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LiH Potential Curves and Wavefunctions for X '+, 4 'z+, B 'll, 2+, and *I*

Kate K. Dockent AND JUERGEN HINZE
Depariment of Chemisiry, University of Chicago, Chicago, Ilinois 60637
(Received 3 August 1972)

Ab inilio multiconfiguration self-consistent-field calculations are reported for the potential curves and
electronic wave functions of the states X 1T+, 41Z+, B ', 32+, and 1 of LiH. In this calculation, the
outer two electrons are correlated, while the 1o shell, essentially a K shell on Li, is left uncorrelated. The
obtained dissociation energies, with the known experimental values in parentheses, are D,(X 'Z%) =
2.411(2.5154) eV, D,(41Z*)=1.048 (1.0765) eV, D,(BI)=0.017 (0.035) eV and D,(311)=0.226 eV.

INTRODUCTION

As the smallest neutral heteropolar molecule, LiH
has been a favorite molecule for theoretical investiga-
tion. Since a reasonable amount of accurate spectro-
scopic data is available for LiH, detailed calculations
can give a good assessment of a giver. computational
procedure, and at the same time, information which
can aid in the understanding of the observed data.
Until recently, most theoretical work done on LiH
(and on molecules ifi general) concentrated on de-
scribing the ground state and its properties only. The
experimental information available goes beyond this
and a more complete theoretical study should include
the calculation of wavefunctions, potential curves, and
properties of ground as well as excited states. It is with
this aim that we set out to compute the five valence
excited states X 'Z+, 4 12+, B'II, 3+, and M of LiH.
This allows one to evaluate the capability of th: multi-
configuration self-consistent-field (MCSCF) method
to yield accurate potential curves, term values and
molecular properties for ground and excited states.
In addition one can expect to obtain a more detailed
understanding of some of the observed anomalies in
the LiH spectrum. .

A careful spectroscopic analysis of the 4 'Z*-X 12+
band system of LiH and LiD by Crawford and Jorgen-
sen!? revealed that the G(v) and B, values of the A 'Z*
state do not show the normally expected decrease with
increasing v. Instead they rise initially, before the nor-
mal decrease sets in, yielding anomalous negative values
for w,x, and a,. The same anomaly is observed for the
A 12+ states of other alkali hydrides. On the basis cf
their observation, Crawford and Jorgensen concluded
that this anomaly must be ascribed to peculiarities of
the potential energy curve of the 4 'Z+ state alone.?
Mulliken* explained the exceptional shape of the A 12+
potential curve as being due to an avoided crossing
of the zero-order curves of LiH and LitH~. However,
nore recently Jen®® argued that the anomalous character
of the A!Z+ states of the alkali hydrides should be
ascribed to nonadiabatic effects, i.e., a breakdown of
the Born-Oppenheimer approximation.

In addition to the A 'Z+-X !'Z+ band system, Velasco®
identified in 1957 the B MI-X 1Z+ system, characterizing
the B 'I state as weakly bound (D,=0.03 eV). No
theoretical study to date has yielded a bound potential
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curve for this state. Also the correspopding °II state,
which is expected to lie below the singlet state has not
as yet been identified.

In the following paragraphs we will give a brief vut-
line of the MCSCF method used in the present cal-
culations, together with some computational details
such as basis function cheice and selection of configura-
tions. This will be followed by a presentation and dis-
cussion of the calculated wavefunctions, potential
curves and expectation values of various one electron
operators. A more detailed spectroscopic analysis, in-
cluding the calculation of rotation-vibrational wave-
functions, energies, term values and vibrationally
averaged properties will be presented in a forthcoming
publication.

THE MCSCF METHOD

It is essential in a computation of the present scope
to obtain correlated electronic wavefunctions and
energies, since the correlation energy is expected to be
significantly different at different internuclear distances
as well as for the difierent states. It is well known that
a configuration interaction (CI) type wavefunction

‘I’=§;‘, Cl(f’[ (l)
is capable of representing correlation effects exactly,
provided the CI expansion is carried far enough. It is
obvious that the convergence of this CI expansion will
depend critically on the appropriateness of the expen-
sion functions ®;. In the conventional C1 methods as
here, the ®'s are configuration state functions (CSF’s),
i.e., specific linear combinations of Slater determinants
(SD’s), such that they are eigenfunctions of the sym-
metry operators of the system. The SD’s themselves
are constructed from symmetry adapted orbitals. The
expansion functions ®; and thus the convergence of
(1) will depend therefore on the type of orbitals which
are used in their construction, as well as on the de-
tailed functional shape of the orbitals. It is here where
the difference between conventional CI and MCSCF
lies. In conventional CI only the expansion coefficients
C; are optimized variationally, while the MCSCF also
optimizes variationally the detailed shape of all the
orbitals entering the total wavefunction. Thus one
obtains a wavefiuction which will give the lowest pos-
sible energy with the given number and type of CSF’s.
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The procedure for computation is then to

(1) select initial orbitals and configuration types,

(2) solve the CI problem for the state desired,

(3) construct the SCF equations from the first and
second order density matrices of the selected state
of (2);

(4) solve the SCF equations.

Steps (2)-(4) are iterated to convergence. If we select
in (2) always the Kth lowest root, then one will obtain
an upper bound to the true energy of the Kth state
of a given symmetry. Unfortunately this process does
not always work &xcept for the lowest state of a given
symmetry, The reason for this is as follows. Since the
orhitals are optimized in the field corresponding to
state K, this state will be described better and its
energy lowered. However if one of the lower states, for
instance, state J, has a very different charge distribu-
tion than state K, thus requiring quite different orbitals,
it follows that the orbitals obtained for state K will

be poorer for state J. Thus the energy of state J, orig- -

inally below state K, will be raised. This may eventually
lead to a flipping of the energy order of these two states,
preventing cenvergence of the MCSCF process. Such
a state flipping will always happen when the excited
state desired has a state of the same symmetry only a
little lower in energy, but with a substantially different
charge distribution. This is exactly the case for the
A 12+ state of LiH, the X 'Z* state being lower by only
a few eV. It is possible in this case to optimize the
orbitals in the averaged field of both states, obtaining
compromise orbitals which will describe both states
equally well, however neither optimally. Fortunately
it is possible to make up for the deficiency in these com-
promise orbitals by the addition of a few singly excited
configurations. This will become clear in the discussion
on configuration selection. The details of the MCSCF
method as well as the “averaged field method” are
described explicitly elsewhere.”

CHOICE OF CONFIGURATIONS

It appears reasonable that in LiH the correlation
energy of the 1o shell, essentially the K shell of lithium,
remains nearly constant as the potential curves are
traversed and as the outer electrons are excited. There-
fore we have chosen to correlate only the outer two
valence electrons, which simplifies the problem sig-
nificantly. In the two electron correlation problem
singly excited configurations do not contribute; there-
fore it is possible to account for the correlation energy
of the BI, T and ®Z+ states by using only doubly
excited configurations. The particular ones chosen for
these three states are presented in Table I, where the
bold configuration signifies the dominant one in each
state for all internuclear distances calculated.

The configuration choice for the averaged field cal-
culation of X !Z+ and 4 !Z+ is not as straightforward.
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TabLe 1. Types of valence configurations used.

X1zt 163(2034 402+ 5034602+ 1x2 4 202+ 1524287
and

A+ 203044050+ 4030+ 5030+ 6030+ 1727+ 1828)
Bl 163(261n+ 3027+ 4o3n-+2r15-+3718)

m 163(281 %+ 3027 +403r+2715-+-3718)
iz+ 10*(2d38+405e + 1727+ 1528)

Fifteen configurations were used and are given in
Table I. The lowest energy configuration of 'Z+ sym-
metry at intermediate R values is 1-*20% and of neces-
sity ionic (Li*H~). The 20 is a 1s H- type orbital. The
configuration of next lowest energy in the intermediate
R range is 16%2030. In this case the 20 orbital is a much
more contracted 1s H-like orbital, and the 3¢ is a diffuse
25-2p hybrid on Li. Because of the double occupation
in the ground state, the 2o orbital determined in the
averaged field calculations is essentially that for the
ground state. Thus it is too diffuse in nature to describe
adequately the 20 orbital in the 4 'Z+ state. The pur-
pose of the thirteen additional configurations was to
correlate the ground and first excited state and te make
up for the 2o orbital deficiency in the excited state.
Because of the doubly occupied configurations, the
4a, 5¢, and 60 orbitals essentially contribute to in-out
and left-right correlation of the ground state. By not
including a 30* configuration which would attempt to
correlate the ground 2¢ also, we tried to make the 3¢
orbital an orbital of the excited state only. By consider-
ing 204 'z*=20x 'z*+40+50-+60 in order to make up
for orbital deficiency, the configurations 3040, 3050,
and 3060 arise. The doubly occupied = and & configura-
tions primarily introduce angular correlation into the
ground state, while the 1x2x-and 1525 configurations
are more effective in correlating the A !Z+ state. A
discussion of the orbitals and important configurations
in the wavefunctions of these two !Z+ states at several
internuclear distances is postponed until the next sec-
tion.

It was found both convenient and time saving to
move across the potential curves in one direction using
the converged orbital coefficients for each state at the
preceding internuclear distance to begin the calcula-
tion at each point. No convergence difficulties in solving
the SCF equations were encountered in the calculation
of the B!, IT and 3=+ states. These states retained
the same dominant configuration all across the potential
curves, the orbitals of the additional configurations
being solely used to correlate the valence electrons.
In the averaged field calculation of the 4 12+ and X 'Z+
states, convergence difficulties, characterized mainly
by orbital flipping among the valence sigma orbitals,
could be avoided when the R step size through the
curve-crossing regions was made small enough. It is

2
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TabLE II. Basis set of Slater-type orbitals: 230X 8xX43. (3) in the averaged field case, how it could com-
. pensate for orbital deficiencies
N L M K Zeta (4) how well it could describe the excited states.
1 1 1 0 0 1 4.6351 Utilizing the same basis set for all states is economi-
2 2 1 0 0 1 2.4730 .cal, in that integrals have to be calculated only once at
3 3 2 0 ] 1 1.0330 each internuclear distance. Also, it ensures that the
4 4 2 0 0 1 0.8237 representation of the core orbital does not change from
5 5 2 0 0 1 0.5100 one state to another. The calculation of the transition
6 6 3 0 0 1 2.6811 moment, in addition, is considerably simplified. Since
7 7 2 1 ) L 3'?083 one of our primary interests was in accurately calculat-
g 3 § } 8 } 2;..0;58 ing the ground and firs* excitc?d 1Z+ states, we knew
10 10 2 1 0 1 0.7359 that we needed a larg. and flexible basis set. It seemed
1 1 2 1 0 1 0.5100 reasonable, therefore, that with few extra functions
12 12 2 1 0 1 0.3500 added the basis would be sufficient for the I states
13 13 3 2 0 1 1.4974 also.
14 14 3 2 (] 1 0.9866 The basis set used in our final calculation is listed
15 15 4 3 0 1 1.7748 in Table II. A subset of 21s, 7x and 48 STF’s (all the
16 16 1 0 0 2 1.9583 listed functions except for those nuinbered 12, 19, 27)
17 17 1 0 0 2 1.0000 was optimized at the equilibrium inte:nuclear distance
}g ig } g 8 g g’m for the X !Z+ state with the 20 shell correlated. Pre-
b e liminary calculations were carried out with this re-
20 20 2 0 0 2 2.2425 3 A
21 21 2 1 0 2 1.0638 duced basis and it was found necessary to add the three
22 22 2 1 0 2 0.5480 additional diffuse functions (12, 19, and 27) in order
2 23 3 2 0 2 1.5774 to describe better the A 1=+ state and the II states.
24 1 2 1 1 1 1.5600 The 3Z+ state, however, was not recalculated. The
25 2 2 1 1 1 0.7800 total basis set yielded for the X !Z+ s*ate the Hartree-
26 3 2 1 1 1 0.5472 Fock energy of —7.987317 hartree at 3.0 bohr, essen-
7 4 2 1 1 1 0.3500 tially the Hartree~Fock limit.
28 5 3 2 1 1 1.0000
2 e e ) 12 a U re, 0000 CALCULATED POTENTIAL CURVES
30 7 2 1 1 2 1.0000
3 3 3 2 1 2 2.1000 The potential curves obtained are given in Tables
32 1 3 2 2 1 1.0000 IIT and IV and displayed in Fig. 1. Within the frame-
33 2 3 2 2 1 0.5000 work of the Hartree-Fock model the X !Z+ state with
34 3 3 2 2 2 2.0000 configuration 102202 will dissociate to ions, Li+(1S)+
35 4 3 2 2 2 1.0000

TasLE III. Potential curves for four states of LiH.

felt thut the dual role of these orbitals—that of cor-
relating the ground state 20 and making up for de-
ficiencies in the excited state 2s—imposed a strain. The
valence sigma orbitals were attempting to optimize
simultaneously in several different regions of space.

R X2+, A1zt B, i,
(bohrs) E(hartrees) E(hartrees) E(hartrees) E(hartrees)

2.00 —7.948461 --7.804494 —7.7667212 —7.7857226
2.25 —7.986659 --7.841651 —7.8048017 —7.8225261
2.50 —8.007771 —7.865183 —7.8288091 —7.8452320
CHOICE OF BASIS SET 2.75 —8.017994 —7.880054 —7.8438361 —7.8588098

. ; : 3 3.00 —8.021254 ~—7.889358 —7.8531226 —7.8667765
The importance of choosing a good basis set cannot 3.25 —8.020163 —7.895156 —7.8587516 —7.8709706

be underestimated in a multiconfiguration technique, 3.sp —8.016339 —7.808600 —7.8620695 ~—7.8728632
for, in the limit that all configurations are included, 4.00 —8.004649 —7.902121 —7.8649605 —7 8730600

the basis set determines the quality of the calculation.  4.50 —7.990950 —7.903239 —7.8656627 —7.8714465 :
Since the same basis set of Slater-type functions (STF’s) ~ 5.00 --7.977741 —7.903563 ~—7.8656819 —7.8696445 |
was used for four of the five states of LiH, the following ~ 5.50 —7.965892 —7.903427 —7.8655471 —7.8681780 '
factors were considered important in selecting it: 6.00  —7.955001 —7.902660 —7.8654140 —7.8671223
6.50 —7.948031 —7.9500999 —7.8653134 --7.8664058
(1) how well it reproduced the ground state Hartree-  7.50  —7.938476 —7.804651 —7.8651918 —7.8656261
Fock > B % 8.50 —7.934672 —7.885084 —7.8651219 —7.8652908
: gt : 10.00 —7.933082 —7.874234 —7.8650787 —7.8651187
4 t(,izt)a]:()w adequate it was for description of correlating 1200 —7.93752 7. T e8%0508. =7 865065
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H~(*S). The ionic dissociation limit lies about 4.64 eV
above the neutral atoms. [The ionization potential of
Li(%S) is 5.39 eV® and the electron affinity of H(%S) is
taken as 0.75 eV®.] The neutral, ground-state atoms
Li(2S) and H(*S) can give rise, however, to molecular
states 'Z+ and *Z+. By the adiabatic noncrossing rule,
therefore, the X !Z+ state must dissociate to Li(%S)
H(%S). Consequently the wavefunction must change
character from ionic to neutral as the potential curve
is traversed from small to large R, and this is well de-
scribed by an MCSCF type wavefunction.

The A1Z+ state, with molecular configuration
1422030, is predominantly Li-H* for small R. In the
region 6.0-10.0 bohr, however, this state interacts
strongly with the 1/R ionic curve which is dominant
in the ground state for small R. As the ground state
becomes more neutral in order to dissociate correctly,

1 T T T T T 1 T T

H(S)

Lit('s) ]

E (hartrees)
g

1 1
N~
W W
o b

i T

®
8
=

T

20102 i\ ST 7 S I e
10 2030 4050 60 70 8.0 90 00 O I20130

R (bohrs)

F16. 1. Potential curves of five states of LiH. Included also
is 2 1/R curve, referred to the jonic limit Li*+H~, E=—7.764
hartree, 2t R=w.

the 4 T+ becomes ionic (LitH~) with dominant con-
figuration 10%2¢% This state would dissociate to ions if it
were not for the fact that the excited atoms Li(*P)4-
H(2S) can also give rise to a 13+ state. This dissociation
limit lies 1.85 eV above the ground state neutrals—
almost three electron volts lower than the ionic limit.
Therefore, the A4 'Z+ state must for large R become
neutral and dissociate to Li(*P)4H(2S). Two avoided
crossings which alter the character of the wave function
occur in this 4 12+ state.

In Table V are listed the four most important con-
figura “ions in the X 1Z+ and A4 '3+ calculation and the
appropriate CI mixing coefficients for each state at
three different internuclear distances. These distances,
3.0, 7.5, and 12.0 bohr were chosen to show how the
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TasLE IV. Potential curve points for 3Z+.»
R Energy R Energ/
(bohrs) (hartrees) (bohrs) (hartrees)
2.0 —7.81863 4.0 -7.91984
2.5 —7.87889 5.0 —17.92584
2.9 —7.90027 6.0 —7.92944
3.0 —17.90366 1.5 —17.93189
3.1 —7.90655 9.0 —-17.93256
3.5 -17.91442 12.0 -7.93271

* Calculated using a 210X 7xX 43 set of STO's given in Table
IIT eliminating basis functions 12, 19, and 27.

character of the wavefunctions for these staies changes
with R. The orbital expansion coefficients for the 2,
37, and 4o orbitals at the three internuclear distances
are presented in Tables VI, VII, and VIII, respectively.
At 3.0 bohr the dominant configuration for the ground
state is 10*20* with the diffuse 20 having most weight
on basis functions 17, 18, and 19 (Table VI). There
is some small Li 25-2p contribution—enough to indicate
that this is a molecular orbital. The 3¢ is diffuse 251
with some 2py; and diffuse H- character—also a me-
lecular orbital. The 4o character is difficult to pinpoint,
but it has large contributions on H basis functions to
correlate the 2¢ and contributions arising also from
Li Zs and 2p functions.

In going from 3.0 to 7.5 bohr the orbitals of course
do change character slightly, but not drastically. In-
dividual changes are difficult to identify with such a
lurge basis merely by looking at the orbital expansion
coefficients. The change in the configuration mixtures
for the states is to be noted at 7.5 bohr. Now the 16*2¢3¢
configuration is dominant in the X !T+ state and the
A 'zt state is predominantly 10°2¢®. The ground state
has become neutrzl and the first excited state ionic.

TasLe V. Dominant configurationsin the X 1=+ and A '+ states.

Configuration mixing coefficients

1626 10%203¢ 16%0® 1633040

R=3.0 bohr

Xzt 096 -0.23 -0.10 0.07

Azt 0.24 0.94 -0.03 -0.24
R=17.5 bohr

Xz -0.40 0.78 0.13 -n39

Azt 0.84 0.4 -0.22 -0.21
R=120 bohr

Xzt -0.07 0.77 0.04 -0.62

Az 0.84 0.06 -0.54 -0.05
4
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TasLe VI. Comparison of 2¢ orbital for X and 4 '2* states at three internuclear distances,

¢ Basis functions

=

L M K Zeta

Orbital coefficients

3.0 bohr 7.5 bohr 12.0 bohr

1 1 0 0 1 +.6351 —0.00305 —0.00045 —0.00058
2 1 0 0 1 2.4730  -o0.12211 --0.01359 —0.00412
3 2 0 0 1 1.0330 —0.01111 —0.14824 —0.01674
4 2 0 0 1 0.8237 0.20176 0.'24952 =0.01999
5 2 0 0 1 0.5100  —0.17579 —0.12169 0.04033
6 3 0 0 1 2.6811 —0.03682 0.10632 —0.00305
7 2 1 0 1 3.9004 (.00560 0.00166 0.00103
8 2 1 0 1 2.1109 —0.00410 0.00763 0.00783
9 2 1 0 1 1.0758 0.09521 —0.03667 0.02540
10 2 1 0 1 0.7359 0.11922 0.12243 —0.03274
11 2 1 0 1 0.5100 0.03258 0.24619 0.61914
12 2 1 0 1 0.350¢ —0.01408 —0.05585 —0.02548
13 3 2 0 1 1.4974 0.00919 —0.00906 —0.00143
14 3 2 U 1 0.986¢: 0.01120 0.02561 0.00347
15 4 3 0 1 1.774% 0.00279 0.00094 0.00013
16 1 0 0 2 1.9883 0.07231 0.07333 0.01961
17 1 0 0 2 1.0000 0.26934 0.19550 0.57531
18 1 0 0 2 0.7000 0.40755 0.39494 0.03894
19 1 0 0 2 0.4000 0 13425 0.24966 0.16892
20 2 0 0 2 2.2425 0.01403 0.02760 0.00469
21 2 1 0 2 1.0638  —0.02485 0.01042 0.00765
22 2 H 0 2 0.5480 ~0.02622 —0.05529 —0.01872
23 3 2 0 2 1.5774 0.00344 0.00153 —0.00012

At 12.0 b the 20 orbital is well represented as a linear
combination of a diffuse Li 2p function and an H s,
i.e., (2pLi+1sg). The 4o orbital is just the orthogonal
component to this, (2pLi~ 1sx). Very atomiclike at this
internuclear distance, the 3¢ orbital is 25 with essen-
tially no 2py, character. Because the A 12+ dissociates
toLi(*P)+H(2S) and ias no Li 25 character at large R,
the weights for configuiations 16%2¢3¢ and 10*3¢4e are
very small in this state. One can understand the con-
figuration mixture for both states from a valence-bond
standpoint. For the A '3+ state the 2¢? configuration
is essentially (2pLi+1sr)? while the 401 configuration
(2pLi~154)? enters with the opposite sign. Thus valence
bond components 2py1sy are enhanced, while the
ionic components 2pL and 1sy? are subtracted. The
2prilsa description is necessary to be consistent with
the dissociation limit.

The same sort of argument explains the equal mag-
nitude but opposite sign mixivre of 2¢3¢ and 30de in
the X 12+ state. We have, in terms of atomic functions
2puit1sm)(2s10) — (2pri~ 15u)(2s11). The 21,251 con-
tributions cancel, while the 2stilsy components add,
giving us what we expect for dissociation to Li(?5)+
H(S).

The remaining states arising from the Li¢*P)+
H(*S) separated atom limit are B M, M and 32+, Of
these, we performed calculations on the II states, only,
which have th: dominant configuration 16%2¢1x. The
'+ state we did compute is the lowest of that par-

5

ticular symmetry (with configuration 10%203¢) and
is arepulsive state dissociating to ground state neutrals,

In order to calculate dissociation energies from the
potential cirves for each of the molecular States we
need the eaergies of the separated atoms at the dis-
sociation limits. Because we are not correlating the
1o lithium core at all we want the energy of the sepa-
rated atoms to reflect this. Therefore wc choose to take
for the reference energies at the dissociation limit
Li(*S)4+-H(1S) the calculated Hartree-Fock energy of
Li(*S), E=~17.432726 hartree! and the exact energy
for H(*S) of E=~0.5 hartree. The sum of these two
energies, E=—17.932726 hartree, gives the separated
atom ground state energy with an uncorrelated 1s shell
on lithium. The X3+ and 33+ state dissociate to
these separated atoms. 1t can be seen from Tables II1
and IV that at 12.0 bol- both states are virtually at
this energy limit.

The second dissociation limit of intercst s Li¢pP)+
H(2S), involving a 25—2p excitation of the lithium
valence electron from the ground state atom. Using
the Li(*P) Hartree-Fock energy, E=-—7.365068
hartree, the dissociation limit energy for Li(?F)+
H(*S) is ~7.865068 hartree. An estimate for this limit
could also be made using the Li(*S) Hartree-Fock
and the 2s—2p excitation energy.® An energy about
73 cm! higher than that quoted above is obtained
because this does not account for a difference in cor-
relation in the 15%2s versys 1s*2p configurations, It
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TapLe VII. Comparison of 3¢ orbilal for X and A4 'Z* states at three internuclear distances.

e .

o Basis functions Orbital coefficienls
N L M X Zeta 3.0 7.5 12.0
1 1 0 ) 1 4.6351 0.00966 0.01023 0.01039
2 1 0 0 1 2.4730 0.10867 0.15640 0.15903
3 2 0 0 1 1.0330 0.24515 0.41298 0.47360
4 2 0 0 1 0.8237 —0.70832 —1.09659 —1.19227
5 2 0 0 1 0.5100 —0.71703 —0.36182 —0.29639
6 3 0 0 1 2.4811 0.01010 0.02160 0.01323
7 2 1 0 1 3.9004 0.00135 0.00024 0.00015
8 2 1 0 1 2.1109 0.01054 0.00477 0.00077
9 2 1 0 1 1.0758 —0.01736 —0.00845 0.00595
10 2 1 0 1 0.7359 0.19866 0.02614 —0.01513
11 2 1 0 1 0.5100 0.29576 0.20617 0.07802
12 2 1 0 1 0.3500 —0.06852 —0.05162 —0.01816
13 3 2 0 1 1.4974 0.00091 —0.00326 -—0.00020
14 3 2 0 1 0.9866 0.00420 0.00895 0.00050
15 4 3 0 1 1.7748 0.00012 0.00025 0.00002
16 1 0 0 2 1.9883 0.01686 0.00356  —0.00255
17 1 0 0 2 1.0000 —0.05517 0.00899 0.02582
18 1 0 0 2 0.7000 —0.02557 —0.06606 —0.04177
19 1 0 0 2 0.4000 0.44300 0.16701 0.03730
20 2 0 0 2 2.2425 0.00412 0.00049 —0.00183
21 2 1 0 2 1.0638 0.00393 --0.00130  —0.00176
22 2 1 0 2 0.5480 —0.03627 —0.02082 —0.00494
23 3 2 0 2 1.5774 0.00062 0.00062 0.00022

may be seen from ‘Table III that the ‘Tl and B’ states
have converged to this limit at 12.0 bohr and that the
A 13+ state is still slightly below this limit.

The energy minima of the potential curves for the
four hound states were obtained by polynomial inter-
polation between the calculated points and are listed
in Table IX. Also listed in this table are the inter-
nuclear distance at the energy minimum (Rmm), the
dissociation energies calculated from Emn and the dis-
sociation limits discussed here, and the experimental
values. The calculated D,’s are all less than the experi-
mental quantities which is to be expected in & varia-
tional type calculation where the exact energy eigen-
value has not yet been reached.

The experimental D.'s are thought to be relatively
accurate—to within ==0.0002 eV. The bands obscrvel
by Velasco® for the B 'MI-X 'Z* system showed clear
breaking off of the rotational structure. This was at-
tributed to rotational predissociation of the upper
state. Extrapolation of the limiting curve of dissocia-
tion yields a dissociation limit for the B'II state which
is felt to be accurate to within sevcral wavenumbers.
Using the 2s—2p excitation energy, the dissociation
limit for the ground state was obtained by Velasco
also.

The largest difference between our calculated and the
experimentat D, is in the X !Z+ state. The calculated
D. is about 845 cm™* smaller than experiment would in-
dicate. Thus the minimum of our potential curve for

)

this state lies 845 cm™ too high. This discrepancy in
the ground state is not surprising for several reasons.
One factor is the use of the averaged field. At 3.0 bohr,
using the same set of configurations as in the averaged
field calculation, the energy for the X £+ state was ob-
tairied alone. This energy, E=—8.021974 hartree, is 143
cm~! below the averaged field X 12+ minimum. Another
source of error is neglecting to account for the change
in the intershell correlation. As the potential curve is
traversed from small to large R, the 20® pair breaks
apart, leaving at the scparated atom limit only two
10-20 (or 15-2s) pairs instead of four. At the potential
minimum, therefore, we have twice as much correlation
error due to 10-20 pairs as at the separated limit. This
is estimated, from calculations on the K-L shell cor-
relation energy of the united atom Be,! to be not more
than 500 cm—L. The largest error, however, is probably
due to incomplete correlation of the 2 shell. We esti-
mate, from calculations of comparable accuracy using
the MCSCF method for two- and four-electron atomic
systems,!* that 90%-95% of the correlation energy of
the 20 paii was obtained. Therefore somewhere between
400 and 800 cm™ of correlation energy is still unac-
counted for. Our error of 845 cm™ is thus easily at-
tributed to a combination of the three factors just dis-

The other two states for which experimental D,’s are
known, the B 1T and A 'Z*, are shown to be too shaliow
by 143 and 232 cnr, respectively. Although we have
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TasLE VIII. Comperison of 4o orbital for X and 4 !Z+ states at three internuclear distances.

o Basis functions

Orbital coefficients

N L M K Zeta 3.0 1.5 12.0
1 1 0 0 1 4.6351 0.00654 —0.00154  —0.00061
2 1 0 0 1 2.4730 —0.14538  —0.02034  —0.00513
3 2 0 0 1 1.0336 0.14033 —0.29442 0.02668
4 2 0 0 1 0.8237 0.14749 0.48290  —0.03019
5 2 0 0 1 0.5100 —0.455!3 —0.24050 0.05143
6 3 0 0 1 2.6811  —0.07510 0.01469  —0.00504
7 2 1 0 1 3.9004 —0.005'0 —0.00577 0.00365
8 2 1 0 1 2.1109 0.01181 0.03837 0.00348
¢ 2 1 0 1 1.0758 0.11971 —0.13880 0.04712
10 2 1 0 1 0.7359 0.39131 0.34243  —0.06016
11 2 1 0 1 0.5100 —0.04435 0.38885 0.78293
12 2 1 0 1 0.3500 0.02392 —0.07891 —0.03383
13 3 2 0 1 1.4974 0.01238 —0.01748  —0.00105
14 3 2 0 1 0.9866 —0.00931 0.04821 0.00263
15 4 3 0 1 1.7748  —0.00335 0.00154 0.00009
16 1 0 0 2 1.9383 —0.01101 0.09821 0.02109
17 1 0 0 2 1.0000 —2.65779 —1.80925  —0.88332
18 1 0 0 2 0.7000 2.35030 0.89112 0.05627
19 1 0 0 2 0.4000 0.21902 0.44637 0.20362
20 2 0 0 2 2.2425  —0.16867 0.00603 0.00403
21 2 1 0 2 1.0638  —0.24561 0.00745 0.01779
22 2 1 0 2 0.5480 -—-0.07226 —0.11000 —0.02214
23 3 2 0 2 1.5774 0.01260 0.00286  —0.00078

made the least absolute error in calculating the B I
state, the 143 cm™! represents about half the binding
energy for this state and thus will greatly affect sub-
sequent calculations of spectroscopic quantities. The
correlation energy in these two states is very small
compared to that in the X !Z+ state—less than 10%,.
The remaining correlation energy between the valence
electrons unaccounted for is felt to be less than 50 cm™—%
The amount by which our dissociation energies differ
from experiment probably reflects the neglect of the
change in correlation of two 16-2¢ pairs as the potential
curve is traversed.

The calculated T, values evidence, also, the fact that
the error in the ground state is much larger than the
error in either excited state:

T,(A'St—=X1Z+)=25842cm™  (exptl 26 510)
T(BWM—X13+)=34153cm™  (exptl 34 912)
T,(A'Z*—B'M)= 8310cm™! (exptl 8402)

The Rmia for the X 1Z+ state agrees reasonably well
with experiment; however, the agreement for the 4 13+
and B 'II states appears exceptionally poor. The reason
for this may be seen in the fact that both of these po-

TasLe IX. Energy minima, dissociation energies, and R,’s for four states of LiH.

State Epin(hartrees)*  D,(calc,eV)  D,(expt], cV)?  Rpyo(bohrs)* R,(exptl, bohrs)
Xzt . —8.021321 2.411¢ 2.5154 3.05 3.0154
AT+ —17.903574 1.048 1.0765 5.12 4.90649
3m —17.865709 0.017¢ 0.035 4.75 4.494%

m —7.873358 0.226¢ 3.76

» Minimum of electronic potential curve obtained by fifth order polynomial interpolation.

b See Ref. 6.

© Dissociation limit energy of Li(3S) +H(3S), E=—7,932726 hartree.

d See Ref. 9, p. $46.

¢ Dissociation limit energy of Li(*P) +H(3S), E= —7.865068 hartree,

7
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tential curves are very flat around their minima. It
will be seen, however, in a following paper presenting
a spectroscopic analysis of the potential curves, that
the discrepancy is also due to the fact that R, values
obtained by an extrapolation of the B,’s do not cor-
respond to the minima of these potential curves.

DISCUSSION AND COMPARISON WITH OTHER
THEORETICAL RESULTS

Lithium hydride has been the testing ground for
almost every ab initio method proposed for extending
calculations beyond the Hartree-Fock level in mole-
cules; and ulthough a plethora of theoretical calcula-
tions on LiH exist, there are very few for whizh a com-
parison with ours is instructive. This is due to the fact
that most calculations are for the ground state at its
potential minimum (R,=3.015 bohr), only, and most
attempt correlation of both core and valence elec-
trons. A brief review of several of these calculations
follows. For comparison, Cade and Huo’s calculation
(E=—17.987313 hartree) for the X !+ state is prob-
ably close to the true Hartree-Fock ‘energy for the
system. The experimental energy at the X 12+ potential
minimum is —8.0703."* Although not an upper bound,
the lowest energy obtained to date for the ground state
is that of Boys and Handy™ (E=—8.063 hartree)
using a transcorrelated wavefunction containing terms
explicitly depending on r,;. The best variational calcula-
tion was done by Bender and Davidson,™ using a
natural orbital approach and a set of elliptic basis
functions. They obtained an energy minimum of
—8.0606 hartree. Many other results using various
techniques could be mentioned'*-?; however, we will
compare our work only with those calculations which
correlate the valence shell.

Our MCSCF method, correlating the valence shell
alone is akin to Wahl’s OVC method.” Mukherjee and
McWeeny,® using a similar approach with a frozen
K shell, chose nine configurations to correlate the 2¢
valenca shell in the ground state, obtaining an energy
of —8.01488 hartree at R,. As our basis set was almost
three times as large as theirs, we expect to do signifi-
cantly better for the X !X+ state; hence our value of

= —8.02121 hartree is not surprising.

To date, the most comprehensive study of all the
potential curves which we investigated is that of Bender
and Davidson,® who used a frozen 1o core and limited
configuration interaction to obtain nineteen states at
nine different internuclear distances. Their work repre-
sents the orly other calculation of the B! and M
potential curves besides our present results, and
Bender and Davidson do not obtain a bound B I At
R.=3.0156 they obtain an energy of —8.0036 hartree
for the X 'Z+ state. Our value lies almost 3900 cm~!
lower. The main difference here is thuught to be our
optimization of the correlating orbitals. In preliminary
calculations, using the Bender-Davidson basis set

of 130, 4r, and 15 STF’s, we obtained for the X T+
state with four MCSCF corfigurations 10%(2024 3424
40’+17%) an energy of E=—8.0173 hartree; 3000 cm~!
lower than their fifty configuration result. To investi-
gate whether our ercrgy improvement might be due to
changes in the K shell upon correlation of the valence
shell, we froze our 1o orbital to the Hartree-Fock value
and carried out the same calculation. The energy change
was only 6 cm™!, showing that the K shell is affected
very little by correlation of the valence shell. Thus the
3000 cm™! difference between the 50 configuration CT
result and our four configuration MCSCF result is due
to our optimization of the valence and correlating or-
bitals only. Much of the remaining difference between
our present calculation and that of Bender and David-
son is due to our more extensive basis set.

In the A 2+ curve, Bender and Davidson calculate
the minimum to be E=—7.8979 hartree compared to
our —7.9036 hartree—a difference of ~1250 ¢cm~!. In
their calculation they obtain a repulsive BIII state.
The lowest energy which they obtain is at 6.0 bohr,

= —17.8606 hartree, compared to onr minimum for this
state which is at least 1000 cm™ below this value, and
at R~A4.7 bohr. The minimum of their I curve,
E=—17.8666 hartree, is again higher than ours by
about 1500 cm=. The fact that the *I state is more
poorly described than the B'II in Bender and David-
son’s calculation is probably due to an inadequate =
basis set on H. The *II state has a dipole moment Li+*H-
which indicates a small shift of charge to H occurring
in the 1x orbital.
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Using accurate gb initio calculated potential curves and electronic wavefunctions for the states X 2%,
A1x*, BYI,3Z*, and *1 for \.iH, various properties were calcrlated. These include dipole and quadrupole
moment, field gradient at the 1uclei, etc. Rotation-vibrational wavefunctions were obtained and a rotation-

vibrational analysis was carried out. Some of the p

rr perties obtained were averaged over the appropriate

rotation-vibrational wavefiinctions. In addition electronic transition moments were computed and from
this uv and ir line strengths wcre obtained. In general the agreement with experimental values, where

available, is satisfactory.

In the preceding paper, hereafter referred to as
Paper I,' we discussed the calculation of the potential
curves for five states of LiH: X 13+, 4 'S+, B'II, I,
and 32+, In computing electronic energies and wave-
functions, essentially one-half of the Born-Oppen-
heimer problem has been solved. Now, not only can
we solve the second half of the Born-Oppenheimer
problem for the motion of the nuclei in each bound
state, but we can also obtain information about sta-
tionary state properties and transition probabilities.
The following sections describe the calculation of
various molecular properties using the multiconfigura-
tion self-consistent field (MCSCF) wavefunctions and
potential curves of Paper I and present thc results.
These properties are of three types and will be dis-
cussed separately: (1) spectroscopic quantities ob-
tained by solution of the one-dimensional radial
Schradinger equation for the nuclear motion; (2) the
expectation values of certain one-electron operators
evaluated over the electronic wavefunctions of each
state; (3) transition moments between different
electronic states.

1. VIBRATION-ROTATION ANALYSIS

In the Born-Oppenheimer approximation, it is
assumed that the total wavefunction of a diatomic
molecule can be expressed as a product of nuclear and
electronic - wavefunctions, which are solutions of
separate equations. The electronic energies and wave-
functions are usually obtained as in Paper I in a field

10

of fixed nuclei and thus depend parametrically on the
internuclear distance R. With the electronic energy
U(R) playing the role of the potential energy, the
Schrodinger equation for the nuclear motion of a
diatomic molecule, regarded as a symmetric top, can be
separated into angular and radial parts. The solution
has the following form:

‘I’=R_1P|,J(R) YJAM(G)q’y X)l (1)

where the Yyan’s are the eigenfunctions of the sym-
metric top. :

In the above expression, 6 is the angle of the figure
axis of the top with a fixed z axis; ¢ is the azimuthal
angle about the £ axis; x is the azimuthal angle measur-
ing rotation about the figure axis (z axis). The quan-
tum number M is the projection of the total angular

momentum along an arbitrary axis in space. The

quantum numbers J and A differ in meaning according
to the particular coupling case and will be discussed
below. P,.s(R), the vibrationa) wavefunction, is the
solution of the one-dimensional radial Schrédinger
equation (in atomic units):

 (@/dR) P, o(R) ~ 2l UR)+ LT (J+1) — K/

—EI.JlPI.J('R) =01 (2)

where p is the reduced mass of the r.uclei; U(R) is the
electronic energy for fixed internuclear distance K
(including the Coulomb repulsion of the nuclei), and
v is the vibrational quantum number. U(R) together
with the centrifugal potential term gives an effective




LiH PROPERTIES 4937
TaBLE I. Spectroscopic constants for the states X 1¥+, A 1T+, B, and 1 of LiH and LiD.»
Xzt A 13+ B NI
LiH LiD LiH LiD LiH LiD LiH LiD
Be (calc) 7.35 4.14 2.74 1.54 3.1 1.74 5.01 2.84
(exptl) 7.51 4.28 2.82 1.61 3.38 1.91 oes .
a, (calc) 0.20 0.09 —0.05 —~0.02 1.36 0.59 0.64 0.28
(exptl) 0.21 0.09 —0.08 =0.01 0.99 0.43 ves .
7. (calc) ST —0.004 —0.001 h -
(expu) cee .. —0.028 —0.002 e e e cee
w, (calc) 1387.47 1026.85 290.70 195.15 171,130 133.12% 620.89 466.52
(exptl) 1405.65 1055.12 234.41 183.12 215.50 177.28 see oo
w,, (calc) 22.24 11.66 —-11.37 ~7.40 54,100 34.15% 52.38 29.71
(exptl) 23.20 13.23 —28.95 —-12.74 42.40 29.13
w,y, (calc) —0.35 —0.18 T
(exptl) 0.16 —-4.18 —0.88 [N o
D, (calc) 2.411 1.048 0.017 0. 226
(exptl) 2.515 1.076 0.035 .
R, (calc) 3.049 4.996 4.688 3.6%3
(cxptl) 3.015 4.906 4.494 cer
Ruin (calc) 3.05 5.12 4.75 3.76

* All units are cm™, except D, is in eV and R in bohr. Conversion factors used a
1 bohr=0.529167X 10~ cm. The experimental values for X IS+ and 4 12+

from Ref. 7.
b Determined using (1), G(0) and the zero point energy from

potential governing the vibration of the nuclei. For
each J a spectrum of vibrational eigenvalues E, ; and
corresponding wavefunctions P,; is obtained. In
systems such as ours, where we have included no
relativistic effects in the electronic energy calculation,
we can really consider only Hund’s coupling case b.
In this instance, the quantum number J is the total
angular momentum excluding spin, and A is the pro-
jection of the electronic orbital angular momentum
along the internuclear axis. If spin-orbit coupling had
been accounted for in the electronic energy calculation,
then the A quantum number in the radial Schradinger
equation should be 2, and J should be the total angular
momentum,

As the potential U(R) is usually obtained at a few
selected points R it is more convenient to solve Eq.
(2) by numerical integration. Since the number of
calculated U(R) points are too sparse for a direct
numerical integration we have used a fifth order
polynomial interpolation to get the required inter-
mediate points. For R<2.0 bohr and R>12.0 bohr an
analytic extrapolation was used to extend the potential
curves. Equation (2) was numerically integrated
using Numerov’s method as described by Cooley? with
certain modifications due to Blatt.? From the calculated
vibration-rotation eigenvalues spectroscopic informa-
tion was obtained by taking the appropriate energy
differences. The resulting eigenfunctions P, s(R) can
be used to vibrationally average certain electronic
properties, to give more rsalistic observables.

For the same electronic and vibratioral state, the

1

R TN Gl g R A e

re: | hartree=27.210 eV=2.1947/,2% 10 cm™,
are from Ref. 5; D,'s and constants for the 8 I state are

cnergy difference between adjacent rotational levels
can be expressed using Herzberg’s* notatin as

Fo(J+1)—F,(J) =2(J+1)3,~4(J +1)D,. 3)

The D, contribution is ofte: three orders of magnitude
smaller than B,, and can usually be neglected. If,
however,

(Fo(J+1)=F,(J))/2(J+1)

is not constant for a range of J values for a particular
v, the D, term cannot be neglected. Consequently a
linear least squares fit to (J+1)? must be performed
to obtain B, and D,. The spectroscopic constants B,
and a, can then be obtained by a linca- least squares
fit of B, to (v+1/2) according to the equation

By=B,—a,(r+1/2). (4)

The AG.4y2 values [where AGyy1=G(v+1) -G(v)]
are the primary spectroscopic information of interest
for the vibrational levels. For 3 states, the AG,;y's
are obtained directly from the J=0 level by taking
energy differences between adjacent vibrational states,
For electronic states of higher symmetry, where there
is no J=0 level, the appropriate rotational terms are
subtracted out. Although the spectroscopic constants
e, we¥y, and w,y, can be obtained via least squares fits
to the G(v) values, the most satisfactory comparison
between theory and experiment is not made with these
constants, but with the AG,,ys values themselves, We
present the computed and experimental spectroscopic
constants for all four itates of LiH in Table I, while

1
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)
]
: TanLe II. Vibrational energy level differencess: X 15+, In general, the deviation of the B,’s from the experi-
| mental values is on the order of 0.2 cm™!, while for the
LiH LiD AG,1112"s the difference is from 2 to 30 cm—!, Although

the errors ¢ . approximately 1%-2%, of the quantities

AGesin AGonin 8Geutn 8Goyin themselves, the difference in the magnitudes is prob-
v (cale) (expl)® (calo) (expil)® ably due to a different cancellation of error in the two
cases. Adjacent rotational levels with identical v's, the
(l’ :;gg'gj :ifi;g 'gg:";g :8(2)3'23 difference of which letermines B,, lie very close to-
124147 1270.90 985. 52 978. 56 gether. They essentiully sample the same region of the
3 1200 34 ’ 931.60 953 84 potential curve—each with a slightly different cen-
4 1160.82 909. 14 trifugal contributicn. The energy difference between
5 1118.47 886.59 the calculated and, the true potential curve is almost
6 1076.77 862.92 the same for thuse ‘wo levels. Thus the error in the
7 1035.58 839,33 computed levels is approximately the same and cancels
8 995.71 815.48 out in the subtraction process provided (1/R) is
9 955.75 792.19
10 915.42 769.32
p 11 874.21 746.78 TasLE IV. Vibrational energy level differencess: 4 15+,
12 831.58 724.32
13 786.66 701.60 LiH LiD
14 738.67 678.69
15 686.25 655.45 AG,un AGoun AGenin AGepin
16 627.82 631.59 v (calc) (expil)® (cak) (expil)®
17 561.77 606,88
18 485.54 581.09 0 274.91 280.96 199.12
1 309.47 312,96 221.30 224.6
*tIncem™, AG,y1in=G(v+1) =G(v). 2 333.52 335.73 237.95 239.92
b See Ref. §. 3 350.80 352.80 250.68 252.19
4 363.29 365.85 260.53 262.03
the AG,;12 and B, values for LiH and LiD are given : g;;;: g;;g: ;ﬁg i;g:,;
together with the experimentally known quantities in 5 383.99 387.585 279.82 282.00
Tabies il and III for the X 'Z+ state, Tables IV and V g 386.73 390.37 283.79 286.13
for the A 'T+ state, Tables V' and VII for the B m 9 388.04 391.59 286.69 289.28
and Tables VIII and IX for the *II. 10 387.76 391.05 288.81 21.60
In cases where the theoretical potential curve js 1! 385.99 389.19 290.30 293.08
shallower than the true curve, the energy level spacing 12 382.86 385.94 291.18 293.78
will be smaller, making the AGy41's smaller than the T L A i B
experimental quantities. As we calculate a dissociation : 5 3475;:? 3;7 29‘;‘::
cnergy that is smaller than the true D, in every case, 16 383.70 288,00 290, 41
the calculated AG.Hm.’s err to a greater or lesser extent |, U117 285.71 288.0
in the expected direction. 18 325.67 282.76 285.2
Tasiz II1. Rotational constr.nts®: X 'E*. s Inem™; 8G,un=G(r+1)-G(2).

b Averaged from several band origins; see Ref. .
LiH LiD

correct. The AG,,in's, however, are the differences
between adjacent vibrational levels for J=0 where
the energy spacing is ~100 times greater than for the

<

B, (aale) B, (expil)® B, (cale) B, (expil)®

9 LA 14080 e 4.1882 rotational levels. Neighboring vibrational levels sample
l & Jloge ;g; :g;;g different regions of the potential curve and thus have
: e i< { i different intrinsic error which will not completely
3 o6& ¢.7782 3.8 3924 A e = o

4 6.44 278 3833 cancel out in taking the difference. .
s 6.24 3.67 Because the calculated B.'s agree very closely with
6 6.04 3.58 the corresponding exper'mental values, the R.’s calcu-
7 5.84 3.5 lated from these B,'s [R,~ 1/(2uB,)'] also agree well

with experiment. These R,’s do not agree, in most
* In em™, cases, with the R,('s obtained by interpolating the
' See Ref. §. calculated potential curve points to obtain the min-

ﬂ
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LiH PROPERTIES

imum. The R value at the minimum of the electronic
potential curve will be denoted R, Thus the spectro-
scopic R, is not always the ininimum of the electronic
potential energy curve, except for the potential curves
very harmonic near the minimum, In comparing the
theoretical results to experiment, then, the R, calcu-
lated from B,, rather than the Reia, should be com-
pared with the spectroscopic R, values.

Using the electronic potential curve for each bound
state, we computed vibration-rotation levels for both
LiH and LiD using the atomic masses "Li=7.01600,
H=1.007825, D=2.0140. Most of the discussion in
the following sections will center on LiH to avoid
repetition, as most of the trends observed in LiH are
seen in LiD also,

TazLE V. Rotalional constantse: AZ+,

LH LiD

*  B,(ak) B, (expil)s B, (calc) B, (expil)®
0 2.70 2.8536 1.52

1 2.81 2.8897 1.57 1.6238
2 2.8 2.9044 1.59 1.6316
3 2.84 2.9083 1.59 1.6365
4 2.85 2.9057 1.60 1.6383
s 2.84 2.8959 1.50 1.6382
6 2.8 2.8804 1.60 1.6358
7 2.81 2.8589 1.60 1.6310
8 2.78 2.8333 1.59 1.6243
9 2.75 2.8022 1.59 1.61¢?
10 .72 2.7707 1.58 1.6087
t 2.68 2122 1.56 1.5955
12 2.64 2.6895 1.55 1.5824
13 2.60 2.642 1.54 1.5678
t 2.55 2.5%42 1.52 £.5834
1 1.51 1.5361
16 t.49 1.5197
17 1.48 1.5002
\_ﬁ

*In cm™,

* See Rel. §.

A X2+

The 8G,y1n vilues for this state appear in Table [].
While we stopped our calculations at 20 vibrational
levels, only four have been observed spectroscopically.’4
The 20th vibrational level for J=0 lies at E= —7.9366
hr.atree, at ~96%, of the well depth. The calculated
8Goyin's are smaller than the experimental ones for
LiH in each case by ~30 cm!, This is to be expected,
as the calculated potential curve is too shallow by
approximately 845 cm~! due 10 incomplete conelation
of the 2¢ shell and neglect of the intershell 1¢-2¢ cor-
relation. By including all 19 8G.,1n's in a linear Jeast
squares fit, the spectroscopic constants w,= 13875
em™ and wx,= 22,2 cm-! (see "‘able I) were obtained.

4939
TanLe VI. Vibralional energy level differences*: B 11,
LiH Lil}
Alssiin Alre i Alre,in Bl i
¥ {cale) (expl ) cale) {exptl)®
i 66, 45 130,73 67,11 119, 1M
1 45.90 i) A2

*In cm™h AG. = E(v41, ) = E(v, )~ (B, ~B)J(J+1) +
(D.H—D.)J'U-l-!)’-G(v-{-l) =G(v), here for J =1,
b See Ref. 7.

By eliminating the first three calculated AG,,);'s from
this fit, the values became 1402.1 and 22.8 cm™!, re.
spectively, while the experimental numbers are 1405.6
and 23.2 cm~, This does not necessarily mean that
the calaulaied AG,,y'"s will agree more closely with
experiment for higher r. It does indicate the sensitivity
of the fit 1o the number of AGo112"s used, suggesting
the inadequacy of the fit. Also, the experimental
spectroscopic  constants would probably be quite
different from the present ones if 20 vibrational levels
had been observed. Thus it seems of little value 10
compare the w, and w,z,’s.

The B, values for this state are given in Table I11,
and in each case are less than the experimental quanti-
ties by ~0.15 cm™. From the calculated B, for LiH
(fitted to the B)’s), R,=3.0490 b was obtained. Within
the limit of our interpolation, this is exactly equal 10
Rata(Ruia=3.05 bohr). The deviation from experi-
ment (R,=3.015 bohr) is approximately 19,

B. A '+

Twenty vibrational levels were calculated for this
state, while 14 vibrational levels have been observed
spectroscopically for LiH. The highest vibra:ional
state computed here lies about 869 up the polential
well from the minimum.

The AG.,in's for this state, shown in Table Iv,
exhibit anomalous behavior, increasing with ¢ initially
until 2 maximum and then decreasing. The maximum
AG.yys for LiH is reached at t=9, while for LiD Mo
is larger, at v= 13, This is to be expected from the

TasLr VEt, Kolaliona! constanise: B 41,
—'=-"-I'—-—_____-_.-'._—
K1)

B k) B, {expal)

LiH

B, icak) B, (expil) e

'
o L4 1.as 1L.H L&®

| 1.07 1.80 o.ns 1.2

:-"—_'_—'===_.—__.—_—_I:‘_-'h-—.—==-- —= = .
*Inem
b See Rel. 7
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4940 K. K. DOCKEN AND J. HINZE

TanLe VIIL Vibrational energy level differencess: 211,

v AGean (LH)  AG.an (LiD)

0 513.83 403.57
1 413.83 348.38
2 308.69 290.92
3 199.71 231.32
4 92.68 169.96
5 108.19
6 49.37

* In cm™¥; see Footnote (a) of Table VI.

ratio w,r./w.y, which is larger for LiD than for LiH.
The calculated AG,,1.2's for this state are smaller than
the experimental ones by approximately 2 to 3 cm-!
on the average. This sinall difference between experi-
mental and calculated values, in contrast to the
situation in the X I+ state, reflects the fact that
there is very little correlation remaining unaccounted
for in this state. The calculated AG,,n's follow the
experimental trend exactly, peaking at the same 's
as do the spectroscopic quantities. Because of this
anomalous behavior, however, a polynomial representa-
tion in (v+1/2) to obtain the spectroscopic constants
W, weTs, €tC., is practically meaningless, as Crawford
and Jorgensen obscrved.t

The B,'s in Table V show the same sort of anomalous
behavior 2s the AG,414's. The calculated values are on
the whole ~0.05 cm-! less than the experimental
quantities, and increase to a maximum at around
v=5, and then decrease. Again, a polynomial fit to
the B,'s to obtain B, and a, is not very satisfying.
The calculated B, does yicld an R,=4.996 bohr which
is closer to the experimental R,=4.906 bohr than
Ruis, which is at 5.12 bohr. Thus we were able to
reproduce the anomalous spectroscopic behavior oi
the A 'Z* state very accurately within the framework
of the Born-Oppenheimer approximation, demonstrat-
ing that Jent's* explanation for the anomalies in this
state as due to a break-down of the Born-Oppenheimer
approximetion : incorrect.

Rydber;;-Klein-Rees (RKik) potential curves were
generated for the X !2* and A !X* states using the
spectroscopic constants of Crawford and Jorgensen®
and are illustrated along with our calculated curves in
Fig. 1. For this figure the minima of the RKR curves
were obtained using the experimental D.'s asd the
Hartree-Fock atomic dissociation limits, which are at
—8.0252 and —7.9046 hartree respectively, The ex-
perimental  vibrational levels asociated  with the
RKR curves ure the solid lines, whereas our calculated
vibrational levels for J = 0 are the dashed lines.

RKR potential curves are only accurate insofar as
the energy can be expressed in a power series of {3+
172) and J(J+1). In addition, the accurazy of the
curves is limited to the range of » from which the

14

experimental spectruscopic constants were derived.
For thls latter reason, it is not surprising that the
X1Z* RKR curve docs not dissociate correctly, Only
the four lowest vibrational levels liave been observed
for this state. The X'+ RKR vibrational levels are
below our calculated ones in every instance through
v=15. At v=19, however, the two curves deviate
substantially from one another and the RKR vibra.
tional level lies above ours. This just indicates that
the spectroscupic constants derived for the levels
v=0-3 are not adecquatc for describing the higher
part of the potential curve,

In the 42+ state, due to the odd shape of the
pot.atial curve, the energy cannot be represented well
in & Dunhain-type expansion. The spectroscopic con-
stants used ia generating the RKR curve arc such
that for erergies higher than —7.885 hartree (sce
Fig. 1) tke R values of the !eft hand turning point
cither stzy the same or become larger. The rezult of
this would be a nen-single-valued function of the energy
with internuclear distance. Since this is physically un-
reasonable, we have drawn the A '3+ RKR curve only
in the regions where the curve is well-behaved, i.c.,
from 3.0 to 8.5 bohr,

C.su

The calculation of the vibration-rotation levels for
this state was greatly affected \»y the fact that only
~50% of the experimental binaing cnergy was ob-
tained. Whereas three vibrational states were observed
spectroscopically,” we were able to calculate only two,
The highest level, for J=2, ¢= 1 lay at —7.865042
hartree, reveral wavenumbers above the dissociation
limit for the rotationless state, The AGyp, as shown in
Table VI, for this state is smaller by 64 cm™! than the
corres» = g experimental AGyy. The B,'s agreed
more  sely with experiment, but the B, is only a
two point fit. It is not surprising then that R, calcy.
lated fron: B, is *.68% bohr, whereas the experimental
R, is 4.4%4, bohr.

D.!
Altheugh this state has not yet been obwened ex-
perime tally, the spectroscopic qQuantitics of interest

Tantx [X. Potatinnal constantas: "1,

* B, (LiN) B, (1iD)
0 4“0 ..
{ 4.08 2.41
2 3.%0 2.18
3 2.8 1.93
4 2.08 1.65
s 1.07 1.1
6 0.98
7 0.9

. . .. W
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LiH PROPERTIJES 4941

are given in Tables VIII and IX. The behavior of the
B,'s and AG,41p's is fairly normal. The highest calcu-
lated state, /=3, v=5 at E=—7.865032 hartrece lies
several wavenumbers above the dissociation limit for
the rotationless state. The R, (=3.69 bohr) calculated
from the B, for LiH is 0.076 smaller than the Ruia
due to the anharmonicity of this state. As the experi-
mental B,'s are expected to be slightly larger than
our calculated ones, judging from our experience
with the other states, the experimental R, should be
somewhat less than 3.69 bohr.

ITI. ONE-ELECTRON EXPECTATION VALUES

As it is important to look beyond the cnergy as the
sole criterion for judging the accuracy of a calculated
wavefunction, the degree to which an approximate
wavefunction approaches the exact description of an
electronic system can be deduced by comparing
theoretical and experimental values for certain proper-
ties. This aflords insight into the accuracy of the
wavefunction description in various resions of space,
since different operators are sensitive to different re-
gions of the electronic density distribution. The
calculation of such properties as the dipole moment is
also of great predictive value in the case of excited
states where no measurements have been made.

-1.84

E (hortrees)

R (bohrs)

£1o. t. RKR and computed potential curves and vibratjonal
levels. The RKR curves are below our calculsied curves for
both stales. The RKR curves are referred to minima obtained
from the siomic Hartree-Fock disseciation limits using 1he
experimenial dimorisiion es. The minima are: —K0252
hartree for X 12°* and —7.9046 hartree for A '2°, The solid hori.
sonlal lines indicale vibrailonal tevels of the RKR curves, while
1he dashed lines are our calculatzd vibeational levels for J =0,

12.0
100

@
[=]

Dipole Moment (debyes)
P
=]

-6.0

i | 1 L = i} 1 1 L i 1 L
20 30 49 50 60 70 80 9.0 100 10 120
R (bohrs)

Fic. 2. Dipole moments of five states of LIH virsus R. The
positive sign refers to Li*H-,

With a normalized MCSCF wavefunction ¥, repre-
sented in Paper I as a lincar combination of con-
figuration state functions (CSF’s) &;, we can write
the expectation value of an arbitrary onc-elect:on
operator Q=3 ,9; (where the summation is over all
# clectrons in the system) as

ViQl¥)= ?.:.C;C;(mom). (5)

Each CSF is, in general, a linear combination of Slater
determinant(s) (SD’s) which are constructed from a set
of orthonormal orbitals ¢,. The orbital orthogonality
greatly reduces the number of terms in (5). Indeed, if
configurations ¢; and ¢, differ by more than one
spin-orbital, the matrix clements of Q between these
two configurations is zero. In terms of the individual
orbitals (5) can be revritten

v|Ql¥)= ECICJ ‘Z'du.u(wh(l) | ws)
- ?_‘;au(wlq(l) lws). (6)

The one electron coupling coefficient 674,y is determined
by the orbitals occupied in cach configuration, the
coupling of the Slater detenninants within each CSF,
and the symmetry of the operator. The effective co-
efficients a,; are defined as

o= Y CiCse1s.4 (7)
17

and are in the case of totally symmetric operators the
clements of the first order reduced density matrix in
the space spanned by the orbitals. The operator ¢
which we used has the general form r,° sin ‘0, cosy X
Pia(cos8y) exp(imyy) where & is the nuclear center
which is used as the origin for the coordinates (r, 8, ),
and Pu is a normalized assodicated Legendre poly-
nominal, The expectation values for seventeen different
operators at the R points of the calculated potential

15




4942 K. K. DOCKEN AND J. HINZE
TasLE X. Expectation values of one-clectron operators for X fS+.»
R L n u(e-bohrs) (D) Pi(costy) /rd  Pa(cosdn) /rnt cosfLi/n.it cosbn/ra?
2.0 3.9687 —4.0313 1.9687 5.0036 0.1297 0.2287 0.2382 -0.5527
2.25 4.2840 —4.7160 2.0310 5.169%6 0.1050 0.1699 0.2054 —0.4311
2.5 4.6159 —5.3841 2.1159 5.3778 0.0847 0.1310 0.1839 —0.4208
2.75 4.9592 —6.0408 2.2092 5.6149 0.0692 0.1040 0.1655 —0.3706
3.0 5.3102 —6.6898 2.3102 5.8716 0.0572 0.084 0.1500 —0.3282
3.25 5.6653 —7.3347 2.4153 6.1387 0.0470 0.0699 0.1399 —0.2943
3.5 6.0238 —17.9762 2.5238 6.4145 0.0394 0.0588 0.1280 —0.2632
4.0 6.7353 —9.2646 2.7353 6.9520 0.0289 0.0426 0.1054 -0.2111
4.5 7.4128 —10.5872 2.9128 7.4032 0.0214 0.0321 0.0893 —0.1720
5.0 8.0236 -11.9763 3.0236 7.6848 0.0156 0.0250 0.0788 -0.1419
5.5 8.5150 —13.4850 3.0150 7.6629 0.0119 0.0195 0.0650 -0.1173
6.0 8.8182 —15.1818 2.8182 7.1627 0.0087 0.0156 0.0548 -0.0978
6.5 8.9117 —17.0883 2.4117 6.1296 0.0062 0.0124 0.0459 -0.0815
7.5 8.7911 —21.2088 1.2911 3.2814 0.0032 0.0081 0.0277 -0.0581
8.5 9.0156 —24.9844 0.5156 1.3104 0.0017 0.0053 0.0173 —0.0434
10.0 10.1130 —29.8870 0.1130 0.2872 0.0007 0.0031 0.0107 —0.0307
12.0 12.0166 -35.9834 0.0166 0.0422 0.0001 0.0017 0.0073 -0.0211
R sin¥y /L sin¥g/rn cos¥u/r cosu/m 1/r U/mm it m? 7 sin' L rm
2.0 3.9320 1.2638 2.3705 1.4736  6.3025 2.7375 17.8764 18.0015 7.2140 6.5433 7.7744
2.25 3.8963 1.2038 2.3423 1.3815 6.2386 2.5853 19.5040 20.4761 7.3578 6.8335 8.3336
2.5 3.8651 1.1493 2.3148 1.3018 6.1799 2.4511 21.4206 23.3410 7.5714 7.1513 8.9193
2.75 3.8385 1.1015 2.2892 1.2328 6.1277 2.3343 23.5812 26.5556 7.8181 7.4872 9.5206
3.0 3.8160 1.0598 2.2654 1.1725 6.0814 2.2322 25.9657 30.1047 8.0902 7.8361 10.1327
3.25 3.7967 1.0246 2.2436 1.1196 6.0403 2.1442 28.5363 33.9621 B8.3664 8.1922 10.7488
3.5 31,7806 0.9942 2.2235 1.0735 6.00:1 2.0677 31.3186 38.1520 8.6544 8.5564 1!1.3719
4.0 3.7559 0.9462 2.1878 0.9970 5.9437 1.9432 37.3763 47.4936 9.2041 9.2909 12.6279
4.5 3.7400 0.90%> 2.1569 0.9349 5.8969 1.8423 44,0257 58.3102 9.7845 10.0215 13.9175
5.0 3.7315 0.8762 2.1297 0.8844 5.8612 1.7606 51.1384 70.9018 10.4275 10.7325 15.2617
5§, 3.7303 0.8462 2.1058 0.8415 5.8361 1.6877 58.3518 85.6866 11.0816 11.3882 16.6930
6.0 3. 7371 0.8148 2.0846 0.8041 5.8218 1.6188 65.2567 103.4384 11.8125 11.9547 18.2696
6.5 3.7506 0.7827 2.0664 0.7708 5.8170 1.5535 71.5282 124.6762 12.5384 12.4112 20.0111
7.5 3.7828 0.7259 2.0387 0.7135 5.8216 1.4395 82.9468 176.0796 13.7348 13.1068 23.7698
8.5 3.8021 0.6963 2.0210 0.669 5.8231 1.3659 96.2728 232.0080 14.2831 13.8382 27.3006
10.0 3.8108 1. 6806 2.0035 0.6216 5.8140 .3022 122.3312 320.0710 14.4808 15.1725 32.0266
12.0 3.8116 0.6741 1.9873 0.5762 5.7989 1.2503 165.8058 453.4078 14.5053 17.1134 38.0059

» All quantilies except for dipo'e moment in powers of bohrs.

curves arc given for the X '+, A4 1=+ BT, and [T states
of LiH in Tables X through XIII. For the It state
only the (z11) expectation valuc was obtained for
certain internuclear distances in order to calculate the
dipole moments. These are given in Table XIV.

