
AD-757 366

URAND: A UNIVERSAL RANDOM NUMBER
GENERATOR

Michael A. Malcolm, et al

Stanford University

Prepared for:

Office of Naval Research

January 1973

DISTRIBUTED BY:

urn
National Twlmieal Informtton Swrict
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

■ •&*■>■. v.- .«w***-
...taf.^*!- ..-»,■, *~irt»l»«V.V;.,■->.:W.- *->.-y..H*ft1^li,r,/--....,,v-^.*t...-^-I

URAND

A UNIVERSAL RANDOM NUMBER GENERATOR

BY

MICHAEL A. MALCOLM

CLEVE B. MOLER

STAN-CS-73-334

JANUARY 1973

._...._.. .. ,
NATIONAL TECHNICAL
INFORMATION SERVrCE

u s "--'-"'of c-.......
Spr;,..t;elol VA 221!1

. r:.,; D. C

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

·-

UNCLASSIFIED
So···urtlv c uu·ata- -........

DOCUMENT COMTIOL DATA • I & D
, s .. n .. ,,,. rl•••ltlrefl- ol flrle of ... _, IHtll ;..-.. ;"' -•••II• -·• k ..,,_, wllo" rllo ., ... ,., ••-' Ia rloas lllodJ

1 O fC I GI,_.A T I G &C TIVfTV (C~te _,....,) Ia. "E"O"T SECU"ITV CLASS IFI C A T ION

Stanford University Unclassified
Computer Science Department ••· -ou,.
Stanford~ California 94305

t • £ PO R f Tl T L £

URAND, A Universal Random NUmber Generator

• 0 £SC"1"T1\If: NOTES (l)r~ of l _, ... c1 ... 1- -·J

technical, January 197:5
'I AV THO .. ISI (l'"lrar -· -~-· lftlflol. laOI -) .
Michael A. Malcolm and Cleve B. Moler .

6 "E"O" T OA TE '•· TOTA'- .. 0 . 0~ "AGES r·· Ho .

2
o,. "E"S

January 197:5 6 .. C O..T.&CT 011111 GllANT NO M . 0"101 .. ATO"•s .. E.OI'! T .. UM.E"ISI

h OJ E C T N O STAN-CS-7:5-:5:54

<. . M . OTME" "I:"O"T .. OISI (AitJ' orllor ,_..,. rllor _,. bo oaal .. • d ,
•.

10 DtST,. IaUTION STATEWI:NT

.
Distribution Unlimited

" SUP.,L.. I: M I: NTA •• NOTI[I II . s•OHSO"INO WILl T AC Tl'lll TV

U AaiT .. &CT

-
A subrout i ne for generating unifonaly-dis t ributed floating-point numbers in the int erv l
lh, l) is presented in ANSI standard Fortran. '!be subroutine, URAND, is designed to

f' be relatively machine independent. URAND has undergohe minimal testing on various
machines and is thought t o work properly on 811¥ machine having binary integer number

I' represen t ation, integer multi !!cation modulo Ill and integer addition either modulo
m or yi elding at least .tog2 (m) s ign ~.f cant bit s, whe1·e m is sume integral power
of 2 . I

Upon the first call of URAND, t he val ue of m is automatically deter.mined and
appropriate const ants for a linear congruential generator are computed followi ng t he
suggestions of D. E. Knuth, Volume 2. URAND is guaranteed to have a 1\lll-lengt h cycle t

Readers are invited t o apply their favorite statistical tests to URAND, using any
binary machine, and report the results to the authors.

' .
.

I

l DD .'!~ .. 1473 (PAGE I)

SIN 01~1-807-6101

URAND

A UNIVERSAL RANDCJti W.fBER GENERATOR

by

Michael A. Malcolm and Cleve B. Moler

ABSTRACT

A subroatine for generating uniformly-distributed floating-point

numbers in the interval [0,1) is presented in ANSI standard Fortran.

The subroutine, URAND, is designed to be relatively machine independent.

URAND has undergone r.Unimal testing on various machines and is thought to

work properly on any machine having binary integer number representation,

integer multiplication modulo m and integer addition either modulo m

or yielding at least L0€2 (m) significant bits, where m is some

integral power r~ 2 .

Upon the first call of URAND, the value of m is automatically

determined and appropriate constants for a linenr congruential r,cnerator

arc computed following the vugp,cstions of D. E. Knuth, volume 2. UUAND

is guaranteed to have a full-length cycle. Readers a1•e invited to apply

their favorite statistical tests to URARD, using any binary machine, a d

report the results to the authors. · t n approved
for pubic releaoe and de; ita
di ibution is unlimited.

'lbe project was supported by the Office of Naval Rest:arch, Contract
N00014-67-A-Qll2-0029.

