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I. 

INTRODUCTION 

This report sununarizes research carried out under 

the Post-Doctoral Program in Seismology during the period 

1 July 1971 to 30 June 1972 and earlier work that was sub- 

mitted for publication during this period.  Staff members 

of the Department of Earth and Planetary Sciences and 

Lincoln Laboratory participated in this program. 

The work described here is divided into three 

categories:  (1) properties of seismic sources, (2) studies 

of the dynamical behavior of the crust and upper mantle, and 

(3) observations of crustal structure. 

The focal depths of the three largest earthquakes in 

the Parkfield, California, sequence were determined using first 

and second P arrivals at Berkeley, California. Data were 

insufficient to determine whether the second arrival corre- 

sponds to refraction along a discontinuity within the crust 

or to a complicated source-time function. With either 

interpretation, however, the focal depths for the three 

earthquakes apparently increased with time through the sequence, 

Numerical calculations have bean made of spherical wave 

propagation due to explosions in a number of rock types. The 

effect on the seismic source-time function of small nonlinear 
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irreversibility is examined for propagation at distances 

where the response is commonly regarded as elastic. Amplitude 

of long-period components is found to increase due to non- 

linear coupling between frequencies. 

A numerical simulation of upper mantle convection has 

been constructed using a two-dimensional time-dependent 

model that allows large viscosity variations. The method 

has been applied to sea-floor spreading with the objective 

of examining the driving mechanism of mid-ocean ridges. 

Counterflow below the plates is confined to depths less than 

340 km.  It is found that for a spreading velocity of 1.2 

cm/yr, the ridge can produce compressive stress in the 

lithosphere out to a distance of 1600 km. For a spreading 

rate of 6 cm/yr, however, this model is clearly excluded 

for it requires an excessively large stress in the lithosphere. 

Therefore, upwelling material must cross the seismic dis- 

continuity at the 400 km depth. 

A numerical method for more general rheological models 

has also been developed. 

The crustal structure beneath LASA has been investigated 

using the spectral ratio of vertical-to-horizontal displace- 

ments of long-period P waves. The period of the lowest 

frequency peak in the spectral ratio, related to the vertical 

P wave travel-time in the crust, is quite variable over the 



■ ■ ■ • -^nsspppiff^ 

area spanned by the array. Variations in crustal thickness 

of about 7 km are implied. The Moho generally shoals from 

the northeast to the southwest across the array and exhibits 

a synclinal structure with the axis plunging toward the north- 

east in the southwest quadrant of LASA. 

Some of the work discussed herein has already been pub- 

lished. The summary for such work is given below in abstract 

form.  The complete results may be found by consulting the 

appropriate reference given in Section V. of this report. 
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II.  SEISMIC SOURCES 

11.1 Focal Depths of the 1966 Parkfield, California, 
Earthquakes by William H. Bakun (Abstract) 

Differences in arrival times of seismic phases at 

Berkeley, California (BRK), A - 270 km, for the 0408 

UT June 28 (M = 5.1), 0426 UT June 28 (M = 5.5), and 

1953 UT June 29 (M = 5.0) 1966 Parkfield, California, 

earthquakes imply that focal depths for these three largest 

events of the 1966 Parkfield sequence increase«? with time 

through the sequence. The data available are not 

sufficient to determine whether the observed secondary 

arrivals at BRK result from a slower propagation path or 

are part of a complicated source-time function. 

11.2 Propagation of Underground Explosion Waves in the 
Nearly-Elastic Range by D.H. Andrews and Seymour 
Shlien 

Abstract 

The effect of small anelasticity on the propagation of 

spherically symmetrical waves is examined with numerical 

calculations. The type of anelasticity used is static hyster- 

esis with nominal Q value of 100. Linear theories do not apply 

in this case. Fourier components of different frequencies 

do not propagate independently, but energy is transferred to 

lower frequencies.  The extent to which reduced displacement 

potential is not invariant with respect to radius is examined 

for explosions in granite, salt, and shale. 
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In this paper nonlinear effects on propagation of pulses 

from underground explosions are examined in the nearly elastic 

region. The calculational method used is similar to numerical 

methods used in AEC laboratories (Rodean, 1971) for propagation 

in the close-in region, where pulse widths change from 

microseconds to milliseconds. We are concerned with propaga- 

tion beyond the radius at which the material response is 

commonly considered to be elastic, and will consider the effect 

of small, but permanent, irreversible strains. 

