AD-757 349

LARGE-SCALE COMPUTER-AIDED STATISTICAL
MATHEMATICS

Peter A, W, Lewis

Naval Postgraduate School
Monterey, California

November 1972

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

3




NPS55LW72111A

| NAVAL POSTERADUATE SCHOOL

1 Monterey, Galifornia

AD7?57349

¢
LARGE-SCALE COMPUTER-AIDED
STATISTICAL MATHEMATICS
Peter A. W. Lewis
? November 1972
1 [
- . Approved for public release; distribution unlimited

Reproduzed by

!1 NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

e R A MR e S e
e s e 3




MAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral M. B. Freemarn, USN M. U. Clauser
Superintendent Provost
ABSTRACT:

Some thoughts on large~scale computer-aided statistical mathema -ics
(primarily simulation) which were presented at the 6th Annual Conference
on the Computer Science/Statistics Interface conference are presented.
Comments of participants and panelists (D. F. Andrews, J. N. Arvesen,

D. P. Gaver, and G. Marseglia) have been added to the original text.

Prepared by:

e AW Kwn
Peter A, W. Lewis

Nepartment of Operations Research
and Administrative Sciences

Approved by: Released by:

¥ . 4 H - ’ '\ . .

© D by 4lviir~ v*'“~)r2;»*~°*‘{}yf—
J. R. Borsting, Chairman J.(M. Wozencraft J
Department of Operations Research Dean of Research

and Administgptive Sciences

|

NPS55LW7 2111A

LI Ty CORE E TR




Sl it e ot b b s i o e o
s W M Gt et e G s At N Ml i b e/ Da et o g et B t3 4 - L
k. Glubion e daga bl & ™ Y

Security Clasnilication X
AV el Y L i L WP ALY ol AL T V1 i VOO L Al S At -
DOCUAZHT COHTIIUL DATA-RLD
tSecurity ctassification of title, dordy of abat:act and Indexning aanotstion muaet de oenterad when the overall report s ¢lassiliad)
S” N

i V. ORIGINATING ACTIVITY (Corporete author) 20, RIPOANT SICURICY CLASBIPICATION
i Unclassified
k Naval Postgraduate School T T
by Monterey, California )
} A

3 REPORT TITLE

¥ Large-Scale Computer-Aided Statistical Mathematics

4. OESCRIPTIVE NOTES (Typs ol tagaet und,inclusive dates)
Technical Report

0. AUTHONISI (rlrat name, miulle Initial, last narme)

Peter A. W. Lewis

6. AEFPONT DATE 78, TOTAL NO. OF PAGLS 75, NQ. OF REPS

November 1972 I
84, CONTRACY ON GRANT NO. * 58. ORIGINATOA'S REPONT NUMDBEN(S)
y
R NPS55LW72111A
] .. [1-8 ‘ohlt.n't’:’z}ronv NO(B) fAay ether numbere that may be aseicned
d.

10. DISTAIDUTION STATLEMINTY

T

Approved for public release; distribution unlimited

1. SUPPLEMENTARY NOTKS t2. SPONSORING MILITARY ACTIVITY

19. AUBSTHACY

Some thoughts on large-scale computer-aided statistical mathematics
(primarily simulation) which were presented at the 6th Annual Conference
on the Computer Science/Statistics Interface conference are presented.
Comments of participants and panelists (D. F. Andrews, J. N. Arvesen,

D. P. Gaver, and G. Marsaglia) have been added to the original text.

.

TICBR

VR RYRILAE i

$/4 01012070311 s3ung Claddddadn a-01¢30




asi o AR bt b el ok i i Sttt d it sl i i ik atS l s Ba

E Neeunty CInAsification . i

\ (¥ R :E“ A LINK 8 LiNn €

4 C fRALE L A4 AOLE wY LL- 19 4 wr
. Computers

1 Simulation

% Quantiles

} Jackknife

Variance reduction techniques
Sorting
Statistical>mathen5tics
Multiprogrammed computers
Percentiles

Random number generation

; Multiplicative congruential genérators
; : Ordering
: ; Bias reducticn '

DD 1473 (eacx) - ———

?/u ?von-ooa-oczq 2 © Security Classification A<31409




T TR 3

LARGE~-SCALE COMPUTER-AIDED STATISTICAL MATHEMATICS

Peter A.

W. Lewis

Naval Postgraduate School
Monterey, California

Abstract

Some thouglits on large-scale computer-aided statistical mathematics (primarily
simulation) which were presented at the 6th Annual Conference on the Computer
Science/Statistics Interface conference are presented. Comments of participants
and panelists (D. F. Andrews, J. N. Arvesen, D. P, Gaver, and G. Marsaglia) have

been added to the original text.