URAND -- A Universal Ranuom Number Generator

Michael A. Malcolm and Cleve B. Moler

The Fortran subroutine for computing random numbers which we des­

cribe in this brief report is intended for publication in a forthc~nlng

Prentice-Hall textbook: Computer Methods for Mathematical Computations,

by G. E. Forsythe, M. A. Malcolm and C. B. Moler. Other Fortran sub­

routines in this book (e.g. the linear equation solver, O.D.E. solver,

etc .) are somewhat novel in that they are coded in a relatively machine­

independent s tyle. Among other thi~~s, this means that each subrout i ne ,

if necessary, deduces necessary pararac tcrs of ·:.he computer ari thm,:tic

system at the time it is executed. Techniqu~s related to those given in

Malcolm {1972) are used for obtaining floating-point parameters. In the

same spirit we have attempted to program a relatively machine independent

randan number generator which "We modestly call tJRA11D which etands for

"~niversal ~an number p;enerator," and fortuitously for "~iform ~om

number genera t or." To date , URAND has undergone only minimal t esting on

an Ilfo1 56o, CDC 66oo, PDP 10 and SIGMA 7. Since it is purported to work

properly on most computers in use , URAHD must be tested on many more com­

puters using a variety of statistical tests. We encourage rP.aders to

try URAND on t heir comput -'! r s and t.est it using their t'avorHe stotis t i cal

tes t s . Fe ·Ll biH.:k r r orn our r(' &dc r·::; wi ll be greatly oppreciHt •fl . We are

particul arly i nterested in learni ng of results o1' the "sper.: tntl t es t"

described in Knuth, vol. 2, p. 82 .

A source listing o1 URAND in ANSI standard Fortran is included at

the end of this repor t. vie will briefly descrit-~ the rationale which led

2

to some of the seemingly "rand~m" statements in URAND.

A linear congruential s equcnr.e of integers is b ~ained by settine

Yn+l = aYn + c {modulo m), n > 1 , (...)

on the n-th call of URAND. These are converted into floating-p~j nt

numbers in the interval [0,1) and returned as the value of URAND. The

resulting value of Yn+l is returned through the parameter IY and

should be used for the actual parameter in the subsequent call. On the

first call of URAND, IY should be initialized to an arbitrary integer

value.

The val ues of m, a and c are computed automatically upon the

initial entry. The main assumpti on here is that the machjne uses binary

integer number r epresentati on un<i multiplication is pert·ormed modulo m

where m is a power of 2 . This assumption simplifies the computation

of(*)· URAND discovers the value of m{2 by testing successive powers

of 2 until a multiplication by 2 produces no increase in magnitude.

It is also assumed that integer addition is either modulo m , or at

least to~ {m) signHi cant bits are returned. The values of a and c

ar e computed following the advice of Knuth which he summarizes {see p. 78

and p. 155, vol. 2):

i) Pick a to _ !!>.''e t hree properties:

a mod 8 = 5

m/ 100 < a < m - 1.fn,

The binarJ digits of a have no obvioue pattern.

~i) Pick c as an odd in t eger with

c 1 l ,, ...
;~2-l>'-' ·

In the source code, a js calle lA , and c is called IC • The random

bit pattern of a is a.-~hievcd b~ calling DATAN(l.DO) which returns t he

double-precision value of •/11 whi <'h, on a binal'y machine, is the shifted

bit pattern of • . The division by 8.00 and multi pHc&tion by m/2]
hopefully accomplished without unduly altering this pattern. The double-

precision value is finally converted to an integer, multiplied by

8 and incremented by 5 to insure a mod 8 = 5 . The resulting value or

m m
a is roughly ~ • ~ 2 'l'his satisfies the inequality constra i nt. ::; . The

value or c is computed directly from the definition (ii). We r ealize

that some Fortran compilers don't convert constants like 8.00 to exact

floating-point representations, but this problem will probably be of little

consequenl:t .

The sequence [Yn] is guaranteed to have maximum period length

m by Theorem A given in Knuth, p. 15. However, one must remember that

the least ~ignificant binary digits of the Y will not be very random.
n

When the Yn are converted to floating-point nwnbers, the least signi-

fi cant digit ::; are usually not important. To compute a random i.nteger

b Lween 0 and k-1 , one should multiply the result of URAND by k

anrl truncate the result.

We wish to thank Fred Fritsch and Neil Goldman for testing earlier

versions of URAND.

c

FURCTION UJWm (IY)
INTEGER lA, IC , ITWO, IY ,M2 ,M
DOUBLE PRECISION HALPM
DOUBLE PRECISION DATAN.DSQRT
DATA M2/0/,ITW0/2/
IF (M2 .NE. 0) GO TO 20

C IF FIRST ENTRY, COHPtrl'E MACHINE INTEGER WORD LENGTH
c

c

M • 1
10 M2 • M

M • l'I'WO*M2
IF (M .GT. M2) GO '1'0 10
HALPM • M2

C COMPUTE MULTIPLIER AND INCREMENT FOR LINEAR CONGRUENTIAL METHOD
c

lA • 8*IDINT(HALFM*DATAN(I.D0)/8.DO) + 5
IC • 2*IDINT(HALPM*(0.5DO-DSQRT(l.D0)/6.DO)) + 1

c
C S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT
c

S • 0.5/HALFM
c
C COMPtrrE NF.xT RANDOM NUMBF.R
c

20 IY • IY*IA + IC
c
C THE FOLLOWING STAT!MERT IS POR COMPUT1'JlS WHERE THE
C WOlD LENG'l11 FOR ADDITION IS GREATER TIWf POR MULTIPLICATION
c

IF (IY/2 .GT. M2) IY • (IY - M2) - M2
c
C 111E FOLLOWING STA'mtENT IS POR COMPUTERS WHERE IMTEGER
C OVERFLOW AFFECTS THE SIGN liT
c

IF (IY .LT. 0) IY • (IY + M2) + M2
URAND • PLOAT(IY)*S
RETURN
END

5

REFERENCES

Knuth, D. E. (1969), "Seminumerical algorithms," The Art of Computer
Programming. Vol. 2, RP.ading, Mass.: Addison ~esley.

Malcolm, M. A. (1972), "Algorithms to reveal properties of floating­
point arithmetic," Cormn. ACM, vol. 15, no. 11, November,
949-951.

