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ABSTRACT
(Distribution Limitation Statement A)

One hundred twenty-three simple shear tests of 24 different soils were
conducted. Most were constant-amplitude repeated load tests. A few of the
tests involved mixed amplitudes of loadi.g with rest periods between loads.
Based on the results, a practical procedure for reducing the shear modulus
of soils with increasing strain amplitude was developed. It was shown that
for a wide variety of soil types and conditions the procedure gives reasonably
accurate results compared to values measured in the laboratory. The study
of mixed amplitudes and rest periods indicated that the procedure can be
applied o mixed traffic conditions.
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ABBREVIATIONS AND SYMBOLS

a = parameter in modified hyperbolic stress-strain relation
Cq = parameter defined by equations 4 and 5
e = void ratio
xp = base of natural logarithms
F = function of void ratio defined by equation 2
‘ G = shear modulus
Gnax = maximum shear modulus
N = number of cycles
. PI = plasticity index
. R = parameter relating Grax and L
' S = percent saturation
T = time in minutes to reach a normalized strain equal to one
Y = ghear strain
"h = hyperbolic¢ strain
’r = reference strain
Tehdim = chamber pressure
G, = effective mean principal stress
c_) = effective angle of shearing resistance
| T = maximum shear stress




SECTION |

INTRODUCTION

1. Pavement Evaluation

This document reports resecarch that is part of a larger Air Force
Weapons Laboratory project (o develop a pavement evaluation procedure. The
following steps are involved in the pavement evaluation procedure, which for
the present uses linear ¢!astic analysis for determination of the stresses and
strains in the pavement structure.

The first step is to measure the shear moduius for different layers of
the pavement structure in-situ, using a nondestructive vibration testing method.
The shear modulus thus measured will be for very small strain amplitudes, on
the order of 10™° in/in or less. Because the stress-strain relations for paving
materials are nonlinear, the secant shear modulus for larger strain amplitudes
produced by an aircraft loading will be smaller than the modulus measured by
the nondestructive testing method.

The second step is to make the proper reduction in the measured
shear modulus to correspond to the strain produced by an aircraft loading.

The third step is to use this shear modulus in a finite-element analysis
for stresses and strains in pavement structure under load.

The fourth and final step is to assess the amount of damage or pave-
ment distress that will be produced by the loading.

This report presents a procedure for the second step, the reduction

of shear modulus with increasing strain level,
1
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2, Review of Previous Report

The first phase in developing a procedure for the reduction of shear
modulus with increasing strain level was to design and construct testing equip-
ment capable of accurate measurement of the shear stress-strain relation for
soils, over a wide range of strain levels. The range was from about 10~ in/in 9
to failure, i.e., after a given number of constant-amplitude cyclic loads cach
sample was loaded to failure, Also, a scrics of tests with two soils, a silty

sand and a silty clay, were conducted to assess the relative effects of various

parameters, such as density, percent saturation anu confining stress, on the
shear stress-strain relation for cyclic loading. Reference 1 reports on this
phase of the research, and the testing equipment, its capabilities, and the testing
procedure developed are described in detail. Examples of recorded stress-strain

curves are given, and the methods of analysis of the data are discussed. The

same ecquipment, procedures, and most of th¢ methods of analysis were used for
the current testing program. They will not he described in detail herein, since
the information is available in reference 1. However, a brief description of
methods and procedures is given in Appendix II. Some of the definitions

presented in Section II are amplified in reference 1.

3. Current Testing Program

The objective of the current testing program was to determin. whether

1. Hardin, Bobby O., Characterization and Use of Shear Stress-Strain
Relations for Airfield Subgrade and Base Course Materials, Technical

Report No, AFWL-TR-71-60, Air Force Weapons Laboratory, Kirt)and
AFB, NM, July 1971,




or not the characterization of the shear stress-strain relation presented in

reference 1 is applicable to a wide varicty of soils. A total of 80 specimens of

. S—

20 different soils were tested with differing parameters, suck as soil type,
strain amplitude, density, and percent saturation, Including Phasce I, o total of
129 tests on 24 different soils have been conducted and analyzed. Datir {or only
six tests appeared to be faulty (i. e., an error in conducting the test) and were
thrown out. The relationships presented here are based on 123 tests of 24

1 different soils.