1. INTRODUCTION

The aim of this paper is to stimulate discussion
on large-scale computer-aided statistical mathe-
matics (primarily simulation) at this conference.
There has been a lot of discussion of computers
and statistics (Hartley, 1972; Milton and Nelder,
1969; Chambers, 1970), but little of large-scale
use of computers in simulation experiments to
solve open distributional problems. This has per-
hars been because of the unavailability of large
ccaoputers and large amounts of computer time to
research workers and statisticians. I think this
vv111l change rapidly over the next ten years as
internal computation speed and the size of random
access memories go up. The talk given by Dr. A.
G. Anderson at this conference has amply illus-

trated this trend.

To take advantage of this availability, and to use
the .aternal time sharing of central processing

units inherent in multiprogramming, new statistical

techniques which are computation-orier .ed will have
to be developed. There is8 already growing impetus
in this direction and this new technology coupled
to the computers will make an enorumous impact on
statistics. 1 should note, too, that large-scale
simulatijons are commonplace in industry and devel-
opment laboratories, but the inefficiency of most

of these computations is appalling.

There are recent surveys of several aspects of
statistical computing (Hemmerle, 1967; Halton,
1970; Chambers, 1970; Freiberger and Grenander,
*971), most notably that by Tukey (1972b) who has
been responsible for many of the new ideas in sta-
tistical computation. Consequently, I will only
describe here the evolution of a computer program
called COMPSTAT which was developed to try to use
the IBM 360/91 computer at the IBM Research Center
as efficiently as possible. The problems encoun-
tered in developing this program, some solved but

others open, are more than enough for one paper.

#*Sponsored by the Office of Naval Research through Contract NR 042-288 and the
Foundation Research Program at the Naval Postgraduate School.
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My interest in the problem of large-scale

statistical computation grew from the frustration
of trying to deal sith non-normal time ezries, in
particular, point process=s (Cox and Lewis, 1966),
and of having to write a book around the many gaps
in the distribution theory. The first problem 1
tackled was the distribution of product-moment
statistics (Lewis and Goodman, 1970), since one
can, in principle, find recursion relationships

to generate the distribution for successive sample
sizes n. It took six months to verify the
mathematics, six months to program it, and even
then I wasn't sure enough of the programming to
publish the results. [ then turned to simulation,
and quickly ran into several equzlly frustrating

problems:

(1) Many procedures, notably variance re-
duction technicues, were very particular
to the problem at hand and difficult to
generalize. For example, a technique
which works in estimating the mean of a
distribution may not work when one is
also interested in ectimating the var-

iance or higher moments.

(2) Most published statistical estimation
(point and interval) techniques were
"valid" asymptotically, and were pro-
hibitively expensive in terms of number
of operations (addition and multipli-

cation) and memory cells required.

(3) Most "canned" routines were slow and

generally unreliable.

(4) "Tooling up" took an excessive amount
of time, and storing results, tabu-
lating results and manipulating results

was difficulr.

It was therefore decided to look into the proce-
dures and algorithms available, program them
efficiently if they were useful, develop new
techniques which were fast and economical of
storage where necessary, and put them into a

standard program which could be used for large

scale simulations.

ietoiul atatttadai i

Several guidelines were set:

a) All procedures were to be ‘omputationally
simple, use as little memsry as possible

and to be as broadly applicable as pos-

sible. In parcicular, 'his meant they
should use as little information as
possible about the statistic, say S, to
be simulated. For example, one might not
want to use the specific information that

S was positive.

b) To utilize the speed of the computers,
the best way seemed to be to compute the
distributions of as many statistics as

possible simultaneously.

c¢) Memory requirements should be kept fixed
ana relatively small {n order to use
excess CPU (CentraliProcessing Unit)
time by running in a lowest priority par-

tition in a multiprogrammed invironment.

A block diagram of the overill program, COMPSTAT,
which was developed {8 shuwn in Figure 1. We dis-
cuss this program generally before going into
details of implementation and unsolved problems

in later sections.

Referring to Figure 1, the symbol n 18 used to
refer to sample size in statistical simulations,
8o that the statistic S wmight be the average
of the observations in a random sample of size n.
Any value of n may be used in the program,
though it is written so as to repeat simulations
on successive values of n 1f required. A number
m of replications {s specified by the user, with
the option of splitting m into f blocks of

This 1s done to obtain

size m' each (m=rm").
estimates of the varlance of estimates and also

to allow for checkpoints to be taken.

