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SECTION I

INTRODUCTION

MICE is an implicit, time-step-split, MHD code which is being

developed at Mission Research Corporation to extend and improve upon
our capability to compute the late-time phenomenology of high altitude

nuclear explosions. The code has been designed to do calculations in

one-dimensional spherical, I-D planar, 2-D cartesian, 2-D cylindrical,
or 3-D cartesian geometry.

In addition to computing an approximate numerical solution to

the one-fluid MHD equations, the code also calculates the following
for each space point and for each time, (1) the Lagrangian coordinate,

(2) the number densities of the atmospheric species N2, 02, N, 0, N
o+, and an "al-purpose" molecular ion X+ , and (3) the rate of energy

loss by radiation of UV. There is a deposition routine which may be
called one or more times during the running of a problem, to deposit

x-rays and/or UV radiation. A very general rezoning routine allows a

problem to be transferred to any new grid at any time during the run-

ning of the problem. These "n)-nomenology" aspects of the code have

been patterned after the MRC code HOIL, which has been described in

reference 1.

The DNA sponsored high-altitude phenomenology comnmunity already

has several codes which calculate, late-time phenomenology, There are

two-dimensional codes at LASL, NRL, and MRC, and three-dimensional codes

at AFWL and NRL. These codes all use expli(it difference techniques.

The characteristic feature of such difference techniques is that
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numerical stability considerations impose the cc'ndition that the mesh

speed, Ax/At, must exceed the physical signal propagation rFpeed, U + C,

where U is the magnitude of the fluid velocity, and C is the speed

with which waves travel through the fluid. The corresponding require-

ment for implicit codes, such as MICE, is simply Ax/At > U . For

strong shock problems, where U and C are comparable in magnitude,

the two type of codes require comparable running times. However, for

problems involving subsonic flow, such as low altitude fireball rise,

or the late-time stages c. high altitude atmospheric heave, the implicit

type of code will be able to use much larger time steps, and therefore,

require much less computer time. It is the need for shortn, running

times for high altitude heave calculations which has prompted the

development of MICE, In the ROSC code (Radar and Optical Systems Code)

it will, of course, be necessary to have a reliable model of atmospheric

heave, One possibility for this "model", is to use a coarsely zoned

3D MHD code as an integral part of ROSC. If this is to be done, the

MHD scheme which is used will need to be as efficient and fast running

as possible. An implicit code, such as MICE, is needed to meet these

requirements,

Another distinctive feature of MICE is its use of the

approximation of time-step-splitting. This greatly simplifies the

coding, makes it easier to implement changes in the difference scheme,

reduces the main core requirements, and gives the code the ability to

do calculations in several different geometries. This aspect of the

code is discussed further in section 3 of this report, which deals with

the details of the difference scheme,

-i2
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SECTION II

SOME NUMERICAL RESULTS

Here we present the results of two test calculations. The

first calculation is that of the early expansion and rise of a hot

bubble in an exponential atmosphere. Some comparisons are made with

other numerical solutions o)I the same problem. The second calculation

is that of the buoyant rise o. a warm cylinder.

HOT BUBBLE PROBLEM

This problem was chosen as a test case, because numerical solutions

of the same problem have been published by Harlow and Meixner-(2) and

by Sappenfield(3 ), The initial conditions are as follows: 8.2 x 1020 ergs

of energy are placed within a sphere of 2.7 km radius. The velocity

within the sphere is taken to be directed radially outward from the

center, and to have the magnitude v - 4.25 * •-j km/sec, in which

Ah is the vertical displacement from the burst point, The internal

energy within the sphere is 8 x 1012 ergs/gm. Burst point mass density

is 1.2 x 10 gm/cc, and the atmospheric scale height is 6 km, In the

MICE calculation, the grid spacing was initially chosen as AR a AZ = .4 km.

At t n .45 sec, the problem was rezoned into a grid with AR = AZ - I km.

A numerical solution to tiis problem was obtained by Harlow

and Meixner with a particle-In-cell (PLC) code, and later by Sappenfield

with a mixed Eulerian-Lagrangian code called H2SE. Figure 1 shows the

shock position as a function of time for the three directions, "down",
"sideways", and "up", as calculated by PIC, H25E, and MICE. Of the

three calculations, the H2SE result is probably the most reliable,
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since H2SE has Lagrangian boundaries perpendicular to the direction of

shock propagation. Lagrangian codes usually give better definition of

shock positions than do Eulerian codes.

