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SECTION 1
INTRODUCTION

MICE is an implicit, time-step-split, MHD code which is being
developed at Mission Research Corporation to extend and improve upon
our capability to compute the late-time phenomenology of high altitude
nuclear explosions. The code has been designed to do calculations in
one-dimensional spherical, 1-D planar, 2-D cartesian, 2-D cylindrical,

or 3-D cartesian geometry.

In addition to computing an approximate numerical solution to
the one-fluid MHD equations, the code also calculates the following
for each space point and for each time, (1) the Lagrangian coordinate,
(2) the number densities of the atmospheric species Nz, 02, N, O, N+,
0+, and an "all-purpose" molecular ion X: , and (3) the rate of energy
loss by radiation of UV. There is a deposition routine which may be
called one or more times during the running of a problem, to deposit
x-rays and/or UV radiation. A very general rezoning routine allows a
problem to be transferred to any new grid at uny time during the run-
ning of the problem. These ''nhmnomenology" aspects of the code have
been patterned after the MRC code HOIL, which has been described in
reference 1.

The DNA sponsored high-altitude pheanomenology community alreedy
has several codes which calculat: late-time phenomenclogy., There are
two-dimensional codes at LASL, NRL, and MRC, and three-dimensional codes
at AFWL and NRL. These cades all use explicit difference techniques.

The characteristic feature of such difference techniques is that

Preceding page blank




numerical stability considerations impose the condition that the mesh
speed, AX/At, must exceed the phvsical signal propagation cpeed, U + C,
where U is the magnitude of the fluid velocity, and C is the speed
with which waves travel through the fluid. The corresponding require-
ment for implicit cndes, such as MICE, is simply Ax/At > U . For
strong shock problems, where U and C are comparable in magnitude,
the two type of codes require comparable running times. However, for
problems involving subsonic flow, such as low altitude fireball rise,

or the late-time stages <i high altitude atmospheric heave, the implicit
type of code will be able to use much larger time steps, and therefore,
require much less computer time. It is the need for shorte: running
times for high altitude heave calculations which has prompted the
development of MICE, In the ROSC code (Radar and Optical Systems Code)
it will, of course, be necessary to have a reliable model of atmospheric
heave. One possibility for this "model', is to use a coarsely zoned

3D MHD code as an integral part of ROSC. 1If this is to be done, the
MHD scheme which is used will need to be as efficient and fast running
as possible. An implicit code, such as MICE, is needed to meet these

requirements.

Another distinctive feature of MICE is its use of the
approximation of time-step-splitting. This greatly simplifies the
coding, makes it easier to implement changes in the difference scheme,
reduces the nain core requirements, and gives the code the ability to
do calculations in several different geometries. This aspect of the

code is discussed further in section 3 of this report, which deals with

the details of the difference scheme.
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SECTION II

SOME NUMERICAL RESULTS

Here we present the results of two test calculations. The
first calculation is that uf the early expansion and rise of a hot
bubble in an exponential atmosphere. Some comparisons are made with
other numerical sclutions of the same problem. The second calculation
is that of the buoyant rise o. a warm cylinder.

HOT BUBBLE PROBLEM

This problem was chosen as a test case, because numerical solutions

of the same problem have been published by Harlow and Meixnercz) and
(3)
d

of energy are placed within a sphere of 2.7 km radius. The velocity

by Seppenfiel ., The initial conditions are as follows: 8.2 x 102 ergs

within the sphere is taken to be directed radially outward from the

center, and to have the magnitude v = 4,25 [1 + %%h] km/sec, in which

Ah  is the vertical displacement from the burst point., The internal
energy within the sphere is 8 x 10'? ergs/gm. Burst point mass density
is 1.2 x 10" % gm/cc, and the atmospheric scale height is 6 km. In the
MICE calculation, the grid spacing was initially chosen as AR = AZ = .4 km.
At t = .45 sec, the problem was rezoned into a grid with AR = AZ = 1 km.