On each replication the STATISTICS GENERATOR can

call for 22 n rendom numbers, unsorted or

sorted by magnitude. The user writes the STA-
TISTICS GENERATOR, spe~ifying up to 32 statistics
This

(functions of the 2% random variates).

has proved to be a very flexible arrangement; the

statistics could be, for example,
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the sample serial correlations of lags 1 There are many other possibilities. For each of

to 32 1in a series of random variables these statistics the user can specify that he wants

e,

of length n; estimates of the fivst four moments of S, 16

quantiles of the distribution of S, and 16 per- 4

the waiting times of 32 successive cus-
centiles of S (or any combination of these three).

tomers in a simulated queue;
Quantiles here is used to mean the solution Xy

an estimate of a parameter in a distribu- of the equation « = Fg(x ), where a is given and

tion, the jackknifed estimate of the Fo(x) 1is the distribution of S. A percentile is ]
parameter, the jackknifed variance, and ust F(x) for given x. We assume the quantile ;
the pseudo-values; exists.

32 points in the simulated spectrum of a

time series of length n. 3
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Mean Stand, Dev Lower Quantiles
3 » . =~ = = = = = =
0, 001 *0. 002 *0. 005 *0. 010 0. 020 %0, 025 "0, 050 0. 100
Normal 11,982 2. 562 6,989 7,197 7,812 7.789 8. 113 8. 229 8. 642 9. 165
(Exact)
Exponential 11,824 2,827 6.133 6,378 6,716 7. 068 7. 445 1,580 8.063 8 66H
{0, 001) (0. 001) (0. 005} (6. 003) (0, 003) (0. 002) (r.002)  {0.002) (0, 002) (0. 001)
1/2 Weibull 213,828 85, 678 67.%80 72, 483 80, 052 87, 008 95, 410 98, 523 109.707 124. 384
(0.011) (0, 033) (c. 067) {0, 0KO) (0, 082) (0, 059) (0.032) (0, 030) (0, 036) (0, 032)
Skewnesw Kurios:s Upper Quantiles
Yy ) *0, 900 *0.950 0,475 0, 980 ¥0,990 0,94 *0, 998 0. 999
Normal 1,442 15, 324 11, 764 18,176 18, 627 20, 024 21,418 23,251 21, 61N
(Exact)
Exponential 1. 061 2.120 1%, 514 7, 064 18,5°2 19, 061 20, 552 22, 045 24, 055 25,557
{0, 003) (0, 023) (0, 004) {0, 005) (0, 005) (0, 006) (0, 009) (0. 009) (0. 024) (7. 033
1/2 Wetbull 1. 657 5, 082 323,012 373,912 425,816 442,749 496.882 553,934 634, 068 700 534
(6. 003) (0, 035) (0, 084) (0. 059) (0.136) (0.172) (0,182) {0, 328) (0. 412) {1 696)
Table 1

Tabln 1 shows the form chosen to tabulate the
results (moments and quantiles) of a simulation
involving m replications for each n. These
results are averages and sample standard devia-
tions of the results of the r blocks of m'
replications, all of this being stored in an
archive which Tukey has aptly called the SIDEPUT.
The estimated standard deviations of the estimates
are given in brackets just below the estimates;
below them we give (not shown) the estimated

quantiles after subtraction of the estimated mean

E and division by the estimated standard devia-

tion 6. This allows the experimenter to judge
whether the statistic is approximately normally
distributed.

The last blocks in Figure 1 allow for CUMULATIVE
TABULATION on n, EDITING and SMOOTHING of the
results (including rounding and printing tables
for publication), and GRAPHICAL OUTPUT as shown
in Figures 2 &3.
that this statistic is not normally distributed

It is easy to see in the figures

and 18 converging very slowly with n to the

(n?w) distribution. The positive

asymptotic

skewness of the distribution is also evident.

An original, rather inefficient, COMPSTAT program
was used to implement a study of tests of inde-
pendence in point processes. Twenty statistics
were computed simultaneously on an IBM 360/91 in
a 120K partition. Some of these results have been
published (Lewis, 1972) and are partiaily repro-
duced here (Figures 2 and 3); others will appear

later.

A study on a similar scale of robust estimates of
location was uni ertaken at Princeton (Andrews,
et al, 1972); they had the advantage over me of

both manpower and expertise.