The mechanism of attenuation in crustal rocks has been 

reviewed by Knopoff (1964) and by Gordon and Davis (1968). 

They find that in polycrystalline samples the stress-strain 

path is not reversible, but has a small hysteresis that is 

nearly independent of strain rate. This effect is not 

plasticity in the usual sense, for the loading and unloading 

slopes are only slightly different. The effect probably 

arises from friction at grain boundaries. 

Knopoff and MacDonald (1958) and Carpenter (1966) have 

developed linear viscoelastic models for which Q is constant 

over a broad frequency band. These models are rather com- 

plicated. Their work was motivated by trying to maintain the 

principle of superposition, so that wave propagation could 

be treabad analytically.  However, it is possible that a con- 

stant Q could be due to static hysteresis. This is the 

most plausible type of hysteresis if the energy loss is due 
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to friction at grain boundaries. 

Johnson (1955) measured the response of an assembly 

of elastically loaded bodies with some sliding at their 

interfaces, and found a stress-strain hysteresis loop that 

was the same even when frequency approached zero. 

In the case of static hysteresis, the principle of 

superposition does not hold, and different frequency com- 

ponents will not propagate independently. For waves from 

underground explosions, energy transfer from higher to lower 

frequencies could be important. 

Since we wish to calculate wave propagation with non- 

linear material properties, a numerical method must be used. 

We adopt the finite difference equations of Wilkins (1964) 

in which the first principle equations for continuum motion 

are approximated directly. These equations for the case of 

spherical symmetry are given in the Appendix. 

In the material model used, the shear response is ir- 

reversible, as shown in Figure 1. The hysteresis is independ- 

ent of strain rate. When shear stress and shear strain rate 

have the same sign (loading), a constant shear modulus UQ is 

used. When the stress and the strain rate have opposite 

signs (unloading), stress increments are related to strain 

increments using a variable shear modulus, 

y = U + AM -5— (1) 
0 smax 

where s_ , is the maximum shear stress reached at the partic- 
max 



ular locality in the previous loading. Therefore, the 

initial unloading slope is larger than the loading slope, 

and then decreases smoothly to the same value. Behavior is 

similar for loading and unloading in the opposite direction. 

In this model the residual strain when stress is reduced 

to zero is proportional to the maximum stress reached. The 

relative energy loss is independent of amplitude and of 

frequency.  The principle of superposition does not apply. 

We will calculate spherical wave propagation for the 

explosions. Gasbuggy, 29 kilotons detonated in shale, Hardhat, 

5 kilotons in granite, and Salmon, 5 kilotons in salt.  In 

ip ii •» -'■^ayB&l^the Vaveform is specified at a radius beyond the 

strongly inelastic region, and propagation to greater 

distances is calculated.  It is not reasonable to assume that 

the material is the same at these distances as at the shot 

point. The Pictured Cliffs Sandstone formation in which a 

Gasbuggy gauge was located is chosen as a typical near surface 

crustal rock.  Its properties are used in all calculations. 

Density is 2.51 gm/cm , P wave velocity is 4.3 km/sec, and 

Poisson's ratio is 0.3 (Perret, 1969). In the inelastic 

calculations, the shear modulus was calculated from equation 

(1) with y0 * 0.1327 megabar and Ay » 0.0328 megabar. This 

corresponds to a relative energy loss in shear of 16%, or in 

uniaxial strain of 6%, giving a nominal Q for P waves of 

100. 



The Gasbuggy waveform at 468 meters, with a peak velocity 

of 2,4 meter/sec, peak displacement of 6.8 cm, and final 

displacement of 2.6 cm, (Perret, 1969) can be matched roughly 

(in the elastic case) by a stress pulse of the form 

ZT - p0 + p^/
1 (2) 

For the Gasbuggy calculations units of length and time 

are scaled down by the factor (5/29)1/3, so that all calcul- 

ations are for 5 kilotons. Values of the parameters in 

equation (2) for Gasbuggy scaled to 5 kilotons are given in 

Table I. The Salmon waveform at 625 meters, with a peak veloc- 

ity of 2 meter/sec, peak displacement of 2.8 cm, and final 

displacement of 0.85 cm (Patterson, 1964) is also fit by a 

stress pulse of the form given in equation (2) with parameters 

listed in Table I. 