A procedure for reducing the shear modulus with increasing strain level,

recommended for use in the Air Force pavement evaluation technique, is pre-

T T

sented in Section I, In Section III values of the shear modulus determined by

this procedure are compared to the experimental data in onder to verify the 1

]
procedure and to show the probable magnitude of crror in using the procedure. i
A few of the tests involved more general loading histories, with mixed loading }

amplitudes and rest periods between loads. Results and discussions of these

tests are presented in Section IV,




SECTION 1i

A PRACTICAL PROCEDURE FOR REDUCTION OF SIIEAR MODULUS
WITH INCREASING STRAIN LEVEL

1. Objective
The objective of this section is to present the procedure recommended
for reduction of shear modulus with increasing strain level in a practical form,
for usc in pavement e¢valuation, unencumbered by details of testing or presen-
tation of the supporting data.
2. Definitions
The following parameters are used and are defined with reference to
figure 1:
Maximum Shear Modulus = Gmax = the initial tangent modulus,
or secant modulus for strain amplitude < 107 in/in (For
pavement evaluation this quantity is to be measured by the
nondestructive vibratory test);
Maximum Shear Stress - Tmax strength of the specimen in
simple shear, defines assymptote in figure 1 (This quantity
has been related emperically to Gmax’ see Appendix 1.
However, if measured values of Tmax are used, a rate of
.oading corrcsponding to T = 0.1 will suffice, eventhough
the value of T for actual aircraft loading may be 0.01);
Reference Strain ‘yr = Tmax/Gmax' defined by the intersection of
the initial tangent line and strength assymptote in figure 1,
and emperically related to G in this section;

max

4
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Figure 1. Schematic simple shear-stress strain relation,
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Normalized Strain - ¥/7,, where ¥ is the shear strain;

Hyperbolic Strain - Y @ parameter defined by equation 9 (If cquation 9
is substituted into equation 8, the relationship between normalized
shear modulus and normalized strain is obtained, This relation-
ship changes with the value of a, as shown in figure 15, depending
on the values of S, N, T, «nd the type of soil; see equation 19.

An alternate method of presentation is used in this scction.
Graphs based on equation 9 are presented giving the value of ¥
corresponding to a value of 7/‘)’r, depending on the values of S,

f N, T, and soil typc. With the value of Y determined, the

normalized shear modulus is given by the simpie hyperholic

equation 8.);

Shear Modulus = G = secant shear modulus for a given strain amplitude
and cycle as shown in figure 1;

Normalized Shear Modulus = G/Gmax;

Number of Cycles = N

Strain Time 7T - time in minutes to reach a normalized strain
cgual to one;

Percent Saturation = S = ratio of volume of water to volume of voids
in the soil, expressed as a percentage, and;

Void Ratio = ¢ = ratio of volume of voids to volume of solids in the soil.

3. Determination of the Reference Strain

The reference strain is given by the following equation derived in




. equations 2 and 5, is given in figure 2, The value of void ratio is all that is

Appendix I,
z .6
y = Smax l:().li - 0.25 (PI)O ] (1)
r
R
where PI = plasticity index, G . is in psi,

N 12.973 - C!‘l)‘ (2)
= (1+e)

R - 1100, for sands with less than 15 percent fines
(3
and R = 1100 - 6S, for cohesive soils with more than 15 percent [ines

Let
9 2
FZR (4)
0.6 - 0.25 (P)0+ 0

Then for sands with less than 15 percent fines, PI = 0 and R = 1100
giving

Cq = (2.017 x 10%) F? (5)
For cohesive soils with more than 15 percent fines, substituting R = 1100 - 6S

intc equation 4

F2 (1100 - 6S)°

(6
0.6 ~ 0,25 (Pn0.6 )

C1=

Finally

r - Cl (7)
With G, in psi.

The v:lue of C; for sands with less than 15 percent fines, as defined by

needed to determine Cl for this case. The value of C1 for cohesive soils with

more than 15 percent fines, as defir:d by equations 2 and 6, is given in figure 3.