It is hoped to rewrite the COMPSTAT program at
some later time in order to incorporate all of the
recent advances in statistical computing technol-

ogy described below.
2. DETAILS

We discuss now the details of the implementation
of a program such as COMPSTAT. At its inception
in 1966 we quickly ran up agatlast the lack of real
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Figure 2

computational considerations in many standard
statistical procedures. The situation is better
at present, with books such as Hemmerle (1967)
and Knuth (1969) now available. Knuth (1969) in
particuiar is invaluable. There are still many
problems, however, particularly relating to large-

scale computations.

a) Random Number Generation

Clearly the statistical quality of the randon
numbers available for large-scale simulations
will be the limiting factor in how far one can go
in utilizing large-scale computers in simulatiomns.
In 1966 the main generator in use was RANDU in
the IBM SSP package. It is still widely umed to-
day, by default, even though it is known to

knowledgeable users to have poor statis ical pro-
perties. There are no published test 1 sults on
RANDU, except one brought to my attent’ n at the
conference (Bates and Zirkle, 1971) but there are
papers published on problems which have been en-
countered with its use. Moreover, as s statistical
consultant one comes up against many cases in which
strange results in simulations are remedied by re-

placing RANDU by another random number generator.

In this respect ft might be noted that if statis-
ticians are guilty of 'ign.ring computational
aspects of their procedures, computer scientists
are equally guilty of ignoring the statistical
There are hundreds of

clever random number algorithms in the literature

aspects of algorithms.

e AT, A\l e
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Figure 3

[see the bibliography by Nance and Overstreet,
1972) but there are virtuslly no accompanying test
results putlished. Moreover, it is generally dif-
ficult to do so in a computer journal.

In 1966 we started to investigate the problem of
random number generation for lsrge-scale computa-
tion, and after extensive testing we developed

a 31-bit pseudo-random number generator for the
Systes 360. This is a2 multiplicative congruentisl
generator of the form (Lewis, Goodman, and Miller,

1969)

k) 5
where p, aprime, ia 27 1 and A=7" is a

positive primitive root of p, thus guaranteeing

a cycle of length p for the generator. Another
advantage of using a positive primitive root for
the multplier is that low order bits are also
random. Beside the assembly langusge version given
in the paper, a very fast version of this

cenerator which generates arrays of integer or
floating point numbecs i3 availatle in the new IBM
SL/MATH package. We will refer to this as the GGL

generator; it generates a random number in 1.40
Useces on a 360/91 and in 16.00 peecs on a 360/67.
A vetsion has been written for the 360/67 at the
Naval Postgraduate School using a division simu~
lation algorithm due to Lehmer (see Payne, Rabung,
Bagyo, 1969; Liniger, 1961).

TN A ke ora bl i 4 K 12 e
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Test results for GGL are given in Lewis, Goodman, results of Couveyou and MacPherson, 1967; (see %
‘ and Miller (1969) and extensive subsequent use also Knuth, 1969, pp. 82-100.) and Marsaglia, 1972. i
n turned up no obvious pro-lems, though constant It seems to me that the Couveyou-hacPherson Fourier 1
care was exercised. For example, in Table 1 the analysis is the best analytical tool for predicting 4
maximum periodogram values with 1/2-Weibull dis- performance of random number generators that has
tributed variates (squares of exponentially dis- appeared. Marsaglia's results [1972] on the lat- 4
¢ . iributed \ariates) are very large. 1In this simu- tice structure of the congruential generators are i
f lation r = 6, ' = 750,000 and m = 4,500,000. allsh usEEl. 1
P A. e check, normal devi~tes vere used in a very ?
f The tests referred to started with the GGL random 2
large simulation and no discrepancy from the
o number generator, RANDU and a TAUSWORTHE generator
! exact distribution (shown in Table 1) even at 4
(Tausworthe, 1965) auu the runs test. As in Lewis, A
1 0.999 quantiles was found. This GCL random :
Goodman, and Miller (1969), runs of length eight
aumoer generator was used in the Princeton study
! or longer are pooled and a Chi-square statistac
(Andr.ws, et al, 1972) and is used in APL.
7 computed. Nominally, this has a Chi- square dis- i
Nevertheless, valid doubts continue to be expres- tribution with 7 degrees of freedom :nd we denote ]
3 sed about the use of the GGL generator in large- it as X?- Table 2 gives summary rcatistics on -
} scale computations, particularly in light of 20 runs of 2'° npumbers each for the three gener- 4
f Marsaglia's results (Marsaglia, 1968, 1972) on the  ::ors. The Tausworthe generator is now analytice f
2 { structure of sequences of numbers from congruen- ally known to have poor ruuns performance (Toothill, :
E tial generators. These results have shed a lot Robinson, and Adams, 1971). The runs test rejects ;
. 4
; of light on problems which can be encountered neither GGL nor WANDU if the test statistic is as- ;
with congruential generators, but I don't be- sumed tc be distributed as a Chi-square variate :
L 3 lieve they tell the whole story. There are also with 7 degrees of freedom. As mentioned before,
d é . new types of generators being advocated. Some RANDU is known to be poor; this is shown in Table
of these arc too cumbersome for consideration, 3 giving the Couveyou-MacPherson wave numbers for 1
f but others are popular, in particular the Taus- GGL and RANDU for dimensions up to 7. It is in
/4 1
i worthe or shift register generators (Tausworthe, higher dimensions that RANDU is particularly poor
3 1965). Some doubt has been cast on the statis- ]
Table 2. Runs test; Chi-square statistic. 4
tical properties of these shift register pseudo- s 1
random number generators recently; my own Xq ox; ¢
preference is, for speed and simplicity. to go to GGL 6.846 4.084
k.
shuffled congruential generators (Marsaglia aad RANDU 7.939 3.502 :
Bray, 1968). Tukey (1972) ascribes this i ea TAUSWORTHE 9.972 10.428 )
to Gentlemen but it seems quite old and was put ]
o L€ 4 i Table 3. Wave numbers for two generators.*®
forward by Marsaglia in the early 1960's. I
GGL RANDU
have found no documentation of the statistical
g Dimension
roperties of shuffled generators, although they
prop X . ’ 2 16,807 23,172
are intuitively appealing.
Y BPPRASSLE 3 638.9 10.86
We have undertaken further statistical tests of 4 146.25 10.77 f
some of the above generators at the Naval Post- 5 67.21 10.77
graduate School. In particular, we have been 6 29,92
interested in correlating test results with 7 16.55