The Hardhat calculation is not based on a measured 

waveform. There was a significant amount of tectonic strain 

release in the Hardhat event (Toksoz and Kehrer, 1971), which 

could have contributed to the measured displacement. Our 

calculation is based on the stress pulse calculated by Cherry 

(Rodean, 1971), which can be fit closely by equation (2) 

with parameters listed in Table 1. 

In order to facilitate comparison of attenuation over 

equal distances, it was decided to do all the numerical 

calculations with the input waveform imposed at the same 

radius, 400 meters. The stress profiles specified in Table 1 



are transformed by varying p inversely with the cube of 

radius to get the same final displacement and varying p1 

inversely with radius to get the same peak velocity as a 

function of radius in the elastic case. The transformed 

parameters are listed in Table II. 

Although this transformation of the stress pulse keeps 

peak velocity and final displacement invariant, it changes 

the spectrum of the wave generated.  In the elastic case the 

period of the predominant low frequency component is proportion- 

al to the radius at which the stress pulse of equation (2) 

is applied (Sharpe, 1942). We have not taken care to establish 

realistically the radii at which the three different ex- 

plosion pulses become nearly elastic, but we will investigate 

the effect of nonlinear material response on three waveforms 

with varying ratio of impulse to step function. 

For each explosion an elastic and em inelastic calculation 

was done.  In the elastic calculations, the stress pulse 

specified in Table II was applied at 400 meters. The calculated 

method was checked by verifying that the reduced displace- 

ment potentials calculated at differ' xt radii were the same. 

Velocity as a function of time at «<„i meters was saved from 

each of the elastic calculations and was used as a boundary 

condition for the inelastic calculations. The finite dif- 

ference zone size in all calculations was 5 meters. 
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Velocity pulses calculated for Gasbuggy at a radius of 

1.4 km are compared in Figure 2. The waveform for the 

inelastic case looks similar to the elastic waveform but has 

smaller amplitude. An important feature not evident in 

this figure is that the final displacement is larger in the 

inelastic case. 

Reduced displacement potential is calculated from the 

equation 

4'(t)»crft dCt^e^'^^df (3) 
0 

where d is displacement. Potentials for the three explosions 

in the case of elastic propagation beyond 400 meters are 

shown as solid curves in Figure 3. 

In the inelastic case the reduced displacement potential 

has no meaningr although the integral in equation (3) can 

be performed.  Indeed, this is what is done when a "reduced 

displacement potential" is derived from measurements, for 

there is no assurance that the material response is strictly 

elastic.  In the inelastic calculations y calculated from 

equation (3) at 400 meters is the same as the elastic case, 

since displacement is prescribed to be the same there. At 

greater distances, however, 4* is not the same. Dashed curves 

in Figure 3 show y for the three explosions at 1.4 km. The 

difference between the solid and dashed curves is the dif- 

ference that might be expected in "potentials" derived from 

measurements 1 km apart for spherical wave propagation in 

\ 
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rock with Q > 100. The initi&l peak of * is smaller 

due to attenuation of the propagating pulse, but then ¥ 

rises to larger values because of the larger final displace- 

ment. 

These inelastic "reduced displacement potentials" 

can not be rigorously related to more distant seismic waves, 

but some qualitative conclusions can be drawn.  If the 

material had been changed from inelastic to elastic at 1.4 km, 

the reduced displacement potential calculated there would 

have been rigorously meaningful.  In this case the initial 

peak of Y would not change much, since it is determined by 

attenuation within 1.4 km. Later values of Y would be smaller 

since the final displacement is determined by yielding both 

within and beyond 1.4 km,, However, these later value of V 

would still be larger than in the all elastic case. 