Figure 2 shows contour of mass density as given by H2SE and

MICE. The two sets of contours agree qualitatively very well. The

lack of detailed agreement is caused by the fact that MICE is an Eulerian

code, and used a mesh spacing of 1 km for this problem.

BUOYANT RISE OF A WARM CYLINDER

Recently, at MRC, an analytic solution has been obtained for

the early buoyant rise of a cylinder of incompressible fluid of mass

density p, , imbedded in another fluid of density Pa > P, , in a

gravitational field . This solution wvas obtained by expanding the fluid

equations for inviscid, imcompressible flow, in a power series in time,

and is an exact solution for as long as the power series converges.

We give here a comparison of the analytic solution for the case p= .S p0 ,

"and a similar problem which was run with the MICE code.

The initial condithns for the MICE problem were chosen as

fc1lows:

ambient mass density P= 8.9x105 gin/cc

density scale height H * 6.3x10 5 cms

ambient specific internal energy ID 1.53x10 9 org/gm

specific he ratio y - 1.4

initial cylinder radius R - Sx1O4 cm

Inside the cylinder the mass density wa. iken to be .5 x ambient density,
and the internal energy 2.0 x ambient internal energy. The problem was

run in 2-D Cartesian geometry, with a minimum cell size of about .1 R.

5
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* This problem, as done by the MICE code, is, of course, a

compressible flow problem, since the sound speed is finite. Also, since

this code, like all fluid codes, has inherent numerical viscous effects,

the problem being reported here is clearly a different problem than

that for which we have the analytic solution. However, if the sound

speed is sufficiently large, and if the numerical viscous effects do

not dominate the problem, we would expect the results to be not too

different from the analytic results. To see how large the sound speed

is in the context of this problem, It is useful to work in an appropriate

set of dimensionless units.

The power series expansion for the height of the center of

mass of the cylinder as a function of time is

h PO-a + L g t + higher order terms,

which may be written in dimensionless form as

H=h 11 t I TI
H * + ... . T- + .. .R R/g' ),

where g' 0 P- F
POt Pg

R is the initial radius of the cylinder, anid g Is the tiecelcration of

gravity. If c is the sound speed in egs units, then the dimoesionloss

sound speed is:

C-c x X c/ ,ig'

For the set of initial conditions given above, the sound spced inside

the cylinder is

C [yCY.l)x21,/(R g') 10.3

7
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,Thus, a sound signal can traverse the radius of the cylinder about 10

times in the time required fu- the cylinder to rise a distance of . R
2

We would therefore expect "compressibility" effects to be relatively

minor. The numerical viscosity effects are more difficult to assess,

and we have made no attempts to do so.

Figure 3 shows a comparison of the position of the boundary

of the cylinder at T2 - 1.5. The analytic solution fails to converge

for times much beyond this time. The MICE boundary agrees reasonably

well with the analytic solution, although it tends to oscillate about

the analytic result. Figure 4 shows the best MICE calculation we could

get for this problem. Here, we used a minimum cell spacing of about

.05 R, with a corresponding decrease in At.

Bt
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SECTION III

THE NUMERICAL DIFFERENCE SCHEME

In this section of the report, the MICE numerical difference
scheme is described. The starting point of this description is a
presentation of the set of partial differential equations used in MICE
for the flow of an infinitely conducting fluid. The approximations
used in the difference equations are then given. The concept of
difference operators is used to explain what is meant by time-step-
splitting and the MICE' difference operator is then described in suf-
ficient detail so that the interested reader can understand the numerical
scheme.

Two topics not discussed in this report are the MICE transport
of chemical species and Lagrangian coordinates. Information on the
Lagrangian coordinates is contained in Reference I which discusses the
idea of Lagrangian coordinates in an Eulorian code nnd gives a 9irst

order scheme for advancing the quantities in time.

DIFFERENTIAL EQUATIONS

--- V

* - v ( (2)

g21



V xB (3)
(.)L =z~-j& 4

S(y-l) p1 (S)

where p is the mass density in gm/cc, V is the tluid velocity in

cm/sec, P is the fluid pres3ure in dyneos/c2, I is the magnetic

field strength in JAW gauss, I is the specific internal energy in

ergs/gm, and y is tVe specific heat ratio.