A numerical solution te this problem was obtained by Harlow
and Meixner with a particle-in-cell (PIC) code, and later by Sappenfield
with a mixed Eulerian-lLagrangian code called H2SE. Figure 1 shows the
shock position as a function of time for the three directions, '‘down",
t'sideways'', and "up", as calculated by PIC, H2SE, and MICE. Of the
three’calculations, the H2SE result is probably the most reliable,
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Figure 1. Shock positions as a function
of time for the hot bubble
problem,




since H2SE has Lagrangian boundaries perpendicular to the direction of

shock propagation. Lagrangian codes usually give better definition of
shock positions than do Eulerian codes.

Figure 2 shows contour of mass density as given by H2SE and
MICE. The two sets of contours agree qualitatively very well. The
lack of detailed agreement is caused by the fact that MICE is an Eulerian
code, and used a mesh spacing of 1 km for this problem.

BUOYANT RISE OF A WARM CYLINDER

Recently, at MRC, an analytic solution has been obtained for
the early buoyant rise of a cylinder of imcompressible fluid of mass
density p, , imbedded in another fluid of density po > p; , in a
gravitational fie1d4. This solution was obtained by expanding the fluid
equations for inviscid, imcompressible flow, in a power series in time,
and is an exact solution for as long as the power series converges.

We give here a comparison of the analytic solution for the case p, = .5p,,
and 4 similar problem which was run with the MICE code.

The initial conditicus for the MICE problem were chosen as
fellows:

ambient mass density g, = 8.9x10 8 gm/cc

density scale height H_ = 6.3x10° cm

ambient specific internal energy 1, = 1.53x10° org/gm
specific hesr rutio y = 1.4

initial cylinder radius R = 5x10" cm

Inside the cylinder the mass density wa: ken to be .5 x ambient density,
and the internal energy 2.0 x ambient internal energy. The problem was
run in 2-D Cartesian geometry, with a4 minimum cell size of about .1 R.

UL SRS AL S
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This problem, as done by the MICE code, is, of course, a
compressible flow problem, since the sound speed is finite. Also, since
this code, like ali fluid codes, has inherent numerical viscous effects,
the problem being reported here is clearly a different problem than
that for which we have the analytic solution. However, if the sound
speed is sufficiently large, and if the numerical viscous effects do
not dominate the problem, we would expect the results to be not too
different from the analytic results. To see how large the sound speed
is in the context of this problem, it is uscful to work in an appropriate
set of dimensionless units,

The power series exnansion for the height of the center of
mass of the cylinder as a functicn of time is

h = %%_i_%L % g t2 + higher order terns,
1

which may be written in dimensionless form as

2
] l(__t_) .
2 \WRr/g'

[ DO'D!
where g 5o 7P L

H= T+ L,

L) —

)=

R is the initial radius of the eylinder, and g s the nccelerution of
gravity, If ¢ 1s the sound speed in c¢gs units, thon the dimensionless
sound speed 1is:

C=xcx % x\/R/g' " Q/ijif;

For the set of initial conditions given above, the sound spced inside
the cylinder ii

b
C= [Y(Y-l)xZIo/(R g')] = 10.3

e b o ok :..-,,._.,du.;nd




Thus, a sound signal can traverse the radius of the c¢ylinder about 10

times in the time required fur the ¢ylinder to rise a distance of % R .

We would therefore expsct '"compressibility'" effects to be relatively
minor. The numerical viscosity effects are more difficult to assess,
and we have made no attempts to do so.

Figure 3 shows a comparison of the position of the boundary
of the cylinder at T? = 1.5, The analytic solution fails to converge
for times much beyond this time. The MICE boundary agrees reasonably
well with the analytic solution, although it tends to oscillate about

the analytic result. Figure 4 shows the best MICE calculation we could

get for this problem. Here, we used a minimum cell spacing of about

.05 R, with a corresponding decrease in At.
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SECTION III

THE NUMERICAL DIFFERENCE SCHEME

In this section of the report, the MICE numerical difference
scheme is described. The starting point of this description is a
presentation of the set of partial differential equations used in MICE
for the flow of an infinitely conducting fluid. The approximations
used in the difference equations are then given. The concept of
difference operators is used to cxplain what is meant by time-step-
splitting and the MICE dilference operator is then described In suf-
ficient detail so that the interested reader can understand the numerical

scheme.