7
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Figure 2. Value of C; versus void ratio for sands with less
than 15 percent iines,
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For this case the values of the plasticity index and percent saturation are needed
in addition to the value of the void ralio. The dashed line in figure 3 shows how
to use the figure. First, using the left hand side of the graph with the value of
plasticity index as abscissa, determine an ordinate depending on percent saturation.
Extend this orc.aate to the right to determine an abscissa for the right hand side
of the graph, corresponding to the value of void ratio. The second abscissa
determines the value of C4. The dashed linre represents the case where PI = 25,
S =50, and ¢ =1, The value of C; =4.9x 10%psi.

Having determined the value of C1 from cither figure 2 or figure 3,
depending on the soil type, the reference strain can now he determined from
figure 4. Using the value of Cq as abscissa, the value of the reference strain is
read as ordinate, from the curve corresponding to the value of G - in psi.
The dashed lines in figure 4 are for C; = 4.9 x 108 psiand G = 8000 psi,

7, = 16.5% 10™* in/in.

4. Determination of the Shear Modulus

The normalized shear modulus is given by

G - 1 (8)
Gmax 1+ "n
0.4
where y S [_7_] )
"= 7;- 1+a exp Vi

The value of a is defined by one of the following equations, depending on the

type of soil
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. 2f'
r[(3.85/N) -0.85] TV %°  for clean dry sands
0.2, 0.6 . . .
1.6(1+0.028)T ' /N for nonplastic soils with
a= < fines and low plasticity + (10)

soils

0.75, 0,15 for high plasticity soils
0.2(1 +0.028 T /N with lquid limit > 50

.

The values of ¥, as defined by equations 9 and 10 are given in figures
5, 6, 7 and 8 for various cases. Figure 5 is for clean dry sands. The solid
curves give the relationship between ¥, and 'y/‘yr for a fast rate of loading,
T =0.01. The dashed curves are for a slow rate of loading, T = 10, Curves
are shown for N =1, 2, 10, > 100. The dashed and solid curves coincide for
10 and > 100 cycles. Having determined the reference strain according to the
procedure given in paragraph 2, the normalized strair. can be computed, and the
hyperbolic strain determined from figure 5 for clean dry sands. Similar graphs
are given in figures 6 and 7 for nonplastic soils with fines and low plasticity
soils. In figures 6 and 7 the solid curves are for 60 percent saturation and the
dashed curves are for 100 percent saturation. Figure 6 is for a fast ratc of
loading, T = 9.01,and figure 7 is for a slow rate of loading, T = 10. Both sets
of curves in figures 6 and 7 approach the hyperbolic line for a large number of
cycles, Again, knowing the value of reference strain, the value of the hyperbolic
strain can be determined from these figures for a given value of strain. Figure
8 is a similar graph for high plasticity soils. For the fast rate of loading,
T =0 01, the hyperbolic line defines the relationship for all numbers of cycles

and percents saturation. For the slow rate of loading, T = 10, the solid

curves define the relationship for 60 percent saturation, and the dashed curves
12
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Ficure 5. Hyperbolic strain versus normalized strain for various
numbers of cycles and rates of loading.




; LOW PLASTICITY SOILS AND

E . NONPLASTIC SOILS WITH FINES
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Figure 6. Hyperbolic strain versus normalized strain for various
numbers of cycles and percents saturation, slow rate of
loading, T = 0.01, nonplastic soils with fines and low
plasticity soils.




HYPERBOLIC STRAIN, 7},

LOW PLASTICITY SOILS AND
NONPLASTIC SOILS WITH FINES
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3 4

Figure 7. Hyperbolic strain versus normalized strain for various
numbers of cycles and percents saturation, slow rate
of loading, T = 10, nonplastic soils with fines and low
plasticity soils.




HIGH PLASTICITY SOILS
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Figure 8. Hyperbolic strain versus normalized strain for numbers
of cycles, percents saturation, and rates of loading,
high plasticity soils.
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are for 100 percent saturation, With the value of hyperbolic strain determined
from one of figures 5, 6, 7, or 8, depending on soil type, the normalized shear
modulus can be determined from fisure 9.

5. Examples of Use of the Procedure

For pavement cvaluation the type of soil (including PI and particle size)
and values of e and S would have to be estimated from available knowledge of the
subgrade or from a core sample; the value of Gmax would be measured by
nondestructive vibratory testing; the value of N would come from traffic records;
the value of ¥ would be determined by the finite-element analysis, and; the value
of T would depend on the speed of the aircraft,

Example number 1:

Given: A clean dry sand,

Gmax = 18380 psi,
e =0,62,
N=1,
_ -4 . .
v=18,6x 10 " in/in,
T = 81 (a very slow rate of loading).
Find: The shear modulus, G;

From figure 2, using e = 0,62; Cy = 2.36 x 107 psi.