The functions shown in Figure 3 are analyzed here as if 

they were truly seismic source-time functions. Particle 

velocity of surface waves and head waves is proportional to 

the first derivative of Y. Fourier amplitude spoctra of 

dY/dt are shown in Figure 4 for the elastic and inelastic 

cases at 1.4 km for the three explosions. The location of 

the spectral peak near 2 hertz is determined by the choice 

of 400 meters as the cavity radius. At this frequency and 

above the amplitude in the inelastic cases is reduced due 

to attenuation through 1 km of irreversible material. The 
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The DC component is lairger due to the larger final displacement. 

This would not be the case with a linear viscoelastic atten- 

uation model. Since the principle of superposition does not 

apply in this model, different components do not propagate 

independently. Energy can be transferred from higher to lower 

frequencies. In the spectra shown it is evident that the 

increased energy in the DC component is taken from the 1 hertz 

component. This minimum might change as the wave propagates 

farther. 

The particle velocity of distant body waves is propor- 

tional to the second derivative of V. Therefore, body wave 

spectra are obtained by multiplying surface wave spectra by 

frequency. Therefore« the inelastic effects at low frequency 

will be less dramatic for body waves than for surface waves. 

The quality factor, Q, of 100 used here is reasonable 

for near-surface crustal rocks. Also, static hysteris is 

consistent with laboratory measurements. The fact that 

static hysteresis has not been considered before in seismological 

theory is related more to difficulty of analysis than to 

indications of the data. Therefore, the inelastic model used 

here is a reasonable possibility. The seismic source-time 

function for an underground explosion can be significantly 

different from that derived at the commonly accepted elastic 

radius. 
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TABLE 1 

Radius   p0 P1       T 

Gasbuggy (scaled)  260 m  29.7 bar 259 bar  15.7 msec 

Harclhat          400    11 144      10 

Salmon           625     7.2 215      14.1 
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TABLE II 

Radius P0        Pj^        T 

Gasbuggy (scaled  400 in 8.15 bar  168 bar 15.7 msec 

Hardhat          400 11        144 10 

Salmon           400 27.5       336 14.1 
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Figure Captions 

Figure 1:    A typical path for shear stress versus 

shear strain for the inelastic model. 

Figure 2:    Particle velocity at 1.4 km for the 

Gasbuggy calculations. Solid curve is 

the elastic case and dashed curve is 

the inelastic case. 

Figure 3:    Solid curves are reduced displacement 

potentials for the three explosions in 

the elastic case. Dashed curves are 

functions derived by equation (3) from 

displacement at 1.4 km in the inelastic case. 

Figure 4:    Fourier amplitude spectra of surface wave source time 

functaons. Solid curves are the elastic case. 

Dashed curves are found by taking dashed 

curves of Fig. 3 as reduced displacement 

potentials. 
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APPENDIX 

A Lagrangian finite difference scheme is used. Space 

intervals are indexed by the subscript j and time steps are 

indexed by the superscript n. Grid points move with the 

material, so that each interval between points always con- 

tains the same mass. 

The equation of motion 

3u . 1 9Ir + 2 
Zr-1» 

5t  p ~^r     P r 

is approximated by the finite difference equation 

m 

J? t  1/2 - j^jj + 1/2 , ^.1,2-^-1/2 

* p? +1/2 <^ +1
+ '"> i/2 p?-i/2<r"+ 'UM 

where 

♦ 1/2 

1/2 
1/2 

Then acceleration is integrated to update velocity 

un+l/2 .un-l/2 + At 4n 

and the velocity is integrated to update the radius of each 

Lagranian point 

rj+1 - rj ♦ At u!J+1/2 
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Updated velocities and co-ordinates are used to evaluate 

strain rates. 

n+1/2 _ un+l/2 
..  .n+1/2  Ui-H    ui 
<Vj*i/a ' i+i/i. J+i/2 

«•rJ^i/2 = ^r^+l^ + 2^^^-- ^& i  ^ ^fVi+l/2-f <^1/2J 
#„ in+1 1. .n+1 
lse;j+l/2    Ii8r;j+l/2 

Irreversible behavior of the stress devlator s is r 
obtained if the shear modulus y used in the incremental 

equation above is not constant# but depends on s and on 

the direction of change of s . 

rj+l  " rj 

n+1/2   n+1/2 
,- .n+1/2 ^ uj+l  , ui 
U»j+l/2      r^Y2 + r^2 

4)+1/2   = ar)^2 + 2ad)*:Y/
2

2 Vj+l/2      r j+1/2     *  I*1'* 

Then a new value of pressure is found 

nj-i     rt \T  n+1/2 
pn+l    pn    _ . .V.      .. 
Pj+1/2  Pj+1/2  k Vj+1/2 

Ät 

where k is bulk modulus. Updated stress deviators are 

given by 



Total stress components are 

<£«'"tU - (-p + ••)Sti/3 
After this sequence of equations is executed for each 

value of j, the time step index n can be incremented by one 

and the cycle can be repeated. All equations are explicit. 