Two topics not discussed in this report ave the MICE transport
of chemical specics and Lagranginn coordinates. Information on the
Lagrangian coordinates is contained in Reference 1 which discusses the
idea of Lagranglan coordinates in an Eulerian code and gives a “lrst
order scheme for advancing the quantities in time.

DIFFERENTIAL EQUATIONS

= -V (ov) (1)
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ﬁi - 3 X (V X E) (3)

5t
%(pr)u-i’-(pr'ﬁ)-v@-ﬂ (4)
P = (y - 1) pI (5)

where p 1s the mass density in gm/ce, V 1is the tluid velocity in
cm/sec, P is the fluid pressure in dynms/cm?, 3 is the magnetic
field strength in V4T gauss, I is the specific interna! energy in
ergs/gm, and vy is the specific heat ratio.

APPROXIMATIONS

The collection of all values of p, pV, E, pl, KL‘ {ni} at
all points in the space mesh can be considered to be the components of
a multi-dimensional vector U. An explicit difference approximation
to the differential equations has the form

n+l1
U

" En + Lx(gn) * Ly(y_n) A Lz(!n) ’ (6)

where Lx' Ly. Lz are operators which involve taking differences in
the x, y, and z directions, respectively, and the superscripts indicate
the time level. An implicit difference approximation has the more
general form

n+1

O M (LTS I A (TN VS IR A (VD B ¢

—— —

As is indicatoed, the difference operations involve the time advanced
{unknown) quantities as well as known quantities. In this case, the
solution of the difference cquations for gﬁ*‘ may involve solving a
very large set of coupled algebraic equations, This is usually accom-
plished by either macrix techniques or iterative techniques. The

12
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approach taken in MICE, is to use implicit difference operators, and
to invoke an additional approximation known as time-step-splitting. In
this approximation, the difference operators Lx‘ L, and LZ are

applied sequentially instead of simultaneously. That is, we define
n+x n+x+y

intermediate values of U, which we siall call U7, and U , as
follows:
Step 1: EP+X - E? . Lx(gp, gﬁ+x) (8)
Step 2: gﬁ+x+y . gﬁ+x . Ly(!.mx,un-wxw) 9)
Step 3: gﬁ+1 n !P+x+y + Lz(!ﬁ+x+y’ Un+1) (10)

The crror generated by this additional approximation of time-step-
aplitting is discussed in Appendix B.

Each of the above steps involve the application of one difference
operator. The advantage, from a coding standpoint, of this approach,
is that a single generalized "diffevence operacor! subroutine can be
written, which will perform any of the tiurce steps above. The advantage
from standpoint of core requirements, is that only the values correspondlng
to a single row or column of cells need be in main core at a given time.
Thus, the numbor of computational cells which may be used for a given
problem is limited not by main core size, but by the size of the ECS
bank on the (DC 6600, or LCM on the 7600, One further advantage is
that it becomes relatively easy to switch between doing 1-D, 2-D, and
3-D problems,

We shall now present the differentia! cquations to which the
one-dimensional difference operator must correspond. 1n thesec equations,
the a, are transport coefficients which arec adjusted to lmprove the
numerical stability of the code, Q is the artificial viscous pressure,

13




*
b and B are the parallel and perpendicular magnetic field components,

u and V are the parallel and perpendicular velocity components,

p* = p + (Bz+b2)/C; is the uo-called "Boris mass", and m = 0, 1. cr 2,
depending on whether the difference operator is being applied in planar,

cylindrical, or spherical geometry.