APPROX I MAT IONS
. p .-

The collection of all values of p, pV, 'B, p1, RLE, Ihij at

all points in the space mesh can be considered to be 'the components of

a multi-dimensional vector U. An explicit differencE approximation

to the differential equations has the form

-Un÷ . Un+ L (n) + Ly() + L (Un) (6)

where Lx, Ly, L are operators which involve taking differences inz
the x, y, and z directions, respectively, and the superscripts indicate

the time level. An implicit difference approximation has the more

general form

Ui a . n_ + LQ(e, e+') + L 1j".U (._" ) + L (U_, ( tUn, ) (7)

As is indicated, the difference operations involve the time advanced

(unknown) quantities as well as known quantities. In this case, the

solution of the difference equations for ULni may involve solving a

very large set of coupled algebraic equations. This is usually accom-

plished by either matrix techniques or iterative techniques. The

12



approach taken in MICE, is to use implicit difference operators, and

to invoke an additional approximation known as time-step-splitting. In

this approximation, the difference operators Lx, L., and Lz are

"applied sequentially instead of simultaneously. That is, we define

intermediate values of U, which we s;.all call Un+x and Un~4>', as

follows:

Sun+× Un Un, Un+x :
Step 1: Un+x nUn + L(U ,U (8)

-- • On~xy Un~x n+X nx+y)
Step 2: Un+x+y Un + L (jn+x,U ) (9)

Step 3: Un+1 a U.n+x+y + L (Un+x+y, U n') (10)

The error generated by this additional approximation of time-step-

splitting is discussed in Appendix B.

Each of the above steps involve the application of one difference

operator. The advantage, from a coding standpoint, of this approach,

is that a single generalized "difference operator" subroutine can be

written, which will perform any of the tiree steps above. The advantage

from standpoint of core requirements, is that only the values corresponding

to a single row or column1 of coils need be in main core at a given time.

Thus, the number of computational cells which may be used for a given

problem is limited not by main core size, but by the size of the ECS

banlt on the (;DC 6600, or LCM on the 7600. One further advantage is

that it becomes relatively easy to switch between doing 1-fl, 2-1), and

3-D problems.

We shall now present the differential equations to which the

one-dimensional difference operator must correspond. in these equations,

the a I are transport coefficients which are qdjusted to improve the

numerical stability of the code, Q is the artificial viscous pressure,

13
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b and B are the parallel and perpendicular rtagnetic field components,

u and V are the parallel and perpendicular velocity components,

a* p p + (B2 +b2 )/C 2  is the jo-called "Boris mass", and m = 0, 1. or 2,
a

"depending on whether the difference operator is being applied in planar,

cylindrical, or spherical goometry.

The equations are:

Ty() n x (Pu 3xtl-Lt i-m a x a x

N u (b) - - u C ax L - (i2)

at (B) - In a -BU -a - B + b V (13)
X 'K (Do

•-j(Pu)*

•t ) -m ax x PU -_ '42 P axx

" R(+Q) - - p (14)

" * g , for vertical direction
whr O, otherwise

-p) -. t.a./. a

i0) - x pVu a ;v

+ lp/* b B (iS)

We are considering only one perpendicular component of the velocity
and B field. The generalization to two perpend-icular components is
straightforward.

14



a(PT) M 1I a4 rPIi rk.t
ti ax xIu x

x

_ (P+Q) i a m
m x u (16)

x

or,

a (E) L aE+P+Q u E p-
at x m ax - a ) - P u

ax ax
n /"bV- 2 B - u e)- (17)

where E- PI + 1 (18)

The code may be run using difference forms of either equation

(16) or equation (17) for the energy. The latter choice results in

better energy conservation, but equation (16) gives more reliable

temperatures in regions where magnetic forces dominate. The factor
p/p* which appears in front of the magnetic force terms has the effect

of limiting the Alfven speed to the value C in regions where theS~a
mass density Is very small. A limiting Alfven speed of 2x107 cm/sec

has been found to be a satisfactory value.

