0.29442 0.02668 
4 2 0 0          1 0.8237 0.14749 0.48290 -0.03019 
5 2 0 0          1 0.5100 -0.455:* -0.24050 0.05143 
6 3 0 0          1 2.6811 -0.07510 0.01469 -0.00504 
7 2 0          1 3.9004 -0.005,0 -0.00577 0.00365 
8 2 0          1 2.1109 0.01181 0.03837 0.00348 
S 2 0          1 1.0758 0.11971 -0.13880 0.04712 

10 2 0          t 0.7359 0.39131 0.34243 -0.06016 
11 2 0          ) 0.5100 -0.04435 0.38885 0.78293 
12 2 0          1 0.3500 0.02392 -0.07891 -0.03383 
13 3 0          1 1.4974 0.01238 -0.01748 -0.00105 
14 3 2 0          1 0.9866 -0.00931 0.04821 0.00263 
15 4 3 0          1 I         1.7748 -0.00335 0.00154 0.00009 
16 1 0 o       : !        1.9883 -0.01101 0.09821 0.02109 
17 1 0 o      : t         1.0000 -2.65779 -1.80925 -0.88332 
18 1 0 0          i !        0.7000 2.3SO,JO 0.89112 0.05627 
19 1 0 o       ; !        0.4000 0.21902 0.44637 0.20362 
20 2 0 o       : !        2.2425 -0.16867 0.00603 0.00403 
21 2 1 o       ; \        1.0638 -0.24561 0.00745 0.01779 
22 2 1 o       ; I        0.5480 -0.07226 -0.11000 -0.022<4 
23 3 2 0 \        1.5774 0.01260 0.00286 -0.00078 

made the least absolute error in calculating the B 'IT 
state, the 143 cm-1 represents about half the binding 
energy for this statt and thus will greatly affect sub- 
sequent calculations of spectroscopic quantities. The 
correlation energy in these two states is very small 
compared to that in the X lZ+ state—less than 10%. 
The remaining correlation energy between the valence 
electrons unaccounted for is felt to be less than 50 cm-1. 
The amount by which our dissociation energies differ 
from experiment probably reflects the neglect of the 
change in correlation of two \a-2a pairs as the potential 
curve is traversed. 

The calculated T, values evidence, also, the fact that 
the error in the ground state is much larger than the 
error in either excited state: 

T,{A »2+-X '2+) = 25 842 cm"1       (exptl 26 510) 

r.(B m- X '2+) = 34 153 cm"1       (exptl 34 912) 

r,(yl »^-S'H) = 8 310 cm"1       (exptl  8 402) 

The .Rmin for the X '2+ state agrees reasonably well 
with experiment; however, the agreement for the A 'S"1- 

and B '11 states appears exceptionally poor. The reason 
for this may be seen in the fact that both of these PO- 

TABLE IX. Energy minima, dissociation energies, and Ä,'s for four states of LiH. 

Statt« £mio(hartrees)» D.(calc, eV) D.(exptl,cV)b 
Rn .Ltbohrs)« A.(exptl, bohrs) 

A>2+ -8.021321 2.411» 2.5154 3.05 3.015" 

AW -7.903574 1.048« 1.0765 5.12 4.9064<i 

2J>n -7.865709 0.017« 0.035 4.75 4.4941> 

•n -7.873358 0.226« 3.76 

» Minimum of electronic potential curve obtained by fifth order polynomial interpolation. 
'■ See Ref. 6. 
• Dissociation limit energy of Li(«5) +H(»,S)I £- -7.932726 hartree. 
<i See Ref. 9, p. 546. 
« Dissociation limit energy of Li (•?) +H (»5), £ - - 7.865068 hartree. 

i wmm wnraMfiv 
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ten dal curves are very fiat around their minima. It 
will be seen, however, in a following paper presenting 
a spectroscopic analysis of the potential curves, that 
the discrepancy is also due to the fact that R, values 
obtained by an extrapolation of the B,'s do not cor- 
respond to the minima of these potential curves. 

DISCUSSION AND COMPARISON WITH OTHER 
THEORETICAL RESULTS 

Lithium hydride has been the testing ground for 
almost every aft inilio method proposed for extending 
calculations beyond the Hartree-Fock level in mole- 
-ules; and although a plethora of theoretical calcula- 
tions un LiH exist, there are very few for which a com- 
parison with ours is instructive. This is due to the fact 
that most calculations are for the ground state at its 
potential minimum {R.= 3.015 bohr), only, and most 
attempt correlation of both core and valence elec- 
trons. A brief review of several of these calculations 
follows. For comparison. Cade and Huo's calculation 
(E=-7.987313 hartree) for the X,2+ state is prob- 
ably close to the true Hartree-Fock energy for the 
system. The experimental energy at the X '2+ potential 
minimum is -8.0703." Although not an upper bound, 
the lowest energy obtained to date for the ground state 
is that of Boys and Handy14 (£=-8.063 hartree) 
using a transcorrelated wavefunction containing terms 
explicitly depending on r,,. The best variational calcula- 
tion was done by Bender and Davidson,16 using a 
natural orbital approach and a set of elliptic basis 
functions. They obtained an energy minimum of 
— 8.0606 hartree. Many other results using various 
techniques could be mentioned1*-27; however, we will 
compare our work only with those calculations which 
correlate the valence shell. 

Our MCSCF method, correlating the valence shell 
alone is akin to Wahl's OVC method.» Mukherjee and 
McWeeny,1» using a similar approach with a frozen 
K shell, chose nine configurations to correlate the 2<r 
valenca shell in the ground state, obtaining an energy 
of -8.01488 hartree at R,. As our basis set was almost 
three times as large as theirs, we expect to do signifi- 
cantly better for the X12+ state; hence our value of 
£=—8.02131 hartree is not surprising. 

To date, the most comprehensive study of all the 
potential curves which we investigated is that of Bender 
and Davidson,10 who used a frozen l<r core and limited 
configuration interaction to obtain nineteen states at 
nine different intemuclear distances. Their work repre- 
sents the only other calculation of the B 'IT and 11 
potential curves besides our present results, and 
Bender and Davidson do not obtain a bound B lTl. At 
i?.=3.0156 they obtain an energy of —8.0036 hartree 
for the X '2+ state. Our value lies almost 3900 cm-1 

lower. The main difference here is thought to be our 
optimization of the correlating oibitals. In preliminary 
calculations,  using  'he  Bender-Davidson  basis set 

of 13*, 4ir, and 1« STF's, we obtained for the X '2+ 
state with four MCSCF configurations 1^(2^+3<T

2
+ 

4<72+lirs) an energy of £= -8.0173 hartree; 3000 cm"1 

lower than their fifty configuration result. To investi- 
gate whether our energy improvement might be due to 
changes in the K shell upon correlation of the valence 
shell, we froze our U orbital to the Hartree-Fock value 
and carried out the same calculation. The energy change 
was only 6 cm-1, showing that the K shell is affected 
very little by correlation of the valence shell. Thus the 
3000 cm-1 difference between the 50 configuration CT 
result and our four configuration MCSCF result is due 
to our optimization of the valence and correlating Or- 
bitals only. Much of the "-emaining difference between 
our present calculation and that of Bender and David- 
son is due to our more extensive basis set. 

In the A 12+ curve. Bender and Davidson calculate 
the minimum to be £=-7.8979 hartree compared to 
our -7.9036 hartree—a difference of ~1250 cm"1. In 
their calculation they obtain a repulsive B lU state. 
The lowest energy which they obtain is at 6.0 bohr, 
£= - 7.8606 hartree, compared to our minimum for this 
state which is at least 1000 cm-1 below this value, and 
at Rtt4.7 bohr. The minimum of their »11 curve, 
£=-7.8666 hartree, is again higher than ours by 
about 1500 cm-1. The fact that the II state is more 
poorly described than the B % in Bender and David- 
son's calculation is probably due to an inadequate T 
basis set on H. The 'n state has a dipole moment Li+H- 
which indicates a small shift of charge to H occurring 
in the lit orbital. 
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Using accurate ab initio cUculated potential curves and electronic wavcfunctions for the states X '2+, 
A ,2+ B 'H, »j;*, and "n for LiH, various properties were calculated. These include dipole and quadrupole 
moment, field gradient at the ruclei, etc. RoUtion-vibrational wavefunctions were obtained and a rotation- 
vibrational analysis was carried out. Some of the prrperties obtained were averaged over the appropriate 
rotation-vibrational wavcfunctions. In addition electronic transition moments were computed and from 
this uv and ir line strengths were obtained. In general the agreement with experimental values, where 
available, is satisfactory. 

In the preceding paper, hereafter referred to as 
Paper I,1 we discussed the calculation of the potential 
curves for five states of LiH: X »2+, A '2+ B '11, »11, 
and 32+. In computing electronic energies and wave- 
functions, essentially one-half of the Born-Oppen- 
heimer problem has been solved. Now, not only can 
we solve the second half of the Uorn-Oppenheimer 
problem for the motion of the nuclei in each bound 
state, but we can also obtain information about sta- 
tionary state properties and transition probabilities. 
The following sections describe the calculation of 
various molecular properties using the mulliconfigura- 
tion self-consistent field (MCSCF) wavefunctions and 
potential curves of Paper I and present the results. 
These properties are of three types and will be dis- 
cussed separately: (1) spectroscopic quantities ob- 
tained by solution of the one-dimensional radial 
Schrödinger equation for the nuclear motion; (2) the 
expectation values of certain one-electron operators 
evaluated over the electronic wavefunctions of each 
state; (3) transition moments between different 
electronic states. 

1. VIBRATION-ROTATIOW AHALYSIS 

In the Bom-Oppenheimer approximation, it is 
assumed that the total wavefunction of a diatomic 
molecule can be expressed as a product of nuclear and 
electronic wavefunctions, which are solutions of 
separate equations. The electronic energies and wave- 
functions are usually obtained as in Paper I in a field 

of fixed nuclei and thus depend parametrically on the 
intemuclear distance R. With the electronic energy 
U{R) playing the role of the potential energy, the 
Schrödinger equation for the nuclear motion of a 
diatomic molecule, regarded as a symmetric top, can be 
separated into angular and radial parts. The solution 
has the following form: 

* = ü-
1
P,.>,(J?)KJAJI(0,V.X), (1) 

where the FJAJH'S are the eigenfunctions of the sym- 
metric top. 

In the above expression, Ö is the angle of the figure 
axis of the top with a fixed z axis; <p is the azimuthal 
angle about the z axis; x is the azimuthal angle measur- 
ing rotation about the figure axis (z axis). The quan- 
tum number M is the projection of the total angular 
momentum along an arbitrary axis in space. The 
quintum numbers / and A differ i/i meaning according 
to the particular coupling case and will be discussed 
below. P,./(Ä), the vibrationa) wavefunction, is the 
solution of the one-dimensional radial Schrödinger 
equation (in atomic units): 
((P/<//P)P.,J(Ä)-2M{f/(Ä)-f[yU+l)-Al]/2/JP 

-E,.j\P,AR)~V,   (2) 

where p is the reduced mass of the nuclei; U(R) is the 
electronic energy for fixed intemuclear distance R 
(including the Coulomb repulsion of the nuclei), and 
v is the vibrational quantum number. U{R) together 
with the centrifugal potential term gives an effective 

J 
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TABLE I. Spectroscopic constants for the slates X »2+ A '2+, B 'n, and »O of LiH and LiD.« 

4937 

A:'S+ 
AW fi'n MI 

LiH LiD LiH LiD LiH LiD LiH LiD 

Be (calc) 
(exptl) 

a, (calc) 
(exptl) 

7. (calc) 
(exptl) 

<•>. (calc) 
(exptl) 

w,r, (calc) 
(exptl) 

u,y, (calc) 
(exptl) 

D, (calc) 
(exptl) 

R. (calc) 
(exptl) 

Ämln (Calc) 

7.35 
7.51 
0.20 
0.21 
... 
• • • 

1387.47 
1405.65 
22.24 
23.20 

0.16 
2.411 
2.515 
3.049 
3.015 
3.05 

4.14 
4.28 
0.09 
0.09 
... 
... 

1026.85 
1055.12 

11.66 
13.23 

2.74 
2.82 

-0.05 
-0.08 
-0.004 
-0.026 
290.70 
234.41 

-11.37 
-28.95 
-0.35 
-4.18 

1.54 
1.61 

-0.02 
-0.01 
-0.001 
-0.002 
195.IS 
183.12 
-7.40 

-12.74 
-0.18 
-0.88 

3.11 
3.38 
1.36 
0.99 

1.74 
1.91 
0.59 
0.43 

5.01 
... 
0.64 

2.84 

0.28 
.. • 
. ■. 

1.048 
1.076 
4.996 
4.906 
5.12 

171.13"' 133. ^h 
215.50 177.28 
M. lO1- 34.15b 

42.40 29.13 

0.017 
0.035 
4.688 
4.494 
4.75 

620.89        466.52 

52.38 29.71 
••• ■•• 

0.^26 

3.693 

3.76 

1 ^-OSWWxToVr Th0' iS '" ^ r.11 *! '" ^ Cv0nVerSiOn faC,0rS USCd are: ' *"^ = "-210 eV = 2.1947«X10 cm-, 
from Rd 7 expmmental values for X «B* and A V* are from Ref. 5; AVs and constants for the ß 'n state a« 

b Determined using '/'(l), C(0) and the zero point energy from Ka„. 

potential governing the vibration of the nuclei. For 
each J a spectrum of vibrational eigenvalues E,,j and 
corresponding wavefunctions P,,j is obtained In 
systems such as ours, where we have includeo no 
relativistic effects in the electronic energy calculation, 
we can really consider only Hund's coupling case b. 
In this instance, the quantum number J is the total 
angular momentum excluding spin, and A is the pro- 
jection of the electronic orbital angular momentum 
alons the internuclear axis. If spin-orbit coupling had 
been accounted for in the electronic energy calculation, 
then the A quantum number in the radial Schrödinger 
equation should be it, and J should be the total angular 
momentum. 

As the potential U{R) is usually obtained at a few 
selected points R it is more convenient to solve Eq. 
(2) by numerical integration. Since the number of 
calculated C/(Ä) points are too sparse for a direct 
numerical integration we have used a fifth order 
polynomial interpolation to get the required inter- 
mediate points. For Ä<2.0 bohr and R> 12.0 bohr an 
analytic extrapolation was used to extend the potential 
curves. Equation (2) was numerically integrated 
using Numerov's method as described by Coole>s with 
certain modifications due to Blatt.' From the calculated 
vibration-rotation eigenvalues spectroscopic informa- 
tion was obtained by taking the appropriate energy 
differences. The resulting eigenfunctions P,.j(R) can 
be used to vibrationally average certain electronic 
properties, to give more r«alistic observable«. 

For the same electronic and vibraüocal state, the 

energy differenct between adjacent rotational levels 
can be expressed using Herzberg's4 notatir.i as 

F.(J+l)-F,{J) = 2(74-1)3,-4(7 f 1)«Z>..    (3) 

The D. contribution is oftei three orders of magnitude 
smaller than B., and can usually be neglected. If, 
however, 

[F.(y+i)-F.(y)]/2(y+i) 
is not constant for a range of J values for a particular 
v, the D. term cannot be neglected. Consequently a 
linear least squares fit to (7+1)' must be performed 
to obtain B, and D,. The spectroscopic constants B, 
and ar can then be obtained by a linea' least squares 
fit of B, to (t-f-1/2) according to the equation 

5,-B.-a.(r-|-l/2). (4) 

The AC^,/, values [where ACH.i/,».C(r-fl)-C(»)] 
are the primary spectroscopic information of interest 
for the vibrational levels. For 2 states, the AG.+K.'S 
are obtained directly from the /-O level by taking 
energy differences between adjacent vibrational states. 
For electronic states of higher symmetry, where there 
is noy-=0 level, the appropriate rotational terms arc 
subtracted out. Although the spectroscopic constants 
w„ MAt and w,y, can be obtained via least squares fits 
to the C(tr) values, the most satisfactory comparison 
between theory and experiment is not made with these 
constants, but with thi! At#Vi/, vahes themselves. We 
present the computed and experimental spectroscopic 
constants for all four itates of LiH in Table I, while 

11 
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TABLE 11. Vibrational energy level differences»: X 'S*. 

LiH LiD 

(calc) (expll)!- (calc) 
&G*nn 
(exptl)'- 

(1 1330.95 1359.77 1007.39 1029.08 
1 1284.93 1314.85 981.59 1003.59 
- 1241.47 1270.90 955.52 978.56 
3 1201 34 931.60 953.84 
4 1160.82 909.14 s 1118.47 886.59 
6 1076.77 862.92 
7 1035.58 839.33 
8 995.71 815.48 
y 955.75 792.19 

10 915.42 769.32 
11 874.21 746.78 
12 831,58 724.32 
13 786 66 701.60 
14 738.67 678.69 
IS 686.25 655.45 
lo 627.82 631.59 
17 561.77 606.88 
18 485.54 581.09 

i In cm-', AC',»,,, -C(r+I)-C(r). 
b See Ref. 5. 

the AG,+in and B, values for LiH and LiD arc given 
together with the experimentaily known quantities in 
Tables ii and III for the X '£+ state, Tables IV and V 
for the A '^ state, Tables V and VII for the B 'II 
and Tables VIII and IX for the »II. 

In cases where the theoretical potential curve is 
shallower than the tme curve, the energy level spacing 
will be smaller, making the bG^m's smaller than the 
experimental quantities. As we calculate a dissociation 
energy that is smaller than the true D. in every case, 
the calculated AC+I/J'S err to a greater or lesser extent 
in the expected direction. 

TABU HI. Rotational COMUJIU*: Af'S*. 

I.iH LiD 

Ä.(c*fc)     B. (eiptl)k        B,(cafc)     B,(exptl)k 

0            7.26 7.4067 4.10 4.1882 
1            7.05 7.I9SO 4.01 4.0970 
2           6.8J f.9848 3.92 4.0082 
3            6.63 6.7782 3.83 3.9204 
*           6.44 3.75 3.833 
i            6.24 3.67 
6            6.04 3.58 
7            S.M 3.SO 

* In cm-«. 
' See Ref. 5. 

In general, the deviation of the B.'a from the experi- 
mental values is on th? order of 0.2 cm"1, while for the 
AG^i/j's the difference is from 2 to 30 cm-'. Although 
the errors p .■ approximately l%-2% of the quantities 
themselves, the difference in the magnitudes is prob- 
ably due to a different cancellation of error in the two 
cases. Adjacent rotational levels with identical r's, the 
difference of which ietermines B„ lie very close to- 
gether. They essentidly sample the same region of the 
potential curve—each with a slightly different cen- 
trifugal contribution. The energy difference between 
the calculated anrli the true potential curve is almost 
the same for th^t wo levels. Thus the error in the 
computed levels is approximately the same and cancels 
out  in  the subtraction process provided   (l/J?1)  is 

TABLE IV. Vibrational energy level differences*: A 'S*. 

LiH LiD 

AC+i/i AC*« AC»*m -i''..i i 
V (calc) (exptl)" (c*k) (eiptl)" 

274.91 280.96 199.12 
309.47 312.96 221.30 224.6 
333.52 335.73 237.95 239.92 
350.80 352.80 250.68 252.19 
363.29 365.85 260.53 262.03 
372.55 375.60 268.36 270.14 
379.38 382.68 274.58 276.69 
383.09 387.SS 279.82 282.00 
386.73 390.37 283.79 286.13 
388.04 391.59 286.69 289.28 
387.76 391.05 288.81 291.60 
385.99 389.19 290.30 293.06 
382.86 385.94 291.18 293.78 
378.17 381.32 291.28 293.00 
371.86 290.78 293.34 
363.81 289.71 292.11 
3S3.70 288.00 290.41 
341.17 285.71 288.0 

18 32S.67 282.76 28S.2 

• In an"«; AC,^„-C(f+|) -C(r). 
h Averaged from icvcral band origins; see Ref. S. 

correct. The AC^^'s, however, are the difference! 
between adjacent vibrational levels for 7-0 where 
the energy spacing is ~100 times grenter than for the 
rotational leveU, Neighboring vibrational levels sample 
different regions of the potential curve and thus have 
different intrinsic error which will not completely 
cancel out in taking the difference. 

Because the calculatfd B.'t agree very cloaely with 
the corresponding expet mental values, the R,'t calcu- 
lated from these Bt't [Ä, -1 //2Kä,)"»] also acree well 
with experiment. These Ä/s do net agtte, In most 
cases, with the Ä/s obtained by interpolating the 
calculated potential curve points to obtain the min 

. 
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imum. The R value at the minimum of the electronic 
potential curve will be denoted R„in. Thus the spertro- 
scopic Ä. is not always the minimum of the electronic 
potential energy curve, except for the potential curves 
very harmonic near the minimum. In comparing the 
theoretical results to experiment, then the R. calcu- 
lated from B., rather than the Rmia, should be com- 
pared with the spectroscopic R, values. 

Using the electronic potential curve for each bound 
state, we computed vibration-rotation levels for both 

H .^o«0^8'"8 the atornic masses TLi= 7.01600, 
H= 1007825, D = 2.0140. Most of the discussion in 
the following sections will center on LiH to avoid 
repetition, as most of the trends observed in LiH are 
seen in LiD also. 
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TABU; VI. Vibrationtl energy level differences«: B '11. 

XMM V. RoUtioiul consunts*: A '£♦. 

I H LiD 

t fl.(ealc) B, (exptDi- 0.(caic) B. (eiptl)k 

0 2.70 2.8536 1.52 

10 
11 
12 
13 
U 
15 

2.81 2.8897 1.57 1.6238 
2.83 2.9044 1.59 1.6316 
2.84 
2.85 
2.84 
2.8J 
2.81 
2.78 
2.75 
2.72 
2.68 
2.64 
2.60 
2.« 

2.9083 
2.9057 
2.8959 

2.8804 
2.8589 
2.8333 
2.d022 
2.7707 
2.7322 
2.6895 
2.6442 
2.5942 

1.S9 
1.60 
1.60 
1.60 
!.60 
I 59 
1.59 
1.58 
1.56 
155 
t.M 
1.» 

1.6365 
1.6383 
1.6382 
1.6358 
1.6310 
1.6243 
1.61. 
1.6057 
1.5955 
1.5824 
1.5678 
I.SS34 

16 1.51 I.S36I 

ir 1.49 
1.48 

1.5197 
I.5(i02 

»In cm"'. 
kS«ReM. 

A-AfT* 

The AC,fin vrJue. for thi> >ute appear in Table II 
While we »topped our calculalioni at 20 vibrational 

The ihTy ^r h*v! teobKrved f I^S The 20th vibrational levd for7-0 lies at £--70366 
h^rtree at **% at the we» dq-th. The calculated 

iäflÜS. *" K,er 'ir ft llglll"!"M 0"« for LiH ,n each ca« by -30 cm-. This i. to be expect 
« Ihe calculated potential curve h too »hallow C 

of the 2, ihdi and neglect of the intershell Ir^ 2» cor- 
*£*. By ujduding d, I9 ^ J a £*2 
rr^i. ■.ibc,,?cc,r?,fo^.coo*t««* -.-IM7.5 

• See Kef. 7. 

,BhlCl!|niI1Kating.the   u"1 three Ca,CUlated ^-'"'S fa» this fit, the values became 1402.1 and 22 8 cnr' re 
»pectively, while the experimental numbers are 1405.6 
and 23.2 cm-'. This does not necessarilv mean that 
the calculated AC.ft/l's will agree more closolv with 
experiment for higher r. It does indicate the sensitivitv 
of the fi to the number of AC.,,,,'» used, suggesting 
he .«adequacy of the fit. Also, the eiperiLn.al 

spectroscope constants would probablv be quite 
(bfferent from the present one» if 20 vibnitional levels 
had been observed. Thus it »eem» of little value to 
compare the «, and «Ws. 

The B, values for this state are given in Table III, 

SÄ M)
i:
,5

D
C!n   ' From the ^c^'ated B. foi LiH 

the it ,0 f •'A ^T3049 b *" «)b,llined- «'thin the I mm of our interpolation, thi, i» ex«tly equal to 

.(7Sto", -^ bohr)- Thc ^M" from experi- 
ment (i?.-3.015 bohr) is approximately 1%.       ^ 

B.^'X* 

«f.T^ent|.>•|Vi.b.^a,•^,il.,evd• Were «,0'l*t«d for thi» 
state, while 14 vibrational levels have been observed 
spectro'cop.cally   ■"  ^H.  The highest vibnSd 

weit irom the minimum. 
The AC.»,„'» for thb stale, shown in Table IV 

exhibi, anomalous behavior. Increa«ng with , kUUfy 
until a maximum and then decrea«ng. The maximum 
MfcUM for LiH is reached at r-9, while for LiD r... 
i. I«fer. at -13. Thb is ,o be e^ted SmS 

TAUM VII. Romba,!) cawuau*: B »D. 

UD 

cm "d -A-22.2 cm-« (M 'I'thle I) were obtained. 

13 

MM 



^ 

4940 K.   DOCKEN   AND   J.   HINZE 

TABIF. VIII. Vibralional energy level differences*: 'U. 

p AGHUI (LiH) AC^.^CUD) 

II 513.83 403.57 
4U.U 348.38 
308.69 290.92 
199.71 231.32 
92.68 169.96 

108.19 
49.37 

* In cm-«; tee I-oolnole (t) of Table VI. 

ruiio ujcju.y, which is larger for Liu than for LiH. 
The calculated AC.^'s for this state are smaller than 
the experimental ones by approximately 2 to 3 cm"' 
on the average. This small difference betreen experi- 
mental and calculated values, in contrast to the 
situation in the .Y'S* state, reflects the fact that 
there is very little correlation remaining unaccounted 
for in this state. The calculated ACM/J'S follow the 
experimental trend exactly, peeking at the same »'s 
as do the spectroscopic quantities. Because of this 
anomalous behavior, however, a polynomial representa- 
tion in (H-1/2) to obtain the spectroscopic constants 
ü»„ üMT., etc., is practically meaningless, as Crawford 
and Jorgcnsen observed.' 

The Ä.'s in Table V show the same sort of anomalous 
behavior M the AG.ti j's. The calculated value» are on 
the whole ~0.05 enr1 leu than the experimental 
quantities, and .ncreasc to a maximum at around 
r-5, and then decrease. Again, a polynomial fit to 
the B,'% to obtain £. and a. is not verv satisfying. 
The calculated B, does yield an /?«-4.996 bohr which 
is closer to the experimental X,-4.906 bohr than 
Af-.., which is at 5.12 bohr. Thus we were able to 
reproduce the anomalous spectroscopic behavior oi 
the A 'r* state very accurately within the framework 
of the Burn-Oppenbeimer approximatioa, demonstrat- 
ing that JeniV explanation for the anomalies in this 
state as due to a break-down of the Boro-Oppenheimer 
approximrtion a incorrect. 

Rydbcrt-Klein-Rees (RKk) potential curves were 
generated for the AT '.^ and ^4 «r* stales using the 
spectroscopic constants of Crawford and Jorgcnsen* 
and are illustrated along with our calculated curves in 
Fig. I. For this figure the minima ol the RKK curves 
were obtained using the experimental Dt'% a'td the 
ilartree-Fock atomic dissociation limits, which are at 
-8.02S2 and -7.9046 hartrec respectively. IHe «- 
pcrimental vibretional levels associated wjlfa the 
KKK curves are the solid lines, whereas our calculated 
vibrational levels for 7-0 are the dashed lines. 

RKR potential curves are ooly accurate insofar as 
the energy can be expressed in a power series of ,':f 
t/2) and 7(7+1). In addition, the accunry of the 
curves is limited to the range of v from which the 

14 

experimental spectroscopic constants were derived. 
For this latter reason, it is not surprising that the 
X '2+ RKR curve docs not dissociate correctly. Only 
the four lowest vibrational levels have been observed 
for this state. The ^'2+ RKR vibrational levels are 
below our calculated ones in every instance IhrouRh 
r-15. At r-19, however, the two curves deviate 
substantially from one another and the RKR vibra- 
tional level lies above ours. This just indicates thai 
the spectroscopic constants derived for the levels 
»-0-3 are not adequate for describing the higher 
part of the potential curve. 

In the A 'r+ state, due to the odd shape of the 
pot. ntial curve, the energy cannot be represented wtl! 
in u Dunham-type expansion. The spectroscopic con- 
slants used i.i generating the RKR curve are such 
that for energies higher than -7.885 hartree (see 
Fig. 1) the Ä values of the eft hand turning point 
either st»y the same or become larger. The rc:ult of 
this would be a non-single-valued function of the energy 
with intemuclcar distance. Since this is physically un- 
reasonable, we have drawn the A «S* RKR curve onls 
in the regions where the curve is well-behaved i i 
from 3.0 to 8.5 bohr. 

CB'n 

The calculation of the vibrat; on-rotation levels for 
this state was greatly affected «.y the fact that only 
~50% of the experimental bino.ng energy was ob- 
tained. Whereas three vibrational states were observed 
spectroscopically,' we were able to calculate onl) two. 
The highest level, for 7-2, t-1 lay at -7.865042 
hartree, reveral wavenumbers above the diuociation 
limit for the rotationless state. The äCtn, as shown in 
Tahk VI, for this state is smaller by 64 enr' than the 
cow v* ..g experimental ACy,. The Ä.'s agreed 
more sdy with experiment, but the B, is only a 
two point fit. It is not surprising then that R, calcu- 
lated fron Ä. i» V688 bohr, whereas the experimental 
Ä,is4.4Wbohr. 

D.*n 

Althrugh this stale has not yet been oUmtd ex- 
perime itally, the spectroscopic quantities of interest 

TASU IX Rouiinnal 

» *.(UH) J.(UD) 

4.« 2 62 
4 0» 2 41 
3.» MI 
1.13 1.« 
101 its 
101 1.33 

OSS 

wmm •.so 

J 

mm 
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are given in Tables VIII and IX. The behavior of the 
A'.'s and AG'.^i/t's is fairly normal. The highest calcu- 
lated state, y-=3, p-5 at £--7.865032 hartree lies 
several wa\enumbers above the dissociation limit for 
the rotationless state. The R, ( = 3.69 bohr) calculated 
from the B, for LiH is 0.076 smaller than the Rm\a 

due to the anharmonicity of this state. As the experi- 
mental B,'s are expected to be slightly larger than 
our calculated ones, judging from our experience 
with the other states, the experimental R, should be 
somewhat less than 3.69 bohr. 

H. ONE-ELECTRON EXPECTATION VALUES 

As it is important to look beyond the energy as the 
sole criterion for judging the accuracy of a calculated 
wavefunction, the degree to which an approximate 
wavefunction approaches the exact description of an 
electronic syrtem can be deduced by comparing 
theoretical and experimental values for certain proper- 
ties. This aflords insight into the accuracy of the 
wavefunction description in various regions of space, 
since different operators are sensitive to different re- 
gions of the electronic density distribution. The 
calculation of such properties as the dipole moment is 
also of great predictive value in the case of excited 
states where no measurements have been made. 

■7.84n 

60      80 
R(bohri) 

Fm. I. RCR aad MMpuud poimiial curm and «ibmiaaal 
ic»rli Ihr KKK runts an brkm our calcujuni curm (at 
balk iuir» Tht KKK cur*« an rrfrrml la muuma obtain«! 
fro« ih* atonk HanrM-Fodi rtiwnriaihM limiu tMia* ibt 
ripmmrnlal lUttcrtnton ronpn Tb« nuiuaw ut -K02S2 
battm lot JT •Z* aad -T.WMbatlrrt fat A 'Z*. Tb«»abd boti 
«anial bn« indtcal« «ibtatioaal levtit M xh* RKR curvt», «kilt 
UM dtafctd ban ait mm cakwkiid vibtsUeaal Itvtti (or J «0. 

E 
o 

o 
a 

Fio. 

20 30 4.0  5.0 5.0   70 8.0 9.0 10.0  110 120 
R(bohrs) 

2. Dipole momentf of five states of LiH versus R. The 
positive sign ntm to Li*H". 

With a normalized MCSCF wavefunction ♦, repre- 
sented in Paper I as a linear combination of con- 
figuration state functions iCSF's) 4;, we can write 
the expectation value of an arbitrary one-elect:on 
operatot (>-£■?« (where the summation ;s over all 
H electrons in the system) as 

(»IC|r>-ECiCX%löl«/>. 
ij 

(5) 

Each CSF is, in general, a linear combination of Slater 
determinant (s) (SD's) which are constructed from a set 
of urthonormal orbitals vv The orbital orthogonality 
greatly reduces the nu.nber of terms in (.v Indeed, if 
configurations li and *j differ by mjrc than one 
spin-orbital, the matrix elements of Q between these 
two configurations is zero. In terms of the individual 
orbitals (5) can be rewritten 

<♦ 101 ♦>- E CO L «f/.u<^ |f(l) 19t) 

-E«.<<^l»(i)l^>.  (6) 
ij 

The one electron coupling coefficient a/y.^ is determined 
by the orbitals occupied in each configuration, the 
coupling of the Slate Jetenninants within eacn CSF, 
and the symmetry ol the operator. The effective co- 
efltcienti a,, are defined as 

IJ 
(7) 

and are in the case of totally symmetric operators the 
elements of the first order reduced density matrix in 
the space spanned by the orbitals. The operator q 
which we used has the general form r»" sin It coa^X 
Ptm(cai0k) eip(iM^i) where k it the nuclear center 
which is used as the origin for the coordinates (r, 9.»- >. 
and I'tm is a normalized aaaodicatcd I^gendre poly- 
nominal. The expectation values for aevenlten different 
operators at the R points of the calculated potential 
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TABLE X Exp^. tation values of one-electron operators (or X ,S+.* 

K -M »H /»(«•bohrs) ;i(D) Pileadui/njf PticosOri/rn'         costfu/n,» cosSn/rH' 

2.0 3.9687 -4.0313 1.9687 5.0036 0.1297 0.2287 0.2382 -O.S527 

2.25 4.2840 -4.7160 2.0310 5.1696 0.1050 0.1699 0.2054 -0.4311 

2.5 4.6159 -5.3841 2.1159 5.3778 0.0847 0.1310 0.1839 -0.4208 
2.75 4.9592 -6.0408 2.2092 5.6'.49 0.0692 0.1040 0.1655 -0.3706 
3.0 5.3102 -6.6898 2.3102 S/i716 0.0572 0.0844 0.1500 -0.3282 

3.25 5.6653 -7.3347 2.4153 6.1387 0.0470 0.0699 0.1399 -0.2943 

J.S 6.0238 -7.9762 2.5238 6.4145 0.O394 0.0588 0.1280 -0.2632 
4.0 6.7353 -9.2646 2.7353 6.9520 0.0289 0.0426 0.1054 -0.2111 

4.3 7.4128 -10.5872 2.9128 7.4032 0.0214 0.0321 0.0893 -0.1720 

5.0 8.0236 -11.9763 3.0236 7.6848 0.0156 0.0250 0.0788 -0.1419 

5.5 8.5150 -13.4850 3.0150 7.6629 0.0119 0.0195 0.0650 -0.1173 
6.0 8.8182 -15.1818 2.8182 7.1627 0.0087 0.0156 0.0548 -0.0978 
6 S 8.9117 -17.0883 2.4117 6.1296 0.0062 0.0124 0.0459 -0.0815 

7.5 8.7911 -21.2088 1.2911 3.2814 0.0032 0.0081 0.0277 -0.0581 
8.5 9.0156 -24.9844 0.5150 1.3104 0.0017 0.0053 0.0173 -0.0434 

10.0 10.1130 -29.8870 0.1130 0.2872 0.0007 0.0031 0.0107 -0.0307 
12.0 12.0166 -35.9834 0.0166 0.0422 0.0001 0.0017 0.00^3 -0.0211 

P Mtu/ni sinVii/fH COSVLIAI« cos^n/rn i/ai     l/m ti' rn'         r* sinV ai            Hi 

2.0 3.9320 1.2638 2.3705 1.4736 6.3025   2.7375 17.8764 18.0015     7.2140 6.5433     7.7744 
2.25 3.8963 1.2038 2.3423 1.3815 6.2386   2.5853 19.5040 20.4761     7.3578 6.8335     8.3336 
2.5 3.8651 1.1493 2.3148 1.3018 6.1799   2.4511 21.4206 23.3410     7.5714 7.1513     8.9193 
2.75 3.8385 1.1015 2.2892 1.2328 6.1277   2.3343 23.5S12 26.5556     7.8181 7.4872     9.5206 
3.0 3.8160 1.0598 2.2654 1.1725 6.0814   2.2322 25.9657 30.1047     8.0902 7.8361    10.1327 
3.25 3.7967 1.0246 2.2436 1.1196 6.0M3   2.1442 28.5363 33.9621     8.3664 8.1922    10.7488 

3.S '.7806 0.9942 2.2235 1.0735 6,00il    2.0677 31.3186 38.1520     8.6544 8.5564    11.3719 
4.0 3.7559 0.9462 2.1878 0.9970 5.9437    1.9432 37.3763 47.4936     9.2041 9.2909   12.6279 

4.5 3.7400 0.90/3 2.1569 0.9349 5.8969   1.8423 44.0257 58.3102     9.7845 10.0215    13.9175 
5.0 3.7315 0.8762 2.1297 0.8844 5.8612    1.7606 51.1384 70.9018   10.4275 10.7325    15.2617 
5.5 3.7303 0.8462 2.1058 0.8415 5.8361    1.6877 58.3518 85.6866   11.0816 11.3882    16.6930 
6.0 3.7371 0.8148 2.0846 0.8041 5.8218    1.6188 65.2567 103.4384    11.8125 11.9547    18.2696 
6.5 3.7506 0.7827 2 0664 0.7708 5.8170   1.5535 71.5282 124.6762   12.5384 12.4112   20.0111 
7.5 3.7828 0.7259 2 0387 0.7135 5.8216   1.4395 82.9468 176.0796   13.7348 13.1068   23.7698 
8.5 3.8021 0.6963 2.0210 0.6696 5.8231    1.3659 96.2728 232.0080   14.2831 13.8382   27.3006 

10.0 3.8105 0.6806 2.0035 0.6216 5.8140    '.3022 122.3312 320.0710   14.4808 15.1725   32.0266 
12 0 3.8116 0.6741 1.9873 0.5762 5.7989    1.2503 165.8058 453.4078   14.5053 1M134   38.0059 

* All qiunlitia except for dipo'e moment in power* of bohrt. 

turves are given for the XlZ*,A 'S*, B '11, and 'IT states 
of LiH in Tables X through XIII. For the '£+ state 
only the (ILI) expectation value was obtained for 
rcrtain internucieat distances in order to calculate the 
dipolc moments. These are given in Table XIV. 

The property which is probably of greatest interest 
is the dipolc moment, which gives ii.formation on the 
over-all arrangement of charges in the particular 
state of the system. The electric dipolc moment is 
invariant to the placement of the origin for neutral 
systems as long as one evaluates the expectation 
value of 

M-tZr-eZZiR, (8) 
t i 

where the latter ttrm contains nuclear coordinates Ri 

and n tdear cha-ge Z/. Thus for LiH, taking into ac- 
count the cylindrical symmetry, we have in atomic 
units 

M(Ä)-<♦(/?) | «Ll I ♦(*))-/? 

- <♦(/?) | s„ | ♦(/?))+3Ä.    (9) 

with tffk cosßk and R the internuclear distance. The 
si£n of the dipole moment is defined such that positive 
indicates Li+H_ and negative, Li~H+. We expect the 
dipole moment to approach zero for bc'.h large and 
small A' (at the separated and united atom limits). 
The variation of the dipole moment with R fot all 
the states of LiH is displayed graphically in Fig. 2. 
The correct behavior is observed  for all  states it 
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LiH   PROPERTIES 4943 

TABLE XI. Expectation values of one-elecuon operators for A 'S4'.'1 

R ZLi «H fi (e-bolirs) /.(D) McoOtd/itf Pl(C0SflH)A,ia cosBu/ru* cosSü/m1 

2.0 -0.0371 -8.0371 -2.0371 -5.i775 0 1195 0.2526 0.1423 -0.5604 
2.25 0.1745 -8.8255 -2.0755 -5.2751 0.0976 0.1859 0.1063 -0.4765 
2.5 0.4117 -9.5883 -2.0883 -5.3076 0.0790 0.1407 0.0860 -0.4067 
7.75 0.6726 -10.3274 -2.0774 -5.2799 0.0ö53 0.1095 0.0700 -0.3508 
3.0 0.V528 -11.0472 -2.0472 -5.2031 0.0546 0.0867 0.0572 -0.3051 
3.25 1.2556 -11.7444 -1.9944 -5.0690 0.0452 0.0702 0.0496 -0.2708 
3.5 1.5740 -12.4260 -1.9260 -4.8951 0.0387 0.0577 0.040S -0.239;: 
4.0 2.2672 -13.7328 -1.7328 -4.4041 0.0299 0.0397 0.0254 -0.1874 
4.5 3.C303 -14.9697 -1.4697 -3.7354 0.0235 0.0283 0.0164 -0.1513 
5.0 3.8979 -16.1021 -1.1021 -2.8011 0.0186 0.0215 0.0107 -0.I2S0 
5.5 4.9001 -17.0999 -0.5999 -1.5247 0.0159 0.0162 0.0079 -0.1045 
6.0 6.0867 -17.9133 0.0867 0.2204 0.0137 0.0128 0.0070 -0.0894 
6.5 7.4695 -18.5305 0.9695 2.4641 0.0122 0.0103 0.0076 -0.0777 
7,5 10.4172 -19.5828 2.9172 7.4143 0.0109 0.0076 0.0124 -0.0613 
8.5 12.7077 -21.2922 4.2077 10.6943 0.0104 0.0057 0.0140 -0.0485 
10.0 14.2924 -25.7075 4.2924 10.9095 0.0126 0.0037 0.0116 -0.0341 
12.0 13.8196 -34.1804 1.8196 4.6247 0.0194 0.0020 0.0072 -0.0217 

sinVti/ai       sin'ffH/rH       cos'ÖLiAti     COSVH/VH      IALI       IAH li' rn' r* sin's 1,1 ni 

2.0 3.8758 0.9289 2.2970 1.4412 6.1728 2.3701 27.4379 43.5863 13.4908 7.6210 10.7765 
2.25 3.8555 0.8793 2.2726 1.3437 6.1281 2.2230 28.8142 48.2788 13.7703 7.8531 11.5034 
2.5 3.8376 0.8401 2.2502 1.2611 6.0878 2.1012 30.1885 53.irjO 13.9439 8.0827 12.2188 
2.75 3.8226 0.8097 2.2302 1.1905 6.0527 2.0002 31.6077 58.1583 14.0410 8.3129 12.9224 
3.0 3.8101 0.7864 2.2121 1.1298 6.0221 1.9162 33.1132 63.3862 14.0716 8.5454 13.6149 
3.25 3.7994 0.7694 2.1955 1.0768 5.9949 1.8461 34.71.10 68.8C07 14.0735 8.7831 14.2946 
3.5 3.7907 0.7574 2.1805 1.0313 5.9713 1.7887 36.468: 74.4516 14.0365 9.0270 14.9647 
4.0 3.7770 0.7456 2.1542 0.9570 5.9312 1.7026 40 5083 86.3710 13.9233 9.5376 16.2671 
4.5 3.7659 0.7432 2.1319 0.8981 5.8978 1.6413 45.3880 99.1151 13.7631 10.0867 17.5219 
5.0 3.7558 0.7480 2.1131 0.8516 5.8689 1.5996 51.2115 112.2327 13.5083 10.6777 18.6987 
5.5 3.7440 0.7581 2.0972 0.8136 5.8412 1.5717 58.3281 125.4268 13.2313 11.3372 19.7747 
6.0 3.7284 0.7734 2.0837 0.7830 5.8121 1.5563 67.0740 138.0340 12.8919 12.0904 20.7087 
6.5 3.7085 0.7931 2.0719 0.7585 5.7804 1.5516 77.7314 149.6282 12.5535 12.9538 21.4849 
7.5 3.6685 r.8244 2.0506 0.7200 5.7191 1.5444 103.5987 172.3413 12.1768 14.8644 22.8598 
8.5 3.6467 0.8273 2.0319 0.6871 5.6786 1.5143 130.8756 203.8438 12.5238 16.6112 24.7102 
10.0 3.6457 0.7f84 2.0156 0.6412 5.6613 1.4296 165.7453 279.8965 13.6036 18.3886 28.9180 
12.0 3.6712 0.7093 2.0178 0.5859 5.6890 1.2952 193.2305 437.5602 14.1631 19.1119 36.6128 

• All quantities except for dipole moment in powers of bohrs. 

large R=12.0 bohr. At R=-2.0 bohr, however, the «IT 
dipole moment is tending away from zero, and the 
moments for the other states, although tending in the 
right direction are still far from zero. This indicates 
that at R=2.0 bohr we are still far from the united 
atom limit. 

The dipole moment of the ground state is large even 
at 2.0 bohr in the direction Li+H~t increasing to a 
maximum at 5.25 bohr, the region in which the X ,S+ 

potential curve has maximum interaction with the 
ionic curve. For large R, the dipole moment approaches 
zero in a smooth fashion reflecting the fact that the 
state dissociates to neutral species. Bender and David- 
son' have calculated dipole moments at various points 
of R, obtaining values close to ours for R<3.0 bohr. 

For the region 3.0-6.0 bohr, their values are smaller, 
sometimes by as much as 0.3 bohr, indicating possibly 
that their basis set on H was inadequate to describe 
the diffuse H~ orbital. 

For the A 'Z"*", the dipole moment shows very clearly 
the large changes in character of the wavefunction with 
R. For small R the sign of the dipole moment indicates 
a charge distribution LrH+, due to the 3(7 orbital 
being strongly polarized behind Li. The slope is steep- 
est in the curve-crossing region from 5.0 to 7.0 bohr. 
Here the wavefunction is becoming rapidly ionic in 
the direction Li+H~, with a maximum reached at 
~ 10.25 bohr. Dissociation to neutrals forces the rapid 
drop-off of the dipole moment at 12.0 bohr. Bender and 
Davidson's dipole moments for this istate are again 

, 
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TABLE XII. Expectation values of one-electron operators for B 'n." 

R ?LI 2H ß (e* bohrs) M(D) .P.(cos9L,)/al• iMcosfcOAn« COSflLi/flrl COSOHAH' 

2.0 1.9490 -6.0509 -0.1510 -0.1296 0.0901 0.2463 0.1877 -0.5608 
2.25 2.1503 -6.8497 -0.0997 -0.2534 0.0672 0.1795 0.1575 -0.4738 
2.5 2.3631 -7.6369 -0.1369 -0.3-179 0.0507 0.1358 0.1345 -0.4060 
2.75 2.5853 -8.4147 -0.1647 -0.4186 0.0383 0.1056 0.1162 -0.3515 
3.0 2.8169 -9.1831 -0.1831 -0.4654 0.0788 0.0840 0.1012 -0.3066 
3.25 3.0576 -9.9424 -0.1924 -0.4890 0.0213 0.0680 0.0887 -0.2691 
3.5 3.3052 - 10.6948 -0.1948 -0.4951 0.0154 0.0558 0.0782 -0.2374 
4.0 3.8191 -12.1809 -0.1809 -0.4598 0.0070 0.0389 0.061S -0.1874 
4.5 4.3478 -13.6522 -0.1522 -0.3868 0.0015 0.0283 0.0492 -0.1504 
5.0 4.o802 -15.1198 -0.1198 -0.3045 -0.0020 0.0212 0.0401 -0.1226 
5.5 5.4096 -16.5904 -0.0904 -0.2298 -0.0044 0.0163 0.0332 -0.1016 
6.U 5.9334 -18.0666 -0.0666 -0.1693 -0.0060 0.0128 0.0279 -U.08S3 
6.5 6.4513 -19.5486 -0.0487 -0.1238 -0.0071 0.0102 0.0237 -0.0726 
7.5 7.4736 -22.5263 -0.0264 -0.0671 -0.0085 0.0068 0.0178 -0.0543 
8.5 8.4849 -25.5150 -0.0151 -0.0384 -0.0093 0.0047 0.0138 -0.0421 

10.0 9.9925 -30.9974 -0.0075 -0.0191 -0.0099 0.0029 0.0100 -0.0303 
12.0 11.9965 -36.0035 -0.0035 -0.0089 -0.0104 0.0017 0.0069 -0.0210 

sin'ÖL./rLi       SüIVHAH      COSVLIALI      COSVHAH       IALI        IAH 1%f r« sin's at m 

2.0 3.9261 0.9924 2.2051 1.3705 6.1312 2.3629 35.7093 43.9131 24.9883 8.36G8 10.7228 
2:. 25 3.9027 0.9383 2.1817 1.2774 6.0844 2.2157 37.2302 47.8039 25.5151 8.6041 11 3849 
2.5 3 8830 0.8946 2.1605 1.1992 6.0434 2.0937 38.7309 51.9152 25.9076 8.8371 12.0458 
2.75 3.8667 0.8594 2.1412 1.1329 6.0079 1.9923 40.2082 56.2390 26.1648 9.0661 12.7026 
3.0 3.8534 0.8314 2.1237 1.0764 5.9771 1.9078 41.6882 60.7869 26.3023 9.2920 13.3549 
3.25 3.8425 0.8091 2.1079 1.0280 5.9504 1.8371 43.1987 ■65.i»/43 26.3378 9.5162 14.0030 
3.5 3.8337 0.7914 2.0934 0.98(0 5.9272 1.7776 44.7662 70.6299 26.2951 9.7398 14.6486 
4.0 3.8209 0.7660 2.0682 0.9180 5.8892 1.6840 48.1797 81.6271 26.0550 10.1895 15.9374 
4.5 3.8126 0.7488 2.0471 0.8647 5.8598 1.6135 52.1123 93.9824 25.7499 10.6490 17.2356 
5.0 3.8072 0.7364 2.0294 0.8217 5.836i 1.55*1 56.6402 107.8385 25.4774 11.1197 18.5527 
5.5 3.8035 0.7266 2.0143 0.7860 3.8178 1.512>. 61.7475 123.2416 25-2565 11.5983 19.8909 
6.0 3.8008 0.7185 2.0014 0.7556 5.8022 1.4742 67.4456 140.2449 25.1145 12 0846 21.2517 
6.5 3.7989 0.7116 1.9902 0.7294 5.7892 1.4410 73.6893 158.8218 25.0230 12.J749 22.6313 
7.5 3.7964 0.7007 1.9719 0.6859 5.7684 1.3865 87.7313 200.6263 24.9299 13.5612 25.4344 
8.5 3.7950 0.6926 1.9576 0.6511 5.7526 1.3437 103.7879 248.5441 24.8953 14.5509 28.2802 

10.0 3.7937 0.6843 1.9411 0.6100 5.7348 1.2943 131.6037 331.7528 24.8786 16.0382 32.6022 
12.0 3.7929 0.6778 1.9252 0.5689 5.7182 1.2467 175.6518 463.7358 24.8692 18.0243 38.4285 

• All quantitie: 

smaller than ours in magnitude, indicating a less 
flexible basis for describing the charge distribution. 

The 11 states have very little charge transfer and 
are essentially' neutral. The dipole moments, though 
small, do differ in sign—positiv; for the 'II and nega- 
tive for the 'II. For the 'S-*- statt there is a substantial 
polarization of charge onto the Li, yielding a negative 
dipole moment which approaches zero at large R. 
Bender and Davidson's results for these states are 
very similar to ours. 

Another p/opertv of interest is the field gradient say 
at nucleus A, which in a diatomic molecule may be 
expressed as 

^(Ä) = 2<*(Ä) I P, (cosBA)/rA»\^(R)/^2ZB/R*. 

(10) 

The interaction of the field gradient q* with the nuclear 
quadrupole moment QA causes a shift in the hyperfine 
structure splitting which is proportional to egAQA. In 
the case of 7L1, where the nuclear quadrupole moment 
is not known, it can be obtained from the experi- 
mentally measured nuclear quadrupole coupling con- 
stant e-qu-Qu/h of 7Li in LiK and the calculated fie d 
gradient qu- 

Several other molecular properties may be obtained 
from the expectation values listed in Tables X-XIII. 
Among these are: 

(a) the diamagnetic contribution to the m-.jnetic 
susceptibility 

X(/?)=-V6aW0|r'|*(/?)), (11) 
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TABLE XIII. Expectation values of one-electron operators for 'II.' 

4945 

R <LI m M (e-bohrs) M(D) P,(cos0u)ri.i' ftfcosftOAn" onfeiAbP eaOa/rn' 

2 0 2.2934 -5.7066 0.2934 0.7457 0.0820 0.2386 0.1895 -0.5656 

2.25 2.5000 -6.5000 0.2500 0.6354 0.0613 0.1731 0.1593 -0.4787 

2.5 2.7130 -7.2870 0.2130 0.5414 0.0464 0.1305 0.1363 -0.4111 

2.75 2.9308 -8.0692 0.1808 0.4S9S 0.0352 0.1014 0.1181 -0.3568 

3.0 3.1526 -8.8474 0.1526 0.3878 0.0266 0.0806 0.1032 -0.3120 

3.25 3.3779 -9.6221 0.1279 0.3251 0.0199 0.0652 0.0907 -0.2745 

3.5 3.6063 -10.3936 0.1063 0.2702 0.0146 0.0536 0.0801 -0.2427 

4.0 4.0717 -11.9282 0.0717 0.1822 0.0068 0.0376 0.0632 -0.1920 

4.5 4.5469 -13.4530 0.0469 0.1192 0.0017 0.0274 0.0506 -0.1541 

5.0 5.0295 -14.9704 0.0295 0.0750 -0.0017 0.0206 0.0410 -0.1254 

5.5 5.5171 -16.4829 0.0171 0.0435 -0.0041 0.0159 0.0338 -0.10c6 

6.0 6.0085 -17.9915 0.0085 0.0216 -0.0057 0.0126 0.0283 -0.006/ 

6.5 6.5027 -  " 4973 0.0027 0.0069 -0.0069 0.0101 0.0240 -0.0735 

7.5 7.49o6 -27.6033 -0.0034 -0.0086 -0.0084 0.0068 0.0179 -O.OS47 

8.5 8.4948 -IJ.SOSI -0.0052 -0.0132 -0.0092 0.0047 0.0139 -0.0423 

10.0 9.9953 -30.0047 -0.0047 -0.0119 -0.0099 0.0029 0.0100 -0.0303 

12.0 11.9969 -36.0030 -0.0031 -0.0079 -0.0104 0.0017 0.0069 -0.0210 

sin^Li/ai       sinVB/rH      COSVLIAU      COSVH/VH       l/ai       IAH CLl* 
! sin'9 ru m 

2.0 3.9586 1.0052 2.2080 1.3635 6.1666 2.3687 29.0W1 35.9155 19.4615 7.7749 10.0333 

2.25 3.9313 0.9487 2.1857 1.2710 6.1170 2.2197 30.8864 39.8862 20.1786 8.0434 10.7191 

2.5 3.9078 0.9025 2.1651 1.1931 6.0730 2.095S 32.7715 44.2065 20.8566 8.3177 11.4136 

2.75 3.8878 0.8648 2.1462 1.1269 6.0340 1.9918 34.7443 48.8750 21.4937 8.5959 12.1133 

3.0 8.8709 0.8344 i.1289 1.0705 5.9998 1.9048 36.8052 53.8898 22.0871 8.8765 12.8160 

3.25 3.8566 0.8099 2.1130 1.0221 5.9696 1.8320 38.9445 59.2382 22.6264 9.1578 13.5192 

3.5 3.8446 0.7904 2.0984 0.9803 5.9430 1.7707 41.1570 64.9125 23.1059 9.4385 14.2218 

4.0 3.8266 0.7627 2.0724 0.9124 S.8990 1.6751 45.7883 77.2144 23.8722 9.9936 15.6218 

4.5 3.8146 0.7449 2.0504 0.8597 5.8650 1.6047 50.7023 90.7797 24.3962 10.5366 17.0155 

5.0 3.8070 0.7328 2.0317 0.8177 5.8387 1.5505 55.9085 105.6132 24.7101 11.0643 18.4052 

S.5 3.8024 0.7238 2.0158 0.7829 5.8182 1.5068 61.4640 121.7761 24.8858 11.5796 19.7966 

6.0 3.7995 0.7165 2.0023 0.7534 5.8018 1.4699 67.4042 139.3022 24.9690 12.0852 21.1924 

6.5 3.7976 0.7102 1.9908 0.7278 5.7884 .4381 73.7685 158.2331 24.9099 12.5844 22.5947 

7.5 3.7956 0.7001 1.9721 0.6852 5.7677 1.3852 37.8669 200.4170 24.9889 13.5736 25.4212 

8.5 3.7945 0.6924 1.9576 0.6508 5.7521 1.3431 103.8926 248.4800 24.9519 14.5598 28.2758 

10.0 3.7936 0.6843 1.9411 0.6099 5.7347 1.2942 131.6532 331.7475 24.9078 16.0421 32.6014 

12.0 3.7928 0.6778 1.9252 0.5689 b.7181 1.2467 175.6710 463.7439 24.8822 18.0257 38.4286 

• All quantities except for dipole moment in powers of bohrs. 

where a is the fine structure constant and r has the 
center of the electronic charge as origin, 

(b) the diamagnetic contribution to the nuclear 
shielding factor at nucleus A 

ax(Ä) = 1/3 «»<*(/?) | 1/M !*(*)),        (12) 

(c) the molecular quadrupole moment 

B{R) = E Ztdit-iHR) i z,-l/2pl I *(«)>,  (13) 

where d» is the distance of nucleus k with charge Z* 
from the center of mass, z has the center of mass as 
origin and p2=x1-iy=r,sin,e, the distance squared 
from the nuclear axis, is origin independent. 

Many more prop« ties could be obtained, in par- 
ticular if the computed expectation values are com- 

bined with experimentally measured results. These 
include the parallel and perpendicular part of the 
diamagnetic susceptibility as well  as its  high  fre 
quency part, and the molecular g factor. This is dis- 
cussed in detail elsewhere.' 

When comparing computed properties, such as 
dipole or quadrupole moments and the like, with 
experimento.Hy observed quantities, it is important to 
realize that the experimental values are obti »ned for 
specific rotation-vibrational states. It is t.terefore 
necessary to average the computed propertier, which 
vary with the internuclear distance, over the iotation- 
vibrational wavefunctions. We have performed such 
rotation-vibrational averaging for some of the proper- 
ties using the rotation-vibrational wavefunctions 
obtained  from the computed potential  curves.  In 
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TABLE XIV. Expedition value of z and dipole moment for 'S"1". 

R . «i,i (bohrs) ü (e-bohre) »»(D) 

2.0 0.3447 -1.4474 -3.6787 
2.5 0.7499 -1.7501 -4.4480 
3.0 1.2317 -1.7683 -4.4943 
3.5 1.8730 -1.6270 -4.1352 
4.0 2.5965 -1.4035 -3.5671 
5.0 4.0847 -0.9153 -2.3263 
6.0 5.5128 -0.4872 -1.2383 
7.5 7.3248 -0.1752 -0.4453 

12.0 11.9922 -0.0078 -0.0198 

Table XV are presented a selected set of these rota- 
tion-vibration averaged properties, which are obtained 
generally as 

Q{v,Ji i.7') = {P,AR) I Q(R) IPM® >. (14) 

with Q{R) the property as a function of the inter- 
nuclear distance and P,.jiR) the rotatipn-vibrational 
wavefunction for vibrational state v and rotational 
state J. 

Since practically no measurements or calculations of 
excited state properties were found to exist, we con- 
centrate on comparisons for the ground X 12+ state 
alone. In Table XVI various expectation values (at 3.0 
bohr unless otherwise noted) as well as rotation- 
vibration averaged values are presented and compared 
with other computed values and with experiment. Our 
values always appear in the first row, with any existing 
experimental values directly beneath them. 

The dipole moment of LiH has been measured18 for 
J=l of the three vibrational states, D=0, 1 and 2. 
The computed values are found to be consistently too 
large by about 0.1 D, a quite gratifying agreement. 
However, were we to compare the value obtained for 
ix, (S.886 D) with the experimental va'ne for po (5.882 
D) the agreement would appear tö ic even better. 
Another experimental parameter, rel.'ttd to the dipole 
moment and its derivative 

^"■i«5; (15) 

which is obtained from relative line intensities in the 
infrared spectrum19 agrees exceptionally well with our 
computed value. 

Using the quadrupole coupling constant for 7Li in 
LiH measured by Wharton et al.,u and the computed 
field gradient at the Li nucleus in the i!=0 state, we 
obtain a nuclear quadrupole moment for 7Li somewhat 
smaller in magnitude than many of those calculated 
previously. However, our value is close, though some- 
what larger than the one obtained recently by Green," 
using the Cade and Huo basis aet in a 200 configuration 
Cl calculation. It should be noted here that the field 
gradient operator, going as -Pj (cos9)/f», for Li will 
depend strongly on the description of the l«r or K shell 

orbital. In particular it will depend critically on the 
da basis function used to polarise this orbital. A careful 
study of this22 has led recently to the best value for 
Q'u of about — 4.1X10-M cm2, somewhat larger than 
our value. 

