AD-757 686

NETWORK DATA HANDLING SYSTEM
Thomas Marill

Computer Corporation of America

Prepared for:

Army Research Office-Durham
Advanced Research Projects Agency

31 January 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

COMPUTER C ORPCRATION. OF AMERICA

I

P

7686

L) DATACOMPUTER PROJECT
e SEMI-ANNUAL TECHNICAL REPORT

D

2-ﬂ:A.ugust 1, 1972 teo January 31, 1973

Contract No. DAHCO4-T1-C-0011
ARPA Order 1732

Reproduced by

ATIONAL TECHNICAL
lr;l\lFORMATlON SERVICE ‘ B -

tment of Commaerce
= %;e?;gfield VA 22151

Submitted to:

Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

DISTRIBOTION STATEMENT A

';xppf""d' for public release;
Distribution Unlimited 5 n

| /]

!
i
i
a;
g
a;

Computer Corporation of America

575 Technology Square
Cambridge
Massachusetts 02139

617-491-3670

DATACOMPUTER PROJECT
SEMI~-ANNUAL TECHNICAL REPORT

August 1, 1972 to January 31, 1973

Contract No. DAHCO4-71-C-0011
ARPA Order 1731

Submitted to:
Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Inclassified

Secunty Classification ¥

DOCUMENT CONTROL DATA-R & D

(Security clasallicetion of title, body ol ebstract and indexing annotation mue! e sntersd when the overall report le claseiiiad)

V. ORIGINATING ACTIVITY (Corporate suthor) 28, REPORY SECURITY CLASSIFICATION
: 2 linplassified
Computer Corporation of America TS
’ N4
3. KCEPOKY TITLE

Network Data Handling System

4. GFICRIPTIVE NOTES (Type of report and Inclueiva dates)

semiannual TR: 1 August 1972 - 31 January 1973

8. AUTHORI(S) (First name, middle Initial, lest name)

Thomas Marill

6. REFORT OATE 70. TOTAL NO. OF PAGES 76. NO. OF REFS
1973 3lp
8a8. CONTRACT OR GRANT NO.

%8, ORIGINATOR'S REPORT NUMBER(S)
DAHCOL 71 C 0011.

b. PROJEC T HO,

NA

$b. OTHER REPORT NO(S) (Any other numbers that may be assigned
thie report)

d.

9816.2-A

e
10. DISYIIGCUTION STATEMENT

Approved for public release; distribuiicn unlimited.

1. SUPILEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

None U. S. Army Research Office-Durham
' ' Box CM, Duke Station
Durham, North Caralina 27704

-
13. ANsTHACTY

7 Thig report describes the activities for the period 1 Aug 1972 - 3i Jan 1973.

uurlng this reporting period, the activity on the project has
centered on development of the first software release, 1n1tial
syctem demonstration, coordination with potential users,

and
‘o7t on a global weather data base.-

ik, XEY WORDS i
Datacomputer Project
Computers
Data Systems
Large-scale Data Systems
Multiple computers

- .mr o —_—5——5‘-—_-—__,

DD 3 JA4 73 ottslire tan amiv Usa 28% oo wrifyi1e

n . Unelassified

Computer Corporation of America
575 Technology Sguare
Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

August 1, 1972 to January 31, 1973

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the U.S. Army Research Office-Durham uncer
Contract No. DAHCO4-71-C-0011. The views and con-
clusions contained in this document are those of the
authors and should not be interpreted as nececsarily
representing the official policies, either expressed or
implied, of the Advanced Research Projects Agency or the
U.S. Government. -

(134

il

M e S e .. " 3 . : . I‘

A e B aadediE

Table of Contents

Page
f Overview St et i et it 1
Design Activities 3 s T 4
2.1 Datalanguage A e A by
2.2 Software System i 2iew, o i T 8
3 Software Implementation L ettt et e 9
3.1 Request Handler IR 6 G 9
3.2 Services0ivuunnn... oSS S5 S TNe § N6 NS 1 e A 12
4. Initial System Demonstration RS " S SRS) « s 8 s Wi 14
4.1 Data Acquisition 5 (TSt oI B § e Mo, 14
4.2 Datacomputer Software D6 e MR N ont s sl 15
4.3 Natural-Language Front End Do omere 15
| 4.4 Sample Datacomputer File ST e, o o o memeome tomone . 18
5. Investigation of Tertliary Storage Devices oo 6 3 21
5.1 System Characteristics et e e S §a 21
5.2 Evaluation of Unicon O eI s 27
5.2.1 Main Causes of ERTOR s nles 530 BT BFS « A7 peel 27
. 5.2.2 Reliability and Maintenance..,........ 29
6. Miscellaneous Activities....,....... e LT AL A— 30
l- 6.1 Network Usage and Analysis LT e o e s orer 6 oms 30
6.2 Meetings and Conferences.......... et ee e 30
l_ 6.3 VWeather Database Working Group......... @ & BN 30
i Appendix A: "Demonstration of Datacomputer with
Natural Language Front-End", Handout for demon-
Stration at International Conference for Computer
] Communications. s ool e oibma bl o bE T, S
Figures
| 1. ZSeek times for Tertiary Storage Devices.,......... . 24
2. Skip-read times for Tertiary Storage Devices...... 25
|

, v

|
I
i
i
i
]
E

N D S e e e

oo T T

l. Overview
The goal of the project continues to be the development of

a shared, large-scale data System to serve the needs of the
ARPA community.

The system under development may be viewed as a box that
performs the functions of data storage and data managemant

on behalf of multiple computers simultaneously connected to
the box. The computers can access the box directly over local
links or remotely over the Arpanet; in either event, a stand-
ard notat1on--datalanguage;-is used to access the box. Inside
the box there 1is a medium-scale comput.er, secondary storage
for data-staging, and an on-line tertiary storage device.