The difference operator is constructed from these one

dimensional differential equations. Multi-dimensional calculations are

performed by suitably rotating the vector components in the routine

which fetches the cell quantities from large core memory, so that the

operator routine always "thinks" it is going in the x-direction.

Lx DIFFERENCE OPERATION

Another considerable simplification in the equations can be

made by further splitting this set of equations into two sets, which

15
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we will call "L phase 1" and "L phase 2." This splitting is donex x
on the b;.sis of the distinction between transverse Alfven waves and

longitudinal or compressional Alfven waves. Phase 1 calculates the

changes in the perpendicular components of B due to the propagation

of transverse waves, while phase 2 calculates the changes in these

components of B due to propagation of compressional waves. Phase 2

also calculates the charges in all other quantities.

The phase 1 equations are

aaS•r (B) ub xV (9

and aTt (pV) - p/p* b (20)

For the case constant b and constant p, these equations are easily

seen to be equivalent to the pair of 2nd order equations

a2  0 a 2t;Bax (B), (21)

and =a (V) 2* ax2  (2

TheSL are wave equations, representing waves traveling with velocity

I- /1" p-,* The amplitudes, Vo and B0, arc related by the expression

Each application of the difference operator results in the

Phase 1 equations being solved implicitly for the (partially) time

advanced values of B, after which the phase 2 equations are solved

for the time advanced values of all of the cell quantities.

16
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L PHASE 1 DIFFERENCING
x

The difference equations used in phase I for advancing the

values of B are

SB + t-b- r - Vn½ (24)B j I j + -ý j -ý i.-I

nL ½At 1 ,.n [A+
and J (3) A j+ 1 j (25)

i+½ j ~

where the integer subscripts refor to values at coil centers, half-

integer subscripts refer to values at cell boundaries, and the super-

scripts refer to the tir,.e level. Cell boundary values are obtained by

interpolation in the array of cell cente.r values. These equations are

solved for the quantities B'. , which are then used as initial values

for Lx phase 2. These equations differ from the usual Lax-Wendroff

two step form in that the right hand side of equation (25) contains

the time-advanced V'iluies T To obtailn the solution. equh tion (25)

is ,40stituted into equation (24), giving the equation

~ .~ Y +3 +(26)i j + J Y 11^ -

(At) 2  n n+
where CI - (27)

2Ax 3i Ax J*

(A t) 2 ha bn
Y * "j --J. (28)

2Ax Ax

17



"'- 1- -I a v, (29)

n t b' 1V+, V
and j .(

The collection of equations (26) for all values of j, together

with the boundary conditions, constitutes a "tridiagonal" matrix, the

"solution to which is discussed in Appendix A. The boundary conditions

are discussed in Appendix C.

L PHASE 2 DIFFERENCING

The phase 2 equations are equations (11) through (18), except

that the second term on the right hand side of equation (13) is omitted,

its effect having been accounted for in phase I. The difference equations

for phase 2 can be simplified by introducing symbols for the flux of

nmass, momentum, etc., as follows:

Sn+½ * .½ -*ý (Ni n - i.
pf). (Pu) j, -X J+ In+i . . u 31

"1+11 012 n+,( n+i ,+i .n.+]

(bkf)+ (u+ 0b P. un f) (34)1

S(bf')j. * bj- TL~ (j• h x4  (4A

+ 
8

(Of jý(u 1ýv1+ A + 1+1vn 11vni (3



n+ tFji½ -1 zlýrn+ i B n
"! nn

,l j+ ' (36)

with E = + I P . (u 2V 2 )

i(plf)1 [OU (pu~ n÷ 11+S n+ I 1l+ l 1 n,+11

Equations (31) through (37) above define fluxes at the cell boundaries,

Cell centered fluxes nre defincd in tho, NI schemne as:

nS(Puf j .n U j (38)

' " U• Vn (39)
11 U h .1 ,I10

-, ) • fill tlII÷4 B~ I . ) )0

j ii

.n1Oltl , .1 . .

"The coil-boundary fluxtes ziro time-centered, except for the

additional transport ternis Involviiig th', W's Und differences of the

time-advanced quantities. The Q's have the form,

czU ICI ÷ I (I 2 x). q,*.1 (42)

19



Since these terms are of second order in Ax, we see that the cell-

boundary fluxes are time-centered, to first order, The cell-centered

fluxes, however, are mixtures of time n and time n+i quantities.