Working in the other direction and using the field 
gradient on hydrogen together with the known nuclear 
quadrupole moment of deuterium (QD=2.738X10

_27 

cm2) we obtain a quadrupole coupling consent for 
LiD in excellent agreement with the experimental 
value.18 

m. TRANSITION MOMENTS 

The literature does not lack for calculations and 
discussions of atomic transition probabilities. Much less 
is known, however, about molecular transition proba- 
bilities, even though Mulliken and Rieke,21 in 1941, 
published a comprehensive review of the research on 
the subject. Since then, with the availability of large 
computers, much more accurate molecular wave- 
functions can be calculated, and thus theoretical 
transition probabilities should become more accessible. 
Several recent theoretical studies have appeared in 
which transition moments were calculated using 
molecular Hartree-Fock functions. The systems calcu- 
lated were NHU-X, c-a, c-h) and CH(/1-X) B-X, 
C-X) by Huo24 and the A-X band systems in OH, 
BeH, MgH, and SH by Henneker and Popkie.M Huo 
has concluded that oscillator strengths computed in 
this manner have order of magnitude accuracy only. 
On the other hand, Wolniewicz28 has obtained excellent 
theoretical results for the B-X, C-X and E, F-B 
transitions in the hydrogen molecule using the very 
accurate electronic wavefunctions calculated by KOIOF 
and Wolniewicz.27-29 

TABLE XV. Selected properties (M is the dipole moment, 9 is 
the quadrupole moment, q is the field gradient) vibrationally 
averaged, 0(*i ^ vJ)= (Pr.AR) \Q{R) \ P*.JW)) ^=0 &» 
S states and / = 1 for n states. All values in atomic units. 

V a{r) i(v) quiv) qniv) 

xv+ 
0 2.350 -3.236 -0.0383 0.04«8 
5 2.559 -4.210 -0.0304 0.0429 

10 2.711 -5.244 -0.0232 0.0356 

AV+ 0 -0.941 -7.931 -0 0216 0.0055 
5 -o.on -11.741 -0.0220 0.0078 

10 0.882 -15.812 -0.0217 0.0086 
15 1.650 -19.880 -0.0216 0.0086 
20 2.228 -23.676 -0.0240 0.0069 

B'n 0 -0.096 6.285 0.0204 0.0046 
1 -0.024 5.329 0.0197 0.0010 

«n 0 0.080 6.019 0.0',78 0.0226 
2 0.050 6.056 0.0193 0.0140 
4 0.016 5.923 0.0208 0.0060 

1 

I 

20 
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TABLE XVI. Expectation values and properties of X lZ+ state at Ä = 3.0 b.« 

(J/WH (?/2«)L. l/fH l/ai              ii rn PiicosBLÜ/ru* P1(cosflH)A,I
, 

0.0267 -0.0202 2.2322 6.0814            7.8361 10.1327 0.1500 -0.3282 

0.0263b -0.0174"' 2.2376b 6.0820b          7.8288'' 10.14i2b 0.1144" -0.3260" 

0.0230« -0.0187" 2.2404« 6.0748°          7.8292" 10.1008° -   0.1148« -0.3312« 

0.0292'« - ;j.0202'' 2.2239^ 6.0848"' 
0.0256« -O.C173« 
0.0274' -0.0166' 

-0.0195« 

rn' nf P,(C0SflL|)/a «        P.(cos9H)/rH' «TH^XIO* cai^XlO4 
X(«X10< 

30.1047 25.9657 0.0572 0.0844 0.3953 1.0790 -1.6788 

30.2240t 25.9296b 0.0536'- 0.0832" 

30.615" 25.827« 0.0548" 
0.0521« 

0.0864" 
0.0777« 

0.3922« 1.0775« 

MB) 
■ 

ihi»{m *-.(») M.-i(0) 
n./R. Q7L1(10-~cm») (eqQ/h)Dkc 

s.m* 5.974' 6.083' 6.193' 1.86 -3.75" 34.4«> 

5.328' 5.882±0.00o-° 5.990±0.003"'       6.098±0.003"' 1.8±0.3° -3.96» 31.4' 

5.853" 
S.MS* 5.93« 6.00« 6.05« 1.74» -4.44' 33±1'>' 

6.002' 2.5» -4.3' 33.3' 

5.965« 4.5» 
5.93« 1.75" 
5.888' 
5.89^ 

• All our values appear first in each column; they are at R=3.0 bohr and in atomic unite unless specified differently. 
bAtÄ=3.U15. SeeRef. 10. 
•AtJ?=3.015. SeeRef. 11. 
^5=3.015'. See Ref. 12. 
• At Ä-3.046. See Ref. 13. 
'AtÄ=3.042. SeeRef. 14. 
«AtÄ=3.046. SeeRef. 15. 
k Obtained at Ä=3.015 bohr by interpolation of our calculated values 
' Obtair.ed by linear fit to (ti+1/2) of M and MI experimental values. 
I At R=3.015 bohr. See Ref. 16. 
k At /?-=3.060 bohr. See Kef. 17. 
' Our vibrationally averaged value is for /= 1 state. 
>» See Ref. 18. 
■■ See Ref. 19. 
o See Ref. 8. 
■> See Ref. 20. 
o Calculated using (?/2«)H and GD=2.738X10-" cm«. 
' Using the vibrationally averaged values ?(»= 1); sec Table XV. 

. 

Several factors can be said to account for the dearth 
of transition probability calculations for molecular 
systems. The first is that molecular wavefunctions even 
of Hartree-Fock quality are relatively scarce for 
excited states of molecules. Because, in general, the 
transition moment varies with the intemuclear dis- 
tance R, one should also have ground and excited state 
electronic wavefunctions at various R values, in order 
to calculate band intensities or line strengths. The 

Hartree-Fock potential curves, especially for large R, 
can be notoriously poor, leading to incorrect dis- 
sociation products. In addition, the effects of electron 
correlation, unaccounted for in the HF wavefunction, 
on the transition moment are difficult to predict. Thus, 
indications are that molecular wavefunctions to be 
used in transition probability calculations should go 
beyond the Hartree-Fock model, both in flexibility 
and in correcting for electron correlation. In order to 
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obtain results which can be compared with experiment, 
the nuclear motion ,..ust also be considered. Since the 
electronic energies, wavefunctions, and transition 
moments are obtained within the framework of the 
Born-Oppenheimer approximation, these quantities 
depend parametrically on R. The dependence of the 
square of the transition moment on R is not directly 
observed experimentally. Therefore, an average over 
the nuclear coordinate using vibrational wavefunctions 
is necessary. 

The length form of the general transition moment 
operator is defined just as the dipole moment operator 
was in Sec. II. 

m=eZr/-eT.ZiRI', (16) 

except that the coordinates are with respect to the 
laboratory fixed frame of reference. The transition 
moment between two states, A and B, represented by 
orthogonal wavefunctions, is independent of the 
second term, since the matrix element over the second 
term above vanishes for all R. With the total wave- 
function defined as 

(17) 

(with the quantum numbers and notation of the previ- 
ous section), the transition moment can be written 

A/,,..v"A'M,"B"-"A'"'= (*x,.ou. I eE r/ I *B.toUl). 
i 

(18) 

Transforming coordinates r,' to r,- in the molecule 
fixed system, and integrating over the electronic 
coordinates r, with the electronic transition moment 
defined as 

M.**iR) = (^.„(r.-, R)\eT.ri\ ^.„(r.-, R)),      (19) 
i 

we can write 

= {P."r'A{R) | Mt**(R) | P,,j.*(R)) 

X(F,~A..,,,. |ö(0,v,,x)|F.rA.3,,). (20) 

The Die, <p, x) in the last matrix element relates the 
molecule-fixed coordinate system to the laboratory- 
fixed axes. In order to obtain the line strength for an 
electronic transition between vibrational and rota- 
tional states v"J"-*v'J' we must square the quantity 
MÄ,uj.,/i,.Ar.B''J'k'M'  anci surn  over the Regenerate 
quantum numbers M' and M". This gives 

MA,-J"A''
B
"

J
'*'=3J..A..-"*'P •"•"',       (21) 

where 5./"A"'"A' is the Honl-London factor4 and 

p,.,.."-"'= | (P^j^iR) \M**{R)\P..J.B(R))\*. 

(22) 

In this work, only the length form of the dipole 
operator was used, as the integrals program was not 
adapted to compute the velocity operator. The pro- 
cedure we followed to obtain individual line strengths 
was to calculate Me

AB{R) using the electronic wave- 
functions determined at the various R values given in 
Paper I, Then p,;-J'J" was obtained by averaging 
over the particular vibration-rotation wavefunctions. 
The actual sign of MC

AB{R) is insignificant, depending 
only on the relative phases of the two wavefunctions 
involved. A polynomial interpolation of the calculated 
Mt

AB{R) points is necessary in order to obtain the 
electronic transition moment at each point on the 
numerical integration grid for which we have vibra- 
tion-rotation wavefunctions. 

If the electronic wavefunctions VA and VB are con- 
structed from a common set of orthonormal orbitals, 
M,AB{R) can be computed using Eqs. (5) and (6) in 
Sec. II of this paper. This is the case for the two 'Z* 
states computed using the "averaged field" described 
in Paper I. The calculation of the transition moment 
between two states with nonorthogonal orbitals will 
be discussed below. 

Whether or not the molecular orbitals for the two 
states are orthogonal, when both states are calculated 
with the same basis set, the computation of the one- 
electron integrals of the transition moment over the 
basis functions is greatly simplified. This was the 
case for four of the states of LiH. Since the basis for 
the 32+ differed by only three functions, the transition 
moment integrals for the a2+-8n were obtained with 
the larger basis. In the 82+ wavefunction, orbital co- 
efficients of zero were then inserted for these basis 
functions. The 3S+ wavefunction was also not available 
at all the R values of the '11, and thus transition 
moments were only computed for the nine R values 
which matched in each state. 

The treatment for nonorthogonal orbitals is very 
similar to that in Sec. II. For clarity, we rewrite Eq. 
(5) of that section as 

M.ÄB{R) = I   S CSCjiiWiR) IE r, | W(R)), 
IC*    CB i 

(23) 

where the sums are over the CSF's of states A and B. 
The configuration state functions */ may themselves be 
linear combinations of Slater determinants **, enabling 
us to write 

*f = E BKiSrK, (24) 
KCl 

where the summation is over all SD's in CSF /. Then 
defining AIK~CIBK, we can write 

üÄRHE   E   E   E^/K^W^IEr.lW. 
ICA JCB KCl LCJ i 

(25) 

Because of the nonorthogonality of orbitals belonging 

) 
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to states A and B, we have an orbital overlap matrix 
between SD's ^ig^ and ^ij? denoted SKL with elements 

*>-<*»«* Iw")      iC^andiC^. (26) 

Thus we can write 

iCA-  ;C/. 
Vl")!?«", 

(27) 

where Di,KL is the cofactor of the overlap matrix S*1 

formed by omitting row t and column / and taking 
the determinant of the remaining matrix. 

If we use spin-orbitals, SKL will be a square matrix, 
which can be blocked into an a and a /3-spin sub- 
matrix. Since our operators are spin-independent, no 
matrix elements over orbitals of different spins will 
appear, and the cofactor Di^L reduces to a product 
of the cofactor within a particular spin block and the 
determinant of the other spin block. The actual calcu- 
lation of cofactors was accomplished utilizing a method 
suggested by Prosser and Hagstrom.30 Details of the 
over-all procedure have been presented more fully 
elsewhere." 

Transition moments were calculated for the following 
four systems of LiH: X ^-A 'S*, X12+-5 'n, A 12+- 
B 'n, and 32+-,n. Since the X 'S"1- and A ^ states 
were calculated using the "averaged field" their 
orbitals were mutually orthonormal and the first 
transition moment above could be obtained using 
Eq. (6) in Sec. II. For the other transition moments, 
the procedure for nonorthogonai orbitals just outlined 
was used. The actual values are listed in Table XVII 

TABLE XVII. Electronic transition moments.» 

R ;ris+-vi'2+ X '2+-B 'n A 'S+'B >n >j:+-inb 

2.0 0.6247 1.8222 -2.5837 2.8811 
2.25 0.7034 1.8321 -2.6048 
2.5 0.785S 1.8570 -2.6096 2.9578 
2.75 0.8714 1.8874 -2.6032 
3.0 0.9599 1.9223 -2.5870 3.0057 
3.25 1.0530 1.9586 -2.5696 
3.5 1.1516 1.9960 -2.5445 3.0696 
4.0 1.3739 2.0697 -2.4936 3.1314 
4.5 1.6323 2.1612 -2.4269 
5.0 1.9448 2.2846 -2.3298 3.2203 
5.5 2.3100 2.4342 -2.1949 
6.0 2.6956 2.6213 -1.9912 3.2881 
6.5 3.0202 2.8221 -1.7220 
7.5 3.1453 3.1556 -1.0597 3.3230 
8.5 2.7686 3.3051 -0.5209 
10.0 2.3613 3.3610 -0.1020 
12.0 2.3425 3.3715 0.0434 3.3589 

• In atomic units, i.e., e-boiirs. 
b The '2+ state was calculated at a slightly different set of K 

values from the others. The transition moment ,2+-,n was calcu- 
lated only at identical Ä's in each set. 

o 
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2.0   3.0 4.0 5.0 6J0   7.0  8.0 9.0 10.0 11.0   12.0 

R (bohrs) 
3. Transition moments of four systems in LiH versus R. 

and presented graphically in Fig. 3. In order to under- 
stand how these transition moments should behave 
theoretically as a function of -R, it is instructive to look 
at the states in the united atom (/?=0) and separated 
atom (/?=<») limits. This can be represented sche- 
matically as 

BeCMi*! 15)-»LiH(l(r22ffs; X '2+) 

LiH(lffs2(r3(r;'2+) 
Be(hs2j2/>;'P) 

Be(ljJ252/>;1P) 

+Li(25)+H(J5) 

LlHCla^irlirj'n 

LiH(l<rl2<r3(r; A '2+) 

LiH(l(r22ffl1r; B '11) 

Li(sP)+H(25) 

Thus for Ä=0, since the A '2+ and B ln as well as 
the 'II and ,2+ states become degenerate, the transition 
moments of A 12+-iB '11 and ,2+-,n should approach 
zero. As can be seen from Fig. 2, this is not yet the 
case in our calculated values at /?= 2.0 bohr. We might 
expect also that the sum of the oscillator strengths for 
X W-B m. and X 12+-i4 »2+ approaches that of the 
Be l5-+1P) transition. This is definitely not the case, 
as the oscillator strength [refined in atomic units as 
/iiB=2/3(£A—£fl)5ijB] of the atomic transition is 
1.36,M whereas ours sum to 0.44. At 2.0 bohr, there- 
fore, we are still quite far from the united atom limit. 

At large R we observe exactly what we would expect 
from the separated atom point of view. The transition 
moment of A X^e-B '11 has reached zero by 12.0 bohr, 
since these states dksociate to the same atomic limit. 
The X^-B'n and X12+-X,2+ transitions have 
attained constant values at this distance. The square 
of the transition moment for the X 12+-fi '11 transi lion 
is just 2.07 times the square of the XWfc-^X* 
moment of /?«= 12.0 bohr. This is very good agreement 
considering that purely theoretically we expect a factor 
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TABUE XVIII. Line strengths PV'v
J'J" for selected bands in the X l2+-^ 'S* transition (in lO-' e'-bohrs«). 

J P(J) RU) P(J) R(J) J P(J) R(J) pin RU) 

W) 1-0 9 12.49 11.80 12.57 12.33 
10 12.44 11.63 12.64 12.32 

0 0.068 0.477 11 12.37 11.43 12.70 12.28 
1 0.070 0.065 0.489 0.462 12 12.27 11.20 12.75 12.21 
2 0.06O 0.060 0.486 0.441 13 12.15 10.93 12.78 12.12 
3 0.067 0.055 0.476 0.415 14 11.99 10.63 12.79 11.99 
4 0.064 O.OSO 0.461 0.386 15 11.80 10.29 12.78 11.82 
5 0.059 0.044 0.440 0.353 16 11.58 9.92 12.74 11.61 
6 0.054 0.038 0.414 0.320 17 11.32 9.52 12.66 11.35 
7 0.048 0.032 0.384 0.285 18 11.02 9.09 12.54 11.06 
8 0.042 0.027 0.352 0.250 19 10.68 12.38 
9 0.037 0.022 0.318 0.217 

10 0.031 0.018 0.284 0.185 
11 0.026 0.014 0.250 0.156 9-0 11-0 

12 0.021 0.011 0.216 0.130 0 10.88 7.04 
13 0.017 0.009 0.185 0.107 1 10.86 10.92 6.99 7.11 
14 0.014 0.007 0.157 0.087 2 10.88 10.98 7.00 7.20 
15 0.011 0.005 0.131 0.070 3 10.92 11.06 7.04 7.32 
16 0.009 0.004 0.108 0.056 4 10.98 11.15 7.11 7.47 
17 0.007 0.003 0.089 0.044 5 11.06 11.26 7.20 7.63 
18 0.005 0.002 0.072 0.035 6 11.16 11.37 7.32 7.83 
19 0.004 0.058 7 11 28 11.50 7.46 8.04 

8 11.41 11.62 7.64 8.27 
5-0 6-0 9 11.56 11.75 7.83 8.53 

10 11.72 11.87 8.06 8.80 
0 9.288 11.46 11 11.88 11.99 8.30 9.08 
1 9 380 9.200 11.54 11.40 12 12.05 12.08 8.57 9.38 
2 9.384 9.084 11.55 11.31 13 12.21 12.16 8.86 9.68 
3 9.360 8.940 11.55 11.21 14 12.37 12.22 9.16 9.98 
4 9,308 8.768 11.52 11.08 15 12.52 12.24 9.48 10.28 
5 9.?27 8.567 11.48 10.93 16 12.65 12.22 9.81 10.58 
6 9.117 8.J38 11.42 10.76 17 12.76 12.17 10.15 10.86 
7 8.977 8.081 11.34 10.56 18 12.84 12.07 10.49 11.12 
8 8.807 7.798 11.23 10.33 19 12.89 10.84 
9 8.608 7.488 11.10 10.07 

10 8.379 7.156 10.93 9.79 
12-0 

11 8.120 6.803 10.74 9.47 
12 7.834 6.431 10.52 9.12 0 5.19 
13 7.522 6.046 10.27 8.75 1 5.14 5.25 
14 7.187 5.651 9.98 ^.35 2 5.14 5.34 
15 C.831 5.250 9.66 7.93 3 5.17 5.45 
16 6.458 4.848 9.32 7.49 4 5.23 5.59 
17 6.073 4.451 8.94 7.03 5 5.31 5.75 > 
18 5.679 4.061 8.54 6.57 6 5.42 5.94 
19 5.281 8.12 7 

8 
5.55 
5.71 

6.14 
6.38 

7-0 8-0 9 
10 

5.89 
6.10 

6.63 
6.91 

Ü 12.44 12.14 11 6.33 7.21 
12.4« 12.41 12.15 12.15 12 6.59 7.53 
12.50 12.38 12.17 12.17 13 6.87 7.86 
12.52 12.34 12.21 12.20 14 7.18 8.20 
12.53 12.29 12.25 12.23 15 7.50 8.56 
12.54 12.22 12.30 12.26 16 7.85 8.92 
12.54 12.15 12.36 12.29 17 8.22 9.28 
12.54 12.05 12 43 12.31 18 8.59 9.64 

8 12.52 11.94 12.50 12.33 19 8.98 
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of 2 due to the doubly degenerate 2pir versus the non- 
degenerate 2pa arising from Li(lj,2p). The l2+-,n 
transition moment becomes equal to the X '2+-5 '11 
moment, which is just what we would anticipate for 
analogous terms within the singlet and triplet sequences. 

The sum of the oscillator strengths ol the X ,r+- 
A •r-'- and X X'L¥-B 'n transitions is 0.763 if we use 
the experimental energy splitting of LiCP)—»Li^) 
and our calculated transition moments. Weiss,M using 
a 45-configuration wavefunction calculated the oscil- 
lator strength of the LU^-^LiC/') transition to be 
0.753. The Hartree-Fock / value is 0.768, also calcu- 
lated by Weiss" using the dipole length operator and 
the experimental splitting. It is reasonable that the 
Hartree-Fock model predicts too large a transition 
moment, because lack of electron correlation tends to 
create a more diffuse charge distribution than is 
actually the case. Since, at the dissociation limit, our 
calculated molecular states dissociate to Hartree-Fock 
atoms, we expect to approach the Hartree-Fock value 
for the LU1.?)—»LK»/») transition, and our value of 
0.763 attests to this. If we had calculated the oscillator 
strength using our calculated energy splitting we 
would have obtained a value of 0.755—very close to 
the most accurate value. This is due to a fortuitous 
cancellation of errors: the larger Hartree-Fock transi- 
tion moment is multiplied by the Hartree-Fock energy 
splitting, which is smaller (due to more correlation in 
the %S than the V states of Li) than the experimental 
value. 

TABLE XIX. Line itrengths Prr^" for two bands in 
ground tute infnrcd »pectnim (in lO"' e'-bohn'). 

0-1 1-3 

J PiJ) RU) PU) RU) 

0 0.813 1.653 
1 0.9S2 0.749 1.936 1.520 
2 1.026 0.687 2.088 1.395 
3 1.103 0.629 2.246 1.375 
4 1.184 0.573 2.411 1.163 
5 1.268 0.521 2.583 1.055 
6 1.355 0.472 2.761 0.953 
7 1.446 0.425 2.946 0.858 
S 1.540 C.381 3.138 0.768 
9 1.638 0.340 3.336 0.684 

10 1.739 0.302 3.543 0.605 
11 1.843 0.266 3.755 0.533 
13 1.951 0.233 3.974 0.464 
13 3.062 0.202 4.200 0.401 
14 2.177 0.174 4.433 0.343 
IS 2.295 0.148 4.673 0.390 
16 2.417 0.124 4.920 0.341 
17 2.542 0.103 5.173 0.198 
18 2.671 O.OM 5.433 0.159 
19 2 803 5.698 

Another feature of the X l2+-^ T* transition 
moment curve which can be observed is the maximum 
in the region 5.0 to 9.0 bohr. This is the region of 
greatest interaction between the two states; the wave- 
functions are changing character from ionic to neutral 
or neutral to ionic. 

Bender and Davidson* have calculated the absolute 
oscillator strengths for the four transitions at various 
R values. Since the oscillator strength contains both 
the energy splitting and the square of the transition 
moment, we have to divide by their calculated energy 
splittings to obtain the behavior of the transition 
moments. All their calculations are carried out at 
Ä<6.0 bt-hr. For the X-A transition, their transition 
moment is uniformly larger than ours by ~0.1 boNr. 
This is not surprising, as our wavefunctions vcre 
better correlaved than theirs. For the .VZ* /PO, 
A ,2+-iJ '11, and ,2+-,n transitions, however, Bender 
and Davidson obtain moments smaller in I agnitude 
than ours, on the avenge by 0.5, 0.8, ami 1.0 bohr, 
respectively. The Ä '11 is very poorly determined in 
their case—not even bound. Although they obtain a 
bound 'n, the charge distribution for this state may 
be poor also due to the lack of diffuse Ifrr functions on 
H in their basis set. It is this lack of diffuse basis func- 
ticiis which presumably yields their smaller transition 
moments for the 2-11 systems. 

IV. LINE STRENGTHS 

We have computed the transition matrix elements 
between various vibration-rotation states for the 
transitions X ,I+-y4 'r1-, X XJ^-B xli, A Xl^-B '0, and 
the infrared vibration-rotation transitions in the 
ground state. Selected values arc given in Tables 
XVIII and XIX. Since the *Z* state is repulsive and 
no continuum wavefunctions were calculated, no 
transition matrix elements were obtained from the 
electronic transition moments for 'Z*-*!!. The signs 
of the computed matrix elements are unimportant, as 
the square of the transition matrix element is the only 
measurable quantity. 

The line strengths, Pw,'J", u-MotU the Monl- 
London factors, are presented for several selected 
bands of the X ^-A 'Z* trmnsition in Table XVIII. 
As can be seen, the »'■7-V-O band would be that 
of maximum intensity within the r"-0 progression, 
however in cases where the Boitzman factor weights 
high J" values heavily (i.e., high rotational tempera- 
ture) the 8-0 band should be most intense. From a 
study of Fig. 2 in which the vibrationat levels of the 
.V ard A 'I* potential curves are depicted, we could 
have anticipated this behavior by a straightforward 
application of thr Kranck Condon principle. Halmann 
and Laulicht,M computing Kram k Con '..in factors and 
r centroids for this progression using RKR potentials 
predicted an intensity maximum in the absorption 
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spectrum for the 8-0 band of the X ,Z+-^ 'X* transi- 
tion. 

Absolute intensity measurements in alisorption have 
been carried out for the r"-0 progression of the 
A' 'S*-/! T* transition. Velasco and Femandez-Florez* 
obtain a maximum in the intensity distribution at 
K 0 and n second maximum of almost the same relative 
intensity at 12-0. Comparing the frr-J'J" for the 
II- 0 and 12-0 bands it is evident that in our calcula- 
tions the intensity distribution for the 12-0 band will 
definitely be less than in the 11-0 band, and both are 
less than in the 7-0 and 8-0 bands. Using '*>» equation 
relating the integrated absorption coefficient to the 
line strengths, 

/*.«/.-(8»W3*()iV.|Ä-I«, (28) 

Velasco and Fernandez-Florez have alto presented the 
values of | A * for the various lines in the P and H 
branches of the 6-0 band. The IR {* values vary 
greatly—by a factor of 16—from Pi to P* «ml /f« to 
R* with the largest values for Pi and A«. In the lid 
and 12-0 bands they observe several maxima and 
minima in the region 7'-4 to 7'"19 when \R\i?+ 
I X IP* is calculated. 

Since we were unable to determine what the factor 
Nm in Velasco's arf.le contains, it is not clear to us 
what their | Ä I* n presents. Our Prf'i',"'% do not 
behave at all like the >•• perimental | R I» values pre- 
sented by Velasco and Femandes-Flores. Even re- 
garding their measurements as relative intensities docs 
not help to resolve the discrcpaocy. Because we were 
able to reproduce very well the anomalous behavior in 
the spectroscopic constants of the A T* state, we 
would expect to be able to pick up the trends in the 
line strengths. 

Kccenlly, Velasco» has indicated that absolute 
intensity measurements in absorption are in progrm 
for the X 'r^-Ä '11 transition. It will be interesting to 
compare our results for this system with experiment 
to sec if perhaps theory and experiment can become 
leas inconsistent. 

For tl - infrared transitions in the ground state, we 
present the Prr*'*" value» for two bands: 0-1 and 
1-2 in Table XIX. Because these two bands arise from 
different vibrational states, their intensity relative to 
each other in absorption will be wholly determined by 
thr popuUtion of the r-0 and r- I vibrational states. 
Aliitough rdative intensity meaauremenU have been 
v fried out for these bands by Junes, Norri» and 
Klemperer,1* the line strengths calculated by these 
author» contain an unknown Boltzmann factor which 

makes comparison of our absolute values with their 
relative values impossible. 
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lit btt«««n 0 S2 «V mnd 0 7S cV «bo*« lb« X V pv— 

I. INTRODUCTION 

The CH radical hat been found to be ooe of the 
more abundant molecules in comets, ttdlar atmoa- 
phfrr», and intmteilar space.1 Ii may play a sig- 
nificant role in the formation of laifer molecules in 
intmteilar space. It b also of importance in flames. 
Consequently, considerable effort has gone into the 
experimental determination and classification of its 
^»ectrum. Several electronic states have been iden- 
tified and characterised using high resolution uv spec- 
irwcopy»; moat notably the low-lying A*&, Ä»r-. 
and C*V, as weil as the Af »11 ground state. However, 
one low I vinjc slate, the ««I", which b expected to 
be below tlw A »A state in energy, has not been ob- 
served to date. This b because tnositioos between 
thb and the other low-lying autea are strongly for- 
bidden. Abo, no properties, other than the spectro- 
•copic properties, have been determined esperimentally 
fw th« various low-lying sutca of CH. Molecular 
propertie« such aa dipole and quadrupole rooroenu 
are difficult to obtain esperimentally lor reactive 
radicab and for excited states. However, these prop- 
erties are easily calcubted once approximate wave 
functions for the molecule are determined by « trMri 
calcubliooa 

It it alto difficult to obtain, cspcrimmtally, the 
IcAg range behavior of the potential curvca. Thb long 
range behavior b of importance in clastic and reactive 
scattering, and of potential significance in interstellar 
molccub formation. Here again, a pritri calcubtions 
can supply the needed information, il the calcubtions 
»re carried beyond the Martrcc-Fock limit to include 
the neccaaary electron tcrrelatian. 

Several calcubtions on CH havt been reported in 
the literature.'« Most of these are limited to either 
the AT m ground »täte or the Hartrce-Fock approri- 
mstion. Exceptions are a minimal baab set, limited 
CI cakubtion by Higushi* for sis lowest-lying sutca 

US 
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in CH and a recent calcubtion by Liu and Verhaegen* 
for the same sb stataa In the bttcr rtlcubtion the 
Hartree-Fock results obtained are corrected scmi- 
cmpirically for the correbtion error. In both of these 
calcubtions the agreements between computed and 
experimental R,. MM and term splittings are rather 
good. The dbtocbtion energies obtained by Hifuthi 
are poor, whereas those obtained by the semicrapirical 
method are very good. In thb paper «re report the 
results of an extensive and accurate tk untio wave 
mechanical calcubtion on three excited statca, A '.i, 
8*1-, and «*Z- of CH. all arising from the configu- 
ration l**2e*.Wt**. Potential curvca for theae states 
are determined for a wide range of intemudear sepa- 
rutiooa, considerably beyond the scope of previous 
calcubtion. 

The agrectneut between computed quantities and 
experimental retults, where known, b in general satis- 
factory. An outline of the method used in theae com- 
puutions b depicted in Sec. II. The results are db- 
cuased in Sec. HI. 

Since all calcubtiors with accuracy beyond Hartree 
Focfc indicate that In yet unobserved *1 state b 
above the experimentally observed ground sUte X 41, 
we shall follow the spectraacoptc convention in the 
following and denote the state with the prefix «, Le., 
B*£~. At a matter of fact, from the observation of 
the lines of lowest S in the three O-O bands of A-X, 
B-X, and C-X in intentelbr ahsorption. Hersberg 
sad JOIUMP have concluded that the predicted low- 
lying *tr state must lb above the .V «II state. 

IL MBTHOD 

la the calcubtion of the xravdi.octions for the 
molecule, the nonreblivistic Botn-Oppenheimer ap- 
proximation b used. That a, UK xravefunction for 
the molecule b separated into a product of the dec- 
trooic and the nudcar sravefunctioas; by ncglcciing 

-A , 
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■trail temu in the lltunilionian, two uncoupiH wave- 
cquatioM arr obtained and «olvtd wpataldv. The 
firtt equation is (or the motion o( the decttoiu in the 
6eid of the fived nuclei, the eigenvalues and ciften- 
(unctions are thcreforr dependent parametrically on 
the intemudcar distance. The second equation is (or 
the motion ct the two nuclei in the potential de- 
termined by the dee'rons. The assumption o( sepa- 
nilMlity here, attain netdectin« small couplin« terms 
in the Itamiltooian, leads to the independent nuclear 
vibrational and rotational motions, ».^d the solutions 
(or them rive rise to vibratlon-rotaliot al states char 
Mtetiicd by the vibrational quantum number r and 
the rotational quantum numbers A' and M. (Hund's 
ciNipiinjt b is aeumwd.) 

To solve the dectronic wave equation, the usual 
Hartrce-Foch-Roothaan sd(-connstenl method is used 
first, which is (ollowed by a larne scale confixuration 
interaction* calculation in «.nlrr to introduce the 
Mceasary dectran corrrlaiian An «tended Mt of 
Slater type (unctions is used (or the etpaosion of 
ihr orbitals. Some evponcnts of the e and w type 
(unnions were optimised within the Hartm-Fock 
4|iproximation (or the X Hi ground state at the es- 
perimental equilibrium distance. It wu found that, 
with the estendve set used, exponent optimisation 
lowered the energy only little. Ic« than 00005 a.u. 
Therefore, it appeared reasonable to use the same set 
of ba4s (unctions, given in Table I. throughout (or 
all stale« and inlemudcnr separations. Using the set 
given in Table I. the SCF mull for the X11 state 

is 0.00006 a.u. lower than the result of Cade and 
Huo.* The computed energies (or the three excited 
slates reported here are all found lo satisfy the virial 
theorem to within 0.04% at the computed equilibrium 
internudear distance, indicating that the basis set 
wed was satisfactory. 

Initial SCF calculations were carried mit at each 
inteniudear separalion with the single restricted con- 
figuration Ie*2#».WI»». properly coupled to yield the 
appropriate M. *S-, and *S~ configuration state (unr 
tiona. It should be noted that the restricted Hartree- 
Fock (unctions (or the states considered here disanciate 
propedy; *A—C(*D)+H(*S), «X-, ac-1 «r--<:cm 
H('5). This is not so for the HI ground stale, which 
arises (rom the configuration IrfU*!«*!* at the equi- 
librium distance, but would need, (or proper diasoda- 
lion at large ilistanccs. also the configurations 
Ie*2#*le4«lr and le*2eM«*lv. 

The orbitals, occupied and empty, resulting (rom 
the initial SCF calculations, are used in the following 
Cl calculations. In these CI calculations the I« or- 
bital, representing the carbon A' shdl. is hdd fixed 
and always doubly occupied. This is done in order 
(o reduce the number of configurations needed, and 
since it appears reasonable thai ihr A' did] carrda- 
lion will not change significantly in molecul.- forma 
lion. & conjecture which we intend to test in luiun 
calculations. Three types oT configurations are indude«! 
in the CI oüculalioos: 

(a) All configuration slate functions of proper sym- 
metr arising from the distribution of five electran» 
in the orbitals 2e, -W. 4«. and Ir; 

(b) any poaiible single replacements from con 
figurations of type (a): 

(c) any powible double replacements (rom con- 
figurations of type ia), provided the matrix dement 
between such a configuntlion and the reference stale. 
i r , the Hartree-Fodc configuraiion, is nmuero. 

This last restriction significanUy reduces the number 
of configuration stales used and. furthermore, ia jus- 
tified from a perturbation theory point of view. The 
actual number of configuration state (unctions uaeil 
are 2466. 2558. and 2159 (or A 'A, »»r-, and d «1 
respectivdy. 

Once the dectronic wavdunctioos and potential 
curve* are obtained, the equations (or the nuclear 
motion can be »olvtd. The solutions (or the angular 
part of the nudear motion, i.e.. the mdccular rota- 
tion, can be obtained analytically as the "generaliicd" 
spherical harmonic (unction,* with the quantum num- 
bers A. A*, and li. The total angular momentum J is 
m. needed al this stage since the three statca con- 
sidered here (allow Hund'« coupling case b. This ia 
obvious (or the two £~ »uir». (or the 'A state Hen- 
berg and Johns' found (rom experimental data that 
it ia doae to case b also. The cenirifogal correction« 
(or given A' value« are added to the computed do 
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TABU II. Pciniüal oinra (oc CH A 'A »Ute TABU IV Pouaüal curvt lor CH • •!  «i»ir • 

A' «w Sei «or-fiel 
l.,,.,:,' 
(C-H*) ■ fi» «1 fiwr-fici 

Dipole' 
(C-H*) 

-M 102022 -UTomn. 0.I0M 0  I.N I.S5 
l.«S -M IMOW -U 245161 0 1071 0400 IM -IS 166170 -18 254642 0.0883 0363 
1 80 -JS I6S2« -5« 275596 0 I07> 0.07 1 «0 -M.2SJUS -38 122189 g tm 0.429 
1 W -3S.I7SS2S -JS.2M0II 0 1005 0656 ISO -1« 277199 -18 166860 0 0895 0S2I 
200 -M I79S72 -51 2tnM 0 1001 O.TM 1 90 -M 286194 -38 376517 00901 0 569 
2 10 -M l79ilS -M 209729 o iiai 0.79S 200 -38.289660 -58 580S85 H   IM» 0620 
2» -M 176275 -5« 2«76S6 0 1114 0M6 2 10 -38 28«69» -58 580514 0 0918 (i M 
2 J0 -M 171006 -5« 2WS6I 0 1126 0 915 2.30 -58 284590 -38 577486 0 0929 0 719 
2« -M I6U70 -J9.27SI45 0.II5S 0994 240 -38.270247 -38 365664 00954 0821 
2«0 -3» IMS» -5S26M» 0 1159 1 090 200 -38 251458 -38 349975 00985 0.9IS 
2» -« UJ666 -5S 25251« 0 1149 1 100 im -38.231240 -18 111454 0 1022 0981 
100 -M ISIOH -5« 241109 0 109« 1 029 500 -38.211955 -38 318224 0.1063 1 014 
1 20 -Ä I2961i -M254IM 0 1045 0 907 530 -38.199827 -18 105495 0 1057 0 892 
J » -M 121715 -31227219 0 09M 0 609 1» -»195198 -.»292225 00988 0.714 
J» -M I2W70 -50 221797 0 09« u  4'<l 5.10 -38.190811 -38 284691 0 0939 0.S3I 
SOO -M IÄ8W -»220756 0 0901 0 102 4 20 -38.189442 -38 279778 00903 0   \\H 
600 -M UIQU -5S 220U7 00094 0 0260 500 -38 188721 -38 276628 0 0879 t.117 
SCO -J» 151165 -50 220275 0 0091 O00IU tOi -38 188547 -38.275721 0 0872 OQ3I8 

10 00 -JS.UII6S -J« 220254 00091 0000515 100 -38 1118488 -18 275195 008CA 0 00281 
12 00 -3» UIIM -1« 220255 0 0091 0 fflWWP 10 00 -38.188483 -38 275157 0 0869 0 000775 
IS00 -JS.MIIM -50 220254 0 0091 0 000160 12 00 -38.188482 -18 275149 0 0869 0000189 
20 00 -JS 131165 -5S22025J 0 0091 0 000052 15 00 

20 00 
-38 IRMMI 
-38.188481 

-38 275347 
-38 275546 

00869 
008W 

0 000158 
 '*< 

• ffudfraiciaaianucttmuil botw0.S2«lfT A, 1 hMliw« 

' lAlaiUl«! fron t I «svWiiactiow. 

TABU III  rMraiial curvt far CH 0'Z  tuir' 

* At «ad ff ai« in •tomic uniu (I bohi 
27 2lio52 cV), d^Mk ia dtby«. 

k CBICUUIMI (rum (1 »ivrfunciiont 

•0 52VI77 A. Ihartrcc« 

Dipolt» 
1 Km* Bct Jfar-An (CH*) 

IJO -38 138311 -31.256401 0 1181 0 882 
1 90 -38 149862 -38 2WI94 0 1193 0981 
20u -38 156026 -38 276691 0 1207 1082 
2 10 -38 15*447 -38 280419 0 1220 1 176 
2 20 -38.158528 -38.281539 0.1230 1 260 
2 30 -38 15758« -38 280934 0.1233 1 326 
240 -38 156846 -J8.279246 0 1224 1 370 
260 -38 157888 -58 274785 0.1169 1 370 
2.80 -38.161217 -38 271042 0 1098 1.273 
300 -38 165117 -38 268831 0 1015 1  HO 
3 20 -18 I6f»46l -38 268059 00906 0 915 
3.» -38.174901 -38 26M6$ 0 0918 06» 
380 -38.179140 -38 270165 0 0910 0 457 
4 10 -3* I81Q17 -31.272178 0 0891 (0.263)« 
500 -38.II680S -38 274»$ 0 0877 (0 094S)« 
600 -38 188142 -38 275294 00872 00262 
8.00 -38 188472 -38.275179 O0M9 000246 

10 00 -38 188482 -18 275156 00869 0 000757 
12 00 -3» IRMM -38.275149 00869 0000389 
IS 00 -38 I8MBI -38 275147 008M 0 000158 
20 00 -18.188481 -38 275346 (1  OV/J 0 000050 

•sajo 
i '. i ' i ■ i ■ i ■ th 

C-H 

 HF cokuloitoni 
 Clcokuloiioot 

i l 
W   Z2 

I   i   I   ■   1   .   i   ■ III  d-lftlO 
3A   M   «8    M    "20J0 

38.15 

--58» 

1 
-SOÄ 

R(ou) 
•itBMl/iaRiBBlamktMittdbniu.O 529177 A. I hBTUBt- 

27.2II6S2 tV), dipoti ia dtbyt. 
' ( .IcuUlnl IlMB a «BWfBBCtiB«. 
• InuipolBWd. «itli fi-B lagcdlpott)-!-*. fma T-J.JO, 3.» 

1 80, and 6 00 B u 

Fw. I. PMmlist aim* for ihr •lim « T". .1 M, Bnd B 'Z' 
af CH Bi ohtair^d (ram HBrtitc-t'ack and ranfi«ut(itan intn 
action cakuUlion» Tl>c rnrrio teak in bartttr an Ihr riithl it (ur 
ihr Ilartftv-Fack muht, lhal on Ihr Kl it (nr ihr conÄüuralion 
inlrraction rrtull» The comman mrtfy poinl (ar holn «rair« 
•% ihimm at the rttmty «f trpafitrd alomt. Hc'.V) and V{'P). 
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TABU V. Propwtle« o( low-lying dtcttonic »Utet of CH. 

A*& B'Z- o'l- 

E un.) 

D.« (eV) 

W(«V) 

DtHole (d«by«) 
CH» 

(»uiiltui«>lr with Tttpttl to center of 

ToUl He«mw>-Fe>ro«n for«« (».u.)' 

Gndicnt of electric field at cmrbon 
nucleu* (a-u.) 

Gradient of ekctric field «t hydrogen 
nucleus (a-u.) 

SCF 
Cl 
llpll 

2.045 
2.074 
2.082* 

2.152 
2.208 
2.200* 

2.022 
2.047 

so 
CI 
Eiptl 

-38.179949 
-38.289856 
-38.383» 

-38.158697 
-38.281540 

(-38.371?)*-« 

-38 289763 
-38.380998 

SCF 
a 
Exptl 

1.33 
1.894 
:.oi< 

-0.81 
0.169 

10.40?)* 

2.76 
2.875 

SCF 
a 
Eiptl 

1.14 
1.708 
1.83 

e 
0.042 
0.26 

2.55 
2.681 

SCF 
CI 

0.812 
0.778 

1.367 
1.267 

0.562 
0.643 

Eiptl 

CI 1.70 1.92 1.S2 

CI -0.02 0.01 -0.02 

a 0.22 0.51 0.23 

CI 0.31 0 23 0.31 

• No «ihrational tute e«i»U in SCF potentöl curve 
< Attractive force toward« hydrogen i» poaitive. 

ironic potcnlW«, and  the rwlUl vibrational  wave 
equations are solved numerically using a numerical 
integration  technique developed  by  Cooley^ Spcc- 
iroscopic constanU are now obtained by fitting the 
computed rotation-vibratio.ial term values to poly- 
nomials in terms of (H-J) and K{K+\). The spec- 
iroscopic constants determined in this manner, closely 
resembling their experimental determination, yield a 
more direct comparison with the experimental con- 
stants «.. ** and Ä- e,c- than '' »hese constants 
are computed from the theoretical potential curves 
directly. Furthermore, by having available the rota- 
tion-vibration wavefunctions and term valves, ACM-I/« 
and  B, value« can be compared with experiment 
directly, or these values can be predicted in cases 
where they are not observed. The vibrational wave- 
functions, which depend only implicitly, due to the 
centrifugal correction, on K, are used in addition to 
compute some typical  roUtion-vibration  transition 
matrix elements (t{R, K)\D(R) \v'{R, K')) by in- 

TABI* VI. Contlanti ol-lained from rolational analysis. (F.xperi- 
menlal value« are taken from Ref. 2 and given in ;>arentheses.) 

Stati t1 

0 
1 
2 

AC,«.in * 
(cm"') 

B. 
(cm'«) 

P. 
(10-« cm"') 

/«•A 2807.7(2737.4) 
2616.3(2544.1) 
2400 7 

14 665(14.577) 
14.022(13.907) 
13.321(13.182) 

1.50(1.56) 
1.54(1.58) 
1 62(1.65) 

3 
4 

2119 7 12.503 
11.423 

B»Z- 0 
1 

1658.8(1794 9) 12.628(12.645) 
10.75(11.160) 

2.31(2.22) 
10.2(3.28) 

• •z- 0 
1 
2 
3 
4 

3P19.3 
2o/8.2 
2729.8 
2567.4 
2383.8 

15.091 
14.558 
14.014 
13.435 
12.808 

1.44 
1.43 
1 44 
1.47 
1.52 

* lau.-219 474.55cm-'. 
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TABLE VII. Derived spectroscopic constants. (Experimental values are taken from Ref. 2 and given in parentheses.) 

Zero-point 
State energy (cm-1)      q» • (cm-1) w. (cm-1) u>a. (cm-1)        B, (cm-1) a, (cm-1) 

B'X- 1024.4 21 286.1 2173.6« 249.1* 13.57 1.88 
(~112S)i' (~2250) (13.39) (1.49) 

A'ii' 1503.9 19 940.6 2991.2 95.71 15.011 0.672 
(1418.1)' (2930.7) (96.65) (14.934) (0.697) 

a*Z-' 1566.8 0 3160.4 70.54 15.36 0.538 

• Refer to » = 0 vibrational state of a ,Z~. 
b Since only «, is approximately known experimentally, zero-point energy is taken to be ~Jw,. 
• Calculated from experimental spectroscopic constants with Dunham correction. 
d Since only two vibrational levels are obtained in CI calculations, these constants are derived from AGm and computed zero-point 

energy. 
• Three computed vibrational levels are used in deriving spectroscopic constants, u„ w#„ B„ and a,. 

tegraiing over the intemuclear distance dependence 
of the molecular dipole moment. 

in. RESULTS AND DISCUSSION 

The calculated SCF and CI energy values at dif- 
ferent intemuclear distances are given in Tables II-IV. 
The calculated dipole moments are also given in these 
tables. The direction of dipole, C~H4, is rather sur- 
prising since from the ionization energy of C and H 
one would expect the direction to be the other way 
(in accord with what is observed in almost all hydro- 
carbon compounds8). The reason for this reversal is 
as follows. The ground st-.tes of the C+(1^2^2/1 SP) 
and H-CS) ions cannot give rise to 'A, 2S-, or 42_ 

states. The lowest excited states of the ions C+ and 
H_, which can form 2A, l2-, or 42- states, lie higher 
than the energy of C-(lj,2i,2/>' *5 or 2I>)4-H+. 

A similar behavior is txpected for the X'll state, 
although the situation is complicated by the fact that 
the ground states of C+ and H~ do combine to give 
a 2n state. The difference in the direction of dipole 
moment in the CH radical and in hydrocarbons there- 
fore indicates the importance of the valence structure 
C-(lS or iD) + H+ in the CH radical, but not in the 
formation of hydrocarbon compounds. 

The calculated CI potential curves for the three 
states are presented in Fig. 1, together with the cor- 
responding SCF curves. Five points around the com- 
puted energy minimum of each state were fitted to 
a fourth order polynomial, and the resulting analytical 
curve was used to determine the potential minimum 
and the equilibrium intemi'dear distance. The results, 
together with the known experimental values, are 
given te Table V. 

The computed SCF equilibrium intemuclear dis- 
tances (Table V) for A SA and B 'S- are, respectively, 
0.037 and 0.048 a.u. shorter than the experimental 
values, whereas the CI results give R.{AtA)=2.0H 

a.u. and ReiB2!') =2.208 a.u., in excellent agree- 
ments with the experimental values. A similar CI 
calculation for CH+ by Green et all* gives even better 
agreements. We conclude that a large CI calculation 
of this type should be able to determine R, to within 
0.01 a.u. The computed Re for experimentally yet 
unobserved a*Ir state is 2.047 a.u. 

As can be seen from Table V, the SCF calculation 
does not give rise to a stable 522- state; the SCF 
potential curve lies entirely above the SCF energy 
of the separated atoms. This is another manifestation 
of the deficiency of the conventional Hartree-Fock 
method. One of the methods used to overcome this 
deficiency is of course the configuration interaction 
method ;ised here. The CI dissociation energy for 
.ß22~ is 0.169 eV, still too low compared with the 
experimental value of 0.40 eV. 

The computed dissociation energies for A 2A and 
a42- states are 1.894 eV (experimental value 2.01 eV) 
and 2.875 eV, respectively. A similar calculation for 
the X 2n ground state would be desirable in order 
to predict more accurately the location of the un- 
observed a42- state. However, calculations of similar 
accuracy could not be carried out presently for the 
following reasons. The X2n state requires three con- 
figurations, as indicated above, in order to dissociate 
correctly. This in turn makes it necessary to carry 
out a three configuration MC-SCF calculation, rather 
than a single configuration SCF, in order to obtain 
an adequate reference state. Such a reference state, 
containing several configurations, would yield a CI 
expansion with more than 7000 configuration state 
functions, if they are selected by the same rules as 
outlined above. Nevertheless, it is possible to make 
a reasonable prediction for the location of the 42- 

state from available data. The potential curves for 
the X 2n, o 42_, and B ,2_ states all dissociate to the 
same separated atom limit. The calculated D? for 
the B 22- is 0.23 eV too low compared to experiment. 
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TABLE VIII. Transition dipole miitrix elements {vK \ D(R) \v'K') 
of the A 'A state in atomic units («-bohr). 

»v 0              1              2 3 4 

A. ForÄ-=2andJi:'=2 

0 
i 

0.316 
0.040      0.335 

2 -0.006      0.053       0.351 
3 0.000   -0.014       0.056 0.360 
4 0.000      0.001    -0.025 

B. ForX=2andA"=3 

0.048 0.360 

0 0.316      0.038    -0.006 0.000 0.000 
1 0.041       0.335       0.051 -0.014 0.001 
2 -0.006      0.055       0.351 0.054 -0.025 
3 0.000   -0.014       0.059 C 360 0,044 
4 0.000       0.001    -0.025 0.052 0.360 

directly. The dipole moments at Re for A 2A, B 22- 
and o*2- are, respectively, 0.778, 1.267, and 0.643 D. 
As discussed previously, all these dipole moments are 
C_H+, indicating the importance of the valence struc- 
ture C-H+ in the CH radical. Of importance here is 
the dipole moment of the B 22_ state, which is twice 
that of the other two states. This is connected with 
the occurrence and interpretation of the potential 
maximum in the B iZ~ state (see Fig. 1). This poten- 
tial maximum has also been found experimentally by 
Herzberg and Johns,2 who found the maximum at 
about 2.0 Ä with a height greater than 500 cm-1. Our 
calculations give the position of the maximum at 
1.73 Ä with a height of 1600 cm-1 above the disso- 
ciation limit. According to Herzberg and Johns, this 
maximum is of van der Waals origin. However, since 
the atoms forming the B JS_ state are in their ground 
states and different, and one of them, H, is in an S 
state, there cannot be any first order perturbation, 
which would cause a van der Waals maximum, it up- 

If we assume that similar error exists in the cal- 
culated o42- curve, one can expect the true value 
for Z)«n(a42_) to lie between the computed value of 
2.88 eV and 3,11 eV. Since the dissociation energy 
for the .X2U state is known experimentally to be 
3.63 eV, we predict r,=0.63±0.12 eV, 

As indicated above, the lo- shell, corresponding to 
the carbon K shell, has been kept doubly occupied 
in all configuration state functions used in the CI 
expansion. Therefore, changes in the intra-ZiT-shell cor- 
relation with R, as well as changes in the correlation 
of other electrons with the /(T-shell electrons, have 
been neglected. The constancy of the former and the 
smallness of the latter have been established, in the 
case of LiH, for example, by comparing atomic cor- 
relation energies with the partitioned molecular cor- 
relation energy of LiH.10 Therefore we expect that 
the neglect of üT-shell correlation introduces only 
a small relative error into our computed potential 
curves. 

The computed properties, such as dipole moment 
ana quadrupole moments with respect to center of 
mass, given for R, in Table V, are obtained by quad- 
ratic interpolation to Re from the values computed 

TABLE IX. Transition -iipole matrix elements {vK | D{,R) \ v'K') 
of the B '2" stai; in atomic units (e-bohr). 

t'\i)' 0 

ForA>0andA-'=l 

0 0.503 0.021 
1 0.023 0.471 

TABLE X. Transition dipole matrix elements («JE | l)(R) | v'K') 
of the a ,X~ state in atomic units (e-bohr). 

»v 0               1              2 3 4 

Kor.K=0andr=l 

0 
i 
2 
3 
4 

0.260       0.028   -0.003 
0.029       0.273      0.040 

-0.003       0.041       0.287 
0.000    -0.006      0.049 
0.000       0           -0.010 

0.000 
-0.006 

0.048 
0.300 
0.054 

0,000 
0.000 

-0.010 
0.053 
0.313 

pears more likely that this maximum," appearing at 
a relatively small internuclear distance, is caused by 
an avoided curve crossing. The most likely zeroth order 
curve responsible for this avoided curve crossing is 
the 22- state arising from the 2Du state of C-(li22j22/>!l) 
with the 1S state of H+ (the bare proton). Since C_ 

and H+ attract each other by a Coulomb force, and 
since H+ is just a "bare" proton, we expect this 
potential cum to follow a \/R behavior down to a 
small R value i.e., to .^=3 bohr, at which time a 
large (0.1 hartree) intera-v.'n matrix element becomes 
reasonable. The iorlc ■ trve crossing proposed here 
for the 22_ state is also u accord with the large dipole 
moment of the 2}22- stct?, which continues to in- 
crease down to A=2.2 bohr. 

The long range behavior of the computed potential 
curves has been fitted to a c/R* van der Waals term, 
supplemented for the 22- and 42_ states by dtzBe-1" 
to account for* the splitting of the two multiplets, 
A rough fit (the computed accuracy permits only 
a rough fit) yielded the following formulas for (/(ij) — 

J 
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UiR) in atomic units: 

a*lr:S/Rt+4.06 exp{-lMR), 

B !2-: 8//?«- 4.06 exp (-1 MR), 

A*A:8/R'. 

These formulas fit the computed potential curves 
down to /f = 6 bohr with a deviation of 3 cm-1 or less. 

The AGt+ii* and constants derived from rotational 
analysis au given in Table VI, together with known 
experimental results in parentheses. The errors in 
AGH.,/2 for the A 2A state are 70.3 cnrr1 (2.5%) for 
1 = 0, and 52.2 cm"1 (2.0%) for t=l. The error for 
B 22_, »=0 is much larger, being —136.1 on-1 (7.6%), 
and in the opposite direction compared with A 2A. 
This means the calculated potential curve for the 
J522_ state is too wide as well as too shallow. How- 
ever, due to the narrow spacing for the rotational 
levels, it is seen frcn ths table that the rotational 
constants B„ and even Dv f'which is 10~4 times B,), 
are all in very good agre ..lent with experimental 
values. In deriving B, and Dt in Table VI, the 10 
lowest rotational levels are used for A 2A, a 42_ and 
t^O of B22_, whereas only six levels are used for 
i'=l of B22~ since only these six levels exist in the 
potential well. 

In Table VII we give the computed zero-point 
energy and the derived equilibrium spectroscopic con- 
stants. The term splittings i'oo are also given, relative 
to a 42-. The known experimental too for B *X~-A 2A 
is 2480.7 cm-1, our computed value is only 1345.5 
cm-1, or 1135.2 cm-1 too small, indicating that the 
error in the potential :urve spacings for the various 
states is about 0.15 eV. 

In deriving the equilibrium spectroscopic constants 
we have used the same number of v levels as are 
observed and used by experimentalists for their de- 
termination. Three v levels are used for the o4Z_ 

state. While experimentalists do not have enough 
information to derive u, and WeX, for the B 22_ state 
(since only two levels for this state are observed), 
we can derive the constants by combining ACi/j and 
the computed zero-point energy. The to. and ujc, cal- 
culated for the 522- state are'2173.6 cm"' and 249.7 
cm-1, respectively. Except for a, for B l2-, the agree- 
ments between computed and experimental equilibrium 
spectroscopic constants are all within 4%. 

The transition matrix elements, apart from the ex- 
plicit rotational quantum number dependent factors, 
are evaluated using the computed dipole moments 
from Tables II-IV, togethor with the rotation-vibra- 
tion wavefunctions computed. The resulting transition 
matrix elements are fairly constant within each branch, 
therefore only the values for the first members of 
each branch are given in Tables VIII-X. 
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VrAJ.ENCE EXCITED STATES OF CIl 
I.     POTENTIAL  CURVES* 
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ABSTRACT: Ab initio CI calculations have been performed over a wide range 
of iuternuclear distances (1.00 bohr to 20.00 bohr) to obtain the potential 
curves for the first five valence excited states of CH'j X H, a E , A-A, 
B2E~A and C

2S+. Results, with known cxoerimental values in parentheses, are 
ReO&t) = 2.113 (2.116) bohr, ^(a*?") %2-053 bohr, Re(A

2A) = 2.083 (2.083) 
bohr. Re(B

2Z-) = 2.216 (2.20) bohr, l=U-(cM) - 2.100 (2.105) bohr; 
De(3&l) = 3.51 (3.63) eV, De(a^-) = 2.84 eV. De(A

2A) *  1.90 (2.0.1) eV, 

De(E20 =•• 0.23 (0.40) eV, and De(C
2Z+) =0.78 (0.94) eV. Potential maxima 

of heights 1284 and 3228 cm-1 are calculated for the B2^ and C2!"1" states, 
respectively.  These maxima are attributed to avoided curve crossings.  The 
a^Z" state, not observed experimentally, is estimated to lie between 0.62 eV 
and 0.76 eV above the X2JI state. 
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I.   INTRODUCTION 

The emission spectra of CH in the visible and near-ultraviole'. consists 

of three bnnd systems near 4300A, 3900Ä and 3140X corresponding to the 

o      0     0        O o i     o 

electronic transitions A A -> X 11, B Z" -»■ X 11, and C Z -^ X 11, respectively. 

Analyses of these spectra in the early days of quantum mechanics played an 

important part in the development of our understanding of the doublet spectra 

of diatomic molecules. These analyses were later refined or extended by 

Shidei, Gero,  and Kiess and Broida. 
■ 

While absorption spectra of CH in stars have been known for a long 

time, no absorption spectra in the terrestrial laboratory had been found 

until 1952.  By 1969 strong absorption spectra were obtained in the flash 

photolysis of diazomethane and analyzed by Herzbers and Johns.  With this 

a considerable number of new absorption bands were found, including a Rydberg 

series in the vacuum ultraviolet, which supplied an accurate value for the 

ionization potential. In addition, the number of observed vibrational 

2   2 -     2 + 
levels in the X H, B £ and C Z states was increased and effects of 

2 -    2 + 
predissociation in the B Z and C Z states were discovered, leading to an 

21 
improved value for the dissociation energy of the X 11 BtatB,    However, the 

number of observed vibrational levels in each electronic state was still 

inadequate to yield reliable experimental potential curves over a wide range 

of internuclear distances. 

The experimental study of other properties of the CH radical is 

considerably hindered by its high reactivity. Only recently has the dipole 

moment of the ground electronic state been determined successfully from 

2 
simultaneous observation of the Stark splittings in the J ■ 1/2, IT states 

J 
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of CH and OH.7 It is in this area that a theoretical study can be most 

useful, as a source of otherwise unavailable information. 

Based on the then known spectra of CK and CII and some qualitative 

Q 

quantum mechanical arguments, Mulliken,  in a discussion of the correla- 

tion rules for the united atom, diatomic hydride, and separate atoms, 

predicted the S~ state of CH to lie closely above, or even below the 

11 state.  Since all the known stable states of CH to date are doublets, 

4 - 
the absence of transitions connected with the Z state is to be expected 

9 
on account of the different spin multiplicities.  Porter argued that since 

2        2 2-2 CH lines,   (A ■*- "II)  and  ( E    *•    11), were observed in interstellar 

absorption and since most molecules in interstellar space should be in their 

lowest energy state,     II should be the ground state.    Herzberg and Johns 

reached the same conclusion by a similar argument.     Recent ab initio 

calculations of  the    E~ state by Lie, Hinze and Liu      showed that the    S 

9 
state lies above the H state.  Hence, in the following, these states will 

4 - 9 

be  designated a E     and X"!!,   respectively. 

Near Hartree-Fock  (HF)  potential curves have been reported by Cade and 

11        2 10        4-22- 
Huo  for the X 11 state and by Lie et al.  for the a E , A A and B E 

states.  Cade and Huo found that spectroscopic constants calculated from the 

11F results for first row hydrides are generally in good agreement with 

2 
experiment.  This conclusion is also upheld in the excited A A state of CH. 