The property which is probably of greatest interest
is 1he dipole 1noment, which gives ir.formation on the
over-all arrangement of charges in the particular
state of the system. The clectric dipole moment is
invariant to the placement of the origin for neutral
systems as long as onec cvaluates the expectation

value of
y-cz‘r‘—c},:Z,R, (8)

where the latter teem contains nuclear coordinates Ry

and n'iclear charge Z;. Thus for LiH, taking into ac-
count the cylindrical symmetry, we have in atomic
units

u(R) = (¥(R) | 21 | ¥(R))—R
= (W(R) | za | W(R))+3R, (9)

with sy=ry cosfh and R the internuclear distance. The
sign of the dipole moment is defined such that positive
indicates Li*H~ and negative, Li"H*. We expect the
dipole moment to approach zero for beth large and
small R (at the separated and united atom limits).
The variation of the dipole moment with R for all
the states of LiH is displayed graphically in Fig, 2.
The correct behavior is observed for ali states at
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LiH PROPERTIES 4943
TasLE XI. Expectation values of one-electren operators for 4 1Z+.»
R L1 n u (esbohrs)  p (D) Py(cosBy) /e Pa(cosbu) /nid cosfi/rLé cosf/ru?
2.0 -0.0371 -~8.0371 —2.0371 ~5.1775 0.1195 0.2526 0.1423 -~0.5604
2.25 0.1745 ~8.8255 —2.0755 -5.2751 0.0976 0.1859 0.1063 —0.4765
2.5 0.4117 ~9,5883 —2.0883 —5.3076 0.079) 0.1407 0.0860 —0.4067
2.75 0.6726 —10.3274 -~2.0774 ~5.2799 0.0053 0.1095 0.0700 -0.3508
3.0 0.9528 ~11.0472 —~2.0472 ~5.2031 0.0546 0.0867 0.0572 -~0.3051
3.25 1.2556 ~11.7444 —1.9944 —5.0690 0.0452 0.0702 0.0496 -~0.2708
3.5 1.5740 -12.4260 —1.9260 -~4.8951 0.0387 0.0577 0.0405 —0.239.
4.0 2.2672 —13.7328 ~1.7328 —4.4041 0.0299 0.0397 0.0254 —0.1874
4.5 3.0303 —14.9697 ~1.4697 ~3.7354 0.0235 0.0283 0.0164 ~0.1513
5.0 3.8979 —16.1021 -1.1021 —2.8011 0.0186 0.0215 0.0107 -~0.1250
5.5 4.9001 ~17.0999 —0.5999 ~1.5247 0.0159 0.0162 0.0079 —0.1045
6.0 6.0867 ~17.9133 0.0867 0.2204 0.0137 0.0128 0.0070 ~0.08%
6.5 7.4695 —18.5305 0.9695 2.4641 0.0122 0.0103 0.0076 -=0.0777
7.5 10.4172 —19.5828 2.9172 7.4143 0.0109 0.0076 0.0124 —0.0613
8.5 12.7077 —21.2922 4.2077 10.6943 0.0104 0.0057 0.0140 ~0.0485
10.0 14.2924 ~25.7075 4.2924 10.9095 0.0126 0.0037 0.0116 -~0.0341
12.0 13.8196 —-34.1804 1.8196 4.6247 0.0194 0.0020 0.0072 —=0.0217
R sinp /i sin¥a/rm cos¥yui/rui  cosm/ra  1/rui 1/ Lt ry? 7% 5in% Li ™
2.0 3.8758 0.9289 2.2970 1.4412  6.1728 2.3701 27.4379 43.5863 13.4908 7.6210 10.7765
2.25 3.8555 0.8793 2.2726 1.3437 6.1281 2.2230 28.8142 48.2788 13.7703 7.8531 11.5034
2.5 3.8376 0.8401 2.2502 1.2611  6.0878 2.1012 30.1885 53.130 13.9439 8.0827 12.2188
2,75 3.8226 0.8097 2.2302 1.1905 6.0527 2.0002 31.6077 58.1583 14.0410 8.3129 12.9224
3.0 3.8101 0.7864 2.2121 1.1298 6.0221 1.9162 33.1032 $3.3862 14.0716 8.5454 13.6149
3.25 3.7994 0.7694 2.1955 1.0768 5.9949 1.8461 34.7120 68.8.07 14.0735 8.7831 14.2946
3.5 3.7907 0.7574 2.1805 1.0313  5.9713 1.7887 36.468° 74.4516 14.0365 9.0270 14.9647
4.0 3.7770 0.7456 2.1542 0.9570 5.9312 1.7026 40 5083 86.3710 13.9233 9.5376 16.2671
4.5 3.7659 0.7432 2.1319 0.8981 5.8978 1.6413 45.3880 99.1151 13.7631 10.0867 17.5219
5.0 3.7558 0.7480 2.1131 0.8516 5.8689 1.5996 51.2115 112.2327 13.5083 10.6777 18.6987
5.5 3.7440 0.7581 2.0972 0.8136 5.8412 1.5717 58.3281 125.4268 13.2313 11.3372 19.7747
6.0 3.7284 0.7734 2.0837 0.7830 5.8121 1.5563 67.0740 138.0340 12.8919 12.0904 20.7087
6.5 3.7085 0.7931 2.0719 0.7585 5.7804 1.5516 77.7314 149.6282 12.5535 12.9538 21.4849
7.5 3.6685 r.8244 2.0506 0.7200 5.7191 1.5444 103.5987 172.3413 12.1768 14.8644 22.8598
8.5 3.6467 0.8273 2.0319 0.6871 5.6786 1.5143 130.8756 203.8438 12.5238 16.6112 24,7102
10.0 3.6457 0.7¢84 2.0156 0.6412 5.6613 1.4296 165.7453 279.8965 13.6036 18.3886 28.9180
12.0 3.6712 0.7093 2.0178 0.5859 5.6890 ].2952 193.2305 437.5602 14.1631 19.1119 36.6128

» All quantities except for dipole moment in powers of bohrs.

large R=12.0 bohr. At R=2.0 bohr, however, the 3IT
dipole moment is tending away from zero, and the
moments for the other states, although tending in the
right direction are still far from zero. This indicates
that at R=2.0 bohr we are still far from the united
atom limit.

The dipoie moment of the ground state is large even
at 2.0 bohr in the direction Li*H~, increasing to a
maximum at 5.25 bohr, the region in which the X 1=+
potential curve has maximum interaction with the
ionic curve. For large R, the dipole moment approaches
zero in a smooth fashion reflecting the fact that the
state dissociates to neutral species. Bender and David-
son® have calculated dipole moments at various points
of R, obtaining values close to ours for R<3.0 bohr.

For the region 3.0-6.0 hohr, their values are smaller,
sometimes by as much as 0.3 bohr, indicating possibly
that their basis set on H was inadequate to describe
the diffuse H-- orbital. .

For the A '2+, the dipole moment shows very clearly
the large changes in character of the wavefunction with
R. For small R the sign of the dipole moment indicates
a charge distribution Li-H*, due to the 3o orbital
being strongly polarized behind Li. The slope is steep-
est in the curve-crossing region from 5.0 to 7.0 bohr,
Here the wavefunction is becoming rapidly ionic in
the direction LitH-, with a- maximum reached at
~10.25 bohr. Dissociation to neutrals forces the rapid
drop-off of the dipole moment at 12.0 bohr. Bender and
Davidson’s dipole moments for this state are again

17
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TasLE XII. Expectation values of one-electron operators for B !1.»

R 714 z & (e-bohrs)  u (D) Py(cosbri) /it Pi(cosBu) /ra? cosfui/rLi cosfn/rn?
2.0 1.9490 -6.0509 —0.1510 —0.1296 0.0901 0.2463 0.1877 —0.5608
2.25 2.1503 ——6.8497 —0.0997 —0.2534 0.0672 0.1795 0.1575 —0.4738
2.5 2.3631 —7.6369 —0.1369 —0.3479 0.0507 0.1358 0.1345 —10.4060
2.75 2.5853 —8.4147  —0.1647 —0.4186 0.0383 0.1056 0.1162 —0.3515
3.0 2.8169 —9.1831  —0.1831  —0.4654 0.0788 0.0840 0.1012 —0.3066
3.25 3.0576 —9.9424  —0.1924  —0.48% 0.0213 0.0680 0.0887 —0.2691
3.5 3.3052 - 10.6948 —0.1948 —0.495¢ 0.9154 0.0558 0.0782 -—0.2374
4.0 3.8191 —12.1809  —0.1806  —0.4598 0.0070 0.0389 0.0615 —0.1874
4.5 4.3478 —13.6522 —0.1522 -0.3868 0.0015 0.0283 0.0492 —0.1504
5.0 4.0802 -—15.1198 —-0.1198 —0.3045 —0.0020 0.0212 0.0401 -0.1226
5.5 5.4096 —16.5904 —0.0904 —0.2298 —0.0044 0.0163 0.0332 -0.1016
6.0 5.9334 —18.0666 —0.0666 —0.1693 -0.0060 0.0128 0.0279 ~(.0853
6.5 6.4513 —19.5486 —0.0487 —0.1238 -—0.0071 0.0102 0.0237 -—0.0726
7.5 7.4736 --22.5263 —0.0264 —0.0671 —0.0085 0.0068 0.0178 -—0.0543
8.5 8.4849 --25.5150 —0.0151 —0.0384 —0.0093 0.0047 0.0138 -—0.0421
10.0 9.9925 —30.9974  —0.0075 —0.0191 —0.0099 0.0029 0.0100 —0.0303
12.0 11.9965 —36.0035 —0.0035 —0.0089 —0.0104 0.0017 0.0069 -0.0210
R sin¥ui/re sin®a/ra cosOui/ry cos¥m/m 1/ /e e rat 7t sin’ i ™
2.0 3.9261 0.9924 2.2051 1.3705 6.1312 2.3629 35.7093 43.9131 24.9883 8.3688 10.7228
.25 3.9027 0.9383 2.1817 1.2774 6.0844 2.2157 37.2302 47.8039 25.5151 8.6041 1i.3849
2.5 3.8830 0.8946 2.1605 1.1992 6.0434 2.0937 38,7309 51.9152 25,9076 8.8371 12.0458
2.75 3.8667 0.8594 2.1412 1.1329 6.0079 1.9923 40.2082 56.239%0 26.1648 9.0661 12.7026
3.0 3.8534 " 0.8314 2.1237 1.0764 5.9771 1.9%078 41.6882 60.7869 26.3023 9.2920 13.3549
3.25 3.8425 0.8091 2.1079 1.0280 5.9504 1.8371 43.1987 °65.5743 26.3378 9.5162 14.0030
3.5 3.8337 0.7914 2.0934 7.9862 5.9272 1.7776 44.7662 70.6299 26.2951 9.7398 14.6486
4.0 3.8209 0.7660 2.0682 0.9180 5.8892 1.6840 48.1797 81.6271 26.0550 10.1895 15.9374
4.5 3.8126 0.7488 2.0471 0.8647 5.8508 1.6135 52.1123 93.9824 25.7499 10.6490 17.2356
5.0 3.8072 0.7364 2.0294 0.8217 5.8365 1.5580 56.6402 1(7.8385 25.4774 11.1197 18.5527
5.5 3.8035 0.7266 2.0143 0.7860 5.8178 1.512C 61,7475 123.2416 25.2565 11.5983 19.8909
6.0 3.8008 0.7185 2.0014 0.7556 5.8022 1.4742 - 67.4456 140.2449 25.1145 12.0846 21.2517
6.5 3.7989 0.7116 1.9902 0.7294 5.7892 1.4410 73.6893 158.8218 25.0230 12.5749 22.6313
7.5 3.7964 0.7007 1.9719 0.6859 5.7684 1.3865 87.7313 200.6263 24.9299 13.5612 25.4344
8.5 3.7950 0.6926 1.9576 0.6511 5.7526 1.3437 103.7879 248.5441 24.8953 14.5509 28.2802
10.0 3.7937 0. 6843 1.9411 _0.6100 5.7348 1.2943 131.6037 331.7528 24.8786 16.0382 32.6022
12.0 3.7929 0.6778 1.9252 0.5689 5.7182 1.2467 175.6518 463.7358 24.8692 18.0243 38.4285

* All quantities 2xcept for dipole moment ir. powers of bohrs.

smaller than ours in magnitude, indicating a less
flexible hasis for describing the charge distribution.

The II states have very little charge transfer and
are essentially neutral. The dipole moments, though
small, do differ in sign—positive: for the 31 and nega-
tive for the 'II. For the 32+ state there is a substantial
polarization of charge onto the Li, yielding a negative
dipole moment which approaches zero at large R.
Bender and Davidson’s results for these states are
very similar to ours.

Another propertv of interest is the field gradient say
at nucleus 4, which in a diatomic molecule may be
expressed as

ga(R) =2{¥(R) | P. (cosba)/74}| ¥(R) }+2Z5/ R,
: (10)

18

The interaction of the field gradient ¢4 with the nuclear
quadrupole moment Q4 causes a shift in the hyperfine
structure splitting which is proportional to eqaQ4. In
the case of ’Li, where the nuclear quadrupole moment
is not known, it can be obtained from the experi-
mentally measured nuclear quadrupole coupling con-
stant e-gri*Qri/k of 'Li in LiEl and the calculated field
gradient gri.

Several other molecular properties may be obtained
from the expectation values listed in Tables X-XIII,
Among these are:

_(a) the diamagnetic coutribution to the m-=gnetic
susceptibility

x(R)=—1/6aX¥(R) | #*| ¥(R)), (11)

N | a s e
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TasLe XIII. Expectation values of one-electron operators for ’IL.*

R 2L m # (e-bohrs) » (D) Py(cosfr)r®  Pa(cosfm) /re? cosri/r.it cosfn/ra’
2.0 2.2934 —5.7066 0.2934 0.7457 0.0820 0.2336 0.1895 —0.5656
2.25 2.5000 —6.5000 0.2500 0.6354 0.0613 0.1731 0.1593 —0.4787
2.5 2.7130 —7.2870 0.2130 0.5414 0.0464 0.1305 0.1363 —0.4111
2,75 2.9308 —8.0692 0.1808 0.4595 0.0352 0.1014 0.1181 -~0.3568
3.0 3.1526 --8.8474 0.1526 0.3878 0.0266 0.0806 0.1032 —0.3120
3.25 3.3779 —9.6221 0.1279 0.3251 0.0199 0.0652 0.0907 —0.2745
3.5 3.6063 —10.3936 0.1063 0.2702 0.0146 0.0536 0.0801 —-0.2427
4.0 4.0717 —11.9282 0.0717 0.1822 0.0068 0.0375 0.0632 —-0.1920
4.5 4,5469 —13.4530 0.0469 0.1192 0.0017 0.0274 0.0506 —~0.1541
5.0 5.0295 —14.9704 0.0295 0.0750 -0.0017 0.0206 0.0410 —0.1254
5.5 5.5171 —16.4829 0.0171 0.0435 —0.0041 0.0159 0.0338 —-0.1036
6.0 6.0085 —17.9915 0.0085 0.0216 —0.0057 0.0126 0.0283 —0.0867
6.5 6.5027 - " 4973 0.0027 0.0069 —0.0069 0.0101 0.0240 —0.0735
7.5 7.4%05 —27.5033 —0.0034 —0.0086 —0.0084 0.0068 0.0179 —0.0547
8.5 8.4948 —25.5051 —0.0052 -0.0132 —0.0092 0.0047 0.0139 —-0.0423
10.0 9.9953 —30.0047 —0.0047 -0.0119 —-0.0099 0.0029 0.0100 —-0.0303
12.0 11.9969 —36.0030 -0.0031 -0.0079 —0.0104 0.0017 0.0069 -0.0210
R sin¥y/r  sin¥m/m cosu/ry cosm/rm U/ U/ i ra’ 7 sin%g Lt R

2.0 3.9586 1.0052 2.2080 1.3635 6.1666 2.3687 29.0801 35.9155 19.4615 7.7749 10.0333
2,25 3.9313 0.9487 2.1857 1.2710 6.1170 2.2197 30.8864 39.8862 20.1786 8.0434'10.7191
2.5 3.9078 0.9025 2.1651 1.1931 6.0730 2.0955 32,7715 44.2065 20.8566 8.3177 11.4136
2.75 3.8878 0.8642 2.1462 1.1269 6.0340 1.9918 34.7443 48.8750 21.4937 8.5959 12,1133
3.0 8.8709 0.8344 2.1289 1.0705 5.9998 1.9048 36.8052 53.8898 22.0871 8.8765 12.8160
3.25 3.8566 0.8099 2.1130 1.0221 5.0606 1.8320 38.9445 59.2382 22.6264 9.1578 13.5192
3.5 3.8446 0.7904 2.0984 0.9803 5.9430 1.7707 41.1570 64.9125 23.1059 9.4385 14.2218
4.0 3.8266 0.7627 2.0724 0.9124 5.8990 1.6751 45.7883 77.2144 23.8722 9.9936 15.6218
4.5 3.8146 0.7449 2.0504 0.8597 5.8650 1.6047 50.7023 90.7797 24.3962 10.5366 17.0155
£.0 3.8070 . 0.7328 2.0317 9.8177 5.8387 1.5505 55.9085 105.6132 24.7101 11.0643 18.4052
5.5 3.8024 0.7238 2.0158 n,7829 5.8182 1.5068 61.4640 121.7761 24.8858 11.5796 19.7966
6.0 3.7995 0.7105 2.0023 0.7534 5.8018 1.4699 67.4042 139.3022 24.9690 12.0852 21.1924
6.5 3.7976 0.7102 1.9908 0.7278 5.7884 1.4381 = 73.7685 158.2331 24.9999 12.5844 22.5947
7.5 3.7956 0.7001 1.9721 0.6852 5.7677 1.3852 $7.8669 200.4170 24.9889 13.3736 25.4212
8.5 3.7945 0.6924 1.9576 0.6508 5.7521 1.3431 103.8926 248.4800 24,9519 14.5598 28,2758
10.0 3.7936 0.6843 1.9411 0.6099 5.7347 1.2042 131.6532 331.7475 24.9078 16.0421 32.6014
12.0 3.7928 0.6778 1.9252 0.5689 5.7181 1.2467 175.6710 463.7439 24.8822 18,0257 38.4286

s All quantities except for dipole moment in powers of bohrs.

where « is the fine structure constant and r has the
center of the electronic charge as origin,

(b) the diamagnetic contribution to the nuclear
shielding factor at nucleus 4

oa(R)=1/33(¥(R) | 1/r4 | ¥(R)),  (12)
(c) the molecular quadrupole moment
8(R) = T Zudi— (¥ (R) | #—1/20* | ¥(R)), (13)
»
where dy is the distance of nucleus & with charge Z,
from the center of mass, z has the center of mass as

origin and p?=x*}y*=rsin¥, the distance squared
from the nuclear axis, is origin independent.

Many more prope:ties could be obtained, in par-
ticular if the computed expectation values are com-

bined with experimentally measured results. These
include the parallel and perpendicular part of the
diamagnetic susceptibility as well as its high fre
quency part, and the molecular g factor. This is dis-
cussed in detail elsewhere.?

When coinparing computed properties, suck as
dipole or quadrupole moments .and the like, with
experimentally observed quantities, it is important to
realize that ihe experimental values are obtuined for
specific rotation-vibrational states. It is therefore
necessary to average the computed propertier, which
vary with the internuclear distance, over tl.~ rotation-
vibrational wavefunctions. We have performed such
rotation-vibrational averaging for some of the proper-
ties using the rotation—vibrational wavefunctions
obtained from the computed potential curves. In

19
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TasLe XIV. Expeciation value of z and dipole moment for iZ*.

R 214 (bohrs)  u (e-bohrs) u (D)
2.0 0.247 —1.4474 —3.6787
2.5 0.7499 —1.,7501 —4.4480
3.0 1.2317 —1.7683 —4.4943
3.5 1.8730 —1.6270 —4.1352
4.0 2.5965 —1.4035 —3.5671
5.0 4.,0847 —0.9153 —2.3263
6.0 5.5128 —0.4872 —1,2382
7.5 7.3248 -=0.1752 —0.4453
12.0 11.9922 —0.0078 —0.9198

Table XV are presented a selecied set of these rota- -

tion—vibration averaged properties, which are obtained
generally as

Q(2,J;¢J)=(Pus(R) | Q(R) | Pvsr(R)), (14)

with Q(R) the property as a function of the inter-
nuclear distance and P,.s(R) the rotation-vibrational
wavefunction for vibrational state » and rotational
state J. '
Since practically no measurements or calculations of
excited state properties were found to exist, we con-
centrate on comparisons for the ground X !Z+ state
alone. In Table XVI various expectation values (at 3.0
bohr unless otherwise noted) as well as: rotation-
vibration averaged values are presented and compared
with other computed values and with experiraent. Our
values always appear in the first row, with any existing
experimental values directly beneath them. '
The dipole moment of LiH has been measured'® for
J=1 of the three vibrational states, =0, 1 and 2.

The computed values are found to be consistently too -

large by about 0.1 D, a quite gratifying agreement.
However, were we to compare the value obtained for
p. {5.886 D) with the experimental vale for uo (5.882
D) the agreement would appear to .o even better.
Another experimentzl parameter, related to the dipole
moment and its derivative

I‘-/ R,

%= GwaR)z (15)

which is obtained from relative line intensities in the

infrared spectrum®® agrees exceptionally well with our-

computed value. .
Using the quadrupole coupling constant for ’Li in

LiH measured by Wharton ef al.,'* and the computed

field gradient at the Li nucleus in the =0 state, we

obtain a nuclear quadrupole moment for ’Li somewhat-

smaller in magnitude than many of those calculated
previously. However, our value is close, though some-
what larger-than the one obtained recently by. Green,*
using the Cade and Huo basis szt in a 200 configuration
CI calculation. It should be noted here that-the field
gradient operator, going as P; (cosd)/r*, for Li will
depend strongly on the description of the 1o or K shell
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orbital, In particular it will depend critically on the
do basis function used to polarize this orbital. A careful
study of this? has led recently to the best value for
QL1 of about —4.1X10"% cm?, somewhat larger than
our value.

Working in the other direction and using the field
gradient on hydrogen together with the known nuclear
quadrupole moment of deuterium (Qp=2.738X10-%
cm?) we obtain a quadrupole coupling consiznt for
LiD in excellent agreement with the experimental
value.!®

III. TRANSITION MOMENTS

The literature does not lack for calculations and
discussions of atomic transition probabilities. Much less
is known, however, about molecular transition proba-
bilities, even though Mulliken and Rieke* in 1941,
published a comprehensive review of the research on
the subject. Sirce then, with the availability of large
computers, much more accurate molecular wave-
functions can be calculated, and thus theoretical
transition probabilities should become more accessible.
Several recent theoretical studies have appeared in
which transition moments were calculated using
molecular Hartree—Fock functions. The systems calcu-
lated were NH(A-X, ¢-¢, c-b) and CH(A-X, B-X,
C-X) by Huo®* and the A-X band systems in OH,
BeH, MgH, and SH by Henneker and Popkie.”® Huo
has concluded that oscillator strengths computed in
this manner have order of magnitude accuracy only.
On the other hand, Wolniewicz? has obtained excellent
theoretical results for the B-X, C-X and E, F-B
transitions in the hydrogen molecule using the very
accurate electronic wavefunctions calculated by Kolos

" and Wolniewicz 7—%#

TARLE XV. Selected properties (u is the dipole moment, 6 is
the quadrupole moment, g is the field gradient) vibrationally
averaged, Q(v, J; tJ) = (Pus(R) | Q(R) | Prs(R)) J=0 for
T states and J =1 for IT states. All values in atomic units.

v u(r) 8(v) qui(v) gn(v)
xigr 0 2350 —3.236 —0.0383 0.0488
5 2,559 —4.210 —0.0304 0.0429
10 2711 —5.244 —0.0232 0.0356
AT+ 0 —0.94 —7.931 —0.90216 0.0055
5 —0.011 —11.741 —0.0220 0.0078
10 0.882 —15.812 —0.0217 0.0086
15 1.650 —19.880 —0.0216 0.0086
20 2.228 —23.676 —0.0240  0.0069
B 0 —0.0% 6.285  0.0204 0.0046
| 1 —0.024 5.320  0.0197 0.0010
D1 0 0.080 6.019  0.0178 0.0226
2. 0.05 6.056  0.0193  0.0149
4 0.016 5.923  0.0208 0.0060
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TasLe XVI. Expectation values and properties of X 1=+ state at R=3.0b.¢
(¢/2¢)n (¢/2e)4 1/ra 1/rLt Ll ™ Py(cosfiLy) /rid Py(cosba) /r?
0.0267 —0.0202 2.2322 6.0814 7.8361 10.1327 0.1500 —(.3282
0.0263b —0.0174b 2.2376¢ 6.0820b 7.8288b 10.14i2b 0.1144% —0.3260%
0.0230° —0.0187¢ 2.2404° 6.0748° 7.8292¢ 10. 1008 . 0.11480 —0.3312¢
0.02924 - 0.0202¢ 2,22394 6.0848¢
0.0256° —0.0173¢
0.0274! —0.0166!
—0.0195
m? i Py(costuy) /rui Py (cosbu) /ra? or @ X 104 oL@ X104 X9 X104
30.1047 25.9657 0.0572 0.0844 0.3953 1.079% —1.6788
30.22404 25.9296b 0.0536 0.0832b
30.615¢° 25.827¢ 0.0548° 0.0854° 0.3922s 1.0775
0.0521¢ 0.0777¢
u.(D) [h-o(D) Hoal (D) Ilv-‘l(D) 0,= _“"/L Q7LI( 10-% cm?) (GQQ/") pke
(0u/OR) R,
5.8860 5.974 6.083! 6.193! 1.86 —3.75% 34.40
5.428! 5.8824-0.005™  5,9904-0.004=  6.098-0.003™ 1.84:0.30 —3.96¢ 31.4r
5.853b
5.645¢ 5.93¢ 6.00¢ 6.05° 1.74¢ —4.44! 3341w
6.002} 2.5 —4.3! 33.3¢
5.965° 4,50
5.93¢ 1,75k
5.888!
5.89k
e ———

» All our values appear first in each column; they are at R=3.0 bohr and in atomic units unless specified differently.

b At R=3.U15. See Ref. 10.
s At R=3.015. See Ref. 11.
4'At R=3.015. See Ref. 12,
¢ At R=3.046. See Ref. 13.
! At R=3.042. See Ref. 14.
= At R=23.046. See Ref. 15.

b Obtained at R=3.015 bohr by interpolation of our calculated values.
10btained by linear fit to (v41/2) of sy and u; experimental values.

§ At R=3.015 bohr. See Ref. 16.

k At R=3.060 bohr. See Ref. 17.

1 Our vibrationally avcragcd value is for J =1 state.

= See Ref. 18.

n See Ref. 19,

o See Ref. 8.

» See Ref. 20.

a Calculated using (g/2¢)r and Qp=2.738X107" cm*.

r Using the vibrationally averaged values g(v=1}; sec Table XV.

Several factors can be said to account for the dearth
of transition probabxhty calculations for molecular
systems. The first is that molecular wavefunctions even
of Hartree-Fock quality are relatwely scarce for
excited states of molecules. Because, in general, the
transition moment varies with the internuclear dis-
tance R, one should also have ground and excited state
electronic wavefunctions at various R values, in order
to calculate band intensities or line strengths. The

Hartree-Fock potential curves, especially for large R,
can be notoriously poor, leading to incorrect dis-
sociation products. In addition, the effects of electron
correlation, unaccounted for in the HF wavefunction,
on the transition moment are difficult to predict. Thus,
indications are that molecular wavefunctions to be
used in transition probability calculations should go
beyond the Hartree~-Fock model, both in flexibility
and in correcting for electron correlatxon. In order to
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obtain results which can be compared with experiment,
the nuclear motion :.ust also be considered. Since the
electronic energies, wavefunctions, and transition
moments are obtained within the framework of the
Born-Oppenheimer approximation, these quantities
depend parametrically on R. The dependence of the
square of the transition moment on R is not directly
observed experimentally. Therefore, an average over
the nuclear coordinate using vibrational wavefunctions
is necessary.

The length form of the general transition moment
operator is defined just as the dipole moment operator
was in Sec. II.

m=e), r/—eY ZIR/, (16)
BT T

except that the coordinates are with respect to the
laboratory fixed frame of reference. The transition
moment between two states, 4 and B, rcpresented by
orthogonal wavefunctions, is independent of the
second term, since the matrix element over the second
term above vanishes for all R. With the total wave-
function defined as

Vaowm1=Ya,a(r,R") (1/R') Py /AR Y 114(8, 0, x)
(17)

(with the quantum numbers and notation of the previ-
ous section), the transition moment can be written

M g1 g0 oo B MM = (‘I’A Jtotal l € Z f." I ‘I’B.toml)-
3

(18)

Transforming coordinates r;/ to r; in the molecule
fixed system, and integratinpg over the electronic
toordinates r; with the electronic transition moment
defined as

MAY(R) = Yaa(ri, R) |e D ri|¥pa(ri, R)),  (19)

we can write

ITIAIM?
Maorgonnp BV IAM

= (Py1yrA(R) | MA2(R) | Py P(R))
X (YJ"A"M" | D(0, [ X) | YJ'A'M')- (20)

The D(6, ¢, x) in the last matrix element relates the
molecule-fixed coordinate system to the laboratory-
fixed axes. In order to obtain the line strength for an
clectronic transition between vibrational and rota-
tional states v"J"—'J’ we must square the quantity
Mayegonong B"V'M™" and sum over the degenerate
quantum numbers M’ and 2{". This gives

Mgy g BV = 51,0 VW p L, I (01
where Sy:+4-/'4’ is the Honl-London factor* and
PrwsT 1= | (PpssA(R) | MAB(R) | PuyB(R)) I

| (22)

22

In this work, only the length form of the dipole
operator was used, as the integrals program was not
adapted to compute the velocity operator. The pro-
cedure we followed to obtain individual line strengths
was to calculate M AB(R) usiug the electronic wave-
functions determined at the various R values given in
Paper I. Then py,/"'" was obtained by averaging
over the particular vibration-rotation wavefunctions.
The actual sign of MA2(R) is insignificant, depending
only on the relative phases of the two wavefunctions
involved. A polynomial interpolation of the calculated
MAB(R) points is necessary in order to obtain the
electronic transition moment at each point on the
numerical integration grid for which we have vibra-
tion-rotation wavefunctions.

If the electronic wavefunctions ¥, and ¥, are con-
structed from a common set of orthonormal orbitals,
MAB(R) can be computed using Egs. (5) and (6) in
Sec. IT of this paper. This is the case for the two 'S+
states computed using the “‘averaged field” described
in Paper I. The calculation of the transition moment
between two states with nonorthogonal orbitals will
be discussed below.

Whether or not the molecular orbitals for the two
states are orthogonal, when both states are calculated
with the same basis set, the computation of the one-
electron integrals of the transition moment over the
basis functions is greatly simplified. This was the
case for four of the states of LiH. Since the basis for
the *Z+ differed by only three functions, the transition
moment integrals for the ¥Z+—3II were obtained with
the larger basis, In the =+ wavefunction, orbital co-
efficients of zero were then inserted for these basis
functions. The *Z+ wavefunction was also not available
at all the R values of the M, and thus transition
moments were only computed for the nine R values
which matched in each state, ;

The treatment for nonorthogonal orbitals is very

similar to that in Sec. II. For clarity, we rewrite Eq.

(5) of that section as

M’AB(R)=;‘§~ CBCIACJB@’IA(R) | Z 7l ,5(R)),

(23)

where the sums are over the CSF’s of states 4 and B.
The configuration state functions &; may themselves be
linear combinations of Slater determinants ¥, enabling
us to write .

@r= 3 Bx¥y, (24)

KCI

where the summation is over all $D’s in CSF I. Then
defining A;x=C;Bg, we can write

MAR) =T ¥ ¥ T Am*As B WA | 3 7| W.B).
ICA JCBKCI LEJ ‘

(25)

Because of the nonorthogonality of orbitals belonging
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to states A and B, we have an orbital overlap matrix
between SD’s ¥x4 and ¥ ;? denoted S*L with elements

sij= (et | ¢#) iCKandjCL. (26)
Thus we can write
WrA | T ri | W)= T T (oA | 7(1) | @®)DXE,
1 QK QL
(27)

where DXL is the cofactor of the overlap matrix SKE
formed by omitting row ¢ and column j and taking
the determinant of the remaining matrix.

If we use spin-orbitals, SX& will be a square matrix,
which can be blocked into an a and a 8-spin sub-
matrix. Since our operators are spin-independent, no
matrix elements over orbitals of different spins will
appear, and the cofactor DXL reduces to a product
of the cofactor within a particular spin block and the
determinant of tiie other spin block, The actual calcu-
lation of cofactors was accomplished utilizing a method
suggested by Prosser and Hagstrom.® Details of the
over-all procedure have been presented more fully
elsewhere !

Transition moments were calculated for the following
four systems of LiH; X 'Z+4 1Z*, X 'Zt-B I, A 12+
B 'Ml, and *Z*+-[1. Since the X !Z+ and A 'Z+ states
were calculated using the ‘‘averaged field” their
orbitals were mutually orthonormal and the first
transition moment above could be obtained using
Eq. (6) in Sec. IL. For the other transition moments,
the procedure for nonorthogonal orbitals just outlined
was used. Tie actual values are listed in Table XVII

TaBLE XVII. Electronic transition moments.*

R X 1N+-4 12+ X\ Z+-BMl  ATH-BUI e 1 U
2.0 0.6247 1.8222 —2,5837 2.8811
2.25 0.7034 1.8321 —2.6048

2.5 0.7853 1.8570 —2.6096 2.9578
2,75 0.8714 1.8874 —2.6032

3.0 0.9599 1.9223 —2.5870 3.0057
3.25 1.0530 1.9586 —2.5696

3.5 1.1516 1.9960 —2.5445 3.0696
4.0 1.3739 2.0697 —2.4936 3.1314
4.5 1.6323 2.1612 —2.4269

5.0 1.6448 2.2846 —2.3298 3.2203
5.5 2.3100 2.48342 —2.1949

6.0 2.6956 2.6213 -1.9912 3.2881
6.5 3.0202 2.8221 -1.7220

1.5 3.1453 3.1556 -1.0597 3.3230
8.5 2.7686 3.3051 —0.5209
10.0 2.3613 3.3610 —0.1020
12.0 2.3425 3.3715 0.0434 3.3589

* In atomic units, i.e., e+bolirs.

b The X+ state was calculated at a slightly diffcrent set of R
values from the others. The transition moment Z+-3I1 was calcu-
lated only at identical R's in each set.
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F16. 3. Transition moments of four systems in LiH versus R.

and presented graphically in Fig. 3. In order to under-
stand how these transition moments should behave
theoretically as a function of R, it is instructive to look
at the states in the united atom (R=0) and separated
atom (R= ) limits. This can be represented sche-
matically as

Be(1s%2s?; 15)—LiH(10%20%; X 1Z+)
—Li(25) +H(2S)
LiH(10*2030; 3Z+)
Be(1s%252p; 2P)
LiH(16%201x; 1

LiH(16%2¢30; A 'Z+)} Li(*P)+H(2S)
Be(15%252p;'P)
LiH(16*201x; B 'II)

Thus for R=0, since the A 'Z+ and B! as well as
the 31 and *Z* states become degenerate, the transition
moments of 4 !Z*-B I and *Z+-I should approach
zero. As can be seen from Fig. 2, this is not yet the
case in our calculated values at R=2.0 bohr. We might
expect also that the sum of the oscillator strengths for
X1Z+-B 'l and X 'Z+-4 'Z* approaches that of the
Be 'S—'P) transition. This is definitely not the case,
as the oscillator strength [efined in atomic units as
fas=2/3(Ea—Ep)Sap] of the atomic transition is
1.36,* whereas ours sum to 0.44. At 2.0 bohr, there-
fore, we are still quite far from the united atom limit.
At large R we observe exactly what we would expect
from the separated atom point of view. The transition
moment of A4 !Z+-B ' has reached zero by 12.0 bohr,
since these states dicsociate to the same atomic limit.
The X'Z+-B'I and X'Z*-A'Zt transitions have
attained constant values at this distance. The square
of the transition moment for the X !Z+-B !I trausition
is just 2.07 times the square of the X !Z+-4 13+
moment of R=12,0 bohr, This is very good agreement
considering that purely theoretically we expect a factor

_r
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TaBLE XVIIIL. Line strengths Py " for selected bands in the X 'Z+-4 1E+ transition (in 10~ ¢2- bohrs?).

J PU) RW) PU) RU) J ) 18)) R(J) PUJ) R
0-0 1-0 9 12.49 11.80 12.57 12.33
10 12.44 11.63 12.64 12.32
0 0.068 0.477 1 12.37 11.43 12.70 12.28
1 0.070 0.065 0.489 0.462
o 366 NE 12 12.27 11.20 12.75 12.21
2 0.06 0.060 0. g- ! 13 12.15 10.93 12.78 12.12
3 g-°°7 0.055 0"‘7‘; ';; 14 11.99 10.63 12.79 11.99
4 -064 0.050 0.46 0.386 15 11.80 10.29 12.78 11.82
5 0.059  0.044 0.440 0.353 16 11.58 9.92 12.74 11.61
6 0.054 0.038 0.414 0.320 '
17 11.32 9.52 12.66 11.35
7 0.048 0.032 0.384 0.285 ]
18 11.02 9.09 12.54 11.06
3 0.042 0.027 0.352 0.250 19 10.68 12.38
9 0.037 0.022 0.318 0.217 ’ ;
10 0.031 0.018 0.284 0.185
1 0.026  0.014 0.250  0.156 9-0 1-0
12 0.021 0.011 0.216 0.130
13 0.017 0.009 0.185 0.107 0 ik 4 otig
1 10.86 10.92 6.99 7.11
14 0.014 0.007 0.157 0.087
2 10.88 10.98 7.00 7.20
15 0.011 0.005 0.131 0.070
3 10.92 11.06 7.04 7.32
16 0.009 0.004 0.108 0.056
4 10.98 11.15 7.11 7.47
17 0.007 0.003 0.089 0.044
5 11.06 11.26 7.20 7.63
18 0.005 0.002 0.072 0.035 6 1Vl 11.37 e 7 83
19 0.004 0.058 7 1128 11.50 7.46 8.04
8 11.41 11.62 7.64 8.27
5-0 60 9 11.56 11.75 7.83 8.53
10 11.72 11.87 8.06 8.80
0 9.288 11.46 1 11.88 11.9 8.30 9.08
1 9.380 9.200 11.54 11.40 12 12.05 12.08 8.57 9.38
2 9.384 9.084 11.55 11.31 13 12.21 12.16 8.86 9.68
3 9.360 8.940 11.55 11.21 14 12.37 12.22 9.16 9.98
4 9.308 8.768 11.52 11.08 15 12.52 12.24 9.48 10.28
5 9.227 8.567 11.48 10.93 16 12.65 12.22 9.81 10.58
6 9.117 8.338 11.42 10.76 17 12.76 12.17 10.15 10.86
7 8.977 8.081 11.34 10.56 18 12.84 12.07 10.49 11.12
8 8.807 7.798 11.23 10.33 19 12.89 10.84
9 8.608 7.488 11.10 10.07
10 8.379 7.156 10.93 9.79 e
11 8.120 6.803 10.74 9.47
12 7.834 6.431 10.52 9.12 0 5.19
13 1.522 6.046 10.27 8.75 1 5.14 5.25
14 7.187 5.651 9.98 .35 2 5.14 5.34
15 6.831 5.250 9.66 7.93 3 5.17 5.45
16 6.458 4.848 9.32 7.49 4 5.23 5.59
17 6.073 4.451 8.94 7.03 5 5.31 5.75
18 5.679 4.061 8.54 6.57 6 5.42 5.94
19 5.281 8.12 7 5.55 6.14
8 5.71 6.38
7-0 8-0 9 5.89 6.63
10 6.10 6.91
0 12.44 12.14 11 6.33 7.21
1 12.48 12.41 12.15 12.15 12 6.59 7.53
2 12.50 12.38 12.17 12.17 13 6.87 7.86
3 12.52 12.34 12.21 12.20 14 7.18 8.20
4 12.53 12.29 12.25 12.23 15 7.50 8.56
5 12.54 12,22 12.30 12.26 16 7.85 8.92
6 12.54 12.15 12.36 12.29 17 8.22 9.28
7 12.54 12.05 12.43 12.31 18 8.59 9.64
8 12.52 11.94 12.50 12.33 19 8.98
24
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of 2 due to the doubly degenerate 2px versus the non-
degenerate 2ps arising from Li(15%2p). The Z+-1
transition moment becomes equal to the X !Z+-B!M
moment, which is just what we would anticipate for
analogous terms within the singlet and triplet sequences.

The sum of the oscillator strengths o1 the X 1Z+-
A'Z* and X 'Z+-B'I transitions is 0.763 if we use
the experimental energy splitting of Li(*P)—Li(%S)
and our calculated transition moments. Weiss,® using
a 45-configuration wavefunction calculated the oscil-
lator strength of the Li(3S)—Li(*P) transition to be
0.753. The Hartree-Fock f value is 0.768, also calcu-
lated by Weiss® using the dipole length operator and
the experimental splitting. It is reasonable that the
Hartree-Fock model predicts too large a transition
moment, because lack of electron correlation tends to
create a more diffuse charge distribution than is
actually the case. Since, at the dissociation limit, our
calculated molecular states dissociate to Hartree-Fock
atoms, we expect to approach the Hartree-Fock value
for the Li(:S)—Li(*P) transition, and our value of
0.763 attests to this. If we had calculated the oscillator
strength using our calculated energy splitting we
would have obtained a value of 0.755—very close to
the most accurate value, This is due to a fortuitous
cancellation of errors: the larger Hartree-Fock transi-
tion moment is multiplied by the Hartree-Fock energy
splitting, which is smaller (due to more correlation in
the S than the *P states of Li) than the experimental
value.

TanLe XIX. Line strengths Py.y-#"* for 1wo bands in
ground atale infrared specirum (in 1072 3. bohrs?).

0-1 1-2
J P(J) R(J) P R(J)
0 0.813 1.653
1 0.952 0.749 1.936 1.520
2 1.026 0.687 2,088 1.395
3 1.103 C.629 2.246 1.27§
4 1.184 0.5713 2.411 1.162
s 1.268 0.521 2.582 1.055§
6 1.3585 0.472 2.761 0.953
7 1.446 0.425 2.946 0.858
8 1.540 0.381 1138 0.768
9 1.638 0.340 3.336 0.684
10 1.739 0.302 3.542 0.605
11 1.843 0.266 3.785 0.532
12 1.951 0.233 3.974 0.464
13 2.062 0.202 4.200 0.401
14 2177 0.174 4.433 0.343
15 2.295 0.148 4.613 0.290
16 2.417 0.124 4.920 0.241
17 2.542 0.103 5.113 0.198
18 2.6 0.084 5.432 0.159
19 2.803 5.698

f!

Another feature of the X !Z+-4 ¥+ transition
mo:nent curve which can be observed is the maximum
in the region 5.0 to 9.0 bohr, This is the region of
greatest interaction between the two states; the wave-
functions are changing character from ionic to neutral
or neutral to ionic.

Bender and Davidson® have calculated the absolute
oscillator strengths for the four transitions at various
R values. Since the oscillator strength contains both
the energy splitting and the square of the transition
moment, we have to divide by their calculated energy
splittings to obtain the behavior of the transition
momeiits. All their calculations are carried out at
R<06.0 behr., For the X-A transition, their transition
moment is uniformly larger than ours by ~0.1 bohr.
This is not surprising, as our wavefunctions ‘vere
better correlaved than theirs. For the X'3+ AN,
AZ+-B ', and *Z*-01 transitions, however, Bender
and Davidson obtain moments smaller in *. agnitude
than ours, on the aveiage by 0.5, 0.8, and 1.0 bohr,
respectively. The B'Il is very poorly determined in
their case—not even bound. Although they obtain a
bound ', the charge distribution for this state may
be poor also due to the lack of diffuse 2pr functions on
H in their basis set, It is this lack of diffuse basis func-
ticus which presumably yields their smaller transition
moments for the Z~II systems.

IV. LINE STRENGTHS

We have computed the transition matrix elements
between various vibration-rotation states for the
transitions X 1Z+-4 12+ X 'Z+-B 1, A 'T+-B 11, and
the infrared vibration-rotation transitions in the
ground state, Selected values are given in Tables
XVIII and XIX. Since the 3Z* state is repulsive and
no continuum wavefunctions were calculated, no
transition matrix elements were oblained from the
electronic transition moments for 3+-*[1. The signs
of the computed matrix elements are unimportant, as
the square of the transition matrix element is the only
measurable quantity.

The line strengths, pyv?'?”, without the Monl-
London factors, are presented for several selected
bands of the X 'Z+-A 'Z+ transition in Table XVIII.
As can be seen, the t'= 7—¢"'= 0 band would be that
of maximum intensity within the v"'=0 progression,
however in cases where the Boltzman factor weights
high J” values heavily (i.c., high rotational tempera-
ture) the 8-0 band should be most intense. From a
study of Fig. 2 in which the vibrational levels of the
X ard A 'Z+ potential curves are depicted, we could
have anticipated this behavior by a straightforward
application of the Franck-Condon principle. Halmann
and Laulicht, % computing Franck-CorZon factors and
r centroids for this progression using RKR potentials
predicted an intensity maximum in the absorption
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spectrum for the 8-0 band of the X Z+-4 'Z+ transi-
tion,

Absolute intensity measurements in ahsorption have
been carried out for the v/=0 progression of the
X 13+-4 13+ transition. Velasco and Fernandez-Florez®
obtain a maximum in the intensity distribution st
8-0 and a second maximum of almost the same relative
intensity at 12-0. Comparing the pye?’?" for the
11-0 and 12-0 bands it is evident that in our calcula-
tions the intensity distribution for the 12-0 band will
definitely be less than in the 11-0 band, and both are
less than in the 7-0 and 8-0 bands. Using th= equation
relating the integrated absorption coefficient to the
line strengths,

!k,d.ﬁ (87"-‘/3’“)‘\'- I R~ I" (28)
Velasco and Fernandez-Florez have also presented the
valucs of | R * for the various lines in the P and R
branches of the 6-0 band. The [R|' values vary
greatly—Dhy a factor of 16—from P; to Py and R, to
Ry with the largest values for P, and Re. In the 11-0
and 12-0 bands they observe several maxima and
minima in the region J'=4 to J'=19 when | R |x'+
| R |4 is caiculated.

Since we were unable to determine what the factor
Na in Velasco's artizle contains, it is not clear to us
what their | R[* represents. Our pyy?"'s do not
behave at all like the ~~perimental | R |* values pre-
sented by Velasco and Fernandez-Florez. Even re-
garding their measurements as relative intensities docs
not help to resolve the discrepancy. Because we were
able to reproduce very well the anomalous behavior in
the spectroscopic constants of the A 'X* state, we
would expect to be able to pick up the trends in the
line strengihs.

Recently, Velasco® has indicated that absolute
intensity measurements in absorption arc in progress
for the X''X*-B M1 transition. It will be interesting to
compare our results for this system with experiment
to sce if perhaps theory and experiment can become
less inconsistent,

For tt2 infrared transitions in the ground state, we
present the pyo?"?" values for two bands: 0-1 and
1-2 in Table XIX. Because these two bands arise from
different vibrational states, their intensity relative to
cach other in absorption will be wholly determined by
the population of the t=0 and r= | vibrational states.
Although relative intensity measurements have been
vsried out for these bands by james, Norris and
Klemperer,” the line strengths calculated by these
authors contain an unknown Boltzmann factor which

K. K. DOCKEN AND J. HINZE

makes comparison of our absolute values with their
relative values impossible.
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Science Foundation.
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Calculated o'z, 4'a, B'=~ States of CH®
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Ab initis CI calculations have been performed uver & wide range of Internuclear distances to obtain
the potettial curves for three low.lying excited electronic states, ¢4, A '3, B2, of CH. With the com-
puted potential curves, vibratioa-rotational levels are obtained by numerical Iategration of the radial
Schrodinger equations for the motioa of the nuclel. The term values are analysed to yield the conventional

constants. Results, with known experimental values in parentheses, cre R, (4%) =

spectroncopic
1074(2082) au, R(B'I)=2208(2200) au., R,(a'%)=2047 au;
DIBZ") =0.17(~0.40) ¢V, and DI e *Z") =288 ¢V. The

H{AV3) < 189(201) eV,
computed spectroscopic constants are found

1o be withia 4% of known experimental values. A potential masimum of beight 1600 em~! occurs (n the
computed potential curve of the B 12~ state. The '~ state, not known experimentally, is estimated to
lic between 0.52 ¢V and 0.75 cV above the X M ground state.

I. INTRODUCTION

The CH radical has been found to be one of the
more abundant molecules in comets, stellar atmos-
pheres, and interstellar space.! It may play a sig-
nificant role in the formation of larger molecules in
interstellar space. It is also of importance in flames.
Consequently, considerable effort has gone into the
experimental determination and dassification of fts
spectrum. Several electronic stales have been iden-
tified and characterized using high resolution uv spec-
troscopy?; most nolably the low-lying A 1A, B2,
and C'2*, as well as the X "I ground state. However,
one low-lying state, the @ 'Z-, which is expected to
be below the A %3 state in energy, has not been ob-
served to date. This is because transitions between
this and the other low-lying states are strongly for-
bidden. Also, no properties, other than the spectro-
scopic properties, have been determined experimentally
for the various low-lying states of CH. Molecular
properties such as dipole and quadrupole moments
are difficult to obtain experimentally for reactive
radicals and for excited states. However, these prop-
erties are easily calculated once approximale wave
functions for the molecule are detennined by e prieri
calculations.

It is also difficult to obtain, experimontally, the
long range behavior of the potential curves. This long
range behavior is of importaace in elastic and reactive
scattering, and of potential significance in interstellar
molecule formation. Here again, @ prieri calculations
can supply the needed information, if the calculations
are carried beyond the Hartree-Fock limit to indude
the necessary electron ccerelation.

Several calculations on CH have been teported in
the literature.** Most of these are limited to ecither
the X' 'l ground state or the Hartree-Fock approxi.
mation. Exceptions are a minimal basls set, limited
Cl calculation by Higushi® for six lowest-fying states

in CH and a recent calculation by Liu and Verhaegen?
for the same six states. In the latter calculation the
Hartree-Fock results obtained are corrected semi.
empirically for the correlation error. In both of these
calculations the agreements between computed and
experimental R,, v, and term splittings are rather
good. The dissociation energies obtained by Higushi
are poor, whereas those obtained by the semiempirical
method are very good. In this paper we report the
results of an extensive and accurate ob imitio wave
mechanical calculation on three excited states, A '3,
B12X-, and ¢ ‘X~ of CH, all arising from the configu-
ration 1¢'26'3¢1n’. Potential curves for these states
are determined for a wide range of internuciear sepa.
rutions, considerably beyond the scope of previous
calculations.

The agreemeat between computed quantities and
experimental results, where known, is in general satis-
factory. An outline of the method used in these com-
putations is depicted in Sec. II. The results are dis-
cussed in Sec. III.

Since all calculatiors with accuracy beyond Hartree-
Fock indicate that “se yet unobserved ‘X~ state is
above the experimentally observed ground state X i1,
we shall follow the spectroscopic convention in the
foliowing and denote the state with the prefix g, ie.,
e'X™, As a matter of fact, from the observation of
the lines of lowest J in the three 0-0 bands of A-X,
B-X, and C-X in interstellar absorption, Hersberg
and Johns' have concluded that the predicted low-
lying ‘X~ state must lie above the X "I state.

1. METHOD

In the aalculation of the wawdvnctions for the
molecule, the nonrelativistic Bo:n-Oppenheimer ap-
proximation is used. That &, the wavefunction for
the molecule is separated into a product of the elec:
tronic and the nuclear wavefunctions; by neglecting
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Tamz 1. Slater-1ype basls set used in 1be configuration inter.
acilon calculatioss
. -~ o _

Symmetry Center s{ value Exponents used
v C Is 5.2309, 1.9¢9
U 1.1678, 2.300, 10.0
R 1.1505, 2.8193
b7 1.2857,2.7263, 10.0
3 .28
M 1.25,2.8
i .18
n Is 0.70,1.30,2.%
b Y] 2,2 %
2y 2.4
N 3.8
v C 2 1.2582,2 1263, 10.0
3 1.6005,3 8
N 1.25,2.%
Y 2.3
] 2 1.25,2.¢
3y 2.8
M 2.8
] &5 N 1.5,2535 40
n LY 1.0,30

e
——— e ey

o r——— -

small terms in the Hamiltonian, two uncoupled wave.
equations are obtained and solved scparately. The
rst equation is for the motion of the electrons in the
field of the fived nuclei; the cigenvalues and cigen-
functions are therefore dependent parametrically on
the internuclear distance. The sccond equation is for
the motion of the two nuclei in the potential de-
termined by the cectrons. The assumption of sepa-
rability here, again neglecting small coupling terms
in the Itamiltonian, leads to the independent nudear
vibrational and rotational motions, x~d the solutions
for them give rise to vibration-rotatior al states char.
acterized by the vibrational quantum number v and
the rotational quantum numbers A and M. (Hund's
coupling b is assumed.)

To solve the electronic wave equation, the usual
Hartree-Fock-Roothaan sclf-consistent method is used
first, which is followerd by a large scale configuration
interaction® calculatina in order to introduce the
nccessary clectron correlation. An extended set of
Slater type functions is used for the expansion of
the orbitals. Some exponents of the ¢ and v type
functions were optimized within the Hartrev-Fock
approximation for the X M1 ground state at the ex-
perimental oquilibrium distance. 1t was found that,
with the extensive set used, exponent optimization
lowered the energy only little, less than 0.0008 a.u.
Therefore, it appeared reasonable to use the same set
of bads functions, given in Table I, throughout for
all states and intemuclear separations. Using the set
given in Table I, the SCF result for the X Ml state

LIE, RINZE, AND LIU

is 000008 a.u. lower than the result of Cade and
Huo.* The computed cnergies for the three excited
states reported here are all found to satisfy the virial
theorem to within 0.049% at the computed equilibrivm
internuclear distance, indicating that the basis set
used was satisfactory.

Initial SCF calculations were carrim] out at each
intemuclear separation with the single restiicted con-
figuration 1e"26*30le?, properly coupled to yield the
appropriate 13, '2=, and *E- configuration state func
tions. It should be noted that the restricted Hartree
Fock functions for the states considered here disanciate
properly; *8—C('D)+H(S), 13-, and 2=—C(*/)4
H(’S). This is not so for the M ground state, which
arises from the configuration le°2e'3e’lr at the equi-
librium distance, but would need, for proper dissocia-
tion at large distances, also the configurations
1e'2e'30401r and lo*2eMe'lr.

The orbitals, occupied and cmpty, resulting from
the initial SCF calculations, are used in the following
Cl calculations. In these CI calculations the 1e¢ or-
bital, representing the casbon X shell, is held fiver!
and always doubly occupied. This is done in order
to reduce the number of configurations nectled, and
since it appears reasonable that the K-shell correla-
tion will not change significantly in molecul: forma-
tion, & conjecture which we intend to test in future
calculations. Three types of configurations are included
in the CI calculations: .

(a) All configuration state functions of proper sym-
metry arising from the distribution of five clectrons
in the orbitals 2¢, 3o, 4¢, and Ir;

(b) any possible sinzle replacements from con
figurations of type (a);

(c) any possible double replacements from con-
figurations of type (a), provided the matrix element
between suck a configurztion and the reference state,
i.e.,, the Hartree-Fock configuration, is nonzero.

This last restriction significantly reduces the nuniber
of configuration states usedd and, furthermore, is jus-
tified froin a perturbation theory point of view. The
actual number of configuration state functions used
are 2466, 2558, andd 2159 for A 1A, BTX-, and 0%,
respectively.

Once the clectronic wavefunctions and potential
curves are obtained, the cquations for the nuclear
motion can be solved. The solutions for the angular
part of the nuclear motion, i.c., the molecular rota.
tion, can be obtained analytically as the “‘generalized
spherical harmonic function® with the quantum numi-
bers A, K, and M. The total angular momentuin J is
nc¢: needed at this stage since the three states con-
sidered here follow Hund's coupling case b. This is
obvious for the two ¥~ states; for the '3 state Herz.
berg and Johns® found from experimental data that
it is close 10 case b also. ‘The centrifugal correctinns
for given K values are added to the computed elev
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Tanix 11, Petential curve for CIf A %8 state
e = ]
Dipoles
R Eacy ket Escr=FEc1  (C°N°)
1.88 38102022 =38.208010 O0.1¢7 0.4
=38 13048 =38 2431060 0.107N 0.4%
—=38.165790 -~ 38.2735% 0.1078 0.587
~38,178828 38 284010 0.1088 0.6%
~38 170872 -~ 38 248894 0.1093 0.1
~38.179418 3828979 0.1108 0.798
=38.176278 ~=38. 28765 O.1114 0.866
=38 11006 - 38 283%1 0.1126 0.933
=38.164370 =38.278148 0.1138 0.9
=38 149589 =38 2640 0.1159 1.0%
=38 13766 —38 252539 0.1149 1.100
=38 11984 38 HINP 0.1 1.09
=38.12961) =38 234168 0.1048 0.907
=35 128718 =38.2212W9 0.09%8 0.689
-~ 38 128970 =38 224797 0.0718 0 4%
=38 130027 ~38.2207% 0.0000 0.102
600 —35131088 38 220437 0.0894 0.0268
5§00 38131168 =3822m273 0.08 0.001RS
1000 =35 131168 =38 220254 0.0801 0.000133
120 =38 131164 38220288 0.080 0.000280
1500  =38.1%1164 =38 220084 0.08N 0.000160
0.0) =318 131163 —3%.220283 0 08N 0.000082
¢ Rand } arc in atomic units (1 bohr=0.529177 X, | hartree =
27.211682 ¢V), digwole in debye.
¢ Cakulated from Cl wavefunctions.