. * — « 7 - e
From figure 4, using Cy= 2,36 x 10" and Gmax = 18380 psi;

¥p = 7.5 x 107 in/in,
4

Calculate, using ¥ = 18.6 x 10"4 and ¥, = 7.5 X 10 %

Y/¥p = (18,6 x 107%) / (7.5 x 107%) = 2.48.
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From figure 5, using ')//'yr =2,48, N=1, and T = 81;

')’h = 4.4

From figure 9, using ¥}, = 4.4; G/Gm'u\' = 0.185 ;

Calculate, using G/G__ = 0.185 and G 18380 psi; E
max max
G - (0.185) (18380) ~ 3400 psi
The same parameters given in this example were measured for test no. 101 of
the WES Sand (see figure 16). The measured shear modulus, G = 3320 psi, in

this case, was less than 3 percent differenc between calculated and measured

values. i
Example number 2:

Given: A low plasticity soil,

PI =6,
Percent passing no. 200 sieve = 96, ;}
G = 12680 nsi, g
max A
e = 0,67, :
;
S =13, |
N =10,

y=12.9x 1074 in/in,
T = 0.38 (a medium fast rate of loading).
Find: The shear modulus, G;

From figure 3, using PI =6, S =173, and e = 0.67;

C; = 8.0 x 10° psi.

6

From figure 4, using C1 =8.0x 10" psi and Gmax = 12680 psi;

19




vy -15x 1073

e in/in,

4

Calculate, using y - 12.9 x 104 and Ve 15 x 1077
y/v, = (12.9 X 1074 / (15 x 107 - 0. 860.
Since T = (.38, use the average hetween figures 6 and 7,

also using ¥/¥, = 0.860, N = 10, and § = 73;

: ¥y, = [(1.0 from figure 6) + (1.44 from figure 7)] /2 = 1.22.

i » ¢ si = 1,225 G .45
From figure 9, using Y 1.22; ("/Cmax 0.450
Calculate, using G/G 0.450 and G - 12680 psi;
max max
G = (0.450) (12680) = 5700 psi

The same parameters given in this example were measurcd for test no. 27 of the
Vicksburg Loess. The measured shear modulus G = 5580 psi, in this case,
was less than 3 percent difference between calculated and measured values. Not

all cases would compare this weil, but these were not chosen specifically to

show a good comparison.
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COMPARISON OF VALUES FROM THE PRACTICAL PROCEDURE
' TO EXPERIMENTAL DATA

Gl e o fa

i Soils Tested
Classification data for each of the soils tested and various test parameters

for each of the tests are given in tables 1, 2, 3, and 4. In these {ables the soils

TP —

are grouped into four different categories. Table 1 gives data for clean sands
E and other sands with high permeability. Table 2 gives data for nonplastic silty
sands. Table 3 gives data for low plasticity soils and table 4 for high plasticity
soils. The particle size distribution curves for these soils are given in figures
10, 11, and 12, Those in figure 10 arc for nonplastic soils, corresponding to
the soils in tables 1 and 2. Figure 11 is for low plasticity soils, corresponding

to table 3, and figure 12 is for high plasticity soils, corresponding to table 4.

Study of these tables and figures will show that the testing program covered
a wide variety of soil types and large ranges of test parameters.

2, Values of R for Determination of Reference Strain

Rearranging equation 16 in Appendix I gives
2

G . 0.6 1/
max 0.6 - ,25 (PI) (11)