* I am indebted to Dr. L. R. Turner, NASA Lewis Research Center, Cleveland,
for these numbers.
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A comparison of the three samples of size 20 using
a two-sample Kolmogorov test rejects the hypothesis
that any of them are from the same distribution!
This is a sad result for large-scale simulation,
particularly if one were trying to simulate the
distribution of the Chi-square summary statistic,

x:;, for the runs test.

The three generators have been shuffled and the
Chi-square statistics of 100 tests for samples
of size 216 numbers from each generator were
found to be distributionally commensurate. The
shuffled Tausworthe generator was still suspect,

however.

Results of this testing will be given elsewhere;
other statistical tests are being evaluated. The
conclusions so far are interesting. There is
mild evidence that shuffliny helps. The main con-
clusion seems to be, however, that the runs test
is virtually useless. (Note that Bates and Zirkle
accept RANDU, partly on the basis of runs tests.)
And although recent books (Newman and Odell, 1971;
Maisel and Gnugnoli, 1972) tout the runs test as
amongst the best, I have been unable to find any
documentation for this. It seems to be an example
of a stochastic rumor to which I too have contri-
buted (Lewis, Goodman, and Miller, 1969). Perhaps
some readers can guide me to work on the power

of the runs test; Lehman (1959, p. 155) points
out that a modified runs test has certain optimum
properties in testing for independence in a binary
sequence against lst-order Markov alternatives.
Even results on the power of the runs test re-
lative to the serial correlation test for first
order normal autoregressive schemes would be of

interest.

There is clearly much work to be done in random
number generation. I have also not mentioned

the need for efficiently generated, relisble nor-
maily distributed random variates. These, and
perhaps several other kinds of random deviates
should be provided as primitives, just as randcm
numbers are provided as primitives in APL. A
package to generate normally and exponentially

distributed random variables is available from

Marsaglia at McGill University. It uses some of
Marsaglia's own methods and is very fast. A survey
of some of these methods is given by Ahrens and
Dieter (1972).

b) Ordering.
Ordering (sorting) of quantities, or obtaining

ranks, is a basic opeiation in statistical compu-
tation; a survey is given by Martin (1971). The
main use we had for it initially was in quantile
estimation, and here it was a bottleneck since,

in general, ordering of n quantities takes a
number of operations proportional to n(&n n) and
memory capacity proportional to n. The quantile
estimation problem is discussed below; the use of
ordering is now used mainly in COMPSTAT in gener-
ating statistics such as the median. There cre

severa) points to be made here.

(1) Uniformly distributed random variates
can be ordered by address modification schemes
(Isaac and Singleton, 1956) in time propor-
tional to n, although for large computations
3n memory positions aie needed to avoid over-
flows. An algorithm for this type of sorting
is provided in COMPSTAT.