BZsxBBS 5523822

Tanee 1. Potential curve for CH B2 state.

Dipole*

R Focy Fer Eswcr=Fcy (CN°)
1.80 =38 138311 =38 256408 0. 1181 0.882
1.90 =35 149862 -=38.20019% 0.1193 0.983
00 =38 18N =38 27403 0.1207 1.082
2,10 =38.158447 =38.220019 0.1220 1.176
.20 381588528 =38 281839 0.1230 1.260
.30 —JR.157888 =38.290034 0,128 1.326
2.0 =38.156846 —38.279246 0.12M 1.370
260 =3R.ISTERR —38.224188 O.11» 1.370
280 =38.161217 38211042 01078 1.2723
3.00 —=38.163337 -33.268831 0.1038 1.110
3.20 =38.160461 -—-38.2040% 0.096 0913
3.0 =38.174903 38268668 0.0938 0.6)0
JK =38.179140 =38.270165 00910 0487
4.20 =38 183037 =38.27N7% O0.0801 (0.263)
§.00 38184808 ~38.214%5 0.0877 (0.0%49)°
6.00 38188142 -38.27829¢ 0.0872 0.0262

8.00 35188472 38218379 0.0  0.00246

1000 ~—38 188482 —38.2783% 0.0849 0.000787

1200 =35 188487 =38.278349 O0.07  0.000389

1500 =38 188481 =34.278347 0.084) 0.000158

2000 3R 18848) —38.278346 O0.08% 0.00005%0
T ———

* Rand £ ate in atomic units (1 bohs =0 $29177 X, 1 hartree=
27.211€52 ¢V'), dipole in debrye.

* Calculated from Cl wavefunctions.

¢ Interpolated, with R = a log(dipole) 44, from T=13.20, 3.50
3.8, and 6002
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Tanrr IV, Potential curve for Cll 6 2~ state.®
e

Dipole*

R Ency ke Facr=Fcy  (C11°)
1.45  =38.166370 —38.254642 0.0883 0.36)
1.60  —38.233838 —38.322389 0.088 0.4
1.0 =38.277399 3R 366860 00898 0.5
1.90 38286304 —38.376517 0.09%1 0.%9
200 =38.28067 —38.380383 0.0909 0.620
2,10 —38 288493 3R 3805 0.0918  0.668
.20 —-38.284590 -3 37486 0.0922 0.719
2,40 —38.270M47 -38.305664 0.09%4 0.8
.00 -38.251458 38 MUMIS 0.0988  0.918
.80 =38.201040 —38.333%4 0.1022 0.983
3.00 —38.2119583 ~18 318224  0.106) 1.004
320 35199627 ~3K.30549% 01087 0.892
330 3193398 —3R.20225 0098 0.7M14
380 38190813 38284001 0.0939 0.5
420 -3RIE92 =38.279778 0.0%03 0.3%0
S.00 38188723 -38.276628 0.0879 (.17
6.0) —38.188547 =38.278721 0.0872 0.0MR
.00 —-33.1R8488 38275198 0.082 0.00283

1000 38188483 -38.278357 O0.0847 UL.CN0O77S
12,00 =38 188482 38278349 0.089  0.000389
15.00 =38 188481 =38.278347 0.0879 0.000158

—38.188481 =38.278346 0.0849  0.000080

||g

¢ Rand E are in atomic unlts (1 bohr=0 829177 X, 1 hartree =
27.211052 eV), dipole in debye.
* Calculated from Cl wavefunctions.
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Fic. 1. Potentiai curves for the states ¢ ‘2™, 123, and B2~
of Cll as obtained from Vartree-Fock and configuration inter
action calculations. The encrgy scale in hartice on the right s for
the Hartree-Fock results; that on the left is for the configuration
interaction rewite. The common encrgy point for both scales
is chosen as the enetgy of separated atoms, H('S) and C(°P).
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TanLe V. Propertles of low-lying electronic states of CH.

22— e

A Br- a'r-

R, (a.u.) SCF 2.045 2.152 2.022
1 2.074 2.208 2.047
Pixpt! 2.082* 2,200°

I {au) SCr —38.179949 ~38.158607 ~38.289763
CI ~—38.289856 —38.281540 —38.380998
Expt! —38.383» (—38.3712) b

2 (eV) SCF 1.33 ~0.81 2.76

CI 1.804 0.169 2.875
Expil 2.014 10.402)°

Ny (eV) SCF 1.14 e 2,55
CI 1.708 0.042 2.681
Exptl 1.83 0.26

Dipele (debye) SCF 0.812 1.367 0.562

cire CI 0.778 1.267 0.643
Expt!

Quadrupole with respect to center o CI 1.70 1.92 1.52

mass (a.u.)
Total Hellman-Feyman force (an)!  CI ~0.02 0.01 -0.02
Gradient of electric ficld at cathon Ct 0.22 0.51 0.23
nucleus (a.u.)
Gradient of electric field at hydrogen  CI 0.31 0.23 0.3t

nucleus (a.u.)

s From Ref. 2.

* Toial experimental energy s taken to 1 the sum of experimental atomic energy a
encrgies are taken from Ref. 4 and from C. . Moore, Nat! Rur. Std. (U.S.), Circ. 467, Vol. 1 (1
« The spectroscopic constants w, and w.r, for B 1Z- state are not well derermined experimental

mate w, (see Ref. 2) is used to determine the zero point energy.

nd spectroscopleally determined D.*. Atomic
949). For D¢, sec Footnotes ¢ and d.
ly; thercfore only the known approxi-

4+ Experimental zero-point encrgy is calculated from we, wet., and Dunham correction, ( Spectroscopic constants are taken from Ref. 1)

¢ No vibrational state exists In SCF potential curve.
t Attractive force towards hydrogen is positive.

tronic potentials, and the radial vibrational wave
cquations are solved numerically using a numerical
integration technique developed by Cooley.” Spec-
troscopic constants are now obtained by fitting the
computed rotation-vibratioual term values to poly-
nomials in terms of (r+4) and K (K+1). The spec-
troscopic constants determined in this manner, closcly
resembling their experimental determination, yield a
more direct comparison with the experimental con-
stants w., wx., and B, etc., than if these constants
are conputed from the theoretical potential curves
directly. Furthermore, by having available the rota-
tion-vibration wavefunctions and term valves, AG,1n
and B, values can be compared with experiment
dircctly, or these values can be predicted in cases
where they are not observed. The vibrational wave-
functions, which depend only implicitly, due to the
centrifugal correction, on K, are used in addition to
compute some typical rotation-vibration transition
matrix clements (¢(R, K) | D(R) | v'(R, K')) by in-

Tantz VI. Constants ohtained from rotational analysis. (Fxperi-
mental values are taken from Ref. 2 and given in parentheses.)

AGUHI!‘ Bv nv

State ¢ (cm™) (em™?) (102 cm™)
A 0 2807.7(2737.4) 14.665(14.577) 1.50(1.56)

1 2616.3(2544.1) 14.022(13.907) 1.54(1.58)

2 2400.7 13.321(13.182)  1.62(1.65)

3 2197 12.503

4 11.423
Bz~ O 1658.8(1794.9) 12.628(12.645)  2.31(2.22)

| 10.75(11.160)  10.2(3.28)
aiZ- 0 393 15.091 1.4

1 8.2 14.558 1.43

2 219.8 14.014 1.4

3 2567.4 . 13.435 1.47

4 2383.8 12.808 1,52

sau.=219 474.55 cm"L
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TasLE VII. Derived spectroscopic constants. (Experimental values arc taken from Ref. 2 and given in parentheses.)

Zero-point
State energy (cm™)  wmo® (cm™) w, (cm™1) we¥s (cm™1) B, (em™) a, (cm™?)
B1z- 1024.4 21 286.1 2173.62 249,74 13.57 1.88
(~1125)b (~2250) (13.39) (1.49)
A A 1503.9 19 940.6 2991.2 95.71 15.011 0.672
(1418.1)° (2930.7) (96.65) (14.934) (0.697)
g 4T 1566.8 0 3160.4 70.54 15.36 0.538

* Refer to v=0 vibrational state of g 4=,

b Since only w, is approximately known experimentally, zero-point energy is taken to be ~4c,.
e Calculated from experimental spectroscopic constants with Dunham correction.
4 Since only two vibrational levels are obtained in CI calculations, these constants are derived from AGys and computed zero-point

energy.

® Three computed vibrational levels are used in deriving spectroscopic constants, w,, wexs, B., and a,.

tegrating over the internuclear distance dependence
of the molecular dipole moment.

III. RESULTS AND DISCUSSION

The calculated SCF and CI energy values at dif-
ferent internuclear distances are given in Tables II-IV.
The calculated dipole moments are also given in these
tables. The direction of dipole, C-H*, is rather sur-
prising since from the ionization energy of C and H
one would expect the direction to be the other way
(in accord with what is observed in almost all hydro-
carbon compounds®). The reason for this reversal is
as follows. The ground st-tes of the C*+(1s22522p *P)
and H~('S) ions cannot give rise to 24, *Z-~, or 42~
states. The lowest excited states of the ions C+ and
H-, which can form %A, 2Z-, or ‘=~ states, lie higher
than the energy of C—(1s%2522p3 4S or D)+ H*.

A similar behavior is expected for the X I state,
although the situation is complicated by the fact that
the ground states of C* and H~ do combine to give
a IT state. The difference in the direction of dipole
moment in the CH radical and in hydrocarbons there-
fore indicates the importance of the valence structure
C-(*S or 2D)+H* in the CH radical, but not in the
formation of hydrocarbon compounds.

The calcuiated CI potential curves for the three
states are presented in Fig. 1, together with the cor-
responding SCF curves. Five points around the com-
puted energy minimum of each state were fitted to
a fourth order polynomial, and the resulting analytical
curve was used to determine the potential minimum
and the equilibrium internnclear distance. The results,
together with the known experimentel values, are
given in Table V.

The computed SCF equilibrium internuclear dis-
tances (Table V) for A %A and B 2Z- are, respectively,
0.037 and 0.48 a.u. shorter than the experimental
values, whereas the CI results give R,(A4 2A) =2.074

a.u. and R.(B2Z~)=2.208 a.u., in excellent agree-
ments with the experimental values. A similar CI
calculation for CH* by Green ef al.? gives even better
agreements. We conclude that a large CI calculation
of this type should be able to determine R, to within
0.01 a.u. The computed R, for =xperimentally yet
uncbserved a4Z- state is 2.047 a.u.

As can be seen from Table V, the SCF calculation
does not give rise to a stable B 22~ state; the SCF
potential curve lies entirely above the SCF energy
of the separated atoms. This is another manifestation
of the deficiency of the conventional Hartree-Fock
method. One of the methods used to overcome this
deficiency is of course the configuration interaction
method sed here. The CI dissociation energy for
B2~ is 0.169 eV, still too low compared with the
experimental value of 0.40 eV.

The computed dissociation energies for 4 2A and
a ‘I~ states are 1.894 eV (experimental value 2.01 eV)
and 2.875 eV, respectively. A similar calculation for
the X I ground state would he desirable in order
to predict more accurately the location of the un-
observed ¢ ‘Z~ state. However, calculations of similar
accuracy could not be carried out presently for the
following reasons. The X %Il state requires three con-
figurations, as indicated above, in order to dissociate
correctly. This in turn makes it necessary to carry
out a three configuration MC-SCF calculation, rather
than a single configuration SCF, in order to obtain
an adequate reference state. Such a reference state,
containing several configurations, would yield a CI
expansion with more than 7000 configuration state
functions, if they are selected by the same rules as
outlined above. Nevertheless, it is possible to make
a reasonable prediction for the location of the *Z-
state from available data. The potential curves for
the X *I, a‘Z-, and B 22~ states all dissociate to the
same separated atom limit. The calculated D for
the B 2Z- is 0.23 eV too low compared to experiment.
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TasLE VIII. Transition dipole mutrix elements (4K | D(R) |v'K*)
of the A ®A state in atomic units (e-bohr).

s 0 1 2 3 4

A. For K=2and K’=2

0 0.316

1 0.040 0.335

2 —0.006 0.053 0.351

3 0.000 —0.014 0.056 0.360

4 0.000 0.001 -—0.025 0.048  0.360
B. For K=2and K'=3

0 0.316 0.038 —0.006 0.000  0.000

1 0.041 0.335 0.051 -—-0.014 0.001

2 -0.006 0.055 0.351% 0.054 —0.025

3 0.000 —0.014 0.059 0360 0.044

4 0.000 0.001 —0.025 0.052 0.360

If we assunie that similar error exists in the cal-
culated a*T~ curve, one can expect the true value
for D(a*Z~) to lie between the computed value of
2.88 eV and 3.11 eV, Since the dissociation energy
for the X ?I state is known experimentally to be
3.63 eV, we predict T,=0.63+0.12 eV.

As indicated above, the 1o shell, corresponding to
the carbon K sheli, has been kept doubly occupied
in all configuration state functions used in thé CI
expansion. Therefore, changes in the intra-K-shell cor-
relation with R, as well as changes in the correlation
of other electrons with the K-shell electrons, have
been neglected. The constancy of the former and the
smallness of the latter have been established, in the
case of LiH, for example, by comparing atomic cor-
relation energies with the partitioned molecular cor-
relation energy of LiH.®® Therefore we expect that
the neglect' of K-shell correlation introduces only
a small relative error into our computed potential
curves.

The coniputed properties, such as dipole inoment
and quadrupole moments with respect to center of
mass, given for R, in Table V, are obtained by quad-
ratic interpolation to R, from the values computed

Tabpie IX. Transition dipole matrix elements (9K | D(R) | vK')
of the B 22~ stal? in atomic units (e-bohr).

o\’ 0 1

For K=0and K'=1

0 0.503 0.021
1 0.023 0.471

directly. The dipole moments at R, for 4 %A, B2Z-,
and a*Z~ are, respectively, 0.778, 1.267, and 0.643 D,
As discussed previously, all these dipole moments are
C-H*, indicating the importance of the valence struc-
ture C"H* in the CH radical. Of importance here is
the dipole moment of the B ?Z- state, which is twice
that of the other two states. This is connected with
the occurrence and interpretation of the potential
maximum in the B 22~ state (see Fig. 1). This poten-
tial maximum has also been found experimentally by
Herzberg and Johns,?> who found the maximum at
about 2.0 A with a height greater than 500 cm™!. Our
calculations give the position of the maximum at
1.73 A with a height of 1600 cm™ above the disso-
ciation limii. According to Herzherg and Johns, this
maximum is of van der Waals origin. However, since
the atoms forming the B 2Z- state are in their ground
states and different, and one of them, H, is in an §
state, there cannot be any first order perturbation,
which would cause a van der Waals maximum. It ap-

TasLe X. Transition dipole matrix elements (K | D(R) | v'K’)
of the ¢ 2° state in atomic units (e-bohr).

N\ 0 1 2 3 4

tor K=0and K'=1

0 0.260  0.028 - -0.003 0.000 0.000
1 0.029 0.273 0.040 -0.006 0.000
2 —0.003 0.041 0.287 0.048 —0.010
3 0.000 —0.006 0.049 0.300  0.033
4 0.000 0 -0.010 0.054 0.313

cars more likely that this maximum," appearing at
a relatively small internuclear distance, is caused by
an avoided curve crossing. The most likely zeroth order
curve responsible for this avoided curve crossing is
the 2Z~ state arising from the 2D, state of C—(1s5?2522p%)
with the 'S state of H* (the bare proton). Since C-
and H+ attract each other by a Coulomb force, and
since Ht is just a ‘“bare” proton, we expect this

_potential curve to follow a 1/R behavior down to a

small R value, i.e., to .1=23 bchr, at which time a
large (0.1 hartree) interazii.n matrix element becomes

- reasonable. The ioric «irve crossing proposed here

for the 22~ state is also ... accord with the large dipole
moment of the. B?2~ stute, which continues to in-
crease down to K=2.2 bohr. ;

- 'The long range behavior of the computed potential

curves has been fitted to a ¢/R® van der Waals tern,
supplemented for the ?Z— and ‘I states by 4Be™1#
to account. for* the splitting of the two multiplets.
A rough fit (the computed accuracy permits only
a rough fit) vielded the following formulas for U( =) —
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U(R) in atomic units:
a4Z:8/R%4-4.06 exp(—1.64R),
B?Z~:8/R%—4.06 exp(—1.64R),
A*A8/RE,

These formulas fit the computed potential curves
down to R=06 bohr with a deviation of 3 cm™ or less.
The AGeye and constants derived from rotational
analysis arc given in Table VI, together with known
experimental results in parentheses. The errors in
AG.412 for the A 2A state are 70.3 cm™! (2.5%) for
v=0, and 52.2 cm™ (2.09%) for v=1. The error for
B?2-, v=01is much larger, being —136.1 «in™! (7.6%),
and in the opposite direction compared with A4 24,
This means the calculated potential curve for the
B?®Z- state is too wide as well as too shallow. How-
ever, due to the narrow spacing for the rotational
levels, it is seen from thz table that the rotational
constants B,, and even D, (whicii is 10~ times B,),
are all in very good agrc::aent with cxperimental
values. In deriving B, and D, in Table VI, the 10
lowest rotational levels are used for A4 ?A, ¢4Z- and
v=0 of B2Z-, whereas only six levels are used for
v=1 of B2Z~ since only these six levels exist in the
potential well. .
In Table VII we give the computed zero-point

energy and the derived equilibrium spectroscopic con-

stants. The term splittings v are also given, relative
to a*Z-. The known experimental vy for B2Z——4 ?A
is 2480.7 cm™, our computed value is only 1345.5
cm™y or 11352 cm™! too small, indicating that the
error in the potential curve spacings for the various
states is about 0.15 eV.

In deriving the equilibrium spectroscopic constants
we have used the same number of v levels as are
observed and vsed by experimentalists for their de-
termination. Three v levels are used for the a4Z-
state. While experimentalists do not have enough
information to derive w, and w, for the B 23~ state
(since only two levels for this state are observed),
we can derive the constants by combining AGy and
the computed zero-point energy. The w, and wex, cal-
culated for the B 2Z~ state are 2173.6 cm™ and 249.7
cm™!, respectively. Except for a, for B 22—, the agree-
ments between computed and experimental equilibrium
spectroscopic constants are all within 49,
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The transition matrix elements, apart fren the ex-
plicit rotational quantum number dependent factors,
are evaluated using the computed dipole moments
from Tables IT-IV, together with the rotation-vibra-
tion wavefunctions computed. The resulting transition
matrix elements are faitly constant within each branch,
therefore only the values for the first members of
each branch are given in Tables VIII-X. .
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ABSTRACT: Ab initio CI calculations have heen performed over a wide range
of internuclear distances (1.60 bohr to 20.00 bohr) to obtain the norential
curves for Lhe first five valence excited states of Cli; X2, atr” ) 2p,

B2L”, and C 29+, Results, with kncwm experirental.values in parcnthesea, are
Re (X m = 2 113 (2.116) bohr, Re(u4 D) ME 4.053 bohr, RE(AZA) = 2.083 (2.083)
bohr Re(B -¥7) = 2,216 (2.20) bohx, Rf( o = 2.100 (2.105) bohr;

Ve (x«'m = 3.51 (3.63) eV, Dg(aL™) = 2 e 'V, Do(AZA) = 1.90 (2.01) eV,
De(B)‘ ) = 0.23 (0.40) eV, and De (C2L+) 0.78 (0 94) eV. Potential maxima
of heights 1284 and 3228 cm 1_are ca¢culated for the B4L™ and C2L* states,
respectively. These maxima are attributed to avolded curve crossings. The
a7~ state, not observed experimentally, is estimated to liec between 0.62 eV
and 0.76 eV above the X2il state.
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I. INTRODUCTION

The emission spectra of CH in the visible and near-ultraviole: consists
of three band systems near 43003, 39004 and 3140% corresponding to the
electronic transitions AZA - XZH, BZZ- - XZH, and‘_CZZ+ - XZH, respectively.
Analyses of these spectral in the early days of quantum mechanics played an
important part in the development of our understanding of the doublet spectra
of diatomic molecules. These analyses were later refined or extended by
Shidei,2 GerB,3 and Kiess and Broida.4

While absorption spectra of CH in stars have been known for a long
time, no absorption spectra in the terrestrial laboratory had been found

until 1952.5 By 1969 strong absorption spectra were obtained in the flash

photolysis of diazomethane and analyzed by Herzberg and Johns.6 With this

a considerable number of new absorption bands were found, including a Rydberg
series in the vacuum uitraviolet, which supplied an accurate valqe for the
ionization potential. In addition, the number of observed vibrational

levels in the XZH, BZZ- and C22+ states was increased and effects of
predissociation in the BZZ- and C22+ states were discovered, leading to an
improved value for the dissociation energy of the X2H stote. However, the
number of observed vibrational levels in each electronic state was still

inadequate to yield reliable experimental potential curves over a wide range

of internuclear distances. i
The experimental study of other properties of the CH radical is i ﬁ
considerably hindered by its high reactivity. Only recently has the dipole / J

moment of the ground electronic state been determined successfully from

simultaneous observation of the Stark splittings in the J = 1/2, 2H states L
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of CH and OH.7 It is ia this area that a theoretical study can be most
useful, as a source of otherwise unavailable information.

Based on the then known spectra of 02 and Cil and some qualitative
quantum mechanical arguments, Mulliken,8 in a discussion of the correla-
tion rules for the united atom, diatomic hydride, and separate atoms,
predicted the 42— state of CH to lie closely above, of even below the
2H state. Since all the known stable states of CH to date are doublets,
the absence of transitions connected with the 42_ state is to be expected
on account of the different spin multiplicities. Porter9 argued that since
CH lines, (2A < EH) and (22- + 2T[), were observed in interstellar
absorption and since most molecules in interstellar space should be in their
lowest energy state, 2H should be the ground state. Herzberg and Johns6
reached the same conclusion by a similar argument. Recent ab initio
calculations of the 42— state by Lie, Hinze and Liu10 showed that the 42—
state lies above the 2H sfate. Hence, in the following, these states will
be designated a“z’ and Xzﬂ,irespectively.

Near Hartree-Fock (HF) potential curves have been reported by Cade and
}Iuo11 for the XZH state and by Lie et él.lo for the aaz-, A2A and BZZ—
states. Cade and Huo found that spectroscopic constant; calculated from the
HF results for first row hydrides are generally in good agreement with
experiment. This conclusion is also upheld in the excited AZA state of CH.
However, the HF model does not predict a stable BZZ— state, in the sense
that there exists at least one vibrational 1e§el in the potential well,

Also, there are other well-known systematic errors in the conventional HF

approximation: calculated dissociation energies are often too low by
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1 - 2 eV; results for stﬁtes of lower multiplicities are generally.less
accurate than those for states of higher multiplicities, and incorrect
dissociation to excited atomic states is often predicted.

Poth Heitler-London and full valence-shell configuration interaction
(CI) methods were employed by Higuchil2 to obtain potential curves, in the

42-, AZA, BZZ_ and C22+ states (energy

range of 0.9 to 1.3&, for the XZH, a
values were given relative to the ground states of C and H of unspecified
source). However, only a minimum basis set of Slater--type-functions (STTF)
was used.

The only accurate potential curves reported so far are those of Lie
et al.lo for the ad"—, AZA and BZZ_ states. In their calculations, all
valence electrons were explicitly correlated by using large scale CI
expansions. Dissociation energies, equilibrium internuclear distences and
spectroscopic constants were in quantitative agreement with the known
experimental values. The adZ- state was predicted to lie between 0.52 and
0.75 eV above the X2H state.

Liu and Verhaegen13 used self-consistent-field (SCF) calculations,
empirically corrected for electron correlation, to obtain potential curves
for the first six electronic states of CH in the range of 2 to 3.5 bohrs
(no total energy values were given). Close agreement with experiment was
found for a number of molecular properties such as equilibrium internuclear
distances, vibrational frequencies, term values and dissociation energies.
The a42_ state was calculated to lie 0.93 eV above the XZH state, much too
high compared with the ab initio estimate of Lie et al.lo Liu and Verhaepen
found maxima in their calculated potrntial curves for the XZH, B,

CZZ+ and DZHi states. Experimentally, Herzberg and Johns6 did find a
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maxi~uam for the BZX- state, and were able to deduce the existence of humps
in the potential curves for the CZX+ and D?‘ﬂi states., However, Liu and
Veriiacgen's conclusion about the maximum in the XZH state is almost certain
to Le in error.

The slight maxinum in the BZZ— state had been overlocked until stronger
absorption spectra of CH and CD were obtaired and analyzed by Herzberg and
Johns.G Theoretically, this maxinum was found only recently in the calcu-
lations of Liu and Verhacgt;n,l3 Lie et al.,lo and Julienne and Krauss.la
According to llerzberg and Johns, this maximum occurs at n2A with a height
greater than or equal to 500 cm—l. The semi-emplrical calculation of Liu
and Vcrhacgcnl3 placed the maximum, 900 cm~1 in height, at 1.68. The CI
result of Lie et al.lo gave a barrier 1600 cm-1 high at 1.73R. Julicnne
and Krauss,la using the optimized valeuce configuration method,15 estimated
the barrier to be 1000 cm—1 in height around 2A.

In this work we have endecavored to improve the results of Lie et al.lo

for the a“x’. AZA and BZE— states, and to include also calculations for

the Xzﬂ and C22+ states of Cll. Potential curves were calculated for all
five states for a wide range of internuclear distances, from 1.00 bohr to
20.00 bohr, using the CI methind. A number of frequently used computational
models are examined in these calculatjons, in an efiort to compare and
cstablish the extent of their usefulness. The most accurate model yielded
potential curves, taken relative to the separated ground state atom limirt,
believed to be within 0.3 eV of the exact curves.

Table I gives the electronic configurations of the five lowest elec-

trouic states of CH and their respective dissociation limits. The method

38




used in this work 1s desecribed in Sec. 1I. A discussion of the resulting
potential curves is given in Sec. III.

Expectation values of various one-particle operators and molecular
properties, calculated at various internuclear distances from the resulting
wavefunctions, as well as the calculation of vibration-rotational wave-
functions, energies, and tipectroscopic analysis from the resulting potential

curves, will be presented in paper II.16

I1. METHOD

In the Born-Oppenheimer approximation the total wavefunction of a
diatomic molecule is written as a product of electronic and nuclear wave-
functions. The electronic vavefunction, neglecting relativistic effects,

are eigenfunctions of the clamped-nuclei Hamiltonian operator

N e

e );vi2 +VRD) (1)
vhere Vi2 is the Laplacian operator for the i-th electron, R 1is the
internuclear distance, 2, is the collection of 2ll electronic spatial
coordinates. In Eq. (1) the first terms correspond to the electronic

kinetic energy, and the second term tc all the electrostatic interactions
between electrons and nuclei of the molecule. Atonic units are used in

Eq. (1) and throughout this paper, unless otherwvise specified. Efgenfunctions
of this Hamiltonian, which doer not contain magnetic interactions, are

also eigenfunctions of the total electronic spin angul.v momentua S2

(quantua nuzber §), its component along the intermuclear axis S,

B
e e c——




F—————v—':—T'———** —

i

(cuantun nusher NS), and the axial component of the total ¢lectronic
orfhtal angular womentun l.z (quantum number A)., These efpenfunctions are
(2 - 6,))(?S + 1)-fold degencrate; nemely cigenstates with common |

(2 - 620 possibilities) and S (2S5 + 1 possibilicies) have the same energy.
Thus the cloctronic Schrodinger equation to be solved can be writrsn

t'.s."ls |f .7. Iu';::‘- -
uy  “(r,r,0) - UMWY C(Rr,T,0) (2)

A8M,,

S, A A nls
vhere ¥ (R.rﬁi) is the electronic wavefunction, E

(R) is the total
electronic energy including nuclear-nuclear repulsion, as a function of K.
The variable ‘ﬁ is the collection of all eclectronic spin coordinates. In
Eq. (2), the electronic vavefunction is given as a function of §, in
acdition to R and 2. because the spin coordicates affcct the electronic
spatial distribution and give rise to differcnt electronic states for the
sane ¢lectronic configuration (sce Tadble 1).

The wmethod of configuration interaction (CI) is used here to obtain
approximate solutions to Eq. (2). That is, the electronic vavefunction
is approxirated by an expaucicn in an orthonor=al set of configuralion

state functions (C5Y),

331 AS AS
v S( 2: °1 ”S NS

R,£.0) = e, “(k,F,9) , 3
1

ASH,
vhere the coefficients cl (R) are determined uxing the variational

31]
principle. HKach CSF, (l v Biven as a3 specific lincar combination of

Slater Jdeterninants, {s by definition an efigunfuaction of Lg. S2 and 5’
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with the corresponding quantua numbers A, S and Ns given in superscripts.
A Slater deterainant is a normalizced and antisvemetrized product of oie-
electron functions called spin orbitals (80). The SOs arc symmetry
constrained in the sense that each SO i{s an eigenfunction of the axial
component of the electronic orbital angular somentum f.z (quantua number 1),
the electronic spin angular momentum 52 (quantua number s v 1/2), and

the axial component of the electronic spin angular momentum s, (quantua
nusber n " 21/2). The {-th SO with quantum mmbers A and LR in
denoted e’ih‘(-':-j .Q_J). wviere LJ and 9_1 are the spatial and spin
coordinates of the j-th electron, respectively. It is constructed as a
product of a spatial function and a spin function. The spatial function {s
again a product of two functions; one that does not depend on the azimuthal

angle wfj about the internuclear axis, and one that depends only on vpj.

Thus,

Y (£502y) 48, @)
9%

< 3
"llxl(pj"j)° c-.(gj) (%)

vhere pj. zJ and \?J are the cylindrical coordinates of the j-th electron.
The functions o“(zj) are called rolecular orbitals (MO). The MOs are

ecquivalence-constrained; i.e., they are independent of n and M0s with cosmon

comon 1 and |)| differ caly in their ¢, dependence. The MOs form an

3

orthonormal set; namely

i i

2 (Eg)og0y ey = 65008y - )
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These orthogonal M0s are expanded in terms of a basic set of eclemewtary

functions {xAp).

3 (ry) -Iplc”,,lpxxp(rj) . (6)

The clezentary functions {f,)p} used here are Slatcr-type functions (STF)
centered ca the nuclei of the molecule.

From the preceding description, it Is seen that our calculation
begins with the chofce of an elementary basis set. This choice is of
great isportance since the elementary basin set determines the space spanned
by the orbitals, the CSFs and ultimately the accuracy of any molecular
calculation. A complete linear transformation on the eiementary functions,
Eq. (6}, leads to a set of MOs of the saxe dimension, spanning the same
space as the starting eleamentary fuanctions. I1f it is feasible to include
in the CI expansion, Eq. (3), a complete set of CSFs derivable from the
full ¥ set, "complete CI', then the same result would be obtained
fndependent of the transformation coefficients cilklp' This §s howecver
beyound current computing capsbilities, for any system involving more than
four electrons and ¥Ds must be near optimally chosen in order to achieve
the bust possible result with a severely truncated ClI expansion. In the
follouing ve discuss in detail the choice of the elementary basis set, the
construction of the M0 set and the sclection of CSFs to be included in the
Cl cxpastnsion in our study of the CH radical,

The basis set of c¢lementary functions used here coasists of six s,
four p, tvo d and two f{ type STFs on csrbou, and four s, thrce p

and tvo d typc STFs on hydrogen. The s and p type functions on carbon
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were taken from Clementi's SCF cnlculntion17 for the 3? state of carbon.

They differ little from the functions obtained by Clementi for the 1D state.
The polarfzation functionec on carbon, 3d, «d, 4f and S5f, were sclcctcd18
such that they are localized mainly in the L shell of carbon. The STFs
functions on hydrogen were taken from Liu's CI calculation for the

potential curve of H2 and the potential surface of H3.19 Detaile of

the CH basis set are given in Table II.

The basis set described abouve yields SCF energies comparable to those
obtained by Cade and Huoll with a much more compact, but carefully optimized
basis set. The choice of a large basis set for the current calculation was
motivated by the desirability of describing all the electronic states uuder
consideration with a common basis set, the need of additional one-particle
functions describing correlating orbitals, and the desire to avoid
extensive exponent optimization. Selective changes of the s and p STF
exponents lead to improvements of the SCF encrgies by less than 0.0001 hartree.
SCF energies were virtually unaffected by changes in the exponents of d
functions on carbon. Since the basis set was to be used in a CI calculation,
soze test CI calculations were carried out with changed exponents for the
d functions on carbon. In all cases tested, the maximum energy improvement
was again orly of the order 0.0001 hartree; an indication that the selected
basis set is reasonable.

Comparing the current basis set with that used by Lie et al.lo we see
that, besides a slight increcase in the number of basis funccions, all
functions with large expenents ({ = 10.0, 14.0) in the latter have been
replaced hy more diffuse d and f functions. This was done because

functions with large exponents represent very contracted orbitals, which

43

P—

- i

i
1.
:



10

are not likely to contribute heavily in molecule formation. Examination

of the SCF 1m orbitals of Lie et al. shows that the 7 basis set used

by them was not adequate (large orbital expansion coefficicnts with

opposite signs). This inadequacy is absent from the current basis set.
The 'SCF energies obtained from the basis set given in Table 1T range

from 0.0004 to 0.0009 hartree better than those obtained by Cade and Huo11

for the X2H state and Lie et al.lO for the a“x', A2A and BZX_ states,

In the HF approximation the ‘electronic wavefunction is represented

by a single CSF. The NIF CSFs for the five lowest electionic states are

x2H R 10220230211r -

o 10220230(1112,32_) A

A% 10%0%3can? 7
BEET 10220230(11r2,32_) ,

CZZ+: 10220230(11r2,]‘1.'+} .

The occupied MOs in these CSFs, or in our case the expansion coefficients
CiAp’ are derermined using the SCF technique. The HF model for molecules
has two basic deficiencies. First, the HF wavefunction often doee not
dissociate formally to the correct separated-atom wavefunctions. This

is the case for two of the five states in (7). For the X2H state of CH,
the HF CSF corresponds, at R = o, to a mixture of neutral carbon and

hydrogen atoms in ground and excited states, and also (d+,H-) and (C H+

)

+
ion pairs. For the CZX state of CH the {F CSF dissociates to the ground

state of hydrogen atom and a mixture of the 1D and 18 states of cartbon.

In these cases, HF results for large R are expected to be in considerable
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error. ‘This difficulty may be overcome by a mwlticonfiguration self-

consistent-field (MCSCF) calculation,20 including the CS¥s necessary to

give a correct description of the separated atem limit. These CSIs are,

2
X7l 10220230’1n
1022024021ﬂ
2t Do, Lk
1c"20" (3040, % ) 1w (8)
102202(3040,3Z+)1n
C22+: ' 10220230(1n2,12+)

10220230402 .

Here the occupied MOs are determined by the MCSCF technique.

The second deficiency of the HF wodel is that it docs not include

electron correlation effects, which play an important role in the electrcnic

structure of molecules. Neglect of electron correlation often leads to
erroneous dissociation energies and term energies. TFor example, in the HF
model of CH, the BZZ— state is unstable relative to the separated ground
state atoms, and the aAZ— state lies below the XZH state. In this study,
clectron correlation effects are introduced through CI. The CSFs included
in the CI expansion are selected on the basis of their relation to a MCSCF
(or SCF) wavefunction which dissociates properly to the separated atom
limit. This is different from the customary approach to CI of beginning
with a SCF wavefunction.

An exanmination of (8) shows that a proper description of -the XZH and

-+ r q . q
CZX states, at large R, requires a 40 orbital which is not occupied in the

HF CSFs. This is simply hecause a proper description of the sepavated
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atows requires four T and one T-type orbital: (1sc,i, (1s¢,C), (Z2s0,C),
(2po,c) and (2pw,C). To determine the MOs that correlate with these
separated atom orbitals, MCSCF calculations were carried out for the

following CSFs:

X2 16220230217 164302117
g 2]
102202402111 10“4021113
102202(3040,1E+)17r 102(3040,12:+)1~.r“
102202(3040 ] 25"y 1 102( 3640, 35+y143
a%t™ 10?20?30 qn?, 3y 10%46%30 (1%, %57) (9)
a%a  10%20%30 (102, %) 1073040 (172, 1)
s 2 - 2 -
132): 10220230(11r ,32 ) 10230402(1n ,32, )
sz+ 10220230(11r2,12+) 1023011r4
2 . R
10220“30402 10240230(11r2,1}:r)

In (9), al.l the CSFs on the left are those needed to dissociate to the
7\'.522:'422p2 configu?ation of  carbon and the ground state of hydrogen. The
addition of the CSFs on the right permits a two configuration description
of carbon auom, Cllsz?.s?'Zp2 + C21322p4, at the separated atom limit.

In what follows the 20, 30, 40, and 17 orbitals, correlating with the
2s and 2p orbitals of carbon, and the ls orbital of hydrogen will be

referred to as valence orbitals. Reference will also be made to a set of

external orbitals which, together with the MCSCF occupied:valence orbitals,
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span a subspace of the STF basis,'important to an accurate description of
the clectronic motions.

In constructing CSFs for Eq. (3) we alvays keep the 10 orbital doubly
occupicd. This means, no correlation effects connected with the 1¢ electrons
are considered. This restriction reduces significantly the number of CSFs
in the final CI expansion, and is Justified on the basis that correlation
effects connected with the 1s electrons of carbon are not expected to
change significantly in molecule formation. Four types of CSFs are
considered in our CI calculations.

(a) 'All CSFs necessary to give a HF description of the appropriate

separated atom limit. These CSFs are given for the X2H and CZZ+

2

states in Eq. (8) and for the a42’, A”A, and Bzz— states in

Eq. (7).

(b) All CSFs arising from distributing five electrons among the
valence orbitals, that are not already included in (a).

(c) All CS¥s arising fromn distributing four electrons in valence

| orbitals and one electron in external orbit:.ls.

(d) All CSFs arising from distributing three electrons in valence
orbitals and two electrons in external orbitals, which zatisfy
the condition that all CSFs of this type, and any linear
combination of them, must have a non-vanishing Hamiltonian 4
matrix element with at least one of the CSFs in (a).

A practical algorithm for constructing CSFs described in (d) has recently

been developed by McLean and Liu.21

The additional condition placed on the type (d) CSFs, whichk leads to

5
a significant reduction in the dimension of the CI problem, is justified 4
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on the basis of Rayleigh Schrodinger perturbation theory. Consider the Cl1
wavefunction, determined in the space spanned by the CSTs of (a), as a
zeroth order approximation to the complete Cl wavelunction. loun all Cotks
that have vanishing Hamiltonian matrix elements with all the CSFs in (a)
) will make no contribution to the first order perturbative correction to
E the zeroth order wavefunction. These CSFs can be expected to make small
contribution to the complete CI wavefunction and therefore be omittad,
provided that the zeroth order wavefunction is a reasonaile cne. This is
{ why the MCSCF wavefunctions, which permit proper dissociation, were chosen
as the starting point for our CI calculation instead of the usual SCF

wavefunctions.

From the four types of CSFs described above, three distinct CI
wavefunctions are constructed. A CI in the space spanned by all the CSks
of type (a) and (b) is called a "valence CI". A CI iﬁcluding all CS¥'s
of type (a), (b) and (c) is a "first order CcI", following Schaefer,

Klemn and Harris.22 The best wavefunctions obtained in this study,
including all CSFs of the four types described above are referréd to as
Mextended CI" functions. The "valence CI" function, constructed solely
from the core and valence orbitals is clearly independent of the external
orbitals. The CSFs of type (c) span a vecror space invariant to an

arbitrary unitary transformatica among the external orbitals. The same

is true for the CSFs of type (d). Thus all three types of CI f{unctions

described here are inveriant to any unitary transformation amung the

external orbitals.
Clearly the numbers of CSFs of type (¢) and (d) depends on the number

of cxternal orbitals. It is therefore desirable to compact the external
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orbital set, such that the nost uscful vart of the space spanned by the
STF basis 1s packed into a small number of external orbitals., This
pernits a truncation of the external orhital set, which significantly
reduces the number of CSFs of type (c) and (d) with little loss of
accuracy.

The method of natural orbital (NO) transformation provides a useful
approach to such a compact set of orbitals. The properties and uses of

NOs have recently been revicwed by Davidson. It suffices here to say
that the NOs of a wavefunction are eigenfunctions of the first order
reduced density matrix.23 The eigenvalues associated with the NOs are
the occupation numbers; their magnitudes to some extent reflect the
importance of the associated NOs.
In what follows we shall always assume that NOs are ordered by
syumetry and decreasing occupation numbers. Thus the occupation number of
the i-th © NO is greater than or equal to that of the j-th o NO, provided
that i < j. Also if a set of NOs is to be truncated, the NOs retained in
each symmetry must always have larger occupation numbers than those omitted.
NOs e .racted from four different wavefunctions were examined:
(1) the "extended CI" wavefunction, (ii) a wavefunction consisting of the
same CSFs as the "extended CI", but determined by diagonalizing a Hamiltonian
matrix in vhich all off-diagonal elements involving only type (c) and (d)
CSFs were approximated by zero,z4 (ii1) a wavefunction determined in the
same manner as in (2), except that only off-diagonal matrix elements betwecen
type (d) CSFs are omitied, and (iv) the "first order CI". The CSI's in

these wavefunctions were constructed from the full set of occupied and
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virtual orbitals (nineteen O, twelve 7, six § znd two ¥ type virtual
orbitals) obtained from the MCSCF calculation described earlier. The NOs
extracted from these wavefunctions are referred Lo as NOi,'NOii, Noiii’

and Noiv, respectively. Each of these NO scts were used with various
degrees of truncation as orbital basis in a scries of "extcnded CI"
calculations. Resulgs of some of these calculations for the aaZ— state

are given in Tables I1I and IV. The first column of each table gives the
nunber of leading NOs of each symmetry used in the "extended CI'" calculation.
The second column gives the "extended CI" energies using truncated sets of
NOi. The third column gives the difference between successive entries in
the second column; namely the encrgy improvements resulting from the
addition of a new group of NOs. The fourth and fifth columns gives

results of parallel calculations using Noii. The fact that NOi is a
compact sct of orbitals is evident. The last ten O and three I orbitals
contribute only "0.0004 a.u. (0.011 eV) to the "extended CI" energy.
However, thcre is no real computational advantage in using NOi, since

their determination requires an "extended CI" calculation using the full

set of virtual orbitals. In calculations using NOii the cnergy improvements
do not drop off as rapidly as in calculations using NOi. Still, the last
ten O and thrce T type orbitals only contrivute n0.0011 hartree (0.03 eV)
go the "extended CI" energy. More importantly, NOii are considerably
easier to determine, compared to NO,. In the "extended CI'" wavefunction,
using the full set of virtual orbitals, over 99% of the CSFs are of type (c)

and (d). Thus to detcrminc wavefunction (ii) it is only necessary to

compute ~A% of the Hamiltonian matrix clements requircd to determine

50

J

PR T o o NS e =



17

!lI'lIIIIlIllllIIl!.lI...l.....|.....'lII.;..--|p-lllll--lll-|---|------'ﬂll--——~———-,._.
P

wavefunction (i). 7The results of calculations using Hoiii and noiv are
not given. It is sufficient to note that Noiii’ while somevhat more
costly to determine than Noji. is not significantly more compact than

Noii' Also, Noiv’ though somewhat more easily determined than NO is

i1’
not as compact as Noii' Calculations parallel to those described above

wer2 also carried out for the A2A state. The four scts cf NOs examined

in these calculations show essentially the same benhavior as in the a4z'

case. Thus, Noii truncated to thirteen o0, ten 7, six § and two ¢ leading
orbitals were used to construct CSFs for subsequent CI calculations. The
number of CSFs in each of the three CI wavefunctions, using the truncated
NOii basis, is given in Table V. The "extended CI" wvavefunctions consist

of 4147, 1225, 1549, 1498 and 2184 CSFs for the X°N, a’z”, A%A, B25™ and c2r*
states, respectively. These numbers are to be compared with 9234, 2598, 298§,
3066 and 5009, respectively, which would have resulted from the full

orbital set.

The NO transformation described above changes all of the MCSCF valence
and virtual orbitals. For four of the five states studied here, tha four
leading 0 and one leading 7 NOs are essentially unchaiged from the MCSCF
orbitals. That is, if the NOs are denoted b9 10520 1,0zt
in order of decreasing occupation numbers, then we have for these four
states 10 = 10', 20 = 26", 30 = 3¢', 4o R 40', and 17 = 1n', where the

unprimed orbitals are the MCSCF orbitals. Consequently, the space spanned

by the type (a) CSF¢ remains essentially the same whether the CSFs are

constructed from MCSCF orbitals or leading NOs. However, this is not the
case for the C22+ state. The MCSCF wavefunction for this state, which

permits proper dissociation to separatad lIF atoms is
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¢, 157202 30012% 15 + ¢ 107207 3000° (10)
«here the 33 orbital correlates with the hydrogen 1s orbital and the 40
orbital with the carbon 2pc orbital. It is casily shown that the MCSCF
orbitals are also the %N0s of this wavefunction, and that the occupation
numbers associated with the 1o 20, 30 and 49 orbicals are 2, 2, 1, and
2C§, respectively. Since C§ increases from “0.0001 ncar the equilibrium
nuclear separation to 2/3 at R = m, the ordering of the NOs is a function
of R. Let the primed and unprimed orbitals again dencte the NOs and MCSCF
orbitals, respectively. Then, 10 Z10’, 20 £ 20", In = 1n’, 30 = 33, and

4o = 4' for small R where C2 <1/2. However, we have 37 = 4", and

2
45 = 30’ for large R where C% > 1/2. This means, at large R the
wavefunction
1 1
0110'220'23e'1n’2 + c21<:l'220'230'/.0'2 (11)

is drastically different from the MCSCF wavefunction in Eq. (10) and no
longer a4 good aporoximation to the true wavefunction. This invalidates the
selection of type (d) CSFs, which is bascd on perturbation theory using
the wavefunction in Eq. (10) as a zeroth order approximation. To ovorcome
this difficulty the first four ¢ NOs of the C22+ state were replaced vy
the MCSCF orbitals. The resulting orbital set, after Schmidt orthogonaliza-
tion, was then used as the orbital basis for subsequent CI calculations.

In summary, the calculations carried out for the five Jowest electronic
states of CH consisted of four steps. (1) SCF calculation. (2) MCSCF
calculation using the CSFs given in Eq. (9). (3) Determination of an
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approximate "exteaded CI" wavefunctlon using C57s constructed from the

full ser of MCSCF occupied and virtual orbitals deterained in step (2).

The expansion coefficients are determined by diagonalizing a Ha=miltonian
matrix vhere all off-diagonal clezents involving only type (c) and type (d)
CStu are approximated by zero. The NOs extracted from this wavefunction,
ordered by symmetry ond decreasing occupation nusbors, are then truncated
to thirieen o, ten 7, 3dx § and twe ¥ type orbitaln. (4) Three Cl
calculations: (a) "extcnded CIY, (b) "fifrst order CI", and (c) “valence

CI" within the truzcated orbital set cbtained in (3).

ITI. RESULTS AND DISCUSSIONS

The calculated SCF, “valence CI", "first order CI", and "extended CI™
enccpies for the five lowest clectrouic states of Ci are gilven $n
Tables VI-X. The SCF potentiul curves are shown in Fig. 1 and the
"extended CI' curves in Fig. 2. The "valence CI" and "first crder C1"
curves are qualitatively similar to the "extended CI" curves, except that
the BZE- curves lizs entirely above the scpara.ed atom limits. ‘Thus, of
the four computational modele examined here, only "extended CI" gives a
bound Bzﬁ- state.

Five points around the cowmputed encrgy minimum of each curve were
fitted to a fourth degree polynomial, and the resulting analytical curve
was used to determine the potential minimum and equilibrium interrnuclear
distance, Rc. The results, together with known experimental values, are
given in Table XI. The Re'a calculated from the "extended CI" curves are
in excellent agrecucnt with known experimental values. For three of the
five siates studied the agreements are better than 0,0) bohr. The one
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exception s the c?.' state vhere the calculated value i 2.216 bohr as
compared to the experimental value of 2.200 bohr. This discrepancy can be
atteibuted to the fact that the experipantal Re fa detemined from the
spectroscopic constant Bc using the relation Be " (2hRe2)-l/E. Using
this relation and a theoretical value of nc detrived from the “extended
Cl" curve, we obtained a R, value of 2.190 bohr for the 825- state.
™is le="s us to believe the calculated value of 2.216 bohr s withir
0.01 behr of the true potential minimum. Details of the above analyais
vill be given in paper II. The Rc for the akt- state is not knowm
experizentally; the “extended C1" result of 2.053 bohr is belfeved to be
within 0.0l bohr of the true equilibrium nuclear distance.

The SCF Rc values are all too small compared with experiment;
vhereas the "valence CI" and "first order CI" results are all too large.
The "valence CI" results are better than the "first order CI" results
for all five clectronic states studied. The Rc values obtained from
the semi-empirical calculations of Liu and Vcrhaegcnl3 fell considerably
short of the accuracy achieved by the "extended CI" calculations. Their
Rc value of 2.124 bohr for the 822- state, is even smaller than the SCF
result of 2.151 bohr.

All three CI models employed in this study have been designed to give
the correct separated atom limits. However asymptotic wavefunctions, in
the limit of R = @, obtained from these CI calculations are different from
results of equivalent atomic calculations done in spherical symactry. This

difference is the result of relaxing atomic cquivalence and symmetry

coustraints. In the molecular calculation the orbitals and the CSFs are

constrained to belonp to frreducible representation of the point group
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va' ingtead of the three dimenaional rotatlon group as fn the atemic canc.

Three constraints are relaxed in a Cnv calculation. (1) Orbital
equivalence constraint; depenerate atomic orbitals like 2pc anéd 2pvw of
carbon are not constrained to have the same radial dependence. (i1) Orbital
symrelry constraint; the svlecular orbitals are not coanstrained to Le
eligenfunctions of the iz operaror. Thus the MOs corrcspondiag to atomic
8 orbitals may have do components and those corresponding to atomic p
orbitals =ay have f components. (411) CSF symmetry constraiut; the CSFs
in the rolecular calculation are constrained to be cigenfunctions of Lz.
but not L2 as in the spherically symmetric calculations. Thus, the CI
vavefunction obtained is constrained to bave the proper ML quantum
nuzbe., but may not be an eigenfunction of Lz. The effects of relaxing
these equivalernce and symmetry constraints, in linfted CI calculaticns, are
loucred total energies and some apparcent discrepancies in the asymjtotic
behavior of calculated potential curves. These effects are examined in
some detail in what follows. It is appropriate here to insert the reminder
that the difference between a qmv atoa and a spherically cymmectric one
is nn artifact of the method employed in the wavefunction calculation, which
has no real physical significance. Ia the limit of a complete CI calcula-
tion, including a complete sct of mn-puarticle functions derivable from a
given onc-particle basis, the same result is obtaincd regardless of the
equivalence and symmetry constraintes imposed.

To begin with ve exanine the asymptotic results of MCSCF calculaticas
using the CSFs given in (9). 1These results are of interest because the

MCSCF occupled ortitals play an important role in subsequent CI calculations.
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AL R =« the CSFs in Eq. (9) go over to the following carbon atom CSFx:

2,,3 = e 2 3
XN( PyM 1): 018323'% 2 + 0]#”2[\"2[\
b.~.3 P B - S JPF |
al ( P.ﬂL 0): 01%, 2p + oln"quZp
TP IR B U Iy
B°L ( M 0): ‘ls“Zs‘Zp + omozp-zp
(12)
i B | 2 222 2 -2
ABCDM = 2): 16%2"2p  * 919272

2 ﬂZ

2.4+,1 2
cC¢ ¢( D.H.L 0): olsozsozp + 0180zp ;A

In Iiq. (12), the corresponding scparated carbon atom states are given in
parentheses following the term symbol tor the CH states. The orbitals in
the C5Fs are identified by the irreducible representation of the qmv group
to which they belong, with the curresponding carbon atomic orbital given
as subscripts. The part of the CH wavefuncrions that goes over to the hydro-

?E—

gen 1s orbital, common to all CSFs in (12), is omitted. The Xzﬁ, aai- and B
states of CH all disrociate into the JP ground state of carbon. The MCSCF
energles for all three states are somewhat lower than that of the corresponding
two-configuration nuwerical NCSCF calculation for carbon reported by Bagus

and Hoser.25 This is because in the qu carbon atom, the o18 orhitals )

are permitted to have a do component and the °2p and “2p orbitals are ‘
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pernitted to have fo ve f,x cer:porents, and also tha CZP and an orbitals
arc permitted to have different radial dependence.  This added freedom in
the wavefunction leads to a lowered total energy. The NCSCF energy of
carbon from the a“z‘ and BZZ- calculations are lower than the corresponding
results from the xzﬂ calculations by 0.0017 hartree. An exzamination of

Eq. (12) shows that the OZP orbitals are not occupied in the YF CSTs for
the nai- and BzL- states, and can be frerely optimized without Jeopardizing
the IIF CSF of ofscgsngp. This is, howevér, not the case for the 2“ state,
where any energy lowering due to the departure of the OZP or "2p orbitals
from the HF results must be balanced by an increase in the encrgy of the HF
CSF, oisogsﬂzpnzp. The °2p and "2p MCSCF orbitals are glven in Table XII.
It is scen that the 02p and NZP orbitals are quite similar for the XZH
state but drastically different in the aai- and BZX— states, supporting

the above argument. The AZA and C22+ states of CH dissociate into the lb
state of carbon. The MCSCF energies of carbon obtained from the MCSCF
calculations on these states in Coov Symmetry are again lower than the
numerical MCSCF results of Bagus and Hoscr.25 Following the argument in

the 3P casc, we would cxpect the energy of the carbon atom obtained from the
A2A calculation to be somewhat lower than that from the C22+ calculation. The
°2p and an MCSCF orbitals for these two states are also given in Table XII.
The two orbitals in AZA state are again quite different as in the BZZ- and
nAZ-statcs, while the two orbitals of the 22+ are similar as in the XZH
case. Howecver the MCSCF energy of carbon obtained from the 22+ calculation
is 0.0013 hartree lower than that from the 2A calculation, in apparent

contradiction to our earlier argument, To resolve this apparent

contradiction we again examine the CSI's in (12).
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To describe a HF atom in the 1D(1522522p2) state two CSFs are required,

2 5l =¥ 20507148,
C101302302p i C2013023“2p : (13)

In a calculation carried out under .spherical symmetry the ratio Cl/C2 is

2
fixed at -21/'

to insure a 1D wavefunction. However, under va symmetry,
thic ratio can be varied freely to achieve the lowest possible energy, as
it is only nccessary to insure the correct ML quantum number. The same
situation exists for the two CSTs describing the 1522p4 configuration of
carbon. It is this new degree of freedom, in addition to the relaxation

of orbital symmetry and equivalence restrictionms, that results in a lower
MCSCF rnergy for the CZZ+ state, compared to the AZA state. The actual
ratio Letween the twc pairs of coefficients discussed above are -1.527 and
-1.199, respectively. Further evidence for the above argument is found in
the fact that the C22+ result is 0.0040 hartree lower than the corresponding
numerical MCSCF results of Bagns and Moser,25 considerably larger than the

lowering obtained in the AZA (0.0027 hartree), 342- and B2

£~ (0.0018 hartree),
znd Xzﬂ (0.0001 hartree) states. The "valence CI" results, at large R,
are essentially idcntical to the MCSCF results, and thus no further

discussion is accessary.

The "first order CI" calculations reduced the discrepancies of the 3P
and 1D asymptotes from 0.0017 hartree and 0.0013, respectively, to
0.0006 hartree. The same discrepancy remained in the "extended CI" resultis.
It scems reasonable to assume that more extended CI calculations, involving

CSFs with three or more valence electrons occupying virtual orbitals, will

not further reduce the remaining discrepancy. We, therefore, attribute
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the discrepancy of 0.0006 hartree to the nixing of do components in the
1o orbital corresponding to the carbon 1ls orbital. To eliminate this
discrepagcy, it is necessary to carry out CI calculations including core-
valence and core-core correlaticn effects. An alternative method for
avoiding‘this problem is to restrict the 1o orbital to an expansion in
s type STFs alone. This approach is useful for nuclear separations where
no significant core polarization takes place. At any rate, a discrepancy
of 0.0006 a.u. (%0.02 eV) is quite acceptable, considering the accurzcy
of the calculations reported here.

The correlation energies obtained for the two states of carbon
represent approximately 95% of the L shell correlation energy.26

The "extended CI" term splitting between C(3P) and C(lD) is 1.31 eV,
as compare&‘wlth the experimental value of 1.26 e¢V. This 15 a considerable
improvement over the previous result of Lie et al.,lo where the error is
0.24 eV,

The calculated dissociation energies Deo, obtained from interpolated
potential minima and corresponding dissociation limits, are given in
Table XI. The "extended CI" dissociation energies are, with known
experimental values given in parentheses, 3.51 eV (3.63) for XZH, 2.84 ev

2

for a42—, 1.90 eV (2.01) for A®A, 0.23 eV (W0.40) for Bzz:', and 0.78 eV

(0.94) for C22+. These results are in error by 0.12 eV and 0.11 eV for

e e

2
the XZH and A"A states, respectively, and by 0.17 eV and 0.16 eV,

2.~ 2.+ T
respectively for the wecakly bound states B“L and C°5'. A significant
part of these errors can be attributed to the neglect of correlation

effects between the 10 shell and the valence electrons; in particular,
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the correlation baiween the 1o electrons and the 30 electron (or one of
the 30 electrons in the X2H state) which does not exist when the two atoms
are far aspart. Bender and Davidson27 cbtained -0.0050 hartree for the
1l0-30 intershell correlation energy in the XZH state. If wc take half of
their value as the extra molecular correlation energy and add it to our
computed dissociation energy for the XZH state, thcn the Deo for the
ground state beccmes 3.57 eV, which is only 0.06 eV too low compared with
the experimental value. The second zource of error in the computed dissocia-
tion cnergies is the incompletc correlations of the valence shell. As has
becn pointed out earliew, the truication of the internal orbital set
accounts for an error o’ 0.03 eV in the calculated dissociation eiergies,
The remaining error is attributed to the incomplete SIF basis and the
reglect of CSFs with two or morc valence electrons occupyiny external
orbitals, which only contribute to the wavefunction through second and
higher order perturbation theory.

The MO energy for the 10 orbital in the HF calculation is essentially
identical with the energy of the carbon 1ls orbital and is uearly independent
of the internuclear distances. Therefecre the intra-shell correlation
energy of the 10 shell should be nearly constant for all internuclear
distances and its neglect should jntroduce only a small error into the
computed dissociation energies.

The correlation energiecs recovered, in the "extended CI" caleulations

2 22+ states, represent oaly about 60% of the

for the XN, A%A, B2 and C
total correlation encrgics. The low percentages are due to the neglect
of all correlation effeets involving the 10 electrons. The valence chell
correlation encrgies recovered in these calculations arc believed to be

over 90%. 59




The dissociation energy of the a42~ state is certain to be larger than
the calculated value of 2.84 eV. Assuming a core-valence correlation
correction of 0.06 eV, as was estimated for the XZH case, and an orbital
truncation error of 0.03 ¢V we arrive at an estimated lower bound of 2.93 eV
for the De0 of the aéz— state. If we further assume that the error in
the caiculated dissociation energy of aAZ" is no more than that of the other
four states, then we have Deo(aAZ—)'i 3,01 eV. Thus we estimate
Deo(aéx—) = 2.94%0.07 eV. This estimate, combined with the experimental
value for Deo(XZH), places the aAE- state above the X2H state by
0.69+0.07 eV. This is in excellent agrecment with the previous estimate
of 0.63%0.12 eV by Lie et al.,lo but contradictory to the semi-empirical
result of Liu and Verhaegen13 which placed the aAZ- state above the XZH
state by 0.92 eV. Their Te°(a"z’) = 0.92 eV leads to ne"(a"z’) = 2,72 eV
which is smaller than tlie HF value of 2.78 eV. The "extended CI" term
splittings between the XZH, A2A, BZZ- and CZZ+ states are all within
0.06 eV of the known experimental values.

Figure 2 shows clearly the existence of potential maxima in the
"extended CIM curves for the BZZ— and CZE+ states. The existence of the
maximum in the BZZ— curve has been deduced experimentally by Herzberg and
Johns6 from the breaking-off of the emission lines and the diffuseness
of the absorptiorn lines in the spectra of CH and éD. The recognition of
this maximum led to a slightly different value of the Doo for the XZH
state from the value accepted prior to 1969. From the ilimiting curves of
dissociation fer the Bzz“ states of CH and CD, Herzberg and Johns estimated

the height of the maximum to be greater than (or at least equal to)
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500 cm—l, at R 2R. our calculated results show that this maximum
occurs at R = 3.29 bohr (l.745),rwith.a height of 0.1592 eV (1284 cm~1).
Since the minimum in the calculated potential curve for the BZZ— State is
too high, relative to the calculated dissociation limit, by 0.17 eV, the
calculated barrier height is 1likely to be too high. Assuming the difference
between the calculated and exact curves is given, as a function of R, by

~(R-R)
an e € » the calculated barrier beight is too high hy "0.06 eV. A

likely value for the barrier height is "800 cm—l.
Other calculations which showed a msximum in the Bzz" states wvere

discussed in the introduction. There are Liu and Verhaegen's semi-empirical

calculation513 which gave a barrier of height 2900 cm~1, at %1.6K, Lie, Hinze

1

and Liu's ab initic CI calculationslo which gave a barrier of height 1600 cm
at 1.732, and optimun valence MCSCF calculations of Julienne and Kraussla
indicated a barrier of height “1000 cm Y, around 2a.

The potential maximum in the CZZ+ state had been deduced experimentally
also by Herzberg and Johns.6 They observed that the v = 4 vibrational
level c¢f the 022+ state of CD lies slightly above the dissociation limit
corresponding to C(lD) + D(ZS), and concluded that the 022+ state cannot
be correlated with the 22+ state from lD + 25 except by assuming a large
potential maximum. This large potential maximum did show up in our
calculations. The "extended CI" results give a potential maximum at
R = 3.33 bohr (1.768) with a height of 0.4003 eV (3228 cn™l). Here, again,
the calculated value is probably too high by ~0.06 eV, and our estimate

cf the true barrier height is 2300 cm—l.

1 . . . e
Liu and Verhaegen : also deduced this maximum in their semi-empirical

calculations. To explain the existence of this and several other potential
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maxima found in their calculations, they ascerted "...there being scveral
potential maxima. These result from necessary changes of molecular
clectronic configuraticn of some of the states before they dissociate.”
This argument is incorrect since it implies that any state whose ul
configuration does not dissociate correctly into its atomic limits will
nave a maximum in its potential curve. It is well known that the HF
configuration of the ground state of LiK does not dissociate correctly
into Li(ZS) + H(ZS) and that there is no maximum in the X12+ stace of
Lill.28 In fact, the results of Liu and Verhaegcn13 did show a potential
maximum in the X2H curve of CH. No such maximws has been fiund experi-
mentally or in our calculation.

According to Herzberg and Johns6 the maximum in the BZX— state is
of van der Vaals origin, similar to that for the ClH state of HZ' This
explanation is incorrvect for the following reasons: (a) The maximum in
the ClH state of H2 is due to the degeneracy at large separations
corresponding to the exchange of excitation energies, 1ls <+ 2p. In other
words, there is a non-vanishing first order dipole-dipole van der Waals
interaction at large separations due to the exchange degenzracy. No such
degeneracy cxists in the case of C(3P) and H(ZS); (b) A van der Waals
maximum in the potential curve can arise if, besides (a), there is a
nor-vanishing first order dipole-dipole, dipole-quadrupole, or quadrupole-
quadrupole interaction. Since the 2S state of hydrogen does not possess
dipole or quadrupole moment, there is no first order van der Waals
interaction beiween C and H. Any second order interaction leads only to

; 29 A
attraction, and cannot. be the cause for a maximum in the potential curve.

62




The repulsive character of the BZZ- state, at large R, is more likely to

be caused by the exchange effect which splits a il state into amn attractive
AE- state and a repulsive 22“ state. Therefore the occurance of the
maximum in the BZE— state must have its origin in an avoided curve

crossing between the original repulsive curve and another curve of the

same symmetry.

The first candidate for this other 22' curve is that arising from the
152252p3 3D excited state of carbon and the ground state of hydrogen atom.
Since the 3D state lies "8 eV abo;e the ground state of carbon, it is
unlikely that the resulting 22— curve can reach down far enough to cross
the lower repulsive curve. This is also true for all other 22— curves
arising from neutral carbon and hydrogen atoms, because they have even
higher separated atom asymptotes. This is one of the rcasors why the
potential maximum in the BZZ- curve was attributed to a van der Waals
origin. A few steps up the separated atom encrgy ladder we find that
C-(1322522p3 2D) and H+ gives rise to a 22- curve. This ionic curve has
a 1/R behavior which, owing to the small size of the H+ ion, persists
dowvn to very small R values. Therefore, in spite of the fact that
C-(1522522p3,2D) + H+ lies 14 eV above the ground states of C and H, this
jonic curve can reach down to cross the repulsive curve of the BZE— state.
This crossing occurs near R = 2.5 bohr. The shift of the potential maximum
to R = 3.30 bohr and the low barrier height of "800 cm-l are results of a
large interaction between the zeroth order curves. We note here, before
the jomic 22- curve can cross the BZZ- curve, it must first cross iany

2.~ . A
£ curves arising from various excited states of carbon and hydrogen atoms,
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including that resulting from the 1s™2s2p D state of carbon discussed
cavrlier. In each case there results an avoided crossing followed by the
resuption of an essentially 1/R behavior at smaller R values. However,
if we use valence-bond curves as zeroth order approximation, it is the
o 2 . . : VA~
ionic curve that is responsible for the maximum in the B"L curve,
A similar explanation can be found for the occurrance eof the potential

- 3 2¢t et 2ot ; 1

naximum in the C°Z curve. The second lowest "L curve erising from C(°S)
2 S . .
and H("S) is repulsive according to elementary Hleitler-London theory. Thare
Y i 2.

are two ionic curves that can reach down and cross the lowest "I curve:

9 L
22p “p) + H (1S) which lies "11 eV above

the ground state atoms, the second from C-(1322522p3 2p) LR which lies

the first one arises from C+(13225

V15 eV above the ground state atoms. The 22+ curve from C+ +H, owing

to the laerge size of the I ion, deviates from the 1/R behavior at

a considerably larger R wvalue than the curve from c + H+. Indeed, the

C+ + H curve appears to turn up and cross the c + H+ near R = 3.5 bohr

as evidenced by the sign change in the dipole moments of the CZZ+ and XZH

states which will be discussed in paper II. Therefore it is the 22+ curve
from C + H+ which is finally responsible for the avoided crossing and the
associated potential maximum in the C22+ curve.

Finally, we compare the three computational models employed in this
study. The "extendec li" model is clearly the wmost reliable of the three.
It aloune predicts, correctly, a bound BZZ- state. It consistently gave
equilibrium nuclear separations, dissociation energies, and term energies
to within 0.01 bohr, 0.2 eV and 0.06 eV, respectively, of the known

experimental values. The "first order CI" and "valence CI" models failed
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to give results of comparable accuracy; both nodels also failed to

predict a bound BZX— state. The "valence CI" equilibyium nuclear distances
are scmewvhat closer to the experimental values than those of "first ovder
C1". No definite trend can be found by comparing the dissociation energies
and term energies calculated from these two models. It is somewhat
surprising thac the "first order CI'" model does not yield significantly

better results than the considerably simpler "valence CI" model.
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TABLE I

.

Electronic Configurations of the Five Lecwest States

of CH and Their Dissociation Limits

Electronic

Configuration State Dissociation Limits
10226% 30210 X1 c('p) + u(zs)
(% c3p) + n(%s)
)y a2 a2y c*o) + u(’s)
10“°20%301n 1 5. ) 5
B°L C(’P) + H(°S)
licZs c*n) + uc%s)
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TABLE II

Slater-Type Basis Set

Center nl Value Exponents

C 1s 9.29, 5.41
2s 4.26, 2,59, 1.50, 1,03
2p 6.34, 2.59, 1.42, 0.96
3d 1.95
4d 2.00
4f 2.50
S5f 4.10

H 1s 1.0C, 2.20.
2s 1.00, 2.20
2p 1.70, 2.90
3p 2.90
3d 2.70
4d 2.70
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TABLE III

» ANO Convergence Study I: a4 "t R=2.200
o m NO:‘L Improvement NOii Improvement

4 1 -38.304738 -38.304828
0.009925 0.009247

6 1 -38.314663 -38.314075
0.002937 0.003473

8 1 -38.317600 -38.317548
0.000713 0.000768

10 1 -38.318313 -38.318316
0.000542 0.000617

13 1 -38.318855 -38.318933
0.000133 0.000154

16 1 -38.318988 -38.319087
0.000094% 0.000124

19 1 -38.319082 -38.319211
0.000020 0.000165

21 1 -38.319102 -38.319376
0.000009 0.000021

23 1 -38.319111 -38.319397
(0.037189) (0.036769)

23 3 -38.356300 -38.356166
0.006460 0.006574

23 6 -38.362760 -38.362740
0.000755 0.000758

23 8 -38.363515 -38.363498
. 0.000298 0.000305

230 -38.363813 -38.363803
0.000153 0.000162

23 13 -38.363966 -38.363965
(0.018007) (0.017802)

23 13 -38.381973 -38.381767
0.000446 0.000637

23 13 -38.382419 -38.382404
(0.001679) (0.001680)

23 13 -38.384098 -38.384084
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TABLE IV

ANO Convergence Study II: a42- at R = 20.0b
g 7 NOi Improvement NOii Improvement
4 1 -38.207659 -38.207737
0.011563 0.011437
6 1 -38.219222 -38.219174
0.000201 0.000199
8 1 -38.219423 -38.219373
0.000184 0.000201
10 1 -38.219607 -38.219574
0.000064 0.000091
131 ik -38.219671 ~38.219665
0.000015 0.000018
16 1 ~38.219686 -38.219683
0.000000 0.000000
23 1 -38.219686 -38.219683
(0.033671) (0.033647)
23 3 -38.253357 -38.253330
0.003324 . 0.003371
23 6 -38.256681 -38.256701
0.000341 0.000352
23 8 ~-38.257022 -38.257053
0.000000 0.000000
23 13 -38.257022 -38.257053
(0.022668) (0.022608)
23 13 -38.279690 -38.279661
0.000151 0.000216
23 13 -38.279841 -38.279877
(0.002375) (0.002375)
23 13 -38.282216 -38.282252
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TABLE V
Numbar of Configuration State Functions Used in the

CI Calculationsa

CSF TYPE
State Valence First Ogder Extended
X211 18 741 4147
o 9 252 1225
A%A 8 528 1549
25" 9 378 1498
it 14 e 2184

3Pruncated approximate natural orbital set of 130, 10w,

66 and 2¢¥ was used.
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t TABLE VI

r Potential Curve for the X2H State of CH®

E
R : HF Valence~CI First-Order CI Extended CI
1.00 -37.51455 -37.54039 ~37.58686 ~37.64103
1.30 -38.02545 -38.04795 -38.69068 -38.15061
1.60 -38.21406 -38.24090 -38.29012 -38.34121
1.90 -38.27297 -38.30401 -38.35359 -38.40194
2.00 -38.27848 -38.31115 -38.36091 -38.40329
2.05 -38. 7957 -38.31311 -38.36295 -38.40981
2.10 ~38.27974 -38.31420 -38.36409 --38.41041
2,15 -38.27914 -38.31453 -38. 36446 -38.41025
2.20 -38.27786 -38.31422 -38.36419 ~38.40943
2.40 -38.26780 -38.30831 ~38.35834 -38.4015¢6
2.70 -38.24437 -38.29220 -38.34201 -38.38338
3.00 -38.21759 -38.27364 -38.32295 ~38.36252
3.50 -38.17408 -38.24626 -38.29405 -38.33124
4.00 -38.13568 -38.22705 -38.27315 -38.30870
5.00 -38.21048 -38.25389 -38.28786
6.00 -38.20696 -38.24929 -38.28287
8.00 -38.20611 -33.24809 -38.,281690
11.00 -38.20608 -38.24603 -38.23159
15.00 b -38.20608 -38.24803 -38.28159
20.00 (-38.18866) -38.20608 -38.24803 ~-38.28159

ap11 quantities are in atomic units.

b

UF configuration state function for the XZH state does not dissociate
correctly to the atomic limits of c(3p) aud’H(ZS). The value given in
the parenthesis is that obtained from the a*L~ state at R = 20.00 b,
corresponding to the SCF energy of the ground states of C and 1.

el . o e 900
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TABLE VIL

Curve for the 34)3- State of CHa

R HF Valence-CL TFirst-Order CI Extended CL
1.00 -37.54271 -37.55316 -37.58386 -~37.63499
1.30 -38.05082 -38.05899 -38.0919S -38.14212
1.60 -38.23421 -38.24600 -386.27864 -38.32661
1.90 -38.28677 -38.30243 -38.33637 -38.38164
2.00 -38.29006 -38.30702 -38.34165 -38.38593
2.05 -38.29003 -38.30768 -38.34268 -38.38645
2,10 -38.28909 -38.30745 -38.34283 -38.38608
2.15 -38.28738 -38.30646 -38.34222 -38.38497
2.20 -38.28501 -38.30483 -38.34098 -38.38323
2.40 -38.27069 -38.29374 -38.33143 -38.37183
2,70 -38.24185 -38.27051 -38.31045 -38.34839
3.00 -38.21239 -38.24713 -38.28936 -38.32530
3.50 -38.19366 -38,22018 -38.26465 -38.29911
4,00 -38.19016 -38.21064 ~-38.25411 -35.28828
5.00 -38.16890 -38.20790 -38.24958 -38.28347
6.00 -38.18872 -38.20778 -38.24889 -38.28259
8.00 -38.18866 -38.20775 -38.24870 -38.28226

11.00 -38.18866 -38.20774 --38.24868 -38.28224
15.00 -38.18866 -38.20774 -38.24867 -38.28223
20.00 -38.18866 -38.20774 -38.24867 -38.28223
3511 quantities are given in atomic units.
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TABLE VIII

Potential Curve for the AZA State of ci?

R HF Valence-CI Tirst-Order CI Extended CI
1.00 -37.42364 -37.43427 -37.48522 -37.54232
1.30 -37.93532 -37.94325 -37.99542 -38.05255
1.60 -38.12142 -38.13104 -38.18467 -38.23933
1.90 -38.17632 ~38.18975 -38.24498 -38.29675
2.00 -38.18042 -38.19533 -38.25110 -38.30193
2.05 -38.18082 -38.19653 -38.25255 -38.30292
2.10 -38.18033 -38.19689 -38.25314 -38.30304
2.15 -38.17909 -38.19654 -38.25299 -38.30244
2.20 -38.17722 -38.19560 -38.25223 -38.30124
2.40 -38.16539 -38.18785 -38.24502 -38.292238
2.70 -38.14382 -38.17175 -38.22904 -38.27374
3.00 -38.13282 -~38.15873 -38.21430 -38.25707
3.50 ~38.12936 -38.14992 -38.20021 -38.24175
4.00 -38.12984 -38.14895 -38.13557 -38.23632
5.00 -38.13111 -38.15023 ~-38.19403 -38.23393
6.00 -38.13147 -38.15070 -38.19389 -38.23349
8.00 -38.13154 -38.15079 -38.19380 -38.23324

11.00 -38.13154 -38.15079 -38.19378 -38.23327
15.00 -38.13154 -38.15079 -38.19378 -38.23327
20.00 -38.13154 -38.25079 -38.19378 -38.23327

ap11 quantities are given in atomic units.
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TABLE IX

Potential Curve for the BZZ— State of CHa

E
R HF Valence-CI First-Ordecr CL Extended CI
1.00 -37.338604 ~37.40844 -37.44759 ~-37.50726
1.30 -37.99086 -37.92464 -37.95884 -38.02121
1.60 -38.09067 -38.11979 -38.15493 -38.2134¢
1.90 -38.15032 -38.18783 -38.22135 -38.27774
2.00 -38.15647 -38.19650 -38.23023 -38,28552
2.05 -38.15806 -38.19930 -38.23328 -38.28789
2.10 -38.15889 -32.20130 -38.2355% -38.28946
2.15 -38.15913 -38.20263 -38.23729 -38.29037
2.20 -58.15895 ~-38.20340 -38.23850 -38.29075
2.30 -38.15799 -38.20363 -38.23978 ~-38.29027
2.40 -38.15721 -38.20269 -38.24008 -38.28875
2.70 -38.15970 -38.19808 -38.23808 ~-38.28192
3.00 -38.16563 -38.19570 -38.23683 ~-38.27728
3,25 -38.17071 -38.19610 -38.23781 -38.27638
3.50 -38.17515 -38.19738 -38.23951 -38.27659
4.00 -38.18153 -38.20114 -38.24328 -38.27858
5.00 -38.18699 -38.20602 -38.24739 -38.28144
6.00 -38.18832 -38.20739 -38.24846 -38.28216
8.00 -38.18865 -38.20773 -38.24868 -38.28223
11.00 -38.18866 -38.20774 -38.24867 -38.28222
15.00 -38.18866 -38.20774 -38.24866 -38.28222
20.00 -38.18866 -38.20774 -38.24866 -38.28222

ap11 quantities are given in atomic units.
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TABLE X

Potential Curve for the CZZ+ State of CHa

E
R Hr Valence~CIL First-Order CI Extended CI
1.00 -37.36927 -37.39209 -37.42268 ~37.49620
1.30 -37.88227 -37.90213 -37.93538 -38.00796
1.60 -38.006920 -38.09129 -38.12668 -38.19664
1.90 -38.12463 -38.15132 -38.18893 -38.25543
2.00 -38.12884 -38.15728 -38.19575 -38.26107
2.05 -38.12929 -38.15866 -38.19756 -38.26230
2.10 -38.12834 -38.15917 -38.19851 -38.26268
2.15 -38.12764 -38.15896 -38.19875 -38.26235
2.20 -38.12579 -38.15814 ~-38.19838 -38.26142
2.40 -38.11400 -38.15074 -38.19284 -38.25354
2,70 -38.09209 -38.13709 -38.17911 -38.23637
3.00 -38.08018 -38.13185 ~38.17294 -38,22342
3.25 -38.070388 -38.12984 -38.17538 -38.21942
3.50 -38.07579 -38.13062 -38.18013 -38.22007
4.00 -38.07577 -38.13853 -38.18723 -33.22596
5.00 -38.07062 -38.14904 -38.19201 -38.23181
6.00 -38.15135 -38.19305 -38.233¢42
8.00 -38.15208 -38.19330 -38.23380
11.00 -38.15212 -38.19331 -38.23393
15.00 b -38.15212 -38.19331 -28.23392
20.00 (38.07690)  -38.15212 -38.19231 -38.23392

aan quantities are given in atomic units.

bHF configuration state function for the CZX+ state does not dissoziate
correctly to the atomic limits of C(1D) and H(ZS), instead it dissociates
into a mixture of C(ID) and C(1S), besides H(2S). The HF energy of
the correct atomic limits for the c2zt gtate should be -38.13154 hartrees.
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TARLE XI

Propertics of the Calculated Potential Curves - Continued

a,,
Taken f{rom Refercnce 6.

Total cuperimental energy is taken to be the sum of experinental atomice
energy and spectroscopically determined DFO. Atemie cnergies are taken
frow leference 11 and Reference 30. Tor Dco, sce footnotes ¢ and d,

c . . -
Experirental zero point energy is calculated from Wes We¥,. with Dunham
correction. (Spectroscopic constants are taken from Reference 6.}

. el . e ey e as e o i

c D <2
The spectroscopic constants We and w.x, for the B"YL state are not well
determined experimentally, therefore the known approzimate w, (see
Reference 6) is used to determine the zero point energy.

eRmaX and E .. are the internuclear distance and energy, respectively, at
the place of the maximum in the potential curve.

I calculations predict a slight maxinum ir. the potential curve of the
¢t state, but fail to describe correctly the dissociation limits.

7\ potential barrier exists, but no information about the height and
place is known experimentally,

hFrom References 6 and 11.

iBarricr heigut is defined as the height of the potential maximum with
the dissociation limits as the base line.

IMetastable predicted, i.ec., Emin lies higher than the dissociation limits.
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TABLE XII

MCSCF 40 ard 1T Orbitals at R = 20.0 b

Orbital Basis Functiona XZH fAZ—,BZZ_ A2A C22+
4° 2p, « = 6.34 ~0.0108 ~0.0039 -0.0034  -0.0101
L= 2.59 ~0.2347 -0.1764 -0.1836  -0.2459

[ = 1.42 ~0.5689 ~1.0612 -1.0595  ~0.4806

£ = 0.96 ~0.2578 0.2446 0.2502  -0.3438

4f, © = 2.50 -0.0004 0.0042 0.0044 0.0288

5£, & = 4.10 0.0001 0.0010 0.0010  -0.0075

1n© 2p, = 6.34 0.0110 0.0108 0.0100 0.0108
z = 2.59 0.2303 0.2351 0 2451 0.2268

L = 1.42 0.6229 0.5709 0.4837 0.6051

7, = 0.96 0.2023 0.2552 0.3414 0.2246

4 ¢ = 2.50 0.0004 ~0.0005 0.0078 0.0469

5 ¢ = 4.10 -0.0001 0.0001 -0.0021  -0.0115

aExpansion coefficients for the basis

Pazp, of C.

c
’\JZpTr of C.
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C-H POTENTIAL CURVES

(HF Calculations)
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Figure 1. SCF potential curves for the five lowest electronic states of CH
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C-H POTENTIAL CURVES

(CI Calculations)
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Figure 2. “Extended CI'' potential curves for the five lowest electronic
states of CH

82




t
|

VALENCE EXCLTED STAVES OF Ci
IT. DPPOPERVIES*®

by
2 ¢, Lie
‘3

a linze

Georp
Juerg
Deparcment of Chemistry

The University of Chicano
Chicago, Iilinois

and
Bowen Liu

IBM Research Laboratory
San Jeose, California

ABSTPACT: Expectation values of oneselectron ogerators and related molecular
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wavefunctions were cbtained from the calculated potential curves by
nunerical solution of the radial ¢chrodinger equation for ihe nuclear
rotion. Vibration-rotational analyces were carried out to yield speciro-
scopic constants which are in satisfactory agreement with known experimental

values.
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INTRODUCTICN

In the preceding paper,l hereafter referred to as paper I, we
discussed the calculation of electronic wavefunctions and potential curves
for five electronic states of CH: XZH, 348-, A2A, BZZ_ and CZZ+. With
these wavefunctions, it is possible to calculate expectation values of
many one- and two-electron operators of physical interest. Also, from the
calculaced potential curves, vibration-rotaticnal levels can be obtained
by numerically integrating the one-dimensional radial Schrodinger equation.

McLean and Yoshimine2 observ d, in 1966, '"We have reached a point,
in ab initio calculations of molecular structure, where it is no longer
satisfactory to discuss only energies and compare results with other
calculations. A wide spectrum of expectation values must be computed and
a serious cffort made to compare with, and complement, experimental
observations. Only by doing this can a valid assessment of the accuracy
of the wavefunction be made". While their statement remains valid today,
progress made in the intervéning years has allowed ab initio calculations
to become competitive with experiment as a tool for the determination of
molecular properties. In many instances, ab initio calculation has
yielded otherwise inaccessible information. The calculation of molecular
properties is a minor task compared with the calculation of the electronic
wavefunction, However, the very large number of parameters required to
describe an accurate electronic wavefunction is difficult to communicate.
It is rave that anyone, other than the original authors of the wavefunction,
performs the straightforward but highly useful calculations of molecular

I

properties. Therefore, it is desirable that authors of new wavefunctions
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carry oul and report molecular property calculations. After ail, one of
the most important purposes of wavefunction calculations is to obtain
molecular properties.

In this paper we repcrt one-electron expectation values and molecular
propertieé obtained from the wavefunctions described in paper I. These
data are not easily accessible through cxperimental observatious, which
are severely hampered by the high reactivity of the CH radical. 1In fact,
only the dipole moment of the ground state of CH, among all the properties
reported here, has been determined experimentally.3

We also report here spectroscopic constants determined from the
calculated potential curves. Available spectroscopic information on CH
has been summarized by Herzberg and Johns.4 A comparison between the
theoretical and experimental results provides a valid as-essment of the
accuracy of the calculated potential curves, and establishes the accuracy

of the calculated aai— potential curve which is not known experimentally.

IT. EXPECTATION VALUES

We restrict our disc' on to expectation values of operators of the
form
n
£a ¥, E, (1)
i=1

where the summation is over ail electrons of the molecule, and fi is a
one-electron operator which depends on the coordinates of the i-th
electron. The one-electron operators considered in this paper have the

general form
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n .1 3
r, sin Bk cos Sk Plo(cos Bk)

vhere the subscript k refers to the nucleus of either C or H as the
coordinate origin. The =z-axis points from C to H, and on(cos 9) is a
normalized associated Legendre polynomial. The expectaticn value of f

is given by

<E£>=<Y,f¥>

IZ,;I R <<I)I,fd>J>

12 Y1j<wi,f,«9j > (2)

?

In E3. (2), ¥ 1is the electron wavefunction expanded in terms of
configuration state functions (CSF) ¢I' with expansion coefficients CI’
as described in paper I. '7The CSFs are constructed from a set of molecular
orbitals {¢i}. The coefficients Yij are elements of the first order
reduced density matrix belonging to the wavefunction V¥, represented in
the basis {¢i}.

Table I gives expectation values of one-electron operators, at the
computed equilibrium internuclear distances, calculated from the "extended
C1" wavefunctions of paper I. As noted in paper I, these computed Re's

2.1
are, except for the B"Z state, in excellent agre:ment with the experimental

values.
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* I1T. MOLECULAR PROPERTIES

Among the molecular properties which are related to the computed

; expectation values, we consider the dipole mcment, the quadrupole moment,
the electric field gradients at the nuclei, the diamagnetic susceptibility,
the nuclear shielding constant, the Hellman-Feynman forces, and the viial
ratio. Strictly speaking, the last two properties are not observables;
however, their values at Re are known theoretically. How closely the
computed values approach the theoretical values gives an indication of

the quality of the computed wavefunction.

A. Dipole Moment

The dipole moment U of a linear molecule is given by

y =§ R,Z, -<2> (3)

In Eq. (3), the sum is over all nuclei with charge Zi, and z-coordinate
Ri in a coo1r?inate system where the z-axis is the molecular axis. The
dipole moment of a neutral molecule, such as CH, is independent of the
coordinate origin.

Table II gives dipole moments computed from the "extended CI"
wavefunctions of paper I for five electronic states of CH. These
results are also displayed graphically in Fig. 1. All computed
dipole curves have the correct asymptotic behavior at large and
small R; i.e,, all dipole moments go to zero at united and separated

- e
atom limits. The dipole moments for the a42 , AZA and B"I states are

-+
in the directfua of C H for all internuclear distances, whereas the
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dipole moments for the XZH and CZZ+ states are in the direction of ctu”

for large R, and C-H+ for small R. The sign change in the dipole

moment of the CZE+ state is consistent with the valence bond analysis,
given in paper I, for the origin of a maximum in the CZE+ potential curve.
The C+H_ dipole, at large R, results from the interaction batween a
repulsive potential curve arising from ground state separated atoms, and

2, 2, 2 2 ls

an attractive curve arising from C+H_ (1s"25s"2p°P + 1s ). The C-H+

dipole, at small R, results from the ionic curve arising from

C-H+(1522522p3 2P

). At large R, the C+H_ curve lies "2 eV below the
C-H+ curve. However, as R decreases, the C+H' curve deviates from a
1/R behavior sooner than the C-H+ curve, due to the large size of H
compared to H+ and the small difference between the sizes of C+ and C .

Thus, at small R the C-H+ curve lies below the C+H- curve. As stated

in paper I, this C-ﬁ+ curve eventually crosses tne repulsive 22+ curve,

and is responsible for the potential maximum in the C22+ curve, The

sign change in the dipole moment of the XZH state can be explained in the

same way. The reason why the 342-, AZA and BZE- states have dipole moment

- =
in the sense C H for all R, is that the lowest C+H structure that can

give rise to these states lies higher than the lowest C_H+ states of the
corresponding symmetry for both large and small R.

Table IJI and Fig. 2 give dipole moments of CH calculated from the
SCF wavefunctions of paper I, The SCF dipole moment for the x2H state
does not approach zero as R approaches «, This results from the

failure of the HF wavefunction to dissociate into the correct separated

atom limit. Another difference between the SCF and "extended CI" results
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is that, for the CZZ+ state the SCF dipole moment remains in the direction
of C-H+ for all internuclear distances. This reflects the failure of the
HF wavefunction for the CZZ+ state, 102262301ﬂ2, to properly include the
contribution of the ionic structure C+H-, at large internuclear distances.
Both of these deficiencies can be removed by going to the '"valence CI" or
"first order CI" wavefunctions.

The dipole moments at the computed Re were obtained by interpolations
using four calculated points around Re' The results are given in Table IV,
The fextendcd CI" dipole moment for the X2H state at computed Re, which
is 0.003 bohr too short compared with the experimental value, is 1.45 debye.
This value is in good agreement with the experimental value of 1.4610.06
debye obtained by Phelps and Dalby.3 The corresponding SCF value is
1.62 debye, in error by "10%. The value obtained by Bender and Davidson5
using the iterative natural orbital approach is 1.43 debye. The "extended

2 2A, BZZ-, and CZZ+ states are 0.663,

CI" dipole muments at R, for a'L , A
0.904, 1.389, and 0.955 debye, respectively.

Rigorously speaking, to properly compare the calculated properties
with the experimental results, the computed quantities should be averaged
over the appropriate vibration-rotational wavefunctions. However, this is
generally not done either for lack of vibration-rotational wavefunctions
or because the average usually does not lead to significant changes in
the calculated values, especially for the lowest vibrational states. TFor
example, using the computed dipole moments as a function of R and

calculating the rotation-vibration average, we obtain 1.41 debye for

the v =0, K=1 level of the XZH state as compared to 1.45 debye at

90
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R, The vibrationally averaged "extended CI" dipole moments for the

4

- 2 -
lovest vibration-rotational states of the a I , A2A, B"L , and C22+ states
are (.68, 0.93, 1.39, and 0.99 debye, respectively. Averaged dipole moments
for higher vibrational states are given in Tables X~XIV. The determination

of the vibrational wavefunctions will be outlined in Section IV.

B. Other Molecular Properties

The quadrupole moment Q of a diatomic molecule is given by

0= Tz -GE -t eyh) (4)

For a neutral molecule with a permanent dipole, Q depends on the coordinate
origin with respect to which the variables Ri’ Xy, ¥, and z are defined.
To facilitate comparison with experiment, the quadrupole moment of CH were
evaluated with respect to the center of mass of the molecule.6 Table V
gives quadrupole moments as functions of R, calculated from the "extended
CI" wavefunctions for the five electronic states of CH.

The field gradient of a diatomic molecule at nucleus 1, 9y is given

by

27 2
— 3 cos’8~1
9l 3+< 3 > (5)
R . r

where R 1is the internuclear distance. The first term gives the electric
field gradient due to nucleus 2, and the second term the electronic
contribution. The field gradient at nucleus 2 can be obtained by

interchanging subscripts 1 and 2 in Eq. (5). Tables VI and VII give
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field gradients at C aud ¥, respectiiely, obtained from the "extended CI"
wavefunctions.

The experimentally measured dizmagnetic susceptibility, X, is a
rotationally averaged quantity consisting of two terms: the Langevin term
and the high frequency term. The calculation of the high frequency term
requires & knowledge of all the excited electronic states of the molecule.
The Langevin term is given by

X = - —é— o <rs (6)

wher2 o 1s the fine structure constant, and the applied magnetic f{ield
is assumed to be in the direction of the internuclear axis. The diamagnetic
susceptibility is invariant to a change of coordinate origin,7 alrhough
the Langevin and high frequency terms taken separately are not. The XL
were evaluated at the center of electronic charge, to minimize its
variation with R.

Similarly, there are two terms contributin;, to the nuclear shieliding

constant ¢. The diamagnetic contribution, called the Lamb term, at

nucleus k 1is given by8

ok =-1d2 <—l\ 7)

Z /2
. L C_
FC-ZH[- R2+&r 3>] (8)




Similarly the force on the H nucleus is

Z Z
n H_/ H
Fy = zc[ 2 < J>:, (9)
R rH

In an electronic system at equilibrium the electric field seen by a nucleus

must be zerc. Yroper self-consistent wavefurnctions should lead to vanishing
electric fields at the nuclei, at the predicted equilibrium internuclear

distance Re where the energy reaches its minimum. That is
F,= FH= 0 at Re (10)

The above theorem is one of the applications of the well-known Hellman-
Feynman theorem for an exact wavefunction. It has *een proven by Hurley9
to hold also for an exact Hartree-Fock wavefunction.

Another application of the Hellman-Feynman theorem is found in the
virial theorem, which for a diatomic molecule can be written as

0=2<T>+<V>+R%=<T>+E+Rg—§ (11)

where <T> is the average electronic kinetic energy, <V> 1is the
average potential energy including nuclear repulsion, and E is the total
electronic energy equal to <T>+<V> . From the above equation we

see that, when the condition dE/dR = 0 is satisfied

<

—

TS - -2.00000 (12)
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This ratio should hold at Re and when two nuclei are far apart. The
virial theorem has also been proven to hold for exact Hartree-Fock
wavefunctions by Hurley.9

The above two theorems can be used to test the quality of approximate

e o fnfne ol oagl

wavefunctions. However, an approximate wavefunction satisfying both
theorems is not necessarily a good approximation .to the exact wavefunction.
In Table IV we give the properties described above, calculated from
the "extended CI" wavefunctions, at the calculated Re. Results obtained
from SCF wavefunctions are also given for comparison.
Table IV shows that both the SCF and "extended CI" wavefunctions

satisfy the virial theorem to within 0.0075% at the computed equilibrium

internuclear distances. This is a considerable improvement over the
earlier calculation by Lie et al.10 where the error is 0.04%, indicating
a better choice of one-particle basis set in the current calculation.
However, the Hellman-Feynman forces at R, calculated from the "extended
CI" wavefunctions, are somewhat larger than those obtained by Lie et al.lo
This may be a resualt of the truncation of the external orbital set used
in the current calculation.

The diamagnetic contributions to the magnetic susceptibility and
the nuclear magnetic shielding constants do not vary significantly from

state to state. Nor do they appear sensitive to the inclusion of electron

correlation.

IV. VIBRATION-ROTATIONAL ANALYSIS
In the Born-Oppenheimer approximation, it is assumed that the total

wavefunction of a diatomic molecule can be expressed as a product of
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electronic and nuclear wavefunctions, which are solutions of two separate
equations. The first equation is for the motion of the electrons in the
| field of the fixed nuclel (cf. paper I); the eigenvalues and eigenfunctions
‘ are t'.erefore dependent parametrically on the internuclear distance R.
The secoﬁd equation is for the motion of the two nuclei in the potential
determined by the electrons, i.e., the eigenvalues of the first equation,
The assumption of separability in the second equation leads to two
independent equations for the nuclear vibrational and rotational motions.
The solutions for the nuclear rotation, i.e., the angular part of the
nuclear motion, can be obtalned analytically as hypergeometric functions,11
giving rise to the rotational quantum numbers K and M (Hund's coupling
case b is assumed). The energy levels for a fixed iﬁternuclear distance
R are given by
B o (R) = —5 |K(K + 1) - A2] | (13)

211R2

where } is the nuclear reduced mass, and A is the electronic angular
momentum along the internuclear axis. There are no general analytical

solutions for the nuclear vibrational motion, the wave equation of which

is
1 d d )
{2“2 dr R<3§) RN FEL R - Ev,Ki R, k(R =0 (14)

where EA(R) is the electronic energy as a function of R determined in
paper 1. Ev K is the vibration~-rotational energy, where v 1s the
]

vibrational quantum number. Equation (14) was numerically integrated

95

v LRI MM




:
J

using Numerov's method as described by Coole.y12 with certain modifications
due to Blatt.l3 Since the potentials EA(R) were obtained at a few selected
points of R, we have used a fifth order polynomial interpolation to get
the required intermediate points for a direct numerical integration. The
intcgration range was from R = 1.00 bohr to R = 20.00 bohrs. No tunneling
through the barriers in the petential curves of the BZZ- and CZZ+ states
werc cconsidered. The potential curves were leveled from the maximum on to
R = 20.00 bohrs.' From the calculated vibration-rotational eigenvalues, EV,K’
spectroscopic constants were obtained by taking the appropriate energy
differences. The resulting eigenfunctions RV,K can be used to vibrationally
average certain observable properties for a more realistic comparison with
experimental values. Such vibrational averaging was carried out for the
dipole moments only (see the discussion in Section IIIa).

The energy levels obtained by solving the vibrational Schrodinger

equation, Eq. (14), are displayed in Fig. 3. These energy levels can be

expressed as

2
1
Ev,K = Te + w, (v + 2) - WX, <v + 2) P g Erot (15)

where Te is the electronic energy of the molecule at Pe’ and Erot is

the rotational energy. The rotational'energy can be written as

= 2 2 2
Erot = FV(K) = BV[K(K +1) - A7) - DVK (XK + 1) (16)

by expanding Eq. (13) sbout Re' The spectroscopic constants W,y WX, s
Bv’ and Dv can be determined from the computed Ev 's as follows.

»K
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For the same elecftronic and vibrational state, the energy difference

between two adjacent rotational levels can be obtained from Eq. (16) as

. 3
Fv(K +1) - FV(K) = 2(K + l)Bv - 4(K + 1) Dv (17)

For the same electronic state, the energy difference between two adjacent

vibrational levels is given by Eq. (15) as

BGuyyya = Ei1,x ~ Pt (K - Bkt F )

=W, - 2(v + l)wexe (18)

Equations (17) and (18), together with the computed Ev’k's, vere
used to determine Bv’ Dv’ we, and wexe. A least squares fit was employed
wnenever there were more data points than unknowns. The results are
summarized in Tables VIII and IX, together with known expérimental values.

Given in Table X are also the Be and ae's which were obtained from the

Bv's by a least squares fit to the expression

1 1 A
BV=.Be(V+E)—ae <v+-i) (19)
While many rotational levels are known experimentally, for each

vibrational state, we only carried out calculations for a few rotational

levels. The reason is that spectroscopic constants Bv and Dv do not in

general depend on the number of rotational levels used in carrying out a
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least squares fit. This 1s because the primary contribution to the eunergy
difference between different rotational levels comes from the centrifugal
correction term in Eq. (20), E_ . = [K(K + 1) - AZ]/ZURZ. Therefore the
rotational energy is expected to be proportional to [K(K + 1) - AZ}, which
is used as the expansion parameter.

As can be seen from Table IX, the "extended CI" Bv's agree quite well
with the experimental values; the errors are on the order of 0.2 cm—l.
The only exception is BV=1 of the BZZ_ state, where the error is 0.6 cm_l.
This is to be expected since the BZZ~ state does not have a deep potential
well and our calculated dissociation energy is in error by V257%. The

[ calculated Bv’s for the higher vibrational levels are less accurate than

that for the lower vibrational levels, which is generally the case for

calculated potential curves. Except for Bv=1 oflthe BZZ- state, the
calculated Bv’s are all found to be within 27 of the experimental values.
The calculated Dv’ which are %104 smaller than Bv’ are all found
to be in good agreement with experimental values.
Experimentally only three vibrational levels were observed for the

XZH, AZA, and C22+ states, and two for the BZZ- state. According to the

results of the "extended CI" calculations, there are only two vibrational
levels for the BZZ_ state, and four for the CZZ+ state. We carried out

4

spectroscopic analyses for all of them. For the XZH, a Z_, and AZA states

we only give results for v < 5.

The error in the "extended CI" AGv+1/2 is largest for the BZZ_ state, J
2100 cm_l, as is to be expected from the 43% error in the calculated 1
L
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dissociation energy. Similarly, the errors in the calgulated AGv-i-l/'Z for
the C22+ state, 61 cm-1 for v = 0 and 90 cm‘l for v = 1, are larger than
that for the X2H state, 11 cm'_1 for v = 0 and 49 cm_l for v = 1, and the
AZA state, 36 cm—l for v = 0 and 32 ‘émhl for v = 1. The errors in the

XZH and BZZ— states are in the opposite direction compared with that in the
A2A and CZZ+ states. This implies that the calculated potential curves for
the XZH and BZZ_ states are too wide as well as too shé'llow, whereas they
are too narrow and too shallow for the AZA and C2Y.+ states,

In deriving the equilibrium spectroscopic constants, Wy s w X B,

e’ e
and ae, we have used the same number of v 1levels as was observed and uéed
in their experiméntal determir;ation (three v 1levels were used for the
al’Z— state). This is because the values obtained for the spectroscopic
constants by a lezast équares‘ fit depends on the number of vibrational
levels used. The variation can be as much as 100 cm—l in determining
Wy s and 20 cm—l in determining W X5 an indication that the two term
expansion for the yib'ratiohal level is frequently not adequate. The
variations of the Be's and ae's are not as drastic. At any rate, for a
weaningful comparison between theory and experimeﬁt, the same procedure
for extracting secondary data mu::‘.t‘ be used.

Tﬁe discrepancies bet‘weenv computed and experimental quantities are
50 'cm—l (2%) or less for the tbe's, and 20 cm—l (30%) or less for the
W,X,'s. . Much better agreements are obtained for the B 's and ¢.'s, since
they are derived from Bv"s which are themself in good agteemént with the

expetrimental values, - Exceeﬂingly good agreements between experimental

and calculated results for the AZA state, indicates that the shape of the
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2
experimental RKR curve for the A°A state is well reproduced by the

vextended CI" calculations. This is reflected also in the nearly constant
errors of the calculated AG 's for the AZA state.
Vy+l/2
The experimental Re's given in Table IV are all determined from the

experimeﬁtal Be!s according. to the relation B = (ZuRez)—llz. It was

shown by Dunham15 that'there are corrections of the order Bezlmez to
this formula. These corrections depend on the shape of the potential curve,
and for a very shalléw potential well they may be large. Using the
relation B_ = (21.!1{(32)_1/2 ;nd the calculated Be'§, we obtain the
following Re's for the XZK, aAZ-, AZA, Bzﬁa, and CZZ+ states: 2.114,
2.053, 2.08C, 2;190, and 2.094 bohrs. respectively. Comparisen with the
Re's calculated ffom the energy minimum in the potential curve shows that
+he corrections for the XZH, aaZ_, AZA, and CZZ+ states are all less than
0.01 bohr, as compared to the correction of 0.026 bohr for the BZZ- state.
The correction is largest for the BZZ- state since it hgs a very shallow
potpntial well. The true potential curve is deeper compared with the
calculated one; therefore the correction to the experimental Re for the
BZZ- state should be smaller than 0.026 bohr. This might bring the current
experimental value of 2.200 bohr into agreement with the calculated
value of 2,216 bohr.

Table IX also gives the calculated and experimental zero-point energy
and term splitting Voo' The term splitting is relative te the v = 0
level of the "rotationless" XZH state, i.e., the rotational energy has
been subtracted out of the lowest vibration-rotational level. Relative

2 2£+

to the XZH state, the AZA, B°Z™, and C states are all shifted up

compared with experimental results. The errors are respectively 373,
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156, and 628 cm_1 for the AZA, BZZ-, and C22+ states. The larger errors

in the A2A and C22+ states may be attributed to the error in the calcu-
lated term splitting between the 3P and lD states of carbon which is too
-1 2 2+ -1
large by 417 cm ~. If we shift the A"A and C I states down by 417 cm 7,
the errors in the computed term splittings would all be less than 211 cm_l.
The computed zero-point energy was obtained from the energy difference
between the computed energy minimum and the "rotationless" v = 0 level.
Experimental zero-point energy was obtained from W and WX, with Dunham

14,15 Zero-point energies are all found to be within 50 cm_l

correction.
of the experimental values. The largest error is found in the BZZ- state,
where the experimental value is only known approximately.

By subtracting the computed zero-point energy from the diss»hciation
energy Deo of paper I, we obtain the spectroscopic dissociation energy
Doo, which is given in Table IV. Since the errors of the computed zero-
point energies are all less than 50 cm-l, the calculated Doo's should
have essentially the same accuracy as the Deo's; the errors are 0.12,
0.11, 0.15, and 0.16 eV for the XN, AZA, B%L™, and C’z' states,
respectively.

Apart from the Honl-London factor, the vibration-rotational transition

matrix element is
R rigr (B [HER) [R e (R (20)

where }(R) is the dipole moment which depends on the internuclear distance

and the particular electronic state considered. The integraticn is to be
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performed over R. With the vibratfonal wavefunctions and the dipole
romencs available, the matrix elements can be obtained by numerical
integration. Vibrationally averaged dipcle moments are obtained by
letting v' = v'" and K' = K". The squares of the off~diagonal matrix
elements are proportional to the line strengths in the infrared vibration-
rotational transitions.

The vibratien-rotational transition matrix elements for all five
states are all found to be fairly constant within each branch, therefore
only the values for the first members of each branch are given. Tables X
through XIV give the matrix elements obtained from the "extended CI" curves.
From a given matrix element the oscillator strength can easily be
calculated. Unfortunately there are no experimental results to compare
with.

K'K"

We present in Table XV the Pv'v“ values, the square of the transition
matrix elements, for the 0 - 1 and 1 - 2 bands in the infrared transitions
of the ground state for two reasons. Firstly, it is more likely to be
studied experimentally, although their intensities are weak due to the
small dipole moments. The second reason is to illustrate what to expect
for the other states as we give only the transition matrix elements for
the first member of each branch. It should be noted here that the
variation of PE:E: with K in the X2H state is different from that in
the other four states, because of different behavior of the dipole
4

moments around Re. For example, the P(K) of the a Bils AZA, BZZ-, and

4
CZZ' states increases with increasing K values, unlike the P(K) of the

x2H state which decreases with increasing K as shown in Table XV.
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V.  CONCLUSION

The "extended CI" calculations of the potential curves and molecular
properties for the valence excited states of CH are in satisfactory agree-
ment with the available experimental results. The dissociation energies
were calculated to within 0.2 eV of the experimental values. The dipole
moment for the ground state was computed to well within the experimental

1

uncertainty. Calculated AG were in error by less than 100 cm

v+1/2
(v5%), w, by less than 50 cm_1 2%y, Bv by less than 0.2 cm_l 272,

term splittings by less than 630 cm_l. Excellent agreement with experi-~
mental values was found in the calculated Re's, except for the BZZ_

state where the experimental value may not correspond to the classical
equilibrium internuclear distance. Large percentage errors, as high

as 30% (~20 cm—l), were found in the calculated anharmonicity corrections
wexe, which are two orders of magnitude smaller than we. These

comparisons provide a guideline for the reliability of the predictions

made for the experimentally yet unobserved 342_ state,

Many deficiencies in the SCF approximation were seen in the calcula-
tions of CH, such as the wrong dissociation limits, wrong energy level
ordering, etc.

These de.ficiencies, leading to qualitatively incorrect results, were
not found in the "valence CI" and "first order CI" wavefunctions. We have
already seen, in paper I, that these simpler wavefunctions gave disscciation
energies in error by as much as 0.8 eV, and equilibrium internuclear

distances in error by as much as 0.15 bohr. No definite conclusion was

reached concerning the relative merits of these two methods. In this
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r paper we did not tabulate the molecular properties calculated from the
"yalence CI" and "first order CI" wavefunctions, it would have doubled
the number of tables. However a detailed comparison between the "valence
CI", the "first order CI" and the "extended CI" results was made. The
results of this comparison are summarized below.

The vibrationally averaged dipole moments, for the v =0 level of
the X2H siate, obtained from the "valence CI" and "first order CI" wave-
functions are 1.40 and 1.25 debye, respectively. These are to be
contrasted to the "extended CI" result of 1.41 debye, and the experimental
value of 1.46%0.06 debye. No experimental result is available for the
dipole moments of the remaining four electronic states. The "valence CI"
and "first order CI" dipole moments for these states differ from the
"extended CI" results by more than 0.01 debye and less “han 0.15 debye.
No correlation was found between errors in the computed dissociation
energies and errors in the computed dipole moments. No conclusion was
reached concerning the relative merits of these two models by comparing
the calculated dipole moments. Examination of other calculated molecular
properties did not yield significantly different trends. Thus, we conclude
that for CH, the '"valence CI'" and "first order c1" w;vefunctions do rot
consistently give results of accuracy comparable to those obtained from
the "extended CI" wavefunction. It is surprising that the "first order
C1" wavefunction does not consistently give results that are better than
the "valence CI" wavefunction. One possible explanation is that we did
not employ the iterative natural orbital method in determining the "first

order CI" wavefunction, which could conceivably lead to improved results.
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Table I

Cc

Expectation Values®® at Re for the valence excited states of CH
X211 ats” A2A B2~ ¢t
Oriyin at C

e 15.1766 15.2038  15.1658 15.1533 15.1472

7 9.4539 9.2883 9.4632 9.5540 9.5694

72 19.8107 19.0753 19.9997 20.4280 20.5973

5 1.5428 1.7923 1.7271 1.6699 1.7246
——— 6.3696 6.6879 6.8691 6.9248 6.9654

r Leos?s 5.4087 5.2246 5.2067 5.1506 5.2000

= 2508 O 0.2260 0.2270 0.2186 0.1965 0.2182

% =3 (3c0s26-1) 0.5775 ~0.0015 0.0064 ~0.1546 0.0145
% r?(3cos20-1) 4.7942 2.5860 2.3017 2.6273 2.2021

2
r20n2 8 9.7997 8.0825 8.2010 8.5608 8.3339
Origin at H

ey 3.9170 3.9308 3.8398 3.6084 3.7980

F 16.2912 15.7778  16.1300 17.0011 16.3117

e 44.5496 41.2201 43,1717 47.4098 442269

. ~13.2496  -12.5787  -12.8525  -13.8442  -12.9761
£\&dn [0 6.3690 6.6874 6.8686 6.9242 6.9648

r Leos?o 2.5279 2.5270 2.4806 2. 3840 2.4575

=2

s, -1.3387  -1.4197  -1.3797  -1.2189 ~1.3582

3 3 (3c0s’6-1)  0.5175 0.5391 0.5169 0.4410 0.5053
%-r2(3c0326-1) 29.5332 24,7309 25.4737 29.6090 25.8318

a

Refercnce 1.

bAll quantities are given in atomic units.

cComputcd equiilibrium internuclear distance from Reference 1.
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Table 1I

Variation of Dipole Moment with R ("Extended C1" Results)

} Dipole (debyes)®
R (bohrs)

21 BYiE= a2 82" ¢t
1.00 1.8676 0.1516 0.1758 0.2795 0.1831
1.30 1.8914 0.2973 0.3475 0.5155 0.3588
1.60 1.8105 0.4328 0.5360 0.8009 0.5541
1.90 1.6296 0.5815 0.7569 1.1119 0.7863
2.00 1.5504 0.6343 0.8370 1.2117 0.8700
2.05 1.5072 0.6612 0.8775 1.2587 0.9122
2.10 1.4620 0.6882 0.9180 1.3026 0.9545
2.15 1.4150 0.7152 0.9581 1.3428 0.9966
2.20 1.3663 0.7423 0.9977 1.3783 1.0382
2.30 1.4312
2.40 1.1570 0.8471 1.1443 1.4558 1.1954
2.70 0.7988 0.9793 1.2793 1.3954 1.3124
3.00 0.4550 1.0440 1.2234 1.1625 1.0792
3.25 0.9460 0.6302
3.50 0.0004 0.8037 0.8534 0.7158 0.1582
4.00 -0.2246 0.4757 0.4880 0.3880 -0.2060
5.00 -0.1766 0.1442 0.1482 0.1151 -0.1573
6.00 -0.0619 0.0474 0.0511 0.0391 -0.0517
8.00 -0.0068 0.0089 0.0101 0.0083 -0.0058
11.00 -0.0010 0.0022 0.0023 0.0022 -0.0023
15.00 -0.0003 0.0006 0.0007 0.0006 -0.0007
20.00 -0.0001 0.0002 0.0002 0.0002 ~0.0002

3positive dipole moment is defined as C_H+.
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Table III

Variation of Dipole Moment with R (SCF Results)

Dipole (debyes)a

R (bohrs)
Q! atn AZn 25" 2zt

1.00 1.9904 0.1519 0.1697 0.2452 0.1694
1.30 2.0251 0.2782 0.3374 0.4718 0.3369
1.60 1.9411 0.3856 0.5214 0.7569 0.522¢8
1.90 1.7677 0.4949 0.7469 1.1167 0.7552
2.00 1.6°14 0.5322 0.8317 1.2487 0.8437
2.05 1.6498 0.5508 0.8757 1.3151 0.8899
2.10 1.6060 0.5695 0.9207 1.3€06 0.9372
2.15 1.5599 0.5882 0.9666 1.4434 0.9857
2.20 1.5117 0.6069 1.0132 1.5010 1.0350
2.30 1.5836
2,40 1.2975 0.6809 1.2028 1.5890 1.2378
2.70 0.9205 0.7905 1.4092 1.2851 1.4724
3.00 0.4949 0.9133 1.1474 0.9289 1.2178
3.25 0.6890 0.9375
3.50 -0.20606 0.6377 0.6597 0.5063 0.7043
4.00 -1.0050 0.3600 0.3642 0.2745 0.3882
5.00 -2.3207 0.1193 0.1187 0.0907 0.1252
6.00 --3.3702 0.0455 0.0455 0.0366
8.00 0.0100 0.0103 0.0093

11.00 0.0024 0.0025 0.0023 b

15.00 0.0007 0.0007 0.0007 (0.0007)b
20.00 0.0002 0.0002 0.0002 (0.0002)

8positive dipole moment is defined as C"H+.

b

:orrectly to the atomic limits of C(3P) and H(ZS).

to an admixture of C(3P), c(1s), and H(ZS), all of these states
are electrically neutral.

109
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The HF configuration for the CZZ state does not dissociate
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Table IV

Properties of Low-lying Electronic States of CH

= -~ )
Property X2H aaﬁ A2A BZZ C’Z+
Re (bohrs) extended CI 2.113 2.053 2.083 2.216 2.100
SCF 2 2.085 2.023 2.046 2.151 2.049
expt'l 2.116 2.082 2.200 2.105
Do° (eV) extended CI 3.33 2.64 1.72 0.11 0.61
SCF A 2.29 2.56 1.14 b -0.26
expt'l 3.45 1.83 0.26 0.77
Dipole C H' extended CI 1.450 0.663  0.904  1.389  0.955
(debyes) SCF ] 1.619 0.541 0.872 1.444 0.889
expt'l 1.46+0.06
-<V>/LT> extended CI 2.00006 1.99994 1.99999 1.99987 1.99985
SCF d 1.99999 2.00001 1.99995 1.99993 1.99985
expt'l 2.00000 2.00000 2.00000 2.00000 2.00000
Total Hellman- extended CI 0.02 -0.06 -0.07 -0.04 -0.05
Feynmag force SCF d 0.03 -0.02 -0.02 -0.02 -0.02
(a.u.) expt'l 0.00 0.00 0.00 0.00 0.00
Gradient of electric extended CI 0.943 -0.234 -0.209 -0.493 -0.187
field at carbon SCF 0.972 -0.187 -0.152 -0.437 -0.075
nucleus (a.u.) expt'l
Gradient of elactric extended CI -0.237 -0.309 -0.294 -0.220 -0.285
field at hydrogen SCF -0.258 -0.331 -0.323 -0.261 -0.322
nucleus (a.u.) expt'l
Quadrupole w.r.t. extended CI -0.693 2.079 2.584 2.820 2.806
the center of mass SCF -0.831 1.912 2.481 2.852 2.669
(a.u.) expt'l
-10% (a.u.) extended CI 172.8 165.2  173.7  177.8  179.0
w.r.t. the center of SCF 172.1 163.0 171.5 175.0 176.3
electronic chargz expt'l
-10%0, " extended CI  69.5 69.8  68.2  64.1  67.4
(a.u.) SCF 70.2 71.0 69.2 65.2 68.9
expt'l
-106chL extended CI 269.4 269.9  269.2  269.0  268.9
(a.u.) SCF 269.3 269.8 269.2 269.0 268.8
expt'l
110
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r Table IV - Continued

3Taken from Reference 4.

bNo vibrational state exists in the HF potential curve for the BZZ- state.
®See Reference 3.

dTheoretical results.

eAttractive force towards hydrogen nucleus is positive.

m




v

28

Table V

Variation of Quadrupole Moment? With Rb,c

2 .y

R ¥n . a*r a2p ps” 2t
1.00  -0.8562  0.8146  0.9959  0.8698  1.1523
1.30  -0.8590  1.0535  1.2841  1.2006  1.4420
1.60  -0.7953  1.3875  1.6849  1.6503  1.8613
1.90  -0.7358  1.8238  2.2171  2.2305  2.3937
2.00 -0.7149  1.9884  2.4149  2.4286  2.5951
2.05  -0.7049  2.0738  2.5167  2.5253  2.6992
2.10  -0.6956  2.1609  2.6200  2.6192  2.8053
2.15  -0.6869  2.2496-  2.7243  2.7092  2.9131
2.20  -0.6789  2.3397  2.8292  2.7941  3.0219
2.30 2.9436
2.40  -0.6583  2.7091 - 3.2419  3.0612  3.4526
2,70 -0.7022  3.2502  3.7335  3.2367  3.8477

r 3.00  -0.7764  3.6660  3.9055  3.1220  3.3692
3,25 2.9204  2.0342
3,50
4,00
5.00
6.00
8.00

-0.9402 3.5480 3.5853 2,7107 0.2535
-1.0720 3.0540 3.1019 2.4060 -2.0143
-1.1047 2.4053 2.5408 2.1540 -2.7150
-1.0398 2.1412 2.3126 2.0580 -2.4087
d -0.9828 1.9750 2.1587 1,9679 -2.1966 :
11.00 -0.9661 1.9258 2.1090 1.9254 -2.1558
15.00 -0.9586 1.9114 2.0937 1.9110 -2.1392
20.00 -0.9562 1.9063 2.0882 1.9058 -2.1330
Byith respect to the center of mass.
bAll quantities are in atomic units. .
€Calculated from the "extended CI" wavefunctions of Refarence 1.
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Table VI

Electric Field Gradient at the C Nucleusa’b

2 4~ 2 2.- CZZ+

=
3
=
o

™~
>
o>
=

ae

1.00 1.1468 -0.4047 -0.3773 -0.6262 -0.3393
1.30 1.3721 -0.0098 0.0327 -0.1639 0.0707
1.60 1.2628 -0.0404 0.0085 -0.1702 0.0464
1.90 1.0754 -0.1609 -0.1145 ~0.2989 -0.0786
2.00 1.0123 -0.2084 -0.1648 -0.3550 -0.1310
2.05 0.9813 -0.2328 -0.1910 -0.3849 -0.1586
2.10 0.9509 -0.2576 -0.2180 -0.4161 -0.1869
2.15 0.9212 -0.2827 -0.2457 -0.4484 -0.2162
2.20 0.8921 -0.3082 -0.2740 -0.4819 -0.2464
2.30 -0.5520

2.40 0.7829 -0.4130 -0.3940 -0.6252 -0.3767
2.70 0.6432 -0.5801 -0.5949 -0.8379 -0.6183
3.00 0.5442 -0.7620 -0.8015 -1.0156 -0.7013
3.25 -1.1235 -0.4431
3.50 0.4680 -1.0546 -1.0648 -1.1948 0.0556
4.00 0.4772 -1.2115 -1.1779 -1.2624 0.8185
5.00 0.5820 -1.2908 - £.2360 -1.2964 1.2047
6.00 0.6331 -1.3015 -1.2448 -1.2020 1.2481
8.00 0.6503 -1.3032 -1.2462 -1.3032 1.2677

11.00 0.6517 -1.3032 -1.2466 -1.3032 1.2699
15.00 0.6517 -1.3032 -1.2466 -1.3032 1.2699
20.00 0.6517 -1.3032 -1.2466 -1.2032 1.2699

a1 quantities are in atomic units.

bCalculated from the "extended CI" wavefunctions of Reference 1.
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Table VII

Electric Field Gradient at the H Nucleusa’b

R X1 S a%a pix- ot
-7.3467  -7.5583  -7.5843  -7.6299  -7.5869

: -2.7150  -2.822°  -2.8408  -2.8699  -2.8435

: -1.0885  -1.1451  -1.1599  -1.1833  -1.1656

-0.4493 -0.4807 -0.4929 -0.5128 -0.4989
-0.3336 -0.3600 -0.3717 -0.3910 -0.3770
-0.2869 -0.3112 -0.3228 -0.3418 -0.3278
-0.2463 -0.2688 -0.2803 -0.2991 -0.2850
-0.2110 -0.2319 -0.2433 -0.2620 -0.2478
-0.1803 -0.1998 -0.2112 -0.2298 -0.2156
-0.1781
-0.0927 -0.1078 -0.1192 -0.1400 -0.1245
-0.0280 -0.0386 -0.0490 -0.0709 -0.0613
0.0000 -0.0068 -0.0300 ~-0.0414 -0.0359
-0.0323 -0.0235
0.0126 -0.0113 -0.0192 -0.0253 -0.0141
0.0115 -0.0101 -0.01.26 -0.0150 -0.0036
0.0043 -0.0047 -0.0056 -0.0057 0.0015
. 0.0015 -0.0023 -0.0026 -0.0025 0.0017
8.00 0.0003 -0.0006 -0.0007 -0.0006 0.0006
11.00 0.0001 -0.0001 -0.0001 -0.0001 0.0001
15.00 0.0000 -0.0000 -0.0000 -0.0000 0.0000
20.00 0.0000 -0.0000 -0.0000 -0.0000 0.0000

OB WWWNNNNNNNNDND =
COOUVMNONDWNHEOOWLWOWO

COO0OOULMOO0OOOOUNMOUNOOOOO

a1 quantities are in atomic units.

bCalculated from the "extended CI" wavefunctions of Reference 1.
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Table VIII

Constants Obtained from Rotational Analysisa

("extended CI" results)b

1

State v AGV+1/2(cm 1) Bv(cm 1) Dv(10 3cm )
¢t 0 2673.79(2612.5)  14.349(14.2466)  1.55(1.555)
1 2460.11(2370.5)  13.666(13.509)  1.61(1.67)
2 2095.81 12.808(12.608)  1.99(2.0)
3 11.317 4.57
B2 0 1695.40(1794.9)  12.542(12.645)  2.26(2.22)
1 10.609(11.160)  6.47(3.28)
AZa 0 2773.40(2737.4)  14.618(14.577)  1.52(1.56)
1 2576.47(2544.1)  13.951(13.907)  1.57(L.58)
2 2349.47 13.223(13.182)  1.67(1.65)
3 2077.97 12.387 1.88
4 1734.02 11.366 2.33
5 10.009 3.26
a’t™ 0 3002.20 15.086 1.43
1 2858.67 14.536 1.43
2 2706.22 13.981 1.44
3 2540.78 13.399 1.48
L 2356.58 12.773 1.56
5 12.069 1.69
X1 0 2722.02(2732.50)  14.208(14.190)  1.44(1.43)
1 2557.98(2606.46) 13.605(13.655)  1.46(1.39)
2 2432.52 13.030(13.122).  1.40(1.39)
3 2320.26 12,522 1.36
L 2197.76 12.008 1.37
5 11.481 1.36

aExperimental values taken from Reference 4 are given in parentheses.

bCalculated-from,the "extended CI" wavefunctions of Reference 1.
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Table IX

Derived Spectroscopic Constants

("extended CI" results)a’b

Zero-point c

State \V] w w X B o
energy 00 e e e e e

25t 1403.1 32406.7  2887.5 106.8 14.763 0.771
(1381.7)  (31778.1) (2840.2)  (125.9,) (14.603)  (0.7185)

2~ d d

B°S 1015.1 25854.9  2141.7 223.2 13.51 1.933
(~1068) (25698.2) (v2250)¢  (n229)¢ (13.39) (1.49)

A% 1454.4 23590.6  2970.3 98.5 14.976 0.697
(1418.1)  (23217.5) (2930.7)  (96.65)  (14.934)  (0.697)

a's 1555.4 5395.5  3145.7 71.8 15.364  0.553

X2 1424.9 0.0 2886.1 82.0 14.498 0.589
(1415.5) (2858.5)  (63.0) (14.457)  (0.53,)

3a11 quantities are given in cm-l.
bExperimental values taken from Reference 4 are given in parentheses.
“Refer to v =0 vibrational state of XZH.

dSince only two vibrational levels are obtained in the CI calculationms,
We and wyX, for the B2L™ state are derived from AG1/2 and computed
zero-point energy.