F T
max

For each test, using the measured values of PI, e, T

e and Gmax’ a

measured value of R can be calculated with equations 2 and 11. In figures 13
and 14 measured values of R for 22 of the soils tested are compared to values
calculated with the second of equation 3, for cohesive soils with more than 15

percent fines, In general, equation 3 is a fairly good representation of the
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} Table 1. Data for Simple Shear Tests of Clecan Sands and Other
f Sands with High Permeability.
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1 Table 2, Data for Simple Shear Tests of Nonplastic Silty Sands.
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Data for Simple Shear Tests of Nonplastic Silty Sands (cont').
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Table 3. Data for Simple Shear Tests of Low Plasticity Soils.
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Table 3. Data for Simple Shear Tests of Low Plasticity Soils (cont').
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Table 4. Data for Simple Shear Tests of High Plasticity Soils.
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Figure 10. Particle size distribution curves for nonplastic soils.
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Figure 1. Particle size distribution curves for low plasticity soils.
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Figure 12. Particle size distribution curves for high plasticity soils.
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Figure 13. Comparison of the variation of experimental and calculated
values of R with percent saturation, Air Force Silty Sand,

Air Force Silty Clay, Vicksburg Loess, Vanceburg, Allen,
Kentucky 55, Longhorn, and West Virginia Shale.
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Figure 14. Comparison of the variation of experimental and calculated
values of R with percent saturation, Six Kirtland Soils,
Virginia Clay, Dover, Prestonsburg Sand, Ellsworth,
Louisiana Clay. San Francisco Clay, Cheeks, and Nevada

Clay.
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experimental values. The weakest comparison is with two of the high plasticity

soilg, the Cheeks and Nevada Clays. Here the measured and calculated values
differ by a factor of 2, However, the Louisiana and San Francisco Clays are
also high plasticity soils, and they more nearly conform to the pattern of the
other cohesive soils than to the Cheeks and Nevada Clays. Hence, the usc of
equation 3 for high plasticity soils is rather uncertain but is the best available at
present.

The measured values of R for sands with less than 15 percent fines are
shown in table 5. The average value from 10 tests of dry WES sand is 1102 with
about 10 percent scatter. The average value for the St. John's Sand with tests
at both 88 and 100 percents saturation is 1224, with the value for test no, 76
being excessively high. The average for the St. John's Sand excluding test no.
76 is 1104, which nearly equals the value for the dry sand. From this it was
concluded that for sands with less than 15 percent fines R = 1100 could be used
for all percents saturation, as shown by the first of equation 3.

The value of R defines the relationship between 7 and G . As

max

shown in Appendix I, equation 11 can be rearranged to eliminate Tnax for
reference strain, and obtain the reference strain in terms of Gmax as given
by equation 1. Therefore, the data in figures 13 and 14 and in table 5 defining

the value of R, are the basis for the equations given in Section II, paragraph 2

for determination of the reference strain, and indicate the degree of accuracy

that may be expected when using that part of the practical procedure.




1 Table 5. Values of R for Sands with Less than 15 Percent Fines,

é
1
WES Sand (dry) St. John's Sand
Test Value Test Percent Value
| No. of R No. Saturation of R
: 34 1045 76 100 1584
: 35 1094 77 100 1313
- 36 1046 79 88 1064
. 37 1026 80 88 934
s 38 1101
39 1116
1 83 990
89 1167
101 1125
3 112 1511
1
: Avg. 1102 1224
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3. Comparison of Shear Modulus Values

The variations of normalized shear modulus with normalized strain, as
given by equations 8 and 9, are shown in figure 15 for different values of a. When
a = 0 the relationship is hyperbolic. Figure 15 shows that higher values of a
give lower values of G/Gmax for a given ¥/y,. Using measured values for G, :1
Gmax» Tmax® 20d ¥, experimental values of the normalized shear modulus and i

normalized strain can be calculated. In figures 16 through 22 such experimental

values are compared to the values given by equations 8, 9, and 10 of the practical
procedure. Figures 16 through 22 are for the first cycle of loading, One test
of each different soil was chosen to show the comparison. The tests shown were
not chosen because they gave the best comparisons. The parameters necessary
for obtaining the calculated curve from equations 8, 9, and 10 are shown in the
upper right hand corner of each graph. The shapes of the calculated curves
correspond to various values of a between 0,33 and 5.34. The accuracy of the
practical procedure is quite good considering the range of soil types and
conditions to which they are applied.