2 - 
However, the HF model does not predict a stable B E state, in the sense 

that there exists at least one vibrational level in the potential well. 
■ 

Also, there are other well-known systematic errors in the conventional HF 

approximation:  calculated dissociation energies are often too low by 
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1-2 eV;  results  for states of lower multiplicities are generally less 

accurate than  those for states of higher amltiplicities,  and incorrect 

dissociation  to excited atomic states  is often  predicted, 

Both Heitler-London and  full valence-shell  configuration interaction 

12 
(CI)  methods were  employed by Higuchi       to obtain potential  curves,   in  the 

0 /i *} 1 o  ■ 

range of 0.9 to 1,3A, for the X IT, a E , A A, BE and C I states (energy 

values were given relative to the ground states of C and H of unspecified 

source). However, only a minimum basis set of Slater-type-functions (STF) 

was used. 

The only accurate potential curves reported so far are those of Lie 

et al.  for the a " , A A and B Z    states.  In their calculations, all 

valence electrons were explicitly correlated by using large scale CI 

expansions. Dissociation energies, equilibrium intemuclear distances and 

spectroscopic constants were in quantitative agreement with the known 

experimental values. The a E state was predicted to lie between 0.52 and 

2 
0.75 eV above the X 11 state. 

13 
Liu and Verhaegen  used self-consistent-field (SCF) calculations, 

empirically corrected for electron correlation, to obtain potential curves 

for the first six electronic states of CH in the range of 2 to 3.5 bohrs 

(no total energy values were given). Close agreement with experiment was 

found for a number of molecular properties such a& equilibrium intemuclear 

distances, vibrational frequencies, term values and dissociation energies. 

4 - 2 
The a Z    state was calculated to lie 0.93 eV above the X 11 state, much too 

high compared with the ab initlo estimate of Lie et al.   Liu and Verhaegen 

2   2 - found maxima in their calculated pof ontial curves for the X 11, B E , 

2+2 ft 
C  E and U 11 states. Experimentally, Herzberg and Johns did find a 
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maxteum for the ßV st.ite,  and were able to deduce the existence of humps 

in the potential curves  for the cV and D2!^ states.    However,  Liu and 
2 

Vcvuaugen'c conclusion about  the raaximum Jn  the X 11 state ia almost certain 

to be in error. 

The slight niaximun in the B2£' state had been overlooked until stronger 

absorption spectra of Cll and CD were obtained and analyzed by Rersbcrg and 

Johns.0 Theoretically, this maximum was found only recently In the calcu- 

13 10 M 
lationr. of Liu and Verhaegen,  Lie et al.,  and Julienne and Krauss. 

According to llerr.berg and Johns, this traximura occurs at ^A with a height 

greater than or equal to 500 cm"1. The semi-empirical calculation of Liu 

and Verhaegen13 placed the maximum, ^00 cm" in height, at 1.6X. The CI 

lesult of Lie et al.10 gave a barrier 1600 cm"1 high at 1.73X. Julienne 

and RrmiM,  using the optimized valence configuration method,  estimated 

-1 0 

the barrier to be M000 cm  in height around 2A. 

In this work we have endeavored to improve the results of Lie et al. 

for the aV", A2& and B2Z" states, and lo include also calculations for 

the X2ll and C2r,+ states of Cll. Potential curves were calculated for all 

five states for a wide range of intemuclear distances, from 1.00 bohr to 

7.0.00 bohr, using the CI Behind. A number of frequently used computational 

models are examined in these calculations, in an effort to compare and 

establish the extent of their usefulness. Hie most accurate model yielded 

potential curves, taken relative to the separated ground state atom limit, 

believed to be within 0.3 eV of the exact curves. 

Table I gives the electronic configurations of the five lowest elec- 

tronic states of Cll and their respective dissociation llDlta. The method 
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used In this work is described In Sec.  II.    A discussion of the resulting 

potential curves Is given In Sec.  III. 

Expectation values of various one-partlclc operators and molecular 

properties, calculated at various IntcmucJear distances from the resulting 

wavefunctions, as well as the calculation of vibration-rotational wavc- 

fm.ctlons, energies, and npcctroscoplc analysis fro« the resulting potential 

curves, will be presented In paper II.16 

II.    METHOD 

In the Born-Oppenhela»er approximation the total wavefunctlon of a 

diatomic molecule is written as a product of electronic and nuclear wave- 

functions.    The electronic wavefunctlon, neglecting relativlatic effects, 

are eigenfunctions of the clamped-nuclei Haailtonian operator 

■ - - I EV + V(R.£) , (1) 

2 
where 71  is the Laplscisn operator for the 1-th electron, R is the 

Internuclesr distance, £ is the collection of «11 electronic spstial 

coordinates. In Eq. (1) the first tens correspond Co the electronic 

kinetic energy, and the second term tc sll the electrostatic interactions 

between electrons end nuclei of the molecule. Atomic units are used in 

Eq. (1) and throughout this paper, unless otherwise specified. Eigenfunctions 

of this HamiltonIan, which does not conuin magnetic loterect ions, are 

also eigenf unctions of the total electronic spin MglUt momentum S2 

(quantum number S), its component along the iniomuclcar axis 8 

39 



((.u.tiitua nucbcr iL), and rhc axial eMpoutnt of tho total electronic 

orlbtal angular monrntua L (quantua number A). Tooao elgenfunctlona ^rc 

(2 - 6,0)(?S + l)-foJtl degenerate; nencly cln^nctotea vlth cocao» I.'.] 

(2 - t,Q rosälhllltiea) and S (?S + 1 poaslbllities) have the aa^ne energy. 

TJius the electronic Schrodinger equation to be solved con be vrln 

ASM. 
m A /•. 

(R.r.o) 
ASM, J^dOf'^'Vr.b) A . 

(2) 

ASH- f  A i.i 
where 1   (B.r.o) la tho electronic wavefunction, E1  (R) ia tho total 

electronic energy including nuclear-nuclear repulaion, aa a function of R. 

The variable o ia the collection of all electronic apln coordinates. In 

Eq. (2), the electronic wavefunction ia given as a function of o, in 

addition to R and r, bcrauae the spin coordlnatea affect tho alectronic 

spatial distribution and give riae to different electronic atatea for the 

aaas electronic configuration (aee Table 1). 

The aethod of configuration interaction (CX) ia uaed here to obtain 

approxlaate aoluciooa to Eq. (2>. That is, the electronic wavefunrtioo 

ia approxlrated by an er.panaicn in an orthooormal aet of configuration 

atato functiona (CSF), 

ASMS  A A   ^ ^   Asns  A A 
T  S(t.r.3) - £ Cj '(ID*, 3(R,£.o) . O) 

ML 
where the coefficicnta C.  (R) are deternlned using tho variational 

ASM. 
principle. Each CSf, ^  , given as a specific linear coabination of 

Slater Jcteminanta, is bv definition an eigcofunctioo of L . 8 nnd S 
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with thit corresponding qusncua nuabors A, S and hL given in superscripts. 

A Slater determinant is a Domalliod and antisymetrized product of o te- 

elcctron functions called spin orbitale (SO). The SOs are syMMtry 

constrained in the sense that each SO is an eigenfunction of the axial 

coaiponent of the electronic orbital angular ■oaentiss t (quantua nuaber X), 

2 
the electronic spin angular eooentua s (quantua nuaber a " 1/2), and 

the axial coaponent of the electronic spin angular aoaentua a (quantua 

nuaber a • 11/2). The 1-th SO with quantua ntari>era X and a  ia 

denoted ♦,. (£,<#£.)t where x. and 2. ar* ch* spatial and spin 

coordinatea of the J-th electron, respectively. It  is conetructed as a 

product of a apetial function and a spin function. The spatial function ia 

again * product of two functions; one that doea not depend on the esiauthal 

angle *. about the internuclear axle, and one that depends only on *.. 

Thua, 

♦iA-,(jEJÄJ) " ♦lX<*J)«.-(*j) 

1X# 
(4) 

where p., s. and f. are cSe cylindrical coordinatea of the J-th electron. 

The functiona ^(jr.) are called aoleculer orbitale (NO). The NOe are 

equivalence-constraiaed; i.e., they are independent of ■  end NOs with coeaan 

coaaoo i and |X| differ «nly in their ♦. dependence. The NOe fora an 

orthoooraal sett oaaely 

♦ixOCj^fX'^J^Xj • «„.«u. (5) 
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Iheso orthoßonol MO« are expanded In term« of a basic set of elenrucary 

function« (Xu,)» 

♦ixCrj) -Zc^j.ipX^rj)  . (6) 

The oloacntary function« (x^-) v*cd here are Slatei-typo function« (STF) 

centered on the nuclei of the aolecule. 

Froa the preceding deacrlptloo. It la aeen thut our calculation 

begin« with the choice of an «levcntary baals «et.    Thla choice 1« of 

great laportance «ince the elcaentary b««l« «et dctemlne« the «pace apanned 

by the orbitale, the CSF« and ultimately the accuracy of any molecular 

calculation.    A complete linear tranaformation on the elementary functions, 

Eq.  (6), lead« to a «ot of HOs of the saaa dimension, «pannfng thu sane 

space a« the «tarting elementary function«.    If it la feasible to Include 

in the CI cxpanaion. Eq.  (3), a complete set of CSFs dorivable fro« the 

full HO set, "complete CI",  then the same result would be obtained 

Independent of the tranaformation coefficienta   C£|x|p*    n>ls f' however 

beyond current computing capabilitiea, for any «ystem involving mote than 

four electron« and N9a must be near optimally choj.cn in order to arhleve 

the bist possible result with a severely truncated CI expansion.    In the 

following «a diacuaa in detail tiio choice of the elementary baala aet, the 

construction of the NO aet and the selection of CSFs to be included In tho 

01 expannion in our study of the CH radical. 

The beau set of elementary function« u«ed here conalsta of alx   a, 

four   p, two   d and two    f    typ« STF« on carbon, and four    a, three   p 

and two   d   type STF« on hydrogen.    The    s snd p    type function« on carbon 
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were taken from dementi's SCP calculation17 for the 3P state of carbon. 

They differ little from the functions obtaine^ b> Clement!  for the 1D state. 

The polarization functions on carbon,  3d, »id,  Ut and 5f, were selected18 

such that they are localized mainly In the L shell of carbon.    The STFs 

functions on hydrogen were taken from Liu's CI calculation for the 

potential curve of H2 and the potential surface of H-.19    Details of 

the CH basis set are given in Table II. 

The basis set described above yields SCF energies comparable to those 

obtained by Cade and Huo      with a much more compact, but carefully optimized 

basis set.    The choice of a large basis set  for the current calculation was 

motivated by rhe desirability of describing all the electronic states u..aer 

consideration with a common basis set, the need of additional one-particle 

functions describing correlating orbitale,  and the desire to avoid 

extensive exponent optimization.    Selective changes of the    s and p    STF 

exponents lead to improvements of the SCF energies by less than 0.0001 hartree. 

SCF energies were virtually unaffected by changes in the exponents of    d 

functions on carbon.    Since the basis set was to be used in a CI calculation, 

some test CI calculations were carried out with changed exponents for the 

d functions on carbon.    In «11 cases tested,   the maximum energy improvement 

was again oi;ly of the order 0.0001 hartree;  an Indication that the selected 

basis set is reasonable. 

Comparing the current basis set with that used by Lie et al.10 we see 

that, besides a slight increase in the number of basis  functions, all 

functions with large exponents (C ■ 10.0,  14.0)  in the latter have been 

replaced '.y more diffuse    d and f    functions.    This was done because 

functions with Urge exponents represent very contracted orbitale, which 
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arc not likely to contribute heavily in molecule formation.  Examination 

of the SCF In orbitals of Lie et al. shows that the TT basis set used 

by them was not adequate (large orbital expansion coefficients with 

opposite signs). This inadequacy is absent from the current basis set. 

The SCF energies obtained from the basis set given in Table II range 

from 0.0004 to 0.0009 hartree better than thuüe obtained by Cade and Huo11 

for the X II state and Lie et al.   for the a'jT, A2A and B2Z~ states. 

In the HF approximation the electronic wavefunction is represented 

by a single CSF. The HF CSFs for the five lowest electronic states are 

A : la22a23a2lTr , 

k  - 9  ?     9 1- 
&l : ICJ 2cr3o(lTi , Z )   , 

2 ">     2           2  1 
A A : lo~2a 3a(lTT /A)   . 

2 - 2     2           2  1- 
B I   : l<r2c  3a(lTT  ,  Z )   , 

cV": la22o23a(nT2,1l+:   . 

(7) 

Tie occupied MOs in these CSFs, or in our case the expansion coefflcjents 

^Ap' are dcrenttined using the SCF technique. The IIF model for molecules 

has two ba^ic deficiencies.  First, the HF wavefunction often dose not 

dissociate formally to the correct separated-atom wavefunctions-  This 

is the case for two of the five states in (7).  For the X2n state of CH, 

the HF CSF corresponds, at R = «, to a mixture of neutral carbon and 

hydrogen atoms in ground and excited states, and also (C+,H~) and (C~,H+) 

ion pairs.  For the C I    state of CH the {?  CSF dissociates to the ground 

state of hydrogen atom and a mixture of the D and S states of carbon. 

In these cases, HF results for large R are expected to be in considerable 
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error.     This  difficulty may  be overcome by a multiconfiguration se]f-- 

20 
consistent-fiold  (MCSCF)   calculation,       including  the CSFs  neccsoary  to 

give a correct description of  the separated atom limit;.     These CSFs are, 

2-, 2    2'? 
X il: la 2o ikTlTr 

2    2     2 
la 2a ha In 

lc22a2(3a4o,V!')lTr 

la2202(3oAa,3Z+)lTr 

C2Z+:        la22a23c(nT2,1L+) 

2     2 2 
la 2o 3a4a    . 

(8) 

Here  the occupied MOs are determined by the MCSCF technique. 

The second deficiency of the HF model is  that  it docs not include 

electron correlation effects,  which play an important  role  in  the  electronic 

structure of molecules.    Neglect of electron correlation often leads to 

erroneous dissociation energies  and term energies.    For example,   in the HF 

2 - 
model of CH,   the B L    state  is  unstable relative  to  the  separated ground 

4 - 2 state atoms,  and the a E    state lies below the X 11 state.     In this study, 

electron correlation effectt;  are introduced  through CI.     The CSFs included 

in the CI expansion are selected on the basis of their relation to a MCSCF 

(or SCF) wavefunction which dissociates properly to the separated atom 

limit.     This is different  from the customary approach to  CI of beginning 

with a SCF wavefunction. 

o 
An examination of  (8) shows  that a proper description of  the X IT and 

2r+ 
C I    states,  at large    R,  requires a 4a orbital which is not occupied in the 

HF CSFs.     Tills  is simply because  a proper description of   the  separated 
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ato^c  requires  fcur Cf and one ir-typc orbital:     (Isc,!!),   (Isc.C),   (2so,C), 

(2pa,C)   and   (2pTT,C).    To determine  the MOs  that  con plat0, with these 

separated atom orbitals,  HCSCF calculations vjere  carried out  foi-  the 

following  CSFs: 

2 2    2    2 X n laz2o 3a ITT 

2    2    2 la 2a 4a In 

la22a2(3a4a,V)lTr 

la22a2(3a4a,2E+)lTr 

o        o        ^ 
la 3a lTrJ 

2     2    3 
la 4a In 

2 1+3 
la (SaAa/Z )l7rJ 

la2(3a4a,3z'1")lTi3 

a4Z~       la22a23a(nr2,V) 
2     2 2  2- 

laz4a 3a(lTTZ,zZ ) (9) 

2 2    2 2 2 
A A la 2o 3a(nT /'A) 

? 2       2 1 
la'-SaAa'-dTr , A) 

2   - 2    2 2 3- 
B £        to la'sailif ,t ) 

C2E+       la22a23a(lTT2,1Z+) 

2    ">        2 
la 2a-3a4a 

la 3a4a4(ir, E ) 

la23alTr4 

la24a23a(lTr2s
1i:r) 

In  (9) ,  all the CSFs on  the left  are those needed to dissociate to  the 

2    2    2 
Is 2s  2p    configuration of carbon and the  ground state of hydrogen.     The 

addition of  the CSFs on the right permits  a two configuration description 
*)       O       0 o       / 

of  carbon  a\.ora,  C..ls 2s  2p    + C-ls 2p   ,   at  the separated atom limit. 

In what  follows the 2a, 3a,  4a,  and ITT orbitals,  correlating with the 

2s and  2p orbitals of carbon,  and the Is orbital of hydrogen will be 

referred  to as valence orbitals.    Reference will also be made to a set of 

external orbitals which,  together with  the MCSCF occupied-valence orbitals. 
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span  a subspace of the STF basis,  Important  to an accurate description of 

the  electronic motions. 

In  constructirs CSFs  for Eq.   (3)  we  always  keep the  lo orbital  doubly 

occupied.     This means,  no correlation effects connected with the la electrons 

are  considered.     This  restriction reduces  significantly  the number of  CSFs 

in  the  final CI  expansion,   and is justified on  the basis  that  correlation 

effects  connected with the Is electrons  of  carbon are not expected to 

change significantly in molecule formation.     Four types of CSFs are 

considered in our CI calculations. 

(a) All CSFs necessary to give a HF description of the appropriate 

separated atom limit.    These CSFs are given for the X2!! and C2E+ 

states in Eq.   (8)  and for the aV, A2A,  and BV states in 

Eq.   (7). 

(b) All CSFs arising from distributing five electrons among the 

valence orbitals,   that are not  already included in  (a). 

(c) All CSFs arising from distributing four electrons in valence 

orbitals and one electron in external orbiuls. 

(d) All CSFs arising from distributing three electrons in valence 

orbitals and two electrons in external orbitals, which satisfy 

the condition that all CSFs of  this type,  and any linear 

combination of them,  must have a non-vanishing Harailtonian 

matrix element with at least one of the CSFs in  (a). 

A practical algorithm for constructing CSFs described in  (d) has recently 

been developed by McLean and Liu. 

The additional condition placed on  the type  (d)  CSFs, which leads  to 

a significant reduction in the dimension of  the CI problem,   is justified 
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on the basis of Rayleigh Schrodinger perturbation theory.  Consider the C.l 

wavefunction, detennined in the r^pace spanned by the CSFs of (a), as a 

zeroth order approximation to the complete Cl wavefunction.  'Jhen all Cblv, 

that have vanishing Hamiltonian matrix elements with all the. CSFs in (a) 

vjill make no contribution to the first order perturbative correction to 

the zeroth order wavefunction.  These CSFs can be expected to make small 

contribution to the complete CI wavefunction and therefore be omitted, 

provided that the zeroth order wavefunction is a reasonable one. This is 

why the MCSCF wavef unctions, which permit proper dissociation, were, chosen 

as the starting point for our CI calculation instead of the uaual SCF 

wavefunctions. 

From the four types of CSFs described above, three distinct CI 

wavef unctions are constructed. A CI in the space spanned by all the CSFs 

of type (a) and (b) is called a "valence Cl". A CI including all CSF's 

of type (a), (b) and (c) is a "first order Cl"-. follox^ing Schaefer, 

Klenin and Harris.   The best wavefunctions obtained in this study, 

including all CSFs of the four types described above are referred to as 

"extended CI" functions. The "valence CI" function, constructed solely 

from the core and valence orbitals is clearly independent of the external 

orbltals. The CSFs of type (c) span a vector space invariant to an 

arbitrary unitary transfonaatio among the external orbitals. The. same 

is true for the CSFs of type (d). Thus all three types of Cl functions 

described here are invariant to any unitary transformation among the 

external orbitals. 

Clearly the numbers of CSFs of type (c) and (d) depends on the number 

of external orbitals. It is therefore desirable to compact the external 
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orbital set, such that the most  useful part of the space spanned by the 

STF basis is packed into a small nurcber of external orbitals. This 

permits a truncation of the external orbital set,  which significantly 

reduces the number of CSFs of type (c) and (d) with little loss of 

accuracy. 

The method of natural orbital (NO) transformation provides a useful 

approacb to such a compact set of orbitals. The properties and uses of 

NOs have recently been reviewed by Davidson.23 It suffices hero to say 

that the NOs of a wavefunction are cigenfunctions of the first order 

23 
reduced density matrix. " The eigenvalues associated with the NOs are 

the occupation numbers; their magnitudes to some extent reflect the 

importance of the associated NOs. 

In what follows we  shall always assume that NOs are  ordered by 

symmetry and decreasing occupation numbers. Thus the occupation number of 

the i-th o NO is greater than or equal to that of the j-th a NO, provided 

that i < j. Also if a set of NOs is to be truncated, the NOs retained in 

each symmetry must always have larger occupation numbers than those omitted. 

NOs e    racted from four different wavefunctions were examined: 

(i) he "extended CI" wavefunction, (ii) a wavefunction consisting of the 

same CSFs as the "extended CI", but determined by diagonalizing a llamiltonian 

matrix in which all off-diagonal elements involving only type (c) and (d) 

CSFs were approximated by zero,  (iii) a wavefunction determined in the 

same manner as in (2), except that only off-diagonal matrix elements between 

type (d) CSFs are omitted, and (iv) the "first order CI". The CSFs in 

these wavefunctions were constructed from the full set of occupied and 
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virtual orbitale (nineteen c, twelve T!, six 6 and two s' typo  virtual 

orbitals) obtained from the MCSCF calculation described earlier.  The NOs 

extracted from these wavefunctions are referred to as NCL, NO^, NO^, 

and NO. , respectively.  Each of these NO sets were used with various 

degrees of truncation as orbital basis in a series of "extended CI" 

^i - 
calculations. Results of some of these calculations for the a I    state 

are given in Tables 111 and IV. The first column of each table gives the 

number of leading NOs of each symmetry used in the "extended CI" calculation. 

The second column gives the "extended CI" energies using truncated sets of 

NO . The third column gives the difference between successive entries in 
i 

the second column; namely the energy improvements resulting from the 

addition of a new group of NOs. The fourth and fifth columns gives 

results of parallel calculations using NO^. The fact that N0i is a 

compact set of orbitals is evident.  The last ten 0 and three If orbitals 

contribute only ^.OOGA a.u. ^0.011 eV) to the "extended CI" energy. 

However, there is no real computational advantage in using NO^ since 

their determination requires an "extended CI" calculation using the full 

set of virtual orbitals.  In calculations using NO^ the energy improvements 

do not drop off as rapidly as in calculations using NO^  Still, the last 

ten a  and three TT type orbitals only contribute 'UJ.GQll hartree (^.03 eV) 

to the "extended CI" energy. More importantly, NO^ are considerably 

easier to determine, compared to m±.    In the "extended CI" wavefunction, 

using the full set of virtual orbitals, over 99% of the CSFs are of type (c) 

and (d). Thus to determine wavefunction (ii) it is only necessary to 

compute ^4% of the Hamiltonian matrix elements required to determine 
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wavefunctltm (i). The results of calculations using K0JJJ and HO  ur^ 
ill     iv 

not given.  It Is sufficient to note that NO^, while somewhat more 

costly to determine than NO^, is not significantly more compact than 

N0ii. Also, N0iv, though somewhat more easily determined than NO , is 

not as compact as NO^.  Calculations parallel to those described above 

wer*> also carried out for the A2A state. The four sets of NOs examined 

in these calculations show essentially the same behavior as in the aV 

case. Thus, NO^ truncated to thirteen o, ten IT, six 6 and two * leading 

orbltals were used to construct CSFs for subsequent C£ calculations. The 

number of CSFs in each of the thr-e CI wavefunctions, using the truncated 

N0i. basis, is given in Table V. Tue "extended CI" wavefunctions consist 

of 4147, 1225, 1549, 1498 and 2184 CSFs for the X2n, aV, A2A, fiV and cV 

states, respectively. These numbers are to be compared with 9234, 2598, 2988 

3066 and 5009, respectively, which would have resulted from the full 

orbital set. 

The NO transformation described above changes all of the MCSCF valence 

and virtual orbltals. For four of the five states studied here, the four 

leading a and one leading TT NOs are essentially unchanged from the KCSCF 

orbltals. That is. If the NOs are denoted by la1, 2o',   ..., ITT', 

in order of decreasing occupation numbers, then we have for these four 

states la E la', 2a B 2o\  3a B 3a'. 4a *to't  and ITT ^ ITT', whexe the 

unprimed orbltals are the MCSCF orbltals. Consequently, the space spanned 

by the type (a) CSFs remains essentially the same whether the CSFs are 

constructed from MCSCF orbltals or leadmg NOs. However, this is not the 

case for the C Z+ state. The MCSCF wavefunction for this state, which 

pennits proper dissociation to separat?d 1IF atoms is 

51 

— ■  — ^ ■MMBMH 



*■*• T—' 

lh 

C1la22o23o(l7t2,1j:+) + C2lo22o23o-(r (10) 

vhcre the 3a orbital correlates with the hydrogen lb orbital mil the Ao 

orbital with the carbon 2pO orbital. It is easily shown that the MCSCF 

orbitals are also the HOu  of this wavcfunction, and that the occ«.Ration 

numbers associated with the lo 2a,  3o and An orbitals «re 2, 2, 1, and 

? 2 
2Ct,  respectively. Since C, increases from 'vO.OOOl near the equilibrium 

nuclear separation to 2/3 at R • '•», the ordering ot the NOs is a function 

of R.  Let the primed and unprimed orbitals again denote the NOs and MCSCK 

orbitals, respectively. Then, lo = lo', 2o H 2o , li» = In , 3a = 3a , and 

2 • 
4o = Ao' for small R where C2 

<  1/2. However, we have 3a = 40 , and 

40 H 3a for large R where C2 > 1/2. This means, at large R the 

wavefunction 

c'lo,22o,23r,nt'2 + c'lo,22o,23o,Ao'2 (11) 

is drastically different from the KCSCF wavefunction in Eq. (10) and no 

longer a good approximation to the true wavefunction. This invalidates the 

selection of type (d) CSFs, which is based on perturbation theory using 

the wavefunction in Eq. (10) as a zeroth order approximation. To overcome 

7.  + 
this difficulty the first four c NOs of the CT state were replaced ny 

the MCSCF orbitals. The resulting orbital set, after Schmidt ortho^nnaliza- 

tlon, was then used as the orbital basis for subsequent CI calculations. 

In summary, the calculations carried out for the five lowest electronic 

states of CH consisted of four steps.  (1) SCF calculation.  (2) MCSCF 

calculation using the CSFs given In Eq. (9).  (3) Determination of an 
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dpproxlcute 'VxioauiJ Cl" wdvcfuncclon u^ing CS7« conuituctwd fro» the 

full set of HCSCF occupied and virtual orbital* determined in step (2). 

The expnnsion coefficient» are determined b«- diaconalf^lng a Umiltonian 

uitrix where all off-diagonal clemnta involving only type (c) and type (d) 

CSFs arc approxlnaicd by x«ro. The KOa extracted fro« thla wavefunction, 

ordered by synnatry ond decruaeing occupation mnbera, ara than truncated 

to thirteen 0, ten n, »ix S  and two ^ typo orbitale. (4) Three Cl 

calculations: (a) "extended Cl". (b) "flrat order Cl", and (c) "valence 

Cl" within the cruncnted orbital eat obtained in (3). 

111.  RLSULTS AKD DISCUSSIONS 

Tbo calculated SCP, "valence Cl", "flrat order Cl", and "extended Cl" 

energies for the five lowest electronic states of CH are given in 

Tables Vl-X. Ute SCF potential curves are shown in Fig. 1 and the 

"extended Cl" curves in Fig. 2. The "valence Cl" and "first order Cl" 

curves are qualitatively similar to the "extended Cl" curves, except that 

2_- 
thc B 2. curves lies entirely above the separated atom limits. Thus, of 

the four computational models examined here, only "extended Cl" gives a 

2 - 
bound B L state. 

Five points around the computed energy minimum of each curve were 

fitted to a fourth degree polynomial, and the resulting analytical curve 

was used to determine the potential minimum and equilibrium intern.clear 

distance, R^. The results, together with known experimental values, ire 

given in 'fahle XI. The R 's calculated from the "extended Cl" curves are 

in excellent agreement with known experimental values. For three of the 

five slates studied the agreements arc better than 0.0) bohr. The one 
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2 - 
•xcttptloQ is the 0 I «rate wher« th« calcuUtvd value 1« 2.216 bohr as 

coaparod to Che experlaental value of 2.200 bohr. Thia dlacrepancy can be 

allclbuced to  the fact that the experimental It  Is dctereln«"« fr«i tbe 

apectroscopic constant B# using the relation B • (2iiR 2)"1,2. Using 

this relation and a theoretical value of B^ derived fro« the "extended 

Cl" curve, we obtained a Rc value of 2.190 bohr for the B2E" atate. 

This Ic^i us to believe the calculated value of 2.216 bohr la vithin 

0.01 bohr of the true potential ainiouo. Details of the above analysis 

will be given in paper II. The K     for the aV stste is not known 

experimentally; the "extended Cl" result of 2.053 bohr is believed to be 

within 0.01 bohr of the true equillbriua nuclear distance. 

The SCP R^ valuea sre all too snail compared with experiment; 

wherceo the "valence CI" and "first order Cl" results are all too large. 

The "valence CI" results are better than the "first order CI" results 

for all five electronic ststes studied. The R  values obtained from 

the seml-emplrlcal calculations of Liu snd Verhsegcn13 fell considerably 

short of the sect racy achieved by the "extended CI" calculationa. Their 

Re value of 2.124 bohr for the B E" atate, la even amaller than the SCF 

result of 2.151 bohr. 

All three CI models employed In this study have been designed to give 

the correct separated atom limits. However acymptotic wavefunctions. In 

the limit of R - «>, obtained from these CI calculations sre different froa 

results of equivalent atomic cslculatlons done in spherical oymactry. This 

difference Is the result of relaxing atonic equivalence and symetry 

constmints. In the molecular calculation the orbitale and the CSFs are 

constrained to belong to irreducible representation of ';he point group 
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C^, instead of cho three diaenslooal totdtlon Hiuup a» In the atomic raao. 

Three conatralntt are relaxed In a C^ calculation. (1) Orbltel 

equivalence constraint; deRenerace atonic orbltsls like 2pc end 2pv of 

carbon are not cotutrained to have the sd«ic radial dependence. (11) Orbital 

sysneiry constraint; the aulecular orbltsls are not conatralnrd to be 

aigenfuoctlons of the I operator. Thus the NDs corresponding to atonic 

s orbitals nay have «to components and those corresponding to atonic p 

orbitals aay have f coapooentn. (ill) CSP syonetry constraint; the CSFs 

in the rolecular calculation are constrained to be elg«nfunctions of L , 

but not L  ss in the spherically syanstric calculations. Thus, the CI 

wavefunction obtained is constrained to hove the proper K. quantum 

nunbew, but nay not be an eigenfunction of L . The effects of relaxing 

these equivalecce and ayaaatry conatraints, in lint ted CI calculations, are 

low-red total energies and sone apparent discrepancies in the asyn^totic 

behav:or of calculated potential curves. These effects ere examined in 

aone detail in what follows. It Is appropriate here to insert the reninder 

that tte  difference between s C   aton snd a spherically cynaotric one 

is /in artifact of the nsthod cnployed in the wevefunction calculation, which 

has no reel physical significance. In the Halt of a coaplete CI calcula- 

tion, including a coaplete set of n-pjrticle functions derivable from a 

given one-panicle basis, the sane result is obtained regardless of the 

equivalence and synastry constraint* imposed. 

To begin with ve exaalne the asyaptotic result* of HCSCF calculoticr.s 

using the CSFs given In (9). These results are of interest because the 

MCSCF occupied ortituls play an important role in subsequent CI calculations. 
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Al R • •, th« CSF» in Eq. (9) go over to the following carbon a to« CSFH: 

X^c'f.M, • 1): oj.o^.^ + oj.o^ 

.VA^-O). oj.oj.4  ♦oj.o^ 

.V(3F.HL.0)> «{.o^ 

AVD.M,, - 2): oj,«^ 

2 2  2 
+ of o, it- 

Is 2p 2p 

2 2 2 

(12) 

ch^ih^'O):   o2
uolua2 

2? 

n2 n2 »2 0l.028,,2p 

L n2  n2 ,2 
+ o, o„ il- 

ls 2p 2p 

+ 0? TlJ Is 2p 

In Eq. (12), the corresponding separated carbon atom states are given in 

parentheses following the terra synbol lor the CH states. The orbitale in 

the CSFs are identified by the irreducible representation of the C   group 

to which they belong, with the corresponding carbon atomic orbital given 

as subscripts. The part of the CH wavefunctions that goes over to the hydro- 

gen Is orbital, cownon to all CSFs in (12), Is omitted. The X 11, a f  and B Z" 

states of CH all dissociate into the F ground state of carbon. The MCSCF 

energies for all three states arc somewhat lower than that of the correspondinp. 

two-configuration nuucrical MCSCF calculation for carbon reported by Bagus 

and Moser. 
25 

This is because in the C   carbon atom, the o^  orbitale 
•"v is 

an permitted to have a do component and the o„ and v        orbitale arc 
£p *P 
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pemltted to have fo ox  ^ cooponcatt. and also tha c2p aud ^  orbital« 

are pemltted to have different radial dependence. This added frldon. in 

the wavefunetion leads to a lowered total energy. The MCSCF energy of 

carbon fro» the aV and BV caJculations are lower than the eorresponding 

results fro« the X2II ealeulations by 0.0017 hartree. An examination of 

Eq. (12) shows that the o2p orbxtnls are not occupied in the HF CSFs for 

the a E" and BV states, and can be frrely optimiZfcd without jeopardizlnp 
2  2  9 

the HF CSF of O^o^p. This is. however, not the case for the 2II state, 

where any energy lowering due to the departure of the a2p or t   orbitals 

fro« the HF results „ust be balanced by an increase in thl energy of the KF 
2 2 

^ als028
c2PV The 02p and %    MCäCF ^bltals arc given in Table XII. 

It is seen that the a^ and ^ orbitals are quite similar for the X2II 

state but drastically different in the aV and BV states, supporting 

the above argument. The A2A and C2Z+  states of CH dissociate into the h> 

state of carbon. The J«SCF energies of carbon obtained from the MCSCF 

calculations on these states in C^ symmetry are again lower than the 

numerical MCSCF results of Bagus and Moser.25 Following the argument in 

the 3P case, we would expect the energy of the carbon atom obtained from the 

^  calculation to be somewhat lower than that from the C2E+ calculation. Xha 

a2p and .2p MCSCF orbitals for these two states are also giver, in Table XII. 

The two orbitals in A2A state are again quite different as in the EV and 

aVstates. while the two orbitals of the 2Z+  are similar as in the X2II 

case. However the MCSCF energy of carbon obtained fron, the h+  calculation 

is 0.0013 hartree lever than that from the 2A calculation, in apparent 

contradiction to our earlier argument.  To resolve this apparent 

contradiction we again examine the CSFs in (12) 
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1   ? ?  2 
To describe a KF atom in the D(is "2s 2p ) state two CSFs are required, 

2 2 2      2  2 2 
1 Is 2s 2p   2 Is ^s 2p 

(13) 

In a  calculation carried out under spherical symmetry the ratio C^/C^ is 

fixed at -2   to insure a D wavefunctlon. However, under C   symmetry, 

this ratio can be varied freely to achieve, the lowest possible energy, as 

it is only necessary to insure the correct HL quantum number. The same 

situation exists for the two CSFs describing the Is 2p configuration of 

carbon. It is this new degree of freedom, in addition to the relaxation 

of orbital symmetry and equivalence restrictions, that results in a lower 

MCSCF energy for the C Z state, compared to the A A state.  The actual 

ratio between the two  pairs of coefficients discussed above are -1.527 and 

-1.199, respectively. Further evidence for the above argument is found in 

the fact that the C2T.+  result is 0.00/i0 hartree lower than the corresponding 

25 
numerical HCSCF results of Bagus and Moser,  considerably larger than the 

2 4 -    2 - 
lowering obtained in the A A (0.0027 hartree), a E and B E  (0.0018 hartree), 

and X?n (0.0001 hartree) states. The "valence CI" results, at large R, 

are essentially identical to the MCSCF results, and thus no further 

.v 

discussion is necessary. 

3 
The "first order CI" calculations reduced the discrepancies of the P 

and T) asymptotes from 0.0017 hartree and 0.0013, respectively, to 

0.0006 hartree. The same discrepancy remained in the "extended CI" results. 

It seems reasonable to assume that more extended CI calculations, involving 

CSFs with three or more valence electrons occupying virtual orbitale, will 

not further reduce the remaining discrepancy. We, therefore, attribute 
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25 

the discrepancy of 0.0006 hartree to the mixing of da components in the 

lo orbital corresponding to the carbon Is orbital.  To eliminate this 

discrepancy, it is necessary to carry out Cl calculations including core- 

valence and core-core correlation effects.  An alternative method for 

avoiding this problem is to restrict the 1c orbital to an expansion in 

s type STFs alone.  This approach is useful for nuclear separations where 

no significant core polarization takes place.  At any rate, a discrepancy 

of 0.0006 a.u. (00.02 eV) is quite acceptable, considering the accuracy 

of the calculations reported here. 

The correlation energies obtained for the two states of carbon 

represent approximately 95% of the L shell correlation energy.26 

The "extended CI" term splitting between C(3P) and C(1n) is 1.31 eV, 

as compared with the experimental value of 1.26 eV.  This is a considerable 

improvement over the previous result of Lie et al.,10 where the error is 

0.24 eV. 

The calculated dissociation energies De
0, obtained from interpolated 

potential minima and corresponding dissociation limits, are given in 

Table XI. The "extended CI" dissociation energies are, with known 

experimental values given in parentheses, 3.51 eV (3.63) for X2n, 2.84 eV 

for a Z", 1.90 eV (2.01) for A^, 0.23 eV (^0.40) for BV, and 0.78 eV 

2 + 
(0.94) for C Z . These results are in error by 0.12 eV and 0.11 eV for 

2      2 
the A H and A^A states, respectively, and by 0.17 eV and 0.16 eV, 

respectively for the weakly bound states B2E" and C2Z+. A significant 

part of these errors can be attributed to the neglect of correlation 

effects between the lo shell and the valence electrons; in particular, 
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the correlation bairween the io electrons and the 3o electron (or one of 

2 
the 3a electrons in the X 11 state) which does not exist when the two atoms 

27 
are far apart.  Bender and Davidson' obtained -0.0050 hartree for the 

la-3a intershell correlation energy in the X IT state. If we take half of 

their value as the extra molecular correlation energy and add it to our 

computed dissociation energy for the X2][ state, then the D 0 for the 
e 

ground state becomes 3.57 eV, which is only 0.06 eV too low compared with 

the experimental value.    The second source of  error in  the computed dissocia- 

tion energies  is  the incomplete correlations of the valence shell.     As has 

been pointed out earlier,   the truncation of  the internal orbital set 

accounts for an error o    ^0.03 eV in the calculated dissociation energies. 

The remaining error is attributed to the  incomplete STF basis and the 

neglect of CSFs with two or more valence electrons occupying extemal 

orbitals,  which only contribute  to  the waveiunction through second and 

higher order perturbation  theory. 

The M0 energy for the la orbital in the HF calculation is  essentially 

Identical with  the energy of the carbon Is orbital and is nearly Independent 

of the internuclear distances.    Therefore  the  intra-sheli correlation 

energy of the la shell should be nearly constant for all internuclear 

distances and  its neglect should introduce only a small error into the 

computed dissociation energies. 

ons The correlation energies recovered,   in the  "extended CI" calculatl 
2 2 2 — ? + 

for the X IT,  A A,  B E    and C £    states,   represent only about 60% of the 

total correlation energies.    The low percentages are due to  the neglect 

of all correlation effects Involving the la electrons.    The valence shell 

correlation energies recovered in  these  calculations are believed to be 

over 90%. 59 
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The dissociation energy of the aV state is certain to be larger than 

the calculated value of 2.84 eV. Assuming a core-valence correlation 

correction of 0.06 eV. as was estimated for the X^II case, and an orbital 

truncation error of 0.03 cV we arrive at an estimated lower bound of 2.93 eV 

for the E 0 of the aV state.  If we further assume that the error in 

the calculated dissociation energy of aV is no more than that of the other 

four states, then we have D^CaV) < 3.01 cV.  Thus we. estimate 

D 0(a4O = 2.94+0.07 eV. This estimate, combined with the experimental 
e L 2 

value for D 0(X2II), places the aV state above the X II state by 

0.69±0.07 eV. This Is in excellent agreement with the previous estimate 

of 0.63±0.12 eV by Lie et al.,10 but contradictory to the semi-empirical 

result of Liu and Vcrhaegen13 which placed the aV state above the X ll 

State by 0.92 eV. Their T^CaV) = 0.92 eV leads to D^CaV) = 2.72 eV 

which is smaller than the HF value of 2.78 eV. The "extended CI" term 

splittings between the X2II, A2A, BV and cV states are all within 

0.06 eV of the known experimental values. 

Figure 2 shows clearly the existence of potential maxima in the 

"extended CI" curves for the EV and cV states. The existence of the 

maximum in the B2E~ curve has been deduced experimentally by Herzberg and 

Johns6 from the breaking-off of the emission lines and the diffuseness 

of the absorption lines in the spectra of CH and CD. The recognition of 

this maximum led to a slightly different value of the Do
0 for the X'TT 

state from the value accepted prior to 1969. From the limiting curves of 

dissociation for the BV states of CH and CD, Herzberg and Johns estimated 

the height of the maximum to be gmater than (or at least equal to) 
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500 cm  , at R  2A. Our calculated results show that this maximum 

occurs at R = 3.29 bohr (1.74Ä), v/ith a height of 0.1592 eV (128A cm'1). 

Since the minimum in the calculated potential curve for the ITZ- statt, is 

too high, relative to the calculated dissociation limit, by 0.17 eV, the 

calculated barrier height is likely to be too high.  Assuming the difference 

between the calculated and exact curves is given, as a function of R. bv 
-(R-Re)

2 

an e       . the calculated barrier height is too high hy ^0.06  eV.  A 

likely value for the barrier height is ^800 cm" . 

Other calculations which showed a maximum in the B Z    states were 

discussed in the introduction,  liiere are Liu and Verhaegen's semi-empirical 

calculations  which gave a barrier of height ^900 cm-1, at VL.öÄ, Lie, Hinze 

and Liu's ab initio CI calculations  which gave, a barrier of height 1600 cm"1, 

at 1.73A, and optimum valence MCSCF calculations of Julienne and Krause 

indicated a barrier of height VIOOO cm" , around 2A. 

2 + 
The potential maximum in the C £ state had been deduced experimentally 

also by Herzberg and Johns.  They observed that the v = 4 vibrational 

2 + 
level of the C S state of CD lies slightly above the dissociation limit 

corresponding to C( D) + D( S) , and concluded that the C2Z+ state cannot 

2 + 12 
be correlated with the Z state from D + S except by assuming a large 

potential maximum.  This large potential maximum did show up in our 

calculations. The "extended CI" results give a potential maximum at 

R = 3.33 bohr (1.76Ä) v/ith a height of 0.4003 eV (3228 cm"1).  Here, again, 

the calculated value is probably too high by 0.0.06 eV, and our estimate 

of the true barrier height is ^2300 era" . 

13 
Liu and Verhaegen  also deduced this maximum in their semi-empirical 

calculations. To explain the existence of this and several other potential 
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maxima found In their calculations, they asserted "...there being several 

potential maxima. These result from necessary changes of molecular 

electronic configuration of some of the states before they disöoeiate." 

This argument is incorrect eince it implies that any state whose HF 

configuration does not dissociate correctly into its atomic limits will 

have a maximum in its potential curve.  It is well known that the HF 

configuration of the ground state of Lil. does not dissociate correctly 

2      2 ] + 
into LI (a) + H( S) and that there is no maximum in the XL stare of 

28 13 
hill.   In fact, the results of Liu and Verhacgan  did show a potential 

2 
maximum in the X II curve of CH. No such maximum has been f. und experi- 

mentally or in our calculation. 

6 2.,- 
According to licrzberg and Johns  the maximum in tha B I    state is 

of van der Uaals origin, similar to that for the C 11 state of H,,.  This 

explanation ic incorrect for the following reasons:  (a) The maximum in 

the C 11 state of H» is due to the degeneracy at large separations 

corresponding to the exchange of excitation energies. Is *■*■  2p.  In other 

words, there is a non-vanishing first order dipole-dipole van der Waals 

interaction at large separations due to the exchange degeneracy. No such 

3       2 
degeneracy c/Lists in the case of C( P) and Il( S) ; (b) A van der Waals 

maximum in the potential curve can arise if, besides (a), there iö a 

non-vanishing first order dipole-dipole, dipole-quadrupole, or quadrupole- 

2 
quadrupole  interaction.     Since  the    S  state of hydrogen docs not  possess 

dipola or quadrupole moment,   there  is  no  first order van der Waals 

interaction between C and H.    Any second order interaction leads only to 

attraction,       and cannot be  the  cause  for a maximum in the potential  curve, 
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2 - 
Thi repulsive character of the B E state, at large R, is more likely to 

be caused by the exchange effect which splits a T.    state Into an attractive 

< 2 — 
f state and  a repulsive    Z    state.     Therefore  the occurance  of  the 

maximum in  the B E    state must have its  origin  in  an  avoided  curve 

crossing between  the original  repulsive  curve  and another  curve of  the 

same symmetry. 
2 _ 

The first candidate for this other E  curve is that arising from the 

Is 2s2p ~D excited state of carbon and the ground state of hydrogen atom. 

o < 
Since the    D state lies ^8 eV above the ground state of carbon,  it is 

2 - 
unlikely that  the resulting    E    curve can  reach down  far enough to  cross 

2 - 
the lower repulsive curve.    This is also true  for all other    E    curves 

arising from neutral carbon and hydrogen atoms,  because  they have even 

higher separated atom asymptotes.     This  is  one of  the  reasons why the 

2 _ 
potential maximum in the B'E curve was attributed to a van dor Waals 

origin. A few steps up the separated atom energy ladder we find that 

C"(ls22s 2p  D) and H+ gives rise to a £~ curve. This ionic curve has 

a 1/R behavior which, owing to the small size of the H ion, persists 

down to very small R values. Therefore, in spite of the fact that 

C~(ls22s22p3, U) + H+ lies ^14 eV above the ground states of C and H, this 

2 - 
ionic curve can reach down to cross the repulsive curve of the B I    state. 

This crossing occurs near R = 2.5 bohr.  The shift of the potential maximum 

to R " 3.30 bohr and the low barrier height of ^800 cm  are results of a 

large interaction between the zeroth order curves. We note here, before 

2 - 2 - 
the ionic E curve can cross the B E curve, it must first cross many 

L~  curves arising from various excited states of carbon and hydrogen atoms, 
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2„      33 
including  Chat  x'esulting  from the  Is  2s2p       D state of  carbon discussed 

earlier.     In  each case  there results an avoided  crossing  followed by   the 

resumption of  an essentially 1/R behavior  at  smaller    R    values.     Hovever, 

if we use valence-bond curves  as zeroth order approximation,  it is  the 

2_- 
ionic curve that is responsible for the maxiraum in the B T.    curve. 

A similar explanation can be found for the occurrance of the potential 

2 + ? 4* 1 
naximum in the C Z curve.  The second lowest £ curve prising from C( S) 

2 
and Ii( S) is repulsive according to elementary Heitler-London theory.  There 

2 + 
are two ionic curves that can reach down and cross the lowest Y.    curve: 

+  22''     - 1 
the first one arises from C (Is 2s '2p "p) + H ( S) which lies Vll eV above 

-  2 2 3 2    + 
the ground state atoms, the second from C (Is 2s 2p  p) + H which lies 

2 + +   - 
VIS cV above the ground state atoms.  The E curve from C + H , owing 

to the large, size of the 11 ion, deviates from the 1/R behavior at 

a considerably larger R value than the curve from C + H . Indeed, the 

+   - -   + 
C + H curve appears to turn up and cross the C + H near R = 3.5 bohr 

2 + 2 as evidenced by  the sign change in  the dipole moments of  the C 2    and  X II 

2 + states which will be discussed in paper II.     Therefore it  is  the    L     curve: 

from C   + H    which is finally responsible  for the avoided crossing and the 

2 + 
associated  potential maximum in the  C £    curv 

Finally,  we  compare the  three computational models  employed in  this 

study.    The  "extendec. wi" model is clearly  the most  reliable of the three. 

2 - 
It alone predicts,   correctly,  a bound B Z    state.     It  consistently  gave 

equilibrium nuclear separations,  dissociation energies,  and term energies 

to within 0.01 bohr,   0.2 eV and 0.06 eV,   respectively,  of  the known 

experimental values.    The "first order CI" and "valence CI" models  failed 
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to give results of comparable accuracy;   both models also failed to 

2 - 
predict a bound B £ state. The "valence CI" equilibrium nuclear distances 

are scmeuhat closer to the experimental values than  those of "first order 

CI".  No definite trend can be found by comparing the dissociation energies 

and term energies calculated from these two models.  It is somewhat 

surprising thac the "first order CI" model does not yield significantly 

better results than the considerably simpler "valence CI" model. 

1 
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TA'ILE I 

Electronic Configurations of the Five Lowest States 

of CH and Their Dissociation Limits 

Eler tronic 
Conf- duration 

State Dissociation Limits 

2 ?  2 la 2a 3o In 
2 

C(3P) + H(2S) 

2 2   2 
la 2a 3alT. 

a4r 
A2A 

B2r 

c2z+ 

C(3P) + H(2S) 

C(1D) -!• H(2S) 

C(3P) + K(2S) 

CC^) + H(2S) 
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TABLE  II 

Slater-Type Basis  Set 

Center nl Value Exponents 

c Is 9.29, 5.41 

2s 4.26, 2.59, 1.50, 1.03 

2p 6.34, 2.59, 1.42, 0.96 

3d 1.95 

4d 2.00 

4f 2.50 

5f 4.10 

H Is 1.00, 2.20 

2s 1.00, 2.20 

2p 1.70, 2.90 

3p 2.90 

3d 2.70 

4d 2.70 
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TABLE III 

4„- 
ANO Convergence Study I: a E' rt R = 2.20 b 

a IT 6 V N0.L Improvement N0ii Improvement 

4 1 0 0 -38.304738 -38.304828 

6 1 0 0 -38.314663 
0.009925 

-38.314075 
0.009247 

8 1 0 0 -38.317600 
0.002937 

-38.317548 
0.003473 

10 1 0 0 -38.31831?; 
0.000713 

-38.318316 
0.000768 

13 1 0 0 -38.3188J5 
0.000542 

-38.318933 
0.000617 

16  1 0 0 -38.318988 
0.000133 

0.000094 
-38.319087 

0.000154 

0.000124 19  1 u u -38.319082 -38.319211 

21  1 0 0 -38.319102 
0.000020 

-38.319376 
0.000165 

0.000009 0.000021 
23  1 0 u -38.319111 -38.319397 

23  3 0 0 -38.356300 
(0.037189) 

-38.356166 
(0.036769) 

23 6 0 0 -38.362760 
0.006460 

-38.362740 
0.006574 

23 8 0 0 -38.363515 
0.000755 

-38.363498 
0.000758 

23 .0 0 0 -38.363813 
0.000298 

-38.363803 
0.000305 

23 13 0 0 -38.363966 
0.000153 

-38.363965 
0.000162 

23 13 3 0 -38.381973 
(0.018007) 

-38.381767 
(0.017802) 

23 13 6 0 -38.382419 
0.000446 

-38.382404 
0.000637 

23 13 ( 2 -38.384098 
(0.001679) 

-38.384084 
(0.001680) 
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TABLE IV 

4„- 
ANO Convergence Study II: a E~ at R = 20.0 b 

a 7T 6 <p M^ Improvement NOii Improvement 

4 1 0 0 -38.207659 -38.207737 

6 1 0 0 -38.219222 
0.011563 

-38.219174 
0.011437 

8 1 0 0 -38.219423 
0.000201 

-38.219373 
0.000199 

10 1 0 0 -38.219607 
0.000184 

-38.219574 
0.000201 

13 1 0 0 -38.219671 
0.000064 

-38.219665 
0.000091 

16 

23 

1 

1 

0 

0 

0 

0 

-38.219686 

-38.219686 

0.000015 

0.000000 
-38.219683 

-38.219683 

0.000018 

0.000000 

23 3 0 0 

23 6 0 0 

23 8 0 0 

23 13 0 0 

-38.253357 

-38.256681 

-38.257022 

-38.257022 

(0.033671) 

0.003324 

0.000341 

0.000000 

■38.253330 

-38.256701 

-38.257053 

■38.257053 

(0.033647) 

0.003371 

0.000352 

0.000000 

23 13 3 0   -38.279690 

23 13 6 0   -38.279841 

23 13 6 2   -38.282216 

(0.022668) 

0.000151 

(0.002375) 

-38.279661 

-33.279877 

-38.282252 

(0.022608) 

0.000216 

(0.002375) 
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TABLE V 

Numbar of Configuration State Functions Used in the 

a 
CI Calculations' 

CSF TYPE 

State Valence First Order Extended 

x2n 18 741 4147 

■ 

A 9 252 1225 

cV 

8 

9 

14 

528 

378 

446 

1549 

1498 

2184 

Truncated approximate natural orbital set of 13a,  IOTT, 

66 and IV   was used. 
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TABLE VI 

2 a 
Potential Curve  for   the X 11 State of CH 

E 

R HF Valence-CI First-Order CI Extended CI 

1.00 -37.51455 -37.54039 -37.58686 -37.64103 
1.30 -38.02545 -38.04795 -38.09068 -38.15061 
1.60 -38.21406 -38.24090 -38.29012 -38.34121 
1.90 -38.27297 -38.30401 -38.35359 -38.40194 
2.00 -38.27848 -38.31115 -38.36091 -38.40829 
2.05 -38.   "'957 -38.31311 -38.36295 -38.40981 
2.10 -38.27974 -38.31420 -38.36409 •-38.41041 
2.15 -38.27914 -38.31453 -38.36446 -38.41025 
2.2J -38.27786 -38.31422 -38.36419 -38.40943 
2.40 -38.26780 -38.30831 -38.35834 -38.40156 
2.70 -38.24437 -38.29220 -38.34201 -38.38338 
3.00 -38.21759 -38.27364 -38.32?95 -38.36252 
3.50 -38.17408 -38.24626 -33.29405 -38.33124 
4.00 -38.13568 -38.22705 -38.27315 -38.30870 
5.00 -38.21048 -38.25389 -33.28786 
6.00 ■-38.20696 -38.24929 -38.28287 
8.00 -38.20611 -33.24809 -38.2«160 

11.00 -38.20608 -38.24803 -38.23159 
15.00 

(-38.18866)b 
-38.20608 -38.24803 -38.28159 

20.00 -38.20608 -38.24803 -38.28159 

All quantities are in atomic units. 

b 2 HF configuration state function for the X H state does not  dissociate 
correctly to the atomic limits of  C(3P)  aud/H(2S).    The value given in 
the  parenthesis  is  that obtained  from  the &"*£"  state at R =  20.00 b, 
corresponding to the SCF energy of  the ground states of C and A. 

i 
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1.00 
1.30 
1.60 
1.90 
2.00 
2.05 
2,10 
2.15 
2.20 
2.40 
2.70 
3.00 
3.50 
4.00 
5.00 
6.00 
8.00 

11.00 
15.00 
20.00 

TABLE VII 

rotcmtial Curve for the aV State of CHa 

-37.54271 
-33.05082 
-33.23421 
-38.28677 
-38.29006 
-38.29003 
-38.28909 
-38.28738 
-33.28501 
-38.27069 
-38.24185 
-38.21239 
-38.19366 
-38.19016 
-38.18890 
-38.18872 
-38.18866 
-38.18866 
-38.18866 
-38.18866 

Valence-CI 

-37.55316 
-38.05899 
-38.24600 
-38.30243 
-38.30702 
-38.30768 
-38.30745 
-38.30646 
-38.30483 
-38.29374 
-38.27051 
-38.24713 
-38.22018 
-38.21064 
-38.20790 
-38.20778 
-38.20775 
-38.20774 
-38.20774 
-38.20774 

First-Order CI   Extended CI 

-37.58386 
-38.0919S 
-38.27864 
-38.33637 
-38.34165 
-38.34268 
-38.34283 
-38.34222 
-38.34098 
-38.33143 
-38.31045 
-38.28936 
-38.26465 
-38.25411 
-38.24958 
-38.24889 
-38.24870 
■ 38.24868 
-38.24867 
-38.24867 

-37.63499 
-38.14212 
-38.32661 
-38.38164 
-38.38593 
-38.38645 
-38.38608 
-38.38497 
-38.38323 
-38.37183 
-38.34839 
-38.32530 
-38.29911 
-38.28828 
-38.28347 
-38.28259 
-38.28226 
-38.28224 
-38.28223 
-38.28223 

aAll quantities are given in atomic units. 
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TABLE VIII 

2 a 
Potential Curve  for the A A State of CH 

R HF Valence-CI First-Order CI Extended CI 

1.00 
1.30 
1.60 
1.90 
2.00 
2.05 
2.10 
2.15 
2.20 
2.40 
2.70 
3.00 
3.50 
4.00 
5.00 
6.00 
8.00 

11.00 
15.00 
20.00 

-37.42364 
-37.93532 
-38.12142 
-38.17632 
-38.18042 
-38.18082 
-38.18033 
-38.17909 
-38.17722 
-38.16539 
-38.14382 
-38.13282 
-38.12936 
-38.12984 
-38.13111 
-38.13147 
-38.13154 
-38.13154 
-38.13154 
-38.13154 

-37.43427 
-37.94325 
-38.13104 
-38.18975 
-38.19533 
-38.19653 
-38.19689 
-38.19654 
-38.19560 
-38.18785 
-38.17175 
-38.15873 
-38.14992 
-38.14895 
-38.15023 
-38.15070 
-38.15079 
-38.15079 
-38.15079 
-38.15079 

-37.48522 
-37.99542 
-38.18467 
-38.24498 
-38.25110 
-38.25255 
-38.25314 
-38.25299 
-38.25223 
-3824502 
-3F.22904 
-38.21430 
-38.20021 
-38.19557 
-38.19403 
-38.19389 
-38.19380 
-38.19378 
-38.19378 
-38.19378 

-37.54232 
-38.05255 
-38.23933 
-38.29675 
-38.30193 
-38.30292 
-38.30304 
-38.30244 
-38.30124 
-38.29228 
-38.27374 
-38.25707 
-38.24175 
-38.23632 
-38.23393 
-38.23349 
-38.23324 
-38.23327 
-38.23327 
-38.23327 

aAll quantities are given in atomic units, 
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TABLE IX 

Potential Curve for the B E State of CH 

HF Valence-CI   First-Order CI   Extended CI 

1.00 
1.30 
1.60 
1.90 
2.00 
2,05 
2.10 
2.15 
2.20 
2.30 
2.40 
2.70 
3.00 
3.25 
3.50 
4.00 
5.00 
6.00 
8.00 
11.00 
15.00 
20.00 

-37.33604 
-37.99086 
-38.09067 
-38.15032 
-38.15647 
-38.15806 
-38.15889 
-38.15913 
-38.15895 
-38.15799 
-38.15721 
-38.15970 
-38.16563 
-38.17071 
-38.17515 
-38.18153 
-38.18699 
-38.18832 
-38.18865 
-38.18866 
-38.18866 
-38.18866 

-37.40844 
-37.92464 
-38.11979 
-38.18783 
-38.19650 
-38.199 30 
-33.20130 
-38.20263 
-38.20340 
-38.20363 
-38.20269 
-38.19808 
-38.19570 
-38.19610 
-38.19738 
-38.20114 
-38.20602 
-38.20739 
-38.20773 
-38.20774 
-38.20774 
-38.20774 

-37.44759 
-37.95884 
-38.15493 
-38.22135 
-38.23023 
-38.23328 
-38.23559 
-38.23729 
-38.23850 
-38.23978 
-38.24008 
-38.23808 
-38.23683 
-38.23781 
-38.23951 
-38.24328 
-38.24739 
-38.24846 
-38.24868 
-38.24867 
-38.24866 
-38.24866 

-37.50726 
-38.02121 
-38.21346 
-38.27774 
-38.28552 
-38.28789 
-38.28946 
-38.29037 
-38.29075 
-38.29027 
-38.28875 
-38.28192 
-38.27728 
-38.27638 
-38.27659 
-38.27858 
-38.28144 
-38.28216 
-38.28223 
-38.28222 
-38.28222 
-38.28222 

Vll quantities  are  given in atomic units. 