The equations are:

53-{(0) = - )jl-n; 3‘% X" (DU - o ga; D) (i

_ %(b)--t.l;%a—a;xm(b-aa%) (i2)
'ﬁ g% (B) = - :%- é% X" (Bu - g g% B) + b g% v (13)
- 2 Q) - o/p* %(%) - o (1)

g , for vertical divection

W
where G = l 0, otherwise ,

3 1 3 m/ . 3
= (pV)e - ;ﬁ = X (pvu - %2 0 mr V)

v o/p* b g2 D (15)

L]
We are gonsidering only one perpendicular component of the velocity
and B field, The generalization to two perpendicular components is
straightforward.

14




) ) m
5"{ (QI) = _T-'l. 'é? X (QIU - Oy ‘5;(" OI)
1
- 5 o= (16)
X
or,
1 3
3?; (B) = - = = x ({E»«NQ}u - a, B—E) -pG'u
X
v 3 3 B?
+ p/p* [bV IR ol (17)
1 2 2
where E = pl + 30 (u +V ) (18)

The code may be run using difference forms of either equation
(16) or equation (17) for the energy. The latter choice results in
better energy conservation, but equation (16) gives more reliable
temperatures in regions where magnetic forces dominate. The factor
p/p* which appears in front of the magnetic force terms has the effect
of limiting the Alfven speed to the value Ca in regions where the
mass density ls very small. A limiting Alfven speed of 2x107 cm/sec
has been found to be a satisfactory value,

The difference operator is constructed from these one
dimensional differential equations, Multi-dimensional calculations are
performad by suitably rotating the vector components in the routine
which fetches the cell quantities from large core memory, so that the
operator routline always "thinks' it is going in the x-direction.

Ly CIFFERENCE OPERATION

Another considerable simplification in the equations can be
made by further splitting this set of equations into two sets, which

15




we will call "Lx phase 1' and "Lx phase 2." This spiitting is done
on the b.sis of the distinction between transverse Alfven waves and
longitudinal or compressional Alfven waves. Phase 1 calculates the
changes in the perpendicular components of B due to the propagation
of transverse waves, while phase 2 calculates the changes in these
components of B due to propagation of compressional waves, Phase 2
also calculates the changes in all other quantities.

The phase 1 equations are

AOREE 0 (19)
ane 2 (V) » p/p* b o B (20)

For the case constant b amd constant p, these equations are easily
seen to be equivalent to the pair of 2nd order equations

32 ‘2 32
Sm = N e, 21)
3t b2 32

and FT3 (V) = 'p—; FrL V) (2

Thesu are wave equations, representing waves traveling with velocity

¥ P/J p* . The amplitudes, Vg and By, are related by the cxpression
Bo = JP* Vo . (23)

Each application of the difference operator results in the
Phase 1 equations being solved implicitly for the (partially) time
advanced values of B, after which the phase 2 equations are solved
for the time advanced values of all of the cell quantities,

16
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Lx PHASE 1 DIFFERENCING

The difference equations used in phase 1 for advancing the
values of B are

n

At b,
~f+) n : neds n+i
B, = B, o+ T"L" v -V s (24)
) ) *5 [ it j--‘s]
At b
n+lg n 1+15 ~n+1 ~T+ 1
and v'*k " Vj+5 * ( *)n Ax [Bj+1 " Bj } d (25)
J p j"li j+l§

where the integer subscripts refer to values at cell centers, half-
integer subscripts refer to values at cell boundaries, und the super-
seripts refer to the time level. Cell boundary vualues are obtained by
interpolation in the array of ccll centor values. These equations are
solved for the quantities §?+3, which arz then used as initial values
for Lx phase 2, These equations differ from the usual Lax-Wendroff
two step tform in that the right hand side of equation (253) contains
the time-advunced values ﬁ"*l. To obhtain the solution., equution(25)
is substituted into equation (24), giving the equation

s+l M+ SN+ .
o Bj*\ + aj Bj + YJ Hj_l ) WJ . (26)
(at)? bt "
where o, = - i J* , (27
j n

EAXJ ij"’“ﬁ (p*),)""i

()2 vt B!
o i J-h (28)

20y Bxy (00




T e

e e

.=1-0. - v, s (29
BJ i Y )
LA b n .
and wj = Bj YRR [Vj+5 - Vj.g] (30)

The collection of equations (26) for all values of j, togother
with the boundary conditions, constitutes a "+ridiagonal' matrix, the
solution to which is discussed in Appendix A. The boundary conditions
are discussed in Appendix C.