Comparisons for the 10th and 100th cycles are shown in figures 23 and
24, respectively. Fof these comparisons the measured value of normalized
strain along with the value of a calculated from equation 10 were used to cal-
culate )'h from equation 9, This value of Y, was plotted versus the measured
normalized shear modulus, thus locating the different symbols in figures 23 and
24 representing the measured relationship. The calculated relationship shown

by the curves in figures 23 and 24 is given by equation 8 and is hyperbolic,
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qure 16. Comparison of measured and calculated values of shear
; modulus, first cycle, WES Sand, St. John's Sand, and
| Air Force Silty Sand.
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Figure 17. Comparison of measured and calculated values of shear

modulus, first cycle, Air Force Silty Clay, Vicksburg
Loess, and Vanceburg.
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Figure 18. Comparison of measured and calculated values of shear
modulus, first cycle, Ailen, Kentucky 55, and Longhorn.
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Figure 19. Comparison of measured and calculated values of shear
modulus, first cycle, West Virginia Shale, Virginia
Clay, and Dover.

39




FIRST CYCLE

10

Prestonsburg Sand

Test No. 74
o2 S-47
T=138
06 Jr=101x10" in/in
4 Grmax=11,220 pSi
,é 04 a=3.27
V)RS L 3
& Q2 culculuted/ =
10 ‘ ' ' :
Ty Kirtland *10-36
3 08 Test NO. 110
8 : TS=4O
Vi =028
3(2) 06 ?}:105)(10"4 in/in
D G =12,840 psi
i max~'és
8(& 04 Q=223
2[4 qol- i
x| culculuted/ =
Si= 10 ‘ ' e ——
o ) Louisiana Clay
Z - - Test No.125
>é : S=100
S K T=85
06 T-=509%10™ in/in
Grex=1350 psi
04 a=2.99
Qz. il cn!culutecl/'
0 | | | ;
9) 1 2 3 4

NORMALIZED STRAIN, 7/7

Figure 20. Comparison of measured and calculated values cf shear
modulus, first cycle, Prestonsburg Sand, Kirtiand #10-36,

and Louisiana Clay.
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Figure 21, Comparison of measured and calculated values of shear
modulus, first cycle, San Francisco Clay, Ellsworth,
and Cheeks.
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Figure 22. Comparison of measured and calculated values of chear ,
modulus, first cycle, Nevada Clay. ?
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since the hyperbolic strain was used as ahscissa. The comparison hetween
measured and calculated values for the 10th and 100th cycles is good.

The hyperbolic strain is used in figures 23 and 24 so that data for

different soils with different values of S and T can all be shown on the same

graph. When G/G_ is plotted versus /7, the expected relationship

depends on the values of N, 5, T and soil type. A different calculated curve

b

would be needed for each test, as was done in figures 16 through 22 for N = 1.
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SECTION IV

MIXED LOADING AMPLITUDES AND REST PERIODS

L. Objective

For the majority of tests discussed herein a cyclic shear loading was
applied continuously, where the next cycle began immediately as the preceding
cycle ended, and the loading amplitude was constant for all cycles as was the
rate of loading and unloading. Because actual air traffic involves varying length
rest periods between load applications and a mixture of light and heavy loadings,
it was desirable to assess these effects by conducting tests where the loading
could be programmed. Then a soil specimen could be subjected to rest periods,
with zero load, between cycles of loading and the amplitude of loading could he
different for successive cycles of loading.

2, Loading Programs and Recorded Stress-Strain Relations.

Three primary loading sequences were used for mixed amplitude studies.

The first was an increasing load sequence as shown in the top of figurc 25, In
this figure the ordinate is proportional to the applied shear str2ss and the
abscissa is time. The slope of the lines in this figure are pcoportional to the
rate of loading. The loading program in the top of figure 25 produces a sequence
of loads with monotonically increasing amplitudes but with a constant rate of
loading and unloading. The second loading sequence shown in the bottom of
figure 25 produces a large first load with subsequent loads decreasing in ampli-
tude monotonically. The third sequence was a combination of these two where

1e sample was subjected first to the increasing load sequence followed by the
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decreasing load sequence,

