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ABSTRACT

A subroutine for generating uniformly-distributed floating-point
numbers in the interval [0,1) is presented in ANSI standard Fortran.

The subroutine, URAND, is designed to be relatively machine independent.
URAND has undergone minimal testing on various machines and is thought to
work properly on any machine having binary integer number representation,
integer multiplication modulo m and integer addition either modulo m
or yielding at least Log, (m) signifiécnt bits, where m is some
integral power o 2 ,

Upon the first call of URAND, the value of m is automatically
determined and appropriate constants for a linear congruential gcnerator
are computed tollowing the suggestions of D. E. Knuth, volume 2. URAND
is guaranteed to have a full-length cycle. Readers are invited to apply

their favorite statistical tests to URAND, using any binary machine, and
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URAND -- A Universal Random Number Generator
Michael A. Malcolm and Cleve B. Moler
The Fortran subroutine for computing random numbers which we des-

cribe in this brief report is intended for publication in a forthcoming

Prentice-Hall textbook: Computer Methods for Mathematical Computations,

by G. E. Forsythe, M. A. Malcolm and C. B. Moler. Other Fortran sub-
routines in this book (e.g. the linear equation solver, 0.D.E. solver,
etc.) are somewhat novel in that they are coded in a relatively machine-
independent style. Among other things, this means that each subroutinc,
if necessary, deduces nccessary parameters of Lhe computer arithmclic
system at the time it is executed. Techniques related to those given in
Malcolm (1972) are used for obtaining floating-point parameters. In the
same spirit we have attempted to program a relatively machine independent
random number generator which we modestly call URAND which stands for
"universal random number generator," and fortuitously for "uniform random
number generator." To date, URAND has undergone only minimal testing on
an IBM 360, CDC 6600, PDP 10 and SIGMA 7. Since it is purported to work
properly on most computers in use, URAND must be tested on many more com-
puters using a variety of statistical tests. We encourage readers to
try URAND on their computcers and test it using their favorite statistical
tests. Feedbuck I'rom our readers will be greatly appreciated. We arve
particularly interested in learning of results of the "speclLral test"
described in Knuth, vol. 2, p. 82.

A source listing of URAND in ANSI standard Fortran is included at

the end of this report. We will briefly describe the rationale which led



to some of the seemingly "random" statements in URAND.

A linear congruential sequence of integers is chcained by setting

Yoo =8y +ec (modulo m), n> 1, (x)

on the n-th call of URAND. These are converted into floating-point
numbers in the interval [0,1) and returned as the value of URAND. The

resulting value of Yn+ is returned through the parameter IY and

1
should be used for the actual parameter in the subsequent call. On the
first call of URAND, IY should be initialized to an arbitrary integer
value,

The values of m, a and c¢ are comput>d automatically upon the
initial entry. The main assumption here is that the machine uses binary
integer number representation and multiplication is pertormed modulo m
where m is a power of 2 . This assumption simplifies the computation
of (%). URAND discovers the value of m/2 by testing successive powers
of 2 until a multiplication by 2 produces no increase in magnitude,
It is also assumed that integer addition is either modulo m , or at
least togacﬂ significant bits are returned. The values of a and c
are computed following the advice of Knuth which he summarizes (see p. 78
and p. 155, vol. 2):

i) Pick a to .=ve three properties:

amod 8 =5

m/100 < a < m - Vm

The binary digits of a have no obvious pattern.
ii) Pick c¢ as an odd integer with i

Sei-dvs

In the source code, & 3Jjs called 1A , and ¢ is called IC . The random



4
bit pattern of a is achieved by calling DATAN(1.DO) which returns the
double-precision value of #/)i which, on a binary machine, is the shifted
bit pattern of ¥ . The division by 8.D0 and multiplication by m/Q is
hopefully accomplished without unduly altering this pattern. The double-
precision value is finally converted to an integer, multiplied by
8 and incremented by 5 to insure a mod 8 =5 . The resulting value oi’
a is roughly %‘t zg . This satisfies the inequality constraints. The
value of ¢ is computed directly from the definition (ii). We realize
that some Fortran compilers don't convert constants like 8.D0 to exact
floating-point representations, but this problem will probably be of little
consequence.

The sequence [Yn] is guaranteed to have maximum period length
m by Theorem A given in Knuth, p. 15. However, one must remember that
the least significant binary digits of the Yn will not be very random.
When the Yn are converted to floating-point numbers, the least signi-
ficant digits are usually not important. To compute a random integer
bctween O and k-1 , one should multiply the result of URAND by k
ana truncate the result.

We wish to thank Fred Fritsch snd Neil Goldman for testing earlier

versions of URAND.
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FUNCTION URAND(IY)

INTEGER 1IA,IC,ITWO,IY M2,M
DOUBLE PRECISION HALFM
DOUBLE PRECISION DATAN,DSQRT
DATA M2/0/,1ITWO/2/

IF (M2 .NE. 0) GO TO 20

IF FIRST ENTRY, COMPUTE MACHINE INTEGER WORD LENGTH
M=1
1I0M2 =M
M = ITWO*M2
IF (M .GT. M2) GO TO 10
HALFM = M2
COMPUTE MULTIPLIER AND INCREMENT FOR LINEAR CONGRUENTIAL METHOD

IA = S*IDINT(HALFM*DATAN(1.D0)/8.D0) + 5
IC = 2*IDINT (HALFM* (0.5D0-DSQRT(3.D0)/6.D0)) + 1

S IS THE SCALE FACTOR FOR CONVERTING TO FLOATING POINT
S = 0.5/HALFM

COMPUTE NEXT RANDOM NUMBER

20 1Y = IY*IA + IC

THE FOLLOWING STATEMENT IS FOR COMPUTFRS WHERE THE
WORD LENGTH FOR ADDITION IS GREATER THAN FOR MULTIPLICATION

IF (IY/2 .GT. M2) IY = (IY - M2) - M2

THE FOLLOWING STATFMENT IS FOR COMPUTERS WHERE INTEGER
OVERFLOW AFFECTS THE SIGN BIT

IF (IY .LT. 0) IY = (IY + M2) + M2
URAND = FLOAT(IY)*S

RETURN

END
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