Lx PHASE 2 DIFFERENCING

The phase 2 equations are equations (11) through (18), except
that the second term on the right hand side of equation (13) is omitted,
its effect heving been accounted for in phase 1. The difference eguations
for phase 2 can be simplified by introducing symbols for the flux of
mass, momentum, etc., as follows:

n
n+lg nedy @04 [ e pe
O = i - —d T o] (31)

j+hs

n
nely nely nely () iy N+l n*l LESIIEY
B L Tyl R O T A I

tia )n
(an)?*h “(pu)n*h n+lg z_i“h [Dn+1 vn+1 . p?*x V?+1] (33)

+hy 14 j-o-‘, “T)\J R jel e
) b el Ker D3er X))
(bf)n* - & un+.i + +1 (34)
j*‘ﬁ i*k j*l’ x‘;\*li ij*”‘
bf‘)n*& .. (“3)“+l pr bn+x) (34°)
( J4k 5“)+B ( j+ j k

18
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n
oMt onedy nels (“’1L:§ [.n+1 n+1
n+lg n+‘§ iy n4 }
D)y '[M = 1) 0 Ty “"-M] e
()} :
A FL [=n+1 X ﬁn+lJ
LS R L (36)

With E = ol + $p (uiv?)

n
nly n+ +lg (o) s [ ne ne ) *1
GERLERCO B Kool (SIS I

Equations (31} through (37) above define fluxes at the cell bhoundaries,
Cell cuntered fluxes nrve defined in thoe MICE scheme as:

2
nf.n
: " , 3
3 (Dut’)_1 = nj ("j) (38)
i
e RS | LR NN 1 D TS .
(o\H;1 ”j uj VJ ' (39)
(BE), - n? uT*‘ ' (10)
and CHIN p?“ 1? “T‘ (41)
The cell-boundary fluxes are time-centered, except for the
additional transport terms involving tha a's and differences of the
timo-advanced quantities. The o's have the form
ag *aflg | 131 @0t g (42)
AL AR AL ?




Since these terms are of second order in Ax, we see that the cell-

f boundary fluxes are time-centered, to first order. The cell-centered
fluxes, however, are mixtures of time n and time n+:i quantities.
We therefore refrain from assigning a time level to the symbols for
these fluxes,

We shall now write out the MICE difference equations, using
differonce operators dofined as;

. - 1 m M

)y 0 o, ["M Moy " Xyl Aj-k] (43)
) ]

(Vl)j“‘ AE mﬁ-\-——-r-—-- [x‘;‘+‘\ Aj'H - Xr;\ AJ] (44)

Xyen O jalg '
. "

OV = 7[Ry~ Ay (45)
. 1

() g A 2 LTIy [Aj*l - Aj] (46)

The difference equations arc:

ot Py - bt (V) ()™ (47)

b?*‘ . b? . At ug*l V), (b)Y L oAy (), (e (ag)

B?*l . n? - ot (V) ey (49)




!

vhere

AR LD (out)™™ - ae oy 6

- 8¢ @ [orne™ ™. ]

e .

(P.f.)n“i = g™ " . 3 (B“)z .
ot Vit e o) V) - ae@n VO™ e se(erom] ) @), 8™ s1)
o 1f o 1] - aewe)y (ore)™

e Jorgenef®t 1) s g f ey (52)
p'j‘“ i) . o Iy - At (), EO™ - at p?“ A

' A‘(p/p*)'; [b'j‘” VIt o ™l g n“’] (58)
(pu)?::: « o],y - 3 AT, u" - Fae ey, Gl

1
- b aey,, [0en TN Qe at o™ o")]

1 n
- At(p/ \ Bz "
2 * (D) h
° ) ivh I+h ( 2 ) ! (34)
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2
where a% = vy (y-1) 1 + %6* is the effoctive sound speed squared,

(PD) o+ DY = 386, (016)

X [(Yj“i - DY, + Qwi] COF (55)
Ben = 8], - 30T, () (56)
and (pV)';::: - (V)] - 3 At (V+) ,y, (OVE)
1 ) n n ) n+ 1 57
PR\ e et &7

The sclution to tne above difference ecquations iy obtained algebraically
substituting equations (54) and (31) Into oquation (47), obtalning a
tri-diagonal set of equations for the ph*!

J
e n+1 n+ly
The quantities D)*H and pj+5 are then calouluted by interpolation

, which can then bo solved,

in space and time. Having the values for p?*’

, oquation (54) s

4." ‘l
then used to obtain (ou)?*i » which, tagethor with “?+§ , then glves
1y )

n+
the values for Ujag -

Equations (32), (40), (41), (5853), and (56) arc combined
slgebraijcally with equation (50) to obtain a tri-diagonal set of
equations which can be solved numerically for the quuntitices u?+l.

Equutions (55) and (56) can then be usod to obtain the quuNtitles

(pI)?:ﬁ , and B?:E . Bquati.ns (48) and (49) are then solved to find
the new magnetic ficld components, after which, equation (587), and then

equation (51), may bo solved for the new perpondicular velocity components,




3 Then, finally, the energy equation is solved (equation (52) or equation
(#3), deponding on which form is desired.)

When solving each of the atove equations, the appropriate
3 boundary conditions must be considered. Reflective houndaries and
poriodic boundaries are relatively straightforward, and are not dis-
cussed in this report. Transmittive boundaries are more troublesome,
however, and the MICE treatment of zuch boundaries is discussed in
Appendix C,
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APPENDIX A

THE SOLUTIOH OF A TRI-DIAGONAL
SYSTEM OF LINEAR EQUATIONS

A system of N linear equations is called tri-diagonal if it

can be put in the form

AU, +BU. +CU., =W 2%3<N-1 Al)
1 TR LI RS bt TR R ERU =)z (A1)
AU + BU = W (A2)
1 2 1 1 1

ByUy * O, * My (A3)

where the Uj's are the unknown guantities, and Aj' Bj' Cj' and

N.j arc known. The equations may bc ordinary scalar equations, or

they may he matrix equations. Where cquations of this form rise in
JICE, equation (Al) represents the difference equations in the in erior

of the mesh, while (A2) and (A3) are the boundary conditions,

The so'ution is obtained by introducing additional quantitics

x], Yi’ such that

I, = X.U, Y, Ad
lJ“1 ‘(JLJ + [ (A4)

Substituting equation (A4) into cquation (Al), we obtain

AX, + B U, + C.U, W, - AY, AS
(Jj j) j Ji- i AR (A5)

L]




Raising the index j by ore, and solving for Uj*l’ we obtain
Yje® - (Ajﬂxj*x ' BJ‘*‘:)-1 €50Y;
(s Ba) ™ (e A Vi)
Comparing this expression with equation (A4), we make the identifications
Xy = - (Ajﬂxj+l R th)" ¢;,, - and (A6)
Y, - (Ajnxj*; + Bj*!)-l (wj\\1 - A, Yj"'l) .
Comparing equations (A3) and (Ad4), we see that
Xy = - (BN) o1 Cy » and
et (B) 7 M

Equations (A6) then give the X's and Y's for all smaller values of j .

Equations (Ad4), with j = 1, is then combined with equation (A2), to

give
=1
U =(Ax+B) (w ~AY)
1 1 1 1 1 11

The U,'s for all higher values of j can then be Jfound from (Ad4).

3
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APPENDIX B

ANALYSIS OF THE ADDITIONAL ERROR
GENERATED BY TIME-STEP-SPLITTING

For simplicity, let us consider the case of two-dimensional
cartesian geometry. The differential equations we are Jattempting to
solve can be put in the form

9 a9 A

where the components of the vector U are the MID dynamical

variables p, I, Vx’ V., Bx' BV, and A and B are matrix functions

of the compenents of U Then,

3t2 - ax at - X F))’
and m . ]
i—my_=(Aﬁ+B-§;)‘g (B2)
3t v 34
A difference approximation to the differential equations has the
form

y™t e g ot Ut

(B3)

where § 1s a difference operator, and the superscripts indicate the

time level. The statement that { is accurate to order & in At ,
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means, mathematically, that if each term of the right hand side of equation
(B3) is expanded in a Taylor series about time tn, then the equation
becomas

n+i

n 3 ) n o At? 3 3V on
_l_J_ -_[lw-'\t(A“-bBa—y-)y_ ’T(Aﬁ* )'/ _li

e 0e 0 atvY

. , 3 3 at? (3 3 \?
e say then, that @ = I + At (AH +B'ry) + -;-—-(A-wé-;* Bw) + i

Now, let us supposc that we are given difference operators Lx

and Ly' which correspond, respectively, to the differential squations

U AR Y ()
and

) ]

R (ee)

A non-time-split difference scheme would advance the values of U

from time n to time n+; by means of the operation
U™t e (i, L )(U“,U“*‘) .

In MICE, the operato:s Lx and Ly are applied sequentially,
rather than simultaneously, however., That is,

y?+x - L (H?,Un.x)

n+ n+x N+ n n+x) n+)
™ . Ly(_q U )-Ly(l,x(u,g , U )

Now, let us suppose that Lx and Ly are individually accurate to second

order. That is,




2

d At?
L.): =1+ At A'é'; » = (A ) + 0 (AtYH

At” a

P X
- d Atz J 2 3
Ly 1+AtB'§;;+-T(BbT-) + 0 (At®)

The '"product" of these two operators, keeping terms up through order

at? , 1is
3 3
Lny = ] + At (AK + Bw)
t? 3V d d A \?
' T[(“S?)'”W“‘H*(BW)]

At 9 ) ) a
T (“wy’*s‘f - A zry)

Thus, we sce that there is an additional error introduced by the time-

splitting. This error iz of second order in At , and is given by

A | 2 3 ] 3 J
o= EAt (B-g')?/\a-; - AHXBW) .

This is the lowest order error teva caused by the time-splitting
when the order of application of I and Ly is as indicated above, If
the order of application is reversed, then [ - - L. This fact makes
pos<ible an easy check on the effects of this error term. To this end,
two firebail rise calculations have been performed, differing trom each
other only in that the order of application of Lx and L was reversed.

The results of these two calculations were cssentially identical, indicating

that the additional error generated by time-step-splitting can be ignored.
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APPENDIX C

BOUNDARY CONDITIONS

The type of boundary which has always been difficult to handle
properiy is the out-flow, or "transmittive'" boundary. Other types of
boundarinss can be treatod in relatively straight-forwar. ways.
Therefore, we will concentrate, in this appendix, on ‘he MICE
treatment of che transmittive beundary.

At points which are outside the space mesh, we are either
not interested in the values of the dynamical variables, or we decide
not to sttempt to compute them, on the basis of lack of computing
capability., 1In any case, since the size of computer memories is
finite, there must always be an "outer boundary" beyond which lie
space points for which we have no detailed information. Therefore,
some assumption must be made at the outer boundary, in order to he
ahle to compute in the celis adjacent to the boundary.

In the MICE code, the following assumptions have been imposed
at the outer boundaries:

(1) There can be no "inflow" of mass,

(1i) The time rate of change of the amplitude of
incoming waves is zero.

These conditions seem to allow signals to propagate out of the mesh
without causing excessive disturbances within the mesh.

In phase 1, where tran:..rse Alfven waves are treated, only
condition (ii) above is applicable. Let us consider a row of cells,
numbered from | to JMAX, with J increasing from left to right. In

cell no. JMAX, we want the tim rate of change of the amplitude of




the left-going wave to be zero. Now, the phase 1 differential equations
can be written

2 (a)= 8, o (W) €1
and .
%(VI) - = (3,) . (c2)

Where p* = p + BZ/c; and V, , B, are the components of V and

B perpsndicular to the x-dircction, To simplify the boundary treatment,
we consider Bx and p*to he constant. FEquations (C1) and (C2) ahove
are then equivalent to the pair of equations

B

CHORY AR S B AT

5

and B
'a'af (BL - /E*v1> - F:- - (B - f5*v1) : (C4)

Equation (C4) states that constant valucs of B - Vo Vl travel along

B
paths with X - £ t « constunt, while (C5) states that the
V¥ B
quantity B + Jp¥ Vl is constant along X + X t = constant, At
Vo

the right hand boundary, for the case Bx> 0, B, + p*V is the

amplitude of the incoming wave. Jlondition (ii) above then becomes

\
\

"'3*‘:‘ (B..; SRV = 0. (C5)

)
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Another equation ir needed in order to ostablish the rates of change of
B, and V, individually, znd we have arbitrarily chosen to use the
equation

3 5
) B g

This equation is implemented in the following way: One goex hack

B
into the mosh a distance X Ay | ;icks up the value of B, from

from that point, and uses that valuo for the new B at the right hand
boundury. Equation (CS) then detormines the now value of V

J This treutment produces the wrong value for the Aamplitude

' of the outgoing wave, but gets the desired valuo for the amplitude
of the incoming wave, In principle, equation (C4) could be employui
to obtain the correct value for the amplitude of the outgoing wavo,

] but experience shows that attempts to assign values to both incomin:

f and outgoing waves can producc values at the boundary which are obviously
non-physical. The method we have choson is less likely to cause

numerical instahbilities at the houndary, cven though it is not stricuiy
mathematically co:coet.

b The above is a description of the right-hand boundary troatment
for Bx> 0 . Other cases are treated in an annlagous Wiy,

The phase 2 equations,

5 (@) + == (V) = 0
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with P* x P+ p/pt 921_ , and

e be put in the form

d o (Y ; a Y~

- (1 o (y 13} . Vx ”%i' (l Iy b X)) x 0 <7
) ;

= @V o Ve ) e @ V) w0 (C8)
L @V 6 (Vs ) = @ eV w0 0o
e X x 0 oy 0V (0)

e\
whepe o] (;(Y‘I) [« 5}

[
and 5 - f L
e

Thene aquations hinve the interprotution thnt the thres quantitios | n'(Y")'
¢+ Ve, and o = Ve, are each conutant along chroracterintic curves whose

slopos are

Boeovs e e, e By oo,

respectively, Again confining our attention to tho right hand boundarv,

we must have —%? (o Vy) = 0, to satisfy condition (i1), This
causes equation (C9) to bo satisrfied, sinco we ussume that the amplitnde
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of thv incoming wave is zoro. The other eyuations which wo use at the
right hand boundary are

(-g? ‘“ v, .g;) b ox 0, (C10)
and 1
(-g-t- - -§-;) I w0, (C11)

If & and I autisfy theae equations, then equation (C7) ia
satinflod, Bquation (C8), which deacribes outgoing waves, is not
satinfied, but this Ls apparent!v nut s important as meeting the
condition of no Incoming wavaes,

flquations (C10) and (Cl)) ave sutiwfiod by moving the distance
VxAt in from the houndavy, picking up the values of ¢ and I from
that point, and using thase as the new boundary values, Then, the

now value of Vx at the houndary s chosen to muatinty A4(0 - Vx) »w 0,

with the restriotion that Vx in the boundary cell cunnot oxcoed Vx
in tho first call inside tho boundary,

The abuva describud method of treating transmittive bounduries

Rives satisfactory results, both for strong shocks and wenk shocks
pagsing through the houndavy,
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