The stability requirement is 

At < & 
c 

where c is sound speed. 
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III.  DYNAMICS OF THE CRUST AND UPPER MANTLE 

III.l Numerical Simulation of Sea-Floor Spreading 
by D.J. Andrews (Abstract) 

Upper mantle convection, including lithospheric plate 

motion, is simulated numerically using a two-dimensional 

time-dependent method that allows large viscosity variations. 

The numerical operator developed for viscous flow is in self- 

adjoint form, so that the conjugate gradient iteration method 

may be used. Convergence is faster than with relaxation 

methods.  The method is applied to sea-floor spreading with 

the objective of examining the driving mechanism of mid-ocean 

ridges.  In accordance with this objective, deep convection 

is suppressed in the model. Counterflow below the plates 

is confined to depths less than 340 km. The model is fit to 

observed topography at four different ridge locations.  It 

is found that for a spreading velocity of 1.2 cm/yr, the 

ridge can produce compressive stress in the lithosphere out 

to a distance of 1600 km. For a spreading velocity of 6 cm/yr 

this model is clearly excluded, for it requires excessively 

large stress in the lithosphere. Therefore upwelling material 

nrzst cross the seismic discontinuity at 400 km depth. 

III.2 A Numerical Method for Creep Deformation of Solids 
by D.J. Andrews 
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This note ir.  concerned with extension of the procedure 

described by Andrews and Hancock [1] to tim.-dependent problems 

in which motica i.-; slow enough that inc rtia l forces are 

negligible.  Time dependence of the solution may arise from 

stress relaxation of. the material and from iime-dependent 

boundary conditions.  The procedure involve? advancing 

through time in finite steps and iterating to acheive stress 

equilibrium at each step in time.  It is discussed in terms 

of a Maxwellian VJ scoelastic model that can be generalized 

to nonlinear casec. 

Stress components c^. are decomposec into stress de- 

viators and pressure 

aij = Sij - P 5ij 

Pressure is uniqu' ly determined by volune, but stress de- 

viator components obey a stress relaxation law, which in 

differential form is 

ds.j - !2y 'dcij - s^ dt/x 

where e^ is strciin deviator, M is shear modulus, and 

T is relaxation time.  If T is constant this is linear 

Maxwellian viscoeJasticity.  in nomine." r cases x is a 

function or stresr.. To have a properly covariant descrip- 

tion, x should be expressed as a function of stress in- 
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variants. 

The finite difference equation used to advance stress 

in one zone from time step n to step n + 1 is derived 

as follows.  Let  (6ij)
n+1/2 be the strain deviator rate> 

found from velocities, for that zone for advancing from 

time step n to a particular iteration at time step n + 1. 

A finite difference analogue of the differential -equation 

above is 

,n+l (SiJ)   = <'ij)
n + 2p(Aij)

n+l/2At 

- 1/21 (s..)^1 + (s..)"] p: 

This may be rearranged to get an explicit equation 

(SiJ)n+1=s I(lij>n+ ^(^)Ml/2 at 

.n At - l/2(s..)" ^]/(i + 1/2 ^) 

is This equation is stable for all values of  At and 

accurate to second order in At/t . 

An iteration must be performed to converge to stress 

equilibrium at time step n + 1.  Solution of the above 

equation for all zones constitutes step 4 of the iteration 

outlined in [1]. 
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To proceed through the next iteration at time step 

n + 1 r stress components just calculated are used to find 

the unbalanced force on each grid point (step 1 of the itera- 

tion) . Then, grid points are displaced in the direction of 

this force to go from positions in the previous iteration 

at time step n + 1 to positions in the current iteration 

at time step n + 1  (step 2). The velocities of grid 

points from time step n to the current iteration in time 

step n + 1 , are found. From these velocities strain 

rates are found (step 3), and then the stress calculation 

may be repeated. 