®Obtained from the values for CD (see Reference 4) according to the isotope
relations.
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Table X

Transition Dipole Matrix Elements '<V'K'|u(R)|v"K"> for the
X2H State in Atomic Units (e-bohr)a

v'/v" 0 1 2 3 4 5

A, ForK'=1and K" =1

0 0.553

1 -0.058 0.515°

2 0.003  -0.086 0.476°

3 0.000 0.005  -0.110 0.438°

4 0.000 0.001 0.009  -0.130 0.399°

5 0.000 0.000 0.001 0.015  -0.147 0.359°
B. For K' =1 and K" = 2

0 0.553  -0.059 0.003 0.000 0.000 0.000

1 -0.056  0.515 -0.089 0.006 0.001 0.000

2 0.002  -0.084 0.476  -0.112 0.011 0.008

3 0.000  0.005 -0.108 0.438  -0.132 0.016

4 0.000  0.001 0.008  -0.127 0.399  -0.150

5 0.000  0.000 0.001 ©  0.014 - =-0.145 0.359

3Extended CI results.

bVibrat:ionally averaged dipole moment.

117




Table XIi

Transition Dipole Matrix Elements <(v‘K'lu(R)lv"K"> for the

4

a'y  State in Atomic Units (e-bohr)a

v' v 0 i 2 3 4 5

A. For K' =0 and K" =0

0 0.268°

1 0.282

2 0.296°

3 0.311°

4 0.324°

5 0.322°
B. For K' =0 and K" =1

0 0.2€8 0.030  -0.004 0.000 0.000 0.000

1 0.031 0.282 0.041  -0.007 0.001 0.000

2 ~0.004 0.042 0.296 0.050  ~0.010 0.002

3 0.000  -0.007 0.051 0.311 0.056  ~0.015

4 0.000 0.001  -0.010  '0.058 0.324 0.057

5 0.000 0.002 0.002  ~0.015 0.060 0.332

aExtended CI results.

b

Vibrationally averaged dipole moment.
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’ Table XII

Transition Dipole Matrix Elements <v'K' Iu(R) Iv"K"> for the
A2A State in Atomic Units (e.-bohr)a

vt 0 1 2

3 4 5
A. For K' =2 and K" = 2
0 0.367°
1 0.046 0.390°
2 -0.008 0.061 0.409°
3 0.001  -0.015 0.065 0.420°
4 0.000 0.001  -0.029 0.056 0.421°
5 0.000 0.000 0.006  -0.040 0.032 0.401°
B. For K' = 2 and K" = 3
0 0.367 0.044  -0.008 0.001 0.000 0.000
1 0.047 0.390 0.058  -0.016 0.002 0.000
2 -0.008 0.064 0.409 0.061  -0.028 0.006
3 0.001  -0.016 0.068 0.421 0.052  -0.040
4 0.000 0.001  -0.029 0.061 0.421 0.026
5 0.000 0.000 0.006  -0.041 0.037 0.400

aExtended CI results.

bVi’nrationally averaged dipole moment.
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Table XIIT

Transition Dipole Matrix Elements <v'K'|u(R)|v"K"> for the
BZZ- State in Atomic Units (e'bohr)a

v/ 0 1
A, For K'=0and K" =0
0 0.546°
1 0.513
B. For K' =0 and K" =1
0 0.546 0.014
1 0.017 0.513

aExtended CI results.

bVibrationally averaged dipole moment.
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Table XIV

Transition Dipole Matrix Elements <v'K'|u(R)|v"K"> for the

+
CZZ State in Atomic Units (e-bohr)a

v /" 0 1 2 3

A. For XK' = 0 and K" =0

0 0.388°
b
1 0.048 0.412
2 -0.009 0.062 0.428°
3 0.000 0.022 0.052 0.416°

B. For K' =0 and K" =1

0 0.388 0.048 -0.009 0.000
1 0.049 0.412 0.061  -0.022
2 -0.009 0.063 0.428 0.050
3 0.000  -0.022 0.053 0.416

8pxtended CI results.

bVibrat:ionally averaged dipole moment.
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Table XV

Line Strengths Pﬁ's" for Two Bands in Ground State

‘ Infrared Spectrum (in 10-'3 ez-bohrz)a
}
|
F 0-1 1- 2
K P(K) Q(K) R(K) R(K) Q(X) R(K)
1 3.3 3.52 7.47 7.85
i 2 3.16 3.3k 3.63 7.12 7.49  8.05
| 3 3.09 3.3 3.73 6.97  7.51 8.27
4 3.01 3.37 3.84 6.82  7.54 8.49
5 2.94  3.39  3.96 6.68  7.58 8.73
6 2.88  3.41  4.08 6.56  7.63 8.98
7 2.82 3.44  4.21 6.44  7.69 9.23
8 2,77  3.47  4.35 6.33  7.75 9.50
9  2.72  3.50  4.49 6.23  7.82 9.78
10  2.67 3.5  4.63 6.15 7.91  10.06
11 2.63  3.58  4.78 6.06 8.00  10.36
12 2.59  3.63  4.94 6.00 8.09  10.67
13 2.56 3.68  5.10 5.94 8,20  10.99
14 2.53  3.74  5.27 5.89  8.31  11.31
15  2.51  3.80 5.84  8.43

aExtended CI results.
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ABSTRACT

~ The general multi-configuration self-consistent-field (MC-SCF)

method is presented with no restrictions on the types of configurations participating

in the expansion of the total wave function. The general couialed Fock like equations
for 1he "best" orbitals to be used in such a multi-configuration wave function are
derived. Formally these coupled nonlinear equations are decoupled with the use

of projection operators and transformed into a pseudo eigenvalue problem. Severc‘:xl
general methods, based on orbital transformations and on the use of the generalized
Brillouin theorem, are presented for solving the coupled nonlinear Fock like equations
for the determination of the MC-SCF orbitals. The formalism presented is applicable

not only to the ground state of a given system, but also to any excited state,

"yielding an upper bound to the true energy of the desired state.
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Introduction

- In the MC-SCF model the total wavé function is determined by
optimizing variationally the configuration expansion coefficients in a many
configurational wave function, as well as all the one particle functions, the
orbitals, which are used to construct the configurations. Clearly, the use of a
many configurational function, with no restriction on the type and n.umber of
co.nﬁguroﬁons, permits an arbitrarily close approximation to the exact wave function.
It is well known, however, that a many configurational function frequently requires
an excessively Iarée number of configurations to obtain a reasonably accurate wave
function if only the configuration expansion coefficients aic optimized variationally.
" The idea of the MC-SCF method is to reduce the number of configurations required,

by simultaneously optimizing voriationally also all the single particle functions.

This idea of the MC-SCF method traces back to the early years of quantum mechanics.]

Earlly MC-SCF calculations for atoms were carried ‘out by Ht::rfree2 and later by Jucys,d

who also introduced many simplifying approximations. The method was first applied
to diatomic molecules by Das and W0h|4 and more recently has been developed and
applied by many others to atoms and molecules.5 éy’ now the method has been
sufficiently generalized and ref’med, the ini.tial numerical difficulties in solving the
orbital equations have been overcome, making the routine calculations of MC-SCF
wave functions only little more cumbersome than a standard Hartree-Fock calculation.
It has been demonstrated that the resulting wave functions, with a reasonably small
number of configurations, are of high accuracy. With this it can be expected that

the MC-SCF model will enjoy renewed and growing interest.
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molecular calculations of ground and excited states using the MC-SCF methods. ™’

It is the purpose of the present series of articles to (1) present the

MC-SCF formalism in its fully genera.l form, as we have developed it; (2) present
methods developed for solving the orbital equations; (3) describe in detail the
necessary complications in the formulae when sym.mefry is introduced explicitly, in
order to make- the actual computations more efficient; (4) explain the procedures by
which excited state wave functions can be obtained, such that they give the
espectation value of the energy as a true upper bound to the excited state, even
though there are lower states of the same irreducible representation; (5) compare
the MC-SCF method to other methods used ot obtain correlated wave functions;

(6) discuss several alternatives for the selection of configurations which participate
in the total wave functions; (7) derive the formuiae which permit the incorporation
of a pseudo potential method, i.e. Frozen Core Approximation, into the MC-SCF
formalism; (8) discuss the applicability of the MC-SCF approach fo semi-empirical

MO theories useful for large organic molecules; (9) present results of detailed

5,6
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| . General MC-SCF Formalism.
The basis of an MC-SCF wave function for an N particle .f.ystem6 is

a set of m spin orbitals

{ﬁ], ¢2 DG 3 \km} withm > N, ‘ (1)

which may be chosen orthonormal, i.e.

Hiwi) = b )

This orthonormality constraint represents no loss of generality, since it does not affect
" the total space spanned by the orbitals ¥; it may however result in the need for more
configurations in order to give a total wave function of specific quality.
From these orbitals antisymmetrized N -electron functions are constructed

as.Slater Determinants (SD's),

: =L det{y, Mk @k N @
2 N

S MR S TR :

with the restriction i.l < i2 <... <iN, in order not to construct redundant SD's.
From the total m dimensional single particle space spanned by the |
orbitals, we obtain a total of M = (ITI) linearly independent SD's, which are J

mutually orthonormal |
L
Ceple,y = 8, - @

du.e. to the orthonormality of the basis orbitals and the definition of the SD's. These
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SD's span the total available M dimensional N-particle space. A linear trans-

formation of the basis orbitals by a non singular mx m matrix A will result in a linear
transformation of the N-particle basis func;tions, the SD's, by a non singular Mx M
matrix B, clearly leaving the N-particle space spanned by the SD's invariant. Thus
the original choice of ortho normal orbitals represents no restriction.

In the MC-SCF model, asina normal configuration interaction model,

.

the total wave function of a given state K is expressed us a linear combination of

these SD's,

.Y, =L & C.. : (5)

Orthonormality of the total electronic state functions demands that the configuration
expansion coefficients CIK form a unitary matrix, C, which is obtained variationally

by solving the conventional configuration interaction eigenvalue problem
H-E)C =0 (6)
with E the diagonal energy matrix and H defined by the elements
Hy = Celeele)d, A @)

where 1C is the total Hamiltonian, which may be decomposed into sums of one and two

_electron operators N\

Ho= Y b+ ) - ol ®)




Clearly, had we used in eq. 5 for the descripfior; of the total wave function the
totality of M SD's, which span the en.ﬁre N-particle space available with m fixed
spin orbitals, the solution of eq. 6 would yield the best possible energies E|< and ‘YK
within this resf'ricfed space. .

in general, however, we do not wish to do this, because in order to
get a good description of the state functions ‘YK we will require a large number of
spin orbitals, and if m is large, M and with it the computational labor to solve eq.
(6) become excessive. |t is therefore desirable to restrict the number of spin orbitals
to a small number, and if pos5ib|e to restrict the configuration expansion such that
not all possible SD's are used. The idea of the MC-SCF method is to arrive at
equations for the determination of the "best" orbitals to be used in the restricted
expansion of the wave function, eq. (5). "Best" is used here in the sense that the
"best" orbitals will yield the lowest possible eigem./alue E¢ for a state K ina
particular restricted expansion of the wave function into SD's. Clearly the Hartree-
Fock method is a special case within the MC-SCF model, with the restriction
m =N and thus M =1.

It is clear that the use of symmetry can reduce and simplify the configu-
ration interaction problem, as ;/ve'll as the problem of determining the orbitals. However,
the explicit use of symmetry would complicate the notation unnecessarily; therefore
we will discuss symmetry after the general theory has been developed.

To arrive at the orbital equations of the MC-SCF model in a reasonable

and compact form, it is convenient to make use of the language of second quantization.
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From this we will use the creators a and annihilators a, which we will define here,

in order to clarify the notation to be used.
The action of the annihilator ci, associated with the spin orbital \bi on an

SD is defined here as

a, d = 7 (9)
(i.I e 'ik-'l ik+’| : ..iN) if i=ik,

" where & (i]. . 'ik-'l' ik+’|' : .iN) is a normalized N -1 particle SD, which is obtained

from & deleting row N and column k containing \bi

| =Y

Note here that the given definition oI; the annihilator acting on an 5D
deviates somewhat from the conventional definition in second quc:nﬁzc:ﬁon,7 where
creators and annihilators are defined to act cn state vectors specifying orbital
occupation numbers, rather than of wave functions or SD's. In the definition given
here the annihilator, ci, is to be understood as an integral operator

a = VN fam) gt (N) (10)
while the creator, ci+, the Hermitian conjugate to Air acting on an N-1 particle SD

should be presented as
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. O] Gy ine - -igey)
T R U R | ()
1 2. N1 o,

N
(-]) H L] . °
| ('1""k,|' 'k+'|"'lN-'|)

ifi

<j=<i

k k+1.

Clearly the creators and annihilators defined in this way are linear operators and
satisfy the conventional anti-commutation relations.

Using the definition ofcli in eq. (9), it can be seen readily that

1 m

N Ly

v, (N)c:i ) (12)

is nothing but the expansion of the SD & along its N'th row.

Since creation and annihilation operators are linear, we have

m

o
S f_i WN)a, ¥. (13)
Similarly we have 1
1 m
§ = ——— ) N N-Daa e, (14)
UNN-T)  Thj ! '
and
1 m
¥ = et E 40N vi(N.-l)oioi‘i'. (15)
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We are now in a position to write down the energy matrix elements using

the Hamiltonien, eq. (8), such thet the orbital dependence appears explicitly,
suitable for the application of the variational principle with respect to an orbital
variation.

We obtain for eq. (7)

m

o licte)) = § Gy M L0 Cylo o Lo )

- oo

g
1 m

+ 5 Ea;kz (4 ()4, @ 1902 | v,()4,@) (16)

+ 4+
(@llai a °z°i|°J>'
and for the expectation value of the energy far a particular state Y = Y we get

m ' +
Crizelyy =) o Cylhled CrleTa [¥)
i

] + o+

In the above and following, we always focus on one particular state K only, and we
have therefore dropped the state index.

In eq. (17) we can identify the first order reduced density matrix elements
in the space spanned by the orbitals

T ("|°i+°i|‘1’>, (18)
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ond the second order reduced density matix element

Mk " (Y|0i+ok+ozoi lvy. (18a)

Thus eq. (17) may be rewritten as

(vlxly) = z: [‘*:“‘”i) %, *%Z;‘*ﬂk‘g”ih’

T u] (17a)

Before we proceed to apply the variational principle to eq. (18), we

have to add the restrictive conditions

e =g

multiplied with as yet unknown Lagrangian multipliers to arrive at a functional,

which may be varied without further constraints,

m 1 m
6Iii[“i LER R +izkz W lolvvor

-lyde ] = o (19)

The variation with respect to 'i yields
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z:n '[(Hi\hwiwii - <”’a“"i>°;a]

R :
fiikz [Cowy, lo 44, T("’k”’i‘gl*z“’ﬁ]rﬁ,kz
+ c.c. =0. (29)

Note *h"*.rii,kz =sz,ii’
We may now set the part which has been written out explicitly equal
to zero independently of the part which is abbreviated by c.c. This has to hold for

any & -yi; thus we get the Fock like equations for the determination of ¥'s,

[h Ek Ui s n.,kz] . 2 b @
L

with

U, = [9@ % @30,2 1,0 (22)
Since Yii = Yii* and Fiir e l"‘%‘i, sk it can be shown readily that tr.i| = ’; y

The Fock like orbital equations of the MC~SCF model, in abbreviated
form

m : V.m . ’
Yy Pk = ) he | (21a)

are coupled explicitly on right and left hand side. This coupling may be removed, at

leust formally using conventional projection operator techniques yiclding a pseudo-

eigenvalue equation
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with the Hermitian operator

6 =77, @+, 24)

with

G, = [.'n-z:i |4, <¢k|]2im MERASHE (25)

The method for solving these orbital equations requires some close scrutiny. Solving
the pseudo-eigenvalue equation (23) does not appear promising for two reasons:
a) the equation is of seventh order in the unknown orbitals (normal Fock ecuations
are third order), thus it is unlikely that conventional iterative solutions of these SCF
equations will converge; b) there is no unique way of assigning the solution functions
of eq. (23) to the desired orbitals, except of using those with maximum overlap with
the input orbitals used in constructing G.

More promising,. and in practice successful, is the solution of the Fock
like eq. (21) directly, based on the fact that enforcing the Hermiticity of the Lagrange

multiplier matrix, i.e.
= g% (26)

is a necessary and sufficient condition for eq. (21) to be satisfied. However, this
method for solving the orbital equations appears to require the expansion of the

orbitals into basis functions with a transformation of the relevant equations into matrix

form. We will discuss this-method in the next section.
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Methods for Solving the Orbital Equations

In the following discussion we will restrict ourselves to the solutions

of the orbital equations in the basis function expansion form, since we are not aware

of a generally convergent procedure for solving the orbital equations, eq. (21) or eq.

(25) in their coordinate representation. The total, available one particle space will

be spanned by a set of m selected, linearly independent basis functions

m

which may not be orthonormal, i.e. the matrix elements
ST 28
(xp ‘xq ) L. | (28)

are the elements of the overlap matrix S , which is the matrix of this one particle
spuce. -
As indicated above, we may, without loss of generality transform this

basis to an orthonormal one by the linear transformation

{‘yl...w}={xl...x]c T (29)

m m-° ~

for which we have

Ch e =5 | (30)

;srovided

c'sc = 1. (31)
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These initial guess orbitals, Wl 1 am \Vm, will in general not satisfy =q. (21). What

we are looking for is a new set of orbitals, connected to the initial guessed set by

a unitary transformation

NS BN SRR N (32)

m

such that the orbital equations for the primed set

m m

LY LY .

.are satisfied. Procedures of this type for solving SCF or MC-SCF equotions have
been described by Rossi9 and Levy. b We will give a more general discussion.

A vunitary transformation is all the freedom we have in the space
spanned by our one particle funct.ions, the orbitals. |t should be noted, however,
* that this is really no restriction beyond the initial one, due to ihe selection of a
finite set of basis functions. One may always make m sufficiently large; this does
not require that we need fo use more orbitals in the total wave function. In fact,
generally only the first few n < m orbitals will be used, be occupied, in the
total wave funcfipn. However, there is no need to restrict our sums fo n in eq.
(33), sincé Fii will go to zero due to the definition of the first and second order
reduced density matrix elements, eq. (18) and (19), once i or j is larger than n.
Thus we may say our m dimensional one particle space is divided into an occupied
{ Wl.' i \Vn} and an empty { ‘Vn-i-l,' , \Vm] part. The unitary transformation,

eq. (32), which we are to choose such that eq. (33) is satisfied, will have three
' 140
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domains, transformations (1) between occupied orbifals,'(2) befw;een occupied and
empty orbitals and (3) between empty orbitals. The last one will not affect the wave
function.

The necessary and sufficient conditions for eq. (33) to be satisfied are

eii' - ei'i z .0 | with | > i (34)
This becomes clear once one notices that
e = u = ((°i+°i - ai+ai) vlx| vy

must be.cqme equal fo zero for a wave function built from MC-SCF orbitals. The later
expression is for the generalized Brillouin theorem applicable to MC-SCF wave functions.

This leads with

?m
w = 2 Wi‘Fsk‘.‘”.k Y

to

(1 i and j part of the occupied set

n
Ek (TR = o TR L g) = 0 (35)

(2) i part of the empty set, i part of the occupied set

n .
zkwi' [Py vy =0 (36)

(3) i and j part of the empty set gives nothing, and is not required, since

transformations of type (3) leave the wave function unaffected.

Eq. (35) and (36) give us just enough conditions for the determination

of the independent variables of interest in the desired unitary matrix U of eq. (32).

However, it is sufficient, for ease of notation, to deal only with eq. (35), since it
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contains eq. (36) as a special case provided the sum over k is extended to m and we

observe Fii = 0ifi or | is part of the empty set. One way of solving eq. (35) is to
perform repeated 2x2 rotations, similar to the Jacobi procedure for matrix diagonali-
sation. This will be described later. An alternative is to write the unitary matrix

such that its independent variables are expressed explicitly, solving for these variables.
This could be done using the generalized Eularian <:|ng|es,"'I but we will not pursue
this, since it would lead to rather unfractable nonlinear equations. Easier and

followed here is tc approximate the unitary matrix as

y=1+D @)

which is good to second order in terms of D, provided D is antisymmetric. Using

this approximation, which requires that the guessed, unprimed set of orbitals is.
reasonably close, and neglecting the change of the Fock operators, Fii, i.e. the

potential, for the determination of D, we get

o - e = Ek(ui'l Fal ) = O TR L)

EkEmn(U'“i P 1) = vy R Dy ,

'

Zk SALMERERSALALS,

o+

zm[ dmi ( "’m.‘ Fik‘ *k) < dmi ( *m‘ Fikl *k’

+ (¢ wi\Fika> - wilFika)) d 13 | (38)
+0(d2) =0
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Keeping in mind that dii = -dii, neglecting terms of order d2, and collecting terms

| we get a set of linear equations for the non redundant o'ii's of the type
E Mii, mn dmn . gii (39)
mn

F with ij and mn as composite column and row indices of the matrix M, with the

restrictions i>{; m>n, jand n not part of the empty set.

Defining
|£) = }fk Fo 140 (40)
we obtain
By A5, Sl ;D T 9l s i @)
and
ij, mn - 6mi <¢n|fi> B 5ni ( ¢m|fi> - 6ni<¢m”i>

—ami<¢n|fi> € <“"i“:iml"#n> ¥ <q;i“:iml‘l’n>

FORLR T = Rl Ty o (42)

Since we have neglected the change of the Fock operators, Fii, with the orbital

transformation, and since we have neglected terms of second order in d in eq. (38)

and (37), it will k~ necessary to iterate to convergence (however, see below), as

.

in the conventional method of solving Hartree Fock equations. |
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Solving eq. (3%) may become rather cumbersome, since there are a
| large number, n(n-1)/2 + n(m-n), of unknowns if the number of occupied orbitals,
n, and the total number of orbitals, m, becomes large. To avoid solving eq. (39)
directly we may a) neglect the elements which céuple the different dii's, i.e.

T =0 unless ij = mn, or b) treat those coupling elements as small, as they
4

should be relative to the diagonal elements of M

a.)  Neglect of coupling between diils leads to

d. = g../M.. ... (43)

This process, described by Levylo, is extremely simple, and we have used it.
However, in order to obfain convergence in solving the Fock like equations using
eq. (43) it is frequently necessary to resort to sophisticated damping and extrapolation

techniques, and even then many iterations will be required.

b.) Treating the off diagonal, coupling, elemeats cf M as small compared to
the diagonal ones permits two different, simplified solutions of eq. (39). For this we
split up M info a diagonal matrix N and an off diagonal one O  with all diagonal

elements zero, thus we have for eq. (39)

Md = N+Qd =g (44)
or
: B -1 -1 -1 -1
d=MN+0) ‘g = N -N'ONIg (45)
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Altemately we may solve eq. (44) iterative by writing

N =g - o4l (46)

P P ~ ~

where g(n) is the n'th iterate to the solution vector d. The process may be started
with 'cl(o) =0, and carried fo convergence. A variant of this procedure has been
us.ed successfully in MCSCF calculations. L Clearly 'c\l‘(]) is the same as that obtained
by eq. (43), and d(2) is the same as that obtained from eq. (45).

It should be nofed that the process proposed here to solve the set of
linear equations, eq. (39), which may become quite large, is the well known static
Gauss-Seidel mei-hod.]3 Clearly one could improve convergence by using the more

4

efficient dy: 1ic Gauss-Seidel method, where each element once found is
used immediately on the right of eq. (46) for the defermination of successive elements
of d(n). The problem of possible nonconvergence of the Gauss-Seidel method which
will occur if the diagonal element Miirii is'small in magnitude relative fo the off
diagonal elements in row ij, may be overcome. Here we realize that

T = —32E/Buii2, if i;his becomes small and gii = aE/ani is not small a
45° rotation between orbitals. ‘J,ri and \bi will be required. Thus all one needs to do
is carry out this rotation and recompute the F's and M continuing the SCF iterations.
The realization that Miirii = - BZE/BUii2 permits one also fo monitor the sign of
Miir i and with it fo determine whether a minimum or maximum in the energy is
approached. To detemmine this definitely, however, would require one to ascertain
that I\NA is negative definite, which is clearly impractical due to the size of M. As

long as the diagonal elements of M are dominant, it appears sufficient to assure that

these elements are negative.
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An alternate method of solving eq. (36) is obtained by writing

where gii is a unit matrix except for the elements Upe = uii = cos®, uii = -uii =sin ¢
describing a plane rofation by the angle ¢ . Thus the process is quite similar to the
Jacobi n;atrix diagonalization; however, different f::>rmulae yieldsingo=s and

cosp £ ¢, anr:l the updating of the remaing matrix elements determining the

angles is not quite as simple.

Using eq. (35) in order to determine the angle of roation in the i;j :

plane we obtain, neglecting the dependence of the F's on such a rotation.

- eii'a'zk(”’i'”ik‘ RERCR LML)
= e (Cy1E) - CylfY) + s (CulfR) + Chlfd)
+(0-e) Le (4 L 1) = Gl F L+ Gy R Lo - Gl i)

+5 (LR T+ LR L+ ClF )+ Gy TR D))

+sle (CuIRE) - CRIF TR -G IR L)+ Gy LR L)

+ s(wilFiiwi)%<vi\Fii\¢i>- IRl - IR L) =0 (47)
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where we have used eq. (40) for the definition of \Fi)'

Making the approximation

cos ¢ = / 1 - sin2(p =~ 1-1/2 sin2<p, (48)

observing that all matrix elements are real and Fii = Fii; collecting terms in powers
of sin @ and neglecting terms cubic in sin ¢, we obtain a quadratic equation for the

defermination of sin ¢

A52 +Bs +C =0 (49)
f
with
=1 _
3R ) +3 Gy R L) -3¢0 R v (50)
B o= (i) + Chlf)+2 Cy IRl e)

and

c = (wilfi) . (wilfi) (52)

The desired solution of eq. (49) is that which gives the smallest angle of rotation or

sing = B2A (-1 + /1-4CA/32 i (53)
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It should be clear that is is possible to implement this method such
that convergence is guaranteed. This would require that the formulae are derived
such as to include the dependence of the Fii's on the angle of rotation and the
recomputotioﬁ of the Fii's after each rotation. Including the angle of rotation
dependence of the Fii's appears unnecessary and undesirable, since it will require

a different contraction of the basis function integrals, and we have left this

dependence out of our formulae since it would unduly burden the notation. 1t appears

to be unimportant also on physical grounds, since it is unlikely that the local potential--
our Fii's contain local potentials only--will depend strongly on a small orbital ckange.
_Computational experience bears this out. Performing only one two by two rotation

and then recomputing the Fii's is computationally uneconomical; thus it doesn't

appear advisable to implement this form of two by two rotations such that convergence

is guaranteed. The described procedure should be implemented rather in such a way
that one computes the two by two rotations between all orbital pairs, then corrects

the orbitals and recomputes the Fii's. Only in the case of convergence difficulty,
which will be noticed readily by the appearance of large rotation angles, should one

resort to performing only one or a few rotations befoie recomputing the Fii's, thus

still taking advantage of the fact that the presented method for solving the SCF
equations ;Ali|| guﬁrantee convergence.

Another method for the determination of the MC-SCF orbitals is based
on the extended Brillouin theorem, rather than on the Fock like equations, eq.

(21). ].4 Using the language of second quantization introduced above, the extended

" ' |
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; Brillouin theorem may be expressed as

<(oi+c|i : cni+c|i) vlx]yY) =0 (54)

if ¥ is an MC-SCFwave function; i and j can take the values 1,2,. . .m. Defining
— + + b L3 . . .
i = -’ai a, - a ai) ¥, one needs to do a configuration interaction calculation
for

¥ ALY+ z A Y (55)

i.e. solving

(H-ES)A=0 (56)

~

with H defined by the elements (tii [3¢ | ¥) for the first column and else as
(‘i’ii 1% Yy, ) and similarly S. Note that S will be diagonal; however it will
not be a unit matrix, in general (Yii |‘¥kz) = aii éii,kz with aii £ 1.

The resulting expansion coefficients Ao and Aii need then to be
associated with the elements of the unitary matrix U in eq. (32) yielding the MC-SCF
orbitals. This association is always possible though not simple. Using forg the
unitary matrix which diagonalizes the first order reduced density matrix of Y'
is not always appropriate, since the first order reduced density matrix of the

MC-SCF wave function Y need not be diagonal, depending on the configuration

selection in eq. (5).
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In general, eq. (55) may become quite large, and it is impractical
to construct H fully in order to find a solution to this Cl problem. It may be

preferable to use a perturbation form to solve q. (56) approximately as

Ay = (Y ‘x‘”/((”x"<""ai“”:i"(“’a;‘“”ai” (57)

This equation is quite similor to eq. (43) since Aii. can be identified with dii' and
the numerators on the right hand side are identical; however, the denominators differ
slightly. It is not appropriate to give here in detail the form of the H and S matrix
elements in terms of one and two electron matiix elements over the orbitals. Their
derivation in the general case discussed here in terms of spin orbitals is quite
straightforward, though lengthy. This is no more true in the practical case, where

one wants to include the proper spin, angular momentum or symmetry coupling.
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it is well known that the time independent, electrostatic Schroedinger

equation of an n electron system

XY = EY . (1)
. . n n
with k=Y b0 +Y g6 @
i i>j

may be solved to any degree of accuracy for any stationary state K by using a

configuration inteaction (Cl) ansatz for the wave function

N v
% = ), 8% )
provided the n electron basis spanned by the configuration state functions (CSF's) LY
is complete or nearly so. The variational solution of (1) with

1J

ansatz (3) leads to an algebraic simple matrix eqdation

HC-EC “

with HlJ = ( 3 | 3¢ | QJ), Q: a matrix of column eigen vectors ng and E a

diagonal matrix of the eigen values EK which are upper bounds to the true stationary

with(@llqa_,) =5

state energy eigen values E (t) of (1). This is the basis of the large Cl as well as

K
the MC-SCF (multi~configuration self-consistent-field) method.'|

Solution of equation (4) and therefore (1) would be simple, were it not

for the need of an exceedingly large expansion in (3), i.e. the expansion in (3) is
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slowly convergent and N becomes excessively large if high accuracy is desired,
unless a judicious or optimal choice of the n electron basis functions, the CSF's 3
is affected. It is in the approach to a judicious selection of the CSF's where the
large Cl and the MC~=SCF method differ. In both methods the CSF's are generally
constructed from antisymetrized products of orthonormal orbitals Y properly
coupled to yield eigen functions of 52, Sz and to transform as the irreducible

representation of the point group of the system. Thus, the CSF's are specific linear

combinaticns of Slater determinant (SD's). The set of orthonormal orbitals Py used

to construct the SD's and CSF's, span the one-electron space and they are generally
expanded in terms of primitive basis funafions-=Slater type functions, Gaussian's or

ellyptical functions,

qa.=? 20 & P (5)

The number m and the type of basis functions xp used in (5) determine
the size and quality of the one=-electron basis. No amount of Cl or other tricks can
overcome the shortcoming in this basis, thus it has to be adequately large and well
chosen. We will not concern ourselves here with the intricacies of the selection of
these primitive basis Function's, except fo note that a minimal basis set for quantitative
work requires at least a "double~-zeta plus polarization" representation for all valence
shells.?

From the m linearly independent basis functions (for simplicity they are

considered to contfain the spin coordinate) one can construct m orthonormal spin
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- values are invoriant to a unitary transformation among the orbitals. However, since

orbitals, which provide the building blocks for the SD's and CSF's, the latter span
the n-electron space which has a maximal dimension Nmax = (’: ). Even though
chx is redu.ced s'ignificanfly by requiring the CSF's to be properly spin and symmetry
coupled, the dimension of the remaining n-electron space Nsmax is still excessive
for reasonable m and n > 4. Typically NSmClx > ]05, preventing the solution of
the full CI problem, which would mean diagonalization of the Hamiltonian in the full
space spanned by all CSF's, which can be constructed from the m orbitals.

It is obvious that in the case of a full Cl calculation the particular

choice of orbitals is irrelevant, since the resulting wave functions and expectation

a full Cl calculation is in general not feasible, and thus a Cl calculation is performed
with a truncated and judicially selected subset of CSF fypes,3 the resulting wave
functions and expectation values will depend critically on the choice of orbitals used.
It is in this choice of the particular shape of the orbitals used, where the various large
CI methods differ from the MC~SCF method.

In the MC-SCF method the CSF's used in expansion (3) are chosen
judiciously with N << NS . and all the orbitals participating in the total wave
function, as well as the CI ex‘pcnsion coefficients ore determined variationally. |t
is obvious that this will result in a wave function, which gives the lowest possible
energy within the chosen m dimensional one~particle space and the prescribed
selection of CSF's, this is merely the result of the variational principle.

The simulianeous optimization of Cl coefficients and orbitals is achieved

by solving iteratively, to full self-consistency equation (4) and the Fock like equaticns
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for the orbitals

y (Fii - o 9) ¢, =0 | )

which are obtained by varying the energy expectation value with respect to a change

of the orbital expansion coefficient vectors ci. In (6) we have

s = (x [x)
Pq g
eii = ei‘i Lagrangian multipliers
and
Fipg = Vi plhlx) +2ul‘iiuzm<xp|(xrlg|xs>|xq>ckr 4,

with Yii and I‘ii ki the first 'ond second order reduced density matrices of state K
desired in the space spanned by the orbitals.
In practice an MC-SCF colculaﬁon.proceeds along the steps:

1)  Select one particle basis and an initial guess of P, -

2)  Compute 1 and 2 electron integrals over the basis functions.

3)  Select the types of CSF's to participate in the Cl expansion (eq. 3).

4)  Generate Cl energy expressions.

5)  Solve eqdoﬁqn (4) for state K desired.

6)  Construct 'yii and riik.@ for state K.

7)  Solve ecjuoﬁon (6) to convergence.

Repeat steps 5~7 until complete self-consistency is achieved.
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In the large Cl method, the orbitals used in constructing the CSF's
are generally not fully optimized, however some optimization is obtained by
performing an SCF calculation with the dominant CSF or even an MC-SCF calculation
using a few of the dominant CSF's; the reference configurations. This is again followed
by a judicious choice of CSF types which will participate in expansion (3) with
N < Nsmmx' Generally an inclusion of all single ;:nd double replacements from the
reference configurgtions will be adequate, however even wi th this N becomes rapidly
large, of oder n2m2/4. Equation (6) is then solved within this bosi.s of CSF's for the
state desired. In practice a large Cl calculation proceeds along the steps:
1)  Select one ;;article basis functions and initial guess of P,
2)  Compute 1 and 2 electron integrals over the basis functi;ns.
3)  Select the types of CSF's to participate in the Cl expansion (eq. 3).
4)  Generate Cl energy expressions.
5)  Perform SCF or limited MC-SCF calculation to obtain orbitals for the
reference configurations.

6) Solve equation (4) for state K. desired.

We are now in a position to compare fhe amount of computational effort
required in both types of computations and indicate how much this is a function of the
accuracy desired; accuracy is to be understood here as the difference between the
solution obtained and that obtainable from a full Cl, i.e. the best solution obtainable

with the limited one-electron basis set. .
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Steps (1) and (2) are identical for large Cl and MC-SCF. Step (3),

being proportional to N is more cumbersome for large Cl; however in the case of
MC-SCF more care must be excrcised in the selection of configurations. Step (4)
being proportional to N2 is the most time consuming step in a large Cl calculation
were N is of order n2'm2/4; in the MC-SCF method N is much smaller. Thus, this
step toge ther with the construction of the energy mc;frix is the limiting bottleneck
for large ClI calculations,” while they are insignificant in the MC~SCF. However,
for the MC-SCF step (7), solving equotion (6) is the bottleneck. It is by no means
easy to get the SCF equations to converge rapidly. There are algorithms for solving
equation (6);4 although convergent, they require frequently 100 iterations, and in
each iteration the integrals must be confracted, a process which is of order m4. k,
with k the number of valence orbitals. If the basis function limit is to be closely
reached, k will become almost the size of m, in which case the MC=SCF method
requires large amounts of compufer.ﬁme.

Thus, we can conclude that in cases where the basis function limit is
to be approached in a calculation, the large Cl method is superior to the MC-SCF
method, the latter being more advanfageous for more approximate calculations.
This will be so, unless faster ;:onvergenf algorithms can be developed for solving
equation (6). However, it should be noted that in case of more approximate
calculations it is possible with the MC-SCF to siﬁy within a well defined model,
for example introducing just the extra bond correlation as is done in the optimized

valence configuration (OVC) variant of .MC-SCF.S In addition an MC=-SCF function
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is frequently advantageous for the construction of reference configurations for large
Cl methocls.3

Another method of reducing the number of configurations required in
a large Cl calculation is the iterative natural orbital method, where in one iteration
only the dominant single and double replacements from the reference configurations
are usedlip the Cl calculation. This is followed by‘a diagonalization of the first
order reduced density matrix and corresponding orbital transformation to an approxi-
mation of the natural orbitals for the state desired. This process is repeated to
convergence, and yields approximate natural crbitals and a Cl expansion wave
function with N between that of fhelMC-SCF and the large Cl mefhod.6 It should
be understood that this is only one vari;nt of many m :thods designed to obtain
approximations to the natural orbitals in order to reduce the size of the required

configuration intefaction calculation.
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Multiconflguration self-consistent-field calculations were performed on the following states

of Loron: 2s%2p, 2P, 2s2p%, ‘P, D,

®p, 2s%3s, 25, and 2p%, %S. For each state, only configura-

tions rcsulting from the replacement of the valence-shell orbitals were used, and consequently
only the valence-shell correlation was calculated adequately. The correlation orbital set con-
sisted of one orbital in each of the symmetries s, p, and d (except for the 25%3s, 5 state, where
there were two orbitals of p symmetry), For the ground state, the value of 0,067 hartree was
obtalned for the valence-shell correlation energy. From the wave functions obtained, the term
energies and the oscillator strengths for the allowed transitions were calculated and found to be
in general agreement with the results of more elaborate calculations and experiments.

INTRODUCTION

It is well known that Hartree-Fock (HF) calcula-
tions for atoms and molecules do not produce wave
functions sufficiently accurate for calculatlng many
atomic and molecular properties satisfactorily.
What is not represented accurately in these calcula-
tions is the “correlation” between electrons, !~* and
especially correlation between electrons of opposite
spins, In order to represent the electron correla-
tion more accurately, the method of superposition
of configurations (SOC) was used in this work.

One of the disadvantages of the SOC approach is
that usually a large number of configurations is
neeasd to obtain a wave function of high quallty, The
number of configurations needed depends a great
deal on the orbitals used to construct the configura -
tions, In the multiconfiguration self-consistent -
field (MCSCF) method, the orbitals, as well as the
configuration mixing coefficients, are determined
variationally, and hence the best energy possible,
with a given set of configuratlons, is achieved.
Clearly, the MCSCF method is a natural extension
of the Hartree-Fock SCF model.

In any SOC approach, since the number of con-
figurations Is necessarily finite, it is posslble to
select the configuration set in such a way that the
resulting wave function is more sultable for cal-
culation of some properties of the system than
others., Thus, for example, Sabelll and Hinze, 5 in
the earlier version of the MCSCF method, re-
stricted the configurations to those whose shell oc-
cupation numbers have even differences, i.e., only
replacements of the type (nl)? to (n'l')® were al-
lowed. Thus, thay only treated intrachell corsela-
tion accurately. n their Be wave function, for ex-
ample, they had no configurations of the type
1eZaldsda, md consoquently they euuld not repre-
sent the inlershell correlation adequately.

The MCSCF formalism presented and applied here

5
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has no restrictlons on the types of configurations
that can be used in the wave functlon, and conse-
quently both intershell and intrashell correlation
can be calculated accurately,

In this work MCSCF calculations were performed
on the ground state and several excited states of the
boron atom with the aim of producing wave functions
of compact form and rather high accuracy. The
wave functions obtained were then used in calcula-
tions of oscillator strengths,

MCSCF PROCEDURE

The formalism for the unrestricted MCSCF
method used in this work is simllar to the forma-
lism for the restricted MCSCF method presented
in the paper by Hinze and Roothaan, ® and conse-
quently only an outline wlll be glven here,

A many -particle wave function is constructed
from spin orbitals defined hy

xlham,(‘rv 9, @)= r Pu('r) Ym(sv <p)S(m,) ) (1)

where S(m,) are the spin functions, Y,.(9, ) are the
usual spherical harmonics, and P, (7) are the radial
shell functions, A shell consists of all the spin
orbitals that form a degenerate set; for example,
the p shell consists of six degenerate spin orbitals.
From the spin orbltals, antlsymmetrized products,
or Slater determinants (SD’s), are constructed., The
number of spin orbitals of a shell used for the con-
struction of a particular SD is the occupation numbeyr
of the shell in that SD. The set of all SD’s which
have the same shell occupation numbers 1s said to
form an eiecivon configuration.

When a symmetry operation is applied to a set of
BD's which constitute an electron configuration, a
linear transformation of the SD’s among themselves
is induced; this transformation is, of course, a
representation of the symmetry group of the sys-
tem, and ls In general reducible. Linear combina-
tions of these SD's that form irreducible represen-

1150

R I s O S ——




5 MULTICONFIGURATION

tations are called configuration slate functions
(CSF’'s); each CSF belongs to a definite symmetry
species and subspecies.

In many simple cases the CSF’s are unique; in
more complicated cases, such as configurations
with three open shells, there may be several CSF's
of the same symmetry species and subspecies aris-
ing from one configuration, In such cases the shells
may be coupled together in different order, thus
producing a different complete set of CSF's for that
configuration. However, it is most natural to
couple together, first, shells which have the largest
electrostatic interaction., The CSF’s obtained from
different hierarchies of coupling are connected by
unitary transformations, and as long as a complete
set of CSF’s, from any coupling scheme, is used,
it does not matter which scheme is chosen. Cou-
pling, in this context, means constructing the wave
function of the combined system in such a way that
it belongs to an irreducible representation of the
symmetry group of the system, and is thus itself
of definite symmetry species and subspecies. For
example, ®[(2s2p, 'P)3d, LSM Mg} and &{(2s2p,
3p)3d, LSM_ M;) constitute a complete set of CSF's
arising from the configuration 2s2p3d.

Let ® gy, u5,s denote 2 CSF where the index [ is
used to label CSF's arising from different configura-
tions and/or, if necessary, from within the same
configuration. The wave function for an actual state
Ypsu ug 18 now put forward as an expansion in terms
of ®psu ug,ro Since the spin-dependent terms in
the Hamiltonian will be neglected, L, S, M., and
Mg are good quantum numbers, so that

(@)

Visupug =? Crrsuyug,r -

The good quantum numbers remain constant for a
given calculation and will be omitted from now on.
The normalization chosen is such that

CALIEX T,
and
2uCh=1. (4)

Using the usual spin-free nonrelativistic Hamilto-
nian

K== GVE+ZrY)+ D vt
1 14

3)

(5)

the expectation value of the energy of the system is
given by

E=(¥|ic|w) =’z§c,c,<¢,|sc|<m. (6)

A\
Each shell function P, () is now expanded into a
set of (generally nonorthogonal) basis functions
R,,(7), namely, .

Px‘('r) =Z,,R”('r) Cx,p . (7)
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The orbital expansion coefficients c,;, are not to

be confused with the configuration-mixing coeffi-
cients C; introduced earlier,

In order to express the energy in a form suitable
for the application of the variational principle with
respect to the orbital expansion coefficients c,;,,
the matrix elements of the Hamiltonian with respect
to the CSF’s are expressed in terms of integrals
over the basis functions. The relevant integrals
are defined by

Sape = fo” dr Ry(v) R, (v), (8)
Hapa= [, dr {3 Ry,(r) Rig(v)
+[(EA0+ 1) 72 = Zr | Ry(M Ry ()}, (9

Gx,“q,,,,,.,,:fo drfo ds U,(7, s)

X Ryp{?) R () Ry (S) Roy(s) ,  (10)
where
=p=l ¥V
U fr, s)= {r sV if r=zs
L sl if res, (11)

For each given set of A, u, p, and o, the allowed
values of v are from |x -l or {p-ocl, whichever
is larger, to A+ pu, or p+o, whichever is smaller,
in steps of two; this is concisely expressed by
vCVQx, 1;p, 0).

In the terms representing the contributions from
closed shells, the special combination

Dpayurs™ Grprayurus,0~ xxuv[cxpur,xqus,v
vC VA, sir,8)

(12)

occurs, where the coefficients x,,, are expressed
in terms of Wigner 3 —j symbols, namely,

1 Mapvw 2
Yauv=g (o 0 o) ‘
For the contributions from open shells, certain

intevaction coefficients occur which are constant for
a given calculation; they are denoted by a,,,,;; and
bys aing, ot,v»  AS this notation suggests, they enter
in the expression for the matrix elements
(®,13C|®;); they depend on the shell occupation
numbers of the configurations / and J, the coupling
schemes used, and the orbital and spin angular
momenta of the system, The diagonal coefficients
ayp,ay are particularly simple, namely,

+Gpug,hqur. i

(13)

Ay =2@n+1)8,; (14)

the coefficients by, \suy, pror,» CaN be expressed in
terms of the coefficients #* and »* of Condon and
Shortley.” The off-diagonal coefficients are more
complicated, but can be expressed in terms of the
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coefficients of fractional parentage, 3-j and 6-j and the densily matrices by
symbols, and were caiculated using Racah’s meth- =
ods, ® ’ De,ape= «CLCJ(A) 2(2x+1) eagp g s (17)
It is also useful to deflne net-inievaction coeffi-
cients ay;; and byyu;, agy,, Y means of Dpse™ 21 GryCaipCijas (18)
HWiC F)
ii= & a1y CrCo (15)  where C(x) and F(») denote the sets of closed and
fractlonally occupied shells of symmetry a.
Baiug, onat,o= 2 bk e c¥e)) (16) . Employing the integrals and coeff1c1ent§ just de-
7 fined, the energy of the system can be written as
|
E= 2 {( Z 2(2A+1) CK“ CK‘Q)
Me  iCCW)
1 N
x[Hm+ EZ’ 1;,.,,”,( 2 2@p+1)cyy Congt 2 2 Aoy Conr Cora) | + Hapel 2o Wiy Coatp Cua)}
ors RC Co) m1C Flo) HiC FQ)
ONIPIDY 2 Gapua pros,y 2 ) 2 baquy,onat,v Crip Cusa Conr Catg + (19)
» ug er o8 vCVuin,0) {CFW) JCFw) R CF) 1 CFl@)
I
As was mentioned earlier, in the MCSCF method 22 CripSape Cagq =015 « (24)
two independent variations of the energy are per- bra
forr.ned,- one with respect to the orbitals, i.e., the Performing the variation of the energy with re-
orbital expansion coefficients ¢,,,, and the other spect to the configuration-mixing coefficients C,
with respect to the conflguration-mixing coeffi- leads to the well-known eigenvalue equation
cients C;. The energy expression (6) is suitable =
for the variation with respect to the configuratlon- 2y Hyy Cy=ECy 04y, (25)
mixing coefficients, and expression (19) for the where
variation with respect to the orbitals. Perf i
: : : Rt Hyg= (3|5 0,) . (26)

the variation now with respect to all ¢,;,, and sub-
ject to the orthogonality conditions for the orbitals,
the MCSCF equations are obtained for closed- and

open-shell (fractionally occupied) orbitals, namely,

2 Fc,mcm’"'zsm(fm Caiqt 2 €ais Crga)  (20)
q q JCF)
for all xi CC, and

2 2 F Cuse=24S 2 &, 1)
e Trnuse O™ L S 2 Ouge (21}

Q

for all AiCF. The Fock-like matrices are

Fepe= 2(2x+1) [Hm*z Z Im.ara(DC.pra"‘DF.ara)] ’
ors
(22)

Frip,use™ au tryy [prq +2 Dpa,ors Dc.pn]
prs

+2 Zl Z Z GMMcnoroanV

or as vC Vi uip Q)

X 2 2 bajug,onat,v Gar Capg » (23)
rCFlo) 1 CFo)

The €,;; are the Lagrange multipliers which must
be introduced to fulfill the orbital orthonormallty
constraints. In terms of the expansion coefflcients
these constraints are expressed by
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For the MCSCF solutlon the orbital expansion co-
efficients satisfy Eqs. (20) and (21), and the con-
figuration-mixing coefficients satisfy Eq. (25). This
solution must be obtained by some iterative method,
and many strategles are possible; the strategy used
in this work is glven by the flow diagram in Fig, 1.
The pre-SCF orthonormalization, aus indlcated in
the flow diagram, is done because it is inconvenient
to supply an inltlal orthonormal orblta! set. The
post-SCF orthonormalization is desirable because
the orbltals that are obtained by solving Eqs. (20)
and (21) are orthonormal but not always to the de-
sired degree of accuracy. The Schmidt orthonor-
malizatlon procedure used takes the orbitals in the
natural order, i.e., 1s, 2s, ...; 2p, 3p, ..., etc.

The analysls presented here does not specify the
choice of the basis functions R,,(r). In this work
the well-known Slater-type basis functions were
used; they are defined by

Ryy(n) =[(22)Pm/ @ny ) ] r ™ e (@7

where ¢{,, and n,, are adjustable parameters, with
my, restricted to Integer values and u,, > x+1, For
each calculation, the program provides for the ad-
justment (optimization) of the exponents until the
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in this work, and was often simplified to a quadratic

rather than a fourth-order interpolation.

The oscillator strength (in dipole approximation)
for a transition from the initial state ¥, to the final

El MULTICONFIGURATION
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-
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ternal convergence
thresholds and N de-
notes the iteration
number,

FIG. 1. Flow diagram of the MCSCF procedure,

minimum of the energy is obtained. A straight-
forward method for such optimization is given by
Roothaan and Bagus.® Their method was followed

state ¥ is given by

fo=3(Er-Ep) g |(¥,|T| W) |2, (28)
or, equivalently, for exact wave functions by
fr=5 (Er=Ep) g, (¥ v |95)|2, (29)

where g, is the degeneracy of the initial state and
the squared matrix elements are summed over the
initial- and final-state degeneracies.

When approximate wave functions are used, the
agreement between the two forms is a necessary
but not sufficient condition for the correctness of
the oscillator strength value.

Recently!? it has been shown that when HF or SOC
wave functions are used, the length form £, is more
appropriate for the calculation of the oscillator
strengths,

Both formulas (28) and (29) were used in this
work to calculate the f values.

APPLICATION TO BORON ATOM

Calculations were performed on the following
states of boron: 2s%2p, 2P% 2s2p? ‘P, 2D, %P,
2%3s, 25, and 2p%, %S°. 1! Each state considered is
the lowest state of that particular symmetry for the
boron atom.

As was mentioned earlier, the configuration set

TABLE I. Basis-function parameters and orbital expansion coefficients from the 28 CSF representation of the 25%2p, 2P
state. (full MCSCF and frozen HF orbital caiculations).

Full MCSCF

Frozen HF orbitals

s symmetry

n 4 1s 2s 3s 1s 2g 3s

1 7.3306 0.172343 —0.047 463 -0.153852 0.171 570 -0.054951 -0.173736
1 3.8999 0.913394 —=0.134467 0.766 515 0.911338 -0.131943 0.816102
2 1.7400 0,021047 -1.193120 -9.483726 0.002346 -1.418650 -10.169023
2 1.3370 -0.023666 1.490514 5.902 149 -0.000139 1.608 475 6.141672
3 44,7860 -0.092969 0.075327 0.641943 -0.091873 0.092837 0.687687
32,6000 -0,013153 0.685851 2,831 922 —0.002837 0.777875 3.229055
p symmetry

n 4 2p 3p 2p 3p

2 5.4000 0.009 469 -0.165998 0.010 075 -0.158350

22,0480 0.164774 —0.946 628 0.200 676 -0.820473

2 1.2060 0.471 341 —1.447065 0.391755 -1.661696

2 0.8666 0.4071739 2,123 415 0.460 842 2. 246 233

2 3.7000 0.003 471 0.501915 0,000 197 0.470 599

d symmetry

n ¢ 3d 3d

3  1.5265 1.011881 1.012538

4 4.7759 -0.025225 -0.026651
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TABLE II. Configuratlon-mixing coefficients for tho 28 CSF represcntation of the 2s%2p, P state (resuits from full
MCSCF and frozen HF orbltals calculatlons).

Conflguration Coefflcients Conflguration Coefficients
Full Frozen Full Frozen
MCSCF HF MCSCF IIF

1 2s5%2p 0. 96209 0.96235 15 (2s8p, 'P)ad ~0.023 84 -0,02352
2 2p3 0.209 81 0.20888 16 (2s3p, *P)3d 0.01378 0.01375
3 (252p, 1P)3d 0.10733 0,106 67 17 3s%p 0.00329 0.003 99
4 (2s2p, *P)3d ~0,08210 ~0.08145 18 3p8 0.00356 0.003 62
5 3s%2p ~0.03482 ~0.03579 19 (3s2p, 'P)3d 0,003 38 0.00293
6 (2s3s, 39)2p ~-0.01825 ~0.01993 20 (3s2p, *P)3d 0.004 18 0,004 94
7 26(3d%, 1s) ~0.03165 ~0.03168 21 (3s3p, 'P)3d ~0.00584 ~0.00576
8 2p(3d?, °p) ~0.01839 ~0.01822 22 3s3p, 3P)3d 0.00144 0,001 32
9 2p(34% D) ~0,014 29 ~0.01413 23 3p@Bd? 1s) 0.00358 0. 003 56
10 2p(3p2, 19) 0.020 21 0.019 66 24 3p@3d?, 3p) 0.00368 0.003 62
11 25 (3p2, °P) 0.01223 0.01237 25 3p(3d%, ‘D) 0.003 25 0. 003 20
12 2p(3p%, 'D) 0.01201 0.01216 26 (2p?, 19)3p 0.01848 0.01850
13 (2s3s, '5)3p ~0.05719 ~-0.05839 27 2p%, *P)3p 0.04547 0,044 38
14 (2s3s, %S)3p 0.02139 0.02186 28 (2p?, 'D)3p 0,03593 0.035 39

Totai cnergy (full MCSCF)
E =~ 24,595 97 hartrecs

Total cnergy (frozen HF orbltals)
=~24,59535 hartrees

for an SOC wave function can be selected in a vari-
ety of ways, depending on which properties of the
system the interest is centered. This tailoring of
the wave function is well known and has been used
by Bagus and Moser,  Weiss, '3 Schaefer, Klemm,
and Harris, !* Das and Wahl, * and others. In each
instance listed, the wave-function configuration set
was chosen with a different purpose in mind. Bagus
and Moser wanted to represent accurately the ener-
gy level spacings, Schaefer, Klemm, and Harris
the “core polarization,” Das and Wahl molecular
dissociation, and so on,

In this work, the interest was in the optical prop-
erties and the configuration set was chosen ac-

cordingly, i.e., the SOC wave function is composed -

only of configurations which result from the re-
placement of the 2s, 3s, and 2p orbitals, the va-
lence orbitals. The cove is represented by the
doubly occupied HF-like 1s orbital, which is al-
lowed to adjust under the influence of the correla-
tion configurations. Since no configurations in
which a core spin orbital was replaced were al-
lowed to participate, the core correlation and the
core-valence correlation are not represented ac-
curately. But since the core electrons are ener-
getically and spatially well separated from the va-
lence clectrons, the correlation error thus intro-

duced is nearly constant for all the states con-
sidered. This is borne out by the fact that the core
orbital, which in the model is state dependent, is in
practice nearly the same for all states, and only
slightly changed from the ground-state HF orbital.
When, in the absence of interelectron interac-
tions, two configurations have the same energy,
they are said to be hydrogenically degenerate. For
example, 25%2p and 2p° or 25235 and 2p%3s are two
such pairs of configurations. (The configuration
252p® is also hydrogenically degenerate with the
first pair but is of different parity, and thus ex-
cluded irom the set.) In this work a minimal set
of conligurations is adopted, consisting of the domi-
nant vonfiguration for the state, and the hydrogen-
ically degenerate configurations obtained by re-
placing 2s® by 2p® or 2p? by 252 in the dominant con-
figuration. The orbitals that make up the config-
urations of the minimal set are called dominant
orbilals. Thus, in the second of the above ex-
amples, 1s, 2s, 3s, and 2p are the dominant or-
bitals. All other orbitals, which are introduced to
construct additional configurations, are called cor-
relalion ovbilals. Occasionally, the dominant or-
bitals so defined cannot all be used for a particular
state. For example, for the 1s22p% %S° state, re-
placement of 2p? by 25? cannot yield a s° state, and

TABLEIII. Valence-electron correlatlon energy for the ground state of Boron.

This work Weiss (Ref. 13) Weiss (Ref. 13) Schacfer and Nesbet
28 CSF's n =3 configurations 35 CSF’s Harris (Itef, 19) Ref. 4)
Sopelation 0.067 0.064 0.068 0.066 0.071
energy
166
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FIG. 2. Dominant orbitals 2s and 2p and the eorrela-
tion orbitals 3s, 3p, and 34 for the ground state of boron.

hence the 2s orbital is absent from the dominant
orbital set.

The calculation with dominant orbitals only serves
as a starting point for more elaborate calculations,
in which one correlation orbital is introduced in each
of the symmetries s, p, and d.

For the CSF’s the obvious notation ®[1s%(uln'l’,
S'L'W"l", SLMgM_ |, with n<n'<n" and 1<’ <1",
will be used, indicating the coupling explicitly.

To determine the orbitals and configuration-mix-
ing coefficients, the iterative procedure outlined in
Fig. 1 is used. This procedure, however, does not
converge unless a good basis set is chosen and a
reasonable initial guess is made for the orbital
expansion coefficients. The procedure used in this
work, which provides good initial basis-function
and orbital sets, and a method for augmenting these
sets, will now be described.

For each state, the starting point for the MCSCF
calculation was a single configuration SCF calcula-
tion. Guided by earlier experience a basis set ap-
propriate for the expansion of the SCF orbitals was
selected, 1° and SCF calculation performed, and all
exponents optimized. For the 2s%2p, 2P° and 2s%3s,
%g states, the hydrogenically degenerate configura-
tions 2p%, 2P and 2p%3s, %S, respectively, were added,
thus creating minimal configuration sets for these
states. An MCSCF calculation was then performed
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TABLE IV. Caleulated and observed term cnergies for

boron,

Term HF MCSCF Observed
2s%2p, P 0 0 0
2s2p?, 2P 0.3502 0.3390 0.3305
2s2p?, 2D 0.2172 0.2271 0.2180
2s2p?, ‘P 0.0784 0.1288 0.1313
2s%s, %S 0.1770 0.1767 0.1824
2p3, 150 0.4010 0.4424 0.4421

and all exponents reoptimized. During this re-
optimization the exponents determined in the SCF
calculation changed only slightly.

For one symmetry at the time, a correlation or-
bital was determined by performing the following
three steps.

(1) The starting basis-function set was augmented
by adding one basis function (two in case of d sym-
metry), and a new orbital generated by orthonor-
malizing to all previous orbitals of the same sym-
metry.

(2) All possible configurations, resulting from
the replacement of any of the valence orbitals by
the new (correlation) orbital, were generated, and
added to the set.

(3) The MCSCF calculations were performed and
the exponent(s) of the added function(s) optimized.

The exponents determined from the minimal-con-
figuration-set calculation were not further reop-
timized, since this would have yiclded only a small
improvement,

Since all CSF's resulting from the replacement
of the valence orbitals were used in the wave func-
tion, the valence and the correlation orbitals are
determined only up to a unitary transformation.
Hence these orbitals are not unique, and can there-
fore be chosen so as to satisfy some arbitrary con-
straints. A particularly convenient choice, used
in this work, consists of requiring that certain

CSF’s are absent from the wave function. As an
example consider the function
&= C1d(1s%) + C,d(1s2s, 1S) + C,0(25%) , (30)

which is composed of a complete set of CSF's that

TABLE V. Oscillator strengths.