Examples of the recorded stress-strain relations for the increasing
load sequence are shown in figures 26, 27, and 28 for silty clay, silty sand,
and WES loess specimens, respectively., Figure 26a shows the results of
applying 46 cycles of increasing load to a specimen of silty clay. These 46
cycles were applied continuously without a rest period. At the end of the 46th
cycle there was a short rest period vhile the recording paper was changed.
After the rest period the increasing load sequence was continued and the results
of cycles 47 through 67 were recorded in figure 26b. The recording was
approaching the top of the paper on cycle 63 necessitating a change in stress scale
during this cycle. The scales corresponding to various sections of the recording
are shown on the figure. At the end of cycle 67 there was a short rest period
as the recording paper was changed. The increasing load sequence was again
continued and the results for cycles 68 through 83 are shown in figure 26c. At
the end of the 82nd cycle the pen of the recorder was shifted electronically to the
left and up because the strain was becoming large with the recording approaching
the edge of the paper. The loading curve for cycle 83 is shown above the main
recording and as can be seen failure of the specimen occurred on the 83rd cycle.
Similar procedures were used for the recordings in figures 27 and 28,

The result of applying the decreasing load sequence shown in the hottom
of figure 25 to a specimen of silty sand is shown in the top of figure 29. This
same decreasing load seque'nce was applied to a specimen of silty clay producing

the results shown in the bottom of figure 29, However, the specimen of silty
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clay had previously been subjected to the increasing load sequence in the top of
figure 25. From these results it can be seen that for decreasing load sequences
there is little additional accumulation of sct strain as the smaller and smaller
loads are applied. Hence, the curves for successive loads trace over the same
arca of the recording.

3. Effect on the Shear Modulus

The values of normalized modulus for all of the mixed amplitude tests
are plotted versus normalized strain for the silty clay in figure 30 and for the
silty sand in figure 31. The open symbols are for increasing amplitude loading
sequences and the solid symbols are for decreasing amplitude loading sequences.
Also shown on these figures are the curves calculated from equations 8 and 9 for
values of a = 0 and a = 2. As shown in figure 17, the value of a for the first
cycle of test no. 21 on the Air Force silty clay is 3,50, This value decreased
with number of cycles and approaches zero for a large number of cycles, For
the first cycle of test no. 4 on the Air Force silty sand in figure 16 the value of
a = 5,34, Again this val ue approaches zero for a large number of cycles. Since
most of the values shown in figures 30 and 31 fall in the range betweena =0
and a = 2, it appears that the effects of the mixed amplitudes and rest periods
on the shear modulus are smaller than the scatter in measured values from test
to test of the same soil. Therefore, it is concluded that for practical purposcs

the procedure outlined in Section II can be applied to mixed traffic conditions.
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SECTION V

CONC LUSIONS

1. A practical procedure for reducing the shear modulus of soils with
increasing strain amplitude has been developed. It has been shown that the
procedure gives reasonably accurate results compared to values measured in
the laboratory, for a wide variety of soil types and conditions., The study of
mixed amplitudes and rest periods indicates that the procedurc can also be applied
to mixed traffic conditions,

2, The shear modulus of soils in general varies between extreme limits,

It may commonly be less than 1000 psi or greater than 50000 psi. Likewise, the
relationship between shear modulus and strain level is extremely variable. The
picture can be simplified by normalization. The shear modulus is normalized by
considering G/Gm ax’ but the relationship between normalized shear modulus

and strain level is still quite variable; becausc, a given strain does not have the
same effect on all soils or on the same soil under different states of stress.
When strain is also normalized by dividing by the reference strain, ¥, - Tmax/

G single relationship for all soils between normalized shear modulus

max’ &
and normalized strain is approached. However, this relationship is still
affected somewhat by soil type, percent saturation, and number of cycles and
rate of loading. A single relationship for all soils and conditions is finally
obtained by defining the hyperbolic strain that depends mainly on the normalized

strain but accounts for the residual effects of soil type, S, N, and T. Hence,

these concepts of reference strain and hyperbolic strain have made possible the
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development of the practical procedure of paragraph 1.

3. The 123 simple shear tests of 24 different soils reported herein show the
following parameter effects on the relationship between normalized shear modulus
and normalized strain. For a given value of normalized strain, the normalized
shear modulus increased with number of cycles of loading, decreased with
increasing percent saturation, and increases with rate of loading. There appears
to be very little effect of void ratio on this relationship.

