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TASK |

Processing of Alloys

INTRODUCTION

Task | work on structure and property control through rapid quenching of liquid
metals has included the following major aspects during the present reporting period:
(1) steam atomi zation of Mar M 509 to produce material for consolidation and property
determination by Task 111, (2) production of hot isostatically pressed forging billets,
(3) forging and hot rolling of HIP billets, (4) production of IN-100 LC HIP bars for
hot plasticity studies by Task Ill, and (5) gas analysis of powders before and after hot

isostatic pressing.

EXPERIMENTAL WORK

A. Melting and Atomization

One experimental cobalt base alloy was steam atomized. Atomization
conditions are given in Table | and analyzed composition in Table 1. A -4/+30

fraction was chemically cleaned and canned for hot isostatic pressing and extrusion.

B. Powder Consolidation

1. Hot Isostatic Pressing

Hot isostatic pressing was carried out to produce forging billets, extrusion
billets, and direct HIP material for high temperature plasticity studies. Forging
billets were produced to demonstrate the feasibility of the use of HIF in the process
route for manufacture of forged superalloy parts starting from powder. In the case
of IN-100 LC, three HIP conditions were used to explore the effects of HIP para-
meters on subsequent forgeability. In parallel with this full scale forging study,
direct HIP IN-100 LC material was prepared in the form of bars using the same

process parameters as for the forging preforms. Additional parameters were also used.
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The objective was to determine the usefulness of an independent plasticity
study to determine optimum HIP conditions for sub:equent forging. This
work is currently in progress in Task [11, using material prepared by Task I.

A summary of all hot isostatic pressing runs carried out by Task | in the
present reporting period is given in Table Ill. It is to be noted that except
for Run No. 2, all processing was carried out at a, 15,000 psi. This step was
taken so that property data obtained by Task IIl will be useful for future refzrence
when commercial production of large HIP forging preforms will utilize larger
presses with 15,000 psi operating limits. Furthermore, as discussed later in
this report, enough gas analyses showing argon in consolidated material have
been obtained so that it was considered piudent to reduce the driving force
(process pressure) for argon leakage through the welding cans even though the
mechanism (s) of argon penetration is not fully understood in the cases where
it occurred.

For the particular IN-100 LC forging billets in the current program,
Figure 1 illustrates a welded can (2H21) 8" ¢ x 4" high ready for consolidation
by hot isostatic pressing. Evacuation and seal-off have been completed. Bake-
out temperatures used for all cans before sealing were 1200-1400°F. In Figure 1,
a 1/2" - 13" hex nut has been welded to the top of the can to facilitate handling

through use of an eye-bolt.

2. forging

Forgings were obtainad using H!P preforms produced by Task I. All work
was done at the Wyman-Gordon, Grafton, Massachusetts plant. Details of the
press-forging practice employed were not available because of Wyman-Gordon's
proprietary interests.

Figure 2 shows a transverse section of a VM-300 sheet bar, press forged in
the 3 3/4" direction after HIP (2G10, Run No. 1, Table Ill). The original
corners of the VM-300 powder compact may be seen as "flutes" on the top and

bottom.
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To provide a \YM-300 consolidated powder material wherein the original
powder particle boundaries were substantially deformed by hot-work, the
forged compact was cut in half. One-half was hot rolled by 5/8" thickness
(Figure 3) and the other to 3/8" thickness. Rolled material was forwarded to
Task 111 for study of fracture toughness.

Three 33 Ib. IN-100 LC HIP forging billets (Con nos. 2H19, 2H20, 2H21,
Table I11) were forged to & 12" ¢ x~1" thick discs ot Wyman-Gordon Company .
The three HIP hillets represented three different process temperatures: 2H20 - 2250°F;
2H19 - 2200°F; and 2H21 - 2150°F. Figure 4 shows 2H21 (HIP @ 2150°F, 5 hours)
after forging and clean up. It is cpparent that the HIP process temperature had a
considerable effect on forgeability. As shown in a "side-by-side" comparison
in Figure 5, a HIP temperature of 2250°F resulted in " large" edge cracks with
"large" shear displacement. HIP at 2200°F reduced this effect and HIP at 2100°F
produced relatively "fine" edge cracks uniformly dispersed around the circumference.
The depth of radial penetration was also least for the lowest HIP temperature 2150°F.
It should be noted that a basic assumption in this analysis is uniformity of forging
practice among the three pieces.

The trend in reduced edge cracking at lower HIP temperature indicates that
HIP of this powder at 2100°F or even 2050°F might produce even greater forging
plasticity. The present billets have been forwarded to Task Il for fatigue and fracture
toughness studies. Additional hot plasticity material (IN-100 LC) will be produced

to determine wnether lov.er HIP temperature would increase hot plasticity.

3. Extrusions

Three alloy powders were produced as ~1/2" ¢ core extruded rods for Task |11,
All extrusions were produced from hot isostatically pressed extrusion billes (see
Table I1l). Successful extrusions were obtained for Mar M 509 Homogeneous Metals,
Inc. fine powder, Can No. 2139; Co-Hf, CH8-C1 Chemstrand powder, Can No. 2J62:
and IN-100 LC Chemstrand powder, Can No. 2J62. Can No. 2149, containing
steam atomized and cleaned Mar M 509, bulged and ruptured on heat up for extrusion
and could not be extruded. Can No. 2K39 (IN-100 LC) was extruded but the die
insert failad, and a cracked - 2" @ bar resulted instead of the required 1/2" ¢ core
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extrusion. A brief summary of extrusion conditions is given in Table IV,

4. Microstructures

As previously shownl,’2 one characteristic of the structure material consoli-
dated by hot isostatic pressing of powder is the presence of particles which have
undergone little or no deformation. Other particles undergo eavy deformation
and recrystallize producing fine grains. The resulting compact thus hus grain
sizes covering a range of & 10:1.

With IN-100 LC, which in addition to having a mixed grain size HIP structure,
(Figure 6, left), undergoes l"coarsening at 2235°F, subsequent hot work (extrusion)
has caused internal fracture, (Figure 6, right, lower center). The origins of the
fracture’appears in one case to be at the head -and-tails of a prior powder particle
which did noi deform during HIP. The original dendrite structure appears intact
and has not realigned in the extrusion direction. Extrusion is a high strain rate
process which accentuates the difference in plasticity of coarse and fine grain
material and has caused internal tearing for the processing conditions employed.

From the behavior of the IN-100 LC system during HIP and extrusion, it
would appear wseful to consider limiting the maximum powder porticle size allowable
for a given set of processing conditions. This would reduce the grain size range
after HIP and, consequently, the variability in plasticity between the "coarse"
and "fine" grain size local volumes of the structures.

Opportunity to examine the effects of a finer powder mesh size on processing
response occurred with Mar M 509 "fine" powder. Figure 7, left, shows the structure
aofter HIP; and Figure 7, right, shows the HIP structure after extrusion. Note that
the magnification is 500X as opposed to 100X for IN-100, Figure 6. In the HIP
structure an undeformed "cast" porticle structure is shown in the upper half of the

figure as quarter-circle. Carbide coarsening did not occur during HIP. The extruded

Semi-Annual Technical Report No. 3, ARPA Contract No. DAHC1570C0283, Page 4.
Effect of Processing Variables on Powder Metallurgy Rene 95, S. F. Barker & E. H.
VanDerMolen, Proceedings 2nd International Conference Superalloys Processing,
September, 1972, Pg. AA19.
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structure shawed no signs of internal tears. The conclusion is that a "fine"
powder size and absence af "2nd" phase coarsening during HIP have produced

a Mar M 509 structure which exhibits uniform plasticity during extrusian and

_no internal tearing.

Gas Studies

ot v rre—

Task 1l investigation of heat treatment response of consolidated cobalt
P/M alloys (Semi-Annual Technica' Report Na. 4, pages 89, 92) has indicated
thnt swelling and distortion may occur during high temperature heat treatment.
Since residual gas, including argon, was suspected as a cause of the above
behavior, an unalytical survey was conducted on a variety of powders and
consolidated materials. Table V lists the "critical" gas analyses obtained
during the current reporting period.

Analysis of all Homogeneous Metals powders (as received) and all
Chemstrand powders (as received) indicated no detectable argon (powder
analyses 1,3,4 and 5). Although the powders were handled in air which is 4, 1%
argon, insufficient adsorption took place to be detectable analytically. Next,
it is to be noted that analyses 1 and 2 show 12 ppm and 84 ppm argon in consolidated
bar material. In these cases the extrusion billets were prepared by hot isostatic
pressing at 26 ksi and 28 ksi respectively, with argon as the pressurization fluid.
It is to be further noted that bar produced by extrusion of billets HIP'ed at 15 ksi
showed no detectable argon.

It would appear plausible to assume that crgan gas may enter the powder
compact during hot isostatic pressing. The mech (s) remain in doubt,
Possibilities may include:

1.  Permeation through microporosity in weld metal areas of the

HIP can.

2.  Permeation through HIP can wall defects traceable to original

ingot practice, i.e., slag stringers, unwelded pipe, folds in

rolling, cold shuts, etc.
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3. Diffusion through "sound" material:
a. grain boundary diffusion

b. bulk diffusion.

Since Task 1l work has indic ted that residual gas in consolidated material
may adverseiy affect high temperature heat treatment response (and properties)
and since this gas may be argon introduced in hot isostatic pressing, investigation

of the above possibilities is currently being carried out.

. CONCLUSIONS

IN-100 LC R.E.P. powder can be hot isostatically pressed to 7' ¢ x 3 1/2"
high, 33 Ib. forging billets. Press forging can "successfully" convert these billets
to ~ 12" ¢ x 1" thick discs with edge cracking least for prior HIP @ 2150°F, and most
for prior HIP @ 2250°F. Plasticity of material HIP'ed at lower temperatures warrants
further test.

Extrusion of HIP billets at ~23 x R.A. resulted in internal fracture initiation
near "coarse" powder porticles. This finding suggests that reduction in upper mesh
size of powder to be consolidated may eliminate this type of defect. Avoidance of
internal tearsat high extrusion R.A. occurred with -80 mesh ( <l7}a) Mar M 509
"fine" powder.

Chemical analysis showing argon in material compacted by HIP requires further
immediate study. The powders in these tests were "non-argon atomized", and to date

no model has yet been established to explain the observations.

£
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Figure 1. HIP billet IN-100 LC. 8" diumeter x 4" high
ready for pressing. Can No. 2H21.
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Figure 2. VM-300 sheet bar. Hot isostatically pressed and press
forged. Transverse section. Can No. 2G10.

Figure 3. VM-=300 sheet bar, HIP, press forged and hot rolled to 5/8"
thickness. Can No. 2G10.
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Figure 4. IN-100 LC. 33 Ib. billet HIP'ed at 2150°F, 15 ksi, 5 hrs.
and press forged to ~_ 12" diameter disc. Can No. 2H21,

Figure 5. IN=-100 LC press forged HIP billets. Top: 2H21, HIP' ed
at 2150°F, 15 ksi, 5 hrs., middle: 2H19 HIP'ed at 2200°F,
15 ksi, 5 hrs., bottom: 2H20, HIP'ed at 2250 F, 15ksi, 5 hrs,
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Figure 6. Left half: IN-100 LC HIP'ed at 2235°F, 15 ksi, 2 hrs,
Chemstrand 400 u powder. Cun No. 26134. Etched.
Right half: IN-100 LS HIP'ed at 2235 F, 15 ksi, 2 hrs.
plus extrusion at 2050 F,~24X R.A. Can No 2J52.
Internal tearing at prior particle boundary. Etched.

Figure 7. Left half: Mar M 509 HIP'ed at 2235°F, 15 ksi, 2 hrs.
Homogeneous Metals -80 mesh powder. Can No. 2142,
Etched. Right half: Mar MéO? HIP'ed at 2235 F, 15 ksi,
2 hrs. plus extrusion at 2050 F, ~"5X R.A, Can No.

2139. Etched.



o MR DN R Ay e

-18-

TASK 11

SOLIDIFICATION RESEARCH

R. Mehrabian
P.A. Joly
M.C. Flemings
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TASK 11 ~ SOLIDIFICATION RESEARCH

by

R. Mehrabian, P, A, Joly, M, C, Flemings

In this part of the program, work was continued on developing and
evaluating new processes for atomization of metal powders, Specific aspects

of these investigations have included:

1. The effects of the independent variables in the new Filatomization
process, developed in this part of the program(l), on the formation and
solidification of alloy powder particles were determined. A patent applica-

tion based on this process was filed through the M.I.T. patent office.

2, Prealloyed powders of Maraging 300 alloy, IN-100 alloy, and a Mar-
M-509 type alloy, produced by different atomization processes, were evaluated
with respect to chemistry, morphology, and segregate spacings. Powder
particles produced by spin atomization, a new process, were compared to

powder particles produced by older, more established atomization processes,

1. Filatomization

Detai’s of a new process for atomization of metal powders, developed
in this part of the program, were reported earlier(l). The process, called
Filatomization, entails filtration and subsequent atomization of alloy
melts by forcing them through porous ceramic filters.

Experiments were continued to investigate the effects of the governing

I R RSN -
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parameters (i.e., tumperature, filter material, pore size, pressure, etc.)
on the mechanism of formation and size of the resulting powder particles,
Sintered A1203 and SiO2 disc filters, 87-150u pore size, were utilized to
atomize powders of aluminum and tin alloys. The apparatus was modified,
such that formation of the alloy powder particles could be observed and
photographed using a set of magnifying lenses.

Experimental observations showed that successful formation of spherical
powder particles depends on detachment of the l1iquid drops from the filter
prior to growth and coalescence of adjacent drops. Conditions that permit
liquid drops exiting from adjacent pores to coalesce result in formation of
large liquid drops that do not completely solidify in flight and splat in
the collector container. The different vartables that affect formation and
subsequent solidification of the alloy powder particles are; (a) pressure
differential across the ceramic filter, (b) superheat in the melt, (c) the
wetting angle between the melt and the ceramic filter, (d) the average pore

size of the ceramic filter, and (e) the free flight time available for com-

plete solidificatiou.

(a) Pressure

Observations to date show that during Filatomization liquid metal flows
preferentially through paths of least resistance, causing a channeling
phenomenon to occur. Hence, only a small fraction of the available pores

are utilized for drop formation. In general, increasing the pressure head

on the melt, above a critical maximum, results in flow through greater number

of pores accompanied by consolidation of drops, or streams, from adjacent

pores (i.e., less than one drop diameter apart).
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(b) Superheat

Direct observations during drop formation, below the filter, have shown
that formation of consolidated large drops, or streams, can be correlated
to superheat in the melt. In general, increasing the superheat in the
melt results in formation of larger drops before detachment from the filter

occurs,

(c) Wetting

Increased wetting between the ceramic filter and the molten alloy has
an adverse effect on Filatomization. When the melt partially wets the
porous filter, as in the case of aluminum alloy melts and 5102 filters,
liquid drops forming below the filter spread out more easily and result in

frequent formation of consolidated drops.

(d) Filter Pore Size

As expected, the diameter of filatomized powders decrease with decreas-
ing average pore size of the filters used. However, variations in super-
heat, pressure, and wetting angle between the alloy melt and the filter,

mentioned above, influence the average particle size in important ways,

(e) Heat Flow and Solidification

Heat flow analysis previously reported(z), in this part of the program,
wag refined and extended to permit calculation of free fall times and distances
necessary for complete solidification of Filatomized powders. Calculations
were made for the Maraging 300 steel alloy for which heat transfer coef-
ficients were previously determined(Z). Figure 1 shows plots of solidifica-
tion times and free fall distances versus drop diameter calculated using

a heat transfer coefficient h=0,0095 cal/cm2 sec®C,



Apparatus Modification

Detachment of liquid drops, prior to consolidation of adjacent drops,
from the ceramic filters is the critical step for successful Filatomization.
Understanding the effects, and subsequent control, of the variables listed
above has been the major aim of this investigation. However, other pro-
cessing techniques have also been developed to aid in detachment of the
liquid drops from the ceramic filters. As example, one successful method
has been to direct low velocity inert gas jets transversely across the base
of the ceramic filters. A ring shaped, multiple hule, gas nozzle was located
directly below, and around the circumference, of the ceramic filters. The
slight disturbance of the forming liquid drops, induced by the inert gas
flow, resulted in their early detachment., Other methods presently being
investigated are vibration and application of electric and magnetic fields.
" Finally, other apparatus modifications have been made to study formation
and detachment of liquid drops, from the base of the porous ceramic filters,

by high speed photography.

2. Evaluation of Powder Particles Produced by Different Atomization Processes

In this part of the work, prealloyed powder particles of Maraging 300
steel alloy, IN-100 alloy, and a Mar-M-509 type alloy, produced by different
atomization processes were evaluated., The different atomization processes
vere:

(a) Spir-atomization - A new proprietory atomization process that has
been developed at Chemstrand Corporation.

(b) Inert gas atomization - A prealloyed ingot is remelted in argon or

vacuum, and atomized by a stream of high purity argon gas.
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(c) Vacuum atomization - The remelted alloy is pressurized and sat-
urated with hydrogen. Atomization is obtained through a "pressure nozzle"
operating between the hydrogen filled chamber and a vacuum chamber,

(d) Rotating Electrode Process - The end of a rotating electrode is arc
melted in inert atmosphere aid fine droplets are flung off by centrifugal
force,

(e) Steam atomization - The prealloyed ingot is remelted in an atomsphere

and atomized by a stream of low pressure steam.

Powder particles of the three alloys were characterized by chemical.
analysis, morphology, size distribution, and segregate dendrite arm spacings,
Results of this study are presented in Table I and Figure 2. The spin
atomized powder particles were by far the cleanest and most spherical par-
ticles obtained in all three alloys combined, However, in each individual
type of alloy there were other comparahle processes. For example, R.E.P,
atomized powder particles of IN-100 and vacuum atomized powder particles
of Maraging 300 steel alloy both contained less than 100 ppm of oxygen as
did the spin atomized powder particles, Table I also lists nitrogen,
argon, and hydrogen contents of the powders. As expected, steam atomiza-
tion resulted in the highest oxygen and nitrogen contents. Figure 2 shows
the measured secondary dendrite arm spacings in the different powder particles
of the Maraging 300 steel alloy. Average secondary dendrite arm spacings
in spin atomized powders is "6 microns, and in coarse steam and argon atomized
powders is “10 microns. Results of dendrite arm spacing measurements in
the other two alloys show the same trend,

Figure 3 compares scanning electron micrograph views of representative

powder particles of IN-100 produced by three processes, The spin atomized

§
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powder particles are smoother, more spherical, and more uniform in size
than powder particles obtained by the other two processes.

Figure 4 shows scanning electron micrograph views and a photomicro-~
graph of a polished and etched cross-section of Maraging 300 steel powder.
The same type of smooth, well rounded and uniform powder particles were
also obtained in the Mar-M-509 type alloy.

In summary then, comparison of atomized powder particles obtained by
different atomization processes show that the new spin atomization process
is quite promising and should be explored further. Powders of the three
alloys were supplied to other groups in this study for hot isostatic
pressing and extrusion into billets. Some of the properties of the billets

thus produced are reported in this volume,
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Figure 3. SEM micrograph views of atomized powder particles of IN-100 alloy; (2) and
(b) show spin atomized powders at 56X and 215X, respectively, (c) and (d)
show vacuum atomized powders at 57X and 22.5X, respectively, (e) and (£)
show inert gas atomized fine powders at 210X and 1050X, respectively.
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Figure 4. Spin atomized powders of Maraging 300 steel alloy; (a) and (b) are SEM
micrograph views at 19X and 240X, respectively, (c) is a photomicrograph
of a polished and etched cross-section at 200X,

Reproduced from }
best available copy.
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MECHANICAL PROPERTIES OF 300 GRADE MARAGING STEELS

A. _ INTRODUCTION

An improvement of fracture touyhness was previously shown to occur
by decreasing the grain size of commercially available VASCOMAX 300. We
have now carried out more tests on grain size refinement and the resulting
tensile and fracture toughness properties are reported. Tensile and frac-
ture toughness testing of HIP and hot-rolled high purity rotating elec-
trode powder have been continued. Whereas delamination of powder parti-
cles was a problem in earlier testing, we have now succeeded in producing
a material completely free of this kind of defect.

Research on the fatigue properties of 300 grade miraging steel has
been expanded. Both annealed and aged Vascomax 300 were studied. The
determination of the cyclic stress strain curves and the parameters n' and
k' show that a large degree of cyclic softening takes place. The S-N
curves for annealed and aged Vascomax 300 tested in dry argon (dewpoint
-70°F) are reported. Strain controlled low cycle fatigue data for annealed
material were obtained. The elastic and plastic strain components of each
test were measured and the results are plotted together with the high cycle

fatigue data and monotonic tensile data.

B. TENSILE AND FRACTURE TOUGHNESS PROPERTIES

In our last report it was shown that an increase in fracture toughness
from 62 ksi v/Tnch to 71 ksi /inch could ve accomplished without decreasing
the yield-strength by refining the grain size from 25 microns to 5 microns.

In an attempt to still further improve the fracture toughness, 1-1/4 inch



- i | il [T I reomm—

-33-

plates of Vascomax 300 with a grain size of 25 microns were hot-rolled at
1600, 1500 and 1400°F to .3 inch thickness in 10% passes. The materials
were air cooled after hot rolling and the resul ting grain sizes were
respectively 5 microns at 1600°F and 1 micron for the 1570 and 1400°F
rolled material.

Tensile testing in a direction parallel to the rolling direction was

done after the following heat treatments:

1. As received specimens 3014, 3015, 3016

2. As received + 3 hours 900°F ageing specimens G3014, G3015, G3016
3. 1 hour 1500°F anneal specimens A3014, A3015, A3016

4. 1 hour 1500°F anneal + 3 hours 900°F ageing

specimens AG3014, AG3015, AG3016
Table I shows a summary of the testing results. The yield and ultimate
tensile strengths of the aged material in both conditions are higher than
for the commercial material. The R.A. of all AG specimens shows a2n im-
provement from the commonly observed 50% to 62%. These same specimens also
have a higher work-hardening exponent than the G specimens or commercial
material. This is of significance since in general materials with a higher
work-hardening exponent show better fracture tcughness values.

Table I also gives the tensile data for two powder metallurgical
products. Both were produced from high purity spinning electrode powder.
The materials designated ER3014, ER3015 and ER3016 were extruded and subse-
quently hot-rolled at 1400, 1500 and 1600°F, respectively. The resulting
grain sizes were 1 micron for ER3014 and ER3015 and 5 microns for ER3016.
The material is completely free of banding or inclusion stringers. The

tensile fracture surfaces of all these materials showed delamination
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between the original powder-particles. Previous testing has shown that
such delamination impairs the fracture toughness.

The last alloy for which data are given in Table I is designated HR
91. This material was made by hot isostatically pressing (28,000 psi at
2200°F) high purity powder in a 4 inch X 6 inch X 12 inch can. The compact-
ed powder was then hot-rolled at 1900°F to 1/4 inch thickness. The total
reduction accomplished was 91%. Materials made in a similar way but with
Tower reductions have repeatedly shown incomplete bonding between the
powder particles. This high reduction produced for the first time a
product which did not delaminate. HR 91 showed good tensile properties and
a slightly improved R.A.

Table II lists the fracture toughness values for commercial, fine
grained and powder metallurgy materials. In all tests the fracture surface
was parallel to the rolling direction. Testing was carried out following
ASTM E399 70T. The specimen thickness is 0.25 inch and the load to propa-
gate the last .025 inch of the crack and the total number of cycles to
propagate the fatigue crack are indicated. Rolling Vascomax 300 at 1600°F
results in a material with a grain size of 5 microns and a KIC of 71 ksi
/inch. The yield strength for this material was the same as that for com-
mercial stock. Rolling at 1400 or 1500°F resulted in slightly lower KIC
values but increased yield-strength from 280 ksi to 300 ksi. Specimens
undergoing a 1 hour 1500°F anneal prior to ageing show a fracture toughness
well over 70 ksi vinch, regard ess of the rolling temperature. These
materials show the best combination of yield strength (280 ksi) and frac-
ture toughncss (= 74 ksi /Inch) so far obtained in this program.
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Powder metallurgy products have been HIP pressed and hot-rolled be-
tween 2000 and 1800°F with different rolling reductions. KIC values for
material rolled 69%, 83% and 91% are given in Table II. HR69 and HR83
showed both extensive delamination between the original powder particles
which was thought to impair the toughness. HR91 is completely free from
any particle separation but it shows nonetheless a low KIC value. It has
been suggested that this might be due to argon pick up during pressing.
Argon analysis of this material is now carried out and the results will be

publishea in our next report.

C. FATIGUE OF MARAGING 300 STEEL

Figure 1 shows the high cycle fatigue curves for annealed and aged
Vascomax 300. Al1 specimens were tested in dry argon (dewpoint -70°F) and
the specimen direction was always paraliel to the R.D. of the material.
Cyclic stress strain curves for both materials have been determined follow-
ing the technique of J.D. Morrow. Hourglass shaped specimens .25 inch in
diameter are exposed to blocks of increasing and decreasing strain. The
strain is the controlled parameter ana t'ie increase after each completed
hysteresis loop is programmed with a DATATRAK. The stress strain curve is
formed by connecting the loop tips from the hysteresis loops. Between 8
and 12 blocks are needed for the material to become cyclically stable. The
envelope of the different loop tips is shown in Figure 2 for aged Vascomax
300.

the cyclic stress strain curves for annealed and aged material togeth-
er with the monotonic curves are plotted in Figure 3. Cyclic softening,

especially for the aged material is quite large and is the reason for the
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rathar poor fatigue 1imit of this steel. The values of n' and k' from the
2quation o = k’(Aep/Z)"' are obtained by plotting the stress versus the
plastic strain on log-log coordinates. This plot is shown in Figure 4 and
the different values are indicated. Strain controlled low cycle fatigue
data have been obtained so far for annealed material only. From the
hysteresis loops which are plotted on an X-Y recorder at regular intervals
the elastic and plastic componenets of each test are determined. The total
strain and the number of reversals to failure are of course also known.

The results can be plotted as Ac/2, the strain-amplitude versus the number
of load reversals 2N on a log-log plot. In Figure 5, the elastic, plastic
and total strain curves are plotted for annealed Vascomax 300. Data points
at 10" or more reversals are high cycle fatigue data from Figure 1. These
are obtained by dividing the stress for the data in Figure 1 by the elastic
modulus which was assumed to be 26 X 10® psi. Any plastic strain is dis-
regarded in this case and this explains the slightly different slope for
the two elastic lines. The points where the elastic 1ine and the plastic
line intersect the one reversal line should be the same as, respectively,
the true fracture stress divided by E and the true fracture ductility as
obtained in tensile testing. These points are indicated by of/E and €¢ and

excellent agreement was found to occur.

e R
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Specimen

3014
3015
3016
A3014
A3015
A3016
G3014
G3015
G3016
AG3014
AG3015
AG3016

ER3014
ER3015
ERG3016
ERG3014
ERG3015

ER3016

HRI1
HRGI1

Tensil

U.T.s.
ksi
153
155
142
148
136
140
304
302
289
288
286
289

167
160
148
278
293
292
146
284
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Table 1

e Test Data 300 Grade
Maraging Steel

0.2% Offset
ksi
120
121
113
116
110
110
301
297
284
284
280
284

120
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