
iii "iireiM»-».....—J— ..ÜT..-

NETWORK DATA HANDLING SYSTEM

Thorn as Marill

Computer Corporation of Americ

AD-757 686

Prepare d for:

Army Research Of f i ce-Du r h am
Advanced Research Projects Agency

31 January 1973

DISTRIBUTED BY:

Knii
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

W1&IKBKMIMKIM$IMMKnmiamt&w* '»•wvm\

--

•m p""

I
I
I
I
I
I
I
[
i

L

COMPUTER CORPORATION OF AMERICA

|/)DATACOMPUTER PROJECT

jfy SfiMI-ANNUAL TECHNICAL REPORT

Q
. August 1, 1972 to January 31, 1973

Contract No. DAHC04-71-C-0011
ARPA Order 1731

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

D D O
MZHlflE

ItSSEBTTE
B

I
I

Submitted to:

Advanced Research Projects Agency
1^00 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Appwwd lot public raleaa»'.
ftstributlon Ualimifd

^mk

f
I
I

1
1

Computer Corporation of America

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

August 1, 1972 to January 31, 1973

Contract No. DAHC04-71-C-0011

ARPA Order 1731

Submitted to:

Advanced Research Projects Agency
1^00 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

575 Technology Square
Cambridge
Massachusetts 02139

617-491-3670

' ■ - -'—-^

UnclaaalCled
S*c\inty Clastification

X

-ww- —~

DOCUMENT CONTROL DATA . H & D
 ^""'"y ttntllltUtom ol llll,. fcody o/ ,6,tf.c« and lnd,*lni mnnolmtlon mux b* »ntmnd wh»n Ih» ovrmll „port I, clm»,IU»d\
I. OWIUIN*TING ACTIVITY /Comwf tltflOfl '1.. 5 ■ fCorpora/« mtthor)

Computer Corporation of America

1 KtPOKT TITLE ^^—_^—__

Network Data Handling System

1M, RCPOnT ftCURITV CLAtttFICATION

ab. CROUP

Ilnnlpc^n-f-io^

ML.

4. O^JCRIPTIVE NOTeirryp««ff*porl«orflne/u./M<i«»«^
semiannual TR: 1 August 1972 - 31 January 1973

• • AUTHONISt fFlraf naaS, mlddlm Inlllml, Immt rimmt)

Thomas Mar ill

• • REPORT DATE

1973
M. CONTRACT OR GRANT NO.

DAHCQl» 71 C 0011,
*. PROJECT MO.

7«. TOTAL NO. OP PA6EI

31p
7b. NO. OP REFt

M. ORIGINATOR-» REPORT NUMUERUI

NA

tb. OTHER REPORT NOdl (Any elhmr numbmn that mmy bm a««/*i«f
In I» report)

98l6.2-A
10. L>l>1 MCUTION STATEMENT

Approved for public release; distribution unlimited.

II. HiPri.tUCNT ART NOTES

None
12. SPONSORING MILITARY ACTIVITY

U. S. Array Research Office-Durham
Box CM, D^ke Station
Durham. North GflEQUja p77n^

U

I». Allal i, AC 1 —^—^—^——^■^—^—^—^-^——^

Thie report describes the activities for the period 1 Aug 1972 - 3J. Jan 1973.

During this reporting period, the activity on the project has
centered on development of the first software release, initial
system demonstration, coordination with potential users, and
work on a global weather data base. O

I
Ik. KTY WORDS

Datacomputer Project
Computers
Data Systems
Large-scale Data Systems
Multiple computers

-■■M" . vws%t**

^f\ fC«*l 1 >| TO mm*i.»cm»oof
UU 1 M>V .a I «♦ /O O«.OI.«T« worn

romu laTS. t jhH S4, WMICH IS
" ARMY US«. T — Unclpnnlf !H

▲. 1 1 aanii

I
I
I
I
I

Computer Corporation of America
575 Technology Square

Cambridge, Massachusetts 02139

I
i
i
i
t
I
I
I
I

DATACOMPUTER PROJECT

SEMI-ANNUAL TECHNICAL REPORT

Augus t 1, 1972 to January 31, 1973

This research was supported by the Advanced Research

Projects Agency of the Department of Defense and was

monitored by the U.S. Army Research Office-Durham under

Contract No. DAHCOH-Tl-C-OOll. The views and con-

clusions contained in this document are those of the

authors and should not be interpreted as necersarily

representing the official policies, either expressed or

implied, of the Advanced Research Projects Agency or the

U.S. Government.

Ill

i

Table of Contents

I

I
I
I
I
i
I

I

Page

1. Overview
 1

2. Design Activities .
2.1 Datalanguage , .

2.2 Software System «

3. Software Implementation
3.1 Request Handler
3.2 Services

. 12
^. Initial System Demonstration -^

4.1 Data Acquisition ,!■
4.2 Datacomputer Software .. -,,- . JO
4.3 Natural-Language Front End 15
4.4 Sample Datacomputer File -,0

5. Investigation of Tertiary Storage Devices .* 21

5.1 System Characteristics 21
5.2 Evaluation of Unlcon 27

5.2.1 Main Causes of Error 27

5.2.2 Reliability and Maintenance 29
6. Miscellaneous Activities o0

6.1 Network Usage and Analysis 30

6.2 Meetings and Conferences go
6.3 Weather Database Working Group 30

Appendix A: "Demonstration of Datacomputer with
Natural Language Front-End". Handout for demon-
stration at International Conference for Computer
Communications H ^i

Figures

1. Seek times for Tertiary Storage Devices 24

2. Skip-read times for Tertiary Storage Devices 25

W

- MB

I
I
I
I
I
J

I
I
I
I
f
I
I

\ i

1. Overview

The goal of the project continues to be the development of

a shared, large-scale data system to serve the needs of the
ARPA community.

The system under development may be viewed as a box that

performs the functions of data storage and data management

on behalf of multiple computers simultaneously connected to

the box. The computers can access the box directly over local

links or remotely over the Arpanet; in either event, a stand-

ard notation—datalanguage-is used to access the box. Inside

the box there is a medium-scale computer, secondary storage

for data-staging, and an on-line tertiary storage device.