Some of the ideas underlying the development are as follows:

(a) The approach has the effect of pooling many users' data-
storage requirements into a single system. As a consequence,
economies of scale can be realized by employing ultra-large
tertiary storage devices (Unicon, TBM, others) that have a high
price tag but very low per-bit cost. (b) The effective use

of remote storage systems requires that the data-management
functions themselves be performed within the system. (It 1is
uneconomical to ship entire data files over a network when, as
is usually the case, only small portions of the files are needed
at a gilven time.) (c) In a system such as this, problems of
data security become more tractable. The reason is chat the
data storage and data management functions are segregated

into a separate box that responds interpretively to a limited
set of commands. 1In t4e more conventional environmsnt, arbitrary
user processes run in the same computer as the data functions,
making i1t hard if not impossible to guarantee data security.

(d) The system 1anguage--datalanguage--is belng designed for

use 1n the Arpanet as a standarc means of access to remotely
located data. It contains features specifically designed for

wl=

sharing data among prograns that operate on different machilnes,
for describing a broad class of data structures, and for
allowing arbitrary subsets of large files to be selected
efficiently at run-time.

for the prototype system being developed at CCA in Cambridge,
a dedicated PDP-1CG TENEX with a billion bits of secondary
disk storage is being used, and plans for the addition of

a large-scale tertiary store are being formulated. The
software system running at CCA will also be run at NASA/Ames,
where a tertiary store (the Unicon 690) has recently been
installed. Service will be offered out of both the east and
west coast facillities, which will be in communication with
one anotner for purposes of mutual backup.

During this reporting period, the actlvity on the project has
centered on development of the first software release, initial
system demonstration, coordination with potentlal users, and
work on a global weather data base.

In the software area, a first version of the system was
implemented. This version--release 0/8--contains much of the
structure that will make up the final system (some two dozen
modules), though many modules exist as yet only in primitive
form. Release 0/8 handles a very small set of the full data-
language; in the future increasingly larger sets will be made
available through subsequent releases. A limited experimental
service for cooperative users 1s being initiated now using 0/8,
and the system 1s being used for demonstration and system
tests.

T

I
|
|
|
|

As an 1nitial demonstration of release 0/8, a month's worth

? the world's weather was loaded into the system. A
natural-language front-end program was implemented which
accepts arbltrary English questions about the weather and
attempts to answer these. This front-end translates the
English inlo datalanguage requests, which then access the
datacomputer system to generate the output. The demonstration
was run for the three days of the International Conference on
Computer Communications in October, during which time the
database was kept up-to-date on a dally basis.

Participation in the Weather Database Working Group has
continued, as well as coordination with the dozen or so groups
that have expressed interest in becoming users of the system.

2. Design Activitles

2.1 Datalanguage
The first two releases of the language were specified. The
first was designed to provide basic facllltiles for deallng
with a file of weather observations. This flle has a
hierarchical structure which is described explicitly in
datalanguage. Requests for retrieval specify the deslred
observations by content, select items of interest from those
observations, and arrange them 1nto a form acceptable to the
user program. The second release extends the language to
provide basic updating capabilities--adding to, and deleting
files. While our intentions for development of the language
make these releases look rather primitive, the exerclse of
specifying them completely has been reveallng.

Rules for a simple class of description-to-descriptlon
mapplings were written for the first release. These define
the meaning of A=B when A and B are not 1dentical. Defining
A=B through such a descriptive mapping has the advantage that
1t specifies the result of the assignment, even for complex
structures, rather than specifylng a procedure oy which the
assignment 1s carried out. This allows the datacomputer the
freedom to optimize the operation. '

It was discovered that automatic mapping mechanlsms are complex
to specify. Thus, 1f the system maps one elaborate structure
into another, elther this must be performed according to very
involved rules, or it must handle only rather similar des-
criptions. The former would be difficult to use; the latter
may be limited 1n appllication (though still not necessarily
devold of practical interest).

all

T e .

=

However, it is thought that any particular mapping is not
difficult to specify, and may frequently deviate in simple
ways from stralghtforward standard mappings. Thus attention
will next turn to the design of a facility for users to
specify and dynamically mcdify description mapping functions.

In specifying these releases, progress was made in deter-
mining the meaning of names in datalanguage requests. The
meaning of a name (i1.e., whether X means a particular X, a
set of Xs, as well as which X or set of Xs) depends in part
on the context in which it appears. Apain, this problem was
solved for certalin special cases for the first release. The
rules for recognition in contexts have been formalized for
these simple cases, and the exercise of designing them has
forced us to accept that (a) a more precise model for sets
and objects 1s required to complete the language design, and
(b) recognition of names and manipulation of contexts at the
directory level (currently avoided except in trivial cases)
cannot be specified in the language independent of directory
access characteristics (searches are expensive).

Feedback from users of the first release has affected our
attitudes about datalanguage syntax and process synchroni-
zatlion. The experience with these users has revealed some

of the distinctions between the servicing of people through

a language and the servicing of remote, asynchronous programs.
We have come to feel that the syntax of datalanguage is too
elaborate--that it is complicated by mechanlisms natural for
people and troulLlesome for programs trying to generate requests.
This has caused us to step back and investigate other kinds of

syntax appropriate to our semantics.

The other result of experilence with users--synchronization
difficulties--has brought about some changes already and

seems to be initiating some more. Datacomputer responses,

in the form of messages on the datalanguage output port, are
being supplemented by codes deslgned for program interpretation.
In addition, messages are being added to aid in synchronization.
Also, a very simple user-to-datacomputer synchronization
message has been added. These improvements, however, seem
inadequate, and 1t 1s likely that something more general--
perhaps a datacomputer protocol--wlll be developed. This is
also expected to feed back Into the language design.

Finally, we have done some investigatlon of the implications

of data sharing for the language, and begun to design more
powerful description facilitles than were originally envision-
ed. First, we have begun to develop the concept of the virtual
contalner, which i1s a data object that 1s not stored anywhere,
but could be produced by executing some datalanguage request.
Virtual contalners behave like real contalners, and a user need
not be'aware that they are virtual. Eacl virtual contalner
description corresponds to some collection of data as some
particular user cares to view 1t.

There are several implications of this concept. One 1s that
user programs can be independent of the stored organlzation

of data. (Earlier attempts at datalanguage design provided

some independence of the representation of items, but rela-
tively little independence of structure). Thus data can be
reorganized as needs change, without changing existing programs
(except as dlctated by altered performance). Another impli-
cation 1s that programs need be aware only of the portions of

AL

r

[
L
|
l
¢
i
i
i

data structures whiqh concern them. Finally, virtual con-
tainers can be thought of as a way of recording data relation-
ships. Conslder a program which commonly retrieves information
from related containers in files A and B. If it enters into
the datacomputer a description of a virtual container which
'contains' the information of interest from A and B, then

information about the relationship of A and B has been captured.

This is now in descriptive form, under the management of the
system, rather than 1solated in a request or built into a
user program. This information could be useful to those
administering the databases, as well as to system programs.

Another key concept developed in this period s description
partitioning. We know that the data descriptic.i contains

maily levels of information, and that each level 1s useful for
different operations. The lowest level contains specifications
for the storage or transmission medium in which the container
exists. The highest level contains only that informatlon which
is required for understanding the data. At sundry levels in
between are logical access paths, choices of representation,

information related to validity checking, protection and security,

operational considerations (e.g. age, expiration date, backup/
recovery requirements), and so on. In transferring data from
one storage medium to another, but otherwise leaving it un-
changed, only the lowest level of description is affected.

In adding indices, pointers, or inverted file keys, only the
middle levels are affected. Some users only concern themselves
with the top level. These parts of the description must exist
in the system as separate objects, and they must be accessible
independently.

T

2.2 Software System

In regard to software system design, very 1little activity ha-~

taken place beyond what was reported in the previous semi-

annual report. Escentially, what is belng implemented at this

time 1s the design given in Working Paper No. 5 (Feb. 29, 1972).

fre s

T P e Le———— e
‘ i |
o
i
e e T 3 3

3. Software Implementation

Software implementatlion, started in the last reportins period,
1s progressing. The culmination of this period's activity

was the generation of release 0/8, which ran the ICCC demon-
stration 1n October (see Section 4, below). This release 1is
quite primitive. It handles only fixed-length ASCIT strings,
provides for only one user at a time (multiple users must have
multiple coples), does not support tertiary storage, has poor
debusging facilitles, etc. Even so, this release is attracting
a numucr of potentlal users. A draft of a user-oriented gulde
to 0/8 has been prepared.

3.1 Request Handler
A Request Handler for the first release of the languagc was
programmed and debugged. It 1s developed along the lines of
the system architecture outlined in Working Paper No. 5. Most
of the code, and particularly the module-level design of the
program, 1s expected to remain a part of the system, providing
a foundatlion for further work.

Thls Request Handler 1ncorporates an inverted file retrieval
system, as discussed in Working Paper No. 2. Sufficient

flle malntenance routines exist to support the current level

of language development. Parameters in the user's data des-
cription specify whether a field 1s to be an inverted file key.
Construction of the inverted file, and use of 1t in expressions
referencing such a key, are invisible to the user. Therefore,
datalanguage requests referencing the flle are independent of
the file creator's choice of keys. 1

¥
o
o
o
0

The inverted file system, however, 1s not complete. Remalnlng

to be implemented are extenslons to handle varlable-size
contalners, changing or deleting of key values, range retrieval,
expressions involving hlerarchical relations, large files,

and known algorithms to optimize massive flle updates.

Parsing of the language 1mplemented thus far 1s stralght-
forward, with the exception of recognition rules for names.
These are implemented 1n a module (CX) separated from the
parser proper (LP). Requests which can be executed immedlately
are passed by LP to a command executor (CO); those which must
be analyzed and complled are transformed into a parse tree,
which 1s input to the Source Analyzer (SA).

The CX module 1s concerned with disambiguation of partilal
names and relating names to data object instances or sets.
Of the two name spaces 1in the datacomputer, CX operates on
only one. This 1s the set of names defined in open data
descriptions. CX should also function on the set of names
defined in the currently relevant part of the directory.
Extension of CX to operate on the directory name space will
be attacked in the coming year.

SA is intended to choose among alternate paths of access to
data referenced by a request. In order to do so, 1t must
first expand the parse tree statement of the request into
procedure expressed at the proper level. As 1t does so, it
produces an intermedlate language graph, which 1s designed
to allow easy re-structuring of the request as declsions are
made.

-10-

)

—

-' 4

T R R e el e

—

Currently, SA makes no significant strategy decisions. It

does decide whether or not to use inverted file techniques,

but according to an extremely crude heuristic. However, it
expands the tree, makes loops explicit, and moves certain
operations outside of the loops. The graph it outputs con-
slsts of operatlons on elementary contalners (such as assign-
ment and comparison), loop operators, and open/close operators.
These are intended to map straightforwardly into tuples (see
below).

The graph 1s then input to a code generator (CG) which
outputs code for a software-implemented 'machine' (TI) whose
Instructions operate on data containers. The instructions
are called tuples.

Implementation of CG has proved complicated, and approaches
alternate to the original one are under consideration. The
difficulties are related to low-level optimization problems,
which are expected to become significant when the current
restrictions on data structures are removed in the coming
vear. The basic problem is to know which pointers into a
data structure are golng to be available unconditionally
when control arrives at a certaln point. (Having solved this,
one can go further, asking whether previously executed code
should be constrained to obtain certain pointers, whether it
would naturally do so or not.) When a required pointer is
not avallable, tuples are generated to obtain it.

One solution under consideration involves visualizing the

process of obtalning polnters into a data structure as distinct
from the process of operating on the elements of the data

-11-~

. L

o e omeso,

structure. The former depends, 1n most cases, only on the 1
data structure itself. The latter is a function of the current
request and is responrsible for most of the complexities in
program flow. The idea is to compile separate tuple strings
for each such process, controllilng them as cooperating

sequential processes or as linked co-routines in a single
process.

The 'machine' which executes these tuples was defined and
implemented in this period. Programming and debugging was

convenient, since tuple executors coulé be worked on independ-
ent of one another.

In thinking about the implementation of the interpreter, we
began to develop a model for the container structures the
interpreter is operating on. We would like to complete this

model and use it in designing the lower levels of the data
description language.

3.2 Services
The services portion of the software consists of a set of
subroutines which are available to the Request Handler. The
architecture of services has been described in Working Paper
No. 5. With the exception of those calls dealing with tertiary
storage, a complete (though primitive) first set of service
routines has been implemented for release 0/8. Re~design of
some modules and enhancements of others will be undertaken
during 1973. The activity breaks down into fonur parts:

Storage Manager
The following have been programmed: ccre buffer managem2nt,

logical-physical address mapping, storage allocation, device-
dependent 1/0 functions.

-]12~

"
%
N

I/0 Manager
External I/0 functions have been programmed to handle the
case of ASCII stiings.

Directory System

Functions for bullding and accessing a tree structured file
directory as weli as i'or storage of corresponding data des-
criptions and storage maps have been implemented.

Supervisory Functions
Routines for handling errors, software interrupts and user
and dstabase initialization have been developed.

4, Initial System Demonstration

In response to a general request by L.G. Roberts at the 1971
IPT principal investigators' meeting that natural-language
database oriented demcnstrations be given at the ICCC con-
ference, such a demonstration was produced, and represented
the first external demonstration of the datacomputer system.

The demonstration was held on October 24-26 at the Statler
Hilton, Washington, D.C., as part of the Special Projects
activity of the International Conference on Computer Communi-
cations. The nandout used for the demonstration 1s given in
Appendix A.

The datacomputer software that wes used for the demonstration
was release 0/8, which is discussed above. This release was
the first version of the system to be used outside of CCA.

A natural-language program translates English questions into
release 0/8 datalanguage, which 1is then passed on to the data-
computer software for data retrieval. The natural-language
front-end and release 0/8 communicate with each other through
the IMP, thereby providirng a realistic test of 0/8 and also

- allowing the natural-language program to be transported to
some other installation.

Fe— e

et

4,1 Data Acquisition
A month's worth of global weather information from the ETAC
weather flle was loaded into the datacomputer system (using disk
storage). The database was kept up-to-date on a daily besis
curing the three days of the ICCC conference.

PN

=1l

l'
[
[
[
i

It had been originally planned for GWC to send the raw data to
ETAC by network transmission for reformatting, and for ETAC

to send the reformatted data to CCA by network transmission.
Due to a variety of technical problems, some of the data was
finally received at CCA by network transmission and some by
air freight; some was received from ETAC and some directly from
GWC. The latter was converted directly at ©CA.

Specifically, 7 tapes were received from ETAC by air freight
and 1 by network; 8 tapes were received from GWC by air

freight and 10 by network. During the three demonstration days,
update data came from GWC over the net, so that the previous
day's weather was available each morning.

k.2 Datacomputer Software
The datacomputer software used in the demonstration was
release 0/8 discussed above (Section 3).

4.3 Natural-Language Pront-End
. natural language front-end which understood English questions
&ébout the weather was developed. This system i1s tased on work

done by Professor T. Vinograd of the MIT Artificial Intelli-
gence Lab.

The Winograd system was converted from MIT-AI LIS? to BBN-LISP
to run at CCA's TENEX. The parsing routines needed no modifica-
tion. A new vocabulary dealing with the weather was added, with
much of the old functional vocabulary (words such as "be",
"what") retained. The major modification was to have the system
generate datalanguage instead of the PLANNER requests generated
by the original Winograd system.

<15=

A S

{
t
I
4
I
I
i
1
|
l
i

In the Winograd system, an internal semantic description of the
meaning 1is constructed as the sentence is understood. That
description is then translated into PLANNER code. This is an
easy translation since PLANNER is a goal-oriented system,
embodying a sophisticated matcher. The translation of a request
into datalanguage is substantially more difficult, especially
considering the elementary level of datalanguage available at
the time of the ICCC demonstration. This problem was solved

by using a two stage translation process. The set of relations
derived in understanding the sentence are converted tc LISP
expressions, which are evaluated. These expressions put their
pleces of information onto the property lists of variables which
are then gathered together to form the datalanguage request.

For example, the sentence "Has it rained in Boston lately?" has
the following internal semantic form:

RSSS5: (MARKERS= (SYSTEMS RELATION)
PARSENODE=
(NODE1)
PLAUSIBILITY= 0 RELATIONS=
(RSS4 RSS2 (MORE PRECIP RSS1 0)
(WEATHER PRECIP RSS1 TSS1))
RSSNODE= RSSS5 SYSTEMS= (SYSTEMS)
VARIABLE= EVX1)

RSS4 and RSS2 describe the time and place relations. This is
converted to the following LISP program:

(PROG "EVX1)
(CITY TSS1 ((BOSTOM MASSACHUSETTS)))
(TIME TSS1 ({293 300))) .
(SETQ EVX1 (WEATHER PRECIP EVX1 TSS1))
(SETQ EVX1 (MORE PRECIP EVX1 0))
(PUT (QUOTE EVX1)
(QUOTE BIND)
EVX1)
(RETURN EVX1))

-

When executed this program produces the following datalanguage
request:

FOR STATION WITH (REGION EQ 'MASSACHUSETTS' AND CITY EQ 'B0STOM')
FOR ANSVER.ANS, OBSERVATION WITH DATE GE '293' AND DATE LE '300'
ANS.LP1 = "(' ANS.CITY = STATION.CITY AHS.RP1 = ')!'
AlS .DATE = OBSERVATION.DATE
AUS.LP2 = '(' ANS.DATA = PRECIP AHS.DATAl = ' ;
ANS .DATAZ = ! ' ANS.RP2 = ')' END END

The parse diagram of thils sentence 1s:

(C(HAS 1T RAINED N BOSTOM LATELY)
(CLAUSE !MAJOR TOPLEVEL QUEST POLAR POLR2 ACTV ITRNS)
(RSS529)
((HAS {HAVE VB AUX TRANS V3PS PRESENT QAUX))
am
(NG SUBJ PRONG DEF NS)
(0SS20)
((IT (PRON NS 3UBJ 08J))))
((RAITNED)
(VG V3PS)
HIL
((1IAS (HAYE VB AUX TRANS V3PS PRESENT QAUX))
(RAINED (VB ITRNS PAST EN MVB))))
(CIH BOSTUN)
(PREPG)
(RSS19)
(C1n (PREP PLACE))
((BOSTOMN)
(NG 0BJ DEF PROPNG CITY N3)
(0S8522)
((BOSTON (PROPN NS CITY))))))
((LATELY)
(ADJG ADV TIMW)
(RSS17)
(CLATELY (ADV VBAD TIMW))))))
((0SS22 X12 ((BOSTON MASSACHUSETTS)))))

«17=

A sample word definition is:

RAIN:
(FEATURES (NOUN NS IMASS VB INF [|TRNS)
SEMANTICS
(CHOUN (GBJECT (MARKERS: (#PRECIP)

PROCEDURE:
(C#WEATHER #PRECIP ### #«TIME)
(#MORE #PRECIP »#+ 0)))))
(VB (CITRNS (RELATION (RESTRICTIONS: ((SMSUB (#WEATHER
#GENERAL)))
PROCEDURE:
((#WEATHER #PRECIP
*wx wTIME)
(#MORE #PRECIP #w»% Q)
))))))))

4.4 Sample Datacomputer File
The following datalanguage port descriptions are used to
rztrieve data from the datacomputer.

CREATE CHECK PORT LIST
PLACE STRUCT
LP1 STR (1)
CITY STR (22)
RP1 STR (1)
BSN STR (6)
LP2 STR (1)
REGION STR (22)
RP2 STR (1)
END PLACE STRUCT
tidd CREATE CHECK

CREATE ANSWER PORT LIST
ANS STRUCT
LP1 STR (1)
CITY STR (22)
RP1 STR (1) .
DATE STR (3) '
LP2 STR (1) ;
DATA STR (4)
DATAL STR (4)
DATA2 STR (&)
RP2 STR (1) J
4

END ANS STRUCT
CND CREATE ANSMER

=782

':i'm‘ ‘“; S

———

i

The following is the datalanguage description of the file as
it is stored in the datacomputer.

CREATE WEATHER FILE ‘LIST
STATION STRUCT

BSH STR(G), I =D
CiTY STR(22), I =D
REGIOHN STR(22), =D
WORLD STR(22) '
0BS LIST (31)
OBSERVATION STRUCT
DATE STR(3)
TEMPERATURE STRUCT
HIN STR(L)
MAY. STR(4)

END TEMPERATURE STRUCT
PRECIP STR(4)
WINDS STRUCT
SPEED STR(4)
GUSTS STR(4)
DIRECTION STR(4)
EHD WINDS STRUCT '
VISIBILITY STR(4)
CLOUDS STR(4)
GENERAL STR(14)
PRESSURE STR(4)
END . OBSERVATION STRUCT
END STATION STRUCT
END WEATHER FILE

g

o

|ifl

I
1
-1

A e e

[S}

e, sy Ei_g

The following data 1s a sample record--the first one in the file.
In the datacomputer it 1s stored without the carriage returns
needed o make it print neatly.

010100ANDOYA

275
276
277
278
279
280
281
282

283.

284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
503
304
305

278
279

274
268
276
269
278

276
273
278
269
275
268
283
274

272

273

271
275

279
283

231
270
283
273
284

280
275
282
271
231
269

283

274
272
273

275
275

o

[=]

=X=X-)

CoOCoO®wocoOoOOOFoso

NORWAY
2 0 12 9
25 L 52=4 111 8
23 42 12 9
14 0 9 19
28 69 7 9
10 0 9 22
13 37 9 /
28 0 s 1
9 0 3 12
15 0 3 7
13 28 11 14
30 0 6 7
21 45 7 9
20 0 8 22
11 0 7 47
11 0 1 47
5 0 7 47
0 0 1 6.
0 0 1 2
6 0 =131
~20-

758883023
788882982

788882976
627772983
688882986
727772975
766882972
80006 0
666682936
877782960
626662981

885982908

688882976
622782960
100013002
500012996

400012949

80007 0
80007 0
30000 0

EUROPE

P Secm—

P o

——— | - -

5. Investigation of Tertiary Storage Devices
An investigation of the characteristics of commercially
available, high-density storage devices was undertaken during

this period, and a somewhat more detailed evaluation of the
UNICON was made.

5.1 System Characteristics

There are two basic approaches being taken today in commercially
available, high density, tertiary storage devices: laser
recordling and magnetic recording. The method of laser record-
ing developed by Precision Instruments, for examnle, involves
vaporizing 3-4 micron holes in rhodium-backed mylar strips to
write data. To read data, the same laser at lower Intensity

1s used, and variations in reflected laser light are detected

by a split photodiode which also serves to-aid-in tracking.

Other means of using the laser are being investigated but

are not well developed yet. For example, Carson Labs is
developing a method of storing data using volumetric holograms
retiined at the color centers of cryogenically cooled sodium-
doped potassium chloride crystals.

In magnetic recording technology, Ampex Corporation has appllied
video recording techniques to obtain a packing density of 106
bits per square inch. Using standard 2 inch wide video tape,
but recording data in duplicate, Ampex gets 4.5 x 1010 pits

per reel. Other systems using b.. .-density magnetic recording

techniques are being developed by Grumman Data Systems,
Data, and others.

Control

Eact type of system currently available has various parameters
that must be taken into account. A number of these are given
in Table 1 for four specific devices: Precision Instruments

Unicon, Ampex TBM, International Video Corrnration HID recorder,
and Grumman Mass Tape.

i

i, . B G

L _MM

F (eea A N N B GG G MR SN ey BB BN e e

Capacilty
Error Rate
Access Times

Availlability

Transfer
Rate

State of
Development

Cost

Maintenance

Modularity

Storage
Media

Table 1
Characteristics of Four Tertiary Storage Devices

(as of U/6/72)

Unicon

.7x101%p

1b in l.5x108b

See text

95%

3Mb/drun
6Mb total

Not ready
for test

$1.6M

unknown

a dual device
for degrad-
able backup

not updatable
permanent

TBM

3 x1012b

1b in 2.7x1011"

See text

90% unit
99.9% system

6Mb/channel
36Mb max

ready,
tested

$500K (10%1p)

to $4.4
(§.2x10¥2b)

simple
replacement

excellent

updatable
read or
write 2000
passes

T

IVC-HID MASSTAPE
9x101% 10%%

1b in 107 1b in 10°

See text See text
99.9% unit unknown
quote,

system

unknown

8Mb 1.5Mb/channel

no system,
only
device

$50K each
unit
system
unknown

for units,
excessive
for system
unknown

for unit,
none, for
system,
assumed

updatable
read or
write 500
passes

48Mb total

being tested
& developed

$2M

unknovn

excellent

updatable
read or
write 5000
passes

Pt -

A critical dimension is that of access time. We have analyzed
this 1n terms of seek time and skip-read time.

The seek time is the time required to position the device to
prepare to read a given block of data. Since seek times will
typically be greater than the time required to retrieve the

data for a request, seek times become the important factor in
determining system throughput.

Figure 1 shows seek time as a function of the number of bits
separating the current position and the desired position.

The times given assume a single controller. Multiple
controllers can reduce the "system average" seek time by a
factor of 2 to 32 depending on the device. I% should be noted
that this factor is not necessarlly equal to the number of

controllers because of interactions between the seek processes.

The skip-read-time (Fig. 2) refers to the time spent per

block averaged over both skipped blocks and read blocks. The
skip-read-time for each device is dependent upon the number
of blocks skipped per block read (the skip ratio) and upon
the block size chosen. For this analysis, the relevant block
size 1s 214 bits. Figure 2 shows the relationship between
skip~read-time and skip-ratio for each of the 4 mass memory

devices as well as the DEC RPO2 disk.

The DEC RP02 disk has been included for comparison and as an
example of the calculation procedure. The device characteris-
tics are: time to read a page = 10 ms, rotational perlod =

25 ms, pages per cylinder = 50, cylinders = 200, access time
to a new cylinder = between 12 ms and 60 ms (assumed linear).
Thus reading all pages takes 10 ms per page. PReading between
1 and 50 pages per cylinder, ignoring latency optimization,
takes (10 ms + 12.5 ms + (P/50) 12 ms) per page read. Between

SIS

. il

S90TA3(Q 93vI03S AJBT3JI3] J0J SSUTL H99S - T *BT4

NOILISOd O3HIS30 ONY LN3S3Hd NIIMLIE 5118 40 H38WNN
010t g0l

i
o[

T T
G 6

B

S REE o

T
1 T
e

H ;..;.r Ly

IGRBL9 5 ¥

10

101

(SANOD3S) 3WIL Y33S

-2l

saoTASq 93BJI03S AdBT3a3], JI0J SSUTL peay-diis - ¢ °*8Td

(GV3H 39Vd H3d G3ISSVd S49Vd TVLOL) OILVH dINS

w0l

g-0L

gOlL i
= W ILEEE R "R BN : n_
“ S3E N * i 4 s S e
i | LLL
= - - - m " i .“._..r -
= o]
= H |u4| B
R SRR icEaie
_ EHE
“_ m
1
il
A] i) LEL i
- i - -
= 1 1 LR T =
3 : o s s
ﬂ | e ke I
H -
== i i ﬂ__-_ E
=
- waL
E I ferrbeer]
= ~ IS
3 2 NODINN:
[!

I16gL9 S r € 168 L9 & F E iIE8L9 S ¥ E

dIdS

(SGNOD3S) 3WIL-aV3Y

=256

—

1l and 200 pages per pack, the time per page read is 10 ms +
12.5 ms + (200/n) (60 ms-12 ms)/200 + 12 ms. The time per
page read 1s then divided by the total number of pages passed
to determine the skip-read-~time.

For the Unicon, 7% pages per track have been assumed. A
record 2-1000 tracks (15 - 7.5 x 103 pages) away can be
accessed in 240 ms. One 1000-11440 tracks (7.5 x 1035 -
8.6 x 10“ pages) away can be accessed in 340 ms.

In the TBM, reading speed of 5 ips (5.6 Mb/sec) is used for
searches less than 8 inches (512 pages) away. Capstan drives
of 83 and 248 ips are used for distances less than 96" and
200" respectively. An overhead of U434 ms to read a page after
search 1s currently imposed by the software. This can be
reduced to 234 ms.

Complete access time data on the HID recorder was not obtainable;
however,5 seconds is taken to slow from search speed, read a
block, and return to search speed. About 109 bits 6.1 x 10“
pages) are traversed in this operation. Assuming a 5"
separation before 1t 1s practical to search at a higher speed

than the reading speed, the curve would be approximately as
shown.

For the Masstape, the relevant data are: 16 tracks per tape
(each recorded individually), 2.2 x 107 bits (1.34 x 103
pages) per track, with a read and 'search rate of 1.2 Mb
(73.4 pages) per second. Time to switch tapes is .6 sec.

~26~

— ——m—— £ — g [

5.2 ZUnicon Evaluation

A somewhat more detailed evaluation of the Unicon was under-

taken (with the assistance of Professor Haim Haskal of Tufts).
The findings were as follows.

5.2.1 Main Causes of Error
A. Material Problem.

The recording medium used by PI is a thin coating of rhodium
deposited by sputtering on a transparent mylar base. The quality
of the mylar base is very important--no bumps or pits--because
it affects the recording material quality. After deposition the
completed strip is checked for reflection and transmission by a
laser system at a "macroscopic scale". The test of material
quality at a "microscopic scale" is done in the laser recorder
itself by the so-called read-during-write verification. This
verification only checks for strong reflection from the rhodium
coating corresponding to a logical "0". No read-during-write
System exists which verifies the "1" bits as burnt. Until such
a system 1is developed (PI is presently trying to develop it),
one does not really have assurance that the data have been

properly recordec. Thus, one should take one more drum revolu-
tion, thus increasing access time, to read after write. By PI's
claims, the number of "bad spots" per strip is about 250 which
would represent a maximum raw error of 0.6 in 107 bits. This
represents a very small defect density and would make the material

acceptable provided that the "bad spots" are properly identified
and by-passed.

B. Dust Problem.

This is a general problem one faces in all high density recording
systems. 1In the PI recorder in spite of the 0.5 micron dust filters
a considerable amount of dust enters the machine and contaminates
the drums and the strips. In fact a so-called "tent effect" has
been observed in which the sprip is lifted off the drum locally,

-

enough to deform the strip to make recording or reading
impossible. It would require particles of the order of 1/2 to 1
mil to produce Lhis effect. Much remains to be improved on

the air system; for that reason NASA/Ames plans to locate the
laser memory in a clean room.

C. Tracking Problems.
In the PI system every time a strip is placed on a drum its skew
is computed and stored in a register. This then serves as error
information for the galvanometer. In addition, the galvanometer
receives current tracking information from a split photodetector
to correct for minute tracking errors. It is not clear why this
is necessary and in fact R. Brown at NASA/Ames claims that con-

siderable improvement in tracking was obtained by disconnecting
the skew register.

During acquisiticn it is relatively straightforward to Jump to
an adjacent track and acquire on the first try. However as one
ventures to further out tracks one requires several passes in
order to acquire the right track. This is due to the error in
the optical shaft encoder of the carriage.

Possible improvement can be realized by using a laser interferometer
which can measure travel distances with an accuracy of 1-5 micro
inches. (1 micrometer = 40 micro inches.) Such an instrument is
currently being manufactured by Hewlett-Packard and was considered
oy R. Brown also. However, it was rejected because it can only
cope in the velocities of travel of up to 12 inches/sec. In
discussions with Hewlett-Packard they mentioned the possibility of
doudbling the velocity to up tc 2& inches/sec. which would make it
attractive for incorporation in the PI system. The laser inter-
ferometer would replace the optical shaft encoder and make
acquisition possible for any track in the strip on the first try.

Thus the memory would be capable of operating in a more random
fashion.

=28

5.2.2 Reliability and Maintenance
A. Argon Laser.
The argon laser 1s operated very conservatively, at about half
its rated current, thus the plasma tube should last at least
3000-4000 hours. The major difficulty arises from the fact
that with every tube change a major realignment is necessary.

B. Alignment.
By PI's own saying the alignment of the optical train requires
about 8 hours of an experienced serviceman. This is due to two
factors: the optical path is unduly long and thus more prone to
misalignment by small angular variations or transletioas and also
due to the leck of alignment alds to facilitate the proucedure.
There 1s no doubt the optical design could be much improved.

C. Depth-of-Focus.
In view of the tight tolerance on the depth of focus, +0.5 mil,
there may be some question atout long term changes in the drum
bearings which may shift the focus. It may be desirable to use
an air-bearing on the drum or at least to monitor the depth of
focus by a capacitive probe or some other device.

29

i
4 !
:

6. Miscellaneous Activities

6.1 Network Usage and Analysis
As already noted (Section 4.1) a certain amount of experience
in transferring data over the net was obtained in connection
with data acquisition for the (CCC demonstration. This
experience seemed to indicate that TIPS could not yet be used
reliably for tape transmission and that tape transfers into
our TENEX installation were very slow.

To shed further light on the problem a series of measurements
was made® and distributed through the NIC. The results seem
to indicate that the maximum transmission rate tanrough the
TENEX/network interface was on the order of 300K baud, and
that at that rate, 100% of CPU time would be used.

6.2 Meetings and Conferences
The activities of technical coordination with prospective
users and other interested parties has continued. Inter-
actions have taken place with NSA, VELA, MITRE, MIT, NASA/
Langley, LRL, and NASA/Ames. Technical presentations were
glven at SHARE in Toronto and as part of a panel "Data Sharing
in Computer Networks" in San Francisco.

6.3 Weather Database Working Group
The third meeting of the WDBWG was at NASA/Ames on January 18,
1973. Plans for ETAC's initial use of the datacomputer were
discussed. CCA will participate with ARPA and ETAC in pre-

paring a paper on the CCA-ETAC Weather Data Base for publication.

* H. Murray, TENEX Bandwidth, Computer Corporation of America,

Cambridge, Mass., Nov. 29, 1972. Available from Network
Information Center as NIC 10428,

-30-

Appeﬁdix A

The following is a handout used co describe the CCA demon-
stration given at the International Conference on Computer
Communications, Washington, D.C., October 2b-26, 1972,

=31=

g SN

e

. s S -
Computer Corporation of America

Demonstration of Datacomputer
with Natural-Language Front-End

Overview

In this demonstration, a person at a computer terminal may type
an arbitrary question, expressed in ordinary English, dealing with
the weather. The system will attempt to understand the question
and to find an answer. If successful, it will display the answer; if
not, it will display an explanatory message.

The demonstration makes use of the resources of the datacom-
puter system and of a special natural-language front-end program
operating at the dataconiputer,

Datacomputer

The datacomputer is a large-scale on-line data storage and data
Mmanagement system being developed by Computer Corporation
of America for the Advanced Research Projects Agency. When in
full operation, the datacoiaputer will have a storage capacity of
over 10" bits,

Remote computers in the Arpanet c2n send to the datacomputer
inforniation for storage, update information to be applied to existing
files, and information-retrieval requests to be answered. Interaction
with the datacomputer is in a uniform system of notation called
datalanguage.

Natural-Language Front-End

For demonstration Purposes, a natural-language program has
been implemented. This program—a modification of a natural-lan-
guage system deveioped by T. Winograd of MIT—accepts English-
language questions dealing with the weather and translates these
questions into datalanguage for input to the datacomputer.

The natural-language Program accepts a sentenco from a terminal,

It parses the sentence from left to right, building up an internal
semantic description which embodies the meaning of the sentence.
This description is then translated into datalanguage.

Two sentences with the same meaning but different form generate
the same datalanguage request. For example, the two sentences:

Did it rain in Boston two days ago?
° Was there any precipitation the day before yesterday in Bostan?

both cause the foliowing datalanguage request to be sent to the
datacomputer:

FOR STATION WITH CITY EQ *BOSTON®
POR ANSWER,ANS, OBSERVATION WITH DATE EQ *151°
ANS.CITY « STATION.CITY
ANS.DATE = OBSERYATION.DATE
ANS.DATA = PRECIP
END
END

Weather Database

Weather data is shipped over the Arpanet to the datacomputer
in Cambridge, Massachusetts from the Environmental Technical
Applications Center (ETAC) in Washington, D.C. ETAC maintains
a file of all weather observations from around the worid going back
a decade, based on Information shipped over the Arpanet from
Air Force Global Weather Central (GWC) in Omaha, Nebraska. The
file wiii be stored in its entirety on the datacomputer (along with
other unreiated databases) and will be accesslble on-line to com-
puters on the Arpanet.

For purposes of demonstration, one month's worth of weather
information is heing used. The file contains daily observations from
several thousand cities around the worid.

Sample Questions
What was It like in Washington yesterday ?
Was Cairo cloudy on Friday?
What was the barometric pressure in Paris last Tuesday ?

32

How many times has it rained in Jerusalem this month?

How much?

What was the coldest day in Tokyo last week?

Which city in Uganda had the highest rainfall in October?

Was San Francisco colder than Los Angeles on the day-beiore
yesterday?

Where in Arizona did it rain yesterday?

Has any precipitation falien in Massachusetts lately?

What was the temperature in New Delhi when the rainfall in Calcutta -
was more than 0.5 inches?

When was the temperature in Boston greater than 40 degrees?

Were there five cities in Texas whose high temperatures yesterday
were more than 84 degrees?

What was the coldest placz in Alaska recenily?

Using the System

The following guide is a sample consoie session with the systein.
The symbol [LF] stands for line-feed, (cr1 for carriage-return, and
(esc] for escape or alt-mode. User innut is indicated here in lower
case and underlined, system response is capitalized, and comments

are italicized.

A character preceded by an up-arrow (*) is a control character,
which is typed by holding the control key (cteL) and striking the
character. Typing +4 will cause the last character typed to be de-
leted. +x deletes the entire line, and +» retypes the line.

E {LF] Reset the TIP, terrinel-dependent eetup
here.

81(sPl31 {LF} Connect to CCA-TENEX,

LOGGER

R T QPEN

TEKEX/CCA 2.29 EXEC 2,39 You ere now et the TENEX command level.

TENEX prompts for input with an O-gign,
At eny tire you cen force e return to
the command level by typing tc,

€login{SPJicec fCP)

(PASSWORD) icee [CK]

(ACCOUNT) teec [CR]

JOB S ON TTY17 23-0CT-72 18: 30
YCU NPVE A MESSAGE

Pessword will not print.

This messege will contein some info
pertsining to the CCA Weether Demo.
To print the messege, type:

étygeISP]méuage[ESC].TXT;1 {CR]
. Hitting the ESC key ceuses TENEX to

complete the file name. #i teing (CR} will
Ceuse the messege to print on your console.

frun{SPJweather [CR] Run westhsr system,
READY Indicstes system rssdy to sccept sentence.

what was it 1like in washington 3 daya ago?

Queetione ers terminsesd by *om
THERE WAS LIGHT RAIN.
READY

what was the higheat temperture =TEMPERATURE in boston last week?

System corrscts spelling of tempersture.

77 DEGREES, LAST TUESDAY.
READY
haa it rained in arizona lately?
“Latsly” rsters to ths past seven dsys.

I ——r—

YES, 7 TIMES.

READY

whers?

IN PHOENIX, TUCSON, AND YUMA.

READY

goodbye, Tell systsm to return to TENEX command level.
GOODBYE. -
@logout [CR) Log off TENEX, b
@ [Lr) Close nstwork connsctions.
R T CLOSED

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139
617-491-3670