We therefore refrain from assigning a time level to the symbols for

these fluxes.

We shall now write out the MICE difference equations, using

differonce operators defined as:

(V,)1 A S xm A x m A 1  (43)

I A j + J (43)

A m [xn A,~j*\i1 +I Xj AjJ (44)

(D)3 A L [Aj. - Aj4] (45)

A [A÷ - Aj]

The difference equations ar.e:

-p At (V-)j (pf) (47)

Sbn+1 bn At n'l(V) t(O (f (8

ij - u1 (jjf)1II At (V'), (bf')j (48)

B P At (Vo) (Bf) (49)

20



P np u )l 2 - At(V.) (pun')",+½ - At pnj *
i_ . '1 ii 21Pj

-at (D)j [Y-i)p,+"l I n+½ n]

-At (%*) n (D)j (B' f+n~ 2

where (1!) n+k13fl - nB)

P. Vn+ v p V n _ At(V.) (pVf)n+ý + At(p/p*) 1 bn (D)' B11+ ($1)

n+l n~i n n
p-= I At (VI -At

-At ,(y c1) p* (V U , (52)

n + I* . n * l . n .n (t; r)j n• l gfn ; _ t P , n +• n G *

+A9.1 1* n+ f l 1+ 11+1 2 nV4

nl+4 n 1 G2 +l*(pu) - (pU) J - At(7'.)J 4. (pu - At. p ,

At(D)j+½ ( I Pn In n (p "+ P1 )]

i. n) n

2 t/

P O.(4

21t



where a2 u y (y-l) I + ,P is the effective snund speed squared,

½(PI) -I- At(V,) (PHf)
J+4)~ ~'J+Ig 2 J+4

- At (Yj+4 ' l)(PI)n + Q (V6) U (55)1- J+4 J+4Q ÷ j~l ,

0B+ *l n 1 At(V,) (Bf) (56)

and . A A . u V n - I- AVf)

P j (Of )j½ ,v

4 ( At B n+ (57)

The solution to the above difference equatlonS ia obtained algebraically

substituting equations (54) antd (31) into oquation (47), obtaining itn,

tri-diajonal set of equations for the o , which can then be solved,

The quantities P and are then caIulated by interpolation

in space ani time. Having the values for pn+ ,equation (54) Ls
J '+

then used to obta in (ou) , which, together with p1  , then p Ive,

the values for u i +Ii ,

Eiquations (32) , (40), (41), (53), and (56) are combined

algebraically with equation (50) to obtain a trn-diagonal set of

equations which can be solved numurically for the quitntltics ti 1 ÷ I

Equations (55) and (56) can then be used to obtain the quatwtitict

~ j÷½ , a +½ , fquati ns (48) and (49) are then solved to find

the new magnetic field comlr,',nonts, after which, equation (57), and then

equation (51), may bo solved for the new perpendicular velocity components,

22
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Then, finally, the energy equation is solved (equation (52) or equation

(03), depending on which form is desired.)

When solving each of the above equations, the appropriate
boundary conditions must be considered. Reflective 1houndaries and

periodic boundaries are relatively straightforward, and are not dis-

cussed in this report, Tranamittive boundaries are more troublesome,
however, and the MI!CE treatment of ouch boundaries is discussed in
Appendix C.

23



APPENDIX A

THE SOLUTION OF A TRI-DIAGONAL
SYSTEM OF LINEAR EQUATIONS

A system of N linear equations is called trt-diagonal if it

can be put in the form

A. U. + B.U. + C.U. = W. 2 j < N - I (Al)
3 +1 J 3' *

AU L B U = W (A2)
1 2 21 1

BNUN + CNN N (A3)

whore the Ll's are the unknown quantities, and Aj, BP Ci, and

W . arL know.n. The equations may lie ordinary scalar equations, or

they may he matrix equations. Whore equations of this form rise in

.11CFB, equation (Al) represents the difference equations in the in erior

of the m•seh, while (A2) and (A3) are the boundary conditions.