In the case of nonlinear stress relaxation, the re- 

laxation time T should be- evaluated from invariants of 

the stress tensor averaged at the new and old times.  In 

this average one may use stress at time step n and stress 

from the previous iteration at time step n + 1. 

This procedure has been used in a problem with a cubic 

creep law. The iteration behaved in a reasonable way. 

To check the accuracy of the method a problem was done 

with a lineal viscoelastic material in an infinite half 

space, with a pressure applied to the surface. The x-axis 

extends into the medium and the surface is at x = 0. The 

material has been at rest with no pressure on the surface 

at all times up to t = 0. At t = o the pressure 

p = P cos ay 
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Is suddenly applied to the surface and is held constant 

thereafter. The analytic solution is found by applying 

Bland's correspondence principle [2] to the elastic 

solution 13]. The components of displacement are 

u = 5^ e"ax cos « y i- jr :i - a) e-at/T 

+ ^ + 1 + ax 

+ (1 + ax) t/T] 

and 

v " - 2?S e"aX sin ay [- H (1 _ a) e-at/T 

I" ax 

- ax t/T] 

where k is bulk modulus and 

a"1 - 1 + y/Ok) 

At t =0 these expressions are the solution for the 

elastic case [3]. Note that in the elastic case the hori- 

zontal displacement reverses direction at a depth 

ax = 1 - 2v  , 

while in the viscoelastic solution the horizontal velocity 

at late times is in the same direction at all depths. 
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In the numerical test case we will choose x = 1, 

0=1,  2y=l, v=0.2. The numerical method is valid 

for large displacements, but the analytic solution holds 

only for small displacements. To keep displacement small 

' Ve aoose P ^ 10" . Displacements are multiplied by 104 

in the figures. 

In the finite difference calculation 8 zones are 

used in a half wavelength of the pressure variation, and 

the region considered is 12 zones deep. Zones are approx- 

imately square. The pressure was suddenly applied at time 

zero, and the calculation proceeded for one relaxation time. 

The time step used was T/10. In each time step 200 

iterations were performed to approach stress equilibrium. 

The number of iterations required for long wavelength com- 

ponents to converge increases when finer zoning is used. 

•Jt is proportional to the square of the number of zones in 

one dimension. 

Displacements calculated after the first time step are 

shown in Figure 1. This is approximately the elastic so- 

lution expected for instantaneous displacement. Variation 

of each component of displacement in the direction parallel 

to the surface is sinusoidal, as it should be, within 1 

percent. Time dependence of the x-component of displacement 

at y = 0 is shown for four different depths in Figure 2. 

Symbols show calculated values and.the solid curves are the 

analytic solution.  In the first time step errors are 6 
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percent of the maximum displacement. This error could have 

been reduced by using a larger number of iterations. The 

deviation from stress equilibrium is partly corrected in 

the next time step, where errors are less than 2 percent 

of maximum displacement. Time dependence of the y-component 

of displacement at y = TT/2 is shown in Figure 3. 

i • 
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Figure 1.  Displacement field in the demonstration problem 

after the first step in time. 

Figure 2. Vertical displacement at four different depths 

as a function of time. Symbols are calculated 

values,  solid curves are the analytic solution. 

Figure 3.  Horizontal displacement at four different depths 

or a function of time.  Symbols are calculated 

values.  Solid cuives are the analytic solution. 
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IV.  STRUCTURE OF THE CRUST 

IV.1 Crustal Structure Beneath LASA from Long-Period 
P-Wave Spectra by William H. Bakun (Abstract) 

Long-period transfer-function ratios from events in 

South America, Fiji-Tonga, and Japan recorded at the LASA 

subarray centers are interpreted in terms of Haskell- 

Thomson theory. The transfer-function ratio data provide 

a three-dimensional model for the crustal structure beneath 

LASA. The proposed structure can be characterized by two 

trends:  (1) crustal thinning from the northeast to the 

southwest across the array and (2) a synclinal structure 

in the southwest quadrant of the array with axis plunging 

toward the northeast. 

• 
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