4, The reference strain that is so important to the procedure of paragraph
1 depends on Tmax and Gmax' For pavema2nt evaluation the value of Gmax is to
be determined by the nondestructive vibratory test. It is not desirable to have to
measure the value of T nax’ In this study a relationship between reference strain

and Gmax has been established, eliminating the necessity for estimating 7,

The relationship depends on void ratio, percent saturation and plasticity index
of the soil. It is best defined for nonplastic and low plasticity soils, where the
data in figures 13 and 14 indicate that the error is less than 25 percent for
about 50 percent of the cases. It should be remembered that a 25 percent error
in the value of ¥, does not produce a correspondingly large error in the deter-
mination of G. For a value of normalized strain of one, a 25 percent error in
reference strain produces about 12 percent error in the determination of G.
The relationship is much less well defined for high plasticity soils with liquid
limit greater than 50, where the error in determination of reference strain may
be greater than 100 percent.

5. Assuming the normalized strain is accurately known, the error to be

57
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expected in the relationship between normalized strain and normalized shear ]
modulus is shown by the data in figures 16 through 24, where the ;/ast majority |
of points fall within plus or minus 20 percent. f
6. Finally, an electromagnetic, hollow cylinder, simple shear test capable
of accurate measurement of the stress-strain relations for soils over a wide
range of strains, from about 1077 in/in to strains corresponding to failure, and
where the loading can be programmed to test effects of mixed amplitudes and

rest periods has been developed,




[‘ APPENDIX 1

[ DERIVATION OF REFERENCE STRAIN EQUATION

I Neglecting the effects of overconsolidation, for a simple shear state of
stress i

[ Tmax = O, sin@ (12) ;

E where 60 = effective mean principal stress and ¢ - effective angle of shearing

resistance, Also as stated in reference 1,

: G 1230 F O kic
= 1% g
f G ax 0OF A (13)

Equation 13 is based on many tests of saturated soils. Solving for 60 in
equation 13, substituting into equation 12 and re:lacing the factor 1230 by R,
since this factor may not be constant for partially saturated soils

szax sin 5

f Thnase (14)
. max ~
] R°F*
3
" As shown in reference 2, the effective angle of shearing resistance can be
defined approximately by
- . (‘
sind - 0.6 - 0.25 P+ ° (15)
Substituting equation 15 into equation 14
G2 0.6
f W e = max (0,6 - 0.25 (PI) '] (16)
| REF*
The reference strain
T
max
Y. = = amn
r Gmax
2, Lambe, T. W. and Whitman, R. V., Soil Mechanics, Wiley, 1969,
p. 307.
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APPENDIX 11

j
A
|
1

TESTING METHODS AND PROCEDURES

A simple shear test, where a hollow cylinder of soil was confined in a

o T e ——

- 2

pressure chamber and loaded torsionally about the axis of the cylinder, was {
em'ployed for this research, The torsional load was applied electromagnetically 1
; by reguiating the voltage to four large coils within the fields of four corresponding i
permanent magnets. The system was capable of applying a maximum torque of
' approximately 60 kg-cm. The voltage was produced by a wide frequency range,
f triangular wave signal generator, amplified by a 50 watt DC amplifier. With
this electromagnetic system the rate and amplitude of loading could he changed
by simply turning the appropriate knob on the signal generator. The rate of
loading for the tests varied from approximately 0.2 to 450 ki/cm per hr,

Inertial forces were negligible for these rates of loading. Torque and angular

motion were measured with electrical transducers located inside the pressure
chamber, thus eliminating the influence of friction and apparatvs deformation on

the measurements. The signals from these transducers were recorded with an

X-Y recorder,
Most of the soil specimens tested were subjected to approximately 1000
cycles of a constant-amplitude shear stress. Examples of the recorded shear

stress~-strain relations are shown in figure 32, This figure illustrates the range

of strain amplitudes tested. For test no. 7, top of figure 32, the cyclic shear

stress was approximately 80 percent of the strength of the sample. For test

no. 15, record no. 1, bottom of figure 32, the cyclic shear stress was only 2.5
61
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percent of the strength of the sample. The entire graph sheet for test no. 15, if
changed to the scale of test no. 7, would fit in the small black rectangle at A in
the lower left corner of test no. 7. Cyclic loading tests were conducted for
strain amplitudes as small as about 10"5 in/in to strain amplitudes as large as
0.5x 10-2 in/in. After the cyclic loading of each sample, the load was increased

to failure in order to measure T -
max
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