Hartree-Fock This work Weiss (Ref. 13)

Transtition length volocity length velocity length veiocity Experiment
2s%p, 2P-252p%, D 0.339 0.336 0.115 0.157 0.067 0,084 0.059,% 0,048
2s22p, *p-252p?, P 1.003 0,389 0,640 0.685
2s%2p, 2P-25%s, %S 0.052 0.063 0.062 0,068 0.067 0.074 0.055*

2522, ‘P-2p%, s 0.266 0,146 0.214 0,216 0.213 0.225

*L, Bergstom, J, Bromunder, R. Buchtar, L. Lundin, and J. Martinson, Phys. Lctters 284, 721 (1969).
%G, M, Lawrenee and B, D, Savage, Phys. Rev. 141, 67 (1966).

167




1156 ZORAN SIBINCIC 5

TABLE VI. Basis-funetion parameters and orbital ex-
pansion coeffieients from the 17 CSF _representatlon of the
252p?, P state.

TABLE VIII, Basis-funetion parameters and orbitai
expansion coeffieients from the 26 CSF representation of
the 2s2p?, 2D state.

s symmetry s symmetry

n ¢ ls 2s 3s n ¢ 1s 2s 3s

1 7.2867 0.161861 0.000743 -0.064722 1 7.2847 0.165862 -0.011129 -0.032391
1  4,0160 0.898495 - 0,280462 0.468522 13,9833 0.900422 -0.246106 0.430462
21,7455 0.000689 0.856 251 -4.346 655 21,7463 0.000003 0.440 356 -=3.505518
2 1.1292 0.001461 0.46503¢. 2,842027 2 1,1813 0.000117 0.650595 2.853607
34,8005 -0.065219 -0.063031 0.385078 3  4.7958 -0.071705 -0,.031833 0.238777
32,5952 0.001 504 - 0,208 263 1.138674 3 2.9000 0.000833 -0.005983 0.319069
p symmetry p symmetry

n 4 2p 3p n 4 2p 3p

25,2000 0.005515 -0.050 443 25,2500 0.005166 0.043988

22,0939 0. 275 846 0.603495 2 2,0616 0.303718 -0.916316

2 1.2176 0.485508 -2.585190 21,2332 0.481791 -1.084907

20,7832 0.337093 2,434 843 2  0.8172 0.309941 1.806129

3 3.7000 -0.033589 -0.198903 3 3.7301 -0.037733 0,305 807

d symmetry d symmetry

n ¢ 3d n ¢ 3d

3  1.4031 1.001259 3  1.2031 0.948602

32,9400 -0.002013 3  2.1000 0.066017

can be generated from the 1s and 2s orbitals for a
two-electron system. Under the transformation

(1s)=(1s")cosa + (2s’) sina , (31)

(2s)= - (1s")sina + (2s’) cosa , (32)
where

tana= 2Cz/(C3 - Cl) y (33)

the wave function remains invariant and can be ex-
pressed in terms of the primed orbitals as

V=C)d(1s'?)+ Ch d(25'%) . (34)

When similar transformations are applied to the

TABLE VII. Configuration-mixing ecoefficients for the 17
CSF representation of the 2s2p%, 2p gtate.

Configuration Coefficient Configuration Coefficient

1 2s2p? 0.89597 10 (2p3p, 'P)3d  0.02552
2 (22, *P)3d 0.10965 11 (2p3p, P)3d ~—0.01601
3 (2p?, 'D)3d 0.16714 12 (2p3p, °D)3d  0.01328
4 2s3p? -0,07420 13 3s3p’ —0.00047
5 2s3d? 0.03414 14 3s3d 0.00073
6 (2s2p, 'P)3p  0.02698 15 (3p?, 'D)3d  —0.01724
7 (2s2p, 3P)3p  0.37732 16 (3% *P)3d ~0.00254
8 (3s2p, 'P)3p =-0,03928 17 3d° 0.01299
9 (3s2p, *P)3p —0.06644

‘Total energy
E - - 24,256 99 hartrees

ground-state orbitals of boron the CSF's &[(2s3s,
15)2p, 2P) and $[2s%3p, 2P| may be omitted from the
wave function, This leads to a unique set of or-
bitals which minimizes the energy. Aside from the
advantage of a slightly shorter representation, this
uniqueness is also important, for both the physical
interpretability of the orbitals and for the conver-
gence of the MCSCF procedure. Namely, if such
uniqueness were not guaranteed, the iterative pro-
cedure could go from one set of equivalent orbitals
to eny othor, and thus apparently fail to converge

TABLE IX. Configuration-mixing coefficients for the 26
CSF representation of the 2s2p?, 2D state.

Configuration Coefficient Configuration Cocfficient

1 2s52p? 0.94389 14 (2s2p, ’P)3p  0,16660
2 253p° -0,07305 15 (3s2p, 'P¥3p  0.00734
3 2s34° 0.04590 16 (3s2p, *P)3p =—0.06015
4 3s2p? —0.00295 17 (2p3p, 35134 0.00864
5 3s3p’ -0.00203 18 (2p3p, 'P)3d —0.00741
6 3534’ ~0.00184 19 (2p3p, °P}3a ~0.00777
7 (27 '5)3d 0.04203 20 (2p3p, 'D)3d ~0.00122
8 (2% ‘P)3d 0.13971 21 (2p3p, *D)3d  0.01246
9 (2p% 'D)3d  -0.01004 22 (3d°, }D) ~0.007 56
10 @, )34 0,00266 23 (3, ID) -0.00770
11 (3p?, 3P)3d  -0.00703 24 (2s3s, '$)3d  0.00219
12 3%, 'D)3d 0.00226 25 2s%3d 0.21944
13 (252, 'P)3p —0.00661 26 3s%3d ~0,00896

Totai energy
E ==24.36881 hartrees
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TABLE X, Basis-function parameters and orbitai
expansion coefficients from the 12 CSF s epresentation of
the 2s2p?, ‘P state.
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TABLE XII. Basis-function parameters and orbital ex-
pansion coefficients from the 24 CSF representation of
the 25%3s, %S state.

s symmetry s symmetry
n t 1s 2s 3s n t 1s 2s 3s 4s
1 7.2841 0.173652 -—0.007574 0.072826 1 7.3516 0,160329 ~-0.008106 0,002939 0,040332
1 3.9166 0.904061 —0. 200056 0. 270 875 1 3.9890  0,911963 ~0.259869  0.067708 —0.541 836
A ) o 21,7422 ~0,005854  0,490139 —0.106168  4.737585
: 1'7362 g.goggfg 2'332;:2 g’;ggggg 2 1.3486 -0.009731  0,599086 ~0.225069 =—4,596319
o Hpes - ) ; 3 4.7799 ~0.074183 —0.045791  0.018406 ~0.076095
3 4.7836  -0,084853  -0.042569 —0.208130 30,5430  0,000145  0.008827  1.047760  0.,539067
3 2,4354 —0.000208 —0.210658 -2,178 339
p symmetry
p symmetry . : 5 B
% ¢ 2 3 2 5.3000 -0,052709 ~0.008 223
25,2000 0.004438 0.076 258 22,0672  0,892418 -0,031608
21,2200 —0.401842 -1,903 876
. . ~1.6485 .
; fggf,’;‘ g gg::g: _; 1;7022 20,7381  0.980819  1.823751
A f < 3 3.5298 —0.348264  0.044 579
2 0.8815 0.216 220 1.425210
33,5294 —0.045283 0.434101 d symmetry
d symmetry n t 3d
31,7000  1,142786
¢ 3d 32,8000 -0,184575
3 1.5154 0.988588
3 2.8000 0.015709

under the test used.? )

In order to test the effect of the correlation con-
figurations on the HF orbitals, a variant of the full
MCSCF method was employed. In this procedure
the HF orbitals were taken over from a HF calcula-
tion and “frozen,” i.e., not allowed to readjust,
while the correlation orbitals were determined by
the MCSCF method.

A detailed discussion will now be presented for
the ground -state calculation only.

The Slater -type basis-function set consists of 6

TABLE XI. Configuration-mixing coefficients for the 12
CSF representation of the 2s2p?, ‘P state.

s-type, 5 p-type, and 2 d-type functions. This set
is based on the Bagus-Gilbert 5-s, 4-p set, !® and
augmented through the procedure already d«scribed.
Table I contains the basis-set parameters and the
expansion coefficients for all the ground-state or-
bitals for both the full MCSCF and the frozen H}
orbitals calculations.

The MCSCF wave function consists of 28 CSF's
(equivalent to 30 without constraints; see above)
arising from 16 configurations. Table II shows the
CSF’s the configuration-miring coefficients, and
the total energy obtained for the full MCSCF and
for the frozen HF orbitals wave functions. As can
be seen from the size of the configu ration-mixing
~oefficients, the most important correlation con-

TABLE XIII, Configuration-mixing coefficients for the 24

Configuration Coefficient CSF representation of the 2s23s, 2S state,
2
; g:;ﬁz id g ?;‘; gg Configuration Coefficient Configuration Cocfflcient
3 (2%, 3P)3d 0.064 44 1 2s’s§ 0,95149 13 34s3d? ~0.01717
2 - 2 252 0.04385 14 2pig ~-0.006 88
‘3 ?35:? 3p)3d gggg g? 3 2s3s? 0.00332 15 3p2d 0,005 90
o P = 4 as2p? 0.20388 16 d4s2p? ~0.00267
6 253": 0.054 97 5 2637 0.03138 17 4sip? -0,00213
7 3s3d -0.00771 6 2s3d? 0.00776 18 25%s ~0.095 34
8 (2s2p, °P)3p 0.136 82 T (252, 'P)3p  0.10930 19 35%4s ~0.00911
9 (3s2p, 3P)3p —0,06346 8 (2s2p, 'P)3p  -0.03586 20 24447 —0,007 54
3 9 (3s2p, 'P)3p 0.08579 21 Usds? ~0.02207
ig :%gp, 35;33: g'gg; Zg 10 (3s2p, *PI3p  ~0.14882 22 (4s2p, 'P)3p  ~=0.0007G
2’; Py 3 11 (2p3p, 'D)3d  ~0.01843 23 (4s2p, *P)3p  ~0.00036
12 3d -0.00287 12 3s3p? 0.07623 24 (253y, “S)iy 0,013 26
Totai energy Total encrgy
E=-24,467 14 hartrees E=~24,41923 hartrees
S —
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figuration is, of course, the hydrogenically de-
generate configuration 2p®, The next configuration
in order of importance is the 252p3d !® configura-
tion, containing the CSF’s ®[(2s2p, }P)3d, 2P| and
o[(2s2p, °P)3d, 2P]. A calculation using these con-
figurations (2p% 2s2p3d) and the dominant configura-
tion yields 78% of the correlation energy from all
28 CSF's. Table III shows the valence-electron
correlation energy calculated by various authors
and compared with the present work. Weiss,!%in
his calculation using 35 C5¥'s, used s, p, d, and
f symmetry orbitals, Schaefer and Harris'® used
only s, p, and d symmetry orbitals but had 18C con-
figvrations (tor both core and valence correlation),
and Nesbet’s* result is obtained by adding the cor-
relation energy of different electron pairs. The
present work, as was said earlier, used s, p, and
d symmetry orbitals and 16 configurations. In in-
terpreting these results, one must keep in mind
that the correlation energy of different electron
pairs is not strictly additive.®

Weiss’s calculation using only configurations
with n < 3 (second entry in Table III) is analogous
to the present calculation, and a comparison of
the respective results should be of particular interest.
In Weiss's pseudonatural orbital SOC method only
17 CSF’s contribute to the lowering of the energy
(his orbitals are determined so that other configura-
tions with » < 3 contribute negligibly, and hence are
omitted). In this particular case the MCSCF cal-
culation gave 3.7% more of the correlation energy.

As can be seen from Table 1I, the difference be-

TABLE XIV. Basis-function parameters and orbital
expansion coefficients from the 6 CSF representation of
the 2p%, ‘S state.

s symmectry

n 4 1s

1 7.5061 0,101 843
1 4,3853 0. 905 392
2 2,1010 0,006 260

1.3873 -0.000511
4.8390 - 0.000800

2
3
p symmetry
n

¢ % 3p
2 5.3214 0,008 644 0.101737
2 2,0795 0.241521 -1,940579
2 1.1307 0. 582 400 0. 269 296
2 0,7913 0, 246 040 0.984 896
3 3.5000 -0.014112 0. 595 383
d symmetry
n ¢ 3d
3 1, 5000 0. 986 369
3 2.8000 0,018 941

TABLE XV. Configuration-mixing coefficients for the 6
CSF representation of the 2p%, ‘S state.

Configuration Coefficient
1 2p3 0.99076
2 2p3d° 0.096 29
3 2p3p® -0.09471
4 3p® —-0.00117
5 3p3d? ~0,000 35
6 2p%p 0,01227
Total energy

E =~24,153 54 hartrees

tween the energy obtained in the full MCSCF cal-
culation and the frozen HF orbitals calculation is
extremely small (0. 00024H). This, along with the
fact that the overlap integrals between the HF and
the corresponding MCSCF orbitals are at least

0. 999, suggests that in many MCSCF calculations
one can take over the HF orbitals unchanged, and
determine the correlation orbitals only.

Figure 2 shows the dominant orbitals 2s and 2p
and the correlation orbitals 3s, 3p, and 3d. As
expected, the correlation orbitals are roughly in
the same region of space as the dominant orbitals,
and do not resemble the hydrogenic orbitals, or
even the so-called virtual SCF orbitals, ?°

Table IV shows the HF, MCSCF and observed
term energies for boron.

Table V shows the computed f values and the
comparison with HF, Weiss’'s, and experimental
values, where available. As can be seen, the
greatest discrepancy occurs in the f value for the
transition 2s2p% 2D - 25%2p, 2P, Here, there is also
the largest departure from the HF value. Since the
configurations involving d-symmetry correlation
orbitals, mixed into the wave function of the 2s2p?,
2p state, serve to lower the oscillator strength value
for the above transition, !* and since the present
work has only one correlation orbital of d sym-
metry, the oscillator strength computed here is
therefore too high.

All other f values agree closely with those com-
puted by Weiss.

Tables VI-XV show the energies, basis sets, and
CSF’s for all other states calculated.
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The Pauli approximation for many-eiectron atom.s is derived. This yields an unambiguous
expression ior the fine-structure splitting and other first-order reiativistic corrections to the

energy, using nonrelativistic wave functions.

A formalism is developed for atoms, based on

these resuits, which is suitable for the evaluation of the fine structure using muiticonfiguration
wave functions. Fine-structure splittings calculated from Hartree Zock wave functions are
presented for the ground states from He through Ar; the remaining energy corrections are
aiso presented. Muiticonfiguration resuits are presented for the fowest D and 2p gtates of N,
accounting for about 80% of the discrepancy between 1lartree-Fock values and experimental

values.

I. INTRODUCTION

The Pauli approximation is the basis for most
attempts to deal with relativistic effects in many-
electron systems. In this approach, expressions
are derived, with respect to the appropriate non-
refativistic wave function, whilch give the first-
order corrections to the energy. Such expressions
were found by Breit! for a two-electron system and
appear, with a few modifications,z“ in their most
familiar form as the terms H, through Hy given by
Bethe and Slapeter.® These terms give the fine
structure and include, among others, spin-orbit,
spin-spin, and spin-other-orbit couplings, They
do not account for hyperfine structure or the effects
of nuclear motiui., The primary reason for the
popularity of the Paul. upproximation lies in lts
case of application In comparison to more fully
relativistic treatments: Only the nonrelativistic
wave function need be dealt with, rather than the
more complicated relativistic wave function.

In this paper we apply the Paull approximation
to the case of atoms. The formalism we develop
here is of sufficient generality to apply to wave
functions which are mixtures of configurations.

We present expressions for all of the terms which
contribute to the first-order relstivistic correction
to the energy.

We begin with a derivatlon of the Pauli approxi-
mation in Sec. II. The relativistic formallsm from
which we start is not entlrely satisfactory: The
terms for the electron-electron interactions are
not Loreniz invariant, and higher-order quantum
electrodynamical effects, such as those giving
rise to the Lamb shift, are not included, It does,
however, contain all the first-order relativistic
effects, and therefore, suffices for a derivation of
the Pauli approximation. Since our relativistic
formalism treats an arbitrary umber of electrons

5

N, we obtain the Pauli approximation expiicitly
generalized to an N-electron system,

Along with such generallty, our goal is derivation
of the Pauli approximation characterized by suf-
ficient rigor and attention to detall. In contrast to
previous treatments, "*~1° we do not attempt to
present the first-order relativistic correction to
the energy in terms of an “equlvalent Hamiitonian, "
Consequentiy, we obtain an expression which is
entirely unambiguous and simple to evaluate,

In Sec, III the orbital Integrals arising from the
first-order relativistic energy corrections in atoms
are presented. We outline the construction of
muiticonfiguration wave functions In Sec, IV and
reduce the single-configuration matrix elements to
simpler forms on the basis of their assumed sym-
metry properties. With these results in hand, we
give expressions in terms of orbital radial integrals
in Sec. V.

Nunierical results, obtained by applicatlon of our
formalism, are given in Sec. VI, These include
results from Hartree-iruck wave functions for the
ground states of He through Ar. We also give
multiconfiguration calculations for the lowest ni-
trogen 2D and 2P states. These calculations yield
substantial improvement in the computed fine-
structure splittings in comparison to the Hartree-
Fock results,

Il. DERIVATION OF THE PAULI APPROXIMATION

The many-electron Divac Hamiltonian D for an
N-electron syste.n is, in atomic units,

D=2I1,+%ZE 1/75 (1)
»

p oty

where the summations are from 1 to N, r,, is the
distance between the pth and gth electrons, and b,
is the Dirac Hamiltonian of the pth electron:

hy=C?By+cd, Dp+V, . 2)
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In Eq. (2) p is the momentum operator, V is the
potentiai due to the nuclear and external fields, ¢
is the speed of light, and & and 8 are the Dirac

matrices in conventionai representation, namely

(30) .+ 2) @

where 7 has as its components the 2x2 Pauli ma-
trices and I is the 2X2 unit matrix,

The Breit operator @ for an N-eiectron system
is

®=42206b, , @)
P atp
where
bpa== 210, Ay/7pe + (@, Ty )N@ T)/730 ), (5)

and the summations are again from i to N; we use
T,, for the quantlty (f,-T,). Roughly speaking,
by, s the correction to the interaction term 1/7,,
due to first-order magnetic and retardation ef-
fects, '

The relativistlc one-electron orbitais 6, are
four-component Dirac spinors which we take to
form an orthonormal set:

(8,8 =64 . (6)

Note that the left-hand side of Eq. (6) Involves a
summatlon over four terms os well as integration
over the space coordinates. It is also useful to
write

id 7
6( (Xl) * ( )

where ¢, and x; are two-component Pauli splnors:

@ 1s the large component of 6,, and x, is the
small component,

From the set of orbitals 6, we construct Slater
determinants ©;;

8,(1) §,(1)...6,,(1)

Or={6;,8,,... 6} =(N)1/? 6,2) ?‘.2_(2)“'8‘“2) }
8,(N) 8, (N). .. 6, (N)

(8)

The index I indicates an ordered set of indices

ilv iz, eeay Byt
1-_-(!.1,1.2,-..,'.”) N i1<i2<"‘<i~ . (9)

The ordering of the indices f,, 1,, ..., iy, avolds
redundancies inthe setof Slater determinants ®,.
It follows that

(O,l0,)=6,, . (10)

In general, we adopt a multlconfiguration wave
function ® of the form

0=2C0, ; (11)
7
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we assume that © is normaiized to unity, nameiy
(®ley=1 . (12)

The many-electron generalization of the Breit
equation is

(D+®)B=EO | (13)

where E is the totai energy of the N-eiectron sys-
tem. In view of Eq. (12), we have

E=(®|D+a|O) | (14)

The Breit equatlon yields unsatlsfactory resuits,
a difficuity often clrcumvented by determinlng ©®
from the equation

DO=E,6 , (i5)

instead of from the generalized Breit equatlon.
Other modifications to the Breit equation have been
proposed by Brown and Ravenhaii'?and by Salpeter.'
Here we shali proceed from the generaiized Breit
equation, polnting out the objectionabie terms when
we encounter them, Then the motlvatlon for the
proposai that Eq. (i5) be used to determine ©,
Instead of the generaiized Brelt equatlon, wiii be
clear,

It is convenient to decompose the Dirac Hamil-
tonian in terms of powers of ¢, namely

D=c’M+cP+v , (16)
where [see Eqs. (1), (2)]

9“:2 ﬂ' ' G):E ap'ﬁp ’
? ? 17)
Vel Vj+iZ X i/7), -
» b atp

We Introduce orbltals w; which satisfy the equation
ﬁw‘ =m‘w‘ s "7‘ =%] . (18)

In case m; =1, w,; contains oniy a large component
(the small component 1s zero), and in case m;=-1,
w,; contains only a small component. Correspond-
Ingly, we Introduce the Slater determinant Q, where

Q={w, Wy eewy} (19)
Then we have

mR=MQ (20)
where

M=Z‘;m,=2k-N, 0<k<N. (21)

In Eq. (21), % 1s the number of orbitals with positive
my, i.e,, wlth large components only. We shaii
call M the rest mass of @, There are an infinite
number of Q's wlth the sanie rest mass, since Eq.
(20) determines nothing of the space and spin be-
havior of Q. In general, a wave function with rest
mass M is a linear combination of §’s with rest
mass M.
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We note that
[m,v]=0 , (22)

where the brackets indicate a commutator. Hence
if @ has rest mass M, so does V2, To deal with
® and ®, we introduce the matrices a® and o,
where

-, (00 -~ (00
a ”(o o) » € '(6 o) : 23)

We have the relations

a-a"+a (24)
[8,a*]=z2a* . (25)
In view of Eq. (24), we may write
P =@+ (26)
®-3"+8%,®" (27)
where
et= E;.E, , (28)
»
®'=42 2568 (29)
p atp
8= 30 250, , (30)
p a¥
with

Dra== 2L @b G2 /7ot (@ Fp )@l Foo)/ 73]
(31)

= T P
bae= = 2{(@y- ag+ a5 @g)/7y,

- P - - - - - - 3
+[(a} Ty )(ac “Tye) + (o Ty )y - r,,)]/r,,} .

{
From Eq. (25) these relations follow: =
[, @*]= £20* | (33)
[m, ®*] = £4@* | (34)
[m,®%]=0 . (35)

Henca, if © vas rest mass M, so does ®&°Q, while
@*Q has rest ass Mx2, and 8*§ has rest mass
M=zx4,

These reiations suggests a partition of © into
N +1 component eigenfunctions of M, each with a
different rest mass, while the decomposition of
D, as given by Eq. (16), suggests a perturbation
expansion in ¢ for these components. We expect
‘the part of ® of order c° to be an eigenfunction of
M with rest mass M., We anticipate that the parts
of ® of order ¢! wili have rest masses M2, since
®* and @ occur in D multiplied by one power of
c less than that multiplying M. Similarly, the
parts of ® of order ¢ wili have rest masses M and
Mz+4, etc, Accordingly, we write

(N-M)/2

& = Z Z C-Iml-2n®m , (36)
me=(N+M)/2 n=0
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where
Mo, =(M+2m0,, . (37)
We also expand E in powers of ¢:
E=c*) ¢c™E, . (38)

ns0

We substitute Eqs. (36) and (38) for © and E,
respectively, in the generalized Breit equation,
Eq. (13), and appiy Eq. (37). N +1 equations re-
sult: one for each eigenvaiue of M, each equation
containing only functions of one particular rest
mass, We equate powers of ¢! in these resuits.
From the equation of order c¢?, we find

(M~ Eg)0gp=0 , (39)
while the equations of order ¢ give

(M- Eg22)0,,,+0*0y, =0 (40)
and the equations of order unity yield

(M= Ey4)8,,,4+0%,,,,+® G =0, (41)

(M = Eg)Bgy +@*@ 4,0+ P Qg + (U + B = E|)9gq = 0.

(42)

From these equations foilow

M=E,, (43)

Ou,0=F POy , (44)

Ou,0= 5 (O*fOpy ¥ {B'Oy, , (45)

(T+ 0+ 8%)0g= E\Oy, (46)
where

'r=~z‘-[6".0']=%2;a,5,2 ! (47)

It is convenient to in' roduce @y,, defined in terms
of ®y and O, by the ecuation

Ogy= = 4@ LO®")y +B, . (48)

We substitute Eq. (36) for © in the normalization
condition, Eq, (12), and equate powers of ¢!, The
equation of order ¢° is

(®00|Pge) =1 , (49)

while the equation of order ¢ becomes, after the
substitution of Eqs. (44) and (48) for O,,, and &,,

(&g [Dg0) +(®oo|®61) =0 . (50)

The substitution of Eqs. (44), (45), and (48) for
1,00 BPe2,0, and By, in Eq. (36) yields a compact
approximate expression for @, nameiy

O=[1+cK+ 2+ 5 cUB™ - @) ]0g,
+c20, +0(c®) ,  (51)
where

Jc:%(@--‘v’):%zp ap'ﬁp Bp . (52)

Al
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We may evaluate E to order ¢ by simply using
Eg. (51) to substitute for ® In Eq. (14) and enforc-
ing the normalization condition given by Eq. (12),
We compare the resulting expression for E with
that given by Eq. (38) to find

El=<®oo'T+U+m0l@oo> , (53)

which is consistent with Eqs. (46) and (49). Pro-
ceeding with the evaiuatlon of the second-order
energy, we find, after dropplng the objectionable
term § (O ![®* @] 10y, 1

E, =<T@oo' %xz@oo> +<%xz@oo"r@oo>
- (2 K%0g |9M = Ey| 1%%€40) +(Ogg|V + B| $%%Dq)
+(XOpo | U+ B|KOgg) +{ 1 K205 |V + B @gg).  (54)

The objectionabie term does not arlse in the
evaluation of E, if Eq. (45) s replaced by the equa-
tion

(-)gz,o -_; (fp‘)z(f)oo y (55)

omitting the term ¥ { ®*)y, occurring In Eq. (45).
Cieariy, Eq. (55) resuits instead of Eq. (45) if we
start from Eq. (15) instead of the generaiized Breit
equation: This s the motivatlon for the proposai
that Eq. (15) be used to determine ©, instead of the
generalized Breit equation. We conclude that Eq.
(55) is correct and abandon Eq. (45),

Now Eq. (51) is replaced by the equation

O =140+ 107%2) O + 020, +0(cd) . (56)

This equation gives the wave functlon to order ¢
in terms of @y and ©,; it 1s one of the central re-
sults of our treatment, Even without an evaluation
of @g,, it has application apart from the evaluatlon
of the energy to order ¢2. For instance, If one
supposes the large component of a relativistic or-
bital is given by ¢, it foilows from Eq. (56) t..at
the small component is given, to order ¢, by

;¢ poy.

Since our treatment assumes reiativistic effects
are smali, we may identify con as the rest-mass
energy. Observable electrons always have positlve
rest mass, hence, the rest mass of an N-electron
system shouid be N, i,e,,

Eg=N . (57)

Combining this with Eq. (38), we glve for the en-
ergy to order ¢

E=c*N+E +¢c?Ey+- -+ (58)

with E, given by Eq. (53) and E, given by Eq. (54).
©go and @y, conslst only of Slater determlnants

which contain orbitals w; satisfying Eq. (18) and,

in consequence of Eq. (57), only the possibility

m; =1 may occur for these orbitals, Note that each

term in ®° contains an operator @,which gives zero

when operating on an orbital w; with m,; =1, Hence
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®%y, is zero, and the Breit operator does not con-
tribute to the energy I,. Since each orbitai w; has
positlve m;, oniy the large components are different
from zero. A wave function ¥ can be derived from
©g by replacing each four-component w, in )y, by
the corresponding large component ¢,, a two-com-
ponent Pauii spinor., Then Eqs. (49), (46), and
(53) go over into the equations

(¥lwy=1, (59)
KX¥=EW¥ , (60)
E =(¥|3c|w) | (61)
respectively, where
=2 35,2+ V,J+ 35 2 /7, , (62)
» b atp

with the summations running from 1 to N, ¥is
piainiy the nonreiativistic Hamiltonian, hence ¥
and E, must be the nonrelativistic wave function
and nonrelativlstic energy, respectively.

Our expression for E, in terms of &, likewlse
goes over into an expression in terms of ¥, We
find
Ezz_ é_ Zp <l.)pzq"592‘l’> *(qu"q‘> +<¢'qu’>

+(D¥ | W) +(¥| D) + (¥ | F4+Go+Gy+ Gy W)

(63)
where
Dy,=-} L i§,-B, , (64)
»
Dy=%tY Li&,,5, . (65)
P a¥
F=2 1 , (66)
?
Go=32Z Z Zoise (67)
P a¥p
Gi=32 Ligipe » (68)
P a¥
G=3 2 Zgz.pq ’ 69)
p afp
with
§,=15,V, , (70)
8pa=iDp/7pe (71)
fp'-‘%(gpxﬁp)'gp y (72)
Eoipe =—%[7’;:§,-§°+7’;3;N'(I.‘N'}'S,)}'Sq] , (13)
g,,,q=£;(€,°><f),)-§,+%(waﬁq)iq
+B,0xB,) 5,48, xBy) -5, . (14)
B2,00=5p " 8a/T2a =3, T, ), - Tp)/73, . (75)

Here we have used §,=20,; notice that §, and §,,
are the electric fields acting on the pth eieciron due
to the nuclear charge and the gth electron, respec-
tively,
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Although we have integrated by parts to express
E; in terms of the Hermitian operators f,, £, 0,
£1.5e0 and g ,,, We have not done so in the case of
the integrals

(B,29|D,2¥) , (D¥|¥)+(¥|D,¥) |,
(Dp¥| W) +(¥| Dy¥r)

The attempt to find a general expression for the in-
tegral (5,°¥1P,?¥) in terms of the expectation value
of an operator is unprofitable.! Thls rules out the
possibility of expressing E, as the expectatlon value
of some operator. The Integrals glven ln Eq. (63),
however, are unambiguous and can be evaluated in
a straightforward manner.

Integrals involving - (§7)5,-5,6'(F,,), which
occur in other treatments, have here been ellm-
inated in favor of sImpler terms. As pointed out
by de-Shalit and Talmi,’ the integral involving
- (4 m)5,-5,69(F,,) is equal to the integral involv-
ing 276'(F ) whenever the wave function ls antl-
symmetric with respect to the exchange of the pth
and qth electrons, Accordingly we have the result
-3 2 268, B3, -5, v)

b a¥p
+{(¥[5,-5,] (8,4 B¥)]

=2[(D¥ | W) + (¥ | D¥)] . (76)

This relatlon was used in deriving Eq. (63).
Classically, the quantity - §(5,2¢ p,2¥) gives
the relatlvistic shift in mass of the pth electron due
to its speed. f is the well-known spin-orblt cou-
pling term due to the nuclear charge, coupling the
electron with its own orbltal moment with respect

to the nucleus. The first two terms In g, are
similar terms, with the nuclear charge replaced
by that of another electron. The last two terms in
£, couple the spln of one electron wllh the orblt of
another electron, g, gives the spin-spin coupling,
The quantities (D, ¥|¥) +(¥ID,¥) and {D,¥|¥)
+{¥| D,¥) have no obvious classical interpretation,

It is worth pointing out that although we have
derived ¥ starting from the relativistic ®, the
starting point of calculations using the Pauli ap-
proximation will be ¥. From this point of view,
JC rather than )t is the zeroth-order Hamiltonian,
since the rest-mass energy is slmply a constant.
Then the relativistic effects constitute a slmple
perturbation on 3C (although this perturbation is not
given by a Hamiltonian operator), yieldlng c2E,
for the first-order perturbation correctlon to the
energy.

IIl. ORBITAL INTEGRALS IN TERMS OF RADIAL
INTEGRALS FOR ATOMS

We shall henceforth assume that the nonrelativ-
istic wave function ¥ is constructed from two-
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component orbitals ¢, which are symmetry or-
bitals. Inlleu of ¢, we introduce the notation
@iraq; the orbitals are defined by

‘Pnaa(”- 0, ¢)=r'1PM(r)Yn(0,¢)1;a o (77)

Here Y,,(6,¢) Is the conventional normalized
spherical harmonle, and 7, is the two-component
spln function with m,=a, The index i now lanels
orbitals not distinguishable by symmetry. We also
assume that the orbitals form an orthonormal set;
hence we may wrlte

fo " dr Py(r)P,,(r) =5, . (78)

Equation (77) allows us to integrate out the spin
and angular dependence in the orbital integrals
which arlse In the evaluation of E,, leaving Inte-
grals only over radial functions, The orbital in-
tegrals which arise In the evaluation of the non-
relativlstic energy E; will not be treated here,

The radial integrals which emerge from the one-
electron Integrals are

g =4 {= [7 ar [Pir) =20 +1)772P, ()]
x[PLr) = A +1r72P,, (7))
+ 2y P )Py ()]t ,  (79)
Laiy= %Zfo- drr Py (r)P,(r) . (80)

The prime Indicates differentiation with respect
to r. £y, is similar to the usual notation for the
single-electron spin-orbit coupllng coefficlent, **
but it should be noted that the factor ¢ is not in-
cluded. All of vur expressions will be presented
without this factor., We express the two-electron
Integrals In terms of the radial integrals given by

Rat,ugionsoriu = fo.. dr fo' ds(rs)U,(r,s)

X Py(r)P,, ()P, (s)Py(s) , (8")

Py,ugsonaw = fo- dr fo'n dsU,(r,s)
XKy, uyw(P)Py(s)Py(s) , (82)
Qi uyionsary = 2 fo- dr ‘f;. ds W,(r,s)
XKy, ug ) Kop,q10(8) ,  (83)

Dy,usuomar =4 [, drv 2Py (r)P,,(r )P, (r)P,, (r) |,

(84)
where

pv-igy , s<n
sV sy

U,(r,s):{ (85)
W,(r,s)=rs{U,,,(r,s)/(2v +3)

~Uulr,s)/@v-1)] , (86)




5

8 (.
Kkl.ul;v(r)=kk.u;v Py lr) ar [r lPu;('r)]

= Fup Puy0) 2 Py )], (8)
wlth
Rayup=30w+1) 42 +1) = p(p +1)]

x [vw+1)]"%;  (g8)

it should be noted that &,,,;p=0. Under Interchange
of shell Indlces, ve have the followlng relatlons
for these integrals:

Ty =Tyt (89)
Oay=byr (90)

By, upionioniu =Ryujai0m0050 =Ry, upi01,0mpu » (91)

Put,ugion,argy = 'Pu;.u;»,al;v=Pu,u;; oly oAy (92)
@ty upson o0 = = Quy aison,oiw = = @, ugs01,0050
(93)
Qll.u]:nh,ol;v‘Qph,al;u,u;;v ’ (94)
Dxt.u,l,nh.ol =Duj.xl.n~.ul
= Do, upriyor =Dap,ug ot - (95)

Note, however, that there 1s in general no relatlon
between Ry, uyion,0150 aNd Roy o530, up5w, NOT between
Pri,ugson,orse AN Poy o1iap gm0 -

J
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A. One-Electron Integrals
For atoms, we have
Vo==2/r, , (96)
hence, recalling Eq. (70),

3,-6,:-:'21"3 _— (97)
Then we easlly find
H =B Ctrae 520)um) = (68, BpPias) 0gum)
= (@120l (8, *Bp0,uns) ]
= 0xu0ugOosuy - (98)
For the integral over f, we flnd

((pnaa’f'wjuﬂb> =6Au()‘a'la-s l"B) (blsa-s 1(1){1“ ’

(99)
where the only nonvanishlng components of I, and
s, are given by

lo=1,, ly=%C)yY2(1,il),
/2 . (100)
So=8g, Sa=F(2)V%s, 2is,).
Hence the angular part of Eq. (99) Is just the ex-
pectatlon value of 1 -8,

B. Two-Electron Integrals

For g, we have, from the results of Innes!'? (or
the equlvalent results of Horle'?),

(Coac(D0ore (@) £2,10] 1us(1)0104@)) =C(1, 1, 2,6 - a,d = cXb|syqla) (d]sec]c)

%2 (= 1)°[3 wlw+ 1)(2w = 1)(2w +1)2w + 3)] Y2 [Clw +1,w~1,2;a = B, B+b +d - a-a-cXra|Cuyyams | 1B

x<p7’cu~l.6¢b«1-a-a-c |06>Ru.u“».al:u +Cw-1,w+2,2;a-8,B+b+d - -G-CXMI Cu-t, a8 ' 1)

where C(Auv; a, B) is the Clebsch-Gordan coef-
ficlent in Rose's notation, ' and C,, is the unnor-
malized spherlcal harmonic:

Cul6,0)=[4n/(2x +1)]21,,(6,0) . (102)

The summatlon over w ln Eq. (101) may be taken
to run over all positive integers, but only terms
In which the angular Integrals do not vanish are
different from zero. Hence, only values of w for
which both of the quantltles A+ +w and p+o+w
are odd integers contrlbute to the sum. It follows
that the entire integral in Eq. (131) vanishes unless
A+ M +p+ols an even integer; in other words, the
matrix elements of g, are diagonal with respect
to parity. The values of w for which Ry, .y on,0150
occurs in Eq. (101) are further restricted by the
conditions

X(p‘y ,Cuol.sobod-a-a-c,Uo)RM.ol;M.uy;«J ’ (101)

Appu> w+12])\-u] ,

(103)
p+02w-12|p-a] .

The values of w for which Ry, a4, 4w OCCUrs are
restricted by conditlons similar to those given in
Eq. (103), with A and p interchanged and u and o
interchanged. Note that the range of w for whlch
Roy,0150,u530 May occur can differ from the range
of w for which Ry, ;0,010 May oceur,

We write
Euie=8liz+812 (104)
where
Bla2==27d(F XD (5,+28,) . (105)

Then the results of Blume and Watson® yield
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<(9uau(1)¢hnc(2) lg;,lz' ‘p;ndb(l)wlobd(z)) = %(3)-“2(6&(”3«07-6-0 'a) +26a°(d' Saoy-p-d IC))

XZ:V (- 1)% P‘)‘i Coirt '06) {(2" + l)l,zc(uul;y -0,a- B)(MY' Cy.a-a' “B)Pu.nnn.ol;v

- 2 @u+1)@w+ )V 2C(wl;y - 6,0 = B) (A |T%, 44| 1B)

weytl

ltere we have introduced the operator TYwa, which
operates on the angular coordinates 8 and ¢; it is
given by the equation

Toa=25 Clw;a = B,PC,,a-sls
hence®

o TS, | 1B)

(107)

= Baas,p( = 1) (20 + 1)[(2w + D (p + 1)/(22 + 1)) V2

x}ulw

|2 p
where

oo

is the 6 —j symbol.2! Nonzero terus in the sum-
mation over v in Eq, (106) occur only when both
A+psvand pro+vare even integers, hence the

} C(uv2;00)Clpwr; 8,a=8) , (108)

v 1w
[P ATt

xlbu,wlRu.uunh.ol;u =04 ,v-1R0ox 01500, 19 ;u]} . (106)

integral for g,, iike the integral for g,, vanishes
unless A + i +p+0is an even integer. The range
of nonzero terms in the summation over v in Eq.
(106) is further restricted by the conditions

A+uzvz|r-p|
p+o2v2lp-o| . (169)
Note that the nonvanishing terms in Ry uy:0n,01 50
occur only for values of w satisfying Eq. (103) and
that a simiiar situation hoids for the terms in
Rnh.ol;u.unu-

In place of our integral Py, ,,;o,01;4, Blume and
Watson®® use an expression which contains dive rgent
integrals when v=X + it (unless X = ). The inte-
grals diverge because P, (r) and P,,(r) are propor-
tional to »**! and »**!, respectively, in the neigh-
borhood of =0, A similar situation arises in the
expressions given by Beck.?® In the integral
Pyy,usion,01;0 1O divergences occur,

The general expression for the integral of g, is

<¢uaa(1)¢.pyc(2)'go. le‘ﬂjuao(l 1P1a54(2)) = = 0gp0cq Zu [("a l Cy,a-sl LB (05] Coa-s1PY) Qi ugson,0110

+(2v+ 1) +2) al T a,a-8] 1B) (061 Tou,a-sl P‘)’)‘Ru.n;m.ul;u +Rnh.ol:ll-nn°)] i

(110)

the summation over v proceeds as in Eq. (106). In case M= uj=pk=0l, Eq. (110) gives Yanagawa’'s result. 3
Beck’s results® imply Eq. (110) when the divergent integrals in his expressions are eliminated.

An integration by parts yield

%(([igla ) El%mu(l Wurc(z).l | (P,nab(l)‘/’lou(z» +(¢uau(1 )‘Phnc(z)l iglz 'Elﬁf’;uab(l)%ou(z»)

=60b6clel.u1.nh.ol Ev (2v +1X>‘al Cv,a "y IiB}(OG' Cv,a-a 1py) ’

where the summation over v proceeds as in Eq.
(106).

IV. REDUCED-MATRIX ELEMENTS

Since the radial function Py (r) introduced in Eq.
(77) is the same for all values of o and @, there
are 4) + 2 orbitals ¢,,,, characterized by the same
radiai function P,,(»), This set is an electron
shell, {abeied by the combination index Ai.

From the available orbitals, one can construct
N-electron Slater determinants (SD's); each SD
is completely characterized by the particular or-
bitals used for its construction, which are called
the occupied ovbitals in that SD. The number of
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(111)

[
occupied orbitais of a shell in a particular SD is
called the occupation number of the shell in that
SD. Obviously, the occupation number of the shell
Ai in any SD 1s< 4X + 2; when the equality applies,
the shell Xi is called a closed shell of the SD,
otherwise an open shell. An electron configura-
tion is the collection of all SD’s which have the
same shell occupation numbers. Hence, a set of
occupation numbers defines a configuration com-
pletely, although in general it only partialiy char-
acterizes the SD’s of a configuration,

An electron configuration can be resolved into
N-electron functions which belong to definite sym-
metry species and subspecies. These N-electron
functions are linear combinations of the SD’s of a
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k configuration; we call them configuration state p shell, On the other hand, for multiple open p
] functions (CSF's).2* We Introduce for the CSF's shells and for open d or f shells this is no longer

tion of 82,2, 32, J,, and 9 (parity). The operators
J2, J,, and § commute with the relativistic Ham-
iltonian D (and with the Breit operator ®), hence
J, M, and P are “good” quantum numbers. The
operators §2 and £* only commute with the non-
relativistic Hamiltonian, hence S and L are,
strlctly speaking, not good quantum numbers, The
index A labels CSF’s not distlngulshable by their
values of S, L, J, M, and P, CSF's with the same
values of S, L, J, M, and P, but from different
configurations, have different values of A; so do
dlfferent CSF's arising from the same configura-
tion with the same values of S, L, J, M, and P,
when this is possible,

In many cases, a CSF arising from a particular
configuration is uniquely specifled by its values
of S, L, J, and M (the value of P can always be
deduced from the set of conflguratlon occupatlon
numbers), Important examples are configurations
whilch have at most one open s and/or one open

r the notation ¢ ,;, ,yp. Each CSF is an eigenfunc-

(ASLMP|FIA'S'"L'J"M'P") = 6, 460 5ppe( =~ 1)5*5"*7 {
The quantlty (ASLPIF!A’S’L’P) s the veduced-matrix element of F, As our notatlon suggests, it 1s in-
dependent of the values of J and M, although it stlll depends on other detalls of the constructlon of the two
CSF’s, Including the values of S and L and of §’ and L',

1 2 =2 v
s zp < Py d’ASLI‘lP lp# ¢A'S'L'J‘M'P'> +(D1¢ASL1MPl(bA'S'L'J'M‘P') +(¢ASLIUP'D1"’A'S‘L‘ J'M'P)

(D2¢ASLI"PI¢AISILOIDMIPI> +(¢ASLJ‘IPIDZ¢A' 5'L'I'“'P'> = 6,,:6"":6;,;,,65 SIGLLA\ASLPlnzlA'SLP> .

(ASLIMP|GylA'S'L'I'M'P") =8, 1161 8ppu 85 548, 1{AS LP| Gyl A'SLP)

always the case, A simple example is the configu-
ration 2p%3p. All of the CSF's from this configuration
have P= -1, The CSF’s arlslng from this configur-
ation are uniquely determlned by the speclflcation
of §, L, J, and M for the cases where S and L
Indlcate 25, 'S, *P, ‘D, or 2F. On the other hand,
there are three independent 2P CSF’s, with the 2p
orbitals coupled to form a 'S, 'D, or 3P function;
similarly there are two independent 2D CSF's,
with the 2p orbitals coupled to form a 3P or 'D func-
tion. In these cases the index A for the CSF
® 4szsup Not only indlcates the configuration 2p?3p,
but also serves to distinguish between the three
possible 2P CSF's, or betweer the two possible
2D CSF's.

The use of CSF’s that are eigenfunctions of L
and §2 allows an applicatlon of the Wigner-Eckart
theorem:2® The dependence on J of the matrix
elements wlth respect to the SCF’s may be factored
out In terms of a single 6 ~j symbol,?® allowing
us to write, for instance,

L §J

s’ L 1}(ASLPIFIA'S’L'P) (112)

In similar faskion, we wrlte

(ASLIMPIG,IA'S'L"I"M'P") = 5, 148,405 ppe( = 1)E*5°*7 {

=8, 0 8uur Opprigseby(ASLPIN|A'SLP) ,  (113)
(114)

- (115)

sI7 f,'{}(ASLPIG,IA’s’L'P) , (116)
SL, z, g}(ASLPlczlA'S'L’P) (117)

(ASLIMPIG,l A'S'L'J"M'P") = 5, ,46,ye6ppe( ~ l)Los'v{

These relations constltute a considerable simpllfl-
cation, allowing the matrlx elements to be com-
puted for all values of J with little more effort
than that required for a single value of J,

The matrlx elements glven In Zqs. (113)-(115)
vanish unless L=L" and S=S’. However, non-
zero matrix elements of F, G,, and G, for which
L’#L and/or §'+8 do exist, hence an accurate
wave function describing an atomic state 1s not in
general an eigenfunction of I? and §. For a large
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number of cases, however, wave functions with
definite L and S provlde excellent approximations
(Russell-Saunders coupllng), and the matrix ele-
ments with L #L’ and/or §'#S may be neglected.
Then the relativlstic corrections simply remove
the degeneracy with respect to J of the nonrela-
tlvlstic energy. This case is our prlmary concern
in this paper.

In this case the wave functlon ¥ is an eigenfunc- |
tion of T2 and §%; we append the quantum numbers, y

b= #M
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S, L, J, Mand P, writing ¥¢5;,4p. Our expansion panslon coefficients become real; we assume this
of the wave function In terms of the CSF’'s may be to be done. Note that the expansion coefficlents
written C,s1p do not depend on the quantum numbers J
dM
v =—\ an b
stoup =24 ®aseiurCasie (B9} We combine our expression of ¥, ,,p In terms
We can always choose the CSF's such that the ex- of the CSF's with our previous results to flnd
J

= & LS J
EZ.SLJP=E2.SIP+(_1)L o {S L 1}((‘I’SLP|FN’SLP) +<“’st|le“’$1.?))

P
+(=1)* I{S L 2}(“’5“"62”’“;:) ’ (119)
where
Eps1p= & Casrp(ASLPIT | A'SLP) +(ASLP{ i, A’SLP) + (ASLP|G4lA'SLP))Chos1p (120
AA'

(‘x’su"“‘l’sn) ” E CASLP<ASLP'F|A'SLP) CA'SLP r (121)

AA'
(¥spplGyI1¥spp) =2 Cagip({ASLPIG(IA'SLP) Cprgrp (122)

AA!
(VspplGol¥srp) =27 Cps p(ASLPIGy1A'SLP) Cpegrp . (123)

AA'

The entire dependence of E;, s, on J 18 contalned In the 6-j symbols in Eq. (118). Hence, from the prop-
ertles of the 6—j symbols, we flnd the relation

Epsp=l2S+1)@L+1))" T, 27+ 1)Eq, 5155 (124)

so E,, s;p is the average flrst-order relatlvistic correction to the energy of the J multiplet, as was suggested
by our notation,
In the case of Russell-Saunders coupling, where Eq. (119) holds, E,, s;,p would follow the Landé interval
rule with respect to J if the term proportional to {(¥s,,1G,1¥s.p) were absent, since for L #0 and S #0,
(_I)L.s.,{L SJU|_ 1 JUsD-L(Ls1)-S(S+1)
S L 1f 2 [LL+1)2L +1)S(S+1)(25+1)] V%

As pointed out by Araki, ¥ the terms proportional to (¥s,p1G,1¥ s, p) cause a devlation from the Landé
interval rule even in the case of Russell-Saunders coupling, as may be seen from the relatlon

(_l)m.,{L S J} 3|+ 1)~LL+1) =SS+ V][I +1) = L(L +1) = S(S+1) +1]-4S(S+ 1) L(L +1)

S L 2{ 2[L+1)RL-1)M2L+1)2L +3)S(S+1)(25-1)(25 +1)(25+3)}'/¢
for S=1land L=1,

V. MATRIX ELEMENTS OF THE FIRST-ORDER RELATIVISTIC CORRECTIONS TO THE ENERGY IN TERMS
OF RADIAL INTEGRALS

The matrix elements and reduced-matrix elements with respect to the CSF's arising from the flrst-order
relativistic correctlon to the energy can be expressed in terms of the corresponding one- and two-electron
orbital integrals, We have dealt with these orbltal integrals in Sec. III. In accord with our results there
we write

(ASLPITJA'SLP) =25 Sastp,atsLpinisTay o (125)
Ay
(ASLPIFIAS'L'P) = 2 tysip arstropsnsbnng s (126)
Ay
(ASLPIHZIA’SLP)=§Z:Z3 ZldAm,msmu.u,.p..a Dy,upobot (127)
By ok o
1890

"
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(ASLPIGy|A'SLP) =205 2 (%: TO;ASLP,A'sz,p;u,;q;nh.ol;wRM,ul;ph,ql W

A uf ook ol

(ASLPIG,|A'S'L'PY =123 %
M uj ook

L

ol

<ASLP|Gz|A'S'L'P) =22 Z E E rZ;ASLP.A‘S‘L‘P;M.uuﬂhﬂ;wRM.uHﬂ.al H"

M uy ook ool w

The radial Integrals appearlng here are defined In
Eqs. (79)-(84); the summatlons over w and v
proceed as in Eqs. (101) and (106), respectively.

The coefficients s uspp,a¢ sLpinigs LasLp,ar s oepinigs
AASLP, A" SLPIM ug,0h 000 Y03ASLPA" SLPiM ug ok, 00 5w
V1 ASLP A’ S L PiM sugioh,otiws V2iASLOGA SLPIM,ugioh, ol s
TASLPiA' SLPiM ugion,otyvs 2N
DPASLP,A’S' L' Pyri, ugson, 0z Characterize the angular
and spin parts of the various relativistle correc-
tions to the energy. They depend only on the detalls
of the construction of the CSF’s from Slater deter-
minants, For simple cases, thelr derivation,
with the help of the results glven In Sec. 1II, is
usually not a difficult matter; however, general
formulas for them, partlcularly the coefficlents
originating from the two-electron Integrals, can
be only obtained by an elaborate analysls Involving
Clehsch-Gordan and/or Racah algebra, and this
will not be attempted here. Note that the nonvanish-
ing coefficients for any partlcular case are actually
rather sparse. For example, In the case ASLP
=A'S'L'P, Suspp,asLppiss a0d Lyspp asppiny vanlsh
unless i =, while dyspp,asLpiri,ug,on,000
Yni ASLP, ASLPM ugioh,on0 =0, 1, 2),
TASLP,ASLPiM, ugionorivy 2Nd PAsLP,ASLPIM, upion 0w
all have nonzero values only In case M= pj, pk=o0l :
or In the cases N=pk, pj=0l, and xi=ol, uj=pk.
Note also that S 5, p, 4 spp;¢ iS Simply the occupa-
tion number of the shell M In the CSF indexed by
ASLP,

We note also the relation

Y0iASLP,A'SLPiM, ugion,ot;0 =Y 0;ASLP, A SLPioN, ol 3N vBf W

(131)
which follows from Eq. (109). However, no sim-
ilar relation exists In general for
V1, ASLP,A*S'L*P ;M ,u30h,0150 OF fOT
Y2iASLP,AYS'L'P M ufioky ol ju

In practical calculations, CSF’s withclosed shells
are a frequent occurrence. 28 Simplifications then
apply which we give here, We suppose that there
is some shell pk for which

SASLP,ASLPionh =Satstrop,argrppion =40 +2 ; (132)

that is, that some shell pk is a closed shell in both
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z (Eo V1{ASLP, A’ S' L’ PiM , ufioh 00 ju RM.uunt.ol;w
[

2023

+Zv: qASLP,A'SLPiM  ugion, ot Qriyugion,ory) o (128)

+zpASLP.A’S’L‘P;M.uj;ni.ql;v Py,upion,orge) , (129}
v

(130)

the CSF labeled by ASLP and the CSF labeled by
A'S'L'P (the case ASLP=A'S'L'P 15 not excluded),
Then we have?®

Lascparstrrpiom =0 (133)
and, in accord with Elliott’s results, ®

V2iASLP,A* S L'P M usion,onjw =0

V2iASLP.A'S'L'P son,0h M, ug5w =0 (134)

Y2;ASLP. A’ S L' P Al ohsugson;w=0

for all values of Aé, pj, and w. From the results
of Blume and Watson®® and Beck,? we have

/’AsLP.A's'L’P;M,u“pi.pnv =0 ,

Y1;ASLPIA’ S' L PUM 134 30k, 0k {w

(135)
=-%bxubw,ltASLP.A‘s’L'P;Mj(4p+2) )
Y1 ASLP A S LePion kit ugjw=0
PAsLr,a* st LopiM,oniug, oniw
= %6AM!ASLP.A’S’L’P3W
X (4p+2B8[A + )], 4%y, ,  (136)

Y1,ASLP, A’ SLP; M, phsw
= %6AutAsLP.A’ s' iy (40 +2)3A( 4 1)] row

Here k,,,;, is given by Eq. (88) and x,,, is given
by

Xuy = %onu-v Byyyou Buw-x/[(A +H+V+ I)Bhuw ] ’

(137)
By, =(20)1 /(0! )

when A+ +v is an even Integer; x,,, vanishes 1f
A+p+vis odd. Also, we have used

V=1 [0@+ )] A4 p+0+ )0+ p~w +1)

XA+w=p)p+w =204 (138)
For the orblt-orbit coupling co=fficients, we find
YO;ASLP,A'SLPiM, uyiok,oh50 =0
Y0;ASLP A SLP M \ohiug ok jw

1
== 30uSascp,asepins 4P 42005
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TABLE 1. Fine-structure spiittings in cm%.

Blume and This work,

Watson® Malli® Hartree-Fock Experiment
BOP; =Py ) 14.6 15.16 16
cip,~py) 15.8 16.17 16.18 16.4
cép,-'py) 25.8 28.59 26.56 27.1
NCD. =Dy, -13.6 -12.97 -8
NEPy, =Py ) -5.5 -5.09 0
oep, =Py -72.7 -173.69 -173.62 -68.0
0ep. =Py -1€2 - 163.94 —-163.83 -158,3
FCPy,=ipy ) 397 ~402.2 -404,0
APy =Py ) 90,4 92,72 112,04
S1ep, =*py) 64.5 66,17 65,10 77.15
siép, -p) 128 129.03 126,95 146.16
s0p =3P -183 - 181,89 —-181.61 -176.4
0P, -p)) - 369 - 366.95 - 366.35 - 396.8
ClEPy =Py ) =818 -822.9 - 881

*See Ref. 32. See Ref. 33.

TASLP,A*SLP M ki 1y, o050

== 36,5, SLP,A'SLP;M}(4p +2),, , (139)
except in case Af - ¢1f = pk; In that case we {lnd
YO;ASLP;A' SLD ok oh;0k,0h}w

:_%SASLPpA'SLP?P..(4P+2)L’99“ . (140)

Equations (139) and (140) are consistent with the
resuits of Beck.? Note that the occurrence of the
factor { in Eys. (136) and (138) compensates for
the fourfoid occurrence of such terms in the sum-

mations given in Eqs. (128) and (129). Finally,
we have

ARsLP AT SLPIM 1 Jo0h,0h

=il bausaseparsipns@p+2))s  (141)
uniess A = uj = pk, where we have
dasLp,a*supiononon,on = $SAsLp,atsLpiom(4P +2)

(142)
The factor §in Eq. (141) compensates for the six-
foid occurrence of such terms in Eq. (127).

Vi. NUMERICAL APPLICATION
A. Hartree-Fock Resuits

We have computed the first-order relativistlc
corrections to the energy for the ground states of
the atoms He through Ar, and for the two lowest
excited states each of C, N, and O. The analytic
Hartree-Fock wave functions of Cohen®® were used
for He through Ne and Malll's wave functions®
were used for Na through Ar. In Table I we present
our resuits for the fine-structure spilttings and
compare them with the previous results of Biume
and Watson®? and Maiii,®® and with experimentai
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values.® In Table II we present the parts of the
reiativistic corrections to the energy which do not
contribute to the fine-structure spiitting. These
are the quantities ¢"2E,, where E, ls deflned in
Eq. {(120).

Essentially the same formaiism was used for aii
of the computed resuits in Table I, but different
wave functions were used in each case. The analytic
wave functions we have used are characterized by
carefuily chosen basis functions and should prove
quite accurate, The close agreement between our
resuits and Maili’s results, based on numericai
wave functlons, confirms this. [Note that Maill’s
results omit B, N(¢D), NCP), F, Al, and Ci. ]

The eariier resuits of Biume and Watson are based
on analytlc wave functions of poorer accuracy,

Our results ln Tabies I and II were ali computed
with wave functions which exactiy satisfy the cusp
condition. ¥ Additionai computations were made
using wave functions® in which the cusp condition
was reiaxed, but were otherwise of comparable
accuracy. These resuited in virtually the same
values for the fine-structure splittings as those
we have glven, There is, however, a difference in
the computed value of c'2E2 of about 2% or 3% for
atoms In the first row of the perlodic tabie; for
example, for N(*S) we obtain ¢™2E, = - 0. 026926,
whiie the vaiue from the exact cusp wave function
is = 0,026545, This difference coines mainiy from

the diiferent vaiues obtalned for the integrais =,,,

TABLE ii. Averuge reiativistie eorrections to the cnergy

in a.u.
Nonrelativistic Average rciativistic

energy® eorrection ¢™2E,
He('s) —2.861680 —0.000 064 842
Li(%s) —17.432726 -0.000052552
Be(ls) -14.57302 -0.0021148
B(P) —-24.52906 —-0.0058933
ctp) -37.68861 -0.013343
c('p) -37.6313% -0.013339
cis) - 37.549 60 -0.013369
NUs) - 54.400 92 -0.026545
NCD) -54.296 15 -0.026440
NEP) - 54, 22507 -0.026432
ofp) -74.80938 -0.047540
o('p) —74.72926 -0.047576
o('s) -74.61101 —0.047534
FEP) -99.40934 -0.079573
Ne (') - 128.5470 -0.12567
Na(®s) -161.85884 -0.19187
Mg('s) ~199,61461 -0.28312
AlCP) —241.876 64 - 0,403 40
siép) —288,854 29 —0. 56000
P(‘s) —340.71871 -0.75952
s¢ép) -397.50472 -1.00957
C1¢P) —459.48197 -1.31804
Ar('s) —526,81744 -1.694 00

From Refs. 50 and 31,
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TABLE Iil. Total Hartree-Fock energies in a.u.

Relativistic This work

Hartree-Fock® E +cE,

iie -2.8617 -2,861745
Be —14.5752 - 14.57513
Ne - 128,6753 - 128,6727
Ar —528.5513 -528,51144
2See Ref, 38, -—

[defined in Eq. (79)]for the orbitals of s symmetry,
which scems to be caused by different behavior of
these orbitais near =0 in the two cases. It is the
exact cusp wave function that gives the more ac-
curate description near =0, and hence the more
accurate vaiue of c?E,,

When reiativistic effects are small, there shouid
be good agreement between our Hartree-Fock re-
sults and results from relativistic Hartree-Fock
calculations of the type outiined by Kim. 3" In
Tabie IIT we compare our results for the sum
E; +c™2E, with the totai energy, including the Breit
correction terms, obtained by Mann and Johnson,
for the atoms He, Be, Ne, <nd Ar. It shouid be
noted that their relativistic Hartree-Fock results
inciude energy corrections of order ¢, ¢, etc,
which come from the Dirac Hamiltonian and the
Breit operator, while our results omit such terms.
Since their caiculations omit other higher-order
energy corrections (e.g,, the Lamb-shift correc-
tion), it is not at aii cicar that their results actuaiiy
improve on ours.