The solution is obtained by introducing additional quantities

X, Y. , such that

"ti + X.U. + Y. (A4)
3+1 .l 3 .1

Substituting equation (A4) into equation (Al), we obtain

(A X + BI) U, + CU. = U, A.Y (AS)
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4 Raising the index j by one, and solving for Ojz, we obtain

.:Uj.ýI= (Aj+lXj~l + Bj+jý'Z Cj+lUj

S j * BJ+1j+ ++ "

Comparing this expression with equation (A4), we make the identifications

Xj - (Aj.zXj+` + Bj+* ) Cj+j , and (A6)

•~Y (A÷ Xj B )z(A.Y
SY. + + B.,)- (Wj+, - A.. Y )

Comparing equations (A3) and (A4), we see that

XN - (BN) 1 CN , and

Y N1 a B (N) WN

Equations (A6) then give the X's and Y's for all smaller values of J

Equations (A4), with j - 1, is then combined with equation (A2), to

give

u (AI1  + Bj) (W I- A1Y

The Uj's for all higher values of j can then be "ound from (A4).
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APPENDIX B

ANALYSIS OF THE ADDITIONAL ERROR
GENERATED BY TIME-STEP-SPLITTING

For simplicity, let us consider the case of two-dimensional

cartesian geometry. The differential equations we are attempting to

solve can be put in the form

A + B 2 , (BI)

where the components of the vector U are the MIPD dynimicai

variahles P, I, V x, VyI B , Bv, and A and B are matrix functions

of the compcnents of U) Then,

-) (it ax

and

U A + BU .(132)

atm -- 

B

A differente approximation to the differential equations has the

form

I n+1 = Q (1n,1 jn+, ) +B()

where Q? is a difference operator, and the superscript, indicate the

time level. 'rhe statement that 0 is accurate to order Z in At
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... . .

means, mathematically, that if each term of the right hand side of equation
(B3) is expanded in a Taylor series about time tn, then the equation

becomes

-n+ Un + .t + )Un ALL + nU

"+ + 0 (At 9 '+) . (B4)

I 3\ A 2  
j 3 

2

We say then, that Q a I + At A -j + B + LL. A + B +

Now, let us suppose that we are given difference operators Lx

and Ly, which correspond, respectively, to the differential equations

-(U B5A U )

and

U= B _U (B6)

A non-time-split difference scheme would advance the values of 11

from time n to time n+1 by means of the operation

-1+ L)(UnIjn1) 
.

In MICE, the operstos L and Ly are applied sequentially,

rather than simultaneously, however. That is,

Un~x . Lx (nJ_,U'f .X)

Un+1 ~ ~ ~ I / a Ly( ý x U ,) -L L 2 .n+x\ n+1
.L -- Y> Y --L i

Now, let us suppose that Lx and Ly are individually accurate to second

order. That is,
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L = + At A-a At 2 A + t (At 3 )

L - I * 4t B a + At B I) 2+ 0 (At 3)

The "product" of these two operators, keeping terms up through order

At2 , is

LyL I + At A +-. 4 B

Y x (( Y 77 4~A- 17At, A ' ) 2 B 'A + (B;)2

I I + ":t Af-. + C47 + -s (A + B

+ H' A(¼ k A" B

SThus, we see that there is an additional error introduced by the time-

splitting. This error is of second order in At , and is given by

- 7At2 B ) A -

This is the lowest order error tevi cnused by the time-splitting

VhL'n the order of application of I.x and I, is as indicated above. If
x

the order of application is reversed, then 1; -- - F. This fact makes

possible an easy check on the effects of this error term. To this end,

two firebail rise calculations have been performed, differing from each

other only in that the order of application of L and L was reversed.

The results of these two calculations were essentially identical, indicating

that the additional error generated by time-step-splitting can be ignored.
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APPENDIX C

BOUNDARY CONDITIONS

The type of boundary which has always been difficult to handle

properly is the out-flow, or "transmittive" boundary. Othor types of

boundarins can be treated in relatively straight-forwar.' ways.

Therefore, we will concentrate, in this appendix, on t.he MICE

treatment of dhe transmlttlve boundary.

At points whhch are outside the space mesh, we nre either

not interested in the values of the dynamical variables, or we decide

not to ottempt to compute them, on the basis of lack of computing

capability. In any case, since the size of computer memories is

finite, there must always be an "outer boundary" beyond which lie

space points for which we have no detailed information. Therefore,

some assumption must be made at the outer boundary, in order to be

able to compute in the cells adjacent to tho boundary.