(1i) It is clear that by using pilot estimates
of a non-~uniform distribution, address modi-
fication schemes can be used on any data,
These take, asymptotically, n operations,
but for reasonable sample sizes the procedure
18 slow and cumbersome programming-wise. The
scheme is due to Floyd at Stanford. There is
renewed interest in this area and Chambers
(1971) has a scheme for partial sorting which
is more efficient than an n(ln n) sort.
Andrews (personal communication) also has a
scheme for obtaining the median; it uses a
pilot estimation scheme and is subject to
overflows which could be a problem in large-

scale simulations.

(i11) Schemes using the Markov property of
the gaps (differences between successive order
statistics) (see David, 1971, p. 17) are
available for producing ordered uniform var-

iates (Schucany, 1972; Lurie and Hartley, 1972).

S
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We had tried in COMPSTAT an equivalent scheme
based on the independence of the gap statis-
tics for exponentially distributed variates.
These schemes for moderate n are more time
consuming than the n(log n) schemes, but are
more efficient in use of memory space. Their
primary use would seem to be when only a few
of the low or high order statistics are needed.

Two points should be made here:

1. It is computationally easier to generate
high order statistics, rather than the low
order statistics advocated by Lurie and
Hartley (1972) and Shucany (1972). Denoting
the uniform variates by U and the ordered

i
uniform variates by U(i)' we have

u 1 i
prob{u Su, U, =u } Y
(1) (i)' 1+l (1+l). u(i+l)
(i=1,2,...n; u(i) < u(1+1), ueyi " 1)

If only low order uniform order statistics are
required, they are generated as UZi) =1 -
Uln1-1) "

2. The time consuming operation in the above
is to take the (1/i)th power. This 1is done,
usually, using logarithms and the scheme is
then equivalent to generating order statistics
from a unit exponential distribution. However,

since it is much faster to generate exponen-

tial variates using some of Marsaglia's sam-

pling procedures than it is to generate them
by taking the logarithm of a uniform variate,

it is faster to generate ordered uniform ran-

dom numbers by starting with exponential var-

lates.

The basis for this is that if E(t)’ i=1, 2
...n, denotes ordered unit exponential vari-
ates from a sample of size n, and we let
E(O) = 0, the gap statistics (Cox and Lewis,
p. 26-27)

Py " By “Eaeny G be®

are independent exponentials with mean
E(D(i)) = (n+1-1)—1. Thus if we have n unit
exponentials, generated say by one of Marsag-

lia's schemes, we generate

1
Eegy ° b o(m1-4) E, (1 =1, ...n)
i=1
and
U(i) = 1 - exp {E(i)} (1 =1, ...n).

An n(log n) sorting and ranking scheme is also
provided in COMPSTAT, for sorting and ordering with-
in the STATISTICS GENERATOR.

¢) Quantiles and Percentiles.

Estimating quantiles was the second biggest bottle-
neck in implementing COMPSTAT. Quantiles are more

b:clc in characterizing distributions than percen-

tiles, although, for example, one is interested in

percentiles when evaluating by simulation the power
of a test based on a statistic S. Thus, given

the a~-quantile x_  of under a null hypothesis,

o
one wants the percentile corresponding to S and

X, under a different hypothesis.

Percentile estimation as a binomial prucess 1is es-
sentially straightforward and ideal by our criter-
ion of simplicity and economy of computation and
memory requirements. It is alsc unblased. However,
it appears that greater efficiency should be ob-
tained by coupling estimates at different xa's,
although I haven't been able to do so. Most schemes
appear to require assumptions about boundedness of
the probability density function. Somerville (1970)
has some results in this area; it appears to be an

area for further research.

Quantile estimation based on order statistics is
advocated in most texts (see David, 1971). For
large-scale computation the sorting time required
and the memory capacity 1s prohibitive. Stochastic
approximation schemes (Robbins and Monro, 1951;
Hodges and Lehman, 1956) were then tried but found
to converge at an impossibly slow rate for large
quantiles. These two quantile estimation schemes
are prime examples of statistical procedures which
are not attuned to computing realities, and whose
asymptotic properties are deceptive as far as prac-

tical applications are concerned.

A solution was finally found (Goodman, Lewis, and
Robbins, 1972) which combined the stochastic ap-

proximation with a data transformation. Typically
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maxima of successive groups of size v

a-quantile was required (a>0.5), the

of reali-

zations of S are found. The problem is then

if o
which is equal to xu,

\rs-ll power of the distribution

one, - av, of finding the X quantile,
in a distribution which
S, Fs(x).
1/2 the

problem becomes one of estimating a median, al-

i{s the

By taking v large enough to make a'=

though other values of v can be used.
approximations work well with medians, but as the
blias is apparently of order m-l/z, jackknifing

is required to reduce the bias.