Some of the ideas underlying the development are as follows:

(a) The approach has the effect of pooling many users' data-

storage requirements into a single system. As a consequence,

economies of scale can be realized by employing ultra-large

tertiary storage devices (Unicon, TBM. others) that have a high

price tag but very low per-bit cost, (b) The effective use

of remote storage systems requires that the data-management

functions themselves be performed within the system. (It is

uneconomical to ship entire data files over a network when, as

is usually the case, only small portions of the files are needed

at a given time.) (c) In a system such as this, problems of

data security become more tractable. The reason is chat the

data storage and data management functions are segregated

into a separate box that responds interpretlvely to a limited

set of commands. In the more conventional environment, arbitrary

user processes run in the same computer as the data functions,

making it hard if not Impossible to guarantee data security

(d) The system language-datalanguage—is being designed for

use in the Arpanet as a standard means of access to remotely

located data. It contains featuies specifically designed for

-1-

.i.—^M^Mta

^F

1
sharing data among programs that operate on different machines,

for describing a broad class of data structures, and for

allowing arbitrary subsets of large files to be selected

efficiently at run-time.

?or the prototype system being developed at CCA In Cambridge,

a dedicated PDP-1C TENEX with a billion bits of secondary

disk storage Is being used, and plans for the addition of

a large-scale tertiary store are being formulated. The

software system running at CCA will also be run at NASA/Ames,

where a tertiary store (the Unlcon 690) has recently been

Installed. Service will be offered out of both the east and

west coast facilities, which will be In communication with

one another for purposes of mutual backup.

During this reporting period, the activity on the project hag

centered on development of the first software release. Initial

system demonstration, coordination with potential users, and

work on a global weather data base.

!

I

In the software area, a first version of the system was

Implemented. This version—release 0/8—contains much of the

?tructure that will make up the final system (some two dozen

modules), though many modules exist as yet only in primitive

form. Release 0/8 handles a very small set of the full data-

language; in the future increasingly larger sets will be made

available through subsequent releases. A limited experimental

service for cooperative users is being initiated now using 0/8,

and the system is being used for demonstration and system

tests.

-2-

^MÜ ■■i

'^'W

I
As an initial demonstration of release 0/8, a month's worth

f the world's weather was loaded Into the system. A

natural-language front-end program was Implemented which

accepts arbitrary English questions about the weather and

attempts to answer these. This front-end translates the

English Into datalanguage requests, which then access the

datacomputer system to generate the output. The demonstration

was run for the three days of the International Conference on

Computer Communications in October, during which time the

database was kept up-to-date on a daily basis.

Farticipation in the Weather Database Working Group has

continued, as well as coordination with the dozen or so groups

that have expressed interest in becoming users of the system.

-3-

dmt^—^tmk

■P"

I
I
L
t
I
I
I
I

i \

2. Design Activities

2.1 Datalanguage

The first two releases of the language were specified. The

first was designed to provide basic facilities for dealing

with a file of weather observations. This file has a

hierarchical structure which Is described explicitly In

datalanguage. Requests for retrieval specify the desired

observations by content, select Items of Interest from those

observations, and arrange them Into a form acceptable to the

user program. The second release extends the language to

provide basic updating capabilities—adding to, and deleting

files. While our Intentions for development of the language

make these releases look rather primitive, the exercise of

specifying them completely has been revealing.

Rules for a simple class of description-to-description

mappings were written for the first release. These define

the meaning of A=B when A and B are not Identical. Defining

A=B through such a descriptive mapping has the advantage that

it specifies the result of the assignment., even for complex

structures, rather than specifying a procedure by which the

assignment is carried out. This allows the datacomputer the

freedom to optimize the operation.

It was discovered that automatic mapping mechanisms are complex

to specify. Thus, if the system maps one elaborate structure

into another, either this must be performed according to very

Involved rules, or it must handle only rather similar des-

criptions. The former would be difficult to use; the latter

may be limited in application (though still not necessarily

devoid of practical interest).

-i|-

^nrnä Mi

f
I
I
I
I
I
I
I
I
I
I
I
I
I

However, It is thought that any particular mapping Is not

difficult to specify, and may frequcmtly deviate In simple

ways from straightforward standard mappings. Thus attention

will next turn to the design of a facility for users to

specify and dynamically modify description mapping functions.

In specifying these releases, progress was made In deter-

mining the meaning of names In datalanguage requests. The

meaning of a name (I.e., whether X means a particular X, a

set of Xs, as well as which X or set of Xs) depends In part

on the context In which It appears. Again, this problem was

solved for certain special cases for the first release. The

rules for recognition In contexts have been formalized for

these simple cases, and the exercise of designing them has

forced us to accept that (a) a more precise model for sets

and objects Is required to complete the language design, and

(b) recognition of names and manipulation of contexts at the

directory level (currently avoided except In trivial cases)

cannot be specified In the language Independent of directory

access characteristics (searches are expensive).

Feedback from users of the first release has affected our

attitudes about datalanguage syntax and process synchroni-

zation. The experience with these users has revealed some

of the distinctions between the servicing of people through

a language and the servicing of remote, asynchronous programs.

We have come to feel that the syntax of datalanguage Is too

elaborate—that It Is complicated by mechanisms natural for

people and troublesome for program«' trying to generate requests.

This has caused us to step back and Investigate other kinds of

syntax appropriate to our semantics.

I -5-

ini^i

I
I
1
[
I
I
I
I
I
I
J

The other result of experience with users—synchronization
difficulties—has brought about some changes already and
seems to be Initiating some more. Datacomputer responses.
In the form of messages on the datalanguage output port, are
being supplemented by codes designed for program Interpretation.
In addition, messages are being added to aid In synchronization.
Also, a very simple user-to-dataconputer synchronization
message has been added. These Improvements, however, seem
Inadequate, and It Is likely that something more general—
perhaps a datacomputer protocol—will be developed. This is
also expected to feed back Into the language design.

Finally, we have done some investigation of the implications
of data sharing for the language, and begun to design more
powerful description facilities than were originally envision-
ed. First, we have begun to develop the concept of the virtual
container, which is a data object that is not stored anywhere,
but could be produced by executing some datalanguage request.
Virtual containers behave like real containers, and a user need
not be aware that they are virtual. Eacl: virtual container
description corresponds to some collection of data as some
particular user cares to view it.

There are several implications of this concept. One is that
user programs can be Independent of the stored organization
of data. (Earlier attempts at datalanguage design provided
some independence of the representation of items, but rela-
tively little Independence of structure). Thus data can be
reorganized as needs change, without changing existing programs
(except as dictated by altered performance). Another impli-
cation is that programs need be aware only of the portions of

-6-

■
■"mtmrn^..

.A ._ i m m -• ' ^^^-^ mmtmmM

rr
I
!

i

i
I

1
B
I
t
t
[
I
I
I
I
I
I
%

data structures which concern them. Finally, virtual con-

tainers can be thought of as a way of recording data relation-

ships. Consider a program which commonly retrieves information

from related containers in files A and B. If it enters into

the datacomputer a description of a virtual container which

•contains' the information of interest from A and B, then

information about the relationship of A and B has been captured.

This is now in descriptive form, under the management of the

system, rather than Isolated in a request or built into a

user program. This information could be useful to those

administering the databases, as well as to system programs.

Another key concept developed in this period s description

partitioning. We know that the data descriptioa contains

many levels of information, and that each level is useful for

different operations. The lowest level contains specifications

for the storage or transmission medium in which the container

exists. The highest level contains only that information which

is required for understanding the data. At sundry levels in

between are logical access paths, choices of representation,

information related to validity checking, protection and security,

operational considerations (e.g. age, expiration date, backup/

recovery requirements), and so on. In transferring data from

one storage medium to another, but otherwise leaving it un-

changed, only the lowest level of description is affected.

In adding indices, pointers, or inverted file keys, only the

middle levels are affected. Some users only concern themselves

with the, top level. These parts of the description must exist

in the system as separate objects, and they must be accessible

independently.

-7-

A -A_ - - • -*- '^—~.^*^m^t^m^m*±immti

I
I

2.2 Software System

In regard to software system design, very little activity ha-

taken place beyond what was reported in the previous semi-

annual report. Essentially, what is being implemented at this

time is the design given in Working Paper No. 5 (Feb. 29, 1972).

I

[

I
r
i

i
i

-8-

■ ■

 '-
■ - -^ ^M*

4

mmm

I
I
I

3. Software Implementation

Software Implementation, started in the last reportlr«: period,

la progressing. The culmination of this period's activity

was the generation of release 0/8, which ran the ICCC demon-

stration in October (see Section 4, below). This release is

quite primitive. It handles only fixed-length ASCII strings,

provides for only one user at a time (multiple users must have

multiple copies), does not support tertiary storage, has poor

debugging facilities, etc. Even so, this release is attracting

a number of potential users. A draft of a user-oriented guide

to 0/8 has been prepared.
I
I
I
I
I
I
I
I
I
I

3.1 Request Handler

A Request Handler for the first release of the language was

programmed and debugged. It is developed along the lines of

the system architecture outlined in Working Paper No. 5. Most

of the code, and particularly the module-level design of the

program, is expected to remain a part of the system, providing

a foundation for further work.

This Request Handler incorporates an Inverted file retrieval

system, as discussed in Working Paper No. 2. Sufficient

file maintenance routines exist to support the current level

of language development. Parameters in the user's data des-

cription specify whether a field is to be an inverted file key.

Construction of the inverted file, and use of it in expressions

referencing such a key, are invisible to the user. Therefore,

datalanguage requests referencing the file are independent of

the file creator's choice of keys.

-9-

 i M l ^^M^—ii

I

The Inverted file system, however. Is not complete. Remaining

to be implemented are extensions to handle variable-size

containers, changing or deleting of key values, range retrieval,

expressions involving hierarchical relations, large files,

and known algorithms to optimize massive file updates.

i;
[
t
G
t

Parsing of the language implemented thus far is straight-

forward, with the exception of recognition rules for names.

These are implemented in a module (CX) separated from the

parser proper (LP). Requests which can be executed immediately

are passed by LP to a command executor (CO); those which must

be analyzed and compiled are transformed into a parse tree,

which is input to the Source Analyzer (SA).

The CX module is concerned with disambiguation of partial

names and relating names to data object instances or sets.

Of the two name spaces in the datacomputer, CX operates on

only one. This is the set of names defined in open data

descriptions. CX should also function on the set of names

defined in the currently relevant part of the directory.

Extension of CX to operate on the directory name space will

be attacked in the coming year.

SA is intended to choose among alternate paths of access to

data referenced by a request. In order to do so, it must

first expand the parse tree statement of the request into

procedure expressed at the proper level. As it does so, it

produces an intermediate language graph, which is designed

to allow easy re-structuring of the request as decisions are

made.

-10-

* - mat

I

f

I
1

I
I
I
i
I
1
i
!

I

I

Currently, SA makes no significant strategy decisions. It

does decide whether or not to use inverted file techniques,

but according to an extremely crude heuristic. However, it

expands the tree, makes loops explicit, and moves certain

operations outside of the loops. The graph it outputs con-

sists of operations on elementary containers (such as assign-

ment and comparison), loop operators, and open/close operators.

These are intended to map straightforwardly into tuples (see

below).

The graph is then input to a code generator (CG) which

outputs code for a software-implemented 'machine' (TI) whose

instructions operate on data containers. The instructions

are called tuples.

Implementation of CO has proved complicated, and approaches

alternate to the original one are under consideration. The

difficulties are related to low-level optimization problems,

which are expected to become significant when the current

restrictions on data structures are removed in the coming

year. The basic problem is to know which pointers into a

data structure are going to be available unconditionally

when control arrives at a certain point. (Having solved this,

one can go further, asking whether previously executed code

should be constrained to obtain certain pointers, whether it

would naturally do so or not.) When a required pointer is

not available, tuples are generated to obtain it.

One solution under consideration involves visualizing the

process of obtaining pointers into a data structure as distinct

from the process of operating on the elements of the data

-11-

mmM

I

I

I

I

I

I

!

I
I
I
I

structure. The former depends, in most cases, only on the

data structure itself. The latter Is a function of the current

request and Is responsible for most of the complexities in

program flow. The idea is to compile separate tuple strings

for each such process, controlling them as cooperating

sequential processes or as linked co-routines in a single
process.

The 'machine' which executes these tuples was defined and

Implemented in this period. Programming and debugging was

convenient, since tuple executors could be worked on independ-
ent of one another.

In thinking about the implementation of the interpreter, we

oegan to develop a model for the container structuies the

interpreter is operating on. We would like to complete this

model and use it in designing the lower levels of the data

description language.

3.2 Services

The services portion of the software consists of a set of

subroutines which are available to the Request Handler. The

architecture of services has been described in Working Paper

No. 5. With the exception of those calls dealing with tertiary

storagp, a complete (though primitive) first set of service

routines has been Implemented for release 0/8. Re-design of

some modules and enhancements of others will be undertaken

during 1973. The activity breaks down into four parts:

Storage Manager

The following have been programmed: cere buffer management,

logical-physical address mapping, storage allocation, device-

dependent I/O functions.

-12-

-* —--. ——=—<

I

I I/O Manager

External I/O functions have been programmed to handle the

case of ASCII sti-lngs

Directory System

Functions for building and accessing a tree structured file

directory as well as /or storage of corresponding data des-

criptions and storage maps have been Implemented.

Supervisory Functions

Routines for handling errors, software Interrupts and user

and database Initialization have been developed.

'

-13-

^ Initial System Demonstration

In response to a general request by L.Q. Roberts at the 1971

IPT principal investigators' meeting that natural-language

database oriented demonstrations be given at the ICCC con-

ference, such a demonstration was produced, and represented

the first external demonstration of the datacomputer system.

The demonstration was held on October 21-26 at the Statler

Hilton, Washington, D.C., as part of the Special Projects

activity of the International Conference on Computer Communi-

cations. The nandout used for the demonstration is given in

Appendix A.

The datacomputer software that was used for the demonstration

was release 0/8, which if discussed above. This release was

the first version of the system to be used outside of CCA.

A natural-language program translates English questions into

release 0/8 datalanguage, which is then passed on to the data-

computer software for data retrieval. The natural-language

front-end and release 0/8 communicate with each other through

the IMP, thereby providing a realistic test of 0/8 and also

allowing the natural-language program to be transported to

some other Installation.

I

l.l Data Acquisition

A month's worth of global weather Information from the ETAC

weather file was loaded into the datacomputer system (using disk

storage). The database was kept up-to-date on a dally basis

during the three days of the ICCC conference.

-IH-

*mm

It had been originally pi,nned tor owe to aend the raw data to
ETAC by network tranamlsalon for reformatting, and for STAC

to send the reformatted data to CCA by network tran.mlaaion.

Due to a variety of technloal problem., .„me of the data wa.

finally received at CCA by network transmL.lon and aom- by

cic fr!h
l8h'i °0me Was recelTC<1 t™ ETAC and aome directly from

owe. The latter was converted directly at 'jCA.

Specifically. 7 tapes were received from ETAC by air freight

and 1 by network; 8 tapes were received fron, OWC by air

freight and 10 by network. During the three demonstration days,

update data came from OWC over the net. so that the previous
day s weather was available each morning.

^•2 Dataecmputer Software

The datacomputer software used In the demonstration was
release 0/8 discussed above (Section 3).

^.3 Natural-Language Front-End

'.natural language front-end which understood English questions

about the weather was developed. This system Is tased on work

done by Professor T. VInograd of the MIT Artificial Intelli-
gence Lab.

The Wlnograd system was converted from MIT-AI LISP to BBN-LISP

to run at CCA's TENEX. The parsing routines needed no modifica-

tion. A new vocabulary dealing with the weather was added, with

much of the old functional vocabulary (words such as "be",

"what") retained. The major modification was to have the'system

| generate datalanguage Instead of the PLANNER requests generated
by ».he original Wlnograd system.

i

:'

-15-

iÜ

In the Wlnograd system, an internal semantic description of the

meaning Is constructed as the sentence Is understood. That

description Is then translated Into PLANNER code. This Is an

easy translation since PLANNER Is a goal-oriented system,

embodying a sophisticated matcher. The translation of a request

Into datalanguage Is substantially more difficult, especially

considering the elementary level of datalanguage available at

the time of the ICCC demonstration. This problem was solved

by using a two stage translation process. The set of relations

derived In understanding the sentence are converted to LISP

expressions, which are evaluated. These expressions put their

pieces of Information onto the property lists of variables which

are then gathered together to form the datalanguage request.

For example, the sentence "Has It rained In Boston lately?" has

the following Internal semantic form:

RSS5: (MARKERS- (SYSTEMS RELATION)
PARSENODE-
(NODEl)
PLAUSIBILITY- 0 RELATIONS-
(RSSU RSS2 (MORE PRECIP RSS1 0)

(WEATHER PRECIP RSS1 TSSD)
RSSNOOE- RSS5 SYSTEMS- < SYSTEMS)
VARIABLE- EVX1)

I

I

RSS<t and RSS2 describe the time and place relations
converted to the following LISP program:

(PROG EVXl)
(CITY TSSl ((BOSTON MASSACHUSETTS)))
(TIME TSSl ((293 500)))
(SETQ EVXl (WEATHER PRECIP EVXl TSSD)
(SETQ EVXl (MORE PRECIP EVXl 0))
(PUT (QUOTE EVXl)

(QUOTE BIND)
EVXl)

(RETURN EVXl))

This is

-16-

^—m

vm w m

I
I
I
I

I
I

1
I

I
1

i
I

When executed this program produces the following datalanguage

request:

FOR STATION WITH (REGION EQ 'MASSACHUSETTS' AND CITY EQ 'HnSTON')
FOR ANSWER.ANS, OBSERVATION WITH DATE OE '203' AND DATE LE '300'

ANS.LP1 ■ '(' ANS.CITY - STATION.CITY ANS.RP1 - ')'
ANS.DATE - OBSERVATION.DATE
ANS.LP2 ■ •(' ANS.DATA - PRECIP ANS.DATA1 - ' '
ANS.DATA2 - ' ' ANS.RP2 - ')' END END

The parse diagram of this sentence Is:

(((HAS IT RAINED IN BOSTON LATELY)
(CLAUSE MAJOR TOPLEVEL QUEST POLAR POLR2 ACTV ITRNS)
(RSS20)
((HAS (HAVE VB AUX TRANS V3PS PRESENT QAUX))
((IT)
(NG SUBJ PRONG DEF NS)
(OSS20)
((IT (PRON NS SUBJ OBJ))))
((RAINED)
(VG V3PS)
NIL
((HAS (HAVE VB AUX TRANS V3PS PRESENT QAUX))
(RAINED (VB ITRNS PAST EN MVB))))

((IN BOSlOtO
(PREPG)
(RSS19)
((IN (PREP PLACE))
((BOSTON)
(NG OBJ DEF PROPNG CITY NS)
(OSS22)
((BOSTON (PROPN NS CITY))))))

((LATELY)
(ADJG ADV TIMW)
(RSS17)
((LATELY (ADV VBAD TIMW))))))

((OSS22 X12 ((BOSTON MASSACHUSETTS)))))

-17-

rr 'W^

A sample word definition is:

RAI N:
(FEATURES (NOUN US MASS VB INF ITRNS>

SEMANTICS
((NOUN (OBJECT (MARKERS: (#PRECIP)

PROCEDURE:
((#WEATIIER #PRECIP *** *Tlf1E)
(#MORE #PRECIP *♦* 0)))))

(VU (UTRNS (RELATION (RESTRICTIONS: ((SMSUB (»WEATHER
«•GENERAL)))

PROCEDURE:
((♦WEATHER IPRECIP

**• *TIME)
(#MORE #PRECIP *** 0)
))))))))

^.^ Sample Datacomputer File

"he follov:ing datalanguage port descriptions are used to

retrieve data from the datacomputer.

CREATE CHECK PORT LIST
PLACE STRUCT
LP1 STR (1)
CITY STR (22)
RP1 STR (1)
BSN STR (ö)
LP2 STR (1)
REGION STR (22)
RP2 STR (1)
END PLACE STRUCT

END CREATE CHECK

CREATE LIST

I

END

ANSWER PORT
ANS STRUCT
LP1 STR (1)
CI'lY STR (22)
RP1 STR (1)
DATE STR (3)
LP2 STR (1)
DATA STR U)
DATA1 STR U)
DATA2 STR (U)
RP2 STR (1)
END

CREATE ANSWER
ANS STRUCT

-18-

~*r

I
I
|

i
I

1
I
I
i
I

The following Is the datalanguage description of the file as

it is stored in the datacomputer.

CREATE WEATHER FILE LIST
STATION STRUCT

BSN STRCC),
CITY STR(22)/
REGION STR(22)/
WORLD STR{22)
OBS LIST (31)
OBSERVATION STRUCT
DATE STR(3)
TEflPERATURE STRUCT

MIN STR(U)
MAX STR(1»)

END TEMPERATURE STRUCT
PRECIP STRU)
WINDS STRUCT

SPEED STRU)
GUSTS STR(I»)
DIRECTION STRU)

END WINDS STRUCT
VISIBILITY STRU)
CLOUDS STRCU)
GENERAL STRU)
PRESSURE STRU)
END OBSERVATION STRUCT

END STATION STRUCT
END WEATHER FILE

l-D
l-D
l=D

i

J

i -19-

J ^ -- i^B^. L-—i—^O^

%^ • '• m

J

I

I

1

[

[

[

The following data Is a sample record—the first one In the file,

In the datacomputer It is stored without the carriage returns

needed to make it print neatly.

EUROPE
010100ANDOYA NORWAY
275
276 278 279
277 279 283
278

0
it

2
23

0
52

12
11

9
8

758883023
788882982

279 271* 231 0 23 1*2 12 9 788882976 280 268 270
281 276 283 0

11»
28

0
69

9
7

19
9

627772983
68888^986 282 269 273

^83 278 281*
28U
285 27G 280
286 273 275

k
o.

10
13

0
37

q
9

22
— »- ^^ ^r *w ■ ■ ov *0 \^

727772975
766882972

0
0
0

28
9

15

0
0
0

5
3
3

1
12
7

80006 C
666682936
877782960

287 278 282
288 269 271

0
28

13
30

28
0

11
6

Ik
7

626662981
8acT82902

289 275 281
290 268 269
291 283 .283

0
0
0

21
20
11

'♦5
0
0

7
8
7

9
22
kl

^ ^r ^w w ** ■» *j ^0 iu

688882976
622782960
100013002 292 27U 27U

293
0 11 0 1 U7 500012996

29»! 272 272
295

0 5 0 7 «♦7 l»00012gt»g

296
297 273 273 0 0 0 1 6 80007 0
298 271 275 0 0 0 1 2 80007 0
299 275 275
300

0 6 0 7 31 30000 0

301
302
303
301*
305

1

I
I

I
(

-20-

A_ *ma* m MM

I

I

h—Investigation of Tertiary Storage Devices

An Investigation of the characteristics of commercially

available, high-density storage devices was undertaken during

this period, and a somewhat more detailed evaluation of the
UNICON was made.

5.1 System Characteristics

There are two basic approaches being taken today In commercially

available, high density, tertiary storage devices: laser

recording and magnetic recording. The method of laser record-

ing developed by Precision Instruments, for examnle. Involves

vaporizing 3-4 micron holes In rhodium-backed mylar strips to

write data. To read data, the same laser at lower intensity

Is used, and variations in reflected laser light are detected

by a split photodlode which also serves to aid-in tracking.

Other means of using the laser are being Investigated but

are not well developed yet. For example, Carson Labs is

developing a method of storing data using volumetric holograms

retained at the color centers of cryogenlcally cooled sodium-

doped potassium chloride crystals.

In magnetic recording technology, Ampex Corporation has applied

video recording techniques to obtain a packing density of 106

per reel. Other systems using h.....-density magnetic recording

techniques are being developed bj Grumman Data Systems, Control
Data, and others.

Each type of system currently available has various parameters

that must be taken Into account. A number of these are given

In Table 1 for four specific devices: Precision Instruments

Unlcon, Ampex TBM, International Video Comratlon HID recorder,

and Grumman Mass Tape.

r -2i-

■

__• - fcMI I ■■ MMMtiMi ^amäm^mt

I
I
I
I
I
I
I
I
I
1
I
[
I

Table 1

Characteristics of Pour Tertiary Storage Devices

(as of 4/6/72)

Unicon TBM JVC-HID MASSTAPE

Capacity
12 .7x10 b 3 xl012b 9xl010b 1012b

Error Rate lb in 1.5xl08b lb in 2.7X1011 lb in 109 lb in 109

Access Times See text See text See text See text

Availability 95% 90% unit
99.925 system

99.9!« unit
quote,
system
unknown

unknown

Transfer
Rate

3Mb/drum
6Mb total

6Mb/channel
36Mb rrax

8Mb 1.5Mb/channel
48Mb total

State of
Development

Not ready
for test

ready,
tested

no system,
only
device

being tested
& developed

Cost $1.6M $500K (lO-^b)
to $i».4M0
(3.2x1.0 b)

$50K each
unit
system
unknown

$2M

Maintenance unknown simple
replacement

for units,
excessive
for system
unknown

unknovrn

Modularity a dual device
for degrad-
able backup

excellent for unit,
none, for
system,
assumed

excellent

Storage
Media

not updatable
permanent

updatable
read or
write 2000

updatable
read or
write 500

updatable
read or
write 5000

passes passes passes

-22-

"mfjm J

 ■ L-»^—fc

I

0
i
i:

i:

A critical dimension Is that of access time. We have analyzed

this In terms of seek time and skip-read time.

The seek time Is the time required to position the device to

j prepare to read a given block of data. Since seek times will

typically be greater than the time required to retrieve the

data for a request, seek times become the important factor in
determining system throughput.

Figure 1 shows seek time as a function of the number of bits

separating the current position and the desired position.

The times given assume a single controller. Multiple

controllers can reduce the "system average" seek time by a

factor of 2 to 32 depending on the device. It should be noted

that this factor is not necessarily equal to the number of

controllers because of interactions between the seek processes.

The sklp-read-tlme (Fig. 2) refers to the time spent per

block averaged over both skipped blocks and read blocks. The

sklp-read-tlme for each device is dependent upon the number

of blocks skipped per block read (the skip ratio) and upon

the block^size chosen. For this analysis, the relevant block

size is 2 bits. Figure 2 shows the relationship between

skip-read-time and skip-ratio for each of the ij mass memory

devices as well as the DEC RP02 disk.

The DEC RP02 disk has been Included for comparison and as an

example of the calculation procedure. The device characteris-

tics are: time to read a page = 10 ms, rotational period =

25 ms, pages per cylinder = 50, cylinders = 200, access time

to a new cylinder = between 12 ms and 60 ms (assumed linear).

Thus reading all pages takes 10 ms per page. Reading between

1 and 50 pages per cylinder. Ignoring latency optimization,

takes (10 ms + 12.5 ms + (P/50) 12 ms) per page read. Between

-23-

* k ^ - _^_^_^A^—i—^t—h

!

I

i

I
I
n

I

m

o
•H
>

P
0)
bD
a
h
o

■p
w

>.
U
CO
•H
■P
U

EH

fn
O

ga

E

M

CO

•H

1
(SaN003S)3IAIIi>l33S

-2.,4-

■i
1
1

I
1

I

I

n
0)
Ü
•H
>
(U
P
QJ
bi)

Q a
< h
1X1 0
DC •p
UJ BQ
(9
< >> a. !H
a: a
m
Q-

■rl
-p a h

LU 0)

^
Q. in
W O
U- CM

<
D- n
<r

0)

t- •H
o H
h-

T)
0 (d
i- 0)
< K
oc 1
Q. Q.

to
•H

CO

1

C\J

•
bO
•H
fe

(SQNODiS) awii-avaa-dias

-25-

' -- •

1

I

1 and 200 pages per pack, the time per page read is 10 ms +

12.5 ms + (200/n) (60 ms-12 ms)/200 + 12 ms. The time per

page read Is then divided by the total number of pages passed

to determine the skip-read-time.

For the Unicon, 7^ pages per track have been assumed. A

record 2-1000 tracks (15 - 7.5 x 10^ pages) away can be

accessed in 2^0 ms. One 1000-11^40 tracks (7.5 x 10^ -

8.6 x 10 pages) away can be accessed in 3^0 ms.

In the TBM, reading speed of 5 ips (5.6 Mb/sec) is used for

searches less than 8 inches (512 pages) away. Capstan drives

of 83 and 248 ips are used for distances less than 96" and

200" respectively. An overhead of 434 ms to read a page after

search is currently imposed by the software. This can be

reduced to 234 ms.

Complete access time data on the HID recorder was not obtainable;

however,3 seconds is taken to slow from search speed, read a

block, and return to search speed. About 10^ bits ^.l x 10

pages) are traversed in this operation. Assuming a 5"

separation before it is practical to search at a higher speed

than the reading speed, the curve would be approximately as

shown.

For the Masstape, the relevant data are: 16 tracks per tape

(each recorded individually), 2.2 x 10^ bits (1.34 x 10^

pages) per track, with a read and "search rate of 1.2 Mb

(73.4 pages) per second. Time to switch tapes is .6 sec.

-26-

MrtM^BlHBMI

^

I
5.2 Unlcon Evaluation

A somewhat more detailed evaluation of the Unlcon was under-

taken (with the assistance of Professor Halm Haskal of Tufts).
The findings were as follows.

5.2.1 Main Causes of Error

A. Material Problem.

The recording medium used by PI is a thin coating of rhodium

deposited by sputtering on a transparent mylar base. The quality

of the mylar base is very important-no bumps or pits-because

it affects the recording material quality. After deposition the

completed strip is checked for reflection and transmission by a

laser system at a "macroscopic scale". The test of material

quality at a "microscopic scale" is done in the laser recorder

itself by the so-called read-during-write verification. This

verification only checks for strong reflection from the rhodium

coating corresponding to a logical "0". No read-during-write

system exists which verifies the "1" bits as burnt. Until such

a system is developed (PI is presently trying to develop it),

one does not really have assurance that the data have been

properly recorded. Thus, one should take one more drum revolu-

tion, thus increasing access time, to read after write. By Pi's

claims, the number of "bad spots" per strip is about 250 which

would represent a maximum raw error of 0.6 in 107 bits. This

represents a very small defect density and would make the material

acceptable provided that the "bad spots" are properly identified
and by-passed.

B. Dust Problem.

This is a general problem one faces in all high density recording

systems. In the PI recorder in spite of the 0.5 micron dust filters

a considerable amount of dust enters the machine and contaminates

the drums and the strips. In fact a so-called "tent effect" has

been observed in which the strip is lifted off the drum locally

-27-

ta ^M MBH

enough to deform the atrip to make recording or reading

Impossible. It would require particles of t>ie order of 1/2 to 1

mil to produce Lhls effect. Much remains to be Improved on

the air system; for that reason NASA/Ames plans to locate the

laser memory In a clean room.

I

I

C. Tracking Problems.

In the PI system every time a strip Is placed on a drum Its skew

Is computed and stored In a register. This then serves as error

information for the galvanometer. In addition, the galvanometer

receives current tracking information from a split photodetector

to correct for minute tracking errors. It is not clear why this

is necessary and in fact R. Brown at NASA/Ames claims that con-

siderable improvement in tracking was obtained by disconnecting
the skew register.

During acquisition it is relatively straightforward to Jump to

an adjacent track an", acquire on the first try. However as one

ventures to further out tracks one requires several passes in

order to acquire the right track. This is due to the error in

the optical shaft encoder of the carriage.

I

Possible improvement can be realized by using a laser interferometer

which can measure travel distances with an accuracy of 1-5 micro

inches. (1 micrometer - ko micro Inches.) Such an instrument is

currently being manufactured by Hewlett-Packard and was considered

by R. Brown also. However, it was rejected because it can only

cope in the velocities of travel of up to 12 inches/sec. In

discuesions with Hewlett-Packard they mentioned the possibility of

doubling the velocity to up to 2* inches/sec. which would make it

attractive for incorporation in the PI system. The laser inter-

ferometer would replace the optical shaft encoder and make

acquisition possible for any track in the strip on the first try.

Thus the memory would be capable of operating in a more random "
fashion.

-28-

■ i^^i

1

I

1

I

I

!

I
i
1
\

5.2.2 Reliability and Maintenance
A. Argon Laser.

The argon laser Is operated very conservatively, at about half
Its rated current, thus the plasma tube should last at least
300(M000 hours. The major difficulty arises from the fact
that with every tube change a major realignment Is necessary.

B. Alignment.
By Pi's own saying the alignment of the optical train requires

about 8 hours of an experienced serviceman. This Is due to two

factors: the optical path Is unduly long and thus more prone to

misalignment by small angular variations or transactions and also

due to the lack of alignment aids to facilitate the procedure.

There Is no doubt the optical design could be much Improved.

C. Depth-of-Focus.
In view of the tight tolerance on the depth of focus, +0.5 mil,

there may be some question about long term changes In the drum

bearings which may shift the focus. It may be desirable to use

an alr-bearlng on the drum or at least to monitor the depth of

focus by a capacltlve probe or some other device.

-29-

i

^ k . ■ - -- - -' '—^^

6. Miscellaneous Activities

6.1 Network Usage and Analysis

As already noted (Section 'l.l) a certain amount of experience

in transferring data over the net was obtained in connection

with data acquisition for the ICCC demonstration. This

experience seemed to indicate that TIPS could not yet be used

reliably for tape transmission and that tape transfers into

our TENEX installation were very slow.

I
i I

I
I

To shed further lig^t on the problem a series of measurements
was made« and dlotributed through the NIC. The results seem
to indicate that the maximum transmission rate through the
TENEX/network interface was on the order of 300K baud, and
that at that rate, 100* of CPU time would be used.

6.2 Meetings and Conferences
The activities of technical coordination with prospective
users and other Interested parties has continued. Inter-
actions have taken place with NSA, VELA, MITRE, MIT, NASA/
Langley, LRL, and NASA/Ames. Technical presentations were
given at SHARE In Toronto and as part of a panel "Data Sharing
in Computer Networks" in San Francisco.

6.3 Weather Database Working Group
The third meeting of the WDBWG was at NASA/Ames on January 18,
1973. Plans for ETAC's initial use of the datacoraputer were
discussed. CCA will participate with ARPA and ETAC in pre-
paring a paper on the CCA-ETAC Weather Data Base for publication.

H. Murray, TENEX Bandwidth, Computer Corporation of America,
Cambridge, Mass., Nov. 29, 1972. Available from Network
Information Center a& NIC 10^428.

-30-

^amk

1

L
L
I
I
I
I
I

Appendix A

The following Is a handout used co describe the CCA demon-

stration given at the International Conference on Computer

Communications, Washington, D.C., October 2l»-26, 1972.

-31-

^mmäm^mmäm m

Computer Corporation of America

Demonstration of Datacomputer
with Natural-Language Front-End

^

I

I
I
I
I
I
I
I
I

Overview
In this demonstration, a person at a computer terminal may type

an arb.trary question, expressed m ordinary English, deaZ wiT

InnVor H'- The ^S,em Wil1 a"empt ,0 understand he questio!
and to find an answer. If successful, it will display the answer rf
not. H w.ll display an explanatory message '

The demonstration makes use of the resources of the datacom-
puter system and of a special natural-language front-end Poaram
operating at the datacomputer. Program

Oalacomputer
The datacomputer is a large-scale on-line data storage and data

manageme t system being developed by Computer Coition
of Amenca for the Advanced Research Projects Agency When in

over0^!;"": da,aC0"lpu,er Wil1 have ■ "^ capaSy o,

infornT^n0?"1"?'6'8 in ,he Arpane, "" send ,0 ,he datacomputer
n«TnH / S,0ra9e' upda,e '"'^"'ation to be applied to existing

wKh th« Hl0;ma,,0.n"re,rieVal reques,s ,0 be answe'ed. Interaction

SanguZ P '* '" ' Uni,0rm SyS,em 0' n0,a,i0n Called

Natural-Language Front-End
For demonstration purposes, a natural-language program has

beenjmplemented. This program-a modification of a natural lan-
guage system developed by T. Winograd of MIT-accepts English-
language quesfons dealing with the weather and translates these
questions mto datalanguage for input to the datacomputer

it nTrcüflü^1"^?9^9? Pr09ram acceP,s a sentence from a terminal
lfi

P
manf H6 Sen,enCe Uom ,e,, ,0 ri9h,• buildin9 "P ^ internal

semanhc descr.phon which embodies the meaning of the sentence
Thrs descnpnon is then translated into datalanguage sen,ence-

HJÜIÜÄÜ Wi,h ,he Same meanin9 bu, di,'erent form generate
the same datalanguage request. For example, the two sentences:

Did it rain in Boston two days ago?
Was there any precipitation the day before yesterday in Boston?

daScomputer ,0l,0Win9 da,alan9u',9e "^est to be sent to the
TOR STATION WITH CITY E9 'BOSTON'

AÜPÜf^*"3' ^"VATION WITH DATE Ea 'ISl-
ANS.CITY • STATION.CITY
ANS.DATE ■ OBSERVATION.DATE
ANS.DATA • PRECIP

END
END

Weather Database

in CamhHHno'M S ^'T* 0Ver ,he Arpa^e, ,0 ,he datacomputer
in Cambridge Massachusetts from the Environmental Technical
Apphcafons Center (ETAC) in Washington, D.C. ETAC maintains
a ^rlll^T' obferva,i0"8 ft»" around the world going back
«fSSÄ * ":'orma,ion shiPPed over the Arpanet from
tSL ^M K G obal We.a,her Central (GWC) in Omaha. Nebraska. The
n LT e,S 0r.e^ ,n i,S en,ire,y on ,he datacomputer (along with

For purposes of demonstration, one month's worth of weather

2SÄ IS "r9 USed- ^ ,ile Con,ains dai|y observaTons from several thousand cities around the world.

Sample Quettiont
What was it like in Washington yesterday
Was Cairo cloudy on Friday?
What was the barometric pressure in Paris last Tuesday?

3>

How many times has it rained in Jerusalem this month'
How much? """ii

What was the coldest day in Tokyo last week?
Which city in Uganda had the highest rainfall in October'

ySeste"daryTCISC0 C0,der ,han L0S An9eleS 0n the day be,ore
Where in Arizona did it rain yesterday'
Has any precipitation fallen in Massachusetts lately'

^ZSnTsTc^ NeW Delhi When ,he -in'al1 in Ca'-«a

W^TrV?6 ,en:pera,u
T

re in 9°ston greater than 40 degrees?
Were there five cities in Texas whose high temperatures yesterdav

were more than 84 degrees? K<"murM yesieraay
What was the coldest placa in Alaska rscenily?

Using the System

The following guide is a sample console session with the system
The symbol [LF] stands for line-feed, [«] for carriage-return and '
.ESC] for escape or alt-mode. User imut is indicated here in lower

"e5 italicized SyStem reSp0nSe iS capi,alized. and comments

A character preceded by an up-arrow to is a control character
which is typed by holding the control key (CWL, and string the
character Typing .A will cause the last character typed to be de-
leted, .x deletes the entire line, and ,F retypes the line.
(I CLF]

mmu [LF]
L000ER

S T OPEN

TEI.EX/CCA 2.59 EXEC 2.38

8l0l!ln[SP]lccc TCP]

(PASSWORD) lece [CR]

(ACCOUNT) lece [CR]

JOB 5 OM TTY17 23-OCT-72 18:30
YCU li;VE A KESSAOE

«•••t U. TIP. cetrintl-Jtptndtnt „tup

Connect to Cd-K.VM.

fou m now It t/<e rrvr« coimtnd level.
TtHex prompt» for input Hlth an (l-.i,yn.
At «n« Clrm yen c«n force j return to
tA» coffirand level fcy typing tc.

Peeiwortl yill not print.

»typeCSP]iiipaaaye[ESC1.T»T; l

Thlt emntve will oontjin eon Info
ptrttinlng to the CCA Keether Deea.
To print the neseage, type-

[CR] "^
Hitting ttie ISC keg Hum rrer« to
co«oJ«. the tile neme. Hitting ICH] will

grun[3P]wei>ther fenl "T "" T*""' to ,'ri"t °" *>" •!°"'°1*- > ' LtRJ «un weether tuetea.
READY

lig to tccept sentence. Indicate, tyet
wh.t wa. It like In »«.hington j d.y. yg

Omtioni ire tmmintttd bg •?•
THERE WAS LIGHT RAIN.

READY

what wa. th» hlBhtet temperturf -TEHPERATURE In bc»ton l,-..t gggy

77 r,rn.r„0 . Sy"," 'x,rr,c" »P^illl» of temperitur..
77 DEGREES, LAST TUESDAY.
READY

ha» It rained in Arizona lately?

WS, 7 TIMES.
READY

where?

IN PHOENIX, TUCSON, AND YUHA.
READY

goodbye.

OOODBYE.

«logout [CR]

iü [LF]

R T CLOSED

"Uttlg- refer« to tJie pett teven dege.

fll «VMM to return to TCIlcx cormend level.

log ott Tcscx.

Clotm netnork connection».

J

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139
617-491-3670

■^■^ mo* MMi