76 

fltSMMH 



hk 

TABLE X 

2 + a 
Potential Curve for the C T, State of CH 

B HF Valence-CI 

E 

First-Order CI Extended CI 

1.00 -37.36927 -37.39209 -37.42268 ■-37.49620 

1.30 -37.88227 -37.90213 -37.93538 -38.00796 

1.60 -38.06920 -38.09129 -38.12668 -38.19664 

1.90 -38.12463 -38.15132 -38.18893 -38.25543 

2.00 -38.12884 -38.15728 -38.19575 -38.26107 

2.05 -38.12929 -38.15866 -38.19756 -38.20230 

2.10 -38.12884 -38.15917 -38.19851 -38.26268 

2.15 -38.12764 -38.15896 -38.19875 -38.26235 

2.20 -38.12579 -38.15814 -38.19838 -38.26142 

2.40 -38.11400 -38.15074 -38.19284 -38.25354 

2.70 -38.09209 -38.13709 -38.17911 -38.23637 

3.00 -38.08018 -38.13185 -38.17294 -3R.22342 

3.25 -38.07088 -38.12984 -38.17538 -38.21942 

3.50 -38.07579 -38.13062 -38.18013 -38.22007 

4.00 -38.07577 -38.13853 -38.18723 -3.'J.22596 

5.00 -38.07662 -38.14904 -38.19201 -38.23181 

6.00 -38.15135 -38.19305 -38.23342 

8.00 -38.15208 -38.19330 -38.23380 

11.00 -38.15212 -38.19331 -38.23393 

15.00 i 
-38.15212 -38.19331 -28.23392 

20.00 (38.07690)° -38.15212 -38,19331 -38.23392 

^11 quantities are given in atomic units. 

2 + 3HF configuration state function for the C E state does not dissociate 
correctly to the atomic limits of C^D) and H(2S) , instead it dissociates 
into a mixture of C^D) and C^S), besides H(2S) . The HF energy of 
the correct atomic limits for the C2Z+ state should be -38.13154 hartrees, 
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TABLE XI 

Properties of tht Calculated Potential Curves - Continued 

Taken from Reference 6. 

Total experimental energy is taken to be the sum of experimental atomic 
energy and spectrescopIcally determined Dr

0. Atomic energies are taken 
from Reference 11 and  Reference 30.  For De

0, see footnotes c and d. 

'Experimental zero point energy is calculated from Ue, wexe v;lth Dunham 
correction.  (Spocfroscopic constants are Caken from Reference 6.) 

The spectroscopic constants we and a)exe for the B Z" state are not well 
determined experimentally, therefore the known approximate coe (see 
Reference 6) is used to determine the zero point energy. 

Ilmax an(i Emax are  t'1'- intemudear distance and energy, respectively, at 
the place of the maximum in the potential curve. 

F 
IIF calculations predict a slight maximum ir. the potential curve of the 
C L state, but fall to describe correctly the dissociation limits. 

JA  potential barrier exists, but no information about the height and 
place is known experimentally. 

From References 6 and 11. 

Barrier heigut is defined as the height of the potential maximum witn 
the dissociation limits as the base line. 

Metastable predicted, i.e., E^ lies higher than the dissociation limit! 
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TABLE XII 

MCSCF Aö  and   lit Orbitals  at  R =  20.0 b 

Orbital 
a 

Basis Function x2n aV.ßV A2A cV 

Aab 2pc C =6.34 -0.0108 -0.0039 -0.0034 -0.0101 

5 = 2.59 -0.2347 -0.1764 -0.1836 -0.2459 

C = 1.42 -0.5689 -1.0612 -1.0595 -0.4806 

5 = 0.96 -0.2578 0.2446 0.2502 -0.3438 

4fc C - 2.50 -0.0004 0.0042 0.0044 0.0288 

5fc 5 = 4.10 0.0001 0.0010 0.0010 -0.0075 

17TC 2pc r, - 6.34 0.0110 0.0108 0.0100 0.0108 

C = 2.59 0.2303 0.2351 0 2451 0.2268 

5 = 1.42 0.6229 0.5709 0.^837 0.6051 

5 = 0.96 0.2023 0.2552 0.3414 0.2246 

4fc C ■ 2.50 

5f    ? = A.10 

0.0004 

-0.0001 

-0.0005 

0.0001 

0.0078 

-0.0021 

0.0469 

-0.0115 

Expansion coefficients for tbe basis orbitals not listed are all zero. 

K2po of c. 

cWt of c. 
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Figure 1. SCF potential curves for the five lowest electronic states of CH 
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Figure 2. "Extended CI" potential curves for the five lowest electronic 
states of CH 
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CH,  uäino accurate ab initio electronic wavefunctions and potential   curves. 
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wavefunctions were obtained from the calculated potential curves by 
numerical solution of  the radial Schrb'dinger equation  for Che nuclear 
motion.     Vibration-rotational analyses were  carried out  to yield spectro- 
scopic constants which are in satisfactory agreement with known experimental 
values. 
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INTRODUCTICN 

In the preceding paper,  hereafter referred to as paper I, we 

discussed the calculation of electronic wavefunctions and potential curves 

2   4-2   2-    2 + 
for five electronic states of CH: X 11, a E , A A, B Z and C E . With 

these wavefunctions, it is possible to calculate expectation values of 

many one- and two-electron operators of physical interest.  Also, from the 

calculaced potential curves, vibration-rotational levels can be obtained 

by numerically integrating the one-dimensional radial Schrödinger equation. 

2 
McLean and Yoshimine observ d, in 1966, "We have reached a point, 

in ab initio calculations of molecular structure, where it is no longer 

satisfactory to discuss only energies and compare results with other 

calculations. A wide spectrum of expectation values must be computed and 

a serious effort made to compare with, and complement, experimental 

observations.  Only by doing this can a valid assessment of the accuracy 

of the wavefunction be made". While their statement remains valid today, 

progress made in the intervening yearn has allowed ab initio calculations 

to become competitive with experiment as a tool for the determination of 

molecular properties. In many instances, ab initio calculation has 

yielded otherwise inaccessible information.  The calculation of molecular 

properties is a minor task compared with the calculation of the electronic 

wavefunction. However, the very large number of parameters required to 

describe an accurate electronic wavefunction is difficult to communicate. 

It is rare that anyone, other than the original authors of the wavefunction, 

performs the straightforward but highly useful calculations of molecular 

properties. Therefore, it is desirable that authors of new wavefunctions 
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carry out anc report molecular property calculations.  After all, one of 

the most important purposes of wavefunction calculations is to obtain 

molecular properties. 

In this paper we repcrt one-electron expectation values and molecular 

properties obtained from the wavefunctions described in paper I.  These 

data are not easily accessible through experimental observations, which 

are severely hampered by the high reactivity of the CH radical. In fact, 

only the dipole moment of the ground state of CH, among all the properties 

3 
reported here, has been determined experimentally. 

We also report here spectroscopic constants determined from the 

calculated potential curves.  Available spectroscopic information on CH 

4 
has been summarized by Herzberg and Johns.  A comparison between the 

theoretical and experimental results provides a valid ar'-essment of the 

accuracy of the calculated potential curves, and establishes the accuracy 

of the calculate a4£~ potential curve which is not known experimentally. 

II.  EXPECTATION VALUES 

We restrict our disc-i  en to expectation values of operators of the 

form i 

i=l £fi (i) 

where the sununation is over ail electrons of the molecule, and f, is a 

one-electron operator which depends on the coordinates of the i-th 
■ 

electron. The one-electron operators considered In this paper have the 

general form 
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r" sin^-G.   cosj9.   P0„(cos  9,.) 
k    9.o 

where the subscript    k    refers to the nucleus of either C or H as the 

coordinate origin.     The     z-axis points  from C  to H,   and P.   (cos  6)   is  a 
xo 

normalized associated Legendre polynomial.     The  expectation value of    f 

is given by 

<f>=<,i',f,i'> 

= i: CICJ <V*J> 

i,j      J J 

In Eq. (2), Y is the electron wavefunction expanded in terms of 

configuration state functions (CSF) $  with expansion coefficients C , 

as described in paper I. The CSFs are constructed from a set of molecular 

orbitals t^). The coefficients y..    are elements of the first order 

reduced density matrix belonging to the wavefunction T, represented in 

the basis {^ }. 

Table I gives expectation values of one-electron operators, at the 

computed equilibrium internuclear distances, calculated from the "extended 

Cl" wavef unctions of paper I. As noted in paper I, these computed R 's 

2 - 
are, except for the B Z    state, in excellent agreiment with the experimental 

values. 
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III.  MOLECULAR PROPERTIES 

Among the molecular properties which are related to the computed 

expectation values, we consider the dipole moment, the quadrupole moment, 

the electric field gradients at the nuclei, the diamagnetlc susceptibility, 

the nuclear shielding constant, the Hellman-Feynman forces, and the vi:ial 

ratio.  Strictly speaking, the last two properties are not obscrvables; 

however, their values at R  are known theoretically. How closely the 

computed values approach the theoretical values gives an indication of 

the quality of the computed wave function. 

A.  Dipole Moment 

The dipole moment M of a linear molecule is given by 

y =E Mi -<z> 
i 

(3) 

In Eq. (3), the sum is over all nuclei with charge Z., and z-coordinate 

R, in a cooiHnate system where the z-axis is the molecular axis. The 

dipole moment of a neutral molecule, such as CH, is independent of the 

coordinate origin. 
■ 

Table II gives dipole moments computed from the "extended CI" 

wavefunctions of paper I for five electronic states of CH.  These 

results are also displayed graphically in Fig. 1.  All computed 

dipole curves have the correct asymptotic behavior at large and 

small R; i.e., all dipole moments go to zero at united and separated 

4-2 2 - 
atom limits.     The dipole moments  for the a 2   , A A and B £    states are 

in the direct*^n of C H    for all intemuclear distances, whereas  the 
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'      2 + + - 
dipole moments for the X"!! and C ii states are in the direction of C H 

_ + 
for large R, and C H for small R.  The sign change in the dipole 

2 + 
moment of the C E state is consistent with the valence bond analysis, 

2 + 
given in paper I, for the origin of a maximum in the C Z    potential curve. 

The C H dipole, at large R, results from the interaction between a 

repulsive potential curve arising from ground state separated atoms, and 

-4--     999      91 -4- 
an attractive curve arising from C H~ (Is 2s 2p P + Is  S). The (TH 

dipole, at small R, results from the ionic curve arising from 

C~H+(ls 2s22p3 P). At large R, the C+H~ curve lies ^2 eV below the 

C H curve. However, as R decreases, the C H curve deviates from a 

1/R behavior sooner than the C H curve, due to the large size of H 

compared to H and the small difference between the sizes of C and C . 

Thus, at small R the C H curve lies below the C H curve. As stated 

- + 2 + 
in paper I, this C H curve eventually crosses tue repulsive E curve, 

2 + 
and is responsible for the potential maximum in the C E curve. The 

2 
sign change in the dipole moment of the X IT state can be explained in the 

4-2»     2 - 
same way.  The reason why the a Z , A A and B E states have dipole moment 

in the sense C H for all R, is that the lowest C H structure that can 

- + 
give rise to these states lies higher than the lowest C 11 states of the 

corresponding symmetry for both large and small R. 

Table III and Fig. 2 give dipole moments of CH calculated from the 

9 
SCF wavefunctions of paper I. The SCF dipole moment for the X"II state 

does not approach zero as R approaches 'x>.     This results from the 

failure of the HF wavefunction to dissociate into the correct separated 

atom limit. Another difference between the SCF and "extended CI" results 
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2 + 
is  that,   for the  C Z    state  the SCF dipole moment  remains  in  the  direction 

- + 
of C H    for all internuclear distances.     This  reflects  the failure of  the 

o    • 9       9 9 
HF wavefunction for the C £ state, la 2a 3CfllT , to properly include the 

contribution of the ionic structure C H , at large Internuclear distances. 

Both of these deficiencies can be removed by going to the "valence CI" or 

"first order CI" wavefunctions. 

The dipole moments at the computed R  were obtained by interpolations 

using four calculated points around R . The results are given In Table IV. 

2 
The "extended CI" dipole moment for the X IT state at computed R , which 

is 0.003 bohr too short compared with the experimental value, is 1.45 debye. 

This value is in good agreement with the experimental value of 1.4610.06 

3 
debye obtained by Phelps and Dalby.  The corresponding SCF value is 

5 1.62 debye,  in error by ^10%.    The value obtained by Bender and Davidson 

using the iterative natural orbital approach is 1.43 debye.    The "extended 

4-2        2 - 2 + 
CI" dipole moments at    R      for a £   ,  A A,  B Z  ,   and C Z    states  are 0.663, 

0.904,  1.389,  and 0.955 debye,  respectively. 

Rigorously speaking,  to properly compare the calculated properties 

with the experimental results,   the computed quantities should be averaged 

ovei  the appropriate vibration-rotational wavefunctions.    However,   this is 

generally not done either for lack of vibration-rotational wavefunctions 

or because  the average usually does not  lead to significant changes  in 

the calculated values,  especially for the lowest vlbrational states.     For 

example,  using the computed dipole moments as a function of    R    and 

calculating the rotation-vibration average, we obtain 1.41 debye for 
2TT the    v = 0,  K = 1 level of the X 11 state as compared to 1.45 debye at 
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R
e'     'rhe vibrationally averaged "extended CI"  dipole moments  for  the 

lov7est vibration-rotational states of  the a E', A A, B'lT,  and C2E+ states 

are 0.68,   0.93,  1.39,  and 0.99 debye,   respectively.    Averaged dlpolc moments 

for higher vibrational states are given in Tables X-XIV.     The determination 

of  the vibrational wavefunctions will be  outlined In Section IV. 

B.       Other Molecular Properties 

The quadrupole moment    Q    of a diatomic molecule  is  given by 

Q =   E   Z^l -(z1 -\ (x2 + y2)>      . (4) 

For a neutral molecule with a permanent  dipole,  Q    depends on the  coordinate 

origin with respect to which the variables    R., x,  y,  and z    are defined. 

To facilitate comparison with experiment,   the quadrupole moment of  CH were 

evaluated with respect  to the center of mass of the molecule.      Table V 

gives quadrupole moments  as functions of    R,   calculated from the "extended 

CI" wavefunctions for the five electronic states of CH. 

The field gradient of a diatomic molecule at nucleus 1,  q. ,   is  given 

by 

2Z, 
q!»- 

3 cos  9 - 1 
(5) 

where R is the internuclear distance.  The first term gives the electric 

field gradient due to nucleus 2, and the second term the electronic 

contribution. The field gradient at nucleus 2 can be obtained by 

interchanging subscripts 1 and 2 in Eq. (5). Tables VI and VII give 
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field gradients aL C av.d  H, respecLi\2ly, obtained from the "extended CI" 

wavcfunctions. 

The experimentally measured diamagnetic susceptibility, X, is a 

rotationally averaged quantity consisting of two terms:  the Langevin term 

and the high frequency term.  The calculation of the high frequency terra 

requires a knowledge of all the excited electronic states of the molecule. 

The Langevin term is given by 

VL    12.2. 
X = - ^ a <r > (6) 

where a is the fine structure constant, and the applied magnetic field 

is assuraed to be in the direction of the intemuclear axis. The diamagnetic 

susceptibility is invariant to a change of coordinate origin,  although 

the Langevin and high frequency terms taVnn  separately are not.  The A 

were evaluated at the center of electronic charge, to minimize its 

variation with R. 

Similarly, there are two terms contributin;, to the nuclear shielding 

constant O.     The diamagnetic contribution, called the Lamb term, at 

g 
nucleus k is given by 

1 2 
3a '') w . 

o 

The Hellman-Feynraan force on the carbon nucleus is given by 

FC = ZH 

Ar 
? + \3 'rr' J 
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Similarly the force on the H nucleus is 

FH = ZC R"' 

JH 

'H 

r ■ 

(9) 

In an electronic system at equilibrium the electric field seen by a nucleus 

must be zero, troper self-consistent wavefui.ctions should lead to vanishing 

electric fields at the nuclei, at the predicted equilibrium intemuclear 

cistance Re where the energy reaches its minimum. That is 

Fc=FH=0 at Re (10) 

The above theorem is one of the applications of the well-known Hellman- 

Feynman theorem for an exact wavefunction.  It has 'reen proven by Hurley 

to hold also for an exact Hartree-Fock wavefunction. 

Another application of the Hellman-Feynman theorem is found in the 

virial theorem, which for a diatomic molecule can be written as 

0 = 2<T> + <v> + R || = <T> + E + R ^| (11) 

where <T> is the average electronic kinetic energy, <V> is the 

average potential energy including nuclear repulsion, and E is the total 

electronic energy equal to <T>+<V> . From the above equation we 

see that, when the condition d£/dR = 0 is satisfied 

■ 

<V> 
<T> - -2.00000 (12) 
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10 

This  ratio should hold at    R      and when  two nuclei, are  far apart.     The 

virial  theorem has  also been proven  to hold  for exact Hartree-Fock 

9 
wavefunctions by Hurley. 

The above two theoreras can be used to test the quality of approximate 

wavefunctions.  However, an approximate wavefunction satisfying both 

theorems is not necessarily a good approximation .to the exact wavefunction. 

In Table IV we give the properties described above, calculated from 

the "extended CI" wavefunctions, at the calculated Re.  Results obtained 

from SCF wavefunctions are also given for comparison. 

Table IV shows that both the SCF and "extended CI" wavefunctions 

satisfy the virial theorem to within 0.0075% at the computed equilibrium 

internuclear distances. This is a considerable improvement over the 

earlier calculation by Lie et al.  where the error is '^0.04%, indicating 

a better choice of one-particle basis set in the current calculation. 

However, the Kellman-Feynman forces at R , calculated from the "extended 

CI" wavefunctions, are somewhat larger than those obtained by Lie et al. 

This may be a result of the truncation of the external orbital set used 

In the current calculation. 

The diamagnetic contributions to the magnetic susceptibility and 

the nuclear magnetic shielding constants do not vary significantly from 

state to state.. Nor do they appear sensitive to the inclusion of electron 

correlation. 

IV.  VIBRATION-ROTATIONAL ANALYSIS 

In the Born-Oppenheimer approximation, it is assumed that the total 

wavefunction of a diatomic molecule can be expressed as a product of 

- —*- «MMHHMMHM 
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electronic and nuclear wavefunctions, which are solutions of two separate 

equations. The first equation is for the motion of the electrons in the 

field of the fixed nuclei (cf. paper I); the eigenvalues and eigenfunctions 

are t'.erefore dependent parametrically on the intemuclear distance R. 

The second equation is for the motion of the two nuclei in the potential 

determined by the electrons, i.e., the eigenvalues of the first equation. 

The assumption of separability in the second equation leads to two 

independent equations for the nuclear vibrational and rotational motions. 

The solutions for the nuclear rotation, i.e., the angular part of the 

nuclear motion, can be obtained analytically as hypergeometric functions, 

giving rise to the rotational quantum numbers K and M (Hund's coupling 

case b is assumed).  The energy levels for a fixed Intemuclear distance 

R are given by 

. 

rot 2yR2 
K(K + 1)  - A2 I (13) 

where    y    is the nuclear reduced mass,  and    A    is  the electronic angular 

momentum along the intemuclear axis.    There are no general analytical 

solutions for the nuclear vibrational motion,  the wave equation of which 

Is 

[A df   RU) + EA(k) + Erot<R> " Ev.K | Rv,K(E> " 0 (14) 

where    E.(R)  is  the electronic energy as a function of    R   determined in 

paper I.    E    „    is  the vibration-rotational energy, where    v    is  the 

vibrational quantum number.    Equation (14) was numerically integrated 
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12 
using Numerov's method  as  described by  Cooley      with  certain modifications 

13 
due  to Blatt. Since  the potentials    E.(R) were obtained at a  few selected 

points of    R, we have used a fifth order polynomial  interpolation to get 

the  required intermediate points  for a direct numerical  integration.     The 

integration range was  from    R = 1.00 bohr to R =  20.00 bohrs.    No  tunneling 

through the barriers  in the potential curves of the B £    and C Z    states 

were: considered.     The  potential curves were leveled  from the maximum on  to 

R = 20.00 bohrs.     From tlie calculated vibration-rotational eigenvalues,  E       , 

spectroscopic constants were obtained by taking the appropriate energy 

differences.    The resulting eigenfunctions    R    ..    can be used to vlbrationally 

average certain observable properties  for a more realistic comparison with 

experimental values.     Such vibrational averaging was  carried out for the 

dipole moments only   (see  the discussion in Section Ilia). 

The energy levels obtained by solving the vibrational Schrodingar 

equation,  Eq.   (14),  are displayed in. Fig.   3.    These energy levels  can be 

expressed as14 

E    „ = T    +0) 
v,K        e        e (V + i)- Vef + i)    +-- + E 

rot (15) 

wh^re    T      is  the electronic energy of the molecule at    P  , and    E is 
e c-' e' rot 

the rotational energy.     The rotational energy can be written as 

'' 

Erot  E Fv(K) = Bv[K(K + 1) " A2] " D
V

K2(K
 

+ 1)2 (16) 

by expanding Eq.   (13)   about    R .    The spectroscopic constants    w ,  w x  , 

H  , and D      can be  determined from the computed    E    „'s as follows, v v r v,K 
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For the same electronic and vibrational state, the energy difference 

between two adjacent rotational levels can be obtained from Eq. (16) as 

Fv(K + 1) - Fv(K) = 2(K + l)Bv - 4(K + 1)^ (17) 

For the same electronic state,   the energy difference! between two adjacent 

vibrational levels is given by Eq.   (15)  as 

AG   ., /o  = E   ...   „ - F j, (K)   - E    „ + F  (K) v+1/2        v+l,K       v+1 v,K        v 

(0    - 2(v + l)ü) x e        v /   e e (10) 

Equations (17) and (18), together with the computed E „"'s, were 
v,K 

used to determine B , D , w , and w x . A least squares fit was employed vve     ee r    j 

whenever there were more data points than unknowns. The results are 

summarized in Tables VIII and IX, together with known experimental values. 

Given in Table X are also the B and a 's which were obtained from the e    e 

B 's by a least squares fit to the expression 

■ 

2 
BveBe(v+i)-ae(v + l) (19) 

While many rotational levels are known experimentally, for each 

vibrational state, we only carried out calculations for a few rotational 

levels. The reason is that spectroscopic constants B and D  do not in 

general depend on the number of rotational levels used in carrying out a 
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least squares fit.  This is because the primary contribution to the energy 

difference between different rotational levels comes from the centrifugal 

2    2 
correction term in Eq. (20), Erot = [K(K + 1) - A ]/2yR . Therefore the 

2 
rotational energy is expected to be proportional to [K(K + 1) - A ], which 

is used as the expansion parameter. 

As can be seen from Table IX, the "extended CT." S 's agree quite well 

with the experimental values; the errors are on the order of 0.2 cm 

2 - -1 
The only exception is B ,  of the B E state, where the error is 0.6 cm . 

2 - 
This is to be expected since the B T.    state does not have a deep potential 

well and our calculated dissociation energy is in error by ^25%. The 

calculated B 's for the higher vibrational levels are less accurate than 

that for the lower vibrational levels, which is generally the case for 

2_- 
calculated potential curves. Except for B , of the B E state, the 

calculated B 's are all found to be within 2% of the experimental values. 

4 
The calculated D , which are ^10    smaller than B , are all found 

to be in good agreement with experimental values. 

Experimentally only three vibrational levels were observed for the 

2   2      2+ 2 - 
X II, A A, and C E states, and two for the B E state. According to the 

results of the "extended CI" calculations, there are only two vibrational 

2 - 2 + 
levels for the B E state, and four for the C E state. We carried out 

2   4 -     2 
spectroscopic analyses for all of them.  For the X II, a E , and A A states 

we only give results for v £ 5. 

2^- 
The error in the "extended CI" AG +;. ,2 is largest for the B E state, 

M.00 cm , as is to be expected from the 43% error In the calculated 

■ 
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dissociation energy. Similarly, the errors in the calculated AG    for 

the C Z state, 61 cm" for v = 0 and 90 cm  for v = 1, are larger than 

that for the X H state, 11 cm" for v = 0 and 49 cm"1 for v = 1, and the 

A A state, 36 cm" for v = 0 and 32 cm" for v = 1. The errors in the 

2     2 - 
X 11 and B E states are in the opposite direction compared with that in the 

2     2 + 
A A and C £ states. This implies that the calculated potential curves for 

2     2 - 
the X IT and B E states are too wide as well as too shallow, whereas they 

are too narrow and too shallow for the A2A and C2E+ states. 

In deriving the equilibrium spectroscoplc constants, W . 0) x . B . 
e' e e' e' 

and ae, we have used the same number of v levels as was observed and used 

in their experimental determination (three v levels were used for the 

4 - 
a Z state). This is because the values obtained for the spectroscoplc 

constants by a least squares fit depends on the number of vlbrational 

levels used. The variation can be as much as 100 cm  in determining 

a)e, and 20 cm  in determining w^; an indication that the two term 

expansion for the vibrational level is frequently not adequate. The 

variations of the B^s and o^'s are not as drastic. At any rate, for a 

meaningful comparison between theory and experiment, the same procedure 

for extracting secondary data must be used. 

The discrepancies between computed and experimental quantities are 

^50 cm  (2%) or less for the ü^'S, and ^20 cm"1 (30%) or less for the 

WgX^s. Much better agreements are obtained for the B 's and c 's, since 

they are derived from Bv's which are themself in good agreement with the 

experiraontal values. Exceedingly good agreements between experimental 

and calculated results for the A2A state. Indicates that the shape of the 

■   ■ 
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experimental RKR curve for the A2A state is well reproduced by the 

"extended CI" calculations. This is reflected also in the nearly constant 

2 
errors of the calculated AGv+1/2's for the A A state. 

The experimental R 's siven in Table IV are all determined from the 

/„ „ 2.-1/2      TJ. 
experimental    B  's  according  to  the  relation    Be =  (2MRe ) .     It was 

6 2      2 
shown by Dunham15  that  there are  corrections of  the order    Be /ue      to 

this  formula.    These corrections  depend on the shape of the potential curve, 

and  for a very shallow potential well they may be large.    Using the 

relation    B    = (2yR 2)"1/2 and the  calculated    B^s. we obtain the 

following    R fs for the X2IT,  aV,  A2A, BV, and C E+ states:     2.114, 

2.053,   2.08C,  2.190,  and 2.094 bohrs,  respectively.    Comparison with the 

R 's calculated from the energy minimum in the potential curve shows that 
e 

the  corrections for the X2II,  aV,  A2A,  and C E    states are all less than 
2 - 

0.01 bohr,  as compared to the correction of 0.026 bohr for the B Z    state. 

The  correction is largest for the ßV state since it has a very shallow 

potential well.    The true potential curve is deeper compared with the 

calculated one;  therefore the correction to the experimental    Re    for the 

BV state should be smaller than 0.026 bohr.    This might bring the current 

experimental value of 2.200 bohr into agreement with the calculated 

value, of 2.216 bohr. 

Table IX also gives the calculated and experimental zero-point energy 

and  term splitting    Voo.    The term splitting is relative to  the    v = 0 

l£vel of  the "rotationless" X2n state,  i.e.,  the rotational energy has 

been subtracted out of the lowest vibration-rotational level.     Relative 

to  the X2n state,   the A2A,  BV,  and C2£+ states are all shifted up 

compared v Ith experimental results.    The errors are respectively 373, 

100 
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156, and 628 cm"1 for the A2A, B2!]", and C l+  states. The larger errors 

in the A2A and C2Z+ states may be attributed to the error in the calcu- 

3    1 
lated term splitting between the P and D states of carbon which is too 

i ^      2 + _1 
large by 417 cm .  If we shift the A^A and C E states down by 417 cm , 

the errors in the computed term splittings would all be less than 211 cm . 

The computed zero-point energy was obtained from the energy difference 

between the computed energy minimum and the "rotationless" v = 0 level. 

Experimental zero-point energy was obtained from We and w^ with Dunham 

correction.      Zero-point energies are all found to be within 50 an 

2 - 
of the experimental values. The largest error is found in the B E state, 

where the experimental value is only known approximately. 

By subtracting the computed zero-point energy from the dissociation 

energy D 0 of paper I, we obtain the spectroscopic dissociation energy 

D 0, which is given in Table IV. Since the errors of the computed zero- 
o 

point energies are all less than 50 cm" , the calculated Do 's should 

have essentially the same accuracy as the De 's; the errors are 0.12, 

2   2   2 -     2 + 
0.11, 0.15, and 0.16 eV for the X 11, A A, B Z , and C £ states, 

respectively. 

Apart from the Hönl-London factor, the vibration-rotational transition 

matrix element is 

<(Rv,K,(R)iyti0|RyHKM(R)]> 
(20) 

where li(R) is the dipole moment which depends on the internuclear distance 

and the particular electronic state considered. The integration is to be 

101 
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performed over R. With the vibrational wavefunctions and the dipole 

Evumencs available, the matrix elements can be obtained by numerical 

integration.  Vibrationally averaged dipole moments are obtained by 

letting v' = v" and K' ■ K". The squares of the off-diagonal matrix 

elements are proportional to the line strengths in the infrared vibration- 

rotational transitions. 

The vibration-rotational transition matrix elements for all five 

states are all found to be fairly constant within each branch, therefore 

only the values for the first members of each branch are given. Tables X 

through XIV give the matrix elements obtained from the "extended Cl" curves, 

From a given matrix element the oscillator strength can easily be 

calculated. Unfortunately there are no experimental results to compare 

with. 

K'K" 
We present in Table XV the P , „ values, the square of the transition 

matrix elements, for the 0 - 1 and 1-2 bands in the infrared transitions 

of the ground state for two reasons. Firstly, it is more likely to be 

studied experimentally, although their intensities are weak due to the 

small dipole moments. The second reason is to illustrate what to expect 

for the other states as we give only the transition matrix elements for 

the first member of each branch. It should be noted here that the 

vfvii 2 
variation of    P   ,   „    with    K    in the X 11 state is different from that in 

the other four states, because of different behavior of the dipole 

4 -      2        2 - 
moments around    R .     For example,  the    P(K)  of the a Z   , A'A, B Z  ,  and 

C E"  states  increases with increasing    K    values,  unlike the    P(K)  of  the 

2 
X 11 state which decreases with increasing    K    as shown in Table XV. 
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V.   CONCLUSION 

The "extended CI" calculations of the potential curves and molecular 

properties for the valence excited states of CH are in satisfactory agree- 

ment with the available experimental results. The dissociation energies 

were calculated to within 0.2 eV of the experimental values. The dipole 

moment for the ground state was computed to well within the experimental 

uncertainty. Calculated AG .. ,„ were in error by less than 100 cm 

(^5%), U  by less than 50 cm"1 (^2%), B  by less than 0.2 cm  (^2%), 

term splittings by less than 630 cm . Excellent agreement with experi- 

2 _ 
mental values was found in the calculated R 's, except for the B £ 

state where the experimental value may not correspond to the classical 

equilibrium intemuclear distance. Large percentage errors, as high 

as 30% (^20 cm ), were found in the calculated anharmonicity corrections 

w x , which are two orders of magnitude smaller than w . These 
e e 0 e 

comparisons provide a guideline for the reliability of the predictions 

Ah- 
made for the experimentally yet unobserved a I state. 

Many deficiencies in the SCF approximation were seen In the calcula- 

tions of CH, such as the wrong dissociation limits, wrong energy level 

ordering, etc. 

These dfficiencies, leading to qualitatively incorrect results, were 

not found in the "valence CI" and "first order CI" wavefunctions. We have 

already seen, in paper I, that these simpler wavefunctions gave dissociation 

energies in error by as much as 0.8 eV, and equilibrium intemuclear 

distances in error by as much as 0.15 bohr. No definite conclusion was 

reached concerning the relative merits of these two methods. In this 
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paper we did not tabulate the molecular properties calculated from the 

"valence CI" and "first order Cl" wavefunctions, it would have doubled 

the number of tables. However a detailed comparison between the "valence 

CI", the "first order CI" and the "extended CI" results was made. The 

results of this comparison are summarized below. 

The vibrationally averaged dipole moments, for the v = 0 level of 

the X2n siate, obtained from the "valence CI" and "first order CI" wave- 

functions are 1.40 and 1.25 debye, respectively. These are to be 

contrasted to the "extended CI" result of 1.41 debye, and the experimental 

value of 1.46+.Ü.06 debye. No expfrimental result is available for the 

dipole moments of the remaining four electronic states. The "valence CI" 

and "first order CI" dipole moments for these states differ from the 

"extended CI" results by more than 0.01 debye and less ".han 0.15 debye. 

No correlation was found between errors in the computed dissociation 

energies and errors in the. computed dipole moments. No conclusion was 

reached concerning the relative merits of these two models by comparing 

the calculated dipole moments. Examination of other calculated molecular 

properties did not yield significantly different trends. Thus, we conclude 

that for CH, the "valence CI" and "first order CI" wavefunctions do not 

consistently give results of accuracy comparable to those obtained from 

the "extended CI" wavefunction. It is surprising that the "first order 

CI" wavefunction does not consistently give results that are better than 

the "valence CI" wavefunction. One possible explanation is that we did 

not employ the iterative natural orbital method in determining the "first 

order CI" wavefunction, which could conceivably lead to improved results. 
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Table I 

Expectation Values '  at R   for the valence excited states of CH 

2 x n aV A2A BV c2z+ 

Orifa.Ln at C 

r"1 15.1766 15.2038 15.1668 15.1533 15.1472 

r 9.4539 9.2883 9.4632 ^.5540 9.5694 
2 

r 19.8107 19.0753 19.9997 20.4280 20,5973 

z 1.5428 1.7923 1.7271 1.6699 1.7246 

r sin 0 

r cos 0 

6.3696 

5.4087 

6.6879 

5.2246 

6.8691 

5.2067 

6.9248 

5.1506 

6.9654 

5.2000 
"2    a r cos 0 

j r~3(3cos20-l) 

0.2260 

0.5775 

0.2270 

-0.0015 

0.2186 

0.0064 

0.1965 

-0.1546 

0.2182 

0.0145 

12    2 
±  r (3cos^0-l) 4.7942 2.5860 2.3017 2.6273 2.2021 

2  2 
r COB 0 9.7997 8.0825 8.2010 8.5608 8.3339 

Origin at H 

r"1 3.9170 3.9308 3.8398 3.6084 3.7980 

r 16.2912 15.7778 16.1300 17.0011 16.3117 

r2 44.5496 41.2201 43.1717 47.4098 44.2269 

z -13.2496 -12.5787 -12.8525 -13.8442 -12.9761 

r sin 0 

r cos 0 

6.3690 

2.5279 

6.6874 

2.5270 

6.8686 

2.4806 

6.9242 

2.3840 

6.9648 

2.4575 
_2 

r cos 0 -1.3387 -1.4197 -1.3797 -1.2189 -1.3582 

■| r_3(3cos20-l) 0.5175 0.5391 0.5169 0.4410 0.5053 

12    2 
i r (3cos 0-1) 29.5332 24.7309 25.4737 29.6090 25.8318 

Expectation values calculated from the "extended Cl" wavefunctions of 
Refercince 1. 

All quantities are given in atomic units. 

'Computed equilibrium internuclear distance from Reference 1. 
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Table II 

Variation of Dipole Moment with R ("Extended CI" Results) 

Dipole (debyes r 
R (bohrs) 

x2n a Z 
2 2^- „2-+ 

A .A B Z C E 

1.00 1.8676 0.1516 0.1768 0.2795 0.1831 

1.30 1.8914 0.2973 0.3476 0.5155 0.3588 

1.60 1.8105 0.4328 0.5360 0.8009 0.5541 

1.90 1.6296 0.5815 0.7569 1.1119 0.7863 

2.00 1.5504 0.6343 0.8370 1.2117 0.8700 

2.03 1.5072 0.6612 0.8775 1.2587 0.9122 

2.10 1.4620 0.6882 0.9180 1.3026 0.9545 

2.15 1.4150 0.7152 0.9581 1.3428 0.9966 

2.20 1.3663 0.7423 0.9977 1.3783 1.0382 

2.30 1.4312 

2.40 1.1570 0.8471 1.1443 1.4558 1.1954 

2.70 0.7988 0.9793 1.2793 1.3954 1.3124 

3.00 0.4550 1.0440 1.2234 1.1625 1.0792 

3.25 0.9460 0.6302 

3.50 0.0004 0.8037 0.8534 0.7158 0.1582 

4.00 -0.2246 0.4757 0.4880 0,3880 -0.2060 

5.00 -0.1766 0.1442 0.1482 0.1151 -0.1573 

6.00 -0.0619 0.0474 0.0511 0.0391 -0.0517 

8.00 -0.0068 0.0089 0.0101 0.0083 -0.0058 

11.00 -0.0010 0.0022 0.0023 0.0022 -0.0023 

15.00 -0.0003 0.0006 0.0007 0.0006 -0.0007 

20.00 -0.0001 0.0002 0.0002 0.0002 -0.0002 

-.+ 
Positive dipole moment is defined as C H  . 

108 

^^MM 



■ ■ - t ■ ,- 

w m 

25 

Table III 

Variation of Dipole Moment with R (SCF Results) 

Dipole (debyes)a 

R (bohrs) 

x2n a Z A2A BV cV 
1.00 1.9904 0.1519 0.1697 0.2452 0.1694 
1.30 2.0251 0.2782 0.3374 0.4718 0.3369 
1.60 1.9411 0.3856 0.5214 0.7569 0.5228 
1.90 1.7677 0.4949 0.7469 1.1167 0.7552 
2.00 1.6914 0.5322 0.8317 1.248" 0.8437 
2.05 1.6498 0.5508 0.8757 1.31r)l 0.8899 
2.10 1.6060 0.5695 0.9207 1.3f06 0.9372 
2.15 1.5599 0.5882 0.9666 1.4434 0.9857 
2.20 1.5117 0.6069 1.0132 1.5010 1.0350 
2.30 1.5836 
2,40 1.2975 0.6809 1.2028 1.5890 1.2378 
2.70 0.9205 0.7905 1.4092 1.2851 1.4724 
3.00 0.4949 0.9133 1.1474 0.9289 1.2178 
3.25 0.6890 0.9375 
3.50 -0.2606 0.6377 0.6597 0.5063 0.7043 
4.00 -1.0050 0.3600 0.3642 0.2745 0.3882 
5.00 -2.3207 0.1193 0.1187 0.0907 0.1252 
6.00 ■■3.3702 0.0455 0.0455 0.0366 
8.00 0.0100 0.0103 0.0093 

11.00 0.0024 0.0025 0.0023 
(0.0007)!' 
(0.0002) 

15.00 0.0007 0.0007 0.0007 
20.00 0.0002 0.0002 0.0002 

Positive dipole moment is defined as C"H+. 

"Tie HF configuration for the C I    state does not dissociate 
correctly to the atomic limits of C(3P) and H(2S).  It dissociates 
to an admixture of C(3P), C(1S), and H(2S), all of these states 
are electrically neutral. 
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Table IV 

Properties of Low-lying Electronic States of CH 

Property x2n a E A2A ßV cV 

R    (bohrs) extended CI 2.113 2.053 2.083 2.216 2.100 
e SCF 2.085 2.023 2.046 2.151 2.049 

expt'l3 2.116 2.082 2.200 2.105 

D 0  (eV) extended CI 3.33 2.64 1.72 0.11 0.61 
o 

SCF 2.29 2.56 1.14 b -0.26 
expt'l3 3.A5 1.83 0.26 0.77 

Dipole C"H+ extended CI 1.A50 0.663 0.904 1.389 0.955 
(debyes) SCF 

expt'lC 
1.619 
1.46±0.06 

0.541 0.872 1.444 0.889 

-<V>/<T> extended CI 2.00006 1.99994 1.99999 1.99987 1.99985 
SCF       , 
expt'ld 

1.99999 2.00001 1.99995 1.99993 1.99985 
2.00000 2.00000 2.00000 2.00000 2.00000 

Total Hellman- extended CI 0.02 -0.06 -0.07 -0.04 -0.05 
Feynman force SCF       , 

expt'ld 
0.03 -0.02 -0.02 -0.02 -0.02 

(a.u.) 0.00 0.00 0.00 0.00 0.00 

Gradient of electric extended CI 0.943 -0.234 -0.209 -0.493 -0.187 
field at carbon SCF 0.972 -0.187 -0.152 -0.437 -0.075 
nucleus  (a.u.) expt'l 

Gradient of clsctric extended CI -0.237 -0.309 -0.294 -0.220 -0.285 
field at hydrogen SCF -0.258 -0.331 -0.323 -0.261 -0.322 
nucleus  (a.u.) expt'l 

Quadrupole w.r.t. extended CI -0.693 .''.079 2.584 2.820 2.806 
the center of mass SCF -0.831 1.912 2.481 2.852 2.669 
(a.u.) expt'l 

-IC^xX1'  (a.u.) extended CI 172.8 165.2 173.7 177.8 179.0 
w.r.t.   the center of SCF 172.1 163.0 171.5 175.0 176.3 
electronic charga expt'1 

(a.u.) 
extended CI 69.5 69.8 68.2 64.1 67.4 
SCF 70.2 71.0 69.2 65.2 68.9 
expt'l 

(a.u.) 
extended CI 269.4 269.9 269.2 269.0 268.9 
SCF 269.3 269.8 269.2 269.0 268.8 
expt'l 

no 
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Table IV - Continued 

Taken from Reference 4. 

h 9 - 
No vibrational state exists in the HF potential curve for the B E state. 

'See Reference 3. 

Theoretical results. 

'Attractive force towards hydrogen nucleus is positive. 
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Table V 

Variation of Quadrupole Moment3 With    R 'C 

R x2n a £ A2A B2r cV 
1.00 -0.8562 0.8146 0.9959 0.8698 1.1523 
1.30 -0.8590 1.0535 1.2841 1.2006 1.4420 
1.60 -0.7953 1.3875 1.6849 1.6503 1.8613 
1.90 -0.7358 1.8238 2.2171 2.2305 2.3937 
2.00 -0.7149 1.9884 2.4149 2.4286 2.5951 
2.05 -0.7049 2.0738 2.5167 2.5253 2.6992 
2.10 -0.6956 2.1609 2.6200 2.6192 2.8053 
2.15 -0.6869 2.2496 2.7243 2.7092 2.9131 
2.20 -0.6789 2.3397 2.8292 2.7941 3.0219 
2.30 2.9436 
2.40 -0.6583 2.7091 3.2419 3.0612 3.4526 
2.70 -0.7022 3.2502 3.7335 3.2367 3.8477 
3.00 -0.7764 3.6660 3.9055 3.1220 3.3692 
3.25 2.9204 2.0342 
3.50 -0.9402 3.5480 3.5853 2.7107 0.2535 
4.00 -1.0720 3.0540 3.1019 2.4060 -2.0143 
5.00 -1.1Ü47 2.4053 2.5408 2.1540 -2.7150 
6.00 -1.0398 2.1412 2.3126 2.0580 -2.4087 
8.00 -0.9828 1.9750 2.1587 1.9679 -2.1966 

11.00 -0.9661 1.9258 2.1090 1.9254 -2.1558 
15.00 -0.9586 1.9114 2.0937 1.9110 -2.1392 
20.00 -0.9562 1.9063 2.0882 1.9058 -2.1330 

Tfath respect to the center of mass. 

All quantities are in atomic units. 

Calculated from the "extended CI" wavefunctions of Reference 1. 
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Table VI 

Electric Field Gradient at the C Nucleus 
a,b 

R a E A2A BV cV 
1.00 1.1468 -0.40^7 -0.3773 -0.6262 -0.3393 
1.30 1.3721 -0.0098 0.0327 -0.1639 0.0707 
1.60 1.2628 -0.0404 0.0085 -0.1702 0.0464 
1.90 1.0734 -0.1609 -0.1145 -0.2989 -0.0786 
2.00 1.0123 -0.2084 -0.1648 -0.3550 -0.1310 
2.05 0.9813 -0.2328 -0.1910 -0.3849 -0.1586 
2.10 0.9509 -0.2576 -0.2180 -0.4161 -0.1869 
2.15 0.9212 -0.2827 -0.2457 -0.4484 -0.2162 
2.20 0.8921 -0.3082 -0.2740 -0.4819 -0.2464 
2.30 -0.5520 
2.40 0.7829 -0.4130 -0.3940 -0.6252 -0.3767 
2.70 0.6432 -0.5801 -0.5949 -0.8379 -0.6183 
3.00 0.5442 -0.7620 -0.8015 -1.0156 -0.7013 
3.25 -1.1235 -0.4431 
3.50 0.4680 -1.0546 -1.0648 -1.1948 0.0556 
4.00 0.4772 -1.2115 -1.1779 -1.2624 0.8185 
5.00 0.5820 -1.2908 -X.2360 -1.2964 1.2047 
6.00 0.6331 -1.3015 -1.2448 -1.3020 1.2481 
8.00 0.6503 -1.3032 -1.2462 -1.3032 1.2677 

11.00 0.6517 -1.3032 -1.2466 -1.3032 1.2699 
15.00 0.6517 -1.3032 -1.2466 -1.3032 1.2699 
20.00 0.6517 -1.3032 -1.2466 -1.3032 1.2699 

All quantities are in atomic units. 

Calculated from the "extended Cl" wavefunctions of Reference 1, 
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Table VII 

Electric Field Gradient at the H Nucleus 
a,b 

R x2n aV A2A B E cV- 
1.00 -7.3467 -7.5583 -7.5843 -7.6299 -7.5869 
1-30 -2.7150 -2.822" -2.8408 -2.8699 -2.8435 
1.60 -1.0885 -1.1451 -1.1599 -1.1833 -1.1656 
1.90 -0.4493 -0.4807 -0.4929 -0.5128 -0.4989 
2.00 -0.3336 -0.3600 -0.3717 -0.3910 -0.3770 
2.05 -0.2869 -0.3112 -0.3228 -0.3418 -0.3278 
2.10 -0.2463 -0.2688 -0.2803 -0.2991 -0.2850 
2.15 -0.2110 -0.2319 -0.2433 -0.2620 -0.2478 
2.20 -0.1803 -0.1998 -0.2112 -0.2298 -0.2156 
2.30 -0.1781 
2.40 -0.0927 -0.1078 -0.1192 -0.1400 -0.1245 
2.70 -0.0280 -0.0386 -0.0490 -0.0709 -0.0613 
3.00 0.0000 -0.0068 -0.0300 -0.0414 -0.0359 
3.25 -0.0323 -0.0235 
3.50 0.0126 -0.0113 -0.0192 -0,0253 -0.0141 
4.00 0.0115 -0.0101 -0.0126 -0.0150 -0.0036 
5.00 0.0043 -0.0047 -0.0056 -0.0057 0.0015 
6.00 0.0015 -0.0023 -0.0026 -0.0025 0.0017 
8.00 0.0003 -0.0006 -0.0007 -0.0006 0.0006 

11.00 0.0001 -0.0001 -0.0001 -0.0001 0.0001 
15.00 0.0000 -0.0000 -0.0000 -0.0000 0.0000 
20.00 0.0000 -0.0000 -0.0000 -0.0000 0,0000 

All quantities are in atomic units. 

Calculated from the "extended Cl" wavefunctions of Reference 1. 
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Table VIII 

Constants Obtained from Rotational Analysis' 

("extended CI" results) 

State AGv+l/2
(cm"1) B (on ) 

v 

c2z+ 

BV 

A2A 

a Z 

x2n 

0 
1 
2 
3 

0 
1 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

0 
1 
2 
3 
4 
5 

2673.79(2612.5) 
2460.11(2370.5) 
2095.81 

1695.40(1794.9) 

2773.40(2737.4) 
2576.47(2544.1) 
2349.47 
2077.97 
1734.02 

3002.20 
2858.67 
2706.22 
2540.78 
2356.58 

2722.02(2732.50) 
2557.98(2606.46) 
2432.52 
2320.26 
2197.76 

14.349(14.2466) 
13.666(13.509) 
12.808(12.608) 
11.317 

12.542(12.645) 
10.609(11.160) 

14.618(14.577) 
13.951(13.907) 
13.223(13.182) 
12.387 
11.366 
10.009 

15.086 
14.536 
13.981 
13.399 
12.773 
12.069 

14.208(14.190) 
13.605(13.655) 
13.030(13.122) 
12.522 
12.008 
11.481 

D (10"3cm h 

1.55(1.555) 
1.61(1.67) 
1.99(2.0) 
4.57 

2.26(2.22) 
6.47(3.28) 

1.52(1.56) 
1.57(1.58) 
1.67(1.65) 
1.88 
2.33 
3.26 

1.43 
1.43 
1.44 
1.48 
1.56 
1.69 

1.44(1.43) 
1.46(1.39) 
1.40(1.39) 
1.36 
1.37 
1.36 

Experimental values taken from Reference 4 are given in parentheses. I 
Calculated from the "extended CI" wavefunctiöns of Ref erence 1. 
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Table IX 

Derived Spectroscopic Constants 

("extended CI" results)a'b 

State 
Zero-point 
energy 00 e 0) X 

e e 
B 
e e 

cV 1403.1 32406.7 2887.5 106.8 14.763 0.771 

(1381.7) (31778.1) (2840.2) (125.96) (14.603) (0.7185) 

BV 1015.1 25854.9 2141.7d 223.2d 13.51 1.933 

(^1068) (25698.2) (^2250)e (^229)e (13.39) d-V 

A2Ä 1454.4 23590.6 2970.3 98.5 14.976 0.697 

(1418.1) (23217.5) (2930.7) (96.65) (14.934) (0.697) 

A- 1555.4 5395.5 3145.7 71.8 15.364 0.553 

x2n 1424.9 0.0 2886.1 82.0 14.498 0.589 

(1415.5) (2858.5) (63.0) (14.457) (0.534) 

a -1 
All quantities are given in cm 

Experimental values taken from Reference 4 are given in parentheses. 

cRefer to v = 0 vibrational state of X 11. 

Since only two vibrational levels are obtained in the CI calculations, 
ü)e and wexe for the B2Z" state are derived from AG,.2 and computed 
zero-point energy. 

e0btained from the values for CD (see Reference 4) according to the isotope 
relations. 

, 
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Table X 

Transition Dipole Matrix Elements <v'K, |u(R) lv"K"> for the 
2 a 

X 11 State in Atomic Units (e-bohr) 

v'/v' 

For K' = 1 and K" = 1 

0 0.553" 

1 -0.058 0.515b 

2 0.003 -0.086 0.476b 

3 0.000 0.005 -0.110 0.«8b 

4 0.000 0.001 0.009 -0.130 0.3991 

5 0.000 0.000 0.001 0.015 -0.147 0.359 

B. For K' = 1 and K" = 2 

0 0.553 -0.059 0.003 0.000 0.000 0.000 

1 -0.056 0.515 -0.089 0.006 0.001 0.000 

2 0.002 -0.084 0.476 -0.112 0.011 0.008 

3 0.000 0.005 -0.108 0.438 -0.132 0.016 

4 0.000 0.001 0.008 -0.127 0.399 -0.150 

5 0.000 0.000 0.001 0.014 -0 145 0.359 

a Extended CI results. 

Vlbrationally averaged dipole moment. 
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Table XI 

Transition Dipole Matrix Elements «Cv'K* |y(Pv) lv"K"> for the 
A _ a 

a Z    State in Atonic Units (e*bohr) 

v'/v" 

A. For K' = 0 and K" - 0 

0 

1 

2 

3 

4 

5 

0.268 

0.282 

0.296 

0.311b 

0,324 

0.332 

B.    For K1  = 0 and K" = 1 

0 0.268 0.030 -0.004 0.000 0.000 0.000 

1 0.031 0.282 0.041 -0.007 0.001 0.000 

2 -0.004 0.042 0.296 0.050 -0.010 0.002 

3 0.000 -0.007 0.051 0.311 0.056 -0.015 

4 0.000 0.001 -0.010 0.058 0.324 0.057 

5 0.000 0.002 0.002 -0.015 0.060 0.332 

Extended CI results. 

Vibrationally averaged dipole moment. 
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Table XII 

Transition Dipole Matrix Elements   O'K'|ji(R) |v"K">   for the 
2 a 

A A State in Atomic Units  (e-bohr) 

v'/v" 0 1 2                     3 4 5 

A.    For K'  = 2  and K" = 2 

0 0.367b 

1 0.046 0.390b 

2 -0.008 0.061 0.409b 

3 0.001 -0.0.16 0.065            0.420b 

4 0.000 0.001 -0.029             0.056 0.421b 

5 0.000 0.000 

B.    For 

0.006          -0.040 

K' = 2 and K" = 3 

0.032 0.401b 

0 0.367 0.044 -0.008            0.001 0.000 0.000 

1 0.047 0.390 0.058          -0.016 0.002 0.000 

2 -0.008 0.064 0.409            0.061 .-0.028 0.006 

3 0.001 -0.016 0,068            0.421 0.052 -0.040 

4 0.000 0.001 -0.029            0.061 0.421 0.026 

5 0.000 0.000 0.006          -0.041 0.037 0.400 

Extended CI results, 

Vibrationally averaged dipole moment. 
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Table XIII 

Transition Dipole Matrix Elements   O'K* IvKR) jv"!^   for the 
2 - a 

B £    State in Atomic Units   (e-bohr) 

v'/v" 0 1 

0 

1 

A.    For K' 

0.546b 

= 0 and K" - 0 

0.513b 

B.    For K' = 0 and K" = 1 

0 0.546 0.014 

1 0.017 0.513 

Extended CI results. 

Vibrationally averaged dipole moment. 
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Table XIV 

Transition Dipole Matrix Elements <v,K'|u(R) |v"K"> for the 
2 + a 

C Z    State in Atonic Units (e'bohr) 

v'/v" 0 1 2 3 

A. For K'   = 0 and K" = 0 

0 0.388b 

1 0.048 O.A12b 

2 -0.009 0.062 0.428b 

3 0.000 -0.022 0.052 0.416b 

B. For K* = 0 and K" = 1 

0 0.388 0.048    -0.009 0.000 

1 0.049 0.412     0.061 -0.022 

2 -0.009 0.063     0.428 0.050 

3 0.000 -0.022     0.053 0.416 

Extended CI results. 

Vibrationally averaged dipole moment. 
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Table XV 

K'K" 
Line Strengths P , „ for Two Bands in Ground State 

— 3  2      0    a 
Infrared Spectrum (in 10  e -bohr )a 

0-1 1- 2 

K P(K) Q(K) R(K) R(K) Q(K) R(K) 

1 3.34 3.52 7.47 7.85 

2 3.16 3.34 3.63 7.12 7.49 8.05 

3 3.09 3.36 3.73 6.97 7.51 8.27 

4 3.01 3.37 3.84 6.82 7.54 8.49 

5 2.94 3.39 3.96 6.68 7.58 8.73 

6 2.88 3.41 4.08 6.56 7.63 8.98 

7 2.82 3.44 4.21 6.44 7.69 9.23 

8 2.77 3.47 4.35 6.33 7.75 9.50 

9 2.72 3.50 4.49 6.23 7.82 9.78 

10 2.67 3.54 4.63 6.15 7.91 10.06 

11 2.63 3.58 4.78 6.06 8.00 10.36 

12 2.59 3.63 4.94 6.00 8.09 10.67 

13 2.56 3.68 5.10 5.94 8.20 10.99 

14 2.53 3.74 5.27 5.89 8.31 11.31 

15 2.51 3.80 5.84 8.43 

Extended CI results. 
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Figure 2. B£F dipole moment curves for the five lowest electronic states of CH 
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ABSTRACT 

The general multi-conflguraHon self-consistent-field (MC-SCF) 

method is presented with no restrictions on the types of configurations participating 

in the expansion of the total wave function.   The general coupled Fock like equations 

for ihe "best" orbitals to be used in such a multi-configuration wave function are 

derived.   Formally these coupled nonlinear equations are decoupled with the use 

of projection operators and transformed into a pseudo eigenvalue problem.   Several 

general methods, based on orbital transformations and on the use of the generalized 

Brillouin theorem, are presented for solving the coupled nonlinear Fock like equations 

for the determination of the MC-SCF orbitals.   The formalism presented is applicable 

not only to the ground state of a given system, but also to any excited state, 

yielding an upper bound to the true energy of the desired state. 

■ 
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Introduction 

In the MC-SCF model the total wave function is determined by 

optimizing variationally the configuration expansion coefficients in a many 

configuratianal wave function, as well as all the one particle functions, the 

orbltals, which ure used to construct the configurations.   Clearly, the use of a 

many configurational function, with no restriction on the type and number of 

configurations, permits an arbitrarily close approximation to the exact wave function. 

It is well known, however, that a many configurational function frequently requires 

an excessively large number of configurations to obtain a reasonably accurate wave 

function If only the configuration expansion coefficients ai<. optimized variationally. 

The idea of the MC-SCF method is to reduce the number of configurations required, 

by simultaneously optimizing variationally also all the single particle functions. 

This idea of the MC-SCF method traces back to the early years of quantum mechanics. 

Early MC-SCF calculations for atoms were carried  out by Hartree   and later by Jucys, 

who also introduced many simplifying approximations.   The method was first applied 

4 
to diatomic molecules by Das and Wahl   and more recently has been developed and 

5 
applied by many others to atoms and molecules.     By now the method has been 

sufficiently generalized and refined, the initial numerical difficulties in solving the       , 

orbital equations have been overcome, making the routine calculations of MC-SCF 

wave functions only little more cumbersome than a standard Hartree-Fock calculation. 

It has been demonstrated that the resulting wave functions, with a reasonably small 

number of configurations, are of high accuracy.   With this it can be expected that 

the.-MC-SCF model will enjoy renewed and growing interest. 
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It is the purpose of the present series of articles to (1) present the 

MC-SCF formalism in its fully general form, as we have developed it; (2) present 

methods developed for solving the orbital equations; (3) describe in detail the 

necessary complications in the formulae when symmetry is introduced explicitly, in 

order to make the actual computations more efficient; (4) explain the procedures by 

which excited state wave functions can be obtained, such that they give the 

espectation value of the energy as a true upper bound to the excited state, even 

though there are lower states of the same irreducible representation; (5) compare 

the MC-SCF method to other methods used ot obtain correlated wave functions; 

(6) discuss several alternatives for the selection of configurations which participate 

in the total wave functions; (7) derive the formulae which permit the incorporation 

of a pseudo potential' method, i.e. Frozen Core Approximation, into the MC-SCF 

formalism; (8) discuss the applicability of the MC-SCF approach to semi-empirical 

MO theories useful for large organic molecules; (9) present results of detailed 

molecular calculations of ground and excited states using the MC-SCF methods. 
5,6 

■ 

■ 
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General MC-SCF Formalism. 

■ 6 . 
The basis of an MC-SCF wave function for an N particle system   is 

a set of m spin orbitals 

^ V *2 * ' ' W      withm> N, (1) 

which may be chosen orthonormal, i.e. 

<*iU|> 6.. . 
•I 

(2) 

This orthonormality constraint represents no loss of generality, since it does not affect 

the total space spanned by the orbitals ^If; it may however result in the need for more 

configurations in order to give a total wave function of specific quality. 

From these orbitals antisymmetrizedN-electron functions are constructed 

as Slater Determinants (SD's), 

$.   =  */• 
1 

I       («r '*r - - Vl*    v/Hl 
detU.   (l)i  (2)... ♦.   (N)} 

1 'N 
(3) 

with the restriction i   < i« < . . . <iN/ in order not to construct redundant SD's. 

From the total m dimensional single particle space spanned by the 

orbitals, we obtain a total of M =    ( N) linearly independent SD's, which are 

mutually orthonormal 

<«| l»j>    ==    6 
IJ 

(4) 

due to the orthonormality of the basis orbitals and the definition of the SD's.   These 
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SD's span the total available M dimensional N-particle space.   A linear trans- 

formation of the basis orbitals by a nan singular mxm matrix A will result in a linear 

transformation of the N-particle basis functions, the SD's, by a nan singular MxM 

matrix B, clearly leaving the N-particle space spanned by the SD's invariant.   Thus 

the original choice of ortho normal orbitals represents no restriction. 

In the MC-SCF model, as in a normal configuration interaction model, 

the total wave function of a given state K is expressed us a linear combination of 

these SD's, 

*K  " ^ *l CIK' 
(5) 

Orthonormality of the total electronic state functions demands that the configuration 

expansion coefficients C K form a unitary matrix, C, which is obtained variationally 

by solving the conventional configuration interaction eigenvalue problem 

I 

(H - E) C   =   0 (6) 

with E the diagonal energy matrix and H defined by the elements 

H,,   =   < $. iKlO, 
'IJ 

(7)      ' 
■ 

\ 

where 3C is the total Hamiltonian, which may be decomposed into sums of one and two 

electron operators 

H   =     y'h(i) +    7 g(i,i), (8) 
L\ L\>\ 
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Clearly, had we used in eq. 5 for the description of the total wave function the 

totality of M SD's, which span the entire N-particle space available with m fixed 

spin orbitals, the solution of eq. 6 would yield the best possible energies E,. and T, 
K IN 

within this restricted space. 

in general, however, we do not wish to do this, because in order to 

get a good description of the state functions Y^ we will require a large number of 

spin orbitals, and if m is large, M and with it the computational labor to solve eq. 

(6) become excessive.   It is therefore desirable to restrict the number of spin orbitals 

to a small number, and if possible to restrict the configuration expansion such that 

not all possible SD's are used.   The idea of the MC-SCF method is to arrive at 

eqi/ations for the determination of the "best" orbitals to be used in the restricted 

expansion of the wave function, eq. (5).   "Best" is used here in the sense that the 

"best" orbitals will yield the lowest possible eigenvalue E^. for a state K in a 

particular restricted expansion of the wave function into SD's.   Clearly the Hartree- 

Fock method is a special case within the MC-SCF model, with the restriction 

m = N and thus M = 1. 

It is clear that the use of symmetry can reduce and simplify the configu- 

ration interaction problem, as well as the problem of determining the orbitals.   However, 

the explicit use of symmetry would complicate the notation unnecessarily; therefore 

we will discuss symmetry after the general theory has been developed. 

To arrive at the orbital equations of the MC-SCF model in a reasonable 

and compact form, it is convenient to make use of the language of second quantization. 
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T 
From this we will use the creators a   and annihilators a, which we will define here, 

in order to clarify the notation to be used. 

The action of the annihilator a., associated with the spin orbital ilt. on an 
I I 

SD is defined here as 

a. $.   ~ a. $,.   . .    % 
I   I I   (,i,2",lN) 

Olfldt^ij. • .iN) 

(9) 

where I (L. . .t.   ,, <K+1« • -'kj) 's a norma''zec' N~l particle SD, which is obtained 

from i. deleting row N and column k containing \|(.    = t.. 
1 'k       ' 

Note here that the given definition of the annihilator acting on an SD 

7 
deviates somewhat from the conventional definition in second quantization,    where 

creators end annihilators are defined to act on state vectors specifying orbital 

occupation numbers, rather than of wave functions or SD's.   In the definition given 

here the annihilator, a,, is to be understood as an integral operator 

a.    =     v/N     fd(N)i*(N) 
I b I 

(10) 

while the creator, a. , the Hermitian conjugate to a., acting on an N-l particle SD 

should be presented as 
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a.   $/.    • 1.        * /•        * 
y'2 N-l 

oif|    (VV'-'N-I) 
(ii) 

,f,k<l^,k+l. 

Clearly the creators and annihilators defined in this way are linear operators and 

satisfy the conventional anti-commutation relations. 

Using the definition of a. in rq. (9), it can be seen readily that 

1 

v/N 

m 
Y ♦. (N)a. $ 

m 
t       = 

Similarly we have 

_L-    Y        ♦:(N)a!Y. 
v/N        ^1 

r      i 

(12) 

is nothing but the expansion of the SD $ along its N'th row. 

Since creation and annihilation operators are linear, we have 

(13) 

and 

♦      = 
1 

v/N (N-l) 

m 
7        ♦.(N) ♦.(N-l) a  a   * 
Hi       '      ' 

m 

Y     =  !    y       i(N)i(N-l)a.a. Y, 
v/N(N-l)        Ll,i    ' ' ' 

(14) 

(15) 
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We are now in a position to write down the energy matrix elements using 

the Hamiltonian,. eq.  (8), such thct the orbital dependence appears explicitly, 

suitable for the application of the variational principle with respect to an orbital 

variation. 

We obtain for eq. (7) 

m 

alKlf.)    =      )        OXI) IhOHUmOja.   a. U.) 

m 
+ 2Y     <vi)*k(2),9(12) 1 V1H£(2)> 

ijl<£ ' 
(16) 

^i^^Vl^j^ 

and for the expectation value of the energy for a particular state H^ es ^ we get 

<YlKlY>    =   V       U lhli> <Yla.+ a.  JY) 

+ JIIII{I <Vk^i*jV<Y'ai ak ViiY>- 07) 

In the above and following, we always focus on one particular state K only, and we 

have therefore dropped the state index. 

In eq.  (17) we can identify the first order reduced density matrix elements 

in the space spanned by the orbitals 
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end the second order reduced density matrix element 

rii,la "   ^«■iW-il"')- OSo) 

Thus eq. (17) may be rewritten as 

r->m   r l       ,n 

i|. kÄJ' (17a) 

Before we proceed to apply the vanational principle to eq. (18), we 

have to add the restrictive conditions 

multiplied with as yet unknown Lagrangian multipliers   to arrive at a functional, 

which may be varied without further constraints, 

_ni i   r-. m 

-^i'V'ii]= =   0. 09) 

The variation with respect to k yields 
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£m[<6t.|hlt >v   - <«♦,!♦.)«„] 

m 

|,ki 

+ c.c.    ■ 0. (20) 

Note that T    .     T.    ... 

We may now set the part which has been written out explicitly equal 

to zero independently of the part which is abbreviated by c.c.   This has to hold for 

any 6 \|t.; thus we get the Fock like equations for the determination of 'ij's, 

^ 1   L     il     LVi I|#K*J   I        Li   I   I' 
(21) 

Wl ith 

Uu    =     Jd(2) ^(2) 9(1,2)^(2). (22) 

Since y..   ■  y..* and P..   , .  =   ft.    .,    it can be shown readily that c. - €*.. 
• | |1 «1/ k£ I1/ xk 'I        I1 

The Fock like orbital equations of the MC-SCF model, in abbreviated 

■ 

form 

m m 
y       F.. ♦.  -   )        ♦. e.. Lx       If   I        L x      IP 

(21a) 

i       '   ' I 

are coupled explicitly on right and left hand side.   This coupling may be removed, at 

lecst formally using conventional projection operator techniques yielding a pseudo- 

eigenvalue equation 

137 

^M* 



G i   = 

n 

•h V (23) 

with the Hermitian operator 

1 
G   = I.   tGl+Gl+)' (24) 

with 

k  i I 
(25) 

The method for solving these orbital equations requires some close scrutiny.   Solving 
■ 

the pseudo-eigenvalue equation (23) does not appear promising for two reasons: 

a) the equation is of seventh order in the unknown orbitals (normal Fock ec uations 

are third order), thus it is unlikely that conventional iterative solutions of thex SCF 

equations will converge;  b) there is no unique way of assigning the solution functions 

of eq. (23) to the desired orbitals, except of using those with maximum overlap with 

the input orbitals used in constructing G. 

More promising, and in practice successful, is the solution of the Fock 

like eq. (21) directly, based on the fact that enforcing the Hermiticity of the Lagrange 

multiplier matrix, i.e. 

•ii =   e.* (26) 

•s a necessary and sufficient condition for eq. (21) to be satisfied.   However, this 

method for solving the orbital equations appears to require the expansion of the 

orbitals into basis functions wilh a transformation of the relevant equations into matrix 

form.   We will discuss this method in the next section. 
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Methods for Solving the Orbital Equations 

In the following discussion we will restrict ourselves to the solutions 

of the orbital equations in the basis function expansion form, since we are not aware 

of a generally convergent procedure for solving the orbital equations, eq. (21) or eq. 

(25) in their coordinate representation.   The total, available one particle space will 

be spanned by a set of m selected, linearly independent basis functions 

Cxi« • • x } i m (27) 

which may not be orlhonormal, i.e. the matrix elements 

vv =S
N (28) 

are the elements of the overlap matrix   S , which is the matrix of this one particle 

space.   ■ 

As indicated above, we may, without loss of generality transform this 

basis to an orlhonormal one by the linear transformation 

• I m I m    r« 

for which we have 

H 1 i > = *.., 
'    i        «i 

(29) 

(30) J 
provided 

C   SC     =     1. 
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These iniHal guess orbitals, I|L . . . t  / will in general not satisfy eq. (21).   What 

we are looking for is a new set of orbitals, connected to the initial guessed set by 

a unitary transformation 

I m i m     ~ (32) 

such that the orbital equations for the primed set 

m m 

^-j      M   I ^j       I      I« 
(33) 

.are satisfied.   Procedures of this type for solving SCF or MC-SCF equations have 

9 10 
been described by Rossi   and Levy.       We will give a more general discussion. 

A unitary transformation is all the freedom we have in the space 

spanned by our one particle functions, the orbitals.   It should be noted, however, 

that this is really no restriction beyond the initial one, due to ihe selection of a 

finite set of basis functions.   One may always make m sufficiently large; this does 

not require that we need to use more orbitals in the total wave function.   In fact, 

generally only the first few n < m orbitals will be used, be occupied, in the 

total wave function.   However, there is no need to restrict our sums to n in eq. 

(33), since F.. will go to zero due to the definition of the first and second order 

reduced density matrix elements, eq. (18) and (19), once i or j is larger than n. 

Thus we may say our   m dimensional one particle space is divided into an occupied 

{ ty.. . . ij; } and an empty { ty +1   . • • ty  3 port.   The unitary transformation, 

eq. (32), which we are to choose such tliat eq. (33) is satisfied, will have three 
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domains, transformations (1) between occupied orbitals, (2) between occupied and 

empty orbitals and (3) between empty orbitals.   The last one will not affect the wave 

function. 

The necessary and sufficient conditions for eq. (33) to be satisfied are 

e..' - ej.     =     0 with | > i (34) 

This becomes clear once one notices that 

e..-c..     =    3E/9U..    =    <(<!.%,   -  a.+a.)Yl3Cl Y> 

must become equal to zero for a wave function built from MC-SCF orbitals.    The later 

expression is for the generalized Brillouin theorem applicable to MC-SCF wave functions. 

This leads with * 

'li    =   I, <*,i1,:iklV>' 
to 

(1)        i and j part of the occupied set 

^k«ti'lFi'klV>-<VlPjl<lV>)=   0 (35) 

(2) j part of the empty set, i part of the occupied set 

(36) 

(3) i and | part of the empty set gives nothing, and is not required, since 

transformations of type (3) leave the wave function unaffected. 

Eq. (35) and (36) give us just enough conditions for the determination 

of the independent variables of interest in the desired unitary matrix  U    ofeq.  (32). 

However, it is sufficient, for ease of notation, to deal only with eq. (35), since it 
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contains eq. (36) as a special case provided the sum over k is extended to m and we 

observe F    = 0 if 1 or i is part of the empty set.   One way of solving eq. (35) is to 
'i 

perform repeated 2x2 rotations, similar to the Jacobi procedure for matrix diagonali- 

zation.   This v ill be described later. An alternative is to write the unitary matrix 

such that its independent variables are expressed explicitly, solving for these variables. 

This could be done using the generalized Eularian angles,      but we will not pursue 

this, since it would lead to rather untractable nonlinear equations.   Easier and 

followed here is to approximate the unitary matrix as 

U   = 1   +  D (37) 

which is good to second order in terms of D, provided D is antisymmetric.   Using 

this approximation, which requires that the guessed, unprimed set of orbitals is 

reasonably close, and neglecting the change of the Pack operators, F.., i.e. th€ 

potential, for the determination of   D    , we get 

■   II   <Vi<*JFiklV-u
mi<*JF

ilJV)''1 'nk 
• 

-■ 

r 

+  I [dmi<*JF
iki*k>-dmi<*JFikHk> 

+ «♦il
Fik1♦m

>■^1v1♦->)<u3, 

+ 0(d2) = 0 

. 

(38) 
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" 

Keeping in mind that d.. = -d.., neglecting terms of order d , and collecting terms 

we get a set of linear equations for the non redundant d./s of the type 
•I ' 

Y      M..       d 
L i|/mr 

mn 
\,Tnn   mn      ij 

19 =Ik
FikK> 

we obtain 
; 

and 

sjj = <;♦! lo - a. If.) 

(39) 

with ij and mn as composite column and row indices of the matrix   M      , with th« 

restrictions i> j/ m>n/ j and n not part of the empty set. 

Defining 

(40) 

(41) 

M.. =  6   . < HO  +   6 . < *   I O  -   6 . < H f > i|,mn mi     Yn '   | n|     *m'   i' ni     Ym'    ' 

-6   <tnlf.)- <*il
,:

im!*„> + <MFiJ*„> 

I     m     m '     |n      rn 

Since we have neglected the change of the Fock operators, F.., with the orbital 

transformation, and since we have neglected terms of second order in d in eq.  (38) 

and (37), it will b": necessary to iterate to convergence (however, see below), as 

in the conventional method of solving Hartree Fock equations. 
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Solving eq. (39) may become rather cumbersome, since there are a 

large number, n(n-l)/2 + n^-n), of unknowns  if     the number of occupied orbitais, 

n, and the total number of orbitais, m, becomes large.   To avoid solving eq. (39) 

directly we may a) neglect the elements which couple the different d./s, i.e. 

M..        = 0 unless ii  = mn, or  b) treat those coupling elements as small, as they 
i|,mn 

should be relative to the diagonal elements of M 

a.)        Neglect of coupling between d..'s leads to 

d..    - g../M  
•I 'I      M/'l 

(43) 

10   . 
This process, described by Levy    , is extremely simple, and we have used it. 

However, in order to obtain convergence in solving the Fock like equations using 

eq. (43) it is frequently necessary to resort to sophisticated  damping and extrapolation 

techniques, and even then many iterations will be required. 

b.)        Treating the off diagonal, coupling, elements cf    M       as small compared to 

the diagonal ones permits two different, simplified solutions of eq. (39).    For this we 

split up M      into a diagonal matrix N and an off diagonal one O     with all diagonal 

elements zero, thus we have for eq. (39) 

or 

Md    =    (N+0)d    =g 

d   =   (N   + O)"^   a    (N'1   - N'1ON'1)g 
i^* is* f** r** /w /w «■**»    ^/ **•* 

(44) 

(45) 
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Alternately we may solve eq. (44) iterative by writing 

Nd(n)    =        .  Qd^"^ (46) 

where CT"' is the n'th iterate to the solution vector d.   The process may be started 

with d      = 0, and carried to convergence.   A variant of this procedure has been 

used successfully in MCSCF calculations.       Clearly cT    is the same as that obtained 

by eq. (43), and d^ ' is the same as that obtained from eq. (45). 

It should be noted that the process proposed here to solve the set of 

linear equations, eq. (39), which may become quite large, is the well known static 

Gauss-Seidel method.       Clearly one could improve convergence by using the more 

efficient dy     lie Gauss-Seidel method, where each element d      once found is 

used immediately on t'ie right of eq. (46) for the determination of successive elements 

of d     .   The problem of possible nonconvergehce of the Gauss-Seidel method which 

will occur if the diagonal element M..  .. is small in magnitude relative to the off 
'l/M    . 

diagonal elements in row ij, may be overcome.   Here we realize that 

M. 
2   . ..     £=   -Ö  E/3u.. , if this becomes small and g.. 2: öE/öu.. is not small a 

i|/i| "I 'I M 

45° rotation between orbitals i|f. and i|r. will be required.   Thus all one needs to do 

is carry out this rotation and recompute the F's and M continuing the SCF iterations. 

2 2 
The realization that M.. .. =   - 3 E/9u..    permits one also to monitor the sign of 

M/'l 'I 

M.. .. and with it to determine whether a minimum or maximum in the energy is 
'j/'l 

approached.   To determine this definitely, however, would require one to ascertain 

that M is negative definite, which is clearly impractical due to the size of M.   As 

long as the diagonal elements of M are dominant, it appears sufficient to assure that 

these elements are negative. 
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An alternate method of solving eq. (36) is obtained by writing 

U    =     IL   .      U.. 

where        U.. is a unit matrix except for the elements u.. = u.. = coscp, u.. = -u.. = sin cp 
~i| "      «I 'I I1 

describing a plane rotation by the angle cp .   Thus the process is quite similar to the 

Jacob! matrix diagonalization; however, different formulae yield sin cp = s     and 

cos cp  =      c , and the updating of the remaing matrix elements determining the 

angles is not quite as simple. 

Using eq. (35) in order to determine the angle of roation in the i, j 

plane we obtain, neglecting the dependence of the F's on such a rotation. 

=  c(<t.|f.> -   <«.|f.>)   + s«t.|f.> + O.IU) 

+ (i-c) [c (U.I F..U. > - O.l p..h.) + < *.IF..U.) - < ♦,IFJJ 11)) 

+ s(<*.lFi.Ui) + <tlF^^^^(^IF   U> +<t|lFJO)] 

+ sMUlFj.U.)  -   (♦|lF||l*i> -<VFiiUi> +  ^i^V* 

■ 

+ s(<^lF1.U.> + <^jlFiiU1)-<*.lF..Hj>-<*ilFi.Ui>)] = 0 

• 
]46 

(47) 
I 
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MnHMMMMH 

where we have used eq. (40) for the definition of I'j'' 

Making the approximation 

cos cp   -   7 I - sin cp 2;    1 - 1/2 sin cp, (48) 

observing that all matrix elements are real and F..   =  F..; collecting terms in powers 
i| |i 

of sin cp and neglecting terms cubic in sin cp, we obtain a quadratic equation for the 

determination of sin cp 

As    + Bs   +C      =   0 (49) 

w ith 

A   =   1 (<i|f.> -  Ulf.)  + 3<ilF..U.) 
'    I I    ' i     i| -   i 

and 

-SU.lFj.U.) +3Ul|F  Ifj) ^(ilF.jU.) (50) 

B   =   <*.lf.> + (♦IU|>+2<tI|F||ltl) 

-O.lFj.U.) -  (^IF..!*.) 

c   =   (tjlf,) -  U.lO 

(51) 

(52) 

The desired solution of eq. (49) is that which gives the smallest angle of rotation or 

sin cp   =   B/2A  (-1   +   /I -4CA/B     )    . F- (53) 
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It she did be clear thaf is is possible to implement this method such 

that convergence is guaranteed.   This would require that the formulae are derived 

such as to include the dependence of the K./s on the angle of rotation and the 
'l 

recomputation of the F..'s after each rotation.   Including the angle of rotation 

dependence of the F..'s appears unnecessary and undesirable, since it will require 

a different contraction of the basis function integrals, and we have left this 

dependence out of our formulae since it would unduly burden the notation.    It appears 

to be unimportant also on physical grounds, since it is unlikely that the local potential — 

our F..'$ contain local potentials only—will depend strongly on a small orbital change. 

Computational experience bears this out.    Performing only one two by two rotation 

and then recomputing the F..'s is computationally uneconomical; thus it doesn't 

appear advisable to implement this form of two by two rotations such that convergence 

is guaranteed.   The described procedure should be implemented rather in such a way 

that one computes the two by two rotations between all orbital pairs, then corrects 

the orbitals and recomputes the F..'s.    Only in the case of convergence difficulty, 

which will be noticed readily by the appearance of large rotation angles, should one 

resort to performing only one or a few rotations befose recomputing the F./s, thus 

still taking advantage of the fact  that the presented method for solving the SCF 

equations will guarantee convergence. 

Another method for the determination of theMC-SCForbitals is based 

on the extended Brillouin theorem, rather than on the Fock like equations, eq. 

14 
(21).        Using the language of second quantization introduced above,  the extended 
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Brillouin theorem may be expressed as 

<(a.+a.   - a.+ a.)   Y|Kl Y>    = 0 (54) 

if Y is anMC-SLFwave function; i and | can take the values 1,2,. . .m.   Defining 

f    =•   'a. a.   -  a. a.) Y, one needs to do a configuration interaction calculation 

for 

r - A t + Y   A., f., (55) 

i.e. solving 

( H  -  E S) A = 0 (56) 

with H defined by the elements (4L. IX 1 t) Ibr $* ^ni column and else as ~ ij 

< Y..  I K 1 Y,  . > and similarly S.   Note that S will be diagonal; however it will 
ij k* *** '■' 

not be a unit matrix, in general ( Y.. j Y.   )  = a.. 6.. .     with a.. ^   1. 
11        K JL Ij      11, K i. Ij 

The resulting expansion coefficients A   and A., need then to be 

associated with the elements of the unitary matrix U in eq. (32) yielding the MC-SCF 

orbitals.   This association is always possible though not simple.   Using for U the 

unitary matrix which diagonalizes the first order reduced density matrix of Y' 

is not always appropriate, since the first order reduced density matrix of the 

MC-SCF wave function Y need not be diagonal, depending on the configuration 

selection in eq. (5). 
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In general, eq. (56) may become quite large, and it is impractical 

to construct H fully in order to find a solution to this Cl problem.   It may be 

preferable to use a perturbation form to solve  KJ. (56) approximately as 

A.,  ft  <Y..  lKU>/«tl3Cl><Y..lY  )-<Y   |KU   » 
• I M M     'I '! 'I 

(57) 

This equation is quite similar to eq. (43) since A., can be identified with d.., and 

the numerators on the right hand side are identical; however, the denominators differ 

slightly.   It is not appropriate to give here in detail the form of the H and S matrix 

elements in terms of one and two electron matrix elements over the orbitals.    Their 

derivation in the general case discussed here in terms of spin orbitals is quite 

straightforward, though lengthy.   This is no more true in the practical case, where 

one wants to include the proper spin, angular momentum or symmetry coupling. 
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It is well known that the time independent, electrostatic Schroedinger 

equation of an n electron system 

3CY   =  EY 0) 

w ith 
n n 

K  =    Y    h(i) +1        g(i|) 
i i>i 

(2) 

may be solved to any degree of accuracy for any stationary state K by using a 

configuration inte-action (Cl) ansatz for the wave function 

I ^K    =    I    5ICIK (3) 

provided the n electron basis spanned by the configuration state functions (CSF's) 5., 

with < §. 1 $ .)    =  61 |  's complete or nearly so.   The varlational solution of (1) with 

ansatz (3) leads to an algebraic simple matrix equation 

HOEC (4) 

with H,.  =  < $• | 3C | * .), (C  a rna^'x of column eigen vectors CK and E a 

diagonal matrix of the eigen values EK which are upper bounds to the true stationary 

slate energy eigen values E  ^ of (1).   This is the basis of the large Cl as well as 

] 
the MC-SCF (multi-configuration self-consistent-field) method. 

Solution of equation (4) and therefore (1) would be simple, were it not 

for the need of an exceedingly large expansion in (3), i.e. the expansion in (3) is 
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slowly convergent and N becomes excessively large if high accuracy is desired, 

unless a judicious or optimal choice of the n electron basis functions, the CSF's $. 

is affected.   It is in the approach to a judicious selection of the CSF's where the 

large Cl and the MC-SCF method differ.   In both methods the CSF's are generally 

constructed from antisymetrized products of orthonormal orbitals cp., properly 

coupled to yield eigen functions of S , S   and to transform as the irreducible 

representation of the point group of the system.   Thus, the CSF's are specific linear 

combinations of Slater determinant (SD's).   The set of orthonormal orbitals cp., used 

to construct the SD's and CSF's, span the one-electron space and they are generally 

expanded in terms of primitive basis functions—Slater type functions, Gaussian's or 

eliyptical functions, 

(5) cp.     =     Y       X   c . 
' L _   AP pi 

P 

The number m and the type of basis functions x    used in (5) determine 

the size and quality of the one-electron basis.   No amount of Cl or other tricks can 

overcome the shortcoming in this basis, thus it has to be adequately large and well 

chosen.   We will not concern ourselves here with the intricacies of the selection of 

these primitive basis functions, except to note that a minimal basis set for quantitative 

work requires at least a "double-zeta plus polarization" representation for all valence 

shells. 

From the m linearly independent basis functions (for simplicity they are 

considered to contain the spin coordinate) one can construct m orthonormal spin 
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orbitals, which provide the building blocks for the SD's and CSF's, the latter span 

the n-electron space which has a maximal dimension N        = \   )•    Even though 
max       n 

N        is reduced significantly by requiring the CSF's to be properly spin and symmetry 

coupled, the dimension of the remaining n-electron space NS        is still excessive 
' max 
5 

for reasonable m and n > 4.    Typically NS        > 10 , preventing the solution of 

the full Cl problem, which would mean diagonalization of the Hamiltonian in the full 

space spanned by all CSF's, which can be constructed from the m orbitals. 

It is obvious that in the case of a full Cl calculation the particular 

choice of orbitals is irrelevant, since the resulting wave functions and expectation 

values are invariant to a unitary transformation among the orbitals.   However, since 

a full Cl calculation is in general not feasible, and thus a Cl calculation is performed 

3 
with a truncated and judicially selected subset of CSF types,    the resulting wave 

functions and expectation values will depend critically on the choice of orbitals used. 

It is in this choice of the particular shape of the orbitals used, where the various lafge 

Cl methods differ from the MC-SCF method. 

In the MC-SCF method the CSF's used in expansion (3) are chosen 

judiciously with N « NS        and all the orbitals participating in the total wave 

function, as well as the Cl expansion coefficients ore determined variationally.   It 

is obvious that this will result in a wave function, which gives the lowest possible 

energy within the chosen m dimensional one-particle space and the prescribed 

selection of CSF's, this is merely the result of the variational principle. 

The simultaneous optimization of Cl coefficients and orbitals is achieved 

by solving iteratively, to full self-consistency equation (4) and the Fock like equations 
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for the orbitals 

I. (^i " 't. 5) cr = 0 (6) 

which are obtained by varying the energy expectation value with respect to a change 

of the orbital expansion coefficient vectors c..   In (6) we have 
I 

pq p  q 

e..     -    e*.      Lagrangian multipliers 

and . 

■ 

with    v.. and H. ^ the first and second order reduced density matrices of state K 

desired in the space spanned by the orbitals. 

In practice an MC-SCF calculation proceeds along the steps: 

1) Select one particle basis and an initial guess of cp. . 

2) Compute 1 and 2 electron integrals over the basis functions. 

3) 

4) Generate Cl energy expressions. 

5) Solve equation (4) for state K desired. 

6) 

Select the types of CSF's to participate in the Cl expansion (eq. 3). 

■ 

. 

■-    ■        ■ .... 

Construct y.. and r... „ for state K. 
i| i|kj6 

7)       Solve equation (6) to convergence. 

■ 

Repeat steps 5-7 until complete self-consistency is achieved. 
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In the large Cl method, the orbitals used In constructing the CSF's 

are generally not fully optimized, however some optimization is obtained by 

performing an SCF calculation with the dominant CSF or even an MC-SCF calculation 

using a few of the dominant CSF's; the reference configurations.   This is again followed 

by a judicious choice of CSF types which will participate in expansion (3) with 

N < NS       .   Generally an inclusion of all single and double replacements from the 
max 

reference configurations will be adequate, however even with this N becomes rapidly 

large, of c der n2m2/4.   Equation (6) is then solved within this basis of CSF's for the 

state desired.   In practice a large Cl calculation proceeds along the steps: 

1) Select one particle basis functions and initial guess of (p.. 

2) Compute 1 and 2 electron integrals over the basis funrtions. 

3) Select the types of CSF's to participate in the Cl expansion (eq. 3). 

4) Generate Cl energy expressions. 

5) Perform SCF or limited MC-SCF calculation to obtain orbitals for the 

reference configurations. 

6) Solve equation (4) for state K desired. 

We are now in a position to compare the amount of computational effort 

required in both types of computations and indicate how much this is a function of the 

accuracy desired; accuracy is to be understood here as the difference between the 

solution obtained and that obtainable from a full Cl, i.e. the best solution obtainable 

with the limited one-electron basis set. 
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Steps (1) and (2) are identical for large Cl and MC-SCF.   Step (3), 

being proportional to N is more cumbersome for large Cl; however in the case of 

MC-SCF more care must be exorcised in the selection of configurations.   Step (4) 

2 
being proportional to N    is the most time consuming step in a large Cl calculation 

2 2 
were N is of order n m /4; in the MC-SCF method N is much smaller.   Thus, this 

step together with the construction of the energy matrix is the limiting bottleneck 

for large Cl calculations/ while they are insignificant in the MC-SCF. However, 

for the MC-SCF step (7), solving equation (6) is the bottleneck.   It is by no means 

easy to get the SCF equations to converge rapidly.    There are algorithms for solving 

4 
equation (6);    although convergent, they require frequently 100 iterations, and in 

each iteration the integrals must be contracted, a process which is of order m   . k, 

with k the number of valence orbitals.   If the basis function limit is to be closely 

reached, k will become almost the size of m, in which case the MC-SCF method 

requires large amounts of computer time. 

Thus, we can conclude that in cases where the basis function limit is 

to be approached in a calculation, the large Cl method is superior to the MC-SCF 

method, the latter being more advantageous for more approximate calculations. 

This will be so, unless faster convergent algorithms can be developed for solving 

equation (6).   However, it should be noted that in case of more approximate 

calculations it is possible with the MC-SCF to stay within a well defined model, 

for example introducing just the extra bond correlation as is done in the optimized 

valence configuration (OVC) variant of MC-SCF.     In addition an MC-SCF function 
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is frequently advantageous for the construction of reference configurations for large 

,    .   3 Cl methods. 

Another method of reducing the number of configurations required in 

a large Cl calculation is the iterative natural orbital method, where in one iteration 

only the dominant single and double replacements from the reference configurations 

are used in the Cl calculation.   This is followed by a diagonalization of the first 

order reduced density matrix and corresponding orbital transformation to an approxi- 

mation of the natural orbitals for the state desired.   This process is repeated to 

convergence, and yields approximate natural orbitals and a Ci expansion wave 

function with N between that of the MC-SCF and the large Cl method.     It should 

be understood that this is only one variant of many methods designed to obtain 

approximations to the natural orbitals in order to reduce the size of the required 

configuration interaction calculation. 

■ 
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Multiconflguratlon self-consiEtent-fleld calculations were performed on the following states 
otLoron:   2s22p, *P. 2s2p\ *P, *D, 2P, Zs^s, 2S. Bnd 2p\ *S.   For each state, only configura- 
tions resulting from the replacement of the valence-shell orbltals were used, and consequently 
only the valence-shell correlation was calculated adequately. The correlation orbital set con- 
sisted of one orbital in each of the symmetries s. p, and d (except for the 2s23s, 2S state, where 
there were two orbltals of p symmetry).   For the ground state, the value of 0.067 hartree was 
obtained for the valence-shell correlation energy.   From the wave functions obtained, the term 
energies and the oscillator strengths for the allowed transitions were calculated and found to be 
in general agreement with the results of more elaborate calculations and experiments. 

INTRODUCTION 

It is well known that Hartree-Fock (HF) calcula- 
tions for atoms and molecules do not produce wave 
functions sufficiently accurate for calculating many 
atomic and molecular properties satisfactorily. 
What is not represented accurately in these calcula- 
tions is the "correlation" between electrons,1-4 and 
especially correlation between electrons of opposite 
spins.   In order to represent the electron correla- 
tion more accurately, the method of superposition 
of configurations (SOC) was used in this work. 

One of the disadvantages of the SOC approach is 
that usually a large number of configurations is 
needsd to obtain a wave function of high quality.  The 
number of configurations needed depends a great 
deal on the orbltals used to construct the configura- 
tions.   In the multiconfiguration self-consistent- 
field (MCSCF) method, the orbltals, as well as the 
configuration mixing coefficients, are determined 
variationally, and hence the best energy possible, 
with a given set of configurations, is achieved. 
Clearly, the MCSCF method is a natural extension 
of the Hartree-Fock SCF model. 

In any SOC approach, since the number of con- 
figurations is necessarily finite, it is possible to 
select the configuration set in such a way that the 
resulting wave function is more suitable for cal- 
culation of some properties of the system than 
others.   Thus, for example, Sabelli and Hinze,5 in 
the earlier version of the MCSCF method, re- 
stricted the configurations to those whose shell oc- 
cupation numbers have even differences, i. e., only 
replacements of the type (nlf to {n'l'f were al- 
lowed.   Thus, they only treated intrashell correla- 
tion accurately.   In their Be wave function, for ex- 
ample, they had no configurations of the type 
U'253s4s, and consequently they could not repre- 
sent the i«tershell correlation adequately. 

The MCSCF formalism presented and applied here 
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has no restrictions on the types of configurations 
that can be used in the wave function, and conse- 
quently both intershell and intrashell correlation 
can be calculated accurately. 

In this work MCSCF calculations were performed 
on the ground state and several excited states of the 
boron atom with the aim of producing wave functions 
of compact form and rather high accuracy.   The 
wave functions obtained were then used in calcula- 
tions of oscillator strengths. 

MCSCF PROCEDURE 

The formalism for the unrestricted MCSCF 
method used in this work is similar to the forma- 
lism for the restricted MCSCF method presented 
in the paper by Hinze and Roothaan,fl and conse- 
quently only an outline will be given here. 

A many-particle wave function is constructed 
from spin orbltals defined by 

X|»««,(n 3, ip)=r-lPu(r) YXJ$, <p)S(m,) ,        (1) 

where S(m,) are the spin functions,  yXa(a, y) are the 
usual spherical harmonics, and PX{{r) are the radial 
shell functions.   A shell consists of all the spin 
orbltals that form a degenerate set; for example, 
the p shell consists of six degenerate spin orbltals. 
From the spin orbltals, antisymmetrized products, 
or Slater determinants (SD's), are constructed.   The 
number of spin orbltals of a shell used for the con- 
struction of a particular SD is the occupation number 
of the shell in that SD.   The set of all SD's which 
have the same shell occupation numbers is said to 
form an electron configuration. 

When a symmetry operation is applied to a set of 
SD's which constitute an electron configuration, a 
linear transformation of the SD's among themselves 
is induced; this transformation is, of course, a 
representation of the symmetry group of the sys- 
tem, and is in general reducible.   Linear combina- 
tions of these SD's that form irreducible represen- 
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tations are called configuration state functions 
(CSF's); each CSF belongs to a definite symmetry 
species and subspecies. 

In many simple cases the CSF's are unique; in 
more complicated cases, such as configurations 
with three open shells, there may be several CSF's 
of the same symmetry species and subspecies aris- 
ing from one configuration.   In such cases the shells 
may be coupled together in different order, thus 
producing a different complete set of CSF's for that 
configuration.   However, it is most natural to 
couple together, first, shells which have the largest 
electrostatic interaction.   The CSF's obtained from 
different hierarchies of coupling are connected by 
unitary transformations, and as long as a complete 
set of CSF's, from any coupling scheme, is used, 
it does not matter which scheme is chosen.   Cou- 
pling, in this context, means constructing the wave 
function of the combined system in such a way that 
it belongs to an irreducible representation of the 
symmetry group of the system, and is thus itself 
of definite symmetry species and subspecies.   For 
example, *[(2s2/), ^Srf, LSMLMs]and^[(2s2p, 
3P)3cl, LSMLMS] constitute a complete set of CSF's 
arising from the configuration 2s2p3d. 

Let *LSMtj/s,/ denote a CSF where the index / is 
used to label CSF's arising from different configura- 
tions and/or, if necessary, from within the same 
configuration.   The wave function for an actual state 
*LSMrtfs 

is now Put: forward as an expansion in terms 
of* LSULUS,I- Since the spin-dependent terms in 
the Hamiltonian will be neglected, L, S, ML, and 
iWs are good quantum numbers, so that 

* LS™ r"*c = 1)0,* LSULUS,1  • (2) 

The good quantum numbers remain constant for a 
given calculation and will be omitted from now on. 

The normalization chosen is such that 

{*/|*/> = 6,/ 

and 

SjcM. 

(3) 

(4) 

Using the usual spin-free nonrelativistic Hamilto- 
nian 

(5) 

the expectation value of the energy of the system is 
given by 

£=(*|3C|*> =Z:C/C/<*,|3C|*^). (6) 

\ 
Each shell function PXi(r) is now expanded into a 

set of (generally nonorthogonal) basis functions 
Rxp(r}, namely. 

The orbital expansion coefficients cMp are not to 

be confused with the configuration-mixing coeffi- 
cients C, introduced earlier. 

In order to express the energy in a form suitable 
for the application of the variational principle with 
respect to the orbital expansion coefficients cUp, 
the matrix elements of the Hamiltonian with respect 
to the CSF's are expressed in terms of integrals 
over the basis functions.   The relevant integrals 
are defined by 

Sx»° £är R^ir) R»{r), (8) 

^sI0'dr{iRit{r)Rl,(r) 

+ [U(x+l)r-a-2r-1K,Wflx,(r)},       (9) 

Gx»i.„PfM,i.= /„" drfj ds Uv(r, s) 

xÄw(r)HM,(r)Äpr(s)Äw(s),     (10) 

where 

• s 

s. (11) 
Uv(r,sh 

(r^s"   if r^ 

( rV""1    if y<.' 

For each given set of A,  ß, p, and a, the allowed 
values of v are from IX-MI or lp-al, whichever 
is larger, tox + fi, orp-tcr, whichever is smaller, 
in steps of two; this is concisely expressed by 
vCV(x, ß;p, cr). 

In the terms representing the contributions from 
closed shells, the special combination 

'«Ki.wra = G \p\<,,urus,0 ' 
lOtti <*■*>>») 

^XuilG \plir,\qlis,v 

+ G X^m.Xnwr. .1     (12) 

occurs, where the coefficients xXuu are expressed 
in terms of Wigner 3 -j symbols, namely, 

*X(i 4 \0 0  0/ 
(13) 

For the contributions from open shells, certain 
interaction coefficients occur which are constant for 
a given calculation; they are denoted by aI]iUj and 
btj,\ini,i*<>uv   As this notation suggests, they enter 
in the expression for the matrix elements 
<*/l3CI*/); they depend on the shell occupation 
numbers of the configurations / and J, the coupling 
schemes used, and the orbital and spin angular 
momenta of the system.   The diagonal coefficients 
aii,Mi are particularly simple, namely. 

a//.ui = 2(2x + 1)6o; (14) 

the coefficients bniUujll,kaltV can be expressed in 
terms of the coefficients n* and h" of Condon and 
Shortley.7  The off-diagonal coefficients are more 
complicated, but can be expressed in terms of the 
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coefficients of fractional parentage, 3-j and 6-j 
symbols, and were calculated using Racah's meth- 
ods.e 

It is also useful to define net-interaction coeffi- 
cients aUj and bXiultl>kaStVhy means of 

«M<=Da//.»iyC/C/, (15) 

b\iui,i,kal,v-lj   ^//.Xfuy.Wkol.wC/C/ , (16) 

ZORAN  SIBINCIC 

and the density matrices by 

(17) 

(18) 

where C(x) and F(x) denote the sets of closed and 
fractionally occupied shells of symmetry \. 

Employing the integrals and coefficients just de- 
fined, the energy of the system can be written as 

£=£{(   L     2(2X+l)c„,cM,) 

(    D    2(2p+l)cPJLTCp)IJ+2      S      ap»iCp»,Cpl,)l + /fXN(     L      a»ucM*Cx>,)} 
MCI») dJCi'W) 

+i: EDS 
\D    Mg    Pr    oj    »C^UitttPtV) 

«uo.pros.i'       2J 2J 2^ ZJ       ''Mi'i,p»o(,i'CX(»cu./<icP»rcoli ■   (19) 
iC^**)   iC'*"! »C'*"   lCi,'(0> 

As was mentioned earlier, in the MCSCF method 
two independent variations of the energy are per- 
formed; one with respect to the orbitals, i.e., the 
orbital expansion coefficients cXip, and the other 
with respect to the configuration-mixing coeffi- 
cients C,.   The energy expression (6) is suitable 
for the variation with respect to the configuration- 
mixing coefficients, and expression (19) for the 
variation with respect to the orbitals.   Performing 
the variation now with respect to all c^, and sub- 
ject to the orthogonality conditions for the orbitals, 
the MCSCF equations are obtained for closed- and 
open-shell (fractionally occupied) orbitals, namely, 

S ^c,XMcx^ = Ssw,(€x(iC)u,+    L     «MiCw«)    (20) 
SCFM 

for all \i CC, and 

for all xiCF.   The Fock-like matrices are 

1 CC'F 
(21) 

^c.x*,= 2(2\+l)[^ + 2S/: X^.PM^C.prj + ^.pr»)] . 

(22) 

XW.aJ«" ^\uaxij[Hxp.+ E I; Xi>«,Pr»^'c,»r»l 

2££ L 
or   ot   vCviX, M;P,o) 

'XP^HtPrcsiV 

(23) 

The exu are the Lagrange multipliers which must 
be introduced to fulfill the orbital orthonormality 
constraints.   In terms of the expansion coefficients 
these constraints are expressed by 

IJCX{PS 
M 

XNC//« = 6, (24) 

Performing the variation of the energy with re- 
spect to the configuration-mixing coefficients C, 
leads to the well-known eigenvalue equation 

TJJ HJJ CJ = ECj 6tj , 

where 

(25) 

(26) 

For the MCSCF solution the orbital expansion co- 
efficients satisfy Eqs. (20) and (21), and the con- 
figuration-mixing coefficients satisfy Eq. (25).   This 
solution must be obtained by some iterative method, 
and many strategies are possible; the strategy used 
in this work is given by the flow diagram in Fig. 1. 
The pre-SCF orthonormalization, ati indicated in 
the flow diagram, is done because it is inconvenient 
to supply an initial orthonormal orbital set.   The 
post-SCF orthonormalization is desirablo because 
the orbitals that are obtained by solving Eqs. (20) 
and (21) are orthonormal but not always to the de- 
sired degree of accuracy.   The Schmidt orthonor- 
malization procedure used takes the orbitals in the 
natural order, i.e..  Is, 2s, ...; 2/>, 3p, .  .; etc. 

The analysis presented here does not specify the 
choice of the basis functions RXp(r).   In this work 
the well-known Slater-type basis functions were 
used; they are defined by 

Ä»,(r)-[(2t)«"w*l/(2«v)i]y,,»*e-V, (27) 

where ew and «^ are adjustable parameters, with 
nxp restricted to integer values and nxp ? X + 1.   For 
each calculation, the program provides for the ad- 
justment (optimization) of the exponents until the 
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atrucl   nut  Inluractlon coef- 
-4{l\ il«nta ■., . and b. 

*8"'1 PMp,,..'(i froni S^9'   f^^ 

olv«  Tor orbital!  from Eqo. 
(-0)  and {a) 

IrthononullBfl orbltala. 
?p,T\lp:xpqCMq  " 61J 

Orthonormall^e  orbltals 

^p.q'xip-JXpq''Al'i   *"   S.l 
frJft- 

Th- Cj arj'l Cj, ar* ex- 
ternal ^onvfirF-nj" 
thresholds and H de- 
notes the Iteration 
number. 

FIG. 1.   Flow diagram of the MCSCF procedure. 

minimum of the energy is obtained. A straight- 
forward method for such optimization is given by 
Roothaan and Bagus.' Their method was followed 

in this work, and was often simplified to a quadratic 
rather than a fourth-order interpolation. 

The oscillator strength (in dipole approximation) 
for a transition from the initial state *, to the final 
state *,, is given by 

/i = f(£,-.EJr)£,-1|(*,|r|*F>|21 (28) 

(29) 

or, equivalently, for exact wave functions by 

/„ = f(£,-£,)-V1|<*/|v|*F>|i!, 
where g, is the degeneracy of the initial state and 
the squared matrix elements are summed over the 
initial- and final-state degeneracies. 

When approximate wave functions are used, the 
agreement between the two forms is a necessary 
but not sufficient condition for the correctness of 
the oscillator strength value. 

Recently10 it has been shown that when HF or SOC 
wave functions are used, the length form fL is more 
appropriate for the calculation of the oscillator 
strengths. 

Both formulas (28) and (29) were used in this 
work to calculate the/ values. 

APPLICATION TO BORON ATOM 

Calculations were performed on the following 
states of boron:  2s22/), 8P0, 2s2p\ *P, ZD, ZP, 
2s23s, 2S, and 2pa, *S0, " Each state considered is 
the lowest state of that particular symmetry for the 
boron atom. 

As was mentioned earlier, the configuration set 

TABLE I.   Basis-function parameters and orbital expansion coefficients from the 28 CSF representation of the 2s22/>, 2P 
state,   (full MCSCF and frozen HF orbital calculations). 

Full MCSCF Frozen HF orbitals 

s symmetry 

n            t Is 2s 3s Is 2s 3s 

1      7.3306 0.172 343 -0.047 463 -0.153 852 0.171570 -0.054 951 -0.173 736 
1      3.8999 0.913 394 -0.134 467 0.766 515 0.911338 -0.131943 0.816102 
2      1.7400 0.021047 -1,193120 -9.483 725 0.002 346 -1.418 650 -10.169023 
2      1.3370 -0.023 666 1.490 514 5.902149 -0.000139 1.608475 6.141672 
3      4.7860 -0.092 969 0.075 327 0.641943 -0.091873 0.092 837 0.687687 
3      2.6000 -0.013153 0.685 851 2.831922 -0.002 837 0.777 875 3.229055 

p symmetry 

n            £ zp 3p 2p 3p 

2      5.4000 0.009469 -0.165 998 0.010 075 -0.158 350 
2      2.0480 0.164 774 -0.946 628 0.200 676 -0.820 473 
2      1.2060 0.471341 -1.447 065 0.391755 -1.661696 
2      0.8666 0.407 739 2.123 415 0.460 842 2. 246 233 
2      3.7000 0.003471 0.501915 0.000197 0.470 599 

d symmetry 

n            t 3d 3d 

3      1.5265 1.011881 1.012538 
4      4.7759 -0.025 225 -0.026 651 
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TABLE II.   Configuration-mixing coefficients for the 28 CSF representation of the 2s22/.l 
2P state (results from full 

MCSCF and frozen HF orbitals calculations). 

Configuration Coefficients Configuration Coefficients 

Full Frozen Full Frozen 
MCSCF HF MCSCF HF 

1 28% 
2/,' 

0.96209 0.96235 15 {2s3p, lP)3d -0.023 84 -0.023 52 2 0.209 81 0.20888 16 {2s3p, 3P)3d 0.01378 0.013 75 3 (2s2p, ,P)3d 0.10733 0.10667 17 3s23p 0.003 29 0.003 99 
A {2s2p, 3py3d 

■Jshp 
(2s3s, 3S)2/) 

-0.08210 -0.08145 18 3p> 0.003 56 0.00362 

e 
-0.03482 
-0.018 25 

-0.035 79 
-0.019 93 

19 
20 

{3s2p, iP)3d 
tts2p, *P)3d 

0.003 38 
0.00418 

U. 00293 
0.004 94 7 2/>(3d2, 'S) 

2p{3d2. 3P) 
2p{3d2, 'ß) 

-0.03165 -0.03168 21 {3s3p, iP)3d -0.005 84 -0.005 76 8 -0.01839 -0.01822 22 (3s3p, 3P)3d 0.00144 0.00132 9 -0.01429 -0.01413 23 3p(3d\ 'S) 0.003 58 0.003 56 10 2p{3p2, 'S) 0.020 21 0.019 66 24 3^(3rf2, 3P) 0.003 68 0.003 62 11 2p(3pi, 3P) 
2/, (3/,2, 'C) 

0.012 23 0.01237 25 3^(3rf2, '£» 0.003 25 0.003 20 
12 0.01201 0,01216 20 (2/)2, lS)3p 0.01848 0.018 50 13 (2s3s, 'S)3^ -0.05719 -0.058 39 27 {2p\ 3P)3p 0.045 47 0.044 38 
14 (2s3s, 3S)3p 0.02139 0.02186 28 {2p\ lD)3p 0.035 93 0.035 39 
Total energy (full MCSCF) Total energy (frozen HF orbitals) 
£ = - 24.095 97 hartrees £ = - 24.595 35 hartrees 

for an SOC wave function can be selected in a vari- 
ety of ways, depending on which properties of the 
system the interest is centered.   This tailoring of 
the wave function is well known and has been used 
by Bagus and Moser, ö Weiss, " Schaefer, Klemm, 
and Harris, u Das and Wahl, " and others.   In each 
instance listed, the wave-function configuration set 
was chosen with a different purpose in mind.   Bagus 
and Moser wanted to represent accurately the ener- 
gy level spacings, Schaefer, Klemm, and Harris 
the "core polarization," Das and Wahl molecular 
dissociation, and so on. 

In this work, the interest was in the optical prop- 
erties and the configuration set was chosen ac- 
cordingly, i.e., the SOC wave function is composed • 
only of configurations which result from the re- 
placement of the 2s, 3s, and 2p orbitals, the va- 
lence orbitals.   The core is represented by the 
doubly occupied HF-like Is orbital, which is al- 
lowed to adjust under the influence of the correla- 
tion configurations.   Since no configurations in 
which a core spin orbital was replaced were al- 
lowed to participate, the core correlation and the 
core-valence correlation are not represented ac- 
curately.   But since the core electrons are ener- 
getically and spatially well separated from the va- 
lence electrons, the correlation error thus intro- 

duced is nearly constant for all the states con- 
sidered.   This is borne out by the fact that the core 
orbital, which in the model is state dependent, is in 
practice nearly the same for all states, and only 
slightly changed from the ground-state HF orbital. 

When, in the absence of interelectron interac- 
tions, two configurations have the same energy, 
they are said to be hydrogenically degenerate.   For 
example, 2s22/) and 2/»3 or 2s23s and 2/)23s are two 
such pairs of configurations.   (The configuration 
2s2/)2 is also hydrogenically degenerate with the 
first pair but is of different parity, and thus ex- 
cluded irom the set.)  In this work a minimal set 
of conügurations is adopted, consisting of the domi- 
nant   onfiguration for the state, and the hydrogen- 
ically degenerate configurations obtained by re- 
placing 2s2 by 2/)8 or 2/>2 by 2s2 in the dominant con- 
figuration.   The orbitals that make up the config- 
urations of the minimal set are called dominant 
orbitals.   Thus, in the second of the above ex- 
amples. Is, 2s, 3s, anrf 2/) are the dominant or- 
bitals.   All other orbitals, which are introduced to 
construct additional configurations, are called cor- 
relation orbitals.   Occasionally, the dominant or- 
bitals so defined cannot all be used for a particular 
state.   For example, for the ls22/)J, V state, re- 
placement of 2/)2 by 2s2 cannot yield a 4S0 state, and 

TABLE III.   Valence-electron correlation energy for the ground state of Boron. 

Correlation 
energy 

This work 
28 CSF's 

0.067 

Weiss (Ref. 13) 
n £ 3 configurations 

0.064 

Weiss (Ret. 13) 
35 CSF's 

0.068 

Schaefer and 
Harris (Uef. 19) 

0.066 

Nesbct 
(Rof. i) 

0.071 

i 
! 
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FIG. 2.   Dominant orbitals 2s and 2/i and the correla- 
tion Orbitals 3s, Zp, and 3d for the ground state of boron. 

hence the 2s orbital is absent from the dominant 
orbital set. 

The calculation with dominant orbitals only serves 
as a starting point for more elaborate calculations, 
in which one correlation orbital is introduced in each 
of the symmetries s, p, and d. 

For the CSF's the obvious notation *[ls2(n;«'/', 
S'L' )H"1", SLMSML j, with n « «' « n" and is/'« I*, 
will be used, indicating the coupling explicitly. 

To determine the orbitals and configuration-mix- 
ing coefficients, the iterative procedure outlined in 
Fig, 1 is used.   This procedure, however, does not 
converge unless a good basis set is chosen and a 
reasonable initial guess is made for the orbital 
expansion coefficients.   The procedure used in this 
work, which provides good initial basis-function 
and orbital sets, and a method for augmenting these 
sets, will now be described. 

For each state, the starting point for the MCSCF 
calculation was a single configuration SCF calcula- 
tion.   Guided by earlier experience a basis set ap- 
propriate for the expansion of the SCF orbitals was 
selected,lc and SCF calculation performed, and all 
exponents optimized. For the 2s22/), 2P0 and 2s83s, 
2S states, the hydrogenically degenerate configura- 
tions 2p3, ZP and 2pz3s, 2S, respectively, were added, 
thus creating minimal configuration sets for these 
states.   An MCSCF calculation was then performed 

TABLE IV.   Calculated and observed term energies for 
boron. 

Term HF MCSCF Observed 

2s22/,, V 0 0 0 
2s2/.2, 2P 0.3502 0,3390 0.3305 
2s2p'i, lD 0,2172 0,2271 0.2180 
2s2/!2, 4P 0.0784 0.1288 0.1313 
2s23s, 2S 0.1770 0.17C7 0.1824 
2/)3, V 0,4010 0.4424 0.4421 

and all exponents reoptimized.   During this re- 
optimization the exponents determined in the SCF 
calculation changed only slightly. 

For one symmetry at the time, a correlation or- 
bital was determined by performing the following 
three steps. 

(1) The starting basis-function set was augmented 
by adding one basis function (two in case of d sym- 
metry), and a new orbital generated by orthonor- 
malizing to all previous orbitals of the same sym- 
metry. 

(2) All possible configurations, resulting from 
the replacement of any of the valence orbitals by 
the new (correlation) orbital, were generated, and 
added to the set. 

(3) The MCSCF calculations were performed and 
the exponent(s) of the added function(s) optimized. 

The exponents determined from the minimal-con- 
figuration-set calculation were not further reop- 
timized, since this would have yielded only a small 
improvement. 

Since all CSF's resulting from the replacement 
of the valence orbitals were used in the wave func- 
tion, the valence and the correlation orbitals are 
determined only up to a unitary transformation. 
Hence these orbitals are not unique, and can there- 
fore be chosen so as to satisfy some arbitrary con- 
straints,   A particularly convenient choice, used 
in this work, consists of requiring that certain 
CSF's are absent from the wave function.   As an 
example consider the function 

* = C1*(ls2) + C24>(ls2s, 'S) + C3*(2s2) , (30) 

which is composed of a complete set of CSF's that 

TABLE V.   Oscillator strengths. 

Hartree -Fock This work Weiss (Ref. 13) 
Transtition length volocity length velocity length velocity Experiment 

2s22/., 2P-2s2/)2, 2/) 0.339 0.336 0.115 0.157 0.067 0.084 (1.059,*0.048b 

2s22/i, 2P-2s2^2, 2P 1.003 0.389 0.640 0.685 
2s22/), 2P-2s23s, 2S 0.052 0.063 0.062 0.068 0.067 0.074 0.055» 
2s2/)2. lP-2p'i, 4S 0.266 0.146 0.214 0.216 0.213 0.225 

'L. Bergstom, J. Bromunder, R. Buchtar,  L. Lundin, and J. Martinson, Phys. Letters 28A. 721 (1969). 
bG. M, Lawrence and B. D. Savage, Phys. Rev. 141, 67 (1966). 
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TABLE VI.   Basis-function parameters and orbital ex- 
pansion coefficients from the 17 CSF representation of the 
2s2/)2, 2P state. 

TABLE Vin.   Basis-function parameters and orbital 
expansion coefficients from the 26 CSF representation of 
the 2s2/>2

1 
iD state. 

s symmetry s symmetry 

n          i Is 2s 3s n i Is 2s 3s 

1      7.2867 0,161861 0.000 743 -0 064 722 1 7. 2847 0.165 862 -0.011129 -0 032 391 

1      4.0160 0.898495 -0.280 462 0 468 522 1 3.9833 0.900 422 -0.246100 0 430 462 

2      1.7455 0.000 689 0.856 251 -4 346 655 ?. 1.7463 0.000 003 0.440 356 -3 505 518 

2      1.1292 0.001461 0.465 031 2 842 027 2 1.1813 0.000117 0.650 595 2 853 607 

3      4.8005 -0.065 219 -0.063 031 0 385 078 3 4.7958 -0.071705 -0.031833 0 238 777 

3      2.5952 0.001504 -0.208 263 1 138 674 3 2.9000 0.000 833 -0.005983 0 319 009 

p symmetry p symmetry 

n         t 2p Zp n i 2p ip 

2      5.2000 0.005515 -0.050443 2 5.2500 0.005166 0.043 988 

2      2.0939 0.275 846 0.603495 2 2.0616 0.303718 -0.916316 
2      1.2176 0.485 508 -2.585190 2 1.2332 0.481791 -1.084 907 
2      0.7833 0.337 093 2.434 843 2 0.8172 0.309941 1.806129 
3      3.7000 -0.033 589 -0.198903 3 3.7301 -0.037 733 0.305 807 

d symmetry d symmetry 

n         t 3d n C 3d 

3      1.4031 1.001259 3 1.2031 0.948 602 

3       2.9400 -0.002013 3 2.1000 0.060017 

can be generated from the Is and 2s orbitals for a 
two-electron system.   Under the transformation 

(ls)=(ls')cosa+(2s')sina , (31) 

(2s)=-(ls')sinQ! + (2s')cosa , (32) 

where 

tana = 2C2/(C3-Ci), (33) 

the wave function remains invariant and can be ex- 
pressed in terms of the primed orbitals as 

* = Cl*(ls'2) + Cj*(2s'2). (34) 

When simila.1 transformations are applied to the 

ground-state orbitals of boron the CSF's 'l»[(2s3s, 
1S)2/>, ZP\ and <t>[2s23/), *P\ may be omitted from the 
wave function.   This leads to a unique set of or- 
bitals which minimizes the energy.   Aside from the 
advantage of a slightly shorter representation, this 
uniqueness is also important, for both the physical 
interpretability of the orbitals and for the conver- 
gence of the MCSCF procedure.   Namely, if such 
uniqueness were not guaranteed, the iterative pro- 
cedure could go from one set of equivalent orbitals 
to rjiy ot'i r, and thus apparently fail to converge 

TABLE DC.   Configuration-mbtlngcoefficients for the 26 
CSF representation of the 2s2/)2, 2I> state. 

TABLE VII.   Configuration- _.. AAArrjni»n»n r„..   ilw,   ir? Configuration Coefficient Configuration Coefficient 

CSF representation of the 2s2ö2, 2P state. 1 2s2/)2 0.943 89 14 (2s2p, *P)3p 0.166 GO 

2 
3 
4 
5 

2s3/)2 

2s3d2 

3s2p2 

3s3p2 

-0.073 05 
0.045 90 

-0.00295 
-0.00203 

lb 
16 
17 
18 

(3s2/>, iP)3p 
{3s2p, 3P)3p 
{2p3p, 3S)3d 
{2p3p,  lP)3d 

0.007 34 

Configuration Coefficient Configuration Coefficient 
-0.06015 

0.008 64 

1   2S2/.2 0.895 97 10 (2p3p, iP)3d 0.025 52 -0.007 41 

2   (2/P2, 3P)3d 0.10965 11 {2p3p, tpm -0.01601 6 3s3d2 -0.00184 19 {2p3p, :>P)3d -0.007 77 

3   (2/)2, xD)3d 0.16714 12 (2p3p, iD)3d 0.01328 7 (2/)2. ,S)3d 0.04203 20 (2p3p, 1D)3d -0.00122 

4    2s3/.2 -0.074 20 13 3s3pi -0.000 47 8 (2/)2. 1P)3d 0.139 71 21 (2p3p, *D)3d 0.01246 

5    2s3d2 0.03414 14 3s3d2 0.00073 9 (2y»2. iD)3d -0.010 04 22 (3d3, \D) -0.007 56 

6    (2s2/>, iP)3p 0.026 98 15 (3/.2, lD)3d -0.017 24 10 (3/)2. ,S)3d 0.00266 23 (3d3. JO -0.007 70 

7    (2.s-2/), %P)3p 0.377 32 16 {3p2, 1P)3d -0.002 54 11 (3/.2. 3P)3d - 0.007 03 24 (2s3s. JS)3d 0.00219 

8    (3s2/),  iP)3p -0.039 28 17 3d' 0.01299 12 (3/>2
l 

lD)3d 0.002 26 25 2s23d 0.219 44 

9    (3s 2ft. '«3* -0.06644 13 (2s2p, iP)3p -0.006 61 26 3s23d -0.008 96 

Total energy 
K - - 24.250 99 hartrees 

Total energy 
£ = - 24.368 81 hartrees 

; 
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TABLE X.   Basis-function parameters and orbital 
expansion coefficients from the 12 CSF i epresentation of 
the 2s2^2, IP state. 

TABLE XII.   Basis-function parameters and orbital ex- 
pansion coefficients from the 24 CSF representation of 
the 2s23s, 2S state. 

s symmetry 
s symmetry 

 ^  = === —— 

n           t Is 2s 3s at            is 2s 3s 4s 

1     7.2841 0.173 652 -0.007574 0.072 826 1    7.3516       0.160329 -0.008 100 0 002 939 0 040 332 
1      3.9166 0.904 061 -0.200 056 0.270 875 1    3.9890       0.911963 -0.259 809 0 067 708 -0 j-11 836 
2      1.7366 0.000 029 0.235152 -0.100 672 2    1.7422    -0.005854 0.490 139 -0 106108 4 737 585 

2 1.2299 

3 4.7836 

3      2.4354 

-0.001016 

-0.084 853 

-0.000 208 

1.024672 

-0.042 569 

-0.210658 

2.065 985 

-0.208130 

-2.178 339 

2 1.3486    -0.009731 

3 4.7799    -0.074183 
3   0.5430       0.000 145 

0.599 086 
-0.045 791 

0.008 827 

-0 

0 

1 

225 069 
018406 
047700 

- 1 

-U 

0 

596 339 

076 095 
.-139 067 

> symmetry 

n         t 2p 3^ 

/> symmetry 

«         t                 2p Sp 

2   5.3000    -0.052709 
2   2.0672       0.892 418 

- 0.008 223 

-0.031608 2      5.2000 0.004438 0.076 258 

2      2.0694 0.335 447 -1.648 509 2    1.2200    -0.401842 -1.903 876 

2      1.2285 

2      0.8815 

0.539474 

0.216 220 

-0.197028 

1.425 210 

2 0.7381       0.980 819 
3 3.5293    -0.348 264 

1.823 751 

0.044 579 

3      3.5294 -0.045 283 0.434101 d symmetry 

d symmetry 

3d 

N          f                 3d 

n           t 
3    1.7000        1.142786 

3    2.8000    -0.184 575 

3       1.5154 0.988 588 = === 
3      2.8000 0.015709 

under the test used." 
In order to test the effect of the correlation con- 

figurations on the HF orbitals, a variant of the full 
MCSCF method was employed.   In this procedure 
the HF orbitals were taken over from a HF calcula- 
tion and "frozen," i. e., not allowed to readjust, 
while the correlation orbitals were determined by 
the MCSCF method. 

A detailed discussioij will now be presented for 
the ground-state calculation only. 

The Slater-type basis-function set consists of 6 

TABLE XI.   Configuratlon-mixlngcoefflclents for the 12 
CSF representation of the 2s2/)2, 'P state. 

Configuration Coefficient 

1 2s2/>2 
0.974 88 

2 3s2p2 
-0.132 25 

3 (2/.2, 3P)3d 0.064 44 
4 2s3pi 

-0.043 89 
6 {3p2, 3P)3d -0.003 21 
6 2s3d2 

0.054 97 
7 3s3rf2 

-0.007 71 
8 {2s2p, 3P)3p 0.136 82 
9 {3s2p, 3P)3p -0.063 46 

10 {2p3p, 3P)3d 0.00173 
11 {2p3p, 3D)3d 0.013 50 
12 3d3 

-0.002 87 

Total energy 

£ = -24.467 14 hartrees 

s-type, 5 p-type, and 2 rf-type functions.   This set 
is based on the Bagus-Gilbert 5-s, 4-/J set, " and 
augmented through the procedure already described. 
Table I contains the basis-set parameters and the 
expansion coelficients for all the ground-state or- 
bitals for both the full MCSCF and the frozen HF 
orbitals calculations. 

The MCSCF wave function consists of 28 CSF's 
(equivalent to 30 without constraints; see above) 
arising from 16 configurations.   Table O shows the 
CSF's the configuration-mixing coefficients, and 
the total energy obtained for the full MCSCF and 
for the frozen HF orbitals wave functions.   As can 
be seen from the size of the configuration-mixing 
coefficients, the most important correlation con- 

TABLE XIII. Configuration-mixing coefficients for the 24 
CSF representation of the 2s23s, 2S state. 

Conflpi ration Coefflclenl Configuration Coefficient 

1 2s!3s 0.95149 13 3s3d;! 
-0.01717 

2 2s2p, 0.043 85 14 2/>23</ -0.006 8« 
3 2'i3s! 

0.003 32 15 3/>23rf 0.005 90 
l ls2/)2 0.203 88 16 4.s2/)! 

-0.002 67 
5 Js3/>J 

0.03138 17 4 s 3/)' -0.00213 
8 2s3d: 0.00776 18 bHt -0.005 34 
7 (2s2/), 'P)3p 0.10930 19 3.,-24-; -0.009 11 
B (2s2p, 3P\3p -0.035 80 20 2s4s2 

-0.00754 
9 (3s2/i, 'P)3p 0.085 79 21 3s4s! -0.02207 

10 (3s2/., 3P)3p -0.14882 22 (4.S-2/), lP)3p -0.000 76 
11 (2/>3/), 1D)3d -0.01843 23 (4.S-2/., 'P)3p -0.000 36 
12 3s3/>2 

0.076 23 24 (2S3.S-. '0)4.1 0.013 26 

Total energy 
£ = -24.41923 hartree« 

. 
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filiuration is, of course, the hydrogenically de- 
generate configuration 2ps.   The next configuration 
in order of importance is the 2sZp3d 18 configura- 
tion, containing the GST's *[(2s2/), 1P)3d,8P| and 
'\>[{2s2p, 'i^Srf, iP].   A calculation using these con- 
figurations (2ps, 2s2p3ds and the dominant configura- 
tion yields 78% of the correlation energy from all 
28 CSFs.   Table HI shows the valence-electron 
correlation energy calculated by various authors 
and compared with the present work.   Weiss,15 in 
his calculation using 35 CJFS, used s, p, d, and 
/ symmetry orbitals, Schaefer and Harris19 used 
only s, p, end d symmetry orbitals but had 18^ con- 
figi' rations (tor both core and valence correlation), 
and Nesbet's4 result is obtained by adding the cor- 
relation energy of different electron pairs.   The 
present work, as was said earlier, used s, p, and 
d symmetry orbitals and 16 configurations.   In in- 
terpreting these results, one must keep in mind 
that the correlation energy of different electron 
pairs is not strictly additive.5 

Weiss's calculation using only configurations 
with «S3 (second entry in Table HI) is analogous 
to the present calculation, and a comparison of 
the respective results should be of particular interest. 
In Weiss' s pseudonatural orbital SOC method only 
17 CSFs contribute to the lowering of the energy 
(his orbitals are determined so that other configura- 
tions with H « 3 contribute negligibly, and hence are 
omitted).   In this particular case the MCSCF cal- 
culation gave 3.1% more of the correlation energy. 

As con be seen from Table n, the difference be- 

TABLE XIV.   Basts-function parameters and orbital 
expansion coefficients from the 6 CSF representation of 
the 2p3, lS state. 

a symmetry 

R t Is 

1                7.5061 0.101843 
1                 4.38S3 0.905 392 
2                 2.1010 0.006 260 
2                 1.3873 -0.000 511 
3                 4.8390 -0.000 800 

t> symmetry 

n                     t 2p 3p 

2                 5.3214 0.008 644 0.101737 
2                 2.0795 0.241521 -1.940 579 
2                 1.1307 0.582 400 0.269 296 
2                 0.7913 0.246 040 0.984 896 
3                 3,5000 -0.014112 0.595 383 

(1 symmetry 

3d 

TABLE XV.   Configuration-mixing coefficients for the 6 
CSF representation of the 2p3, 4S state. 

Configuration Coefficient 

1 2/>3 0.990 76 
2 2/)3rf!! 0.090 29 
3 2p3/,2 -0.09471 
4 3p3 -0.00117 
5 3/.3d2 -0.00035 
6 zpHp 0.01227 

Total energy 
£ = - 24.153 54 hartrees 

1.5000 
2.8000 

0.986 369 
0.018 941 

tween the energy obtained in the full MCSCF cal- 
culation and the frozen HF orbitals calculation is 
extremely small (0. 00024//).   This, along with the 
fact that the overlap integrals between the HF and 
the corresponding MCSCF orbitals are at least 
0. 999, suggests that in many MCSCF calculations 
one can take over the HF orbitals unchanged, and 
determine the correlation orbitals only. 

Figure 2 shows the dominant orbitals 2s and 2p 
and the correlation orbitals 3s, 2p, and 3d.   As 
expected, the correlation orbitals are roughly in 
the same region of space as the dominant orbitals, 
and do not resemble the hydrogenic orbitals, or 
even the so-caUed virtual SCF orbitals.20 

Table IV shows the HF, MCSCF and observed 
term energies for boron. 

Table V shows the computed/values and the 
comparison with HF, Weiss's, and experimental 
values, where available.   As can be seen, the 
greatest discrepancy occurs in the/value for the 
transition 2s2pi, iD~ 2sz2p, iP.   Here, there is also 
the largest departure from the HF value.   Since the 
configurations involving d-symmetry correlation 
orbitals, mixed into the wave function of the 2s2pi, 
ZD state, serve to lower the oscillator strength value 
for the above transition,13 and since the present 
work has only one correlation orbital of d sym- 
metry, the oscillator strength computed here is 
therefore too high. 

All other/values agree closely with those com- 
puted by Weiss. 

Tables VI-XV show the energies, basis sets, and 
CSF's for all other states calculated. 
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The Pauli approximation for many-electron atoms Is derived.   This yields an unambiguous 
expression for the fine-structure splitting and other first-order relatlvistic corrections to the 
energy, using nonrelativistic wave functions.   A fotmalism is developed for atoms, based on 
those results, which is suitable for the evaluation of the fine strvture using multiconflguration 
wave functions.   Fine-structure splittings calculated from Hartree ZocV wiva functions are 
presented for the ground states from He through Ar; the remaining energy corrections are 
also presented.   Multlconfiguratlon results are presented for the lowest iD and 2P states of N, 
accounting for about 80% of the discrepancy between Hartree-Fock values and experimental 
values. 

I. INTRODUCTION 

The Pauli approximation is the basis for most 
attempts to deal with relatlvistic effects in many- 
electron systems.   In this approach, expressions 
are dtrived, with respect to the appropriate non- 
relativistic wave function, which give the first- 
order corrections to the energy.   Such expressions 
were found by Breit1 for a two-electron system and 
appear, with a few modifications,2"4 in their most 
familiar form as the terms //, through //5 given by 
Delhe and Slapeter.5  These terras give the fine 
structure and include, among others, spin-orbit, 
spin-spin, and spin-other-orbit couplings.   They 
do not account for hyperfine structure or the effects 
uf nuclear motion,   ""ho primary reason for the 
popularity of the Pauh approximation lies in its 
ease of application in comparison to more fully 
relatlvistic treatments:   Only the nonrelativistic 
wave function need be dealt with, rather than the 
more complicated relatlvistic wave function. 

In this paper we apply the Pauli approximation 
to the case of atoms.   The formalism we develop 
here is of sufficient generality to apply to wave 
functions which are mixtures of configurations. 
We present expressions for all of the terms which 
contribute to the first-order relatlvistic correction 
to the energy. 

We begin with a derivation of the Pauli approxi- 
mation in Sec. II.   The relatlvistic formalism from 
which we start is not entirely satisfactory:   The 
terms for the electron-electron interactions are 
not Lorentz invariant, and higher-order quantum 
electrodynamical effects, such as those giving 
rise to the Lamb shift, are not included.  It does, 
however, contain all the first-order relatlvistic 
effects, and therefore, suffices for a derivation of 
the Pauli approximation.   Since our relatlvistic 
formalism treats an arbitrary mmber of electrons 

A', we obtain the Pauli approximation explicitly 
generalized to an /V-electron system. 

Along with such generality, our goal Is derivation 
of the Pauli approximation characterized by suf- 
ficient rigor and attention to detail.   In contrast to 
previous treatments,1'6"10 we do not attempt to 
present the first-order relatlvistic correction to 
the energy In terms of an "equivalent Hamlltonian. " 
Consequently, we obtain an expression which Is 
entirely unambiguous and simple to evaluate. 

In Sec. Ill the orbital Integrals arising from the 
first-order relatlvistic energy corrections In atoms 
are presented.   We outline the construction of 
multlconfiguratlon wave functions In Sec. IV and 
reduce the single-configuration matrix elements to 
simpler forms on the basis of their assumed sym- 
metry properties.   With these results In hand, we 
give expressions In terms of orbital radial integrals 
in Sec. V. 

Numerical results, obtained by application of our 
formalism, are given In Sec. VI.   These include 
results from Hartree-n-ck wave functions for the 
ground states of He through Ar.   We also give 
multlconfiguratlon calculations for the lowest ni- 
trogen ZD and iP states.   These calculations yield 
substantial improvement In the computed fine- 
structure splittings In comparison to the Hartree- 
Fock results. 

H. DERIVATION OF THE PAULI APPROXIMATION 

The many-electron Dirac Hamiltonian D for an 
Af-electron syste.n Is, In atomic units, 

p p <l*p 

(1) 

where the summations are from 1 to N, rM Is the 
distance between the/)th and <7th electrons, and /;„ 
Is the Dlrac Hamlltonian of the /)th electron: 

h^^ßp+ €(*„■$!,+ ¥„ 12) 
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In Eq. (2) p is the momentum operator, V is the 
potential due to the nuclear and external fields, r 
is the speed of light, and a and ß are the Dirac 
matrices in conventional representation, namely 

HID' ^o'-0,). (3) 

where a has as its components the 2x2 Pauli ma- 
trices and / is the 2x2 unit matrix. 

The Breit operator (B for an iV-electron system 
is 

where 

p I*P 

bH'-i[a, ■ at/rH + (a, ■ rM)(5f-r^/rj, ] 

(4) 

(5) 

and the summations are again from 1 to N; we use 
rPQ for the quantity (?,-?,).   Roughly speaking, 
bpt is the correction to the interaction term l/rH 

due to first-order magnetic and retardation ef- 
fects.1'" 

The relativistic one-electron orbitals 6, are 
four-component Dirac spinors which we take to 
form an orthonormal set: 

(fl(|fly>=ö(/ (6) 

Note that the left-hand side of Eq. (6) involves a 
summation over four terms us well as integration 
over the space coordinates.   It is also useful to 
write 

ft 
=(::) • 

(7) 

where (p, and Xi are two-component Pauli spinors: 
<p, is the large component of 6,, and X( is the 
small component. 

From the set of orbital« 6, we construct Slater 
determinants 0,: 

ö/^VV^HAT1'2 

e(I(i) 9ltm...etlfii) 
»«,(2) eh(2)...etii{2) 

(8) 
The index / indicates an ordered set of indices 

«i. h> • • • i '»! 

/={«lIt2,. .. ,{„) ,      «1<tj< ...<j 'AT (9) 

iN   avoids The ordering of the indices iu »j, . 
redundancies in the set of Slater determinants 0/. 
It follows that 

<®/l®/>»«// (10) 

In general, we adopt a multiconfiguration wave 
function ® of the form 

0=2 C/ö, (11) 

we assume that ö is normalized to unity, namely 

(©|0M   . (12) 

The many-electron generalization of the Breit 
equation is 

(D + (B)f-) = £0 (13) 

where E is the total energy of the N-electron sys- 
tem.   In view of Eq. (12), we have 

£ = (0|D + (B|0> (14) 

The Breit equation yields unsatisfactory results,2 

a difficulty often circumvented by determining 0 
from the equation 

DÖ=£:0{-; (15) 

instead of from the generalized Breit equation. 
Other modifications to the Breit equation have been 
proposed by Brown andRavenhall12andby Salpeter.13 

Here we shall proceed from the generalized Breil 
equation, pointing out the objectionable terms when 
we encounter them.   Then the motivation for the 
proposal that Eq. (15) be used to determine 0, 
instead of the generalized Breit equation, will be 
clear. 

It is convenient to decompose the Dirac Hamil- 
tonian in terms of powers of c, namely 

D = c23n + c(P + 1)   , (iß) 

where [see Eqs. (1), (2)J 

dn=E 0,   ,   <P=E appp   , 
(17) 

v-Z Vi2 £ l/rpt. 
p p  ftp 

We introduce orbitals w, which satisfy the equation 

0a>, =»M(U), ,   »w, = ±1   . (18) 

In case /«, = 1, w, contains only a large component 
(the small component is zero), and in case m, = - 1, 
u)( contains only a small component.   Correspond- 
ingly, we Introduce the Slater determinant Ji, v/here 

O-Kw,...«,}    . (19) 

Then we have 

3nn = A^n 

where 

M ■H m, 
i 

2k-N,   0<k<N . 

(20) 

(21) 

In Eq. (21), k is the number of orbitals with positive 
m(, i.e., with large components only.   We shall 
call M the rest mass of Ü.   There are an infinite 
number of ü's with the same rest mass, since Eq. 
(20) determines nothing of the space and spin be- 
havior of n.   In general, a wave function with rest 
mass M is a linear combination of Ws with rest 
mass M. 
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We note that 

(22) 

where the brackets Indicate a commutator.   Hence 
if n has rest mass M, so does 1)0.   To deal with 
<f and m, we introduce the matrices a* and a", 
where 

*♦   /O  a\        -.   (0 0\ a Ho o) '   a '\S oj • (23) 

We have the relations 

a = a* + a"    , (24) 

[3,a*] = x2a1    . (25) 

In view of Eq. (24), we may write 

(j>=(i>* + ,r , (26) 

(Bi(B< + (B0
+(B"    , (27) 

where 

p 
(28) 

(29) 

(Bo=i2: Eft?, , 
p dtp 

(30) 

with 

frj," - iI «J• o,*/yM + (a*, • r,<1)(3,4 ■ rN)/V^] , 

(31) 
6j.=-*{(«;. a;+S;-a:)/fv, 

+ l(a; • r„ )(a; • rN) + (a; • fp,)(a; • r„,)l/rj,} . 

(32) 
From Eq.  (25) these relations follow: 

law,a»*]=*20"  , (33) 

ttm,(B*]»44ffl*   , (34) 

13II)(B(>] = 0   . (35) 

Hence, if ß i as rest mass M, so does ®0Sl, while 
(P*n has rest mass A/±2, andflä'n has rest mass 
A/±4. 

These relations suggests a partition of 0 into 
N + l component eigenfunctions of 31!, each with a 
different rest mass, while the decomposition of 
D, as given by Eq. (16), suggests a perturbation 
expansion in c'1 for these components.   We expect 
the part of Q of order c0 to be an eigenfunction of 
arc with rest mass M,   We anticipate that the parts 
of © of order c"1 will have rest masses M±2, since 
(P* and (f occur in ID multiplied by one power of 
c less than that multiplying all.   Similarly, the 
parts of & of order c"2 will have rest masses M and 
A/±4, etc.   Accordingly, we write 

is-ii)/i      » 
&-      E        L c-M-*n&mn   , (36) 

m.-(JV»i/)/E HMO 

where 

W®mn=(M+2n,)Bmn   . 

We also expand E in powers of c*: 

(37) 

(38) 

We substitute Eqs. (36) and (38) for © and £, 
respectively, in the generalized Breit equation, 
Eq. (13), and apply Eq. (37).   A'+l equations re- 
sult; one for each eigenvalue of an, each equation 
containing only functions of one particular rest 
mass.   We equate powers of c*1 In these results. 
From the equation of order ci, we find 

(39) 

(40) 

(41) 

while the equations of order r give 

(Jl#-«o*2)agl,o+(«,*9oo-0  . 
and the equations of order unity yield 

(A/-£o±4)0l2,o + (5'\-).1>o + (p*0oo = O , 

(M-£o)0ol + (J',®.liO + (J'-0lo + (D + mo-£1)öoo = O. 

(42) 
From these equations follow 

0rf.o = i«I>4)29oo'i(B*®oo   , 

(r+V+ffi^oo^.öoo   , 

where 

r-Hv.vhiEßpPp* . 

(43) 

(44) 

(45) 

(46) 

(47) 

It is convenient to In roduce «d,, defined In terms 
of fc)00 and (-)„, by the eiiuatlon 

öo1 = -i(ö
,*a,'.'»,"«,»oo^-)o)   ■ (48) 

We substitute Eq. (36) for 0 In the normalization 
condition, Eq. (12), ana equate powers of c*1.   The 
equation of order c0 Is 

<0ooKo> = l   , (49) 

while the equation of order c'2 becomes, after the 
substitution of Eqs. (44) and (48) for C-),,^ and 0Oj, 

<Kil(=)oo)+<üoo|0öi>=O   . (50) 

The substitution of Eqs. (44), (45), and (48) for 
®»i,0i ö*2,o. and 0OI In Eq. (36) yields a compact 
approximate expression fore, namely 

© = [1 + c-'x + Ic-V + i c-2((B-- anjw,,,, 

+ c-20d1 + O(c-3)   ,     (51) 

where 

Kai((J»"-(P*MZ;, ap-p^jS,   . (52) 
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We may evaluate E to order c*2 by simply using 
Eq.  (51) to substitute for 0 in Eq. (14) and enforc- 
ing the normalization condition given by Eq. (12). 
We compare the resulting expression for E with 
that given by Eq. (38) to find 

Fi=<0oolr+V + «o|0()o> (53) 

which is consistent with Eqs. (46) and (49).   Pro- 
ceeding with the evaluation of the second-order 
energy, we find, after dropping the objectionable 
term i(ÖQOI[«*,«-] |fc)00>, " 

-<|3C20oo|im-£o||X2Koo)+(0oo|lJ+(B|ix20oo> 

+ <X0OO| V +ffl|x©00> +(5X20OOI -u + <B| QJO).    (54) 

The objectionable term does not arise in the 
evaluation of Eg if Eq. (45) is replaced by the equa- 
tion 

W^.o-ste^Woo   , (55) 

omitting the term T J a\)00 occurring in Eq. (45). 
Clearly, Eq.  (55) results instead of Eq. (45) if we 
start from Eq. (15) instead of the generalized Dreit 
equation:   This is the motivation for the proposal 
that Eq.  (15) be used to determine 0, instead of the 
generalized Breit equation.   We conclude that Eq. 
(55) is correct and abandon Eq. (45). 

Now Eq. (51) is replaced by the equation 

© = ll+cM3C+ic^K,]0(lo+c',Qi,+O(c-»)  .   (56) 
This equation gives the wave function to order c"2 

in terms of W^, and (-),)',; it is one of the central re- 
sults of our treatment.   Even without an evaluation 
of (-)„',, it has application apart from the evaluation 
of the energy to order c■2.   For Instance, if one 
supposes the large component of a relativlstlc or- 
bital is given by <pt, it follows from Eq. (56) t..at 
the small component is given, to order r"2, by 
i c*1? • p(/7( . 

Since our treatment assumes relativlstlc effects 
are small, we may Identify c2£0 as the rest-mass 
energy.   Observable electrons always have positive 
rest mass, hence, the rest mass of an Af-electron 
system should be N, i. e., 

£o = ^   . (57) 

Combining this with Eq. (38), we give for the en- 
ergy to order c"8 

E^ciN + El + cmiEz + ---   , (58) 

with El given by Eq. (53) and E,, given by Eq.  (54). 
(-J00 and ÖQi consist only of Slater determinants 

which contain orbltals w, satisfying Eq. (18) and. 
In consequence of Eq. (57), only the possibility 
w. = 1 may occur for these orbltals.   Note that each 
term in (B0 contains an operator 3, which gives zero 
when operating on an orbital w, with m, =1.   Hence 

(BO0OO Is zero, and the Brelt operator does not con- 
tribute to the energy E,.   Since each orbital w, has 
positive m(, only the large components are different 
from zero.   A wave function * can be derived from 
^oo by replacing each four-component w, In i-»00 by 
the corresponding large component 0,, a two-com- 
ponent Pauli splnor.   Then Eqs.  (49). (46), and 
(53) go over Into the equations 

<*|*>=1   . (59) 

(60) 

(61) 

(62) 

XV^Ei*   , 

respectively, where 

K-ZUP,
2
+V,J + |E£ i/rt, , 

f p itp 

with the summations running from 1 to N. K Is 
plainly the nonrelatlvlstlc Hamlltonlan. hence «k 
and £, must be the nonrelatlvlstlc wave function 
and nonrelatlvl£tlc energy, respectively. 

Our expression for E2 In terms of v-)00 likewise 
goes over Into an expression In terms of *. We 
find 

£2 = -ä I»<p/*|pf
2*Müi*l*M*!/>,*) 

+<Z)l*|*>+<*|^*>+<*|F + Co + C, + Gj|*). 

(63) 
where 

p 

i>2 = iZ SfVp, 
p dtp 

F=D.fp , 
p 

"0=2 2- 2_ Ko.pt   i 
p «** 

G,= ^E Lgt.H   , 
p <I*P 

fZ L 
with 

Gj, = j Z.   L, gz,p 
p   dtp 

5,, = iPol/V,,   , 

So.p, =- Hr;ip^p,+r;JrN- (Tp, -p^p,] , 

gi.tt = i(<Sp,xpp) -Sp+i(lwxp,) • s, 

+ (©wxp»),s, + (Swxp,).|<l   , 

ft.».=^ -s,/^ -3(8^ •rp,)(sa ■ rpj/yj,   . 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

Here we have used 3,= ^; notice that Sp and Spa 

are the electric fields acting on the /)th electron due 
to the nuclear charge and the 7th electron, respec- 
tively. 
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Although we have integrated by parts to express 
£2 in terms of the Hermitian operators/,, g0tP,, 
#,,„, and g2,p,, we have not done so in the case of 
the integrals 

(pp
2*lp/*>    .    </)i« !♦)+<♦ | ZV»)   , 

<ß2*|*>+<*|ZJs*>    . 

The attempt to find a general expression for the In- 
tegral (p/^lp/*) in terms of the expectation value 
of an operator is unprofitable.4 This rules out the 
possibility of expressing Ez as the expectation value 
of some operator.   The integrals given in Eq. (63), 
however, are unambiguous and can be evaluated in 
a straightforward manner. 

Integrals involving - (fTrls,-s,6(3,(rN), which 
occur in other treatments, have here been elim- 
inated in favor of simpler terms.   As pointed out 
by de-Shalit and Talmi,15 the integral involving 
- (f-^s, •s.a'3'^) is equal to the integral involv- 
ing 2)r6<3,(rw) whenever the wave function is anti- 
symmetric with respect to the exchange of the /)th 
and r/th electrons.   Accordingly we have the result 

-JE Cl((i5„-P,*)|Vs,l*) 
P     Q*P 

+ <*|s,-sj (»■£„•?,*)] 

= 2[(ß2*|*)+(*|ß2*)]   .   (76) 

This relation was used in deriving Eq. (63). 
Classically, the quantity - g(p/<Hp/*) gives 

the relativistic shift in mass of the pih electron due 
to its speed,   f is the well-known spin-orbit cou- 
pling term due to the nuclear charge, coupling the 
electron with its own orbital moment with respect 
to the nucleus.   The first two terms in/f, are 
similar terms, with the nuclear charge replaced 
by that of another electron.   The last two terms in 
A't couple the spin of one electron with the orbit of 
another electron.   ^2 gives the spin-spin coupling. 
The quantities (-D,*!*)+<*|£)1*> and<02*|*) 
H (*|fl2*)  have no obvious classical interpretation. 

It is worth pointing out that although we have 
derived * starting from the relativistic Q, the 
starting point of calculations using the Pauli ap- 
proximation will be *.   From this point of view, 
K rather than m is the zeroth-order Hamiltonian, 
since the rest-mass energy is simply a constant. 
Then the relativistic effects constitute a simple 
perturbation on 3C (although this perturbation is not 
given by a Hamiltonian operator), yielding c"2£2 

for the first-order perturbation correction to the 
energy. 

III. ORBITAL INTEGRALS IN TERMS OF RADIAL 
INTEGRALS FOR ATOMS 

We shall henceforth assume that the nonrelativ- 
istic wave function * is constructed from two- 

component orbitals y, which are symmetry or- 
bitals.   In lieu of <?, we introduce the notation 
^uo»; the orbitals are defined by 

V(x.a(»-,e,0) = »-,Pxl(r)I'ia(0,«)Tja  . (77) 

Here YXa{0,(t>) is the conventional normalized 
spherical harmonic, and IJ,, is the two-component 
spin function with mt-a.   The index i now labels 
orbitals not distinguishable by symmetry.   We also 
assume that the orbitals form an orthonormal set; 
hence we may write 

fc drPxi(r)Pkl(r)=t>l,   . (78) 

Equation (77) allows us to integrate out the spin 
and angular dependence in the orbital integrals 
which arise in the evaluation of £2, leaving inte- 
grals only over radial functions.   The orbital in- 
tegrals which arise in the evaluation of the non- 
relativistic energy £, will not be treated here. 

The radial integrals which emerge from the one- 
electron integrals are 

"»i/ »H- /0* ** \.K<T) - MX + 1 )r-zPM(r)] 

y\P'x;(r)-\(\+\)r-zPxl(r)\ 

fZlr-'PM^WVr)]^)   .   (79) 

^i^kzS^drr^P^P^r)  . (80) 

The prime indicates differentiation with respect 
to r- £*i/ is similar to the usual notation for the 
single-electron spin-orbit coupling coefficient,18 

but it should be noted that the factor c"2 is not in- 
cluded. All of uur expressions will be presented 
without this factor. We express the two-electron 
integrals in terms of the radial integrals given by 

AM.»/(,*,,„(„ « /0" dr JJ ds{rsylUjr,s) 

x.P«(r)P(li(r)Pp»(s)P0,(s)   , 

P»,int*,ti,i>* J^ dr J9
m d8Üy{r,s) 

xÄM,w,M(r)P-k(s)Plrt(s)  , 

Qxt.uitfk.oit" ■ 1 /0" dr fo' ds W„{r, s) 

xKx..^»*,,»,,,,.,,^)   , 

(81) 

(82) 

(83) 

where 

üv{r,s)* 
so 
s > r 

(84) 

(85) 

H'l,(r,s) = rsll/„1(r,s)/(2i/+3) 

-Uv.l{r,s)/(2u-l)]   ,     (86) 
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KM,viM*K*n>Pu<r) T- [r-lPui(r)] 3r 

ku.^Puj(r) —[r-'P^r)] ,    (87) ar 
with 

x[u(v+l)]mlft',     (88) 

it should be notel that kXlXi0 = 0.   Under interchange 
of shell indices,   ve have the following relations 
for these integrals: 

^="»71    • (89) 

txil = tx)i    , (90) 

"X(,u/;p»,ol;u = fiuy,»iji)»1<j|ju = fi»(,<i/i<,l,p»;u)   .   (91) 

'»•>»/l««Ml|i'm_'i»i.M|»,»l|»"''M,iyirt«H) . ^^ 

H'il.u/jpt.oi JK = - Qui,U;pk,iil;v ■ - QKi,ultal,0li;u   . 

(93) 

^M,i.y,p»,<ii -^U/,»(,P»WI 

^p»,n/,A(,ol   -^ol.u/.P»,)!! (95) 

Note, however, that there is in general no relation 
between Ru.uim.tliu a™1 ÄP»,oiiM.«/iU. 

nor between 
"MtUJIPk.clty and Pmt9llU,lttf» ■ 

A. One-Eleclron Integrals 

For atoms, we have 

V,'-Z/r,   , 

hence, recalling Eq. (70), 

5, • p, = - iZr; 
3 

2019 

(96) 

(97) 

Then we easily find 

-(V|XaJ(«<S,-p^^flj))] 

JxußoflÖai^U (98) 

For the integral over /, we find 

(Viuu\f\ipi»$t)*Oiu{*a\lt,*\W)(b\sa.t\a)tk{)   , 
(99) 

where the only nonvanishlng components of / r and 
Sy are given by 

/„ = *,.   K^fWHliHt,) , 
s0 = s,,   sti = ^{2)-Uz(sI±isy) . 

(100) 

Hence the angular part of Eq. (99) is just the ex- 
pectation value of 1  s. 

B. Two-Electron Integrals 

For #a we have, from the results of Innes17 (or 
the equivalent results of Horie18), 

<V(*«.(1KP,C(2)U'2.12|^U8»(1)«'I,M(2)) «0(1, 1, 2ib-a,d-c){b\8t*\a)(d\st*\c) 

*EU (- 1 )u[i w(w+ 1 )(2CD - l)(2ai +1 )(2u) 4 3)]in (c(w + \,u-\,2;a - ß,ß + b+d - a-a- c)(Xa | Cu.Ua.e \ ßß) 

><<P>'|Cu.1,«,MH),^^|a6)ÄxliW.(Vli<,/.u  +C{w-l,w + 2,2;a-ß,ß + b+d-a-a-c){*a\Cu.Ua.ii\ixß) 

xiPy\Cu.Uii.M«,^\a6)RMtal.HtUJ.J ,     (101) 

where C(A/if;a,i3) is the Clebsch-Gordan coef- 
ficient in Rose's notation,19 and CXa is the unnor- 
malized spherical harmonic: 

Cka(e,<t>)=[Air/{2X + l)]
inY,a(e,ct>)   . (102) 

The summation over w in Eq. (101) may be taken 
to run over all positive integers, but only terms 
in which the angular integrals do not vanish are 
different from zero.   Hence, only values of w for 
which both of the quantities A + |i + w and p + ff + w 
are otltl integers contribute to the sum.   It follows 
that the entire integral in Eq. (101) vanishes unless 
A + ji+p-t ais an even integer; in other words, the 
matrix elements of g2 are diagonal with respect 
to parity.   The values of w for which Äx<,»yj««,ji|« 
0CCUP6 in Eq. (101) are further restricted by the 
conditions 

A+M> u)+l> |x-fi| 

p+a>u)- I Jtlp-aj 
(103) 

The values of u for which /?,»,„, .»(.„y;^ occurs are 
restricted by conditions similar to those given in 
Eq. (103), with A and p interchanged and M and a 
interchanged. Note that the range of u for which 
•Rpit.ciixi.u^u, may occur can differ from the range 
of w for which Äxj.Biion.ou« nlay occur. 

We write 

tfi.ia^U+A'i'.ai     . (104) 

where 

^I,i2 = -2r[i(r12xp1)-(s1 + 2s2)  . (105) 

Then the results of Blume and Watson20 yield 
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(^xao(n^,c(2)k[.,2l^«.»(l)«',a.i(2)> = 5(3)-1/8(8cd<ft|sa,r.s.,|fl>+2öa6(rf|Sa.r.8.6|r>) 

xU{-mpy\Cv,r.i\a6){{2u + \)l'iC{uul;y-5,a-ß){Xa\Cll,a.s\iiß)PkltUl.eki0l.v 

- L  (2u + l){2u+l)i'iC^\;r-6,a-ß)(\a\Tv
Uia^ltJ.ß) 

xl6«ri'.iÄM,B>|(1»,oijü.-5Ul„.lÄrtil„|X(>By.u]}   .      (106) 

Here we have introduced the operator FW, which 
operates on the angular coordinates 6 and 0; it is 
given by the equation 

Kl,*i:,C(vltaia-ß,ß)Cr,u.tlt   , (101) 

hence20 

(XalT^luß) 

= 6a.«M-ir"(2M + l)[{2a> + lhi(u + l)/(2A + l)]
1/l 

integr; I for gu like the integral for gz, vanishes 
unlesr X + (i+p + ais an even Integer. The range 
of no'izero terms in the summation over v in Eq. 
(106y is further restricted by the conditions 

P+cr>t'>|p-a| (109) 

i^    1    U)) 
C(ßvX;0Q)C[ßw\;ß,a-ß)   ,    (108) 

where 

is the 6 -j symbol.81  Nonzero ternu in the sum- 
mation over iMn Eq. (106) occur only when both 
X * ß w and p + a +1/ are even integers, hence the 

Note that the nonvanishing terms in Ä»)lUyjp»,0/iu 

occur only for values of w satisfying Eq. (103) and 
that a similar situation holds for the terms in 

"MiallUiWitu1 

In place of our integral Pxi,uj;u,,ii;u, Blume and 
Watson20 use an expression which contains dive -gent 
integrals when u = X+n (unless A = (i).  The inte- 
grals diverge because PM(r) and Pul(r) are propor- 
tional to r**1 and r"*1, respectively, in the neigh- 
borhood of r = 0.   A similar situation arises in the 
expressions given by Beck.22 In the Integral 
PH.ujiM.aitv no divergences occur. 

The general expression for the Integral of #0 Is 

<^»a.(lKprc(2)ko,i2kju«(>Ü)<Pi.M(2)> = -6c»6rt21. [(*(*\Cr,l,.,\Hß)(a6\Cv,a.t\py)QUimMlta,l¥ 

+ (2i/ + l)(n2)-l(Aal n«1..»l»lÄ(fffllJ:«i..^lPy>(RM.Wirtl..i-+Ä«,.nM.iylJ]   i       (110) 

the summation over u proceeds as in Eq.  (106).   In case Xi= ixj = pk^al, Eq. (110) gives Yanagawa's result. a 

Beck's results22 imply Eq. (110) when the divergent integrals in his expressions are eliminated. 
An integration by parts yield 

H(U512-p1^Xoa(l)^prc(2)J|^uö>(l)^lo6l,(2)) +<<»iiu.,(l)«»»Wo(2)U*tt'P1?'i»«»(l)«»i,M(2)» 

Bö.»ö«*D«,Bi1/*,.lZi. (2i'+lXXa|Cl(,B.,lM/3><fffllC1(,«.«lpy>   .       (HI) 

where the summation over v proceeds as in Eq. 
(106). 

IV. REDUCED-MATRIX ELEMENTS 

Since the radial function Pu{r) introduced in Eq. 
(77) is the same for all values of a and a, there 
are 4X +2 orbitals (^(Xa(I characterized by the same 
radial function P^ir).   This set is an electron 
shell, labeled by the combination index X«. 

From the available orbitals, one can construct 
A'-electron Slater determinants (SD's); each SD 
is completely characterized by the particular or- 
bitals used for its construction, which are called 
the occupied orbitals in that SD.   The number of 

I ~—'  
occupied orbitals of a shell in a particular SD is 
called the occupation number of the shell in that 
SD.   Obviously, the occupation number of the shell 
Xt In any SD is< 4X + 2; when the equality applies, 
the shell H is called a closed shell of the SD, 
otherwise an open shell.   An electron configura- 
tion Is the collection of all SD's which have the 
same shell occupation numbers.   Hence, a set of 
occupation numbers defines a configuration com- 
pletely, although In general it only partially char- 
acterizes the SD's of a configuration. 

An electron configuration can be resolved into 
//-electron functions which belong to definite sym- 
metry species and subspecies.   These A'-electron 
functions are linear combinations of the SD's of a 
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configuration; we call them configuration state 
ftmctions (CSF's).24  We introduce for the CSF's 
the notation $ASLJUP-   Each CSF is an eigenfunc- 
tion of S2,L2,"3J, J,, and 9 (parity).   The operators 
T2, J,, and« commute with the relativistic Ham- 
iltonian D (and with the Breit operator ©), hence 
J, M, and P are "good" quantum numbers.   The 
operators?2 and L2 only commute with the non- 
relativist ic Hamiltonlan, hence S and L are, 
strictly speaking, not good quantum numbers.   The 
index A labels CSF's not distinguishable by their 
values of S, L, J, M, and P.   CSF's with the same 
values of S, L, J, M, and P, but from different 
configurations, have different values of A; so do 
different CSF's arising from the same configura- 
tion with the same values of S, L, J, M, and P, 
when this is possible. 

In many cases, a CSF arising from a particular 
configuration is uniquely specified by its values 
of S, L, J, and M (the value of P can always be 
deduced from the set of configuration occupation 
numbers).   Important examples i^re configurations 
which have at most one open s and/or one open 

p shell.   On the other hand, for multiple open /> 
shells and for open d or f shells this is no longer 
always the case,   A simple example Is the configu- 
ration 2/)Z3p.  All of the CSF's from this configuration 
have P=-l.   The CSF's arising from this configur- 
ation are uniquely determined by the specification 
of S, L, J, and M for the cases where S and L 
indicate 2S, *S, *P, iD, or 2F.   On the other hand, 
there are three Independent 2P CSF's, with the 2p 
orbltals coupled to form a 'S, '/?, or 3P function; 
similarly there are two Independent 2£) CSF's, 
with the 2/> orbltals coupled to form a 3P or {D func- 
tion.   In these cases the Index A for the CSF 
^ASL/itp not only Indicates the configuration 2/)

2
3/J, 

but also serves to distinguish between the three 
possible 2P CSF's, or between the two possible 
2i) CSF's. 

The use of CSF's that are elgenfunctions of L2 

andS2 allows an application of the Wigner-Eckart 
theorem:25   The dependence on J of the matrix 
elements with respect to the SCF's may be factored 
out In terms of a single 6 -j symbol,28 allowing 
us to write, for Instance, 

<ASLMPim'S'LVM'i>%fl„.öM4f.«„.(-1)**«'*'|j;   ^ ^{ASLPIFU'S'L'P)     . (112) 

The quantity {ASLPIF lA'S'L'P) Is the reduced-matrix element of F.   As our notation suggests, it is in- 
dependent of the values of J and M, although it still depends on other details of the constiuctlon of the two 
CSF's, Including the values of S and L and of S' and L'.   In similar fashion, we write 

- 8 Ep (pf^ASL/UP ^Pp^A'S'fJ'U'P') +(Oi*ASLjllp\*A'S'l,'j'lltP') + <*/lS t/JIP I ^1* A1 S'i'/'i*-^ 

= 6//.öJ/i#.6J,p..ss.öiL.(ASI?in1li4'SI,P>   ,      (113) 

(Dz^ASLjup^^A's'L'/'ifp') +<*AnLjiip\Di$A'fL'jlifp>):sö,j'6iiii'öpp'öss'6Lr^SLP\ni\A'SLP)     ,        (114) 

{ASLJMP\G0\A'S'L'j'M'P')=6JJ.6ltll.6Pp.6ss.6LL.{AS LP\G0\A'SLP)    , (115) 

{ASLJMP\Gi\A'S'L,J'M'P,) = 6,J.(iltll.6PP.{-l)t''s,^l^   * ^(ASLPIG.IA'S'L'P)    , 

<ASLJMP\G,\A'S'L'j'M'P')=ö^.6llll.5pp.(-l)'-
t^^f   *,  "^(ASLPIG^A'S'L'P)    . 

(116) 

(117) 

These relations constitute a considerable simplifi- 
cation, allowing the matrix elements to be com- 
puted for all values of J with little more effort 
than that required for a single value of J. 

The matrix elements given In Eqs. (113)-(115) 
vanish unless L =L   and S   S  ,   However, non- 
zero matrix elements of F, Gj, and G2 for which 
L'*L and/or S'^S do exist, hence an accurate 
wave function describing an E.tomlc state is not in 
general an elgenf unction of L2 and?2.   For a large 

number of cases, however, wave functions with 
definite L and S provide excellent approximations 
(Russell-Saunders coupling), and the matrix ele- 
ments with L*L' and/or S'*S may be neglected. 
Then the relativistic corrections simply remove 
the degeneracy with respect to J of the nonrela- 
tlvistlc energy.   This case Is our primary concern 
in this paper. 

In this case the wave function * Is an elgenf unc- 
tion of 1? and S2; we append the quantum numbers. 
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S, L, J, M and P, writing *SL,up.   Our expansion 
of the wave function in terms of the CSF's may be 
written 

*SLJUP-?-'A ®A SLJMPCASLP     • (118) 

We can always choose the CSF's such that the ex- 

 I 

pansion coefficients bcfome real; we assume this 
to be done.   Note that the expansion coefficients 
CASLp do not depend on the quantum numbers J 
and M. 

V'e combine our expression of *st/«p In terms 
of the CSF's with our previous results to find 

EZJLJP -£? 

where 

Ez SLp= Z CASLP{(ASLP\ni\A'SLP) +(ASLPinz\A'SLP)+{ASLP\G0\A'SLP))CA.SLP   , 
AA1 

(*siPIF|*stp>=>: CASL^ASLPIF\A'SLP) CA.SLP   , 

<*SLplG1l*stJ,> = E C^LpiASLPlG^A'SLP) CA.SLP   , 
AA' 

<*««IGil*MP>-E CASLP(ASLPIGZ\A'SLP) CA.SLP   . 

(119) 

(120 

(121) 

(122) 

(123) 

The entire dependence of EZtSLjP on J Is contained In the 6-; symbols In Eq.  (119).   Hence, from the prop- 
erties of the 6-j symbols, we find the relation 

^.SiP = l(2S+l)(2L+l)]-1E/ (2J+l)£2i SLJP     i (124) 

so Sj, SIP is the average first-order relatlvlstlc correction to the energy of the J multlplet, as was suggested 
by our notation. 

In the case of Russell-Saunders coupling, where Eq.  (119) holds, EZlsLjP would follow the Lande Interval 
rule with respect to J if the term proportional to (♦siplGjI^sip) were absent, since for L *0 and S*0, 

i   \*»a*i[L s J\   1 JU^l)-La + l)-S(S4l) 
V~   ' )S   L  Ij ' 2 IL(Z, + 1)(2I, + 1)S(S"+1)(2S+1)]1/2     ' 

As pointed out by Araki,27 the terms proportional to (*stpiG£l*sip) cause a deviation from the Lande 
interval rule even in the case of Russell-Saunders coupling, as may be seen from the relation 

,.£♦,.,|l  S   J\    3[jU + l)-L(La)-S(S4l)][j(Jfl)-La-Hl)-S(S-tl) + l]-4S(S-fl)L(L4 
1      ' \s   L  2) "      2lLa + l)(2I-l)(2L + l)(2L+3)S(S + l)(2S-l)(2S(l)(2S + 3)J"i— 

1) 

for S=l and L = l. 

V, MATRIX ELEMENTS OF THE FIRST-ORDER RELAT1VISTIC CORRECTIONS TO THE ENERGY IN TERMS 

OF RADIAL INTEGRALS 

The matrix elements and reduced-matrix elements with respect to the CSF's arising from the first-order 
relatlvlstlc correction to the energy can be expressed in terms of the corresponding one- and two-electron 
orbital integrals.   We have dealt with these orbital integrals In Sec. III.   In accord with our results there 
we write 

{ASLP^^A'SLP) =LsASLP,A.SLp.M)itUJ    , 

{ASLP\F\AS'L'P) = Bt 
uj 

ASLP,A' S'L'PtMl^UJ 

(ASLP\n1,\A'SLP)=£>££' EidASLP.A'sLPtxi.uj.Pk.oiDxi.n],*.'»    « 
XI  v)   pi   ol 

(125) 

(126) 

(127) 

J 
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Al       I*/   Pw    01 •• 

+ 2-/    QASLP,A'SLP;\i,ur<i>l>,<>l>''Q»,ui;pk,ol,i>)    .        (128) 

U uy i* al      u 
Jiul 

Usii'lcIu's'L'i.>-SS EEE ^„..^.^.„.^^.^^.^^^ . 

+ ^'/,AStP,A'S'Ji'i»:M.«yiP«,oliy Pxi.ux«».»!;!.)    ,      (129) 

(130) 

I 

The radial Integrals appearing here are defined in 
Eqs. (79)-(84); the summations over w and v 
proceed as in Eqs. (101) and (106), respectively. 

The coefficients »AKF.A'S«.!»«. 'ASIP.A'S'L-PW, 

"ASLP.A'SLP^I.uj.ek.oki  rO;ASLP;A'SLP;Xi,ui;i>*,il;u , 

^IMStP.A'S'i'PiM.uiJP»,»)!"!  rZ;ASLr;A,SLPiU,ur,i>li,al;u> 

pASLP.A's'fPiH.ui-.n.niiv characterize the angular 
and spin parts of the various relativistic correc- 
tions to the energy.   They depend only on the details 
of the construction of the CSF's from Slater deter- 
minants.   For simple cases, their derivation, 
with the help of the results given in Sec. Ill, is 
usually not a difficult matter; however, general 
formulas for them, particularly the coefficients 
originating from the two-electron Integrals, can 
be only obtained by an elaborate analysis Involving 
Clebsch-Gordan and/or Racah algebra, and this 
will not be attempted here.   Note that the nonvanlsh- 
Ing coefficients for any particular case are actually 
rather sparse.   For example, in the case ASLP 
^AS L P, SAsiPMstPüo, *ndtAsLP,Ast.PiXij vanish 
unless i=j, while dASLPtASLP.kltUjtPkt0„ 
rniASLP,ASLP;\l,uj;pii,(,t)u(n = Q,   I,  2), 

QASLP.ASLP-.H.ulifk.at;,,,   and  f>ASLP.ASLP;\l, ultPk.olV 
all have nonzero values only In case W= MJ, ßk = al, 
or In the cases \i = pk, \xj = ol, and Ai^ri, MJ = P*. 
Note also that SASlp<ASLP.xu is simply the occupa- 
tion number of the shell U in the CSF indexed by 
ASLP. 

We note also the relation 

rOMSiP,J4,StP;M,u/il>»,<i(iu=>'o;ASiJ',A'SiPJ(>»,(jIjXI,u/!Ui 

(131) 
which follows from Eq. (109). However, no sim- 
ilar relation exists In general for 
r\,ASLP,A'S'l,P iM.ulifll.dHu or frT 
rZ;ASLP,A' S'L'P iUtUJiPk.af.a- 

In practical calculations, CSF's with closed shells 
are a frequent occurrence.28 Simplifications then 
apply which we give here.   We suppose that there 
Is some shell pk for which 

•S.4S£P,AS£PJrt« = Sjt.s.I,.i.iVs,l'PiP»»=4p + 2    •     (132) 

that Is, that some shell pk is a closed shell in both 

the CSF labeled by i4SLP and the CSF labeled by 
A'S'L'P (the case ASLP = A,S'L'P Is not excluded). 
Then we have28 

ASLP.A'S'L'P-.ohk = 0   , 

and. In accord with Elliott's results, 

r». ZUStP.A's'l'P ;M,uyjp»,(i»ju   =0    , 

rz;ASiP,vs'i'p ^.»»w.u/iu =0   , 

rZ\ASLP,A' S'L'P |U«M|lti|M|HK0    . 

(133) 

(134) 

(135) 

for all values of \i, \ij, and w.   From the results 
of Blume and Watson20 and Beck,22 We have 
pASLP,A,S'L'P;U,UHI)k,l>kiv = ü     , 

rliAS£PM's'l,P|*(,»i/;(i»1o»iu 

~ 2Ö»«Öu,l'AStP,Vs't'PiMy(4p + 2)     , 

ri, ASLP.A's'L'PW.pkiU.uJtu = 0    J 

pASLP.A'S'l'PiXl.okiuJ.m,;* 

" * 0\U' ASLP.A'S'L'PiMt 

X(4P + 2)3[X(A+1)]XP!..V^    ,       (136) 
r\,ASLP,A' SLPtXt.PUta 

= i6Jm'ASiP.A's'L'p!M/(4p + 2)3[A(X + l)]-1j)Xpu   . 

Here kXtU.v is given by Eq. (88) and ,vA(4l, is given 
by 

(137) 
B2o={2a)\/(alf   , 

when X + ß+u is an even Integer; xklul vanishes If 
A + M +f Is odd.   Also, we have used 

"Jluu = 4 Mw + l)]'1^ +/i+u> + 1)(A + )i - w + 1) 

X (A+cü-M)(u+w-A)xXllu.1   .       (138) 

For the orblt-orblt coupling coefficients, we find 
r0iASiP,A'SiPi*l,uyi(!»,p»Ju =0    , 

r0;ASLP,A,Sl.P:>.t,pli;uJ,l>k;u 

= - 4 6»wsAslptA.si;p.M/(4p + 2))^(,UJ   , 
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TABLE I.   Fine-structure splittings In cm-1. 

Blume and 
Walson* Malll" 

This work, 
Hartree-Fock Experiment 

BCPuf'P,^ 14.6 15.16 16 

C(3P,-'/>«) 13.8 16.17 16.18 16.4 

Cf'Pi-'Pi» 25.8 26.59 28.56 27.1 

KfD „-'D,,,) -13.6 -12.97 -1 

Nfi'j/t-'Pi/il -5.5 -5.09 u 

O^P,-5?,) -72.7 -73.69 -73.62 -68.0 

O^-'P,) -162 -163.94 -163.83 -158.5 

FCPj/.-'P,/,) -397 -402.2 -404.0 

AICPI/I-'PI/II 90. S 92.72 '.12.0-1 

SK'PI-'P,) 64.5 66.17 65.10 77.15 

SK'PJ-'P,) 12« 129.03 128.95 146.16 

sOy, - '/v -183 -181.89 -181.61 -176.8 

«(j/jj-jp,) -369 -366.95 -366.35 -396.9 

CK'PJ/.-'PI/I) -HI» -822.9 -881 

'See Ref. 32 . "See Ref. 33. 

^ASLP.A' SLP,»>l»';iil,Pli;i' 

--i6*uSASiP.A'StPl»l/(4P + 2^»(»'     .     (139) 

except in case At - 'Jj-pk; in that case we find 

r0!AS£P;A'5tP;<>»,l>»iP»,o»iU 

= -is>lStP.A•SlPi«»»(4P + 2),'««     ■       (140) 

Equations (139) and (140) are consistent with the 
resultfc of Beck.22 Note that the occurrence of the 
factor i in Eqs. (136) and (138) compensates for 
the fourfold occurrence of such terms in the sum- 
mations given in Eqs. (128) and (129).   Finally, 
we have 

'MS£PiA'(£,PlWil>/iHklM 

--|[H;uSASLP.A'SI,PiAli(4P + 2)]>        (141) 

unless A» B iij =pk, where we have 

^^StP.A'StPiP»,»».»»,»» = 4SASlP,A'SiP!»»»(4P + 2'    • 

(142) 
The factor fin Eq. (141) compensates for the six- 
fold occurrence of such terms in Eq. (127). 

VI. NUMERICAL APPLICATION 

A. Harlrce-Fock Results 

We have computed the first-order relativistic 
corrections to the energy for the ground states of 
the atoms He through Ar, and for the two lowest 
excited states each of C, N, and O.   The analytic 
Hartree-Fock wave functions of Cohen30 were used 
for He through Ne and Malli's wave functions31 

were used for Na through Ar.   In Table I we present 
our results for the fine-structure splittings and 
compare them with the previous results of Blume 
and Watson32 and Malli,33 and with experimental 

values.M  In Table H we present the parts of the 
relativistic corrections to the energy which do not 
contribute to the fine-structure splitting.   These 
are the quantities c'zE2, where E2 is defined in 
Eq. (120). 

Essentially the same formalism was used for all 
of the computed results in Table I, but different 
wave functions were used in each case.  The analytic 
wave functions we have used are characterized by 
carefully chosen basis functions and should prove 
quite accurate.   The close agreement between our 
results and Malli's results, based on numerical 
wave functions, confirms this.   [Note that Malli's 
results omit B, N(2ZJ), N^P), F, Al, and Cl. ] 
The earlier results of Blume and Watson are based 
on analytic wave functions of poorer accuracy. 

Our results in Tables I and II were all computed 
with wave functions which exactly satisfy the cusp 
condition.35   Additional computations were made 
using wave functions38 in which the cusp condition 
was relaxed, but were otherwise of comparable 
accuracy.   These resulted In virtually the same 
values for the fine-structure splittings as those 
we have given.   There is, however, a difference in 
the computed value of c"2E8 of about 2% or 3^ for 
atoms in the first row of the periodic table; for 
example, for N(4S) we obtain c*2E2 ^ - 0. 026926, 
while the value from the exact cusp wave function 
Is -0.026545.   This difference comes mainly from 
the different values obtained for the integrals 7Tk(/ 

TABLE II.   Average relativistic corrections to the energy 
in a.u. 

Nonrelativlstic Average relativistic 
energy* correction c"2£2 

He ('S) -2.861680 -0.000 064 842 
Li(2S) -7.432726 -0.000 052 552 
Be(lS) -14.573 02 -0.0021148 
m2P) -24.329 06 -0.005 893 3 
C(3P) -37.688 61 -0.013343 
cCc) -37.6313i! -0.013 359 
C^S) -37.549 60 -0.013369 
N(4S) - 54.400 92 -0.026 545 
XCD) -54.296 15 -0.026 440 
NCP) -54.220 07 -0.026 432 
0(3P) -74.809 38 -0.047 540 
cx'fl) -74.729 26 -0.047 576 
OX'S) -74.61101 -0.047 534 
F(2P) -99.409 34 -0.079 573 
Nef's) -128.547 0 -0.125 67 
Na{2S) -161.858 84 -0.19187 
Mgi'S) -199.614 61 -0.28312 
A1(2P) -241.876 64 -0.403 40 
Si(3P) -288.854 29 -0.560 00 
P(4S) -340.718 71 -0.759 52 
S(3P) -397.504 72 -1.009 57 
CUJP) -459.48197 -1.31804 
Ar('S) -526.817 44 -1.694 00 

'From Refs. o0 and 31. 
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TABLE III.   Total Hartree-Fock energies in a.u. 

Relatlvistlc This work 
Hartree-Fock* £, + c-2£2 

He -2.8617 -2.861745 
He -11.5752 -14.57513 
Ne -128.6753 -128.6727 
Ar -528.5513 -528.51144 

»See Ref. 38. 

[defined in Eq. (79)] for the Orbitals of s symmetry, 
which seems to be caused by different behavior of 
these orbitals near »- = 0 in the two cases.   It is the 
exact cusp wave function that gives the more ac- 
curate description near r = 0, and hence the more 
accurate value of c'2E2. 

When relativistic effects are small, there should 
be good agreement between our Hartree-Fock re- 
sults and results from relativistic Hartree-Fock 
calculations of the type outlined by Kim. "  In 
Table III we compare our results for the sum 
£,+c"2£2with the total energy, including the Breit 
correction termcs, obtained by Mann and Johnson,38 

for the atoms He, Be, Ne   ..nd Ar.   It should be 
noted that their relativistic Hartree-Fock results 
include energy corrections of order c"4, e"*, etc. 
which come from the Dirac Hamiltonian and the 
Breit operator, while our results omit such terms. 
Since their calculations omit other higher-order 
energy corrections (e.g., the Lamb-shift correc- 
tion), it is not at all clear that their results actually 
improve on ours. 

B. Mulliconfiguration Results fur Nitrogen 

For most of the atoms in the first row of the 
periodic table, the Hartree-Fock results given in 
Table I are In good agreement with experiment. 
The most noticeable discrepancies occur for the 
nitrogen ZD and lP states.   Hence these states 

provide a good testing ground for mulliconfigura- 
tion results for the fine-structure splittings. 

The wave functions used here were computed 
using a multlconfiguration self-conslstent-fleld 
(MC-SCF) formalism of the type put forward by 
Hinze and Roothaan,24 in which the orbitals and 
CSF expansion coefficients are simultaneously 
optimized.   The radial functions PM{.r) are expan- 
sions In terms of normalized Slater-type basis 
functions, namely 

«*»(»-)= l2£x,)
2"X/.*,/(2«x,)]l/Vx*e-V 

(143) 

The basis functions were taken from the results 
of Bagus and Gilbert36 for the nitrogen tD and ZP 
states; the £'s were not reoptimized.   The radial 
functions for our wave functions are given in Table 
IV, together with the nonrelativistlc energies and 
the values for c"2E2. 

The CSF expansion coefficients are given in 
Table V.   The nitrogen ZD wave function consists 
of CSF's from the configurations ls22s22/>3, 
l.s22s22/)23^, and ls22s23/>22/).   The nitrogen 2P 
wave function contains CSF's from these configu- 
rations and also from the configurations l.s22/)5 

and ls22s23s22/».   Note that only 2P CSF's arise 
from the last two configurations.   Since we have 
required that the 2/J wave function be orthogonal 
to the 2D function 

ls22s2(l//2)l2/)2(3P)3/> - 2/)2(lß)3/>] 

the five CSF expansion coefficients provide only 
four Independent varlational parameters.   The sub- 
stitution 2p~2t)* €3/> yields 

2/)52D-2^320 +/3e(l/V2){ ^VPJS/)2ß] 

hence our constraint on the ZD wave function cor- 
responds to the exclusion of the function coming 

FABLE IV.   Energies and radial functions for MC-SCF N^D) and N(2P). 

Cb 

Nitrogen 20:   £„ = -54.31429, c-2f2 = -0.026 914 
Cj, 

1 10.595 0.110 750 0.001260 2 7.693 0.008103 0.025191 
1 6.026 0.929642 -0.266 426 2 3.272 0.225 920 -0.682 047 
3 7.332 -0.042260 -0.030 465 2 1.877 0.438 952 -0.774379 
2 2.528 0.002159 0.539124 2 1.168 0.414068 1.430358 
2 1.586 -0.000088 0.554 662 

Nitrogen 2P:  £0 = -54.28665, c" «*,- -0. 026 943 
n t Cli C2» Cfc n t c2» ^3» 

l 10.592 0,111253 0.002 583 0.010633 2 7.748 0.007716 0.024 814 
i 6.022 0.932 954 -0.255 339 -0.338239 2 3.275 0.226 397 -0.613019 
3 7.323 -0.042 279 -0.032453 -0.239912 2 1.865 0.451033 -0.825028 
2 2.527 -0.005195 0.550 576 2.512 475 2 1.131 0.405 991 1.432 865 
2 1.589 -0.007302 0.544 268 -2.251829 
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TABLE V.   CSF expansion coefficients for MC-SCF 
N^D) and N(2P).  

N(Jü) N(5P) 

ls?2s22/)3                   0.990 871    Is2 2s2 2/)3 0.978 718 

Is2 2^ 2p70P)3p        0.014176    Is2 2s2 2/)2(1S) 3p -0.028 881 

Is2 2s2 2/>2(,C) 3/)       0.014176    Is2 2s2 2/)2(:iP) 3/, -0.024768 

Is2 2s2 3/.2(3«2/>     -0.051748    Is2 2s2 2/)2(1D) 3/. 0.006861 

Is2 2.^ 3/)2(,ß)2p        0.071852    1$* U* ip'fSt 2p -0.064996 
Is2 2s2 3/.2(:1P» 2p 0.051006 

Is2 2s2 a^'D) 2/. 0.054 263 

ls22p 

Is2 2s! 3s2 Zp 

0.174 074 

0.023 747 

from the "single replacement" of a 2p function by a 
3/) function in 2/)3ZD.   For the same reason, we have 
required the ZP wave function to be orthogonal to 
the ZP function 

i {l//2)UJ2s8{2l2/)2('S)3/.]-3l2/>2(3P)3/.] 

-MZf^DKp]]   ; 

hence the nine CSF expansion coefficients provide 
only eight Independent variatlonal parameters. 

Our wave functions for the nitrogen 2£> and ZP 
are much too crude to be considered accurate de- 
scriptions of the electronic states to which they 
pertain.   Accordingly, our results must be regarded 
as only preliminary, to be confirmed by calcula- 
tions with more accurate wave functions.   Still, the 
fine-structure splittings for the nitrogen 2fl and ZP 
states computed with these wave functions are a 
substantial ImproveiiiGnt over the Hartree-Fock 
results, as may be been from Table VI.   This is 
perhaps not unreasonable, in view of the quite good 
agreement with experiment already obtained with 
a Hartree-Fock wave function In the case of the 
carbon fine-structure splitting. 

The situation can perhaps be made more plausible 
by observing that In carbon the addition of the CSF 

TABLE VI.   Nitrogen fine-structure splittings in cm"1. 

Hartree-Fock    MC-SCF     Experiment 

,-2D: 3/2 08/2- •12.97 

-5.09 

-9.23 

-0.34 

from the configuration (ls)2(2,s)22/)3/> does not im- 
prove the wave function, since a version of Brll- 
louin's theorem39   applies.   This argument breaks 
down in nitrogen, since there is more than one ZD 
or 2P CSF which can come from the configuration 
(lsf(2sf(2pf3l>.   The addition of such a CSF can 
influence the one-electron nuclear spin-orbit con- 
tribution and the contributions from the two-electron 
integrals containing Is-shell and 2s-shell functions 
(which behave in many respects as corrections to 
the one-electron Integral tX{J).   Ordinarily, these 
contributions to the fine-structure splitting are 
the major part, although the remainder is not 
negligible; for example, in the carbon Hartree-Fock 
calculation for the 3P2-

3Pi splitting these two parts 
amount to 32.36 and -5.80 cm"1, respectively. 
Thus, the addition of such a CSF can have a much 
greater influence on the calculation of the fine- 
structure splitting than would be the case for most 
CSF's.   In fact, our calculations indicate that the 
major part of the difference between the Hartree- 
Fock results and the MC-SCF results presented hero 
mav be attributed to the addition of CSF's from the 
configuration ls22s22/)23/'. 
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Steady States and Quaäl-Energles of a Quantum-Mechanical System 

In an Oscillating Field * 

HIDEO SAMBE 

Laboratory of Molecular Structure and Spectra, 
Department of Physics, University of Chicago, 

Chicago, Illinois 60657 

A general formalism is presented for a system whose 

Hamiltonian is periodic in time.  The formalism is intended 

to deal with the interactions between bound electrons and an 

external electromagnetic field, which can be treated semi- 

classically, such as electric and magnetic polarizations, 

optical rotation, and transitions among discrete levels.  A 

particular bound solution of the Schrodinger equation which 

belongs to an irreducible representation of the time-translation 

symmetry group is defined as a steady state, and the characteristic 

number of the irreducible representation as a quasi-energy. 

It is shown that the defined steady states and quasi-energies 

behave in a newly constructed Hilbert space like stationary 

states and energies of a conservative system in many respects. 

It is also shown that for a resonant case the unperturbed quasi- 

energy becomes degenerate and the transitions among discrete 

levels can be accounted for by the familiar degenerate perturbation 

procedure. Using a suitable Hilbert space, the steady states 

are established as firmly as the stationary states stand in the 

theory of a conservative system. 
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1.  INTRODUCTION 

It is well known in solid-state physics that for a spatially 

periodic Hamiltonian, there exist quasi-momenta and corresponding 

Bloch wavefunctions.  Analogously^ for a periodically time- 

dependent Hamiltonian, one expects the existence of quasi-energies 

and Bloch-type states.  For these states Young et al.1 coined 

the term quasi-periodic states; we prefer to use the term steady 

states.  Such steady.states have been discussed and used in the 

theories of susceptibilities,1'2 and in the theories of multiple- 

quantum transitions among discrete levels.^"^ 

In spite of the widespread utilization of steady states for 

the study of the semiclassical interation between  bound electrons 

and an external electromagnetic field, many aspects of steady 

states have been discussed only partially and superficially in 

the literature and apparently require further investigation. 

The essential points missed by previous workers are the introduction 

of a Hilbert space suitable for steady states and the uniform 

treatment of steady states in this space.  The introduction of 

such a Hilbert space not only makes the formalism transparent, 

but also Introduces new aspects of steady states.  Above all, it 

makes possible the unification of two seemingly different theories 

namely, the theory of susceptibilities and the theory of transitions 

among discrete levels.  Furthermore the approximate nature of the 

previous theories of transitions5"5 is removed in the new formalism. 

The main purpose of this paper is to show that, using a suitable 
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Hllbert space, the steady states of a pci'odically time-dependent 

system can be placed on a foundation equally as firm as that possessed 

by the stationary states of time-independent quantum mechanics. 

In Sec. 2 of this p: per, we shall study the properties of 

steady states from a more fundamental point of view than has 

been done before. We first construct a Hllbert space suitable 

for steady states, and then show that steady states and quasi- 

energies behave in this Hllbert space like stationary states 

and energies of a conservative system in many respects:  Quasi- 

energies and steady states are eigenvalues and eigenfunctions 

of a Hermitian operator (which we call the "Hamiltonian" for steady 

states)}  the varlatlonal principle for steady states takes the 

familiar form of the Rits varlatlonal principle; and theorems 

analogous to the Hellrnann-Peynman theorem and to the hypervlrial 

theorem for stationary states hold for steady states.  The 

"Hamlltonian" for steady states, which is a sum of the periodically 

time-dependent Hamlltonian and the time-derivative operator -ihö/ät, 

plays a central role in this formalism. Unlike energies (or like 

quasi-momenta), quasi-energies are only defined modulo IKCJU, 

where cu is the frequency of external field and r is an integer; 

a zone analogous to the Brlllouin zone is Introduced in order 

to obtain only physically different steady states. 

In Sec. 3, a perturbation theory for steady states is 

formulated analogously to the Raylelgh-Schrödinger perturbation 

theory fo:1 stationary (bound) states. The nonresonant cases 

188 

[ 

^mk 



'^i^' 

- 4 - 

(e.g., linear and non-linear optical susceptibilities) can be 

accounted for by the non-degenerate perturbation procedure. 

In a resonant case, the unperturbed quasl-energy becomes 

degenerate or almost-degenerate; multiple-quantum transitions and 

the attendant Stark shift can be accounted for by the degenerate 

or almost-degenerate perturbation procedure.  Previously, these 

two cases (nonresonant and resonant cases) are treated with 

quite different formalisms; we treat them on an equal footing 

as described above.  Furthermore, we do not need to restrict 

ourselves to a flnlte-dlmenslonal Hllbert space, the use of 

which was essential In the previous theories of transitions.5"5 

Another advantage of the present formalism Is that it provides 

the validity conditions for the obtained formulas. These aspects 

are demonstrated In Sections 5 and 4. 

In order to avoid the "secular divergences," Langhoff et al. 

write a wavefunctlon as a product of time-dependent regular 

part and phase factor; certain conditions imposed on the regular 

part render this partition unique.2 Although these authors 

used the fact that for a periodic perturbation, the regular 

part is a periodic function of time, they did not show that the 

conditions imposed on the regular part go hand in hand with the 

periodic properties of the regular part. We shall clarify this 

point in Sec. 5. 

In Sec. 4, we apply the formalism to two specific examples 

in order to demonstrate the potential of this formalism. 
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2.  STEADY STATE AND QUASI-ENERGY 

A.  Definition of Steady State and Quasi-Energy 

We shall study a system whose Hamiltonian H(t) is periodic 

in time with period t: H(t+t)«H(t).  The period T is positive, 

finite, and fixed at some value.  The corresponding frequency 

is denoted by CD {=2V/X) .  The SchrÖdinger equation for the 

system is given by 

[H(t) - ih^] V(r,t) = 0 . (2.1) 

The vector r in the wavefunction ^(r,t) symbolizes all the 

spatial and spin coordinates of the system; we use this convention 

throughout. 

Let us assume that there exists a solution ^(r,t) of the 

form 

t(r,t) = u(r,t)e--i£t/n > 

u(r,t+T) = u(r,t) ,       j 

[H(t) - ih^JuCi^t) =<Su(r,t)., 

(2.2) 

(2.5) 

where u(r,t) is sauare-integrable and 6 is a real number.  If 

a state of the system is represented by such a solution, we call 

the state a steady bound state (or simply steady state) and the 

characteristic real number 6  the quasi-energy of the state. 
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We define a time-translation operator T(At)   by means  of 

T(At)^(rJt+At)   = T//(r,t)   . 

The time-translation operators 

(2.11) 

T(qT) , q = 0,±1,±2,' —, (2.5) 

commute with operator H(t)-itl(cJ/5t) and form a symmetry group 

of the Schrodlnger equation (2.1).  Since the time-translation 

group (?.5) is Abelian, all its irreducible representations 

are one-dimensional. The steady state solution ^(r,t) given by 

(2.2) satisfies 

T(qT)^(r,t) = eiq6T/^(r,t) j (2.6) 

hence it belongs to an irreducible representation given by 

eiq /n for q=0,±l,±2,•••, where the quasi-energy 6 characterizes 

the irreduoible representation. We could define a steady state 

solution as a bound solution which belongs to an irreducible 

representation of the time-translation symmetry group (2.5). 

There is a close analogy between the stationary states 

of a time-independent Hamiltonlan and the steady states of a 

periodically time-dependent Hamiltonlan. For a time-independent 

Hamiltonlan, the time-translation operators. 

T(t) ,      -00 < t < co , (2.7) 
. 

form a symmetry group of the Schrödinger equation. A stationary 
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state can be defined as a state which belongs to an Irreducible 

representation of the time-translation group (2.7); the energy 

eigenvalue characterizes the irreducible representation. 

We shall discuss the existence of steady states in Sec. 5; 

for the time being we assume the existence of steady states. 

B.  Hilbert Space for Steady States 

For the definition of terminology used here, we refer to 

textbooks on abstract Hilbert space. ^ 

It is well known that a linear space consisting of all 

square-integrable functions of configuration space r [i.e., 

all functions f(r) with finite /|f(r)|2dr ] with the inner 

product <f, ^> defined as ff*{r)g(v)äv  is a Hilbert space, 

where the range of integration is the entire configuration 

space.  This Hilbert space shall be denoted by A, and a complete 

orthonormal set in (ft by Cfn(r),f0(r),•••}, which contains 

countably infinite basis functions.  This is the Hilbert space 

which plays an important role for the study of stationary bound 

states of conservative systems. 

Let us introduce another well established Hilbert space y, 

which consists of all possible periodic functions a(t) of time 

t with the period T with finite /J^g |a(t) |2dt and which is 

furnished with the inner product 

(a, b) H 1 P
72 a*(t)b(t)dt ; (2.8)- 

T J -T/2 
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where T Is a fixed, finite, positive, real number. The function 

iqcut ,   for q=0,±l,±2,•••,   form a  complete orthonormal  set  in 

■f    ;    r|u(r,t)|2clrdt (2.9) 

the Hilbert space t7, where Cü=27T/T. 

We construct the composite space Ut-VV consisting of all 

possible functions u(r,t) which are periodic in the time with 

period T and for which 

T/2 

.T/2 

is finite, where the range of integration variable r is the 

entire configuration space as before.  This composite space c£-l-;7 

is a linear space; the inner product of the functions ufr,t) and 

v(r,t) in (Ä+y is defined by 

- r T/2 r * 
«u(r,t), v(r,t)» =i/ t    /u (r,t)v(?,t)dfdt , (2.10) 

J _T/2 / 

which satisfies the required conditions to be an inner product 

in Hilbert space. The composite space Ä+5r furnished with this 

inner product is again a Hilbert space, and the functions una(^*'t)* 

u- (r,t) s f (r)e iqoct nq n n=l,2. •••; q=0,±l,±2,.•• (2.11) 

form a complete orthonormal set in the composite Hilbert space 

Ä+y. This is the Hilbert space which we shall use to study- 

steady states. 

Once we have defined the composite Hilbert space, we can 

define operators in that space according to the theory of abstract 

Hilbert space.  The definition of a linear operator in Ä+<y is 
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apparent.  A Hermltlan operator.4 In Ä-H7 la defined as an operator 

which satisfies 

«u^v» = «^U, V» (2.12) 

for any functions u(r,t) and vCr^t) in Ä+y.  A linear Hermitlan 

operator in (JliovV)   is also one in the composite Hllbert space 

#+£■. The time-derivation operator -1-RCö/öt) is a linear Hermitian 

operator in <7 and (fc+ff. 

We should mention here that Okuniewicz also has been using 

the similar Hilbert space for the study of steady states.8 

C. Properties of Steady State and Quasi-Energy 

"Hamiltonian" for steady states.  Let us introduce the 

operator defined by 

?€  = H(t) - ih^g- , (2.15) 

where H(t) is the Hamiltonian of a system concerned, which is 

periodic in time with period T as before.  This operatorÄ is 

linear and Hermitian in the composite Hilbert space'32+J". Using 

this operator^, the steady state Schrödinger equation (2.3) 

can be written in the form 

J&u(r/t) =<Su(r,t) ; (2.14) 

■ 

where the solution u(r,t) is located in ^+,7.  Clearly^ is 
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analogous to the Hamlltonian for stationary states of the time- 

Independent Schrodlnger equation; we shall call the operator 

the "Hamlltonian" for steady states.  Quasi-energies and steady 

states are eigenvalues and eigenfunctions of the "Hamlltonian"^, 

Since cÄ is Hermltian, every eigenvalue (quasi-energy) is real, 

and two eigenfunctions (steady states) belonging to different 

eigenvalues (quasi-energies) are orthogonal. 

Physically equivalent steady states.  If [8,  u(r,t)} is a 

solution of the steady state eigenvalue equation (2.14), then 

£' = £ + qha) ;    )x{if,t)  *  u(r)t)eiqa)fc ,     (2 15) 

is also a solution for any integer q; the complete wavefunctions 

of them are, however, the same: 

u(?,t)e-1&t/fi ^'(^^je"1^^ . (2>l6) 

In other words, all solutions given by (2.15) are physically 

equivalent.  It is evident that one can always reduce any quasi- 

energy 5 to a point In a zone 

' ' ' 

(2.17; 

specified by a real number E; therefore physically different 

steady states can be characterized (partially) by their reduced 

_quasi-energies_, which lie in the same zone. The choice of zone 

(i.e., the choice of E) is, hovrever, arbitrary; we shall make 

use of this freedom from time to time. 

* 
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If ^m' "a^*^? and ^n' un^>t^ are solutions of Eq. (2.14) 

and If the quasl-energles g and cgn lie In the same zone, then 

the eigenfunctions u (r,t) and u (r,t) satisfy 

^(r.t), un(r,t)> - «um(r,t), un(?,t)» .    (2.l8) 

This relation implies that one can always choose the eigenfunctions 

un(r,t) such that <um, ^=5^, since it is always possible to 

choose the eigenfunctions such that <f<u , u »=6  . N nr tf'     mn 
Prom now on, we assume that quasi-energies of a "Hamlltonian" 

lie in the same zone, so that Eq. (2.l8) holds and corresponding 

complete wavefunctlons represent different physical situations. 

Variational principle.  The varlational form of the steady 

state Schrödinger equation (2.14) is given hy 

66[u] = 0 ,•  6[u] = «u,.^u»/«u, u» , (2.19) 

where u(r,t) and its variation 5u(r,t) are both in Ä+^. The 

eigenfunctions un(r,t) of Eq. (2.l4) are given by the stationary 

solutions of the variational equation (2.19), and the corresponding 

eigenvalues <Sn are given by the stationary values 6[u ] of the 

functional 5[u]. We can easily show, analogously to the time- 

independent case, that the variational prir,ciple (2.19) is 

equivalent to the steady state Schrödinger equation (2.14). 

The variational principle plays a central role for the determination 

of Approximate eigenfunctiona and eigenvalues, as in the case 

of stationary states. 
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Hellmann-Feynman theorem.  A theorem analogous to the 

Hellmann-Peymaan theorem^ for stationary states in a conservative 

system holds also for steady state solutions in a periodically 

tim«?;-dependent system.  If the Hamiltonian H(t,?0 of a system 

depends on a time-independent parameter Tv and the periodic 

relation H(t+T^)^H(t,A) holds for any ?s then the solution 

(6(?0, u(r,t,?0} of the steady state Schrodinger equation (2.1il-) 

satisfies the relation 

dfeU) 
"cTX «u, ^u»/«u, u» , 

(g(X) s «u,^Cu»/«u, u» . 

(2.20) 

The proof is analogous to the corresponding proof for stationary 

states,      and will be omitted. 

Hyporvirial theorem.    The steady state solutions also satisfy 

a theorem analogous to the hypervirial theorem      for stationary 

states:    If u(r,t)   is a solution of Eq.   (2.l4)   and if operator ^4 

is periodic in time with period T,   this theorem states that 

«u,   I>M]u»   = o . (2.21) 

where [JC,^]   is the commutator of ^/-C and <A  This hypervirial 

relation (2.2l) has a wide range of application depending upon 

the choice of the operator J4. For a particular-choice oF<A, 

namely^=4]Ln(rn'Pn+Pn-rn), where rn and pn are the position 

and linear momentum operators of the nth particle in the system 

i 

J 
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concerned, Eq. (2.2l) yields the virial theorem analogue for 

steady states: 

2«U,   Tu»   =  «u,   [EnvV(t)]u>>   ' 
(2.22) 

where H(t)=T+V(t), T Is the kinetic energy, and V(t) is the 

potential energy, which is Of course periodic. 

A remark.  Relations with « , » for steady states have 

analogues of < . > relations in the stationary case, as seen 

before; relations with < , > for steady states, however, have 

no special standing and must be expected to differ from the 

stationary case in general. 

5.  STEADY STATE PERTURBATION THEORY 

A.  Preliminary Remarks 

Let the Hamiltonian H(t,A) of a given system be given by 
■ 

H(t,70 = H(0) + ^(t) , (5.1) 

where H(0) is a time-independent Hermitian operator, the operator 

V(t) is also Hermitian but periodic in time with period T, and 

7^ is a small, real, expansion parameter. 

The steady state Schrodinger equation for the system is 

given by 

|W0^ + *V(t) - (5(A)]  u(r,t,A) = 0 , 

■ 

(5.2) 
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where 

JC (o) a H(
0
) . mlp , 

St (5.5) 

which is a Hermitian operator in the composite Hubert space 

(R+ff;  the solution u(r,tJA) is located in ^+^7 for any A. Note 

that the complete wavefunction #(r,t,>0 is given by 

-l5(?0t/R ^(r,t,^) = u(r,t,?y)e" 

u(r,t+T,^) = ü(T,t,\) , 

(5.4) 

where ((S(?0, u(r,t,^)] is a solution of Eq. (5-2). 

We demand, of course, that u(r,t,?0 varies continuously 

with A, and adopt the normalization 

«u(r,t,70, u(r,t,A)» = 1 , (5-5) 

which is equivalent to <u,u>=l so long as u(r,t,^) is a solution 

of Eq. (5.2), and which assures, therefore, the normalization 

rf the complete wavef unction, namely <V, ^=1. The phase factor 

of u(r,t,?0 will be fixed by the standard phase convention. 
12 

namely 

«u(^t,.0), u(r,t,^)» = «u(r,t,^), u(r,t,0)» ,  (5.6) 
■ 

which is always possible. . 

The unperturbed eigenvalue equation is given by 

^0)u(r,t,0)   = 6(0)u(r,t,0)   , (5.7) 
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where u(?,t,0) is located InJl+f.     Let En and fn(?) be discrete 

eigenvalues and eigenfunctions of the operator H 0 , namely 

H(0)f (?) = E f (r) J (5.8) 
n n n 

then the solutions of Eq. (5.?) are given by 

6(0) = En + qHcü ;  u(r,t,0) = fj^e1^ , (3-9) 

where q is any integer.  A choice of the zone (2.1?) for the 

unperturbed quasi-energies 6(0) determines the integers q uniquely, 

As mentioned before, if [6(A), u(r,t,?0} is a solution of 

Eq. (5.2), then (6(A)+qha), u(?, t,A) eiqüJl;} is also a solution 

representing the same physical situation. Due to the continuity 

of the solutions (gU), u(r,t,#) with respect to A, a choice 

of the zone (2.1?) for the unperturbed solutions [6(0), ü(r,t,0)3 

fixes the time-dependent phase factors e q  for all A. 

Consider now an eigenvalue E^ of H(0j and suppose that 

H(o) has eigenvalues Em, E^, Emt.,---, which satisfy 

Elc = Em+phcü, Em,+p'hco, Eml,+p"^^-". 

for some integers p, p', p","-; then the functions. 

(5.10) 

fk(f), f„(?)e
l!M*, fm-(?)e

lp"*, f^me*"*--,  (^iD "m 

are eigenf unctions of ^;(0; and belong to the eigenvalue Ek of 

JG(
0)

 .   (Note that several En may be the same.) This shows that 

even if the eigenvalue E of H(0) is non-degenerate in ft,  the 
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.(o) eigenvalue Ek  of JC[   >   could be degenerate in (Jl+ü:     If the 

eigenvalue Ek of H^
0) is degenerate in £, then Ek is certainly 

a degenerate eigenvalue of^/0) in ^-.T.  Since ^0) is linear, 

the 5(0) and u(r,t,0) given by 

<5(0) = Ek , 

u(?,t,0) = ckfk(r) + Vjrie^ + vfm,(1?)elP'«* +...t 

is also a solution of Eq. (5.7), where c. , c . c ,,-•• are 

arbitrary complex numbers; the corresponding complete wavefunction 

^(r,t,0) is given by 

) (3.12a) 

^(r,t,0) - u(?,t,0)e-1<5(0)t/R 

= ^rv)^\V + omfJr)e-lV/*  + cm.fmT(?)e-
1Em.^ + 

(3.12b) 

Equation (3.12b) clearly shows the physical significance of the 

coefficients, cy cm, %t*"*>  namely the probability amplitudes 

of finding in the stationary states with the energies. E  E  E  • 
Tc*  m*  m'' 

One can see here the reason why degenerate perturbation theory 

for steady states can explain transitions among discrete levels. 

B.  Perturbation Theory 

The Rayleigh-Schrödinger (stationary bound state) perturbation 

theory is formulated for an eigenvalue equation in the Hilbert 

spaced; the analogous theory for the eigenvalue equation (3.2) 
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in Ä+S7" can be formulated by simply translating the formulas for 

# into the corresponding ones for k+tf.     We shall simply write 

down the formulas which will be used in the following chapter. 

Non-degenerate case.  Expanding (5(A) and u(r,t,A) in Eq. (3.2) 

according to 

6(A) - 6^ + A6^ +A^
2) +..., 

u(?,t,A) = u(0)(r,t) + Au(l)(r,t) + A2u(2)(r,t) +.-.,  ) (5.13) 

u(n)(r,t+T) = u
(n)(?,t) ,  n=0,l,2,..., 

and equating the coefficients of the same powers of A, one 

obtains the following sequence of equations, 

[^0>.^)]«(°).o. (3.11(a) 

^(0,-&
(0,]u(l)

+[v(t).6W]u^=o, H.m 

The combination of normalization and phase conditions (3.5,6) 

yields another sequence of .equations, 

«u^,u^»=l, 

«u^, J1)» =0, 

«u^, u(2b>=4«n(l),  U(l>» . 

(5.15a) 

(3.15b) 

(3.15c) 

Expressions for the perturbation eigenvalues are 
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6(1) =«u^, V(t)J0)» , 

6(2) - «u^0), V(t)u^» . 

(5.16a) 

(3.16b) 

:(0) 

Degenerate case.  Suppose that the unperturbed eigenvalue 

in question is degenerate and that one set of corresponding 

orthonormal eigenfunctions are u^ (r,t),*•«jU« '(r,t)j then 

the first-order eigenvalues g* ' and the corresponding "correct" 

zeroth-order eigenfunctions u^'(r,t) are given by 

ES.i|««i0,.'(*)'40>» - ^vl"»..« ■0 ■ -v •.» . 
)"■ 

17) 

where the index a distinguishes between the values of eigenvalues 

6^ '  and the index a in the eigenvector [c1 Ga»c2 tiia»%*'$^ aa} 

distinguishes between the eigenvectors belonging to the same 

eigenvalue 61  • We can always choose the coefficients c 

to constitute a unitary matrix; then the N eigenfunctions 

uor. (^»t) are again orthonormal. 

Almost-degenerate case. Let £^ ' and ßi be two non- 

degenerate eigenvalues of^ ' and ui '(r, t) and ul ^(r,t) be 

the corresponding eigenfunctions respectively. The expansion 

parameter ^ la now considered as a fixed finite number, which 

Is small enough so that one can still put forward the solution 

of Eq. (5.2) as a power series. If the unperturbed eigenvalues 

l(0) .(0) (Si ' and ßl '  are so close together that they satisfy the relation. 
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then the first-order approximate solution, 

dw - j(40)+40)) + A<S(1) + o(>v2) • 
u(?,t,70 = (CjU^C^^+CgU^^r.t)! + O(X) , 

is given by the secuiar equation. 

Vu+A-d*1', 

'21 

v12 

v22-A-6' 
(1) 

/c 

■ 0 , 

A H (aW-^h/2*  ;  vmn H «u(o), v(t)u(l
0)» . 

C. Tranaformed Perturbation Equations 

(5.18) 

(5.19) 

(5.20) 

We now transform the eigenvalue equation (5.2) by introducing 

a factor exp[10(t,^)/n], where 0(t,>) is a function of t and V. 

v0?,t,70 = ei0(t'X)/nu(r,t,X) , (5.21) 

[x'0)  4 ^V(t) - äe(t,A)/öt - ^(X)] v(r,t,70 « 0 .  (5-22) 

The complete wavefunction ^(r,t,>) is now given by 

♦(r,t,X) - v(r,t,X)exp[-l(6(X)t+0(t,X)l/ri] .      (5-25) 

Let us first make the transformation such that v(r,t,>) 

satisfies the conditions 
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<v(r,t,X)J v(r,tJ^)> = 1 , 

<v(t,tA)s  Hv(#,t,7v)> -ÄvC^t^), v(r,t,:\)> . 

(5.24) 

The corresponding 0(t,?O has to be real and satisfy 

^i = <u, [H^0)^V(t)]u> -6(7.) , (5.25) 

where we have used the fact that the operators V(t)  and 

exp[l0(t,X)/ri]  commute.     Suppose that 0(t+T,X)=0(t,X);  then, 

Intogratlng Eq.   (5.25)   with r-spect to t over the period T, 

one lias 

(S(A)  - <<u,   [H(0)+^V(t)liC>>   . (5.26) 

This equation, of .course, does not hold In general. Hence 

neither 0(t,X) nor v(r,t,^) can be a periodic function of time 

with period T. In other words, the conditions (3.24) and the 

periodic relation 

v(r,t+T,^) - v(r,t,>) (5.27) 

do not hold simultaneously. It is Important to notice the 

close relation between the conditions imposed on v(r,t,X) and 

its periodic property (5.27). 

As stated by Langhoff et al.,2 one can avoid the "secular 

divergences" by imposing the conditions 

<v(r,t,X), v(?,t,X)> - 1 , (5.2ea) 
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<v(rvt,0), v(r,t,7v)> =<v(r,t,7v), v(?,t,0)> , (3.28b) 

on v(r,t,A), or by imposing another set of conditions 

<W?,t,?0, ^(r,t,^)> - 1 , <v(r,t,0), v(r,t,X)> = 1 . (5.29) 

In the following paragraphs, we shall show that one can always 

choose 9(t,70 00 that v(r,t,X) satisfies both the conditions 

(5.28) and the periodic relation (5.27). 

In order to satisfy Eqs. (3.2?) and (3.28a), the corresponding 

0(t,>O has to be real and periodic in time with period T. For 

any given O(t,>0 which is real and periodic in time with period 

T, the corresponding solution v(r,t,A) of Eq. (3-22) satisfies 

j^V, v> = 0 , (3.30) 

iri 3 £n <v
(0).v> |r[0(t,o)-e(t,x)] + [6(0).Ä^)] 

+ Mte <v,V(t)v
f0)> (3.31) L <v,v^> J 

where <^0/"6(o)  and v^0^v(r,t,0).     Equation (3.31)   is the key 

relation to prove the statement. 

The eigenvalue 5(x)   is given by 

T/2 
£(*) ■ \j        6(t,\ 

-T/2 

(S(t,X)  ■ d0)  + >He <v,  V(t)v(0O 
<v,   v^>' 

(3.32) 

(3.33) 
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rT/2 
'(t,^) = <S(t,A) - 6(A) ,     e(t,>.)dt o o , (5.5^) 

as Is seen- from Eq. (3-51) •  We choose the function ö(t,X) 

such that 

^.    .      .    .     ...        rT/2 

^ ' ' '• ^-T/2 

where the function vfr^t^) in the (S{t,>v) is the corresponding 

solution for this chosen 0(t,?O. In order to be self-consistent, 

the function 9(t,?0 defined by Ens. (5.5^) must be real and 

periodic in time with period T; using Eq. (5.52), one can easily 

show the self-consistency. 

For this specially chosen 0(t,7O, the ".orresponding v(r,t,^) 

satisfies 

[Vä/
0)
 + XV(t) - 5(t,X)] v(r,t,>) = 0 ,        (5.55) 

^[<v(0),v>/<v,v(0)>] =0 , (5.56) 

where the second equation follows from Eq. (5.51)-  If v(r,t,X) 

la a solution of Eq. (5.55)* then e(A)v(r,tiA) is also a solution, 

where c(x) is an arbitrary complex function of A. Using this 

freedom and Eqs. (5.50,56), one can always make a solution 

v(r,t,?0 to satisfy the conditions (5.28a,b). 

Thus we have shown that the conditions (5.28) imposed on 

v(r,t,X) go hand in hand with th3 periodic relation (5.27). 

Sltnllaily one can show that Eqs. (5-27,29) hold slmulataneously. 

For this case, however, the corresponding 0(t,^) is not real, 

and the transforwjd "Hamlltonian," ^O'+AV(>0-ae(t,?0/ot, is 
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no longer Heitnitian In tÄ+5r.  Because of this disadvantage, we 

prefer the conditions (5.28) to (3.29) in order to avoid the 

secular divergences. 

To sum-up, the equations for the desired v(r,t,70 are 

Eqs. (5.55,53) and Eqs. (5.28), and the solution v(r,t,?0 of 

them must be located inö?+cr.  The eigenvalue 6(>>) and the 

phase function 0(t,A) are given by Eq. (5.52) and Eqs. (5.5^), 

respectively, where v(r,t,7v) in the <S(t,A) is the solution of 

Eqs. (5.55*55). The complete wavefunction ^(r,t,>0 is given 

by (5.25). Since the solution v(r,t,?0 of Eq. (5.55) satisfies 

automatically Eqs. (5.50,56)* the conditions (5.28) are 

equivalent to the conditions 

«v(r,t,?0, v(r,t,?0» = 1 , 
■ 

«v(r,t,0), v(r,t,70» = «v(r,t,A), v(r,t,0)» , 
) (5.57) 

so long as v(r,t,?0 is a solution of Eq. (5.55).  The solution 

v(r,t,7v) of Eqs. (5-55,55,28) satisfies 

«v(0), V(t)v» = «v, V(t)v(0)» . (5.58) 

Note that in general the relation <v^ ,V(t)v>=<v,V(t) v^> 

cannot be expected to hold. 

Expanding (5(>0, <S(t,70, ö(t,?v) and v(r,t,?0 according to 

£(*) = Ek=o ^(k) '      ^M - ^k=o ^fi(k)(t)  , 

0^» - EL A(k)(t) ,   v(r,t,*) = i;^j^v^(?,t) , 
(5.59) 

208 

_^ - 



- 2k   - 

and substituting into Eqs. (3.55,35,28), one obtaj ms 

^0) 
[^o)-6(o)]v(o)=0; <v(o)>v(p)>.1) d(o) ^ , g(o) ^ (5;, 

and for n=l,2," •, 
■ 

[^0)-e(0)]v(n) + [v(t).£(l) (,,],/„-!) . E„=2 £(.)(,) v(n-k) . 0 > 

5(n)(t) = Re<v(0),V(t)v("-l)> . £«-1 S^)(t)<v(0)>v^-«> ,  (3.4lb) 

One can solve the sequence of equations (3.40) and (3.4i) 

progressively. The g^  and 0^ (t) are given by 

^)^/^6(k)(t)dtj 

«' -T/O 

(3.4lc) 

■ 

-T/2 

-^ -T/P 

(3.^2) 

t/2 

Incidentally, the variational-equation for the v^(r,t) 

is given by 

BP[ufr,t)] = 0 , 

P[u] - «u,[^0)-^)ju>> + 2Re«v^,[v(t)-<v^,V(t)v^>]u», 

where u(r,t) and 5u(r,t) are in Ä+7. 

Remarks. Let us consider an inhomogeneous equation with 

an auxiliary condition. 

(3.43) 
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[H^-iR(ö/ät)-E0]v(?,t) = W(?,t) , 

<f0(*),v(?;t)> = o, 
(3.44) 

.(0) 
where H  f0(r)=E0f0(r) and the given function w(r,t) is periodic 

In rime with period T.  If v(^t) is a solution of Eqs. (3.44), 

th en the v'^t) given by 

v'(^t) - v(?,t) + En(,o) Vn^^VV^ ^ 

Is also a solution of Eqs. (5.44), where En and f (*) are 

discrete eigenvalues and elgenfunctions of H^, and the coefficients 

cri are arbitrary.  This shows that the solution of Eqs. (3.44) 

is not unique and In general not periodic In time with period T. 

The fact that w(r,t) Is a periodic function of time does not 

insure that solutions v(?,t) of Eqs. (3.44) are periodic In 
14 

time.   One shouiC establish the periodicity of the solution 

v  (r,t) of Eq. (3.4la). on the basis of the steady state u(rJt), 

as we have done before. Finally we emphasize that the transformed 

equation and the original one are equivalent as long as the 

period T Is finite. 

4.  APPLICATIONS 

We shall now apply the steady state perturbation theory 

to the case when the perturbing operator V(t) is harmonic, 

namely 

210 

taetm *mM 



- 26 - 

V(t) = 2V  coscut , 

where V ' Is a time-independent Hermltian operator^ and 

ü>=2'n/T^0; we shall study two examples for demonstration. 

(4.1) 

A.  One-Level System 

In this section we consider the case when the discrete 

eigenvalue EQ of H^   in question is non-degenerate in &,  and 

when there is, besides E0, no discrete eigenvalue of H^ ' in 

the vicinity of EQ, EQ^RCQ, E0±2hü), and E0±5ricü. 

Time-dependence of the perturbed wavefunction. Let us 

first assume that there is no discrete eigenvalue E of Ir ^ 

which satisfies E =E0+qRa) for some non-zero integer q; namely 

the eigenvalue E0 of^ ' is non-degenerate. We shall use the 

transformed perturbation equations (5.40,41), because of the 

desirable limiting behavior of the perturbed wavefunction at 

a>=0j the same notations as the previous section C will be 

used in this section. 

We choose the zone (2.17) such that the zeroth-order 

eigenfunction v^  (r,t) is time-independent: 

[H(0)-E0]f0(r) = 0 ,    <f0(r),f0(r)> = 1 , 

• 

6(0) = J0 v(0)(r,t) =f0(?) 

)       (4.2) 

Knowing v^ ' (.r, t) / one can calculate (5  (t) from Eq. (5.l4b), 
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■ 

namely 

<g(l)(t) -   2E(l)coscot ,  E(l) - <f0, V^
1^^ .      (4.5) 

Since the first-order eigenfunction v(l)(r,t) is a periodic 

function of t with period 27T/Cü, it can be expanded in a Fourier 

series, namely 

.(i) 

(4.4) 

where functions f^^(r) are in ^.  Substituting (4.5,4) into 

the first-order equation of (5.4la,c) and using the fact that 

ü#0,  one obtains 

[H^-E^fi1^ + [V^-E^K = 0 , (4.5a) 

<fof f$>  - o , (A.5b) 

[H^^EQ+qh^f^ = 0 ,  <f0, f^ = 0 ,  for q^l .  (4.6) 

From the assumption we made, there are no non-vanishing functions 

in (^ which satisfy Eqs. (4.6)j therefore, the functions fq (r) 

must vanish except for q=±l. Thus the first-order eigenfunction 

v^ (r,t) is given by 

v^'^t) -fii)
t(?)#+,#i(Äe -icut (4.7) 

where the functions f^(r) satisfy Eqs. (4.5), respectively. 

Note that Eqs. (4.5a) yield Eqs. (4.5b). 

From Eq. (3.4lb), one has 
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6(2)(t) = 2E(2)(l+cos2cüt) ,  E(2) M^VV^ffj^+f^)) ;  (4.8) 

It is easy to see from Eqs. (4.5a) that <f0, V^'f^) are real. 

By similar manipulation, one obtains 

vf2)(r,t) - f||'(r)e12"* + f ^ (?)e-12(* + 2f <S) (r) ,  (4.9) 

where the functions f^g (r) and fi2Mr) satisfy 

> (4.10) 

[n(0)-s0]r<0
2) + i[v(i)-EW] (fW+f(i)) - E(2)f0 = 0 , / 

<f04|'> = <f0,f(|)> = -Kt^.tilb - -Kf^.rj^ ,     (4.na) 

<fo,ff2)> = -i[<fil),f|
1

1
)>H-<fW>fW>]   , 

■ 

(4.llb) 

note that Eqs. (4.5a) and (4.10) yield Eqs. (4.11a). 

Prom the formulas (^S), one obtains the eigenvalues g^' 

and the phase functions 0^k'(t), namely 

5(0) =Eo< 6(1) =0, 6(2) -SE'2' . 6(3) =0,    (4.12) 

e(0'(t) = o , e(l)(t) = 2E(l'sig!* , e(2'(t) = 2E(2)3lg2mt. . (4.13) 

Thus the complete wavefunction ^(r,t,?v),   to the second-order, 

is given by 

U*,tA)  = [f0 + ^(fj^e^-ff^^e-1^) 

;+ ^(fl^e^^f^e"^^^^^.^-1^^^^  , 
(4,14a) 
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n(t,70   = E0t + 2^1)S^!*.+ P,2j2)[t+sin2atj +^^ 
(4.14b) 

where fg   Batl8fy Eqs.   (It.5)>  and f(|)  ^ f(2)  ^^ 

(4.10,11).. 

The second-order quasi-energy eigenvalue fi^ la the 

quantity of physical Interest; for example, when V^ is the 

x component of the dlpole moment operator, -^ glves the 

frequency-dependent polarlzablllty a (ai) . 

AEEllcablllty conditions. Suppose this time that there 

are functions Bqa(t)   in®  whlch aatlafy 

[Hf0^E0+qhü)] Sna^ ^ 0 ^  <g. 1 J NKqa' sqß^ " ^aß » (4.15) 

for some non-zero integer q, where the second Index a m g (?) 

distinguishes between the elgenfunctlons belonging to the le 

eigenvalue E^qh. of H^; then the functions f0(?) and g (^e^ 

belong to the eigenvalue E0 of^l  and E0 ls no longer fnon- 

degenerate eigenvalue of ^0^  pn-P t*>40 ^x VA,  . ifor  this case, one has to use 
the degenerate perturbation method. 

If ^ fUnCtl0nS ^(W.  v^)(?,t) and v^(r,t) given by 
Eqs. (4.2,7,9) satisfy 

«Vei9mt. ([v(t)-£(i)(t)]vU-i) . E!»=2 £W(t)>-k,}>> . o ( 

for all qa ,      (».ig) 
for m=l,...,(„«), where £(l)(t)  and s(2)(t)  ^ ^^ ^ ^ 

(4.5.8);  then the. function v(°) + ...+}nv(n}  „^^ ^ ^^^ 
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perturbation equations up to the nth-order with the eigenvalue 

6(0) + ---+7.n6^, and S^n+1^   is an eigenvalue of the (n+l)th- 

order equation, where the eigenvalues S        are given by Eqs. 

(4.12). 

We still assume that EQ is a non-degenerate eigenvalue 
r(0)  ^ n  „_  /,, „^ ___, _ of Hlu;. For ni=l, Eq. (4.16) yields 

r(l) <VV  f0>(5q,+l+5q,-l) = 0 '   for a11  q« I        CM?) 

hence if E0±R(JO are not eigenvalues of H^0^, then 

[6^   ^=0,v(0^(r,t)=f0(r) } is a solution of the first-order 

degenerate perturbation equation, and furthermore the solutions 

f±l ^  of Eqs• ^»5) are unique. If there exist the eigenvalues 

of H   which are close to the EQ+Rü) or EQ-ficu, then the solution 

f+l t*}  or -1 ^ becomes large. Therefore the applicability 

condition for CS^'+W1', v^]  is that there exists no eigenvalue 

of H(0^ at the vicinity of E0±n<ü. 

For m=2, Eq. (4.16) yields 

(4.18) 

<*„- [v(l)-E
(l)]^'>6q(+2 + <V.[v

(l)-H(l)]fW>6q,.2 - 0 . 

for all qa ; 

if E0±2ficu are not eigenvalues of IT0^,  then [S^?\  v^ ]  Is 

solution of the second-order degenerate perturbation equation, 

and the solution f^^r)  and f^2)(r)  of Eqs.   (4.10,11)  are 

unique.    If there exist the eigenvalues of H^  which are close 
* 
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to the E0+2fiü), E0-2ricu, or EQ,   then the solution f|2'(r), f_2 (r), 

or fi2'(r) again becomes large. Hen^0 the applicability 

condition for {f.(o)+^6(l)+>.25(2), v(o)+?.v(l)) la that besides 

E0> there exists no eigenvalue of H'
0J
 at the vicinity o" EQ, 

E0±ficü, and E0±21
,iü).  Similarly the applicability condition for 

(e^W^+vV^V5*, v(0)+Av(l)+X?v(2)) is that besides 

EQ there exists no eigenvalue of IT0^ at the vicinity of E0, 

E0±hü), E0±2fi<ü, and E0±:5fiü>. 

Limiting behavior at oy^O.     If fio) Is much smaller than the 

difference between E0 and the closest eigenvalue of Jr 
),  then 

there will be, besides E0, no eigenvalue of H
l ' In the vicinity 

of E0, E0±fi(o, E0±2ficD, and E0±yi(iii  hence one may consider Eqs. 

(4.1-14) valid In the neighborhood of CD«0. 

At the limit oxO, the functions fL^r), f^ (^)» and ±2 

(4.19) 

f i '(r) become 

f(l)(f)- fij>(« - tilUr)  , 

f(2)rr)- rifif)  »f^(?) -42)(?) , 

where f^(r) and f'2'(r) oatlafy the stationary perturbation 

equations, namely 

f0-o Hl.ZOa) 
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<f0,f0> - i , <f0,f
(:i)> - o , <f0,f

(2)> - -Kr(l),f(l)> . (4.20b) 

When <D-»0, the complete wavefunction ^(?,t,X) smoothly Joins 

the stationary solution of the Hamlltonlan Jr '+i2'K)V^1', 

f{*9tA)  - [fo + (2^f(l) + (2X)V2) +...]e-
1^t'^/h , 

T^X) - t^ + {2-K)<€0M
l)r^ + (2»^r0,v

(l)f(:i)> +...], 

('»^D 

Tor any finite t. 

This limiting behavior Is due to the transformation we made; 

the original elgenfunctlon u(r,t,X) does not have this limiting 

property. If one wishes to expand the perturbed wavefunctlon 

In powers of (a,  then the limiting property we obtained Is 

Indispensable. 

Varlatlonal method. The varlatlonal equations for the 

solutions fiJ'(f) of Eqs. (4.5) are given by 

BP+[h+(r)] - 0 ;    6P.[h.(r)] - 0 , 

F±[h±] m  <h±, [H^-Eoiltojh^ + 2Re<f0, [v^^fQ.V^^^] h^ .J 

(U.22) 

These equation can be obtained from Eq. (M?), or merely by 

Inspection. 

A remark. If one adopts another normalization and phase 

convention, namely <♦, t>-l and <v'0', v>«l with complex 0(t,X), 

then one obtains somewhat more complex equations than Eqs. (fc.l-l1!). 
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B. Two-Level System Connected with Single-Quantum Tranaltlon 

We shall now ctudy the case which obtains when two discrete 

non-degenerate eigenvalues E1 and E2 of H
(0) satisfy V*^ 

and there are. besides Bj and E2, no eigenvalues of H 
0 In the 

vicinity of E^o) and E2*no)j the eigenvalue E1 of Jcf
0 Is then 

almost degenerate. We can treat this problem by the almost- 

degenerate perturbation method as developed In the previous 

section. In particular, the elgenfunctlons and eigenvalues 

are detennlned by Eq. (3.19.20); we shall use the same notation 

here as was used there. 

Let fjW and f2(?) be the elgenfunctlons of H(0) belonging 

to the eigenvalues Ej and E2f respectively; choosing the zone 

(2.17) suitably, one has the eigenvalues and elgenfunctlons 

oV d0)  in the form. 

4°) ■i u[0)(*.t) •tlm, 
(1.23) 

40 .(0) ri\ -la* 
Ej, -no,  4 (*'*) " f2(^e' 

The eigenvalues of Eq. (5.20) are given by 

41» - *[' + Kfj.v 
(1) ^l2]J • 

(U^t) 

' A - (Bj - E2 + floa)/2X J 

the corresponding eigenvectors (o1+, 0^) and (cj,, c2J are 
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determined up to a phase factor from the equations, 

r(l) o1±  <fi;V^^?> Ic.J^ KJ 1 . •1±i  - 1-241 

Thus the first-order solutions are given by 

♦±(?.t.*) - [c1±uiO)(f,t)+c2iu(0>(f.t)]e-^«(0,^i1,)t/« . 

Suppose that the system Is In the state f^f?) at t-O; 

then the wavefunctlon ♦(^t,^) at subsequent values of t Is, 

in first-order, given by 

♦ (r,t,X) - (C2>+ - c2+*rJAc2-cl+ " c2+cl-) 

(4.25) 

(4.26) 

+ ^lat^-m^tA . e-ix6^t/n)f2] t   {k% 27) 

since l{f,t,\)  Is the first-order solution of the Schr6dlngor 

equation, and satisfies ^(^OjTO-f^r). The probability P2(t) 

of finding the system In the state fgf?) at the time t la given 

by 
.(1) f(l) 

P2(t) - Ke-1^; ^Z« - e-1X£- ;t^)/(R+ - R,)|
2 ;    (4.28) 

substituting (4,25) Into (4.28), one obtains 
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P2(t) ^ [  Id) 'J • 

a)(1) - [iCv^4«^8 + >2l<frV(1)f^Ia]*/h • 
0».29) 

It Is easy to show that the probability P.ft) finding the system 

In the state fjfr) at the time t Is given by PjCO+PgCt)-!. 

The formula (^.29)  Is nothing but the well-known Rabl formula.1 

The applicability conditions for the formula (1.29) are 

given by Eq. (5.18), namely 

K^-Bg+MAI 16  Kf^V^f^l ; (4.30) 

and by the requirement that there are, besides E, and E2, no 

eigenvalues of JT0' In the vicinity of Ejifitu and Egihou. The 

presence of eigenvalues of Jr ' in the vicinity of E.+qhto and 

Eg+qhcu for |q|>2 does not change the final result (,».29). 

These applicability conditions give the conditions for two- 

level system model to be valid In the first-order transition 

probability calculation. 

5. DISCUSSIONS 

Existence of steady state solutions. Most of Hamlltonlans 

which one encounters In practice are of the form >r0'+XV(t), 

where H* ' is a time-Independent HermitIan operator, V(t) is 

also Hermitlan but periodic in time, and X is a small real 

J 
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paramter. If the steady state Schrodlnger equation (5.2,5) for 

the system has a discrete eigenvalue 6(x) and Its elgenfunctlon 

u(r,t,\) InÄ+J, then we certainly have a steady state solution, 

since uCrst^e"15^^ Is a bound solution of the Schrodlnger 

equation and has the required form. Hence the question of the 

existence of steady states can be reduced to the question of 

the existence of the p-jrturbatlon solutions of Eq. (5.2,5). 

The unperturbed Hamlltonlan H'0) that we are Interested 

In has usually bound states solutions In Ä and therefore the 

operator ^0) (-H(0)-ITtö/öt) has discrete eigenvalues and 

corresponding elgenfunctlons In «+J, namely steady state solutions 

(see Eq. (5.7-9)). The solutions that we are Interested In are 

such that the eigenvalue ß(x) approaches one of the discrete 

eigenvalues of jrf0^, when X^O. The question on the existence 

of such perturbation solutions can be treated analogously to 

the static case17; again tne difference Is the Hllbert spaces 

we use, A or S+9. 

By analogy, one can expect that for some V(t) (including 

the perturbing operator for the Stark effect), there exist only 

asymptotic eigenvalues and elgenfunctlons; In other words the 

perturbation equations have solutions only up to some order. 

For this case, one has asymptotic steady states, which Is 

sufficient to explain phenomena such as the Stark effect. 

Young et al. have also given an argument on the existence of 

asymptotic steady states. 

17 
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Switching; function.  In this paper, we have Intentionally 

avoided use of a switching function, which describes how the 

oscillating part V(t) Is turned on and reaches Its asymptotic 

form. We simply regard steady state solutions as asymptotic 

solutions of the Schrödlnger equation which has a switching 

function, and expect that steady state solutions are valid at 

times long after the oscillating part has reached its asymptotic 

form, namely a periodically time-dependent form. As is well 

known, the static Stark effect has been treated in similar manner. 

In this way, we avoid tricky arguments on switching functions 

and hope the above statement is correct. Langhoff et al. have 

Included a switching function in their formalism and somehow 

obtained essentially the same equations as ours for one-level 
p 

system. 

Prospects.  Just recently the multi-level theory was proposed 

for the simultaneous occurrence of Stark shifts and multiple- 

quantum transitions by Hicks et al.5; m essence, they solve 

a steady state Schrödlnger equation for a perturbed system 

[for example, Eq. (3.2) with a finite X] within a specially 

chosen subspace of the composite Hilbert space Ä+7, which is 

composed from several elgenfunctions of the unperturbed operator 

H   and the functions eiqüjt  with small integers q. As is well 

known for the Stark effect calculation, the unperturbed elgenfunctions 

of H  are not suited to expand the perturbed portion of the 

vavef.unction, since so many unperturbed elgenfunctions, including 
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t^ose belonging to the continuous spectrum, are required In 

order to obtain reasonably accurate susceptibilities. One 

avoids this difficulty by choosing the basis functions properly. 

We can reformulate the multi-level theory within our formalism 

by developing a higher-order almost-degenerate perturbation 

theory.  Research' along this line Is In progress and the results 

will be published In the near future. 

The Hellmann-Feynman theorem and the hypervlrlal theorem 

are expected to yield useful relations which can be used to 

check the accuracy of calculated. Induced charge and current 

densities of an atom (or a molecule) in an external electromagnetic 

field. This will be considered subsequently elsewhere. 
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Effective Charge Tensors of Atoms In a Molecule and 

Electric Dipole Shielding of Nuclei 

HIDEO SAMBE 

Laboratory of Molecular Structure and Spectra 
Department of Physics, University of Chicago, 

Chicago, Illinois 60657 

ABSTRACT 

Exact formulas are derived for the electric shielding 

tensors of nuclei in a molecule bathed in a static, uniform, 

electric field.  It is shown that the derived relations hold 

also in the couplöd Hartree-Fock approximation. The resulting 

equations should provide useful checks on the accuracy of the 

first-order induced electron density, a quantity required for 

the calculation of the electric dipole polarizability tensor. 

A tensor quantity, which is a function of the electric dipole 
■ 

moment and its derivatives with respect to the internal 

coordinates, is proposed as an effective charge of an atem in 

a molecule. 
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INTRODUCTION 

The dipole shielding factor ß for an atom In a static 

uniform electric field Is given by N/Z, where N Is the number 

of electrons and Z is the nuclear charge.  This relation, 

ß=N/Z, holds also In the coupled Hartree-Fock (H.P.) 
2 

approximation, which Is, In essence, the H.P. formalism In 

the presence of a weak external field.  Since the dipole 

shielding factor contains the first-order Induced electron 

density, which Is also required for the calculation of the 

electric dipole polarlzablllty, the relation ß=N/z has been 

providing a useful check on the accuracy of the given first- 

order Induced electron density. 

In this paper, we derive the similar relations for the 

electric dipole shielding tensors of nuclei in a molecule, and 

show that the coupled H.P. approximation yields the same 

relations.  The derived expression tor  the nuclear shielding 

tensor can be interpreted as an "effective electron number" 

of an atom divided by the nuclear charge, as in the atomic 

case. The equations obtained should provide useful checks on 

the accuracy of the first-order induced electron density. 

SEPARATION OP RIGID BODY MOTION 
; 

.-Consider a molecule consisting of N    nuclei and N    electrons n e 
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Let us choose the coordinate origin at the center of nuclear 

mass and denote the positions of the ath nucleus and the M-th 

electron by the radius vectors r_ and r respectively. Relative 

positions and distances will be denoted by taB^a'^B*  rap=' ^a"-ß'; 

we shall also use the symbols r^, r^, r^v,  and r^^ defined in 

analogy to rap and rag. The vector P^-i^ denotes the linear 

momentum of the p.th electron. The charge of nucleus a is given 

by Z . We shall use atomic units throughout this paper. 

We use the clamped nuclei Hamiltonian HQ for the electronic 

motion of the molecule: 

-]  . r   _-l . r'   „ ^ _-l 
H0 = ^n^ " ^ct ZaW +^\i<v  Vv + ^a<ß ZaZßräß » 

in the presence of a uniform electric field P, the total 

Hamiltonian H of the perturbed system is given by 

(1) 

H = Hn - F-D , (2) 

where the electric dipole moment D of the molecule Is defined 

with respect to the coordinate origin (i.e., the nuclear mass 

center): 

;a P = -Z^ ^ + i;a Zar 

Suppose that the normalized electronic wavefunction • of 
i 

the perturbed system H satisfies the Hellmann-Feynman theorem 

Va<*|H|*> =<1'|VaH|*> = -(♦IfJ^ ,  0=1,2,-••,Nn , 
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where Va denotes the gradient with respect to the coordinates 

r0, and the operator fa, which represents the force on nucleus 

a* is given by 

I       -a S "VaH ' "^ Vaur^ + lß(w)   ZaZßraßriß + *<£ ' ^ 

\ The 3Nn equations (4) oould be used In solving a problem of the 

forces on nuclei. However, It is convenient to separate the 

■     translatlonal and rotational rigid body motion at an early stage. 

f    Moreover the quantities ^*|H|l> do not correspond to physically 

meaningful quantities In general; only some combinations of 

them do. 

Let us Introduce the operator which represents the force 

on the ^th electron. 

and the total charge of the molecule. 

The operator equations concerning the total force and torque 

on the molecule are, respectively. 

(6) 

(7) 

(8) 

(9) 

Evaluating commutators, one can easily demonstrate the following 

operator equations: 
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l[H' ^uPn1 -^ix ^ ' do) 

^ Eu %%} -1^ r^fu . (n) 

According to the hypervlrlal theorema,5 on the other hand, wc 

have 

(12) 

(13) 

Prom Eqa. (8-15), we obtain the equatlona of nuclear notion 

correapondlng to the rigid tranalation and rotation, reapectlvely. 

(1*) 

(15) 

where the electronic wavefunction ♦ of the perturbed ayatem H 

la nomaliaed to un^.ty. The derived Eqa. (l*) and (15) are 

aatiafied by the exact wavefunction and aloo by the coupled H.P. 

wavefunction, aince both wavefunctiona aatlafy the hypervirial 

theorema (12) and (13) .?r*»6 

Now let q1 be a aet of auitably choaen internal coordinatea 

of the nuclei. In general, the index i rune from one to JN -6 

(up to >ln-5 for linear moleculea). Prom the Hellmann-Peynman 

theoi^-m (*), we obtain the internal force relationa: 

EaS§-<»lfal*>--^^. (16) 

230 

I    M   I tmm 



- 6 - 

Note that we now have physically meaningful quantities at the 

right of Eq. (l6). The exact and the coupled H.F.7 wavefunctlona 

yield Eq. (16). 

In general Eqa. (l*-l6) provide 3. 3, and JN -6 equations 
n 

respectively; for linear molecules 3, 2, and 3Nn-5 respectively. 

Equations (l*-l6), therefore, form a aet of 3Nn simultaneous 

linear equations for the 3Nn unknowna <
,>|fal«>. All the subsequent 

formulae have been derived assuming that Eqa. (1*1-16) are satisfied. 

If we expand ♦ in powers of the field strength P, 

Eqa. (14-16) yield the flrat-order relationa 

Eo ra'<£^(1, - <P>{0>x!r . 

(17) 

Za^" -W1-* 

(18) 

where 

(o) ./A(0)lnlJO), <p>^' .<^|BlV0'> , (19) 

<^«>(l, - ta[<*(0)\lu  ^a^l?'^1^ ♦ CO. ♦ l]    .        (20) 

The aet of Eqa. (18) shows that <f<^
l) can be expressed In terms 

of the dlpole moment <p>^0' and its derivative« with reapoct 

to the Internal coordinatea K^^/hq., 
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EPPECTIVE CHAWE TENSOR 

We define the "effective charge tensor" (£ of atom a in 

the molecule such that, in dyadic notation. 

(0) 9a " W0' • 
(21) 

where fj, £2, c^ are the unit base vectors of the coordinate 

axes. Mote that dyadic 0a la not necessarily symmetric. 

If we expand ♦ In Eq. [k)  according to the powers of the 

field strength P, the first-order elation of Eq. (4) ylelda 

<^ 
(X) ■ i-E . (88) 

«here <f<^'
1' is defined by Eq. (ao). Substituting (22) into 

(IP), we hsve 

Eoi-«»! • 

4l " ^Qj 

(25) 

/ 

where I la the unit dyadic, and Index k runs over k-1, 2,  3. 

A set of Eqs. (23)  provides the equations necessary and sufficient 
(0) to express g^ In terms of <^(0' and X^^/bq^^ 
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The first equation In (25) shows that the sun; ^r the 

"effective chsrges" of atons Is equsl to the totsl chsrge Q 

of the molecule. According to Eq. (22),  the force on an atom 

due to the external electric field Is given simply by the 

"effective charge" times the electric field. Furthermore, 

the change G^* ' In the dlpole moment against the Infinitesimal 

displacements 6£a of nuclear positions ra Is given by 

«<P>(0) -Ea^'i. (24) 

which Is easily seen from the definition of §^.    Because of 

these relations (22-24), the dyadic 0^ deserves to be called 

"effective charge tensor."   It Is Important to note that both 

Eqs. (22) and (24) are first-order relations. 

DIPOLE SHIELDINO TENSOR 

Let us first define the electron density p(r) ss 

P(^  " Nejdr2,,*drM d8i«"d«N    * (C»£2'•••»£»!  i^y»»^ ) 

**(t»lof'>XH J»V-.»II )  »    (25) 

where s^ Is the spin coordinate of the nth electron. Expanding 

♦ In powers of the field strength P, we have the corresponding 

expansion for the electron density: 

P(r) - P(0)(r) +S:-P(1,(I;) +••• . 
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that p '(r) la a vector quantity. 

In dyadic notation, the dlpole shielding tensor ß of 

nucleus o Is defined as 

£l-(E-Co) Al) 

(27) 

With this definition,  the first-order Induced electric field 

at nucleus a Is given by 'ßa*P* 

We now relate the dlpole shielding tensor ßn to the 

"effective charge thensor" g^.    Simply rewriting Eq.  (20)   In 

terms of ga,  we find 

Equations (28)  and (22) yield the desired tensor equation 

Sa - (Zal * Sa)/Z, a * (29) 

Since S^-Zgjl can be Interpreted as the "effective charge" due 

to the electrons of atom a,  the dlpole shielding Is equal to 

an "effective electron number" of atom a devld^d by the nuclear 

charge Z0, as In the atomic caae g-Nl/Z.    The derived relation 

(29) la satisfied by the exact wavefunctlon and also by the 

coupled H.P. wavefunctlon. 

If one has reliable effective charge tenaor g^ the relation 

ß -(Z 1-Q^)/Za should provide uaeful checks on the accuracy of 
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p  (r) near the nucleus a, because of the weight function 

^-^/'r-ra'  ln ga*  In the coupled H.F. formalism, Eq. (29) 

with the H.P. Q^ provides absolute criteria to be the exact 

coupled H.P. p^(r). 

In dyadic notation, the dipole polarlzability tensor a 

are given by 

a. -Jdr r p(l)(r) , 

Sl-S-^i - "/*' ti-r P^ir).^ ,      i,j.i,2,3 . 

Note that ga and a are dctennined by the oame first-order 

induced electron density vector p(l,(r). This is the main 

reason why we are concerned with the dipole shielding tensors 

PQ and the relation (29). 

(30) 

VIRIAL RELATION 

The operator equations for the virial relations are 

'f"' En l^-Fn + ivrJ] - 2T + x;ii r .f 

(31) 

where T-J ip . Assuming that the wavcfunction * satisfies 

the virial theorem 

^Ht«. ^M^r.x-p^vV1!^ '0 • (33) 
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we obtain 

(54) Ea ra- 0|fal^> - <*l5l*>-g + <*|H0 + T|*>   . 

The first-order equation of Eq.   (5^)   is 

^«»ITI^1') +<$(1)|T|*(0)>  = Ec Ja^ -<5>(0)   • (J5) 

This virlal relation also can be used to check the accuracy 

of the first-order induced electron density. 

SPECIALIZATION FOR DIATOMIC MOLECULES 

Consider a diatomic molecule consisting of nucleus a, 

nucleus b, and N electrons.  The internuclear distance, the 

internal coordinate, is denoted by R. We use the Cartesian 

coordinate system centered the nuclear mass center.  The z 

axis points toward nucleus b along the symmetry axis.  The 

unit vectors along the x, y, z axes are denoted by 1, j, k, 

respectively. Due to the axial symmetry, the electric dipole 

moment <D>   can be written as 

<D>(0) - 1* • 
(56) 

Note again that the origin of the dipole moment p. is the nuclear 

mass center, and a positive M- implies a b . 

For diatomic molecules, a set of Eqs. (25) yields the 

effective charge tensors of atoms a and b 
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Sa = zpn^H -1 (ii,+ ijj - IS K . 

Sb » z^«i + | (ü + ij) + I a ; 
• 

\ 

and  the equations, 

•   ^ = ^ai " Sl)/Za  '       gb = ^bl " Sb)/Z
b  '> 

(37) 

} (38) 

can be used to check the  accuracy of the first-order Induced 

electron density. 

For neutral diatomic  molecules  (i.e.,   Q=0),   only the 

quantities h\iM and n/R appear in the effective charge tensors 

Sa  and %'    The quantity Ön/ÖR was actually used as  an  "effective" 

charge of an atom in a neutral diatomic molecules   by J.  H.  Van 

Vleck  ;  the quantity M./R was   interpreted as a measure of ionic 

character of neutral diatomic molecules by L.  Pauling.9 

. 
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ABSTRACT 
- 

The induced electron current density of a polyatomic 

molecule under a static magnetic field Is studied theoretically. 

It is shown that a form of the hypervlrial theorem is equi- 

valent to the continuity equation for the charge and current 

densities, and that the continuity equation is a necessary 

condition for the gauge invarlance of the total energy. An 

alternative form of the continuity equation is used to obtain 

relations useful in the magnetic susceptibility and nuclear 

magnetic shielding calculations, and also to define the 

paramagnetic and diamagnetic current densities uniquely. Finally 

a procedure for choosing the best gauge origin in the coupled 

Hartree-Fock method with the expansion basis functions is 

discussed. 
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ABSTRACT . 

The induced electron current density of a polyatomic 

molecule under a static magnetic field is studied theoretically. 

It is shown that a form of the hypervirial theorem is equi- 

valent to the continuity equation for the charge and current 

densities, and that the continuity equation is a necessary 

condition for the gauge invarlance of the total energy. An 

alternative form of the continuity equation is used to obtain 

relations useful in the magnetic susceptibility and nuclear 

magnetic shielding calculations, and also to define the 

paramagnetic and diamagnetic current densities uniquely. Finally 

a procedure for choosing the best gauge origin in the coupled 

Hartree-Fock method with the expansion basis functions is 

discussed. 
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HYPERVIRIAL THEOREM, CONTINUITY EQUATION AND GAUGE INVARIANCE 

Consider a polyatomic molecule In a static magnetic field 

whose vector potential is given by A(r). We use the clamped 

nuclei Hamiltonian for the electronic motion of the molecule; 

the Hamiltonian H is, in atomic units. 

-1 
ab ' (1) H = r i^-n2 -  Y     Z r"1) +y r"1 + V    Z Z r ^p, ^s-vio, L,a    a Va^  ^ M-<v |.LV  ^ a<b ab 

where H^V^kir^) .     The ru and p^ denote the position and 

linear momentum of the iith electron, respectively; Z is the 
SL 

nuclear charge of the ath nucleus, and a is the fine structure 

constant. The electron current density of the state $ is given 

by 

j« = -K*IZ:^ [sLv^ + v(v^)],$> 
(2) 

theorem. 

Let ,us assume that the wavefunction $ satisfies a hypervirial 
1 

^llCH, ^ fCrpil«.) =0 , (5) 

for any real function f(r) which is expandable with finite powers 

of the Cartesian coordinates centered on the molecule. Using 

commutator algebra, we find the operator equation 

where V operates only on f(r), while TT applies to all fu jtlons 
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which appear to the right of it. Substituting (4) into (?) and 

employing the current density j(r) as given by Eq. (2), ve  can 

rewrite Eq. (3)   in the form 

h J(r) • Vf(r)dr = 0 . 

Furthermore, we have the following relation 

jjjv) - Vf(r)dr = Jf(r) V-JCr)dr . 

(5) 

(6) 

This relation is derived by integrating the well-known formula 

of vector analysis 

V-(fJ)  = J-Vf + f \7-J , (7) 

applying the divergence theorem of Gauss, and using the fact 

that the surface integral vanishes at infinitely far distance 

from the molecule due to fj=0 at infinity. Since Eqs. (5) and 

(6) are valid for arbitrary functions f(r), we obtain the 

continuity equation for stationary states: 

V-J(r) = 0 . (8) 

Conversely we can prove the hypervirial relation (?) starting 

from the continuity equation (8). Therefore, the hypervirial 

relation (3), Eq. (5), and the continuity equation (8) are 

equivalent. Since both the exact and the coupled Hartree-Fock 

wavefunctions satisfy Eq. (3),1 the current densities given by 

these, wavefunctioris satisfy Eqs. (5) and (8). 
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We now relate the continuity equation to the gauge Invarlance 

of the total energy. The energy change 6E reaultlng from a change 

6A(r) In the vector potential la given by the general expreaalon 

6E - -aj J(r)-6A(r)dr . (9) 

If the change B&fg) la due to a gauge tranaConnatlon (i.e., 

öftCrj-Vffr)), then the corresponding change 6E In energy ahould 

be zero, since physical quantities are gauge Invariant. This 

argument leads to Bq. (3). In other words, the continuity 

equation (8) Is a necessary condition for the gauge Invarlance 

of total energy. Incidentally Eq. (3) Is the condition proposed 

by S. T. Epstein to ensure the "local" gauge Invarlance. 

APPLICATIONS 

■ 

1.    Useful Relations for the Magnetic Susceptibility and 
Nuclear Magnetic Shielding Calculations 

■ 

Consider a molecule In a static uniform magnetic field 

B(«»Dg).    Its vector poi.?ntlal A(r)  can be given by 

A(r)  " iBx(r - c)   , (10) 

where £ la a constant vector and sometimes called "gauge origin.' 

The field direction g la fixed, and the field strength B will 

vary by an inflnlteslmally small amount from zero. The wave- 
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function ♦ and the current density J(r) are expanded in powers 
or B: 

♦ - ^0) + Bt^ +... ,    j . jfO) + Bjd) +.. . . (u) 

The magnetic susceptibility x  «nd the nuclear magnetic ahielding 

S9i  of the ath nucleus are given by 

X - io/(r - 2)>«J(l,(£)d£ , (12) 

s. - -fli - tk)«j(a)(r)/l£ - r,iV • (i5) 

On the other hand, substituting (j-c)2 and l^-r I"1 for 

f(r) in EQ. (5) and expanding the resulting equations In powers 

of B, one has the flrst-orler relations: 

fir  - c).^1)(r)dr - 0 , (lk) 

/fr-ra)-J
(l)(r)/|r.raPdr.o . ds) 

Because of the similarity of the weight functions, Eqs. (l*,15) 

may provide useful inrormation on the accuracy of the first- 

order current density for the magnetic susceptibility and nuclear 

magnetic shielding calculations (compare (12) with (14) and (15) 

with (15), respectively). 

Another useful relation Is 

/j(1)(r)dr.o, (16) 

which can be derived by choosing f(r)-x, y, and z In (5). This 
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relation ensures the "looal" gauge invarlanoe against a gauge 

trans Tonnst Ion £-*S+AC. 

The first-order Induced current density J^  Mj)  should 

satisfy the first-order continuity relation: 

7-J(l)(r) - 0 . (17) 

Thia' nontrlvlal relation also can be used to check the accuracy 

of the given first-order current density. 

2. A Definition of Paramagnetic and Dlamagnetic Current Densities 

A number of authors hsve divided the first-order Induced 

current density ^'(r) into the paramagnetic ^ '(r) and the 

diamagnetic ji (y) current densities end attempted to Interpret 

those current densities separately. The explicit expressions 

for those current densities are given by 

r(l) Jo) (o), (18) J^(r) - -hx<^0Maj:u (vs)6(Vr)|<^> , 

i^iv)  '  -*K<>(0)|^ [»(^- rfP^ + P^(Vr))|l>(l)> + C.C.) . (19) 

These current densities depend on the choice of the "gauge origin'' 

Although the divided current densities are not physical 

quantities (only the total current density .r '(r) la physically 

meaningful), it would be desirable if each one behave like the 
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physical quantity ^Mr) ln 80,ne MP^ct« wuh that ln mlnd 

we Impose a requirement on each divided current denaltlea: 

/4l)(r)«r-o.      (or   /^(rfor-o) • (20) 

Note that the JT1'^) «atlsflea the aame relation (l6). The 

condition (20) yields the electronic charge center as the 

"gauge origin" and renders the partition unique. In other words, 

the electronic charge center la proposed as the gauge origin 

In order to define the paramagnetic and dlamagnetlc current 

denaltlea. 

5. A "Best" Gauge Origin for Coupled Hartrce-Pock Method 

Since the exact coupled Hartree-Pock procedure Is gauge 

Invariant,2'' the following argument will be applied to the 

coupled Hartree-Pock method with the finite expansion basis 

functiona to cslculate the second-order magnetic properties 

of molecules. 

Let us restrict ourselves to the Eround state, and assume 

that we have the exact unperturbed Hartree-Pock solution. 

Plxlng the unperturbed orbitals, we have a minimal principle 

for the second-order energy with respect to the first-order 

perturbed orbitals. Suppose that two sets of trial first-order 
(2)     (2) 

perturbed orbitals give the second-order energies Ea  and E^ 

at the corresponding gauge origins ca and cb, respectively. 
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(2)        (2) (2) If B^ '>E^ ',  then E^ ' is a better approximation to the exact 

Hartree-Pock second-order energy E}«'  than B^ ', since E^2' ^Eul » 
(2)       (2) 

and B^    ^^HP •    Thl8 la not necessarily true,  If approximate 

unperturbed orbitale are used in plsce of the exact ones.    However 

thia may also be applied to the wavefunctloho which are believed 

to be very near to the Hartree-Fock solution.    Under these 

circumstances,  the criterion for the best second-order energy 
(2) E        is the energy minimum regardless of the gauge origin. 

"Beat" gauge origin is, therefore,  the gsuge origin that gives 

the smallest second-order energy.    If we spply this criterion 

to W. N.  Lipscomb and co-workers*  results,  '    we choose the 

right gauge origin in the sense that the first-order induced 

current density obtained with the gauge origin gives better 

agreement with experiir«ntal data on the magnetic susceptibility, 

the rotational magnetic moment,  the nuclear magnetic shielding, 

and the spin-rotational constant without oxception.    If we 

minimize the second-order energy against the gauge origin g» 

the induced current density ^    '(r)  satisfies Eq.   (l6)  as a 

consequence. 
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SELF-CONSISTENT FIELD CALCULATIONS FOR THE ELASTIC SCATTERING 

OF ELECTRONS FROM HYDROGEN-LIKE SYSTEMS*' 
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Chicago, Illinois 60657 

ABSTRACT 

A general formalism is presented for the description of 

elastic scattering of electrons from hydrogen-like atomic 

systems.    The total wave function for the two-electron system 

is put forth as a multiconfiguration expansion in terms of 

suitably normalized orthogonal orbitals.    These radial orbitals 

as well as the  coefficients of the expansion are determined 

variationally via a system of coupled integrodifferential 

equations.    The  formalism is applied to the  calculation of 

elastic electron-hydrogen scattering in the energy range below 

the first resonance for the    S state of the two-electron 

system.    Accurate phase shifts are  obtained with short 

expansions, as the newly introduced orbitals obtained by 

numerically  integrating the  integrodifferential equations 

account quite adequately for short range  correlation. 
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INTRODUCTION 

Partial wave phase shift calculations for the elastic 

scattering of electrons from atomic systems have been carried 

out by many workers.  The approach generally taken Is to 

calculate an approximate total wave function of definite total 

angular momentum, parity, and spin.  Such wave functions, 

called partial waves, are standing wave stationary state 

solutions to the Schrödlnger equation for a continuum state 

of the system consisting of the target atom and the scattering 

electron. The methods used in these calculations are analogous 

to the methods developed for the calculation of bound state 

atomic wave functions. 

In scattering processes, the incident electron can 

either be scattered by the target atom without loss of 

energy (elastic scattering) or can give up some of its energy 

to the target, leaving it in an excited state, while the pro- 

jectile leaves the vicinity of the target with a speed in accord 

with the conservation of energy (inelastic scattering). Each 

distinct process by which the scattered electron recedes from 

the target , leaving it in a definite energy state, is called 

an "open channel". All partial wave methods represent each 

open channel by a term consisting of an antisymmetrlzed 
■ 

product of an N-l electron target wave function and an open 

channel orbital used to describe the scattered electron. 
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These orbltals are not square Integrable and have sinusoidal 

behaviour for large argument. The wavelength of the oscillation 

is determined by the speed of the receding electron in the 

open channel.  In addition to the open channel term(s), the 

solution to the Schrödinger equation must contain a "bound 

part" which is square integrable in all electronic coordinates 

in the usual way. This bound part of the partial wave is 

particularly important in describing interactions which take 

place in the vicinity of the target. 

The various methods used in the partial wave description 

differ in the way the bound part of the wavefunction is re- 

presented and also in the way the open channel orbital is 

calculated.  In the case of two-relectron calculations where 

we wish to describe the scattering from a hydrogen-like system, 

the bound part of the partial wave can be made to depend 

explicitly upon the interelectronic distance in the spirit 

of Hylleraas and Pekeris. The eigenstates of the target 

used in the construction of the open channel terms are in 

this case exactly known. In the important case of elastic 

scattering of electrons from hydrogen atoms in the energy 

range below the first resonance, calculations of this type 

have been carried out for S-waves by Schwartz2 and for P-• 

waves by Armstead .  In these calculations the single open 

channel orbital was represented by suitably chosen analytic 
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functlons.  Very accurate phase shifts were obtained by these 

workers in the energy range considered. 

Because of the particular way in which these calculations 

were carried out, the wave functions used did not have suffi- 

cient flexibility to describe resonance formation adequately. 

Resonances occur near an excitation threshold of the target, 

and it is desirable to include in the total wave function, 

terms which continuously go over into the required open 

channel functions as the scattering electrons incident energy 

increases to permit excitation of the target. 

In the "close coupling" method, bound state wave functions 

for the target atom in excess of those needed to construct 

the open channel terms are used with square integrable "closed 

channel Orbitals" to construct the bound part of the partial 

wave in the same way that the open channel orbitals are used 

with target wave functions to construct the open channel part. 

Together the open and closed channel orbitals satisfy a system 

of linear integro-differential equations which are solved 

numerically.  Hence in the close coupling method the bound 

portion of the partial wave is constructed in complete analogy 

to the open channel part; the individual terms are called 

"closed channels". 
■ 

The close coupling scheme is suited for the description 

of inelastic scattering and resonance formation as well as 
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elastlc scattering. The wave function goes smoothly across 

an excitation threshold of the target; one or more of the 

closed channel terms below threshold become open channel terms 

above threshold as the radial orbitals make a smooth transition 

from square Integrable form to open channel type. 

The set of open and closed channel terms which make up 

the close coupling wave function are not a complete set of 

N-partlcle functions. This Is so because there are no terms 

Included which are formed from continuum states of the N-l 

particle target.  Even If wave functions were In hand for 

every bound target state, the close coupling expansion would 

still be deficient. 

Burke and Taylor* have overcome the deficiency of the 

close coupling model while retaining Its advantages by append- 

ing to a suitably chosen close coupling expansion, a flexible 

expansion of the Hylleraas type as used by Schwartz . The 

phase shifts which they obtain for S-wave elastic scattering 

of electrons from Hydrogen atoms match in accuracy those obtained 

by Schwartz. This modified close coupling wave function retains 

the suitability of ordinary close coupling for the description 

of resonance formation, crossing a threshold when opening up 

a new scattering channel, and inelastic scattering. For many- 

älectron situations, however, the explicit dependence of the 

wave function on the interelectronic distances presents a 

formidable obstacle to calculations. 
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Gallitis used an approach similar to that of Burke and 

Taylor for the elastic scattering of electrons from atomic 

hydrogen.  He appended to a one term close coupling expansion, 

a bilinear form of known one-electron functions.  His expansions 

had to be a good deal longer than those of Burke and Taylor 

to achieve similar accuracy, but the method can be extended 

to many-electron cases with much less difficulty.  Gallltls, 

like Burke and Taylor, obtained his open channel orbital by 
7 

numerical Integration. Recently, Chung and Chen have performed 

calculations similar to Gallltls, except that the open channel 

function Is obtained In analytic form. 

In this paper we present a method for elastic scattering 

In the two-electron case similar In spirit to that of Gallltls. 

To the requisite open channel term we add a bound part consist- 

ing of a multlconflguratlon expansion using a set of orthonormal 

orbltals which are determined along with the open channel orbital 

and the coefficients of the expansion, by a coupled set of 

integro-differential equations.  This method removes the de- 

ficiency of close coupling through the full flexibility permitted 

for the newly introduced orbltals.  For the two-electron case, 

the method is Intermediate between Burke and Taylor on the one 

hand and Gallltls and Chung-Chen on the other. For the same 

accuracy in the calculated phase shifts, we require a longer 

expansion than the former but considerably shorter than the 
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latter. Moreover, the generalization of this model to 

many-electron cases will be especially simple because of 

the use of orthonormal orbitals. Resonance description is 

also permitted , as wave functions can be constructed which 

pass smoothly through an excitation threshold. To test the 

accuracy of the method, we solve the equations numerically 

for the ■LS state of the e"H system in the elastic scattering 

region below the first resonance. Both phase shifts and 

orbitals are obtained. 
, 

■ 

■ • 

,■■■'■■ 

■,..■■ 
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■ 

■ 
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PORMALISM 

We consider the  calculation of those continuum states 

of a two-electron system which describe a situation where 

one of the  two electrons  remains,   on the average,   in the 

vicinity of the nucleus.    Thus we want to calculate the 

total wave  function    ^(x-^Xg)   of the  space and spin coordin- 

ates of two electrons  orbiting about a fixed nucleus of 

charge Z.    The function    \i/(x1,x2) ,   so depicted,   is to be 

understood as a standing wave solution to the Schrftdinger 

equation: ■ 

■ 

■ . - ■ 

where E is the fixed and given total energy of the system 

and where /;' is the usual nonrelativistic spin- independent 

Hamiltonian operator; in atomic units: 

■ 

yi.--h\2 -%v22.-r1-
i
z-r2-

1z + 
-1 

12 (2) 

Here r^ and r2 are, respectively, the distances of the two 

electrons from the nucleus, while r12 is the interelectronic 

separation. The motion of the nucleus, being slight, is 

neglected. 

The operator 06 is independent of the spin coordinates 

of the electrons, and the system under consideration contains 

but two electrons. These facts permit the factorization of 
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T(x,,x2) into a function ^(i^/Tp) of the space coordinates 

only, multiplied by a function of the spin coordinates. 

These spin functions are well known and need not be further 

considered in this paper. 

The Hamiltonian ^£ is invariant under rotation of the 

coordinate system used to describe the electronic positions. 

The total wave function V is therefore required to exhibit 

definite angular symmetry and to be a simultaneous eigenfunc- 

tion v? jC    > cjC      *  and **%. • Here ^     is the operator for 

the total orbital angular momentum and //'^ is its z component. 

Additional invariances of ^f     ,  namely under inversion 

of the coordinates and particle exchange, are also reflected 

in symmetry properties of the wave function. The exchange 

symmetry of the spatial function V* which is a consequence of 

the Pauli principle, is determined by the value of S, the 

total spin quantum number which must be 0 or 1. Likewise, 

the symmetry of ^ under inversion of the particle coordinates 

is completely determined by the total angular momentum quantum 

number L. This is so because the spatial wavefunction must 

"dissociate" properly into a product form consisting of a 

hydrogen-like system in its ground state, multiplied by a 

continuum function describing a transiting electron with 

angular momentum L. 
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These'facts are summarized In the following equations: 

^VLMSE^l^  = M 1
ALMSE^V^2^ -L ^ M ^ L,, 

P'-W^l'^) =  VW-^l'-'rV -(-D1, 'Ams^ rp r2) , 
N 

where jP    and ^O are the parity and exchange operators, 

respectively. 

In general, one might expect to find both parities for 

given LMSE.  The first Eq. (4) expresses the Inversion be- 

havior of the "normal" spectal terms.  (These are the only 

ones occurring In one-electron spectra.)  The "abnormal" 

terms, for which 

. Q^msE^vV  = (-D14"1 ^/W ^1^2) > (5) 

)W 

1 
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are  In this  case  ruled  out  by the  "CMS^OPI^     n 
if   une    aissoclation"   requirement 

which must  be  satisfied when elthp^ ^r tu ,, en ^her of the arguments of l/CMor, 
becomes very large. 71jMSE 

8    We mtroduol the two-partlole a^ular funetlcns defined 
by 

ni=-t m«=-A' 
LMxr 

'    -L ^ M ^ L  . (6) 

They satisfy the equations 

P 
, 

■ 

s 

(7) 

(8) 

(9) 

(10) 

(11) 
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In Fig.   1 we  illustrate the permissible pairs (  I , i' ) 

used  to construct  the functions  Y^, , ,( Q^ 02) for L = 

0,1,2.    The functions ^^(Q^Qg) are an essential 

ingredient  in the  construction of the  total wave  function 

nüMSE^l'*^'    According to the Pauli principle,    l// 
''LMSE 

has a definite exchange symmetry,  so that whenever the pair 

( X , X •)   is permitted,  ( i', I )   ±B mandatory;  hence the 

diagrams are  symmetrical about the line    t = l'.    The permit. 

ted points (    L ,       )   lie within and on the boundaries  of the 

region of the    .£ , i'   plane bounded by the  lines 

i   -/'= L 
; »L 

(12) 
./ 

A 

. 

We define the sets   ^     and     ^   of permitted points 

(   i , ./.  )  according to the equations: 

i^L =[( £,£')   such that   Ul    is even and | / - / |     ^ 

• 

VL= \{i,Ql)   such that  l+j!   ia odd and  | / - / | 
> (13) 

^Li-U £,'],• 
. 

these sets are illustrated in Fig. 1. 

/ 
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Por pairs ( i  , l')  e ^  we hav^ accordlng to Eq> (^ 

while 

Ul^IMa»^1^2)   =yLML'i(^l'fi2)' (1*) 

(?\2YmiL^i^^ = -YLMit^ ^Pfia) • (15) 

The functions   Y^^C^, ^        constitute a complete set 

of two-particle angular functions.    The total wave functions 

'may therefore be expanded according to 

tfW*^) = (rir2)-
1Z3LSE«1*<ni^2)w,(Q1,n2),] 

r—" 
\ • \ /n CN 

for "normal" and ' aono-p.i" ter^s,   respectively.    Since terms 

corresponding to the pairs (0,L)   and (L,0)   must be present  in 

the partial wave to satisfy the  "dissociation"  requirement, 

only the  "normal"  series is acceptable.    We see also from 

Pig.  1 that for L = 0 only "normal"  terms  can exist;  this  is 

a well known special property of two electron spectra.    ' 

The "normal series" fl6)   can represent the exact wave 

function Vi^l*    5* ) provided that the  functions 3l       n    (r>    r> \ 
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are given by 

^LSE »£•< rl' r2)   " /^l läQS^ Q1' ^2) ""W ^l-^) = '17) 

using Eq.  (14),  they are easily shown to satisfy 

^LSEjLL'K^   = (-^LSEJL'jl^l) 
(18) 

Suppose now that   |?21   = r2 becomes very large,   indicating 

that one  of the two electrons  is  far from the nucleus.    In 

this case,  ^LMSE     triust describe a system consisting of an 

electron in transit past a one electron atom or ion.    Moreover, 

since we  consider here  only those values of E for which the 

target atom or ion must remain in its ground state,  we can 

write 
. 

^LMSE^l'^)  ^ ^r^lsW^ks^W^l'^ 
■ 

CO 
(19) 

where 
. 

CD,  (r)   = 2ZIre-Zr 

lsv   ' 
(20) 

is the normalized ground state  orbital of the atom (or ion) 
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core about which the motion of the unbounded electron,  de- 

scribed by the function ay r) ,  takes place.    This continuum 

electron has angular momentum quantum number L.    For large 

argument. 

CDkL(r)   £ Asln(kr +k-1[Z-l]ln(r)  + t]), oo (21) 

where A Is the amplitude,   usually taken to be  unity, r\  Is the 

phase shift, and k Is  the wave number,  defined by 

■ %k^ + e = E, 

e  =-%Z2 j J 
(22) 

. 

e  Is  fche energy of the atom (or Ion)   core  In  Its groundstate. 

The exchange symmetry of ■ ^ requires,   of course, 

that  If  11^|  = r.   should becomfj large,  we must have 

VW^)   ^ (rir2) "V^ rj Cri3( r2)YmL0{ C^, Q2) 
■ oo . 

■) 
(25) 

We shall call the  function d^ r)    an orbital, even though 

it is not square integrable.    When it is important to distinguish 

it from square  integrable functions,  the term "continuum 

orbital" will be employed. 
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^ indl0e3 MSE' being good quantu. „umbe.a , 
for a glven oaloulatlo„; henoe Ke  „ 

3' ^ COn3tant 

and «)/,. PPreS3 them on both I/' 
i^  , writing 1„ view of Eq5. (l6j 18) '»SE 

^"v*.)  - S«'(ri'r2>yu.^rng).  (24) 

We turn now to the  det^-n^ 
3>    (r    r , T 

ailed 00nBlae^tl6n of the  functions 

.-le'^l'V      •    In Practlcal calculations we  use     i^    A 
the  incite set  V       a  flnn . '' 0f 

^    *  a  finite subset   \mh        c   ^ i 

13 arbitrary, except that if ( /    r,  i   , h 

alao la (  £'    £ ,      B ; l* ' /Me included  m it, so 
> •   . A. ;.    For this chosen subset   r«//1 

pose to determine the functions ?     , / "'e Pr0' 
Since the set   W ) '  ^^  i'^      Var:latl°™lly. 

If,', contains a fimte number of pairs 
<£  .t).lt win be convenient to replace the       , 
(   f      r'\  i. replace the pair Index 
1 ^ - X  J  by a running Index v which Is  ir. 

-cewlththepalrs(,,/)e;;;in~e~- 
can be sot .m . J * Co^espondence ue sot up in many wava    n«^ ., 

J  ways,  and a convenient one  •»«  -t-n     .. 
^ Pig.   2 for L = 4      We .H     .  .. Illustrated 

*    We adopt  the invention that  v - i 
corresponds to the  "el**i-in 

elastic scattering term" (0 L)     M 
Jf v o^vv, ^

U
J
J
-';.  Moreover lf V Co^sponds to the pair (  £      t\ ' 

+-^ ^ ^    i   ^  ^ * ^ J,  we shall understanri S 
to mean that value of m« '«erstand v 

!      rimnlng inde* whlch corresponds t the exchanged pair { /'   £  )       w      , c^^ponds to 
V > * A ;.    We shall write v_^ (   £ j ^ j 
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to indicate  the  correspondence  between v and  the  pair ( i ,/). 

We also Introduce V,   the set  of v_^ ( i  , / )   for 

We want to aPProximat.e ^.(r^^)       by finite bilinear ex- 

pansions of functions  of the single arguments  ^ and r,,.  If 

a pair of such  functions  occurs  in the  construction of^    {r    v) 

then the .e.ber bearing the coordinate  r, K .st  vary for smu'  ' 

argument as r,     ^ whinp 1 hß P^^^^-A 
1        wniie  the  function with argument  rp behaves 

r2        as r2 approaches 0.    This must be  so because  of the 

angular dependence  of the function v      (O     O \   »m^v, w.iouj.un ^/^n-1^*J^J   which accom- 

panies    Q^Cr^rg)     in the expression (24)   for the total 

wave function.    Moreover,   in order to satisfy the exchange 

condition,  Eq.  (25),   the functions  used to describe    (j)   |{r ^ s 

must be  used with arguments exchanged to construct    (ßf^ ^ ) . 

With these  facts  in mind, we introduce functions    CD  ^and1'   2   ' 
(T) vm ^^ ,  m = 1,2, ...,  Nv    | 

0   (r)   * rC+:L 
vmv   ;      l      » ■ 

0- (r)   . /+1    ) r—0   , (26) 
vmv ^ /   - -^       t 

where v-— ( i  , i   )  and v—^ (  / , /,  ) . 

As the notation indicates,  the functions     O^r)  depend 

upon both indices / and // .    We have  introduced Ine set of 

functions for each point (/,/')   of the set [^// ] . To 

266 

^^ MMBM« 



^^F 

■17- 

construct the functions    Q     (r-^r^)    and    M^i. (^^g)     * 

both sets  of functions     ®vrn and    (D^ are needed.     In Pig.  2 

for example,  to construct    0:o ^ (r1,r2)   we  use the products 

formed from    ^n/^   and     T5n( r2),  m = 1,2, ,,.,,^5   n » 1, 

2, ...^NeJ N^ ■ Ne.    All products are  used which are not ruled 

out by the asymptotic behavior of the .total wave  function. 

Note that in this example,   v = 1—^(0,4)   and v = 5—^(4,0). 

The- same products with exchanged arguments are  used to con- 

struct    (5^ o^rl,r2^   where  v = 5—^(^^O)   and  v =  1—»-(0,4). 

Note that  if v—•■ (   i , H')  and w-^ ( /  , /"), iV l",  the 

two sets of functions    Om{r)  and    C£wn(r)   behave  for small 

r like r    1 according to Eq.  (26),  yet these  functions are 

in general completely different.    This  is a departure  from 

the  usual orbital model;   it  is adopted because  of the  great- 

er flexibility afforded to the wave function and the ease of 

implementation in the two-electron case. 

The approximations to the functions ^   |(ri'r2^  are 

now given by 

m. VHvVv 
.( r,, r2)  = ( r^g) "^    L     ® J 'X* ^^rP vn< ^ '        < ^ 

m=l    n=l 

where v-—(   i , £'),  v—(   £', I )   and 

r    =(-i^sr- 1  vran " ^   a-''   '   vnm  * 
(28) 
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Eq.  (28)   guarantees  the exchange  condition (l8).     Note  that 

evidently. 

N    = N- v v (29) 

In case /' - £  so that v = v—^ ( i: , / ), Eqs. ( 26) 

reduce to a single set and Eqs. (27,28) still apply; 

£Q (r1,r2) becomes a quadratic form In the functions 

CT^Jr), m = l,2,....,Nv. 

According to Eqs. (19,20,21,23) which Indicate the 

asymptotic behavior of ij/   , two of the orbltals Introduced 

have a special significance. The orbital (D1 -^ r) Is the 

hydrogenlc ground state function (Dl3( r), and Qj N Is the 

continuum orbital ^Dv-r/1^5 

®l,l{r) CDl3(r)   = 2Z?re -Zr 

{( 30) 

-1- 
^1 N-(r)  =   ®kL^^ a sin(kr + [Z-l]k"xlnr+ n), 

r ».00. 

We have adopted  the  convention that  the  fixed hydrogen- 

lc  function    01 (r)   Is  numbered first among the  functions 

CD1 (r),  n = 1,2, ....,N1 and the continuum orbital   r^r) 

Is numbered last among the  functions    ^^y  m - 1*2,,,,,N^, 

All of the remaining orbltals    (I}Tmi(r),  m = 1,2, ...,N, vnr 
v e V,  are square  Integrable functions.     In scattering 

J 
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processes, ^igC17) describes the target,  CDkL( r) describes 

the scattered electron at large distances from the target, 

and the remaining orbitals describe Interactions taking 

place in the vicinity of the target; these include polarization, 

correlated motion, and resonance formation. 

In the expansion (27) for Q^r^rg), all possible 

products n"vm(r1)  ®vn^
r2^ are used excePt those excluded 

by the asymptotic form given by Eqs. (39,23). This means 

that the continuum orbital CD*- „ ( r) can only be paired with 

the hydrogenic groundstate orbital OD^ -.( r) . This implies 

that 

ri,*1,n^-VS*5nl = (-l)Sr .  (31) 

All possible products between square integrable orbitals are 

permitted. Because all such products occur in (27), some 

auxilllary conditions must be imposed upon the CP (r) to 

guarantee an unambiguous expansion for Si (r.,,^): unique 

coefficients  ' vnm can be specified only if some orthogon- 

ality and normalization requirements are placed upon the 

0vrr)( r) . Even with normalization and orthogonality conditions 

Imposed, the square integrable 0 (r) can only be determined 

up to a unitary transformation, and futher specification is 

necessary. For these reasons we require that, for fixed v, 

the square Integrable functions (including 0.. (r) if v = 1) 
j-S 

269 

■ 

'■ "-"'*• 



^'^ 

-20. 

are  required  to satisfy the equations 

'-■mn 
(32) 

where 

2h. HF2  -Äi+l)r "2 -1      ) + 2Zr      ,    ! 

— ( i,i). (33) 

The particular choice of these conditions is dictated by the 

Physical consideration that, as the incident electron', kinetic 

energy approaches the target excitation threshold, some of 

the  ®vrri(r) must become hydrogenic elgenf unctions. The 

conditions (32) allow this to happen in a natural way. 

We wish to emphasize that the relations (32) required 

of the square integrable orbitals Ojr)   apply only between 

functions bearing the same index v. Refer again to Pig. 2 

where v  2 corresponds to the pair ( jl , jt')   = (1,3), 

while v = 7 corresponds to the pair (/,/')=( 3,3) . 

The point ( X , t   )   = ( 3,1) corresponds to v = 5 = 4. The 

two sets of functions 

^(r), n = 1,2,....,^, 

^7m(r), m = 1,2,....,N7, 

have the same behavior for small argument; all of these 

functions start out near r = 0 proportional to r4. The 
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(PJ,  ( r).  form an orthonortnal set which diagonallzes  the 

operator 

^2 

4      zdr 6r"2 + Zr"1  , 

In the Hllbert space available  to them.    According to Eqs.(j52) 

with v = 7,   the  functions   "p,, ( r)   are also an orthonormal 

set and dlagonallze.   In their Hllbert space,   the  same  oper- 

ator,  yet they have no orthogonality relations with the 

The  continuum  orbital    ^^r)   =     «W N-^r^   is  rec3uired 

to be  orthogonal to the  rest of the  functions    ^ir/1")'' 

<®lNJ^ln> = 0 (j*) 

In Fig.   2,   v = 1 __-(0,4),   so that v = 5 —(4,0) . 

If there are Nr = N-,   functions associated with the point 

(4,0)—». 5,  then the  continuum orbital Is    0,- N ( r)  and 

is orthogonal to each function    CCL (r), m - 1,2,.. ^N,--!. 

Note that all of the  other points  in the diagram correspond 

to sets of square  integrable  functions only. 

According to equations (24.,27),  the total wave  function 

is  given by 

\jH «V r2)   = ( r^) %, L V L V CD J r,) F ^CD^ r2) Yv( fi ,, fi 2) . 
veV m=l    n--l 
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To determine the functions  ®,.J r) and the coefficients v in 
ä  ,       we form the functional vmn 

L(l//)   =   \t\\a\\lj\x  -E]!//, (56) 

and calculate the first variation of L: 

(5L(l/0 = 2jd:5r Jd^ÖlAl^ -E]l/r 

Prom this expression, we see that the function ^'(r,,!*) 

for which ÖL( \J! )   vanishes for all variations  Ö^/f r ,r2) 

such that the "surface term" 

l\^r%f- wm , (38) 

also vanishes,  must satisfy the SchrBdinger equation 

[X - E]l//   = 0  . (39) 

We substitute    ^{r^r^   as given by Eq.  (55)   into 

Eq.  (36)  and carry out the variation (37),  permitting only 
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varlatlons'In the radial functions    0J r)  and the  coeffi- 

cients      r,
vmn.    These variations are restricted so that the 

"surface  term"  {38)   Is always  zero.    We  Introduce   for con- 

venience,   the  functions  uvm(r)   defined by 

n=j 
vmn    VJ'' vrv i^O) 

Note that according to Eq. (26), 

uvmH -^'+1, r 0. Cu) 

According to Eqs.  (35,40),   we may write 

^'^   ^^"'Lta  V   ^vm^l)    %m^2)Yv^r02). 
(42) 

The  varlatlonal condition that      6L{ \J/ )   =0 for all per- 

mitted variations       (Jl/f      leads  to the system of equations 

[hv - x(a)vm,0vm) + (^IhJ.^) + E^ 

N 

weV  n=l 
X^vm^rwn)uwn + Övl(CDrailhIICDlN>ulN Lo, 

l       ii 

(43) 
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for the functions  u^r).     Here  v-~ ( i  , i:'),   v e  V, 

m = 1,2,...,Ny,  but (v,tn)   £ (I,Nj).    The  one-electron 

operator hv  Is  given by Eq,   (33).     The prime  In Eq.   (40) 

Indicates that the term 

Is -not Included In the summation. 

The auxllliary functions X(   Ovm,  0^)   are defined 

by  the equations 

X( ^vtn' CTwn)  -   2-vCv xv( 
vw     x ^vm' Own)' 

XV(   ®vtn, CDwn)   = (2V+1)-1 [rv j CDvm{s)8-(^)   0wn(s)d8 

+ r-
V-1/^j3)svQ)wn(s)dsj     , 

Cvw " (-1)Irl'V    (2^+l)(?-+l)(2rH-l)(2pi+l)[C(i:pv,00O) 

W(i^/,pp«,Lv)C(/.'piv,000)] 

where  v— ( f, , ^ ),  w—. ( p   ^ p. )   and c(/ p Vj000)   and 

W(£.£',pp«,Lv)   are the well known Clebsh Gordan and Racah 
o 

coefficients  respectively. 

The  index v  In Eqs.  (44)   has the  range specified by 

the  conditions 
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W - P'l  ^ v ^   L'+ p.  , 

(-l/+p = (-l)v = (-l)^,+P, 
(^5) 

There  is one agential e.uation Tor each indepen.ent 

-dial function.    We see r.o. Eq.  (43)   that there ls no 

.Ration for »^ ,    Thls ls  8o ^^  ^ ^^^ 

form  ^  pre3Cribed by the dlssoclation requirement and 

cannot be  varied.    We  obtain it  from Eqs.  ^o): 

UI,N>) =(-I)SA a>l8(r). (46) 

We wish to call attention to the 
the form 

terms  in Eq.  (43)   of 

^vl  (^mllMcO^) u^.. 

These  terms  occur in the  system (h.*\   v, 
system (43)   because of the  ortho. 

Sonant, conaition (^ was lroposed upon ^ continuuro 

orbital cDkL(r). These te™3 would not be pre5ent jn 

Eq-(*S   "'  i^adofE,. (3»),  we requjr93 
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<%JhI + ^lO -0 5      (47) 

the resultant lack of orthogonality between ©kl(r) and the 

square Integrable orbitale O^Jr), n -  1,2,.. .,^-1, makes 

the determination of the functions u (r) more difficult in 

practice as the iterative scheme used to determine these 

functions tends to become unstable unless strict orthogon- 

ality is maintained between (DkL(r) and its square integrable 

companions.  For this reason the condition (M) was adopted 

instead of (47). 

The system (45) is solved iteratively: approximate orbi.tals 

uvrn(r) and Q)vrn(r) must be in hand.  The quantity in /   \ Is 

computed using these approximate functions and then used as 

the "source term" in Eq. (45) which is treated as a second 

order ordinary differential equation for the function u Yr) 
vmv ' * 

The "coulomb potential" X( 0^, Q^) is also computed 

using the approximate CDvm(r).  This differential equation 

is numerically integrated to furnish an improved function 

\m^'     Por the square integrable functions, unique solutions, 

regular at the origin, are obtained.  A unique improved con- 

tinuum function u^H is also obtained if the condition of 

unit amplitude for large r is imposed .  Once the improved 
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functions u^Cr) are obtained, a revised set of O- (r) are 

furnished by constructing appropriate linear comblnaTlons of 

the uvm(r) Whlch satisfy the conditions (32,34).  The expansl 

coefficients  ^ are obtained by projection: 

^vmn = <uvm' CD-n> , m - 1,2,..,,N^ n = l,2,.,.,Nv, (if8) 

The coefficients  P.     and P 
l^^Nj na I l,nltn  are, of course, fixed 

with values given by Eq. (31). 

0nCe the rmn  are stained, they are forcibly symmetrized 

to guarantee that the exchange condition (28) is satisfied 

as the Iteration proceeds.  Prom the symmetrized  T   and 
j-i -^ vmn 
the revised d) - (r) ,   a  reviifd  Q^-H «#• «  / \ ^ vm^' a revised set of n^Jr)   are constructed 

and the "source term" m (43) and the "coulomb potential" 

are recomputed. The process Is repeated until convergence 
0f the ^vrnW and rvmn  is achieved. 

The Iterative process can be started by choosing for the 

square Integrable Q^Jr)   a suitable linear combination of 

Slater functions satlsfvlnr Eos  f^Pl  i-v^i« ^ üi-.yxng aqs. [32),  while for the continuum 
orbital a kL(r) we start with 

O^u^r) -J  (uOLf0In> (0in(r) ,   (,9) 

where u°L(r)  satisfies the "source free" equation 

■ 
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-1 
[^2 + 2Zr--L -2X((3>l8,(ais) + k

2]u°L = 0. (50) 

and the solution of Eq. (50), regular at the origin with unit 

amplitude for large r Is chosen.  The Initial set of  f, 

can be taken as follows 

"1,1,1^= i - M)8 rIjNljl 

rvmn "■ 0'   a11 others. 

vmn 

)    (51) 
i 

Of course,   other,   more accurate  starting sets may be used  If 

they are  available.     AH that ls necessary is  that  the approx- 

imate     CD^r)   satisfy the  conditions   (32,54)   and  the     F 
- vtnn 

satisfy the exchange conditions   (28). 

• 

. 
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RESULTS 

Calculations were  carried out for the  h state  of the 

system e-H m the energy range c,     = E = e        us,ncy 
Is €2s,   usinS wave 

functions of increasing complexity,    m Hartrees, 

E = eis + k2' els = -500,    e2s = _.125 , 

The wave- functions used are labeled ^n, n = 1,2,...,6 

The. structure of these wavefunctlons is exhibited'^Table I 

For example, the approximate wave function ^ has the form 

^I'^-ir^'l^r^^   +  CL^r^u^r,) 

Here we have departed from the formal notation of the text 

and adopted Instead a "spectroscoplc"  notation.    Table I 

gives the "spectroscoplc"  label corresponding to the pair 

(v,m)   for each approximate wave function used.    Thus for l// 

CD 

3, 

(52) 

1,1 ^ls     > 

Q 1,2 - CD 2s 

t 
1,3 = 0 ks 
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and 

®8,1 =®2p 
In all  of these wavefunctJons, Qls is the hydrogen ground- 

state orbital and (Dk is the scattering orbital. The 

spoctroscopic label on a u-function simply indicates which 

0-function is paired with it in the approximate wave function 

given by Eq. (42) . 

Because the u (r) are linear combinations of the vm 

d - ( r) according to Eq. (40), the expression (42) for the 

total wave function is not manifestly symmetric in r^ and 

Iv. These functions nevertheless possess complete exchange 

symmetry according to Eqs. (26,35): 

Only QX (r) among the functions (X  (r) used in the 
X 3 vUl 

construction of the wavefunctions has a prescribed form: 

(53) 

CD:Ls(r)   - 2re-r (54) 

Exchange syrraaetry of the functions   l/r/r-^r^)   then 

J 
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forces the function u (r) to have the came form: 

uk3^) " ^l3(r) . (55) 

The  function    CDks( r)   and  therefore  ulg( r)   have  the asymp- 

totlc behavior; 

uls(r) fit   ■ln()CPH|)j   j (56) 

where we have imposed unit amplitude normalization on the 

total wave functions. The remaining functions art square 

integrable. 

The function l]^  is identical to the "one state" 

close coupling function  7lcc and reproduces the phase 

shifts determined by other workers as is illustrated in 

Table III.  If We compare  ^ with the corresponding 

close coupling function  l/'  : 
T ICC 

V^V'lcc^l^)   ■ tT^r^F^^)  + ^(r^O^p^Jy^Q^Q^ ' 

we  see  that     ^(^.tg)   is  not manifestly  symmetric  in 
(57) 
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fj and ¥2.  This is a characteristic of all of *ne wave 

functions [jfn  when written In the form (42).  The two 

functions l/^ and ^lco are In fact Identical and the 

connection between them Is exhibited In the relations 

Ul3^) ^is^) + <FlS^l^CDls(r) . 
(58) 

The continuum function Flg(r) of the close coupling model 

Is determined from the differential equation 

[bj - x«Das.(Dls) ♦ Wnpl3 - xG)l3,Pls)cr)li 

where 

4 ■ hy+ r"1. 

(59) 

(60) 

while the equation 

[hl - X(®1S.®1S' 
+ ^2l"ls - x(1l3^ks)V ■ 0,  (61) 

supplemented by the linksge relations: 

Ok,™   =uls^ " ("is'^lsMs^ • 
Uks(r) = ^ls(r^ 

(62) 
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dete^lne  the functions ul3( r)  and    Cks( r).    Note that 

no t.» proportlona! to    Cls( r)  appears  m ig. (6!).    This 

is so because    ©u(r)   U an elgenfunctlon of h, and the 

two conditions (34)   and (47)  are,   in this case,   identica! 

so that the term: 

^IsNffiKs)   V, 
does not appear in Eq.  (6l). 

We  next  compare      ^ with the  corresponding "two state" 

close  coupling function     (^    We  have 

+Pl^ rl) CD Igi r2)   ♦ P2s( ri) 0^ ^ ]Yi( i 

(63) 

I'^S 

where 

^liH   ■    (Dna(r)   = 2re -r 

^P)   =(2^)-;L(2r-r2)e--5^ 

(64) 

are hydrogenlc radial elgenfunctions. 

In the  close  coupling  function     l/r^,   both r   (p) 

and P2s(r)   are  determined by solving  coupled differential 

equations.     Likewise,   In     ^   uls(r)   and  u. (r) are 
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similarly determined, the set of equations being 

Ihj - x(0ls,Ols) + %k
2]uls - x(^l3,(l,23)u2s 

- ^Is'OksKs ^ 0' 

[h1 - x((D2s,(D2s) ♦ (©ael^lOa^ + E^2s - x(^2s^is)uls 

- X^2s>CDks)^s + (025\\\<X>^   uks = 0, 

supplemented by the linkage relations: 

.     CD2s(r)   = [u2s(r)   -    (^ICD^O^Cr)]^-1       ^ 

Q^   -^i^   "     (ulsl^ls>^ls(^ 

>(65) 

(56) 

where 

N2s  =  <   <u
2sl

u
23/   "  {u

2!!l<DlB>   )% (67) 

The function l^L, Involving only three pairs of functions 

Is somewhat more compact than Vpcc*  The imPortant distinction 

however, between the tvo functions Is that In \JL  the 

orbital (D2s{r) Is not arbitrarily prescribed. Table III 

compares the phase shifts r]  obtained from both yL   and 

l/2cc over a range of energies. As a benchmark for comparison 

we take the accurate Schwartz values. 
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A small but significant improvement in T)2 over 

T|p  is noted throughout the energy range considered, namely 

,1 * k < .8 . 

Fig. 5 Illustrates ^o^ r^   ^ov  several values of k 

and also compares these functions with the hydrogenic 

orbital ^pi^ ^ • A dramatic departure from ^ öT^ r) is 

exhibited for all k values examined. The more compressed 

appearance of CDogC r) suggests that it is describing the 

close range interactions more adequately than is ® Ps^ r) • 

The illustrated dependence of ^ps^r^ on wave number, shows 

that the compression increases toward low k values. Even 

for k = .8 which is fairly close to the Is—»2s excitation 

threshold, the appearance of CDp (r) is still quite 

compressed when compared with 'X"1 ^-{r). These results are 
N 

in agreerent with the  "orbital energies 

A 2s (a 281 ^I CL23> (68) 

which are given in Table II. For the hydrogenic function 

(DACX*)«  ^23 = e2s ~ -•1250'    We soe from Table II that 

positive values of CDp are obtained for low k values, 

indicating that considerable continuum contribution is 

present in the function  (Dp (r). On physical grounds, it 

might be expected that as k increases toward the 13—^-23 

excitation threshold of the atom core, the function (fc*  ( r) 
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would tend to become the hydrogenlc (D^r)« while the 

function u2s(r) would expand to become a continuum orbital. 

This cannot happen for a wave function as simple In form as 

\Jf2 ,  because the linkage relations (66) demand that If 

02s(r) Is square Inte^rable, so also must be u0 ( r) 
2sx ' * 

More fundamentally, it Is the exchange symmetry of  $ 

which permits us to express u^, u2s, and u^ linearly m 

terms of (T^, Qs^t  and  OT^, bllt  ^ wlth only three 

pairs of functions comprising It, cannot exhibit proper 

behavior as threshold Is crossed and still maintain its 

exchange symmetry. The difficulty Is removed by adding 

an additional pair CD^r^u^rg) to  1^. This gives 

a wave function of the form: 

+  ^ rl) U3s( r2) + (S>^ rj uks( r2) JY^C^ Q2) . 
■ 

In this  case,   u? (r)   is a linear combination of     CD    (r) 
lsx   '' 

C2s(r),  and    ©^(r).    The  function    CZ)2s( r)   Is  now free 

to become the hydrogenlc orbital    O^r)  as k Increases and 

threshold  is  crossed,  while     (Cy r)   and u2s( r)   will become 

continuum orbltals.    The  other orbital  u3g( r)   will go over 

Into a constant multiple  of the hydrogenlc orbital    tf)—< r) 

and  the entire wave  function will become equivalent (above 

threshold)   to the  close  coupling function     l> 
' Sec* 
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Fig,  4  illustrates  the  change  In  the   form  of   CTU    when 

we  add CD^gC ri) u3g( r,2^   to   ^2*     Table  II  shows  the  effect 

that  this   oerm has  upon the   2s  "orbital energy"    Ao,,» 

Vte  note  that  the addition of the   (J)^g  function allows   (S)pq 

to relax towr.rd larger values  of r,  although    the  compression 

of  G^p3  toward  small r values  still persists markedly  for low 

k values.    The  2s  "orbital energy"  A og becomes  lower through- 

out  the examined energy  range a^d as k approaches  the  Is—*-23 

excitation threshold,    ®0 ( r)   bears a much stronger resemblance 
28' 

to the hydrogenic orbital (D^( 0 • 

We discuss now the function \JL  which includes a term 

(D2p( rj u2p( r2)Y2{?Ll,9.2), (69) 

designed to account  for angular correlation.    The  index 

v = 2 on tJiVlntjlÄ   corresponds  to the  pair index {ttt  ) 

= (1,1).    The  functions  u-, s( r),   u2 ( r),  and  u2 ( r)   are 

determined from the system of equations' 

[hj - x(al3,al3) ^K2iula - »t<i>u.(i»to)"ini - x(®iS'^23)u2£ 

-x(3)ls,i>£p)u2p = o   , 

■ 
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- x(02s,(Dls)ul3 - x(©23,02p)u2p+ (Ojj.lhjlök,) ^3 = o , 

[t^ - x((r2p,(r2p) ♦<<r8p|iiÄl<r^ ♦ E]u2p -x(o'V^k3)uk3 

- X^2p'^25^u2s   -  X((IV''l3)uls -■0* 

supplemented by the linkage relations 
(70) 

-1 
e2s(r) ^N23   [ u2g(r)  -(u^l^i.NOj.tr)] , 

i 

©to«')   =uls^)   -<ul3iOl8>Ol3(r)   -(ug^)^^   ^ ^ 

^Vr)   =NPn"V(r-), 2p    U2P^ 

where 

N2s=(   i»2>2s)   -<**tV>lä*>k '. 

N2P = K%Kp))%   • 
(72) 

Table III shows a very substantial  improvement  in the 

calculated phase shifts over those obtained by the  close 

coupling method.    The orbitals   CD2a,   (T^, and  ;T2    are 

Illustrated for k =  .5 in Fig.  5.    Pig.  6 illustrates an 
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intereatlng feature,   namely that  the  varlatlonally  determined 

normallzeable orbltals (D2t,( r)   and   CD2 (r)   have damped osclllat 

ory behavior for 'large argument. This effect  is particularly 

strikiu; in the case  of the  function   'T^r) *   for whlch the 

-2 
oscillations damp out with an amplitude proportional to r    . 

The  corresponding oscillations  in the  orbital (Dps^ ^   fa-!L1 

of like  r    .    The source  of this behavior is to be  found  in 

the  coupling terms present  in the differential system {kZ>) . 

The term 

" x(CD2p,Ql3)uls (75) 

is  responsible  for the  oscillatory behavior of u2    and 

hence  (D2V'    
For> lar6e   r* 

X(<Dgp,®ls)   -^2<®2p|r|(t.l3)r.-2, (71) 

a no 

uks(.r)   M sin(kr + T^) ,   r—^ c-,. (75) 

Thus (75)   is a driving term proportional to 
• 

-2 ■ 

r~ sin( kr + r\) 

and accounts for this dependence  in the tail behavior of   CE^r/r) • 
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Since XC^g^Ojg)   decays exponentially for large  r due 

to the  orthogonality between  02g( r)   and   O^C r),   the  direct 

coupling term Involving u^C r)   does not function as a driving 

term which affects  the  tall behavior of UgJr),     The  function 
uks^r^   of course,  falls  off as e'r so that oscillatory be- 

havior In u2a(r)   and hence   In   02s( r)   can only  come   from the 

coupling to u2 (r)   through the  term 

X^2s'^2p)u2p   ' (76) 
As we have seen,   for large  r,  and some  constant a 

also 

-2 ^(r)   ■ ar"<3ln(kr + t]), ■CvO (77) 

X<®23'®2p)   =01.2<®2plW(t23)   r-2. o-o * (78) 

so that (76)   represents a source term which for large  r 

is proportional to 

r ^sin(kr + TJ) 

which accounts for this dependence  in  ©^ (r) . 

Pig.  7 illustrates  the difference between  (£)2 (r)   and 

the hydrogenic orbital ©g-f r)   where 

CD2 (r)   = (2V6 )-1r2e-^r    .       (79) 2p 
Again we note that the  variationally determined  orbital^ (r) 

2p  ' ' 

illustrated for k = .5, has its peak much closer to the target 

atom than does.the hydrogenic function (&u (r) .  Use of the 
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IT" ;:ital  ^^  ~ - «- =on3MeKlble  lroprove. 
ment  in the phase  shift- QO pnaae shift as  compared aralnaf  feK.  ^T 
„      -.^ »«»iiwx the close  coupline- 
-u ..    con3lderable oontlnuum ^^^^^^ u ^^^^  ^ - 

CD2p(r)   as  la indlca^d by It,  "orbltal energy„ 

A2p = .182,    k = .5 

which  is  to be compared with the value 

e2p ■  -.125 

for the  hydrogenlc function. 

Some  idea of the efficiency nr n*. .    L nciency of tne present model w^ve 
auctions   can be  nhta-^^ v, 

obtained by comparing the phase shifts 
obtained  usine;    U (r    T* \   ,,^u  ^^ 

«    ^rl'V   wlth those obtained recently 
by Chung and Chen?      TI^., 

.    These „orkere  used a wave functlen 
of the  form 

^'i.*a) -(VJ) 
"iV^utV* VI)«-I,<'8) 

J 

I« the sumffiatlon, slx tems of 3_type and ^^ ^ 80) 

«« indeed. The open channe! funotlon u3ed _ 

"i.Cr) = (slnkr + tara|coskr)(l - e"or) 

•       ♦   Zd rV" . 
n 
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and    Q is the projection operator: 

Q =  [1   -   ^(r^^P^UCl   -   ^ls(r2))(0ls(r2)|],     (82) 

The  coefficients A^ and dn as well as the  open channel 

parameter a were  calculated for each energy value  considered 

in the  range   .1 • It * .8 ,    The  other two nonlinear parameters 

a and ß were determined and used over the entire energy range. 

The phase  shifts  obtained with this wave function are  compared 

with those  obtained with   ^ in table III.    These  results show 

that the present model wavefunctions are quite efficient with 

respect to the number of terms required to produce phase  shifts 

of comparable accuracy. 

Purthet   calculations were  carried out with the more 

elaborate wavefunctions   j^,   ^  and   fa The results  of 

these  calculations are presented in table III where  it  is 

seen that accurate phase shifts are  obtainable with short 

expansions within the present model.    Even   fa  the most 

elaborate wavefunction used,   is  constructed from only 11 

optimal orbitals.    In Fig 8,  the  optimal orbitals are 

illustrated for k =  .5    using the wave function^. 

Table IV gives the expansion coefficients P        for this 
vmn    WIJ.0 

wavefunction. Finally Table V presents the corresponding 

orbital energies. 
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FIGURE  CAPTIONS 

Pig. 1. Permitted pairs used in the construction of the angular 

two particle functions Y^*,( ^^ . g)' illustrated for 
L = 0,1,2. 

Points Indicated by    o    are  used for the "normal" terms 
for which 

Points   indicated by    o    are used for the "abnormal" 
terms   for which 

^mw = ( ml) Lfl, 
LMee« 

Pig.   2.    Assignment  of values  for the  running  index v replacing 

the pair index {£,&)   I  ['tA ]   for L = 4.    By convention 
v = 1  corresponds  to the  pair (0,L).    The  relationship 
between v and v is also illustrated.    Note that the 
points  corresponding to the  indices v and v are 

symmetrically placed about the  line   ,£•£*•    In this 
case the  elements of the set V are  the  integers 1-9. 

Pig.  6a.  Oscillatory behavior of  (D2 ( r)   in the  region 

10 ^ r ^ 52 a.u. (Prom the wavefunction l/C for 
k =  .5)   Oscillations damp out as  r 

Pig.  6b    Oscillatory behavior of  O^gC r)   in the region 
14 ^ r 6 55 a.u. (Prom the wave function I'/-, for 

k =  .5)   Oscillations damp out as  r    , 
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The  remaining figures are to be  captloned almply as 
Fig.  5, Fig.  4,  Pig. 5,  Pig. 7, pig.  8a,  and Pig. 8b  . 
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TABUS JV. 
Expansion 
coefficients  for 
/jp k = 0.5 

v    m n 1 vtnn 
1    1 1 1.217 

1    1 2 -0.859 
1    1 3 0.746 
1    1 4 1.000 
1     2 2 -0.151 
1     2 3 -0.029. 
1     2 4 0. 

1    3 3 -0.032 

1    3 4 0. 
2    1 1 -0.085 
2     1 2 -0.075 
2     2 2 0.178 

3    1 1 •-0.031 

TABLE II. Orbital energy of 
the 23 orbital for different 
* values. 

•2           .191 .026 
•5            .117 -.025 

JL =aga -.108 
For the  hydrogenic 2s  orbital 
A2s  = e2s  =  -«MS 

TABLE V.     Orbital energies 
for the  orbitals    of the 
wavefunction  ,//

11 
for k = 0. 5 | f 

V m label Avm 
Is 1 1 -O.5000 
2s 1 2 -O.O654 
3s 1 3 I.O887 
2p 2 1 -0.1120 
3p 2 2 0.2088 
3d 3 1 1.2299 

J 
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INDEX TO HANDWRITTEN SYMBOLS 

V to be read t 

V^ to be read $ 

^ to be read ^ 

O to be read q> 

i to be read T 

±C to  be read 0. 

U to  be read oo 

A to be read >> 

9 to be read Ö 

0 to be read & 

d   to  be read ö 
00 to be read <» 

i   to  be read Ü 

^/ to be read "script" H 

^C.. to be read "script" L 

&  to be read "script" P 

^ to be read "script" V 

308 