B. Multiconfiguration Results for Nitrogen

For most of the atoms in the first row of the
periodic table, the Hartree-Fock results given in
Table I are in good agreement with experiment.
The most noticeabie discrepancies occur for the
nitrogen 2D and ?P states. Hence these states
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provide a good testing ground for multiconfigura- '
tion resuits for the fine-structure spiittings,

The wave functions used here were computed
using a multiconfiguration self-consistent-fieid
{MC-SCF) formaiism of the type put forward by
Hinze and Roothaan,?* in which the orbitals and
CSF expansion coefficients are simuitaneousiy
optimized, The radial functions P,(r) are expan-
sions in terms of normalized Siater-type basis
functions, nameiy

Pylr)= Ep Rxp(”)cup ’
Ry (r) = (28002 2p°1/(20,,) ]V 2™ e7Cr7

The basis functions were taken from the resuits
of Bagus and Giibert®® for the nitrogen 2D and 2P
states; the {'s were not reoptimized. The radiai
functions for our wave functions are given in Tabie
IV, together with the nonreiativistic energies and
the values for ¢2E,.

The CSF expansion coefficients are given in
Tabie V. The nitrogen D wave function consists
of CSF's from the configurations 1s%2s%2p?,
15%25%2p%3p, and 15°2s23p%2p. The nitrogen 2P
wave function contains CSF’s from these configu-
rations and aiso from the configurations 1s%2p°
and 1s%25%3s%2p. Note that onlv 2P CSF's arise
from the last two configurations. Since we have
required that the 2D wave function be orthogonal
to the 2D function

1522521 V2)[2p2 CP)3p - 2p%('D)3p)

the five CSF expansion coefficients provide oniy
four independent variational parameters. The sub-
stitution 2p - 2p + €3p yieids

2p’2D = 2p%?D +V3e(1/V2){ [2p*(P)3p D)
-[2p*('D)3p DI} + O(€®)

hence our constraint on the D wave function cor-
responds to the exclusion of the function coming

(143)

TFABLE 1IV. Energies and radiai functions for MC-SCF N(D) and N(P),

Nitrogen 2D: E;=-54.31429, ¢"2E,=-0.026914

n £ Cys Cog n 4 Cyp c3p
1 10,595 0.110750 0.001 260 2 7.693 0.008103 0.025191
1 6.026 0.929642 -0.266426 2 3.272 0. 225920 -0.682047
3 7.332 -0.042260 ~0.030 465 2 1.877 0.438952 -0.774379
2 2.528 0.002159 0.539124 2 1.168 0.414068 1.430358
2 1.586 -0.000088 0.554 662

Nitrogen 2P: E,=—54.28665, c"2E,=—0.026 943
n 4 Cis Cog C3e n t Cyp C3p
1 10.592 0.111253 0.002583 0.010633 2 7.748 0.007716 0.024814
1 6.022 0.932954 -0.255339 -0.338239 2 3.275 0.226397 ~0.613019
3 7.323 -0.042279 -0.032453 -0,239912 2 1.865 0.451033 -0.825028
2 2,527 -0.005195 0.550 576 2.512475 2 1.131 0.405 991 1.432865
2 1.589 -0.007302 0.544 268 -2.251829
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‘'ABLE V. CSF expansion coefficients for MC-SCF
_NCD) and NCP).

NED) NEP)

0.995 871

157 252 '.’p"
157 262 2p*CPI3p
152 2% 2pU'D) 3p
15 252 3pCPI2p
152 2:2 3pi'mI2p

15 252 2p? 0.978718
0.014176 15 25? 2p*('S) 3p —0.028 881
0.014176 1s? 2s? 2p’(P) 3p —0.021768

-0,051748 1s? 2s22p%('p) 3p  0.006 861
0.071852 15’ 252 3p¥('S) 2p —~0.064996

1s? 257 3p?CP) 2p  0.051006

1s? 257 3p*('D) 2p  0.0354 263

12 2p 0.174074

152 252352 2p 0.023 747

from the “single replacement” of a 2p function by a
3p function in 2p°%D, For the same reason, we have
required the Zp wave function to be orthogonal to
the 2 function

L1V )ns2s22(2p? (S)3p) - 3[2p*CP)3p ]

-Vsl2pr(tD)3plt

hence the ninc CSF expansion coefficients provide
oniy eight independent variational parameters.

Our wave functions for the nitrogen D and 2P
are much too crude to be considered accurate de-
scripiions of the electronlc states to which they
pertaln, Accordingly, our resuits must be regarded
as oniy preliminary, to be confirmed by calcula-
tions with more accurate wave functions. Stili, the
fine-structure splittings for the nitrogen 2D and 2P
states computed with these wave functions are a
substantial improvement over the Hartree-Fock
resuits, as may be seen from Table VI, This is
perhaps not unreasonable, in view of the quite good
agreement with experiment already obtained with
& Hartree-Fock wave function in the case of the
carhon fine-structure splitting.

The sltuation can perhaps be made more plausible
by observing that in carbon the addition of the CSF

JOHN DETRICH 5

TABLE VI. Nitrogen fine-structure splittings in em™,

Hartree-Fock MC-SCF  Experiment
Ds)y=Dyy  —12.97 -9.23 -8
2Py =Py -5.,09 -0.34 0

from the configuration (1s ¥ (2s)?2p3p does not im-
prove the wave function, since a version of Bril-
fouin's theorem® applies. This argument breaks
down in nitrogen, since there is more than one p

or 2P CSF which can come from the configuration
(1s)*(2s ¥(2pf?3p. ‘The addition of such a CSF can
influence the one-electron nuclear spin-orbit con-
tribution and the contributions from the two-eiectron
integrals containing 1s-sheil and 2s-sheli functions
(which behave in many respects as corrections to
the one-electron integral £,,). Ordinarily, these
contributions to the fine-structure splitting are

the major part, although the remainder is nol
negligible; for example, in the carbon Hartree-Fock
calculation for the *P,-3P, splitting these two parts
amount to 32.36 and - 5, 80 cm™', respectively.
Thus, the addition of such a CSF can have a much
greater infiuence on the calculation of the fine-
structure splitting than would be the case for most
CSF’s. In fact, our calculations indicate that the
major part of the difference between the Nartree -
Fock results and the MC-SCF resuits presented here
may be attributed to the addition of CSF’'s from the
configuration 1s22522p%3p.
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Steady States and Quasi-EFnergies of a Quantum-Mechanical System

X
In an Oscillating Field ’

HIDEO SAMEE
Laboratory of Molecular Structure and Spectra,

Department of Physics, University of Chicago,
Chicago, Illinois 60637

A general formalism is presented for a system whose
Hamiitonian is beriodic in time. The formalism 1is intended
tc deal with the interactions between bound electrons and an
external electromagnetic ficld, which can be treated semi-
c¢lassically, such as electric and magnetic polarizations,
optical rotation, and transitions among diécrete levels. A
particular bound solution of the Schrédinger equation which
holongs to an irreducible representation of the time-translation
symmetry group is defined as a steady state, and the characteristic
number of the irreducible representation as a quasl-energy.
It 1s shown that the defined steady states and quasi—enefgies
behave in a newly constructed Hilbert space 1like stationary
states and energies of a conservative system in many respects.
It 1s also shown that for a resonant cage the unperturbed quasi-
energy becomes degenerate and the transitions.among discrete
levels can be accounted for by.the familiar degenerate perturbation
procedure. Uslng a sultable Hilbert space, the steady states :
are established as firmly as the stationary states stand in the

theory of a conservative system.
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1. INTRODUCTION

It is well known in solid-state physics that'for a spatially
periodlc Hamiltonian, there exist quasi-momenta and corresponding
Bloch wavefunctions. Analogously, for a periodically time-
dependent Hamiltonlan, one expects the existence of quasi-energies
and Bloch-type states. For these states Young gg.gi.l coined

the term quasi-periodic states; we prefer to use the term steady

states. Sﬁch steady. states have been discussed and used in the

theofies of suséeptibilities, and in the theories of multiple-
quantum transitions among discrete levels.~ >

In spite of the widespread utilization of steady states for
the study of the semiclassical interation between bound electrons
and an external electromagneticlfield, man& aspects of steady
states have been discussed only partially and superficially in
the literature and apparently require further investigation.
The essential points missed by previous workers are the introduction
of a Hilbert space suitable for steady states and the uniform
treatment of steady states in this space. The introduction of
such a Hilbert_space not only makes the formalism transparent,
but élso introduces new aspects of steady states. Above all, it
makes possible the unification of two séemingly different theories
namely, the theory of susceptibilities and thé theory of transitions
among discrete levels. Furthermore the approximate nature of the

previous theories of transition83-5 1s removed in the new formalism.

The main purpose of this paper is to show that, using a suitable
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energles behave in this Hilbert space like stationary states
and énergies of a conservative system in many respects: Quasi-
energies and steady states are eigenvalues and eigenfunctions
of a Hermitian operator (which we call the "Hamiltonian" for steady
states); the variational principle for steady states takes the
familiar form of the Ritz variational prinéiple; and theorems
analogous to the Hellmann-Feynman theorem and to the hypervirial
theorem for stationary states hold for steady states. The
"Hamiltonian" for steady states, which is a sum of the periodically
time-dependent Hamiltonian and the time-derivative opsrator -1R3/0¢t,
plays a central role in this formalism. Unlike energies.(or like
quasi—momenta)f quasl-energies are only defined modulo AHw,
where w is the frequency of external field and r is an integer;
a zone analogcus to the Brillouin zone is Introduced in order
to obtain only physically different steadv stétes.

In Sec. 3, a perturbation theory for steady states is

formulated analogously to the Rayleigh-Schrédinger perturbation

theory for stationary (bound) states. The nonresonant cases

b &8

} Hilbert space, the steady states of a pcriodically time-dependent

! system can be placed on a foundation equally as firm as that possessed

r by the stationary states of ftime-lndependent quantum mechanics.

In Sec. 2 of this pcoer, we shall study the properties of

steady states from a more fundamental point of view than has

becen done before. We first construct a Pilbert space suitable

" for steady states, and thern show that steady states and quasi-
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(e.g., linear and non-linear optical susceptibilities) can be

accounted for by the non-degenerate perturbation brocedure.
In a resonant case, the unperturbed quasi-energy becomes
degenerate or almost-degenerate; multiple-quantum transitions and
the attendant Stark shift can be accounted for by the degenerate
or almost-degenerate perturbation procedure. Previously, these
two cases (nonresonant and resonant casés) are treated with
quite different formalisms; we treat them on an equal footing
as déscribed above. Furthermore, we do not need to restrict
ourselves to a finite-dimensional Hilbert space, the use of
which was essential in the previous theories of ’cransi’cions.}‘5
Another advantage of the present.formalism 1s that it provides
the validity conditions for the obtained férmulas. These aspocts
are demonstrated in Sections 3 and &.

In order to avoid the "secular divergences," Langhoff et al.
write a wavefunction as a produét of time-dependent regular
part and phase factor; certain conditions imposed on the regular
part render this partition unique.2 Although these authbrs
used the fact that for a periodic perturbation, the regular
part is a periodic function of time, they did not show that the
conditions imposed on the regular part éo hand in hand with the
periodic properties of the regular part. We éhall clarify this
point in Sec. 3. '

In Sec. U4, we apply the formalism to two specific examples

in order to demonstrate the potential of this formalism.

189

R ..__.‘.__._—_-_d



o, STEADY STATE AND QUASI-ENERGY

A. Definition of Steady State and Quasi-Energy

We shall study a system whose Hamlltonlan H(t) is periodic

in time with period T: H(t+t)=H(t). The period T is positive,
finite, and fixed at some value. The corresponding frequency

is denoted by o (=2n/t). The Schrédinger equation for the

systém is given by
[1(t) - 1n3c] ¥(F,8) = 0 . (2.1) ‘

The vector ® in the wavefunction ¥(T,t) symbolizes all the

spatial and spin coordinates of the systemﬁ we use this convention

throughout.

Let us assume that there exists a solution w(?,t) of the

form
¥(7,t) = u(i*,‘c)e"i&t/ﬁ 5 .
(2.2)
u(?,th) = u(r,t) ,
[H(t) - 163 ] u(®,t) = Gu(F,t) (2.3) {

where u(#,t) is square-integrable and & is 2 real number. If

a state of the system 1s represented by such a solution, we call

the state a steady bound state (or simply steady state) and the

characteristic real number & the quasi-energy of the state.
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We define a time-translation operator T(At) py means of
T(at)y (P, t+ot) = ¢(T,t) . (2.4)
The time-translation operators
T(qr) , - q = 0,1,2,¢ -, (2.5)

commute with operator H(t)-1fi(3/dt) and form a symmetry group
of the Schrédinger egquation (2.1). Since the time-translation
group (2.5) is Abelian, all 1ts irreducible representafions

are one-dimensional. The steady state solutilon w(?,t) given by

(2.2) satisfies
qu)y(F,t) = 198V Ty(35) ; ' | (2.6)

hence 1t belongs to an irreduclble representation givén by
eiq&r/ﬁ for q;o,i1,i2,---, where the quasi-energy & characterizes
the irreduci%le representation. We could define a steady state
solution as a bound solution which belongs to an irreduc;ble
represehtation of the time-translation symmetry group (2.5).

There 1s a close analogy between the stationary states i

of a time-independent Hamlltonian and the steady states of a
periodically time-dependent Hamiltonlan. For a time-independent

Hamiltonian, the time-~translation operators,
T(t) , ot ™, (2.7)

form a symmetry group of the Scﬁr&dinger equation. A stationary
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state can be defined as a state which belongs to an irreducible
representation of the time-translation group (2.75; the energy
elgenvalue characterizes the irreducible representation.

We shall discuss the existence of steady states in Sec. 515

} for the time being we assume the existence of steady states.

B. Hilbert Space for Stead& States

for the definition of terminology used here, we refer to
textbooks on abstract Hilbert space.6’7

It is well known-that a linear space consisting of altl
square-integrable functions of configuration space T [i.e.,
all functions £(?) with rinite J|r(%)|%a7 1 Goterd ot e
product {f, g defined as _ff*(i)g(?)d? is a Hilbert space,
where the range of integration is the entire configuration

space.6 This Hilbert space shall be denoted by R, and a complete 1

orthonormal set in ® by {fl(?),fe(?),-"}, which contains l
countabiy infinite basis functions. This is the Hilbert space

which plays an important role for the study of stationary bound

statés of conservatlive systems.

Let us introduce another well estabiished Hilbert space 7,
which consists of all possible periodic functions a(t) of time
t with the period T with finite j::;gla(t)ledt and which is

furnished with the inner product

i}

Ll Lo

T/ 2anirnd B
[ ¥ (6)b(t)at (2.8)

(a, b) -1'/2
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= 8l=

where 7 is a fixed, finite, positive, real number.7 The function

iqdm, for q=0,%1,+2,*°*, form a complete orthonormal set in

e
the Hilbert space J, where w=2m/<.

We construct the composite space R+7 consisting of all
possible functions u(?,ﬁ) which are periodic in the time with

period Tt and for which
. /2 .
f flu('f,t) |2a7dt (2.9)
-1/2 :

is finite, wheré the range of integration variable 7 is the
entire configuration space as before. This_composite space KR-+J
is a linear space; the inner product of the functions ul(T,t) and
v(r,t) in R+F 1s defined by

i t/2
?j-'r/2

]

Ku(r,t), v(T,t)» Jﬁ;*(?,t)v(?,t)d?dt_, (2.10)

which satisfies the required conditions to be an inner product
in Hilbert space. The composite space ®+ZJ furnished with this

inner product is agaln a Hilbert space, and the functions unq(?,t),
unq(?:t) T fn(?’) eiqwt s N=1,2,0005 q=0,%1,42,+ -, (2-11)

forﬁ a complete orthonormal set in the composite Hilbert space
R+TJ. This is the Hilbert space which wé shall use to study
steady states. '

‘Once we have defined the composife Hilbert space, we can
define operators in that space according to the theory of abstract

Hilbert space. The definition of a linear cperator inR+J 1s
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apparent. A Hermitian operator 4 in #+J is defined as an operator

which satisfies

Ku, A = Lhu, v» (2.12)

/-l

L for any functions u(T,t) and v{¥,t) in ®R+7. A linear Hermitian
operator in (R (or&) is alsc one in the composite Hilbert space
®+J7. The time-derivation operator -ifi(9/dt) is a linear Hermitian
operator in & and R+J.

‘We should mention here that Okuniewicz also has been using

the similar Hilbert space for the study of steady states.8
C. Properties of Steady Sfate and Quasi-Energy

"Hamiltonian" for steady states. Let us introduce the

operator defined by

FC = H(t) - 1‘52-- ‘ (2.13)

where H(t) is the Hamiltonian of a system concerned, which 1is
periodié in time with period 7t as before. This operator € is
linear and Heﬁnitian in the composite Hilbert space 02+J’.' Using
this operatcr #, the stéady state Schrodinger equation (2.3)

can be written in the form
Four(T, By S EU(T, E)" 5 (2.14)

where the solution u(T,t) is located in R+J. Clearly J¢ is
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analogous to the Hamiltonian for stationary states of the time-

independent Schrédinger equation; we shall call the operator
the "Hamiltonlan" for steady states. Quasi-enefgies and steady
states are elgenvalues and eigenfunctions of the "Hamiltonian" G,
Since & 1s Hermitlan, every eigenvalue (quasi-energy) 1s real,
and two elgenfunctions (steady states) belonging to different
eigenvalues (quasi-energies) are orthogonal.

Physically equivalent steady states. If (& u(?,t)} 1s a

solution of the steady state eigenvalue equation (2.14), then

8 =& + qhw ;3  u'(%,t) = u(P,t)eldt (2.15)

is also a solution for any integer q; the complete wavefunctions

of them are, however,'the same:
a = H J2S & 1
u(r,t)e 18t/8 u'(7,t)e"16 t/ﬁ . (2.16)

In other words, all solutions given by (2.15) are physically
equlvalent. It 1s evident that one can always reduce any quasi-

energy § to a point in a zone
E - o< & <E + o et (2627)

specified by a real number E; therefore bPhysically different
steady states can be characterized (partially) by thelr reduced

duasi-energles, which lie in the same zone. The choice of zone

(1.e., the choice of E) 1s, however, arbitrary; we shall make

nse of this freedom from time to time.
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If [ém, um(F,t)] and [8n’ un(?,t)] are solutions of Eq. (2.14)
and if the duasi-energies 6, and & 1lie in the same zone, then

the eigenfunctions um(?,t) and un(?,t) satisfy
Cup(F:6), u (F,8)> = Ku (F,8), uw (7,6)) . (2.18)

This relation implies that one can always choose thé elgenfunctions

un(F;t) such that <um, un>=6mn, since it is always possible to
choose the eigenfunctions such that <Kum, un§>=6mn.

From now on, we assume that quasi-energles of a "Hamiltonian"
lie in the same zone, so that Eq. (2.18) holds and corresponding
complete wavefunctions represent different physical situations.

Variational principle. The variational form of the steady

state Schrodinger equation (2.14) is given by

88lul =05  glul = Lu,ud /K, WD, (2.19)

where u(T,t) and its variation 6u(%,t) are both in ®R+7. The
eigenfunctions un(?,t) of Ey. (2.14) are given by the stationary
solutions of the variational equation (2.19), and the corresponding
eligenvalues én are gilven by the stationafy values @[un] of the
functional §[u]. We can easily show, analogously e the time-
independent case, that the variational prirciple (2.19) is
equivalent to the steady state Schrddinger equation (2.14).

The variational principle plays a central role for the determination
of approximate eigenfunctions and eigenvalues, as in the case

of stationary states.
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Hellmann-Feynman theorem. A theorem analogous to the

9

Hellmann-Feynnian theorem” for stationary states in a conservative
system holds also for steady state solutions in a periodically
time-dependent system. If the Hamiltonian H(t,\) of a system

depends on a time-independent parameter A and the periodic

relation H(t+t,A)=H(t,A) holds for any A, then the solution
(&(2), u(P,t,N)) of the steady state Schrddinger equation {2.1l)
satlisfles the relation

as(N) _ u, gf{u>>/<<u’ w> (2.20)
2.20

]|

(M) = Ku, Kup /Ly, wy .

The proof is analogous to the corresponding proof for stationary

10

states,”” and will be omitted.

Hypérvirial theorem. The steady state solutions also satisfy

a theorem analogous to the hypervirial-theorem11 for stationary

states: If u(T,t) is a solution of Eq. (2.1)) and if operator 4

is periodic in time with period'r, this theorem states that
Ku, V6,4 =0, | (2.21)

where [#6,4] is the commutator of J6 and +f. This hypervirial
relation (2.21) has a wide range of application depending upon

the choice of the operator #A. For a_particular“choice of 4,

namelyu4=%2:n(?n-§n+ﬁn-?n), where ?n and ﬁn are the position

and linear momentumroperators of the nth particle in the system
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} concerned, Eq. (2.21) yields the virial theorem analogue for

r | steady states:

2&u, T = Ku, (T TV V()1 (2.22)

where H(t)=T+V(t), T is the kinetic energy, and v(t) is the
) potential energy, which is of course periodic. .
A remark. Relations with & , > for steady states have
analogues of l, > relations in the stationary case, as seen
pefore; relations with { , D> for steady states, however, have

no special standing and must be expected to differ from the

stationary case in general.

3. STEADY STATE PERTURBATION THEORY
A. Preliminary Remarks

ILet the Hamiltonian H(t,N) of a given system be given by

H(t,n) = 1O & av(s) '(3.1)

where H(O) is a time-independent Hermitlan operator, the operator
v(t) is also Hermitian bﬁﬁ periodic in time with period T, and
A is a small, real, expansion parameter.

The steady state Schrodinger equation for the system 1s

given by

[JC'(O) SRV L 6(7\)] u(?,t,\) =0, (%.2)
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: ' where
7600 = w(®) _4nS (3.3)

vhich is a Hermitian operator in the composite Hilbert space
R+7; the solution u(¥,t,A) is located in ®+g for any A. Note

that the complete wavefunction ¥(¥,t,A) is given by

¥(#,t,3) = u(Ft,0e t6NE/E

(3.4)
u(?,t+1,A) = u(T,t,A) ,

where (§(7), u(¥,t,7\)) is a solution of Eq. (3.2).
We demand, of course, that u(T,t,A) varies continuously

with A, and adopt the normalization

T G T ARG AT )5 o (5.5)

which is equivalent to {u,u=1 so long'as u(T,t,A\) is a solution
of Eq. (3.2), and which assures, therefore, the normalization

cf the complete wavefunction, namely {y, ¥>=1. The phase factor
of u(?,t,k) wlll be fixed by the standard phase convention,le

namely

«u(?,t,O), u(?,t,')\)>> = <<u(?,t,7‘), u'(F,t,O)>> ) (3-6)

which is always possible.

The unperturbed eigenvalue equation is given by

29 o(2,¢,0) = &(0)u(3,t,0) , (3.7)
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where u(?,t,0) is located in®R+J. Let E  and fn(?) be discrete

eigenvalues and eigenfunctions of the operator H(O), namely

AT (3.8)

H(O)fn('r‘) = B f

then the solutions of Eq. (3.7) .are given by
&(0) = E_ + gfiw 5 u(F,t,0) = £ (Feld, (3.9)

where q is any integer. A choice of the zone (2.17) for the
unperturbed quasi-energles &(0) determines the integers q uniquely.
As mentioned before, if (&(A), u(T,t,7A)} is a solutlon of
Eq. (3.2), then (&(N)+qhiw, u(?,t,x)eiqam} is also a solution
representing the same physical situation. Due to the continuity
of the solutions (&(A), u(T,t,N\)} with respect to A, a cholce
of the zone (2.17) for the unperturbed solutions (&(0), uir,t,0))
fixes the time-dependent phase factors eiqam for all A.

Consider now an elgenvalue Ek of ﬁ(o) and suppose that

0)

H( has elgenvalues Em, E Emn,"', which satisfy

m'J

E, = E_t+phw, E ,+p'fie, E n+D @, <, ' (3.10)

K
for some integers p, P', p",++; then the functions,
£ =y _ipwt a iptat = 1p"at
£ (7), £ (BeIPR) e B et O r e (BB, (5a)

are eigenfunctions of\ﬂﬁo) and belong to the eigenvalue Ek of
.ﬂJO). (Note that several Eﬁ may be the same.) This shows that

even if the eigenvalue Ek of H(O) is non-degenerate in R, the
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[ elgenvalue E, QFJ@(O) could be degenerafe in R+J. If the

i elgenvalue Ek of H(O) is ‘degenerate in R, tﬁen Ek is certainly
a degenerate eigenvalue ofJ%(o) in R+T. Sinced%(o) is linear,
the £(0) and u(?,t,0) given by

6(0) = E,_ , _
' : (3.12a)
- - - -t t
u(r,t,0) = ckfk(r) + cmf‘m(:r')el:"pwt + cm,fm,(r)eip - 4o,

1s also a solution of Eq. (3.7), where Chs Cps Cpys®®* are
arbitrary complex numbers; the corresponding complete wavefunction
¥(T,t,0) 1s given by

¥(%,t,0) = u(#,+,0)e 16(0)t/A (3.12b)

- —E - "‘iEtﬁ = ".E tﬁ
= ckfk(r)e 1 k?/ﬁ + cmfm(r)e m / + cm,fm,(r)e o / 4.

Equation (3.12b) clearly shows the physical significance of the

coefficients, ks Cm? Cpre s namely the probability amplitudes
of finding in the stationary states with the energies, Ek’ Em, Em,,-".
One can see here the reason why degenerate perturbation theory

for steady states can explain transitions among discrete levels.

B. Perturbation Theory ' 1

The Rayleigh-Schrddinger (stationary bound state) perturbation
theory is formulated for an eigenvalue equation in the Hilbert

space R; the analogous theory for the eigenvaiue equation 63:2)
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in R+7 can be formulated by simply tranélating-the formulas for

® into the corresponding ones for R+7. We shall simply write
| down the formulas which will be used in the following chapter.

Non-degenerate case. Expanding &(A) and u(%,t,A) in Eq. (3.2)

according to

&) = 60 4 gl 4 52¢02) RO |
(6,0 = w26 + W2t + 22 (2,0) 4., ) (3.13)
u() (2, t4r) = w2y, n=0,1,2,+-+, /

and equating the coefficients of the same powers of A, one

obtains the following sequence of equations,

[26(0) 0] (0 g, (3.14a)

[2(0) - 0] (1) [V(t)-f,(l)Ju(o) -0, (3.14b)
(496l 4 [0)-dV]u® - D00 Lo (5

The combination of normalization and phase conditions (3.5,6)

vlelds another sequence of .equations,

<<u(0)’ u(0)>> L,

=1 ’ (3.158)

4
&ul®), w1V -0 ; (3.15b)
&9, W@y agu(), Ay (3.15¢)

|
|
.‘

Expressions for the perturbation eigenvalues are
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&V = «ul®, vy . (3.16a)
62 = «ul®) vty . (3.16b)

Degenerate case. Suppose that the unperturbed eigenvalue

6(0) in question 1s degenerate and that one set of corresponding
orthonormal eigenfunctions are ugo)(?,t),"',u§o)(?,t); then
the first-order eigenvalues Egl) and the corresponding "correct"

zeroth-order eigenfunctions ugé)(?,t) are given by

Z§=1 <<ur$10)’V(t)ur(lO)>> - égl)ﬁmn cn’aa =0, m=l, -°,N,
(3.17)
{ w90 =YY w00, o

where the index a distinguishes between the values of eigenvalues
8£1) and the index a in the eigenvector [cl,aa’ca,aa""’cN,aa]
distinguishes between the elgenvectors belonging to the same
eigenvalue<5£1). We can always choose the coefficients cn,aa
to constitute a unitary matrix; tnen the N eigenfunctions
ugg)(ﬁ,t) are again orthonormal.

Almost-degenerate case.13 Let égo) and Séo) be two non-

degenerate eigenvalues or.ﬂ%o) and ugo)(?,t) and ugo)(?,t) be

the corresponding eigenfunctions respectively. The expansion

parameter A is now considered as a fixed finite number, which

is small enough so that one can still put forward the solution

et . o

of Eq. (3.2) as a power series. If the unperturbed eigenvalues

640) and 820) are so close together that they satisfy the relation,
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14060 a1 = [«ul®,v(e)u{D 1, (3.18)
then the first-order approxiﬁate solution, |

600 = 360046000y 4 2g™) 1 00®),

(3.19)
u(?,t,) = [clugo)(?,t)+02ugo)(?,t)] + 0(x)
is given by the secular equation,
(1)
V11+A-5 § V12 : )) (cl
K =0 ,
Vo » VppB-6 &a (3.20)

pe @Dy s v = &l v(e)ul®

C. Transformed Perturbation Equations
We now transform the eigenvalue equation (3.2) by introducing
a factor exp[10(t,A)/n), where 6(t,2) is a function of t and A:
- 6 &
v(#,6,0) = 26N Myz ¢y (3.21)
(0) »
FU 4 av(t) - 36(t,n)/dt - g(A)] vi(r,t,n) =0 . (3.22)
''he complete wavefunction ¥(T,t,A) is now given by
(T80 = v(F, 6, N exp[-1(E(N) t+0(t,N) I/m] (3.23)

Let us first make the transformation such that v(T,t,2)

satisfies the conditions
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<V(?‘:t:}‘): V(F:t:?\)> =1,

(3.24)
olE, 5,0, Sev(B, 6,00 = Gevlze,n), v 6D .
The corresponding 6(t,A) has to be real and satlisfy
éﬁé%;ll = Cu, [HOVav(e) 1 - &) (3.25)

where we have used the fact that the operators V(t) and
exp(16(t,N)/f) commute. Suppose that 6(t+t,N)=6(t,N); then,

integrating Eq. (3.25) with respect to t over the period Ty

one has
&) = &u, [HO bv(e) 1 . (3.26)

This equation, of .course, does not hold in general. Hence
neither 6(t,\) nor v(T,t,\) can be a periodic function of time

with period r. 1In other words, the conditions (3.24) and the

periodic relation
v(T, t+1,0) = v(F,t,2) (3.27)

do not hold simultaneously. It is important to notice the
cloge relation between the conditions imposed on v(T,t,A) and
its periodic property (3.27).

As stated by Langhoff gg_gl.,g one can avoid the "secular

divergences" by imposing the conditions

vl t,0), v(d,e,A)) =1, (3.28a)
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{v(T,t,0), v(T,t,0)) = v(T,t,N), v(r,t,0) , (3.28b)
on v(T,t,A), or by imposing another set of conditions
(P, t,0), v(F,t,0)> =1, <v(r,t,0), v(T,t,N)) =1 . (3.29)

In the following paragraphs, we shall show that one can always
choose 6(t,A) so that v(¥,t,A\) satisfies both the conditions
(3.28) and the periodic relation (3.27).

In order to satisfy Eas. (3.27) and (Z%.28a), the corresponding
6(t,N) has to be real and periodic in time with period t. For
any given 6(t,A) which is real and periodic in time with period

T, the corresponding solution v(T,t,n) of Eq. (3.22) satisfies

Ky, D=0, (3.30)
| (0) _
%g'efn[g—;rm‘%] = 3e[o(t.00-0(t, )] + [&%-gn)]
v me[ Véz(335§§)>] ; (3.31)

\
where éxo’ECXO) and v(o)ﬁv(?,t,o). Equation (3.31) is the key
relation to prove the stautement.

The eigenvalue &(A) is given by

/2
& = [V ge,nat (3.32)
"f.«r/e &(t,n)dt
conh e (0T Cw, () (07
86,0 = 6 4 me[ s >] : (3.33)
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as is seen from Eq. (3.31). We choose the function 0(t, )

suéh that

3 : /2 !

5e0(t,2) = &(t,8) - &(A) f_T/Qe(t,x)dt =0, (3.34)
where the function v(T,t,A) in the &(t,A) is the corresponding
solution for this chosen G(t,k). In order to be self-consistent,
the function 6(t,A) defined by Egs. (3.34) must be real and
pericdic in time with period t; using Eq. (3.32), one can easily
show the self-consistency.

For this specially chosen 6(t,\), the sorresponding v(T,t,7)

satisfies
Lﬂfo) + Av(t) - é(t,x)] v(T,t,2) =0, (3.35)
3 [, v, v] =0, (3.36)

where the second equation follows from Eq. (3.31). If v(T,t,N)
1s a solution of Eq. (3.35), then e(A)v(¥,t,\) is also a solution,
where c()\) is an arbitrary complex function of A. Using'this
freedom and Eqs. (3.30,36), one can always make a solution
v(?,t,\) to satisfy the conditions (3.28a,b).

Thus we have shown that the conditions (3.28) imposed on

v(#,t,\) go hand in hand with th2 periodic relation (3.27).

il i e

Similaily one can show that Eqs. (3.27,29) hold simulataneously.
For this case, however, the corresponding 6(t,A) is not real,

and the transformed "Hamiltonian," Jc(°)+mv(x)-ae(t,m)/at, is
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no longer Heimitian in R+J. Because of this disadvantage, we
prefer the éonditions (3.28) to (3.29) in order to avoid the
secular divergences. '

To sum-up, the equations for thz desired v(7,t,\) are
tEgs. (3.35,33) and Eqs. (3%.28), and the solution v(T,t,A\) of
them must be located in R+J. The eigenvalue &(2) and the
phase function 6(t,\) are given by Eq. (3.32) and Egs. (3.34),
respectively, where v(T,t, ) in the &(t,N\) 1is the solution of
Egs. (3.35,33). The complete wavefunction ¥(T,t,A) is given
by (3.23). Since the solution v(T,t,A) of Eq. (3.35) satisfies
automatically Egs. (3.30,36), the conditions (3.28) are |

equlivalent to the conditions

]
—
-

Kv(F,t,0), v(F,5,N0D |
' (3.37)

Kv(F,t,0), v(B,t,N)D = Kv(F,t,N), v(T,t,0)D ,

4

so long as v(r,t,A) is a solution of Eq. (3.35). The solution
v(?,t,N) of Egs. (3.35,33,28) satisfies

&9, v(t)vp = &, vty . (5.78)

Note that in general the relation <v(o),V(t)v>=<v,V(t)v(o)>
cannot be expected to hold.

Expanding &(A), &(t,7), 6(t,N) and v(T,t,\) according to

s = £2 e gy - T kg

0,0 = T2 Mo () , it = Lo WD(z0)
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and substituting into Egs. (3.35,33,28), one obtains

[JG(O)-t}(O)].V(O) =0, (9,00 . &9 ) < glo) s (3.%0)

and for n=1,2,:--,

| e O e

[Jc(o)_é(o)] (kg [v(t)-a(l)(t)]v(“'l) e gn . g gy (n-k) _ 4 .
(3.41a)

87 (6) = recolO)w()u(0-Vy | gl gl0) ()0 (0) | (noiy (3.41b)
(v(o),v(n)> . '%ZE;% <V(k),\"’(n-k)> :

(3.41c)
One can solve the sequence of equations (3.40) and (3.41)
pfogressivelj. The (‘,'(k) and 9(k) (t) are given by
' /2 »
6(k) o %_f é(k)(’c)dt ;
| At adal| | ; oY (3.42)
T/2
oM (1) = &M (y) _ glK) il f oM (t)ag = o .
-t/2
Incidentally, the variational-equation for the v(l)(?,t)
is given by '

8F[u(r,t)] = 0

3

(3.43)

Flu] = &u,[5(O g9y 4 2re v, [v(8) <(®), v(1) o (O3]

where u(?,t) and 6u(%,t) are in R+7.
Remarks. Let us consider an inhomogeneous equation with.

ari auxillary condition,
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[H(o)—iﬁ(a/at)-Eo]v(?,t) = w(3,t) ,

(3.44)
Eo(B),v(F,8)> =0,

where H(o)fo(?)=Eofo(?) and the given function w(?,t) 1s periodic
In time with period t. If v(T,t) 1s a solution of Eqs. (3.4%)

T/

then the v'(?,t) given by
v, ) = v(E 2y 1(E.-E ) t/n
Ft) = v(T,t) + Zn(;éo)cnfn(r)e 0™"n (3.45)

1s also a solution of Egqs. (3.44), where E, and fn(?) are

discrete eigenvalues and elgenfunctions of H(o), and the coefficients

€, 8re arbitrary. This shows that the solution of Eqs. (3.44)
1s not unique and in general not periodic in time with period T.
The fact that w(T,t) 1s a periodic function of time does not
insure that solutions v(%,t) of Egs. (3.44) are periodic in
timeL14 One shoull establish the periodicity of the solution

V(n)(?,t) of Eq. (3.41a) on the basis of the steady state u(?%,t),

as we have done before. Finally we emphasize that the transformed

equation and the original one are equivalent as long as the

period T is finite.
4. APPLICATIONS

We shall now apply the Steady state perturbation theory
to the case when the perturbing operator V(t) is harmonie,

name;y
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v(t) = gv(l)cosum s (4.1)

(1)

where V 1s a time-independent Hermitian operator, and

ap2n/1#0; we sh2all study two examples for demonstration.
A. One-Level System

In thls section we consider the case when the discrete

elgenvalue E0 of H(o) in question 1s non-degenerate in R, and

when there is, besides EO’ no discrete eigenvalue of H(O) in
the vicinity of E., Eoiﬁa% Eoieﬁa» and EOiBﬁw.
Time-dependence of the perturbed wavefunction. Let us

first assume that there 1s no discrete eigenvalue En of H(o)

which satisfiles En=Eo+qﬁa>for some non-zero lnteger q; namely
the eigenvalue EO ofJ@(o) 1s non-degenerate. We shall use the
tranéformed perturbation equationé (3.40,41); because of the
desirable limiting behavior of the.perturbed wavefunction at
w=0; the same notations as the previous section C will be
used in this section. '

We choose the zone (2.17) such that the zeroth-order

elgenfunction v(o)(?,t) 1s time-independent:

(1 p)eg( =0,  <ey@,,(0 =1,

(4.2) i
g(0) _ ¢ '

g v (2,0) = £ (3) .
 Knowing V(O)L?,t),'one can calculate 6(1)(t) from Eq. (3.14b),

2n
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namely

eV ) = 28V cosat g(1) = e V(l)f6> . (4.3)

Since the first-order eigenfunction v(l)(?,t) is a periodic

function of t with period 2m/w, it can be expanded in a Fourier

series, namely

VW (z,0) = T, eV @6l | (4.4)

where functionsfél)(?) are in 2. Substituting (L.3,4) into
the first-order equation of (3.41a,c) and using the fact that

a#0, one obtains

[H(O)—Eoiﬁa%fi%) w0 e o, (4.5a)
<f0’ f:(!::_:,)> =0 , ("I’°5b)

[H(O)-Eo+qhaﬂfél) e 8 fél)> =0, for gl . (4.6)

From the assumption we made, there are no non-vanishing functlons
in R which satisfy Egs. (4.6); therefore, the functlons fél)(?)

must vanish except for q=#1. Thus the first-order eigenfunctlon

W1 (3,£) 1s given by

g8 = (D (2)e1% 4 2D (et (4.7)
where the functions f&i)(?) satisfy Eqs. (4.5), respectively.
Note that Eqs. (4.5a) yield Egs. (4.5D). J
From Eq. (3.41b), one has 1
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& () = 28(3) (14cosat) , ©(? = %(fO,V( 1)¢ i%) ffi))> 5 (.8)

it 1s easy to see from Eqs. (4.5a) that (fo, (1) (1)> are real.

By similar manibulation, one obtains
W8 (z,0) = £{2) ()62 4 p(B(pe-t20t 4 5023y | (4.9
where the functions fig)(?) and fée)(?) satisfy

0o=0>
(4%.10)
] (el %[V(l)_E(l)](f(1)+f(1)) G 1

[0 gy ] e 0

| [H(O)-Eoieﬁaﬂfﬁg) + [v(l)-E(l)]fgi) - g(@y

3

Leguelh = <o, By o el oLy el oDy | (301a)
oo, t8 = A[<eld) o1y 4 (D) (1) (4.11b)

note that Eqs. (4.5a) and.(4.10) yield Egs. (%4.11a)..
"From the formulas (3.42), one obtains the eigenvalues g(k)
and the phase functions e(k)(t), namely

5M)=EO, (1) -0, g2) . 25@ el o B

(0 (5) =0, o(W(y) - 2E(1)§1%$§',' 6(2) () = pp(@sinzut ()

2w

Thus the complete wavefﬁnctiun w(?,t,x), to the second-order,

is given by
(26,0 = [£ + a(e{}) o0 p (D)o -tat)

+ 7\e(f(e) 120ﬁ+f(2) 12am+2fée))+...]e-1n(t,x)/ﬁ

(4.14a)
213

u;.___.__H_._..............;....-....-n--i-|-i-lllllll|llllllllllnnlllllllllll'



n A

n(t,2) = Egt + 2ag(Peinet 1262 gyoin2at )

5 ‘e, (%.14p)

where fii) satisfy Egs. (4.5), ang fig) and fée) satisfy Egs.

(%.10,11). .

The second-order quasi-energy eigenvalue 8(2) 1s the

quantity of physical interest; for example, when V(l) is the

| T

X cdmponent of the dipole moment operator, -5(2) gives the

frequency-dependent polarizability axx(aﬂ.

Applicability conditions. Suppose this time that there

are functions gqa(?) in & which satisfy

(0) ; 2 o 3
[8'% -Egranole (3 = 0, Bger B4p> = By (4.15)

for some non-zero integer q, where the Second index a in g OL(i*‘)
distinguishes between the. eigenfunctions belonging to the same
eigenvalue Ey-qliay of H(O); then the functions fo(F) and gg;qa('f*)eiqwt
belong to the elgenvalue EO of a%o), and EO i1s no longer a non-

degenerate eligenvalue of‘ﬂxo). For this case, one has to use

the degenerate perturbation method.

If the functions v(o)(?,t), v(l)(?,t) and v(e)(?,t) given by
Egs. (4.2,7,9) satisfy

Ko oo™, {[v(t)-5(1) (1] ylm-2) _ R O P
for all qa , (4.16)

for m=1,+,(n+l), where &(1)(t) and 8(2)(t) are given by Egs.
(%.3,8), then the function V(O)+...+xnv(n)

satisfies the degenerate
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perturbation equations up to the nth-order with the eigenvalue
6(°)+---+x“6(“), and é(n+1) is an eigenvalue of the (n+1)th-

order equation, where the eigenvalues G(k) are given by Egs.
(4.12).

We still assume that EO is a non-degenerate eigenvalue

or H9), For n=1, Eq. (4.16) yields

(gqa, (l)fo>(6q,+1 q,-l) =0, for all qu ; (4.17)

hence if Eoiﬁa)are not eilgenvalues of H(O), then
[6(1)=0,v(0)(?,t)=f0(9)} is a solution of the first-order
degencrate perturbation equation, and furthermore the solutions
fii)(?) of Eqs. (4.5) are unique. If there exist the eigenvalues

of H(O) which are close to the E +ﬁw or E -ﬁa% then the solution
(1)(r) or f(l)(r) becomes large. Therefore the applicability
condition for [8(0)+x8(1), v(o)} is that there exists no eigenvalue
of H'®) at the vicinity of E,tho.
For m=2, Eq. (4.16) yields

<gq: [V(l E(l)]f(1)>6 ezt <g [V(l ]f(l)>6q,-2 «D ,

for all qa ; (4.18)

ir Eyteliw are not eigenvalues of H(O), then [8(2), v(a)] is a
solution of the second-order degenerate perturbation equation,
and the solution fig)(?) and fé2)(?) of Eqs. (4.10,11) are

unique. If there exist the eigenvalues of H(O) vhich are close
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k to the Egr2tio, Eg-2hw, or Ey. then the solution I‘(z)(r), (2)(1‘)

: | or f(z)(r) again becom=s large. Hence the applicability

t condition for [E(O)+A8(l)+k 6(2) ( )4%v(l)] is that besides
EO, there exists no eigenvalue of H(o) at the vicinity o”° EO’
Eoiﬁuy and Eoiaﬁw. Similarly the applicability condition for
(0 eV 26/ 4a36(3) ) (01 (14a2(2)) 15 that vesides
EO there exists no eilgenvalue of H(o) at the vicinity of EO,
%ﬁqE&%anB&%u

Limiting behavior at ux=0. If fiw is much smaller than the

difference between Eo and the closest eigenvalue of H(o), then
there will be, besides EO, no eigenvalue of H(o) in the vicinity
of EO’ Eoiﬁay Eoi2ﬁay and EoiBﬁux hence one may consider Eqs.
(4.1-14) valid in the neighborhood of w=0.

At the 1imit w=0, the functions f(l)(r), (2)(r), and
féz)(r) become

(e D =P,
(%.19)
(@ () m 2D (5) = 2@ - {2 (D)

where f(l)(ﬁ) and f(z)(i) satisfy the stationary perturbation

equations, namely

W ey o |
Lu(o) -Eo]r(l) + [v(l)—<ro,v(1)ro>]fo -0, \(4.20a)
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ot =1, oot w0, <o, e®) e, ey (. 200)

Vhen w-+0, the complete wavefunction v(%,t,)\) smoothly joins

the stationary solution of the Hamiltonian H(°)+(2A)V(1),

v(T,t,N) = [ro + (2A)r(1) + (2n)2¢(2) +...]e-1n(t,h)/ﬁ ,
(h.21)
n(t,n) = t[Ey + (2, v £ > + (27‘)2<r0’v(1)r(1)> wiea],

for any finite t.

This limiting behavior is due to the transformation we made;
the original eigenfunction u(T,t,A) does not have this limiting
property. If one wishes to expand the perturbed wavefunction
in powers of w, tpen the limiting property we obtained is
indispensable.

Variational method. The variational equations for the

solutions rﬁi)(ﬁ) of Eqs. (4.5) are given by

6F, [n,(#)] =0 ; or_[n_(#)] =0,
(4.22)
Py[hy] = <hy, [ pana]n) + 2rece,, [V <o, VP e)n .

These equation can be obtained from Eq. (3.43), or merely by |

inspection. I
A remark. If one adopts another nomnalization and phase

convention, namely <¥, ¥>=1 and (v(o), v=1 with complex 0(t,2),

then one obtains somewhat more complex equations than Eqs. (h.l-lh).15
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B. Two-Level System Connected with Single-Quantum Transition

We shall now ctudy the case which obtains when two discrete
non-degenerate eigenvalucs El and E2 of H(o) satisfly Eésﬁl+hu%
and there are, besides El and Ea, no eigenvalues of H(o) in the
vicinity of Eliﬁu>and Eaiﬁun the cisenyalue E1 of.nfo) is then
almost degenerate. We can treat this problem by the almost-
degenerate perturbation method as developed in the previous
section. In particular, the eigenfunctions and eigenvalues
are determined by Eq. (3.10,20); we shall use the same notation
here as was used there.

Let fl(ﬁ) and fa(F) be the eigenfunctions of H(o) belonging
to the eigenvalues El and E2, respectively; choosing the zone
(2.17) suitabdbly, one has the eigenvalues and eigenfunctions
of #(0) 15 the form,

£g0) - El ) ug_O) (?')t) aa rl(?‘) ’
(4.23)
69wk, - ha,  ud)(R) = ey
The eigenvalues of Eq. (3.20) are given by
61w o[a? + Ke VDD 2)E
(4.2H)

A= (sl - E, + na) /2N ;

the corresponding eigenvectors [°1+’ c2+) and (cl_, ca_) are
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determined up to a phase factor from the equations,

- (rl,v‘l)ré>

+ leg ® =1 . (h.25)

R, = =3

% Coy Gil) A

o legy

Thus the first-order solutions are given by

o

v (26,0 = [og,0{0 (F,8)4ep,
‘ (4.26)

60 « 3(e{® + L0 .

Suppose that the system is in the state fl(?) at t=0;
then the wavefunction W(F,t,k) at subsequent values of t 1is,

in first-order, given by
V(E,6,0) = (cp vy = ¥ )/(eg ey = ep0y)

0-16‘°)c/ﬁ

"R - Rk

e = Ry [(R+e'1“511)“/ﬁ 2 R_e'ikail)n/ﬁ)fl

+ ez'm‘;(4:-"1)‘8‘-5-1)t;/ﬁ - e-1k8£1)t/ﬁ)r2] , (h.27)

since ¥(%,t,\) is the first-order solution of the Schrédinger
equation, and satisfies ¥(%¥,0,A)=f,(¥). The probability Py(t)
of finding the system in the state £, (F) at the time t 1s given
by

Po(t) = (e e/n e'“ﬁf”t/“)/<n+ -R)I?5  (h.28)

substituting (#.25) into (%#.28), one obtains
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r Py(t) = X2I<r1’;(1)ré>|2 [sin(a):(ll)t)]2 ,
8 o™ (4.29)

o) . {&(El-naafnm)e + x2|<r1,v(1)r2>|2]1’/n ;

It is easy to show that the probability Pl(t) finding the system

in the state rl(?) at the time t 1s given by Pl(t)+P2(t)=1.

The formula (4.29) 1s nothing but the well-known Rabl Formula.16
The applicability conditions for the formula (4.29) are

given by Eq. (3.18), namely

(£, Bt /Al & Koy, vV e (4.30)

and by the requirement that there are, besides E, and E,, no
eigenvalues of H(o) in the vicinity of Eliﬁuxand Eeihw. The
presence of eigenvalues of "(0) in the vicinity of E1+qnu>nnd
E +qhiw for |q|>2 does not change the final result (4.29).
These applicability conditions give the conditions for two-
level system model to be valid in the firat-order transition

probability calculation.

5. DISCUSSIONS

Existence of steady state solutions. Most of Hamiltonians

which one encounters in practice are of the form H(°)+Av(t),

(0)

where H is a time-independent Hermitian operator, V(t) is

also Hermitian but periodic in time, and A is a small real
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paramter. If the steady state Schrodinger equation (3.2,3) for
the system has a discrete eigenvalue E(7) and its eigenfunction
u(#,t,\) in R+7, then we certainly have a steady state solution,
since u(?,t,k)e'ig()‘)t/ﬁ 1{s & bound solution of the Schrddinger :
equation and has the required form. Hence the question of the
existence of steady states can be reduced to the question of
the éxistence of the p:rturbation solutions of Eq. (3.2,3).

The unperturbed Hamiltonian H(o) that we are interested
in hag usually bound states solutions in R and therefore the
operator.ﬂ!o) (=H(°)-1ﬁa/3t) has discrete eigenvalues and
corresponding eigenfunctions in ®+J, namely steady state solutions
(see Eq. (3.7-9)). The solutions that we are interested in are
such that the eigenvalue &(2) approaches one of the discrete
eigenvalues of.ﬂ!o), when A+0. The question on the existence
of such perturbation sojutions can be treated analogously to
the static case17; again tne difference is the Hilbert spaces
we use, R or R+7.

By analogy, one can expect that for some V(t) (including
the perturbing operator for the Stark effect), there exist only

asymptotic eigenvalues and eigenfunctions; in other words the
¥4

-

perturbation equations have solutions only up to some order.
For this case, one has asymptotic steady states, which 1is |
sufficient to explain phenomena such as the Stark effect. _ J

Young et al. have alsc given an argument on the existence of

B

asymptotic steady.states.l




R s

) - 3

Switching function. 1In this paper, we have Intentionally

avéided use of a switching function, which describes how the
oscillating part V(t) is turned on and reaches its asymptotic
form. We simply regard steady state solutions as asymptotic
solutions of the Schradinger equation which has a switching
function, and expect that steady state solutions are valid at
timeé long after the oscillating part has reached its asymptotic
form, namely a periodically time-dependent form. As is well
known, the static Stark effect has been treated in gimilar manner.
In this way, we avoid tricky arguments on switching functions
and hope the above statement is correct. Langhoff et al. have
Included a switching function in their formalism and somehow -

obtained essentially the same equations as ours for one-level

system.2

Prospects. Just recently the multi-level theory was proposed
for the simultaneous occurrence of Stark shifts and multiple-
quantum transitions by Hicks et glls; in essence, they solve
a steady state SChrSdinger equation for a perturbed system
[for example, Eq. (3.2) with a finite A) within a specially
chosen subspace of the composite Hilbert séacenﬂ+7} which is

composed from several eigenfunctions of the unperturbed operator
H(o) and the functions eiqaJb with small integers q. As is well
known for the Stark effect calculation, the unperturbed eigenfunctions

of H(O)are not suited to expand the perturbed portion of the

waveguﬁction, since so many unperturbed eigenfunctions, including
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those belonging to the continuous spzctrum, are required in
order to obtain reasonably accurate susceptibilifies. One
avoids this difficulty by choosing the basis functions properly.
We can reformulate the multi-level theory within our formalism
by developing a higher-order almost-degenerate perﬁurbation
theory. Research along this line is in progress and the results
will be published in the near future. .

The hellmannnFeynman theorem and the hypervirial theorem
are éxpected td yield useful relations which can be used to
check the accuracy of calculated, induced charge and current
densities of an atom.(or a molecule) in an external electromagnetic

field. This will be considered subsequently elsewhere.
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Effective Charge Tensors of Atoms in a Molecule and

*
Electric Dipole Shielding of Nuclel
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ABSTRACT

Exact formulas are derived for the electric shlelding
tensors of nuclei in a molecule bathed in a static, uniform,
electric fleld. It 1s shown that the derived relations hold
also in the coupled Hartree-Fock approximation. The resulting
equations should provide useful checks on the accuracy of the
first-order induced electron density, a quantity required for
the calculation of the electric dipole polarizability tensor.
A tensor quantity, which.is a function of the electric dipole
moment and its derivatives with respect to the internal
coordinates, 1s proposed as an effective charge of an atem in

a molecule.
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INTRODUCTION

The dipole shielding factor B for an atom in a static
uniform electric field is given by N/Z, where N is the number
of electrons and Z is the nuclear charge.1 This relation,
B=N/Z, holds also in the coupled Hartree-Fock (H.F.)
approximation,2 which 1is, in essence, the H.F. formalism in
the presence of a weak external field. Since the dipole
shielding factor contains the first-order induced electron
density, which 1s also required for the calculation of the
electric dipole polarizability, the relation B=N/Z has been
providing a useful check on the accuracy of the given first-
order induced electron density.3

In this paper, we derive the similar relations for the
elecfric dipole shielding tensors of nuclei in a molecule, and
show that the coupled H.F. approximation yilelds the same
relations. The derived expression.for the nuclear shielding
tensor can be interpreted as an "effective electron number"
of an atom divided by the nuclear charge, as in the atomic
cagse. The equations obtajnéd should provide useful cﬁecks on

the accuracy of the first-order induced electron density.
SEPARATION OF RIGID BODY MOTION .

n06nsider a molecule consisting of Nn nuclei and Ne electrons.
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Let us choose the coordinate origin at the center of nuclear

mass and denote the positions of the ath nucleus and the pth
electron by the radius vectors o, and gu respectively. Relative
positions and distances will be denoted by L, a=I;-Tgs ra5=|ga-ga|;

we shall also use the symbols r ,and r defined in

o’ Top’ Euv v
analogy to Lyq and ryg- The vector pu=-1VL denotes the linear

~

momentum of the pth electron. The charge of nucleus a is given
by Za. We shall use atomic units throughout this paper.
We use the clamped nuclei Hamiltonilan HO for the electronic

motion of the molecule:
o 1.2 -1 -1 -1,
Hy = Zu(zgu - Z:cz zarua) 4 Z:u<v Tuv + Z:a<f3 Zazaraﬁ . (1)

in the presence of a uniform electric fileld F, the total

Hamiltonian H of the perturbed system is given by

H=Hy-ED, (2)

where the electric dipole moment D of the molecule 1s defined
with respect to the coordinate origin (it.e., the nuclear mass

center) :
9 = -zp, Ep, a3 Za Za?a * (3)

Suppose that the normalized electronic wavefunction ¢ of

the perturbed system H satisfies the Hellmann-Feynman theoremu

Va<d’|H|¢> it ("’lVaHld’\/ I '<¢)|§a|¢> ’ 0-=1,2,"',Nn ’ (,l)
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where Va denotes the gradient with respect to the . coordinates

Ly and the operator Qa’ which represents the force on nucleus

a, is given by

5 - i o
Lo % -V H = 'Zu ZalauTay * Zﬁ(xu) Za%aTapTap + 2ok - (5)

The 'an equations (4) mould be used in solving a problem of the
I‘orcés on nuclei. However, it is convenient to separate the
translational and rotational rigid body motion at an early stage.
Moreover the quantities VG(MHI‘!‘) do not correspond to physically
meaningful quantities in general; only some combinations of

them do.

Let us introduce the operator which represents the force
on the uth electron,
— -3 =i~ I
L " YB = <Lq ZoiaTya * ZV(m) Luviuy - £ (6)
and the total charge of the molecule,

Q= on-nc. (7)

The operator equations concerning the total force and torque

on the molecule are, reaspectively,
zu £IL+ZO {a = QF, (8)
zu LGy * Lo ToXly = DE . (9)

Evaluating commutators, one can easily demonstrate the following

opcrai;or equations:
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in, X pl - g AR (10)

i(H, Zu 5,xp,} = ):u X, - (11)

According to the hypervirial t.hcorems,5 on the other hand, we

have
olst, L, gl =0, (12)
olaln, T 5p )9 =0 . (13)

From Eqs. (8-13), we obtain the equations of nuclear motion

corresponding to the rigid translation and rotation, respectively,
Lo <olfal® = qF, (14)
Lo IX0I, 19 = <op|odxp , (15)

~

where the electronic wavefunction ¢ of the perturbed system H
is nomalized to unity. The derived Eqs. (14) and (15) are
satisfied by the exact wavefunction and also by the coupled H.P.
wavefunction, since both wavefunctions satisfy the hypervirial
theorema (12) and (1}).5'6

Now let qy be a set of suitably chosen internal coordinates
of the nuclei. In general, the index i runs from one to }Hn-ﬁ
(up to N -5 for linear molecules). Prom the Hellmann-Feynman

theorvm (%), we obtain the internal force relations:

dye d )
ZO a_é_?o(@tl{ﬂlﬁ*) & = Xﬁ‘%’.{& . (]6)
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Hote that we now have physically meaningful quantities at the

right of Eq. (16). The cxact" and the coupled H.F.! wavefunctions

yield Eq. (16). ‘
In general Eqs. (14-16) provide 3, 3, and 31‘!"-6 equations {

respectively; for linear molecules 3, 2, and mn-s respectively.

Equations (14-16), therefore, form a set of 3N  simultaneous

linear equations for the 3, unknowns (t’lgaltv). All the subsequent

formulas have been derived assuming that Eqs. (14-16) are satiafied.

If we expand ¢ in powers of the field strength F,

s = a(0) pold) 4.l (17)

Eqa. (14-16) yleld the first-order relations

A {

Lot = ap, |
Lo 12Xt = O, ) (18) |
L (0) 1
Logg <tV ~XR—.p, q

xhere

<P>(0) - <¢(O) IQIf'(°)> .

(19)

<£°>(l) “ za[(c'(o)lzu r‘,ar“jgli’-ﬁ(l)) + C.c. + E] . (20)

The set of Eqs. (18) shows that (£°>(1) can be expressed in terms

of the dipole moment (p)(o) and its derivatives with respect

to the internal coordinates a<g>(°)/aq1. l
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EFFECTIVE CHARGE TENSOR

-
Ve define the "effective charge tensor" Q, of atom a in

the molecule such that, in dyadic notation,

o, = V<@,
(21)

{1'9;'5‘, ol ($1°Va)<9>(o)-£J ’ i,4=1,2,3 ’

where €1 So0 53 are the unit base vectors of the coordinate
&®
axes. Note that dyadic Eh is not necessarily symmetric.
If we expand ¢ in Eq. (4) according to the powers of the
field strength F, the first-order equation of Eq. (%) yields

o™ -glp, (22)

where (f&)‘l) is defined by Eq. (20). Substituting (22) into
(18), we have

Zo g:x - Ql 4 \
ZG r x(g;'sk) - <P>(O)x§k ’

ar * b( (0)
La Eﬁf"gu % ""g%;"' ’ y

"

(23)

where 1 is the unit dyadic, and index k runs over k=1, 2, 3.
A set of Eqs. (23) provides the equations necessary and sufficient
to express g; in terms of (g>(°) and B(ED(O)/BQI.
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The first equation in (23) shows that the sum of the

"effective charges” of atoms is equal to the total charge Q

of the molecule. According to Eq. (22), the force on an atom

due to the external electric field is given simply by the
"effective charge" times the electric field. PFurthermore,

the change b(§>(°) in the dipole moment against the infinitesimal

displacements 630 of nuclear positions Lo is given by

SRS MR (24)

which is easily seen from the definition of g;. Because of
these relations (22-24), the dyadic g; deserves to be called
"effective charge tensor." It is important to note that both
Eqs. (22) and (24%) are first-order relations.

DIPOLE SHIELDING TEHSOR

Let us first define the electron density p(r) as

L
p(r) = "q];!2°°'°fwed°1"°°'ue ¢ (5,52,...,rho;al,...,aﬂe)

x“’(s:,‘:20~°°orﬂ ;31)“'09’; ) » (25)
e e

where a" is the spin coordinate of the uth electron. Expanding
¢ in powers of the field strength F, we have the corresponding

expansion for the electron density:

p(y) = p(o)(g) + E-gm(g) Fooe (26)
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Note that p(l)(g) is a vector quantity.
In dyadic notation, the dipole shielding tensor Ba of
nucleus a is defined as
(r - ¢.)
b = fap EE iy

) R
N (27)

€+(r -1,
‘€oB e, ™ -[dr i rﬂ P(l)(!‘)'c ’ 1)J-1:2)3 .
1'% J * e - L‘glj S "

~

With this definition, the first-order induced eclectric field

at nucleus a is given by -Qa-g.
¥e now relate the dipole shielding tensor Ea to the
"erfective charge thensor" g;. Simply rewriting Eq. (20) in

terms of Ea’ we find
<r0>“) =2 (1-8)PF. (28)
~ a -~ ~q’° ~
Equations (28) and (22) yield the desired tensor equation
. ,
B, = (2,1 - Q)/%, - (29)

Since g;-zal can be interpreted as the "effective charge"” due

to the electrons of atom a, the dipole shielding is equal to

an "effective electron number” of atom a devided by the nuciear

charge 2, as in the atomic case Q-Nl/z. The derived relation

(29) is satisfied by the exact wavefunction and also by the

coupled H.F. wavefunction.

L 4
If one has reliable effective charge tensor Sa' the relation

Da-(ial-Q;)/Za should provide useful checks on_the accuracy of
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( )(r) near the nucleus a, because of the weirht. function

(r -r )/Ir-r I3 in B,- In the coupled 4.F. formalism, Eq. (29)

*
with the H.F. ga provides absolute criteria to be the exact
coupled H.F. p(V)(y).

In dyadic notation, the dipole polarizability tensor a

are given by

= -fdr r oM (x)
(30)
2y ™ fdl‘ £ (l)(r) > 1,851,2,3 .

Note that Ea and a are determined by the same first-order
induced electron density vector p(l)(g). This 1s the main

reason why we are concerned with the dipole shielding tensors

By and the relation (29).

VIRIAL RELATION

The operator equations for the virial relations are

zu ru.£|1+za Ya'fq = DE+Hy - T, (31)

SRR 190 RS KT RN D R (32)

where Tmf:u%pﬁ. Assuming that the wavefunction ¢ satisfies

the virial theorem

Mrep, + pep ) =0, (33)

IR

T o | —

|
L
|
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we obtain .

¥ 1y <oltyl® = (o|D|B>-E + o|Hy + T[T . (34)

The “irst-order equation of Eq. (34) is

*

~a ~a

This virial relation also can be used to check the accuracy

of the first-order induced electron density.
SPECIALIZATION FOR DIATOMIC MOLECULES

Consider a diatomic molecule consisting of nucleus a,
nucleus b, and Ne electrons. The internuclear distance, the
interna’ coordinate, is denoted by R. We use the Cartesilan
coordinate system centercd the nuclear mass center. The z
axis points toward nucleus b along the symmetry axis. The
unit vectors along the x, y, 2 axeé are denoted by %, 2’.E:
respectively. Due to the axial symmetry, the electric dipole

moment <§>(0) can be written as
(ED(O) = pk . \ | (36)

Note again that the origin of the dipole moment p 1is the nuclear
mass center, and a positive p 1mplies a’ot.
For diatomic molecules, a set of Egs. (23) yields the

effective charge tensors of atoms a and b
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: (37)
% = 70l + (31 4 '
a

+
L
2y
+
Qv
42
N
TN

and the equations,

(38)

can be used to check the accuracy of the first-order induced
electron density.

. For neutral diatomic molecules (i.e., @=0), only the
'quantities ou/dR and u/R appear 1n the effective charge tensors
gz and g:. The quantity ou/OR was actually used as an "effective"
charge of an atom in a neutral diatomic molecules by J. H. Van

V1eck8; the quantity ;i/R was interpreted as a measure of ilonic

character of neutral diatomic molecules by L. Pauling.9
ACKNOWLEDGMENTS

The author 1s indebted to Professor C. C. J. Roothaan for

his interest and guldance in this work.

237

i
¥



FOOTNOTES

* This work was supported by a grant {rom the National
Science Foundation, NSF-GP-27138 and by Advanced Research
Pro jects Agency through the U. S. Army Research Office (Durham) ,
under Contract No. DA-31-124-ARO-D-4AT.

i It would be very instructive to compare the derivation
of the relation B=N/Z given by R. M. Sternheimer, Phys. Rev.
96, 951 (1954); M. Cohen and G. W. F. Drake, Proc. Phys. Soc.
(London) 92, 23 (1967); and references in Footnote 2.

2 5. 5. Chang, J. Chem. Phys. 49, 2904 (1968); S. T. Epstein
ehd R. E. Johnson, J. Chem. Phys. 51, 188 (1969).

> See especially references in Footnote 2 and also A. Dalgarno,
Advan. Phys. 11, 281 (1962).
R. P. Feynman, Phys. Rev. 56, 340 (1936) .
J. 0. Hirschfelder, J. Chem. Phys. 33, 1462 (1960).

N U F

S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123,
1495 (1961). '
7 R. E. Stanton, J. Chem. Phys. 36, 1298 (1962).

8 J. H. Van Vleck, The Theory of Electric and Magnetic

Susceptibilities (Oxford University Press, London, 19%2), pp. 45-52,
200. '

9 1. Pauling, The Nature of the Chemical Bond (Cornell

University Press, Ithaca, New York, 1048), 2nd ed., p. U46.

238




Induced Electron Current Density of a Molecule
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ABSTRACT

The induced electron current density of a polyatomic
mdlecule under a static magnetic field is studied theoretically.
It 1s shown that a form of the hypervirial theorem is equl -
valent to the continulty equation for the charge and current
densities, and that the continuity equation is a necessary
condition for the gauge 1invariance of the total energy. An
alternative form of the continuity ‘equation 1s used to obtain
relations useful in the magnetic susceptibility and nucléar
magnetic shielding calculations, and also to define the
paramagnetic and diamagngtic current dehsities uniquely. Finally
a procedure for choosing the best gauge origin in the coupled

Haftree—Fock method with the expansion basis functions is

discussed.
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HYPERVIRIAL THEOREM, CONTINUITY EQUATION AND GAUGE INVARIANCE

Consider a polyatomic molecule in a static magnetic field
whose vector potential is given by A(r). We use the clamped
nuclel Hamliltonlan for the electronic motion of the molecule;

the Hamiltonian H is, in atomic units,

2 -1
il = Zu (%"LL 3 Za a ua) t Zu<v Lw i Za<b Zazbrab ’ (1)

= ! t
where T Bu+ag(gu) The r, and B, denote the position and
linear momentum of the pth electron, respectively; Za is the
ngclear charge of the ath nucleus, and a 1s the fine structure

constant. The electron current density of the state ¢ is given

by
J = ! o)) b —. - ) 0
Ig) = Koy To(r -r)m + m,8(z,-r) 1> (2)
Let us assume that the wavefunction ¢ satisfies a hypervirial
theorem,1
olaln, ¥, g ) =0, ' (3)

for any real function f(r) which is expandable with finite powers

of the Cartesian coordinates centered on the molecule. Using

commutator algebra, we find the operator equation

i, X, olg)1 =38 ((ve) - m, +me V)0, (k)
where V operates only on r(r), while 1 applies to all fu :tions
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which appear to the right of it. Substituting (4) into (3) and
employing the current density J(r) as given by Eq. (2), we can
rewrite Eq. (3) in the form

IQ(F)'VI‘(g)dg =0 ¢ (5)
Furthermore, we have the following relation
Jat0) - Ve(p)ax - [t(2) V- s(p)ar . (6}

This relation is derived by integrating the well-known formula

of vector analysis

Ve(£g) = 3-Ve + r V.3, (7)

applying the divergence theorem of Gauss, and using the fact
that the surface integral vanishes at infinitely far distance
from the molecule due to £J=0 at infinity. Since Eqs. (5) and
(6) are valid for arbitrary functions f(r), we obtain the

continuity equation for stationary‘states:
V'g(g) =0 . (8)

Conversely we can prove the hypervirial relation (3) starting
from the continuity equation (8). Therefore, the hypervirial
relation (3), Eq. (5), and the continuity equation (8) are
equivalent. Since both the exact and the coupled Hartree-Fock
wavefunctions satisfy Eq. (3),1 the current densities given by

these. wavefunctions satisfy Eqs. (5) and (8).
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We now relate the continuity equation to the gauge invariance

of the total energy. The energy change OE resulting from a change

6A(r) in the vector potential is given by the general expression
OE = -ufg(g)-ag(g)dg : (9)

If the change ﬁﬁ(g) is due to a gauge transformation (1i.e.,
bﬁ(g)-vr(g)), then the corresponding chaunge BE in energy should
be zero, since physical quantities are gauge invariant. This
argument leads to Eq. (5). 1In other words, the continuity
equation (8) is a necessary condition for the gauge invariance
of total energy. Incidentally Eq. (3) is the condition proposed

by S. T. Epstc1n2 to ensure the "local" gauge invariance.
APPLICATIONS

1. Useful Relations for the Magnetic Susceptibility and
Nuclear Magnetic Shielding Calculations

Consider a molecule in a static uniform magnetic field

B(=Bg). Its vector poi.ential A(r) can be given by
Mx) = dBx(r - o) , (10)

where ¢ is a constant vector and sometimes called "gauge origin."
The field direction ¢ 1is fixed, and the field strength B will

vary by an infinitesimally small amount from zero. The wave-

242

e R B Lo e




function ¢ and the current density g(g) are expanded in powers

of B:

o = (0)

eV g =300 (M, ...

»

. (11)

The magnetic susceptibility x and the nuclear magnetic shielding

fn of the ath nucleus are given by

x = daf (r - gV (par, (12)

[ d

Gy ™ -af(r - x:a\xg“)(g)/lr - ra!3dz: : (12)

On the other hand, substituting (p-c)? and Ir-;:al'1 for
r(r) in Bg. (5) and expanding the resulting equations in powers

of B, one has the first-oriler relations:

Jtr - 98 (e -0, (14)

-
Lie |

!
g ]

1M/l - p 1Pap -0 (15)

Because of the similarity of the weight functions, Eqs. (14,15)
may provide useful information on the accuracy of the first-
order current density for the magnetic susceptibility and nuclear
magnetic shielding calculations (compare (12) with (14) and (13)
with (15), respectively).

Another useful relation is

J[g(l)(x)dr =0, (16)

which' can be derived by choosing f(r)=x, y, and z in (5). This
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} relation ensures the "local" gauge invariance against a gauge
transformation ¢-»¢tag.
The first-order induced current density g(l)(g) should

satisfy the first-order continuity relation:
V3 =0, (17)

This' nontrivial relation also can be used to check the accuracy

of the given firat-order current density.
2. A Definition of Paramagnetic and Diamagnetic Current Densities

A number of authors have divided the first-order induced
current density g(l)(g) into the paramagnetic ggl)(g) and the
diamagnetic ggl)(g) current densities and attempted to interpret
those current densities separately. The explicit expressions

for those current densities are given by

£ (1) = -dexe(®af (r -e)6(r,-p) (% (18)

,1}(,1)(1‘) = -H«'(o)lzu [o(r,- rlp, + gub(gu-g)llft*(l)) + c.c.}) . (19)

These current densities 6epcnd on the choice of the "gauge origin"
c.

Although the divided current densities are not physical
quantities (only the total current density g(l)(g) iv physically

meaningful), it wquld be desirable if each one behave like the
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physica) quantity q(l)(g) in some aspect. With that in mind

we impose a requirement on each divided current densities:
fgc(’l)(g)dg =0, (or fgg”(;)dg “=0) . (20)

Note that the g(l)(g) satisfies the same relation (16). The
condition (20) yields the electronic charge center as the

“gaugé origin” and renders the partition unique. In other words,
the electronic charge center is proposed as the "gauge origin”

in order to define the paramagnetic and diamagnetic current

denaities.
3. A "Best" Gauge Origin for Coupled Hartree-Fock Method

Since the exact coupled Hartree-Fock procedure is gauge
1nvarlant,2’3 the following argument will be applied to the
coupled Hartree-Fock method with the finite expansion basis

functions to calculate the second-order magnetic properties
of molecules.

Let us restrict ourselves to the ground state, and assume

that we have the exact unperturbed Hartree-Fock solution.
Fixing the unperturbed orbitals, we have a minimal principle
for the second-order energy witii respect to the first-order
perturbed orbitals. Suppose that two sets of trial first-order
perturbed orbitals give the second-order energies Ega) and Ega)

at the corresponding gauge origins €a and Sy’ respectively.
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If E(2)=’F(2), then hb?) is a2 better approximatiorn to the exact
Hartree-Fock second-order energy Eﬁg) than H£2), since Ega)“hnp 3
and Et(>2) ?EI("?,'.). This i1s not necessarily true, if approximate
unperturbed orbitals are used in place of the exact ones. However
this may alsc be applied to the wavefunctions which are believed
to be very near to the Hartree-Fock solution. Under these
circumstances, the criterion for the best second-order energy

E(2) is the energy minimum regardleas of the gauge origin.
"Best" gauge origin 1s, therefore, the gauge origin that gives
the smallest second-order energy. If we apply this criterion
to W. N. Lipscomb and co-workers' resulto,a’u we choose the
right gauge origin in the sense that the first-order induced
current density obtained with the gauge origin gives better
agreement with eiperiuvental data on the magnetic susceptibility,

the rotational magnetic moment, the nuclear magnetic shielding,

and the spin-rotatjonal constant without exception. If we

minimize the second-order energy against the gauge origin c,
the induced current density Q(l)(g) satisfies Eq. (16) as a

conseguence.
ACKNOWLEDGMENTS

I am grateful to Professor C. C. J. Roothaan for his

interest in this work and for several helpful suggestions.

246

S g - AM




FOOTNOTES

' This work was supported in part by the Advanced Research
Pro jects Agency through the U. S. Army Research Office (Durham) ,
under Contract NO. DA-%1-124 -ARO-D-I4T and by the National
Science Foundation under Grant NO. NSF-GP-27138.

.1 3. 0. Hirschfelder, J. Chem. Phys. 33, 1462 (1960);

S. T. Epstein and J. O. Hirschfelder, Phys. Rev. 123, 1495 (1961) .

2 5. 1. Epstein, J. Chem. Phys. 42, 2897 (1965).
3 R. M. Stevens, R. M. Pitzer, and W. N. Lipscomb, J. Chem.
Phys. 38, 550 (1963).
© % o M. Stevens and W. N. Lipscomb, J. Chem. Phys. X0,
2238 (1964); 41, 184 (1964); 41, 3710 (1964); 42, 3666 (1965);
he, 4202 (1965). R. A. Hegstrom and W. N. Lipscomb, J. Chem.
Phys. 45, 2378 (1966); 48, 809 (1968). A summary of the above-

mentioned papers is given by W. N. Lipscomb in Advances in

Magnetic Resonance 2, 137 (1966) .

247

S — S

s .




SELF-CONSISTENT FIELD CALCULATIONS FOR THE ELASTIC SCATTERING
OF ELECTRONS FROM HYDROGEN -LIKE SYSTEMS*f

George Andrew Soukup
Department of Physics, The University of Chicago
Chicago, Illinois 60637

ABSTRACT

A general formalism is presented for the description of
elastic scattering of electrons from hydrogen-like atomic
éystems, The total wave function for the two-electron system
is put forth as a multiconfiguration expansion in terms of
suitably normalized orthogonal orbitals. These radial orbitals
as well as the coefficients of the expansion are determined
variationally via a system of coupled integrodifferential
equations, The lormalism is applied to the calculation_of
elastic electron-hydrogen scattering in the energy range below
the first resonance for the 18 state of the two-electron
system. Accurate phase shifts are obtained with short
expansions, as the newly introduced orbitals obtained by
numerically integrating the integrodifferential equations

account quite adequately for short range correlation.
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INTRODUCTION

Partial wave phase shift calculations for the elastic
scattering'of electrons from atomic systems have been carried
out by many workers.1 The approach generally taken is to
calqulate an approxlimate total wave function of definite total
angular momentum, parity, and spin. Such wave functions,
called partial waves, are standing wave stationary state
solutions to the Schrddinger equation for a continuum state
of the system consisting of the target atom and the scattering
electron. The methods used in these calculations are analogous
to the methods developed for the calculation of bound state
atomlc wave functions.

In scattering processes, the incident electron can
either be scattered by the target atom without loss of
energy (elastic scattering) or can glve up some of 1ts energy
to the target, leaving it in an excited state, while the pro-
Jectile leaves the vicihity of the target with a speed in accord

wlth the conservation of energy (inelastic scattering). Each

distinet process by which the scattered electron recedes from ; {
the target , leaving it in a definite energy state, is called g :
an "open channel". All partial wave methods represent each j

open channel by a term consisting of an antisymmetrized ' |
product of an N-1 electron target wave function and an open

channel orbital used to describe the scottered electron. 1
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These orbifals are not square integrable and have sinusoidal
behaviour for large argument. The wavelength of the oscillation
1s determined by the speed of the receding electron in the
open channel. In addition to the open channel term(s), the
solution to the Schrddinger equation must contain a "bound
par‘l';" which 1s square integrable in all electronic coordinates
in the usual way. This bound part of the partial wave is
particularly important in describing interactions which take
place in the vicinity of the target.

The various methods used in the partial Qave description
differ in the way the bound part of the wavefunction is re-
presented and also in the way the open channel orbital is
calculated. In the case of twowelectron calculations where
we wish to describe the scattering from a hydrogen-1like system,
the bound part of the partial wave can be made to depend
explicitly upon the interelectronic distance in the spirit
of Hylleraas and Pekerls. The eigenstates of the target
used in the construction of the open cﬁannel terms are in
thls case exactly’known. In the important case of elastic
scattering of electrons from hydrogen atoms in the energy
range below the first resonance, calculations of this type
have been carried out for S-waves by Schwartz2 and for P--
waves by ArmsteadB. In these calculations the single open

channel orbital was represented by suitably chosen analytic
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functions. Very accurate phase shifts were obtained by these
wofkers in the energy range considered.

Because of the particular way in which these calculations
were carrled out, the wave functions used did not have suffi-
cient flexibllity to describe resonance formation'adequately.
Resonances occur near an excltation threshold of the target,
and‘it 1s desirable to include 1n'the total wave function,
terms which continuously go over into the required open
channel functlons as the scattering electrons incldent energy
Increases to permit excitation of %Pe target.

In the "close coupling" method, bound state wave functions
for the target atom in excess of those needed to construct
the open channel terms are used with square integrable "closed
channel orbitals" to construct the bound part of the partial
wave 1n the same way that the open channel orbitals are used
with target wave functions to construct the open channel part.
Together the open and closed chanﬁel orbitals satisfy a_system
of linear integro-differential equations which are solved |
numerically. Hence in the close coupling method the bound
portion of the partial wave is constructed in complete analogy
to the open channel part; the individual terms are called
"closed channels".

The close coupling scheme 1s sulted for the description

of inelastic scattering and resonance formation as well as
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elastic scéttering. The wave functilon goes smootﬁly across

an excltation threshold of the target; one or more of the
closed channel terms below threshold become opén channel terms
above thresﬁold as the radlal orbitals hake a smooth transltlon
from square integrable form to open channel type.

The set of open and cloced channel terms which make up
the clos2 coupling wave function are not a complete set of
N-particle functions. This 1s so because there are no terms
included which are formed from continuum stafes of the N-1
particle target. &Even if wave functlons were in hand for
every bound target state, the close coupling expansion would
still be deficient.

Burke and Taylorf5 have overcome the deficiency of the
close coupling model while‘retaining'its advantages by append-
ing to a suitably chosen close coupling expansion, a flexible
expansion'of the Hylleraas type as used by Schwartzz. éhe
phase shifts which they obtain for S-wave elastlc scattering
of electrons from Hydrogén atoms match in accuracy those obtalned
by Schwartz. This modified close coupling wave functlon retalns
the suitability of ordinéry close éoupling for the description
of resonaﬁce formation, crdSsing a threshold when opening up
a new scattering channel, and inelastic scattering. For many-
électron situations, however, the expliclit dependence of the
wave functlion on the interelectronic distances presents a

formidable obstacle to calculations.
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r ' Gailitig6 used an approach simllar to that of Burke and

' Taylor for the elastic scattering of electrons from atomic
nydrogen. He appended to a one term close coupling expansion,

a bilinear form of known one-electron functions. His expansions
had to be a good deal longer than thoée of Burke and Taylor

to achieve similar accuracy, but the method can be extended

to many-electron cases with much less difficulty. Gailitis,
like Burke and Taylor, obtained his oéen channel orbital by

numerical integration. Recently, Chung and Cher;7 have performed

calculations similar to Gailitls, except that the open channel
fﬁnction 1s obtained in analytic form.

In this paper we present a method for elastic scattering
in the two-electron case similar in spirit to that of Gaillitis.
To the requisite open channel term we add a bound part consist-
ing of a multiconfiguration expansion using a set of orthonormal
orbitals which are determined along Qith the open channel orbital
and the coefflclents of the expansion, by a coupled set 6f #
integro-differential equations. Thls method removes the de-
ficiency of close coupling through the full flexibility permitted
for the newly introduced orbitals. For the two-electron case,
the method 1s intermediate between Burke and Taylor on the one
hand and Gallitis and Chung-Chen on the other. For the same
accuracy in the calculated phase shif'ts, we require a longer

expansion than the former but considerably shorter than the
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latter. Moreover, the generalization of this modél to
many-electron cases will be especlally simple because'bf

the use of orthonormal orbitals. Resonance description is
also permitted , as wave functions can be constructed which
pass smoothly through an excltation threshold. Td test the
accuracy of the'method; we solve the equatiohs numerically
for the 18 state of the e H system in the elastic scattering
reglon below the first resonance. Béth'phase shifts and

orbitals are obtained.
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FORMALISM

We consider the calculation of those contlinuum states
of a two-electron system which'describe a situation where
one of the two electrons remains, on the average, in the
vicinity of the nucleus. Thus we want to calculate the
total wave function \y(xl,xe) of tha space and spin coordin-
ates of two electrons orbiting about a fixed nucleus of
charge Z. The function Ey(xl,xe), S0 depicﬁed, is to be
understood as a standing wave solution to the Schrbdinger

equation:

:—,u: »(xl’x2) & E \3(x1’x2) (1)
where E 1s the fixed and given total energy of the system
and where 77 is the usual nonrelativistic spin- independent

Hamiltonian operator; in atomic units:

. = -ng - \722 - r'l—lz - re'lz + r=12_1 (2)
Here ry and r, are, respectively, the distances of the two
electrons from.the nuc;eus, while.r'12 is the interelectronic
separatipn. The motion of the nucleus, beling slight, is
neglected,
The operator QC is independent of the spin coordinates
of the electrons, and the system under consideration contains

but two electrons. These facts permit the factorization of
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Y(xl,xe) into a function w(?l,ﬁe) of the space coordinates
only, multiplied by a function of the spin coordinates.
These spin functions are well known and need not be further
considered in this paper.

The Hamiltonian 7{ is invariant under rotation of the
coordinate system used to describe the electronic positions.
The total wave function ¥ is tlierefore required to exhibit
definite angular symmétry and to be a simultaneous eigenfunc-
tion of ge $ &Z?l s and ;i;‘. Here ;i? is the operator for
the total orbital angular momentum and (:_E is its 2z component.

Additional invariances of j?f » hamely under inversion
of the coordinates and particle exchange, are also reflected
in symmetry properties of the wave function. The exchange
symmetry of the spatial function ¥, which is a consequence of
the Paull principle, is determined by the value of S, the
total spin quantum number which must be O or 1. Likewlse,
the symmetry of ¥ under inversion of the particle coordiﬁates

is completely determined by the total angular momentum guantum

number L. This 1is so because the spatial wavefunction must

"dissociate" properly into a product form consisting of a
hydrogen-like system in its ground state, multiplied by a
continuum functilon describing a transiting electron with

angular momentum L,
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These facts are summarized in the following equations:

i lr/'rLlVISE(?l’?Q) = e %Z’mSE( P1,T) )

M) Yoep(Prot) »  3(3)

i
ﬁ;z' —d -\
| 7% ’sbmSE( T1sTp)
\!r - - =N
; L sp(PrTy) = M Y sl T1sTp)s L &M &L,/
4
l

/I, i - / s L L - -—h \.
(n mise{ 10T = Viysp( =Py, -Pp) = (-1) )J/LMSE( P1sTp) s

b ()
' S S '

% vimsel T10T2) = use(TeTy) = (’1) /~LMSE(P1:P2): )

Py

where j;D' and 5%5 are the parity and exchange operators,

respectively.

In general, one might expect to find both parities for
glven LMSE. The first Eq. (4) expresses the inversion be-
havior of the "normal" spectal terms. (These are the only

ones occurring in one-electron spectra.) The "abnormal"

terms, for which

' QIT/ILMSE( ?1:?'2) = ( '1) g LMSE( ?1:?2) 3 ( 5)
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are 1n this case ruled out by the "dissociation".requirement

which must be satisfied when elther of the arguments of V£MSE

becomes very large,

We introduce the two-particle angular functions defined

by8

| | £ g '
Yoy (52,9, = Z Z”C(LL'L,'mm'M)

Y, (§2.)y ;
Mee b mimed .€m( 1) ,C'ml.(QQ) (6)
| LeMer .
They satisfy the equations
Yo g = Ore i 6y g Ope7es (n
QYLMJ@/“.(QJ_:QQ) = (-l)e+£'YLMEL'(£21,f22), (8)
2
z YLMLZI.(QJ_:QQ) = L(L*'l)YLMﬂLl.(QJ_:QQ): (9)
KZYLMQQ'(Ql’Qe) * Mranppe (5210, (10)
QleYLMy.L'(le’Qe) = V(525 §2y)
| -
= (‘1)L+z LYmﬂ%(Q:,_:Qe) ° ,(11)
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In Fig. 1 we illustrate the permissible pairs ( 4L, ¢')
used to construct the functions Y 00 '( Ql’Qg) for L =

0,1;2. The functions YLM,,,L'(B‘\l’Qe) are an essential

ingredient in the construction of the total wave function
l//LMSE( P ,P,). According to the Pauli principle, dLMSE
has a definite exchange symmetry, S0 that whenever the pair

( L, L' ) 1s permitted, ( , &) is mandatory; hence the
diagrams are s.ymmetrical about the 1line L = ,{’,l. The permit-
ted points ( [, .'l) lie within and on the boundaries of the

/
region of the [ ,,L plane bounded by the 1lines

L+ §'=

&

!
™
I

(12)

l )2
We define the sets ‘-Z,L‘ and "Llf of permitted points

( 2000 according to the equations:
A 3

%LL =[( £,£") such that L+ L is even and | 2 - ,Qll \
| cnelsf ],

- > (13)
%‘L= [(£,0) such that L+ 2" 1s oda ana sti=£F
' eLef+ ply; )

these sets are illustrated in Fig., 1
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. ) . .
For pairs ( £ , L ) ¢ iké we have, according to Eq. (11)

QeYLMLL'(Ql’Qz) = Y 0 (215572, (14)

while for ( f,¢') e %,‘_‘,

T T T mm TR maw

@12YIMLL'( Ql’ QE) = -YLM,{;' ( Q 12 ')L 2) . (15)

r
0.

The functions YLML;}(‘£1’3£2) constitute a complete set

of two-particle angular functions. The total wave functions

‘may therefore be expanded according to

A A -1
l//LMSE\’1"1"”2) = (ryry) Z%ELSELU(PPI'E)YHML'(Ql’Q2)’

Yo ~ (16)
/ N e =yl b ~ )
'¢[IMSE(?1’P2) = (rlrg) Z~MQZ[£SE£1;(Pl:Pg)YLM;L.(gzl:fgg).

for "normal" and "avnormai" tepms, respectively. Since terms
corresponding to the pairs (0,L) and (L,0) must be present in

the partial wave to satisfy the "dissociation" requirement,

only the "normal” series is accebtable. We see also from {

Fig, 1 that for & = 0O only "normal".terms can exist; this is

a well known special property of two electron Spectra,
The "normal series" {16) can represent the exact wave

Jr '
function K,LMSE( ?,,P,) provided that the functions @LSE gpr(rysry)
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ijLSE pl{rpra) = ('1)SQLSEL',Q,(PQ.’r1) (18)

Suppose now that I?QI =TI, beccomes very large, indicating
that one of the two electrons is far from the nucleus. In
this case, y”LMSE must describe a system consilisting of an
electron in transit past a one electron atom or lon. Moreover,
since we consider here only those values of E for which the
J target atom or ion must remain in its ground state, we can

write

~13-
are given'by
. ‘." \( 'y 1
Dogppprlrra) =fdQ1 aSLpth (503, S0) Vinge( Ppo) s (A7)
using Eq. (14%), they are easily shown to satisfy

WLMSE( ?1:?2) = ( rlrg) —1CD18( rl) (‘Dks( I’2) YLMOL( Q 12 Qg) s ( 19)
I‘z—b_ D, g | . l

where

J
3
CDls(r) = 27¢pre 2T (20) 1

is the normalized ground state orbital of the atom (or ion)
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core abouf which the motion of the unbounded electron, de-
scribed by the function G&L(r)’ takes place. This continuum
electron has angular moment um quantum number L, For large

argument,

(Dki(r) 2 Asin(kr +k"1[Z-1]1n(r) + M), r—=oc0 (21)

where A 1is the amplitude, usually taken to be unity, n 1s the
phase shift, and k is the wave number, defined by

¥k + ¢ =E, |
} (22)
€ =~%223 j
€ 1s the energy of the atom (or ion) core in its groundstate,
The exchange symmetry of '’

LMSE
that if || = r. should becom: large, we must have

requires, of course,

WLMSE(T‘l’T‘a) # (y70) T D(ry) @1l ra) Yol Q3.0 } (23

I'l--—o- COMN

We shall call the function(IhL(r) an orbital, even though
1t is not square integrable. When it is important to distinguish
it from square integrable functlons, the term "continuum

orbital" will be employed.
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The indices IMSE, being good quantum numbers, are constant
for a given calculation,' hence we Suppress them on both i/

"IMSE
and ‘VL s Wrlting in view of Egs. (16,18)

. d/(?l:ﬁe) = Zga'( rl’ rE)YUL'( Ql’ Qg) b ( 24)

m},l@'(rl’ré) = (-l)SL@N_' (r'gar'l)- (25)

We turn now to the detaileg consideration of the functions
-__it'.(rl’re) - In practical caleulations we use, instead of
the infinite set V' , a finite subset [y € 4, which
is arbitrary, except that 1r ( 4 , 1.") is included 1n it, so
also is ( ﬁ', LY. For this chosen supget L% s We pro-

pose to determine the functions @ variationally,

I,Z'(rl’PQ)

Since the set [Q(/‘ ] contains g finite number of pairs
(¢, 2'), it wlll be convenient to replace the pair ingex
(£, by a running index V which 18 in one-ope correspon-.

/
dence with the pairs ( £ , 27 [Y']. This correspondence
can be set up in many ways, and a convenient one 1is 1llustrateg
in Fig, 2 for 1, = b, we adopt the convention that v = 1
corresponds to the "elastic Scattering tepp" (o,L), Moreover,
I .

if v corresponds to the pair ( £ 5 b )s we shall understand ¥

to mean that value of the running index which corresponds to

/ /
the exchanged paip (2,10 ). We shall write v ( £, ¢ )
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oy ’
to indicate the correspondence between v and the pair (,L ,,Z ).
We also introduce V, the set of Ve ( £ ,,ZI) for
( £,2") ¢ [*],

We want to approximate g%u'(rl’rQ) by finite bilinear ex-

pansions of functions of the single arguments rl and s Ir

a pair of such functions occurs in the construction of §§,
&
1 st vary for small

then the member bearing the coordinate r

argument as ri£+1 while the function with argument ry behaves

/
like rél+1 as r, approaches 0., This must be 80 because of the

angular dependence of the function Yzﬁ,(fQI,g?e) which accom-

panies §§uﬂ(rl,r2) in the expression (24) for the total
bl

wave function, Moreover, in order to satisfy the exchange

condition, Eq. (25), the functions used to describe §§

| M'(rl’rQ)
must be used with arguments exchanged to construct 2. (r.,p ) .
) [/
With these facts in mind, we introduce functions Q)vm and

Q. > M = 1:2:

vm l.., Nv

2

ONIEIR- Tt .
q)rm(r) 1 r—e= 0 (26)
7 vm

2

r b

where v;*-( L, ﬁ') and V— ( ﬁl,,@ s

As the notation indicates, the functions GDvm(r) depend

/
upon both indices 1 and ﬂ' . We have introduced one set of

!
functions for each point ( £ , £ ) of the set [4 . To

’
~
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construct the functions ﬂz—.ﬁyl(rl’rg and "6‘1',5('151’1,2) i
both sets of functions @, and GDGm are needed. In Fig. 2
for example, to construct 1550,4 (rl,re) we use the products
formed from CDlm(rl) and ’TSn(rQ), m=1,2,000.,N;5 n =1,
2,....,N5; N1 ='N5. A1l products are used which are not ruled
out by the asymptotic behavior of the .total wave function.
Note that in this exawple, Vv = 1-——.(0 4) and v 5-_o-(4 0).
The: same products with exchanged arguments are used to con-
struct '534 o(rl,re) where v = 5—= (4,0) and v = 1——»-(0 ),
Note that if v—( £, ( ) and w—4>( s, Wi / ﬁ
two sets of functions CDvm(r) and Ciwn(r) behave for small
r like rC+1 according to Eq; (26), yet tﬁese functions are
in general completely different., This 1s a departure from
the usual orbital model; it is adopted because of the great-
er flexibility afforded to the wave function and the ease of
implementation in the two-electron case.

The approximations to the functions gﬁ. '(rl,re) are

2L

now given by

-(:EV( rl: re) = (rl 2) E >_‘ Z_, ®vm( 1’1) rvmn vn ) 3 (27)
m=1 n=1 '

wherve v—( £ , £'), —=( ¢', £ ) and

oo (SC- . (28)

vmn vnm
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Eq. (28) guarantees the exchange condition (18). Note that
evidently,

N, = N: . (29)

In case L = £ ‘so that v = v—= ( L, L), Egs. (26)
reduce to a single set and Eqs. {27,28) still apply;
EEV( r'ler'g) becomes a quadratic form in the functions
(Dvm(r'), m = 1,2,¢¢-¢,Nvo

According to Egs. (19,20,21,23) which indicate the
asymptotic behavior of llf , two of the orbitals introduced
have a special significance. The orbltal CDl 1( r) is the

3
hydrogenic ground state function (Dls( r), and {j Ng i3 the
3
continuum orbital .CDkL( r):
: % -Z2r
(Dl,l( r) = (_Dls(r') = 2Z°re ", 1

( 30)

(DI,Ni( r) = ©® kL( r) ¥ sin(kr + [Z—_l]k"llnr'-f 1),
n__ 00, '
We have adopted the convention that the fixed hydrogén-
ic function (@, (r) is number=d first among the functions
CDln( r), n= 1,2.,....,Nl and the continuum orbital (PkL( r)
is nuﬁbered last among the functions (Dl'm’ m = 1,2,...,N1n

A1l of the remaining orbitals (Dvm( r), m = 1,2,...,N,

v ¢ V, are square integrable functions. 1In scattering
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processes, G)ls(r) describes the térget, -G)kL(r) describes
the scattered eléctron at lérge distances from fhe target,
and the remaining orbitals describe interactions taking
place 1in the viecinlity of the target; these include polarization,
correlated motion, and resonance formation.

Tn The expansion (27) for q;v(rlfra), all possible
products Crvm(rl) CDﬁn(re) are used except those excluded
by the asyﬁptdtic form given by Egs. (19,23)., This means
that the continuum orbital CDI,Ni(r) can only be paired with

the hydrogenic groundstate orbital fDl 1(r). This implies
3
that

B

~I,NI,n = (-l)SA 6n1 = (-1)Sr1,n,NI . (31)

All possible products between square integrable orbitals are
permitted. Because all such products occur in (27), some
auxilliary conditions must be imposed upon the (Dvm(r),to
guarantee an unambiguous expansion for Zﬁv(rl,re)i unique
coefficientc lﬂvmn can be specified only if some orthogon-
ality and normalization requirements are placed upon the

qum(r). Even with normalization and orthogonality conditions
imposed, the square integrable (Dvm(r) can only be determined
up to a unitary transformation, and futher specification is

necessary. For these reasons we require that, for fixed v,

the square integrable furictions (including G),s(r) if v = 1)
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are required to satisfy the equations

\,

/ =S
‘ﬁDvmljﬁvn) T vmn

(32)
(‘q\'Vthv, (’Dvn> =wvm 6mn 2

where

2
4 / -2 -1
2h, = &2 -,f/(£+1)r + 277 ,) L5
V_-—( X’J/C)°

The particular choice of these conditions 1s dictated by the

physical consideration that, as the incident electron's kinetic

energy approaches the target excitation threshold, some of

the (Dvm(r) must become hydrogenic elgenfunctions. The

conditilons (32) allow this to happen in a natural way.

We wish to emphasize that the relations (32) requireq

of the square integrahle orbitals CDwn(r) apply only between

functions bearing the same index v. Refer again to Fig, 2

where v .: 2 corresponds to the pair ( [ ,,ﬂ/) (1,3),

( 35 3) .

while v = 7 corresponds to the pair ( [ ,,E’)

) :
"The point ( L, L ) = (3,1) corresponds to v = 5 = 4, The

two sets of functions

Cplr)s n = 1,2,.0.,5,

®7m<r): n = 1:2.90---:N73

have the same behavior for small argument; all of these

functions start out near r = O proportional to r“. The
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<D4n(r) form an orthonormal set which diagonalizes the

operator

h)_‘_""% 2-6—2 Zr'—l,v

in the Hilbert space available to them. According to Egs.( 32)
with v = 7, the functions TD7m(r) are also an orthonormal
set and diagonalize, in their Hilbert space, the same oper-
ator, yet they have no orthogonality relations with the
(Dll-n( 1") "
The continuum orbital I, -(r) = L= o (r) is required
kL J.,N—.

to be orthogonal to the rest of the functions T?in(r):

(® 1y A®gy=0. (34)

In Fig, 2, v = 1 —=(0,4), so that Vv = 5 _a(4,0).
If there are N5 = N1 fuactions associated with the point
(4,0)—s 5, then the continuum orbital is G)S N (r) and
’ ]
-1,

5
Note that all of the other points in the diagram correspond

is orthogonal to each function CDSm(r), m - 1,2:...,N

to sets of square integrable functions only.
According to equations (24,27), the total wave function

is gliven by

Y(e,7,) = (I’le Z E—- ZN ol e ) I @l 72 ¥, (825,62,

veV m= n=1

(25)
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To determine the functions -CDvm(r) and the coefficients

[ﬂvmn we form the functional

L(W) = jd_jgljdaf’gw%[;g 'E] V/: (36)

and calculate the first variation of L:

éL(W f 38 OLZ/ T2 -E]V

From this expression, we see that the function

for which (SL(lﬂ') vanishes for all variations

such that the "surface term"

- N h.. o S
fd%lido[w*%‘;gf- V&YYo

(37)

g&'(-ﬁl,%e)
OY(2,,2))

&lso vanishes, must satisfy the Schrbdinger equation

[2¢ -EW =o0. ( 39)

We substitute 90(?1,?2) as given Ly Eq. (35) into

Eq. (36) and carry out the variation (37), permitting only
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variations in the radial functions Q)vm(r) and the coeffi-

cients r‘vmn'. These variations are restricted 80 that the
"surface term" (38) is always zero., We introduce for con-

venience, the functions u, (r') defined by

Z vmn (r-) * .(40)

Note that according to Eq. (26),

uvm(r') =r sy T—=0, (41)

According to Egs. (35,40), we may write

N
. v
W( ?1, F}e) = ( r'll"2) -1 VZE‘:, mz-:l G).vm( 1"1) u vm( I"2) YV( Q l,Q 2)

(42)

The variational condition that 6L( L// ) =0 for all per-

mitted variations (5{[/ leads to the system of equations
[h\—, = X(@ vm? Oym) + <(-Dvmlhv'®vm> + Elu,, -

l
{Z Z X Qs T r) Yn + OVI<CLm1-|hI|@IN >uiN /=0,

weV n=1

(43)
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for the functions uvm(r). Here v—= ( [ ,Ii/), v e v,
m=1,2,...,N, but (;/,m) £ (i,Ni). The one-electron
operator h ié given. by Eq, (33) . The prime in Eq. (40)
indicates that the term . |

X( (Dvm’ (Dvm) uvm’

i1s not included in the summation,

The auxilliary functions X( QOyps €y are defined
by the equations

x( ch-m: @‘Wn) = Z\chwxv( ®vm’ CDwn)’

[ i
KOy Oy) = (2w )™ (2 [0 (905D g (a)as

B(M)
rl -v-—lfCDvm(sf)sv (Dwn(s)ds A ’

Oy = (-1 (2£42)(2 . %2) (2pk1) ( 2p142) [e( Lov, 000)

WL ,pp',Iv)C(L'ptv,000) ]

where v—=( ( , 2"}, w—= (P ,pP') and C(ipv,OOO) and

W(ﬁ,@',pp',Lv) are the well known Clebsh Gordan and Racah
coeffilcients r*espectively.8

The index v in Egs. (44) has the range specified by
the conditions
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2 -pt] «v e p'y p' , (45)
(-t _ (-1)V = (-p)dt+p

radial function, We see from Eq. (43) that there 1s no

equation for y (r). This 1s so because 1ts functional
. I,Ni-

form 1is brescribed by the dissociation requirement and

cannot be varied. We obtain 1t from Egs. (31,40):
S .
ui’NI(r) = (~1) A CDls(r). (46)

We wish to call attention to the terms in Eq, (43) or
the form '

Oyt (@, 1l hl"(DiNi-> “INy -

These terms occur 1ip the system (43) because of the ortho-

gonality condition (34) was imposed upon the continuum

orbital q)kL(r). These terms would not be present in
Eq. (4#3) 1f, insteaq of Eq. (34), we requireg
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\
(@l + 3E©, ) =0 ; (47)

the resultant lack of orthogonality between G)kl(r) and the
square integrable orbitals G)i’n(r), n=1,2,...,N;-1,makes
the determination of the functions uvm(r) imore difficult in
practice as the iterative scheme used to determine these
functions tends to become unstable unless strict orthogon-
ality 1s maintained between G)kL(r) and 1ts square integrable
companions. For this reason the condition (34) was adopted
instead of (47).

The system (43) 1is solved iteratively: approximate orb:i.tals
uvm(r) and Q)Vm(r) must be in hand. The quantity in < } is
computed wusing these approximate functions and then used as
the "source term" in Eq. (43) which 1s treated as a second

order ordinary differential equation for the function u r).

vﬁ(
The "coulomb potential" X( Oy’ 6>vm) 1s also computed
using the approximate q>vm(r). This differential equation

1s numerically 1ntegrateé to furnish an improved function
uvm(r). For the square integrable functions, unique solutions,
regular at the origin, are obtained. A& unique improved con-
tinuun function ul’l(r) 1s also obtained if the condltion qf

unit amplitude for large r is imposed . Once the 1mﬁroved
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functions u, (r) are obtained, a revised set of GD- (r) are

furnished by constructing appropriate linear combinations of
the uvm(r) which satisfy the conditions (32,34) . The expansion
coefficients rbmn are obtained by projection:

Momn = (gl ®2 ), m= Li2,ee N 0= 1,2, N, . (48)

3

The coefficients rﬂl,n,N— and r1I,NI,n are, of course, fixed
with values given by Eq. (31).

Once the {"an are obtained, they are forcibly symmetrized
to guarantee that the exchange condition (28) 1is satisfied
as the iteration proceeds. From the symmetrized Iﬂvmn and
the revised G);m(f), a revised set of uvm(r) are constructed
and the "source term" in (43) and the "coulomb potential"
are recomputed. The process 1s repeated until convergence
of the ijm(r) and ‘ﬂvmn is achieved. .

The iterative process can be started by choosing for the
square integrable (pvm(r) a sultable linear combination of
Slater functions satisfying Eqs. (32), while fop the continuum

orbital GJkL(r) we start with

&I?L(r) = ul(()L(r) -Zl <U§L' @in> @In(r) 3 (49)
n= )

where ugL(r) Satlsfies the "source free" equation:
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2
72 + 2z -ax( M55 Dyg) + KIu2 = 0, (50)

and the solution of Eq. (50), regular at the origin with unit

amplitude for large r is chosen. The 1initial set of fﬁ

vimn
can be taken as follows

L S
rl,l,NI =1=(-1) r'i,N-,l )

) (51)
[Cymn = Os 21l others.

Of course, other, more accurate starting sets may be used ir

they are'available. A1l that is necessary 1s that the approx-

imate (Dvm(r) satlsfy the conditions (32,34) and the r

. vIn
satlsfy the exchange conditions (28).
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RESULTS

Calculations were carrled out for the 18 state of the
8ystem e H in the energy range €1 = E = €ogs Using wave
functions of increasing complexity, 1In Hartrees,

Boeggt K5 e = -.500, gy = -.125
The wave functions useg are labeled Ij%, n=1,2,,,,,6,
The  structure .of thcse wavefunctions is exhiblted in Tabile I,

For example, the approximate wave function IJB has the form

{//3(""‘1’5"2) = (ryrp) ;lfi\[(Dls(rl)uls( Fo) + CL'29,.,( T1) Upg(rp)
\ (52)

/

+ @ks( rl) uks( r'g) ]Y1(§21: Qg) + CDQp( rl) u2p( rg)Yg.(-Ql:QQ) .

Here wc have departegd from.the formal notation of the text
and adopted instead g "spectroscopic" notation., Table I
gives.the "spectroscopic" label corresponding to the pair
(v,m) for each approximate wave function usegd, Thus for 9&3,

Cir1m @

Ty, =0,

s i ©

s J

279




and

<D2,1 =02p *
In all of these wavefunctions, CDls is the hydrogen ground-
state orbital and G)ks is the scattering orbital., The
spectroscopic label on a u-function simply indicates which
Q@-function is paired with 1t in the approximate wave function
given by Eq. (42).
Because the uvm(r) are linear combinations of the

([gm(r) according to Eq. (%0), the expression (%42) for the
total wave function is not manifestly symmetric 1in fl and

?2. These functions nevertheless possess complete exchange

symmetry according to Eqs. (28,35):

VACHE A Y, (F5%), 0= 1,2,.....,6, (53)

Only CDls(r) among the functions (IVm(P) used in the

construction of the wavefunctions has a prescribed form;
-
O, (r) = 2re™ | (54)

Exchange symaetry of the functions lﬂh(fl’?E) then
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The function l/& 1s identical to the "one state"
close coupling function 1/icc and reproduces the phase
shifts determined by other workers as is illustrated in

Table III, If we compare lﬁi with the corresponding

close coupling function L/"’lcc:

rlr?_u’l( I“1:?2) = [(Dls( Pl) ;*ls( PQ) e @ks( rl) uks( I‘2) ]Yl( f?l’ Q 2) ) \L
r17Y 10o( PP = LDy (2B (r)) + B, ( ) Opalr) (01,0, ,

5 -1
‘ forces the function uks(r) to have the same form:
»
! ukS( I‘) = q‘ls( I") . (55)
The function q)ks(r) and therefore uls(r) have the asymp-
. totic bechavion:
Mylr) = sin( krin) k
i T ) r e (56)
uyg(r) = sin(kriy), ‘
where we have imposed unit amplitude normalization on the
total wave functions. The remaining functions are square
integrable, :

(57) |

we see that t%i(?]’?2) is not manifestly symmetric in

Ll
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Yl and fz. This is a characteristic of all of .ihe wave
functions lj% when written in the form (42). The two
functions w& and v&cc are in fact identical and the

connection between them 1is exhibited in the relations

Oyg(r) = Fig(r) = (Fi 10, D (r) ,

(58)
Upg(r) = Fig(n) + (P 1Dy Dy () .

The continuum function Fls(r) of the close coupling model

1s determined from the differential equation

[hl I X(CDls’q)ls) = %ke]Fls - X(CD].S’F].S)@IS

(59)
+ <qS““1'F19 @ =0,
where
2 ’
hy = %g-l;?. + 1 (60)

whlle the equation

2A
[hl = X(®18’®18) +"5k ]uls = X(CD].S’@]{S)UKS =0, (61)

supplemented by the linﬁage relations: \
CDks(r) i uls(r) - <ulslq>1;><Dls(r) s i

(62)
ukS(r) T ®18(r) ’
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{ determine the functions uls(r) and CDks(r). Note that
no term proportional to (Dls(r) appears in Eq. (61). This
is so because djjﬂ(r) is an eigenfunction of h, and the

two conditions ( 3%4) and (%7) are, in this case, identical
8o that the term:

< ®ls,h I ks > Uks
does not appear in Eq. (61).

We next compare ¢% with the corresponding "two state"

close coupling function lﬁécc' We have

.{/'2(?1’?’2) = (ryrp) = Trslrpuyglry) + Daglry)upg(r
Fyes(ry) weg(rp) 19,0 1, 0,

o)

ll/rZ‘cc( TpTo) = (r)ry) —1[@1‘@( r)F(rp) + 7 25( 1)) Fag(rp)
+Fls(r'1)®1_s‘(r'2) + ng(r'l)wgg(r'e) ]Yl((“l’(“f
' (63)
where _ : '

GDIE(P)

DO5lr) = 2re”,
(64)
(éva)-1(2r-r2)e-

n-

G?§§(r)

are hydrogenic radial eigenfunctions,

In the close coupling function 902 ¢+ both F (r)
and F (r) are determined by solving coupled differential

equations. Likewise, in » uy_(r) and u, (r) are
2 1s as)
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similarly determined, the set of equations being

- 2
[hl - X(G“ls’@ls) + ]uls r X(®13’¢'23)u23 \

- X(@13’(1)1{&;)111{8 =0,
}(65)

() - X @pg Dpg) + (Dpglny Do) + Elupg = X(Dpg 1 5)uy,

/

/ % =
X(-(DES’CDks)uks 2 <®28|h1|®k8. Uks 0,
supplemented by the linkage relations:

CDEs(r) = [u23(r) - <u25|®13>®ls(r)]N23-1
cDks(ﬂ) = uls(r) } <uls|q)ls>®ls(r) (86)
- (a4l @pg) D5 (1) -
wheye
Nog = ( <u23|u23> . <u2:3'®ls> ) (67)

The function l//2’ 1nvolving.on1y three palrs of functlons
1s somewhat more compact than df2cc' The important distinction
however, between the two functions is that in L/fe the
orbital @, (r) is not arbitrarily prescribed. Table III
compares the phase shifts 7 obtained from both 11/2 and
Wecc over a range of energies. As a benchmark for comparison

we take the accurate Schwartz values.
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A small but significant improvement in N, over

MNoge is noted throughout the energy range considered, namely
1=k< .8,

Fig, 3 illustrates GDQS(r) for several values of k
and also compares these functions with the hydrogenic
orbital G>§§(r). A dramatic departure from G}§§(r) is
exhibitéd for all k values examined. The more compressed
appearance of G)es(r) suggests that it is describing the
close range interactions more adequately than is (D—Q—s-(r) .
The illustrated dependence of qwes(r) on wave number, shows
that the compression increases.toward’low k values, Even 1
for k = .8 which is fairly close to the Jg—e=2s excitation
threshold, the appearance of (Des(r) is still quite
compressed when compared with <I>§§(r). These results are

1]
in agreenent with the "orbital energies

Aog = = (Uagltyl Cpg) (68)

which are given in Table II. For the hydrogenic function {

G)Eg(r), 'k2s = €5, = -.1250, We see from Table II that 1
positive values of (O,  are obtained for low k values,
indicating that considerable continuum contribution is 1
present in the function CDés(r). On physical grounds, it
might be expected that as k Increases toward the 1ls —=2s

excltation threshold of the atom core, the function G}es(r)

N . e a o
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would tend to become the hydrogenic Gﬁﬁg(r), while the

function uzs(r) would expand to become a continuum orbital,

This cannot happen for a wave function as simple in form as
y% » because the linkage relations (66) demand that if
CDzs(r) is square integrable, so also must be uzs(r).

More fundamentally, it is the exchange symmetry of lﬁé

which permits us to express Upgs Upg, and LY linearly in

terms of q\ks’ Chzs, and Crls’ but lﬁz with only three
pairs of functions comprising it, cannot exhibit proper
behavior as threshold is crossed and still maintain its

exchange symmetry, The difficulty is removed by adding

an additional pair CD}s(rl)uBS(r2) to iﬁé. This gives

a wave function of the form:

Yzt =1 Dylryujglry) + Dpylry) Upg( o)

+ ®38( rl) uBS( 1"2) + CDkS( rl) ukS( 1"2) ]Yl(\’il,.Qz) .

In this case, u?s(r) is a linear combination of O)ls(r),
Cﬁzs(r), and dD}s(r)f- The function (Dzs(r) is now free
to become the hydrogenic orbital GDEE(F) as k increases and
threshold 1is crossed, while (Djs(r) and uzs(r) will become
continuum orbitals, The other orbital ujs(r) will go over
into a constant multiple of the hydrogenic orbital 03§§(r)
and the entire wave function will become equivalent (above

s Y,
threshold) to the close coupling function ‘#écc'
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Fig. 4 1llustrates the change in the form of CDés when
we add (DBS(rl)uBS(PE) to VZQ‘ Table II shows the effect
that this cerm has upon the 28 "orbital energy" lkzs.

We note that the addition of the QD}S function allows @,

to relax toward larger values of r, although the compression
of CDQS toward small r values still persists markedly for low
k values. The 2s "orbital energy" ).25 becomes lower through-
out the examlned energy range and as k approaches the 1s—e2s
excitation threshold, (Ebs(r) bears a much stronger resemblance
to the hydrogenic orbital (DQE( r).

We discuss now the function l%é which includes a term

Op (rp) up (1) ¥ §21,627) (69)
designed to account for angular correlation, The Index
v = 2 on Y2(721,f22) corresponds to the pair index ( {, @')

=(1,1). The functions'uls(r), upe(r), and uzp(r) are

determined from the system of equations?

2 ) ] % 2 ’ = .
[h) - X(QgrTpq) +oKkIuyg = X DygaPygd g = X DygsDpg) upg

= X( @189 ®2p) U—gp =0
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[h) - X(@pes Tpg) + \i®23lhll®23> + EJugg - X(Dpgs@yeg) Ues

- X( <DQs"C\)ls)uls - X( GDQS’CDQp) u2p : ‘/.Q)Qs'hll@ks\) Yes = 0,

r ) .
[h2 - X( @‘2})’ mep) +\J\2p,h2l Gepl/ + E]uep X( (f)gp:kas) uks

= X( ®2p: <D28) uQS =) X( (DQP: (I"ls) uls =0,

. (70)
Supplemented by the linkage relations
-] .
@23( P) = NQS [ uQS( P) = (ugsl (Dlsl\(DlS( I")] ’ N
Opgl ) = upglr) '<“1s'®1s>@1s( r) - {0351 @) D ), S (1)
|

, 1 |
’\sz( r) = N‘?p u2p( P, /
where

’ 1 \ 2 !2'
NQS = ( ’\u23|u23> - <u25|mls/ )"
(72)
' p
N2p w1 <u2plu2p> Pe

Table ITI shows a very substantial improvement in the
célculated phase shifts over those obtained by the close
coupling method. The orbitals ‘®23’ G\ks’ and G‘Qp are
illustrated for k = .5 in Fig. 5. Pig. 6 i1llustrates an
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interesting feature, namely that the variationally determined

normalizeable orbit;lsdbes(r) and (I@p(r) have damped oscillat-
ory behavior for large argﬁment. Thig effect 1s particularly
striking in the case of the function ! ép(r), for which the
oscillations daﬁp out witk an amplitude proportional to r-e.
The corresponding oscillatlons in the orbital G)Qs(r) fall

)

of like r-', The source of this behavior is to be found in

the coupling terms present in the differential system (43).
The term

is responsible for the oscillatory behavior of u2p ang

hence q)2p. For large r,

& A -2
X @y Oag) ¥ €7 o {(@pplrl®y g3 ¢, (74)

u.ks(.r') ¥ gin(kr + 1), r—= oo (75)
Thus (73) 1s a driving term proportional to
=2
r “sin(kr + q)

and accounts for this dependence in the tail behavior of €. (r).
‘p,
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Since X( ®2$’®ls) decays exponentially for large r due
to the orthogonality between G)Qs(r) and G)ls(r), the direct
coupling term involving uks(r) doés not function as a driving
term which affects the tail behavior of uzs(r). The function
uks(r), of .course, falls off as e~' so that oscillatory be-
havior in uzs(r) and hence in <$bs(r) can only come from the
coupling to uzp(r) through the term

X(©pq, @y ) up, - (76)

As we have seen, for large r, and some constant a

uzp(r) ¥ ar'zsin(kr + 1), r—eo? (77)

also

X( ®28’®2p) = C%,2<®2p|rl®28> 1"-2 A g (78)

so that (76) represents a source term which for large r

is proportional to
r'usin(kr + 1)
which accounts for this dependence in C)zs(r).

Fig. 7 1llustrates the difference between q)2p(r) and
the hydrogenic orbital QDEE(P) where

AR -,
Opplr) = (28 ) re™5" | (79)
Agaln we note that the variationally determined orbitalGﬁgp(r),
1llustrated for k = .5, has its peak much closer to the target

atom than does.the hydrogeniz function (sz(r). Use of the
295
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results, Consliderabile continuum cont

rlbution is pPresent in

@, (r) as 1is indicated by 1ts "orbital energy"
2p

A

2p = .182, k = .5
which is to be Compared with the value
€2p 2, _0125

for the hydrogenic function,

Some idea of the efficiency of tne present model wsve

fuctions can be obtained by comparing the phase shifts

obtained using b%(?l,ﬁé) with those obtaineq recently

by Chung and Ched7. These workers used a wave function

of the form

iz, 2y (Plr2)-l[G\ls(Pl)Gls(}é) * Ogslry) Toglry)

" on v,k _~(ar +Br,) p.. v, -(Br +ar,) i .]
+ %gg.ggAuv[rl rye 305 e ri"ry'e 32 ]21(°°°°12;'
: (80) -
-type and nine terms of pP-type
were included., The open channel function useq was

In the Summation, six terms of s

Gls(r) = (sinkr + tamcoskr)(1 - e~0T)

+ dnrne"or
n

(81)
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and Q is the projecticn opérator:

=11 - 0 (e M@ ry) 111 - 0y ) (@ (1) 17, (82)
The coefficients Auv and dn as well as the open channel
parameter ¢ were calculated for each energy value considered

in the range .1 =k = ,8 ., The other two nonlinear parameters

a and B were determined and used over the entire energy range.
The phase shifts obtained with this wave function are compared
with those obtained with Z¢5 in table iII. These results show
that the present model wavefunctions are quite efficient with
respect to the number of terms required to produce phase shifts

of comparable accuracy.

Further calculations were carried out with the more
elaborate wavefunctions V/“r’ V/5, and ws. The results of
these calculations are presented in table III where it is
Seen that accurate phase shifts are obtainable with short
expansions within the present model. Even V&r the most

elaborate wavefunction used, 1s constructed from only 11

‘optimal orbitals., In Fig 8, the optimal orbitals are

1llustrated for k = .5 using the wave functionlﬁh.
Table IV gives the expansion coefficients F;mn for this

wavefunctlon, Finally Table V presents the corresponding

orbital energies,
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FIGURE CAPTION3

Fig. 1. Permitted pairs used in the construction of the angular

two particle functions YLMtl'(fjl’S;E)’ illustrated for
17w 0,1, 2. '

Points indicated by @ are used for the "normal" terms
for which

; QYLML.C' = (_1)LYLM£G' .
|

Points indicated by o are used for the "abnormal"
terms for which

PYrgge = DY 000

Fig. 2. Assignment of values for the running index v replacing
the pair index (£,¢') e [/*] for L = 4, By convention
v = 1 corresponds to the pair (O,L). The relationship
between v and V is also illustrated. Note that the
points corresponding to the indices v and V are
symmetrically placed about the line £ =/, 1In this
case the elements of the set V are the integers 1-9.

Fig. 6a. Oscillatory behavior of q>2p(r) in the region
10 € r € 32 a,u, (From the wavefunctionlﬁé for

k = ,5) Oscillations damp out as e,

Fig. 6b Oscillatory behavior of (E@s(r) in the region
W & r & 35 a.u. (From the wavefunction U for
k = .5) Oscillations damp out as r'u.
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The remaining figures are to be captioned simply as
Fig. 3, Fig. 4, Fig. 5, Fig. 7, Fig. 8a, and Fig. 8b .




Table I. Structure of the Wavefunciions used,

(2,2 (0,0 (1,1)  (2,2) (3,3
v 1 -2 T3 b
m 1 2 3 3 5 1l 2 3 1 2 1

/1 1s ks

/2 1s '2s ks

‘7{:3 1s 2s ks 2p

’4 1s 23 3s ks 2p 3p 2d

1'5 1s 2s 33 ks ep 3p 4p 39

'1,6 1s 28 35 45 ks 2p 3p 4p ' 39 4a  yp
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TABLE 73V,
Expansion
coefficients for
Wy k= 0.5
V. m n ["vmn :
111 1.217 TABLE II. Orbital energy of
1 1 2 -.0.859 the 2s orbital for different
k values,
11 3 o0.786
1 1 4% 1,000 kAl Vg Apel [ +Tagus )
LR A RAN 2 a0 .026
t 2 3 -0.089 LR T T -.025
> 218 & 8- .03 -.108
13 5, -0.032 For the hydrogenic 2s orbital
1 3 J‘" 0. 28 = ees = °o125
2’1 1 -0.085
2 1 2 -0,075
2 2 2 0,178
2 1 1 -0,0m
TABLE V., Orbital energies

for the orbitals

fy

wavefunct ion

of the

for k = 0,5

label N m Aym
1s L3 -0.5000
2 1 2 .0.0654
s i 3 1.0887
ep 2 1 -0,1120
| ‘ 3p 2 2 0.2088
: 34 3 1 1.2299
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INDEX TO HANDWRITTEN SYMBOLS

\V to
yV to

be
be
be
be
be
be
be
be
be
be
be
be
be
be

be

" be

be

read
read
read
read
read
read
read
read
read
read
read
read
read
read
read
read

read

b4

<

o e

v o © ¥ g

)/
"seript"
"seript”
"script"
"seript”

< W o =
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