In the MICE code, the following assumptions have been imposed

at the outer boundaries:

(I) There can be no "inflow" of mass.

(ii) The time rate of change of the amplitude of
incoming waves is zero.

These conditions seem to allow signals to propagate out of the mesh

without causing excessive disturbances within the mesh.

In phase 1, where trar, .- rse Alfvon waves are treated, only

condition (ii) above is applicable. Let us consider a row of cells,

numbered from I to JNJAX, with J increasing from left to right. In

cell no. JMAX, we want the tim, rate of change of the amplitude of
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the left-going wave to be zero. Now, the phase I differential equations

can be written

S(Ba) B * ( 1  (Cl)

and B

Bt * .- (BI)a (C2)

" Where P* v p + B2/C2 and VI 9 BI are the components of V and

B perpendicular to the x-direction, To simplify the boundary treatment,

we consider Bx and P*to he constant. Equations (Cl) and (C2) above

ore then equivalent to the pair of equations

S~B
(a . * V'Lv) --I , 8 rV (C3)

and B
(BX (rP V.) (C4)(BI •.v,) r -i.i (7, - .

Lquat.ion (C4) states that constant valuer of B, - I• V1  travel along

B
paths with X - - t a constant, while (CS) states thnt the

quantity B1  + ýýP VI is constant along X + -A t a constant. At

the right hand boundary, for the case B > 0 , + + p* Vj is the

amplitude of the incoming wave, condition (ii) above then becomes

.- ~.(BA Vi
3

V~ 0 .(CS)
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Another equation ir needed In order to establish the rates of change of

B. and V, individually, and we have arbitrarily chosen to use the

equation

(B1

This equation is implemented in the followine way: One goe•s back

into the mesh a distance B
nto thAt , pick% up the value of IIz from

from that point, and uses that value for tl'- now II at the right hand

boundary. Equation (CS) then determines the now value of VL t

This treatment produces the wrong value for the amplitude

of the outgoing wave, but gets the desirod value for the amplitude

of the incoming wave, In principle, equation (C4) could be omploytd

to obtain the correct value for the amplitude of the outgoing wave,

but experience shows that attempts to assign valucs to both incomin.;

and outgoing waves can'producc valuo,' at the boundary which are obviously
non-physical, The nethod we have chosen is less likely to cause

numerical instabilities at the boundary, even though it is not strictly

mathematically 1coi :ect.

The above is a description of the right-hand boundary treutment

for Bx > 0 . Other cases are treated in an -intilagotis wIY.,

The phase 2 equations,

So ÷ -~- (pVx) - C)
a a

-- (PVx (+ Vx 2 + P 0
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(T 1 (I) 4, v M x) 0

with and

P • (- I) olP

caln be put in the form

-it
-, F x (0 V x Q

S* (*- x , Cx - C:) *-•- (i - VA) , 0 (C•))

p1'

S'11,14 oq t tion- L 4 have the interpretation th it the t.hrop quitti tl,.•. I p-(y.e

0 + Vx, and o - V.x . oro each coiitnnt naiing chrructorlitie curves whone
slopott arv

dx d4 dx

respectively. Again confini.ng our attention to the right h.nd boundary,
we must have - o ((I . Vx) * 0 , to sattufy condition (it). Tlim
causes equation (C0) to be satisfied, since we assume that the omplitido
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of thLu incoming wave is zero. The other eouations which we use at the

"right hand boundary are

+ V x p , 0 ,(CIO)

N, 1 14 0 (Cli)

If ,- and I satisfy th@AQ equations, then equation (C7) is

satisfied. Equation (CR), which describes outgoing waves, is not
satimfied, but this Is apparontIv not As ,mportant um meeting the
condition of no Incoming wawvs.

SlRquAtiono (CIO) livid (Cli) veo .nitisfied by moving the distance

VxAt in frem the boundar', pickng up the values of p and I from
that point, and uoing these as the new boundary values, Then, the

now value of Vx At the hoandAry Is chosen to titisfy A(c - Vx) i 0

"with the restriction thot V in the boundary cell cannot exceed V

in the first coll inside tho bokindary.

the above delurLhud method of' troatlnig transmittive boundirieus

Kivos satisfactory results, both for strong mhockm and weak shocks
pagsing through the buoundary.
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