The present scheme (Goodman, Lewis, and Robbins,
1972) based on the maximum transformation and
stochastic approximation solves the basic pro-
blems of quantile estimation, but research is con-
tinuing to improve it. Computationally it is very
good since finding a maximum requires only two
memory cells and computation time is linear in m,
the number of realizations of S which are gen-
erated. It is also simple to compute in parallel
the quantiles for several levels, e.g. o =

0.990, 0.995, 0.999.

D. Salsburg has raised the question as to whether
one wouldn't want to order the data anyway to do,
for instance, a normal probability plot of the
simulated distribution. This may be true for
samples of size m equal to about 500; beyond
that the sorting in a large-scale simulation be-
comes onerous, time-wise and memory-~wise, and I
feel a plot using 16 quantiles, as in Figure 2,
plus the moments in Figure 3, is as good as or

better than a full probability plot.

d) Bias and Bias Reduction.

It is essential for sensible and interpretable
simulation results to have estimates of the var-
fances of the simulated quantities. However,
sectioning the m replications in A large-scale

simulation into r sections of m'

replications
to estimate the variance of estimates (see

Mosteller and Tukey, 1968) brings in problems of
bias. to be about

10 to get reliable estimates of the variance, but

Thls 18 because one wants r

the rrwiiting m' may be too small to reduce the

Stochastic

10
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bias in the simulated quantity to acceptuble levels.

This problem seems to be well in hand because of
the jackknife technique for bias reduction which
was developed by Quenouille (1956), pushed by
Tukey (1958) and generalized by Schucany, Gray,

and Owen (1971) and Gray and Schucany (1972). A
similar technique was used by Gaver and Hoel (1970)
in examining small-sample Poisson probability es-
timates. Some price may be paid in {inflation of
the variance of the estimator (Miller, 1i964; also
Goodman, Lewis, and Robbins, 1972, for a specific

case).

In COMPSTAT the jackknife 1s quite simply incor-
porated into the STATISTICS GENERATOR.

e) Variance Estimation.

The problem of bias appears to have been alleviated
directly by the jackknife, and indirectly because
of a suggestion by Tukey (1958) that the sample
standard deviation based on the pseudo-values in
the jackknife procedure be used to estimate the
variance of the jackknifed estimate. There {-
some evidence thar this procedure is broadly
applicable, although Miller (1968) pointed out
cases where it can give poor results. In general,
n-fold jackknifing in a small sample of size n
can give an estimate with a very inflated variance,
though this problem disappears as n-+>, Relevant
references are Arvesen (1969), a review by Arvesen

and Salsburg (1972), and Mosteller and Tukey (1968).

The jackknifing procedure will probably be most

useful when available computation time is too short
for sectioning. For a description of variance
estimation techniques tased on sectioning, see

Mosteller and Tukey (1968).

f) Variance Reduction Techniques.

I have not discussed variance reduction techniques
so far. An excellent review is given by Gaver

(1969); see also Hammersley and Handscomb (1964).
These variance reduction techniques can be imple-
mented {n COMPSTAT but there seem to be several

drawbacks, mainly that the methods are particular
to the problems at hand. Thus, a large amount of

time can be spbnd deriving, say, an antithetic
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variate for a particujar problem and thi{s may, when
larg: computers are available, be an i{nefficiert

way to use statisticians,

The most {mportant drawback to most methods, how-
ever, 1s that a method that reduces the variance
of an estimate of the mean of a statistic § will
often inflate the variance of an estimate of the
variance of 8. This is clearly true for many
anti{thetic variate techniques (Hammersley and
Mauldon, 1956) and would be worse when quantiles
or percentiles are also required. This may be

all right in nearly normal situations, but not in

others.

Much more research is required on variance reduction
techniques that are applicable to all aspects of

the characterization of a distribution, and are
easily derived. Control variable techniques
(Fieller and Hartley, 1959) seem to me the best

candidate for this role.

An empirical control variable technique can be im-
plemented with COMPSTAT when exploration is re~
quired around a null situation. This may, for
instance, be a test of hypothesis in which power
against small deviations is of interest. Again,
small variations in scheduling . jorithms in com-
plex queues might be of interest to see what

improvement they make to, say, throughput time.

me might then do a very precise simulation of the
characterizations of the statistic under the null
hypothesis. Fix m', the number of replications
per section, and let r, the number of sections,
be large and denote by ﬁ;(r? the estimated
quantity under the null hypothesis. This will be
the average of the estimates of (% from the r
sections. Results for the sections are kept in
the SIDEPUT, together with the seed for the random
number generator which initiates each section of
the simulation. The quantity is estimated under
alternative conditions using the same random num-
bers using only r' sections, where r' << r.
Cail this quantity é;(t'). 1f %(r') is the

null (average) estimate from the first r sec-

tions, q)(l‘-t') the null (average) estimate from

the last r - r' sections, then the control 11
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variable estimate is

R

By = g - T + o

= T - B Be ¢ D T e,

PP

Then

var( € (r')] = var[T (r")] + (5

; )2varl—%(r')] -

(r-r') cov|E(r") _E_o(r')] + (!--L'-)var[%(r-r')].
r € r
The common random numbers used to generate the es-
Efmates should make the estimates 2;(r') and ]
er') highly correlated, and the above equation
is the variance in the usual control variable sit-
uation except for the last tern. If r {is large
relative to r' this last term should be small

relative to the other terms.

It is possible to use subsequent sections of size
r' in the original simulation of tb to explore
other alternatives, say %1, & y +++» There are
interesting design and analysis problems in this

scheme which will be explored elsewhere.

One final point should be made here about control
variables. Let 6 be the uncontrolled estimate
and € the controlled estimate (generated from
the same random numbers). It is not often real-
ized that even with a regression adjusted control

(see Gaver, 1969) the maximum attainable variance

vargg) 2
var ( )= S 2 0%

where © 18 the correlation between 1 and 6

reduction is

It can be very difficult and time-consuming, es-
peclally for the inexperienced practitioner, to
find & control which gives a high enough o to
justify the pratitioners time. And in many cases
equivalent speed ups can be achieved by using more
efficient random number generators, ordering rou-

tines, etc.

The time factor to achieve a high p is one rea-

son for putting forward the empirical scheme above.

g) Planning Simulation Experiments.

The empirical control variable suggestion in the

previous section brings up the whole question of
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the design of simulation experiments. Thus, {t
would be reasonable to use the emp{ ical scheme,
or plan an experiment around the null value (b?
This would be appropriate {f the range of para-
meters of interest were known [n advance. The
empirical control variable technique seems at-
tractive as an on-line, interactive procedure,
especially when estimates of the variances of the
estimates are ~vailable, as in COMPSTAT. Some
formal analysis is still needed and this could

be formidable.

In general, it would seem that the output of
large~scale simulation would be a fertile field
for application of techniques of analysis of var-
fance and experimental design. I am not familiar
with much by way of specific applications; several
recent books, including that by Mihram (1972),
which I have not examined carefully, do treat
analysis of s’mulation experiments. The tendency,
however, do:s seem to be to just regurgitate the
old theory without specifically worrying about

particular problems of simulation experiments.

A simple case occurs when an experimenter has twc
variance reduction techniques available, say two
control variables, and a fixed number of repli-
cations m he can perform. He wants to choose
the control variable which mirimizes the variance
of the final estimate of a parameter, say §
which could be the mean of a statistic S. If

w' 1is large enough so that the estimates in each
of the r sections (rm'=m) are unbilased and
normally distributed, this is a classical two arm

bandit problem.

1 know of no one, however, who has actually done
this, probably because the benefit of reduced
variance doesn't outweigh the extra cost of tool-
It could be

Once more than one para-

ing up for two estimates of &
feasible with COMPSTAT.
meter is involved, say the mean and variance of
S, the problem is much more complicated. Iu
general I think, however, that as computers de-
velop simulation will make many statistical prac-

tices developed in vacuo widely useful.

Some of many other open design problems can be ;,

seen by considering Figure 2, where estimated quan-
tiles of a distribution are plotted. One would
generally want to smooth these plots or fit some
regression function to assess the rate of conver-
gence to the asymptotic normal distribution. There
are problems in that the number of simulations, m,
was fixed {n advance and thus, the variances at
each n vary. Moreover, one would want to couple
the smoothing or regression analysis of the var-
ious quantiles. These are both functionally and
statistically correlated for each n across

quantiles and with n for each quantile.

Detailed analysis of such graohic output needs
much more work; 1t i{s possible that the work of
Efron and Morris (1972) may be relevant to this

problem.

Besides the smoothing, any program such as COMPSTAT
should prouvide facility for direct plotting of
output tables of rounded and perhaps smoothed data.
This is one facility computer scicntists can pro-

vide us with,
3. MISCELLANEOUS PROBLEMS AND OPEN QUESTIONS.

I have not touched o1 many questions in large-scale
simulation. A few are discussed here to emphasize
that there are many problems that do not even start
to fit on present or future computers. Thus, sim-
ulation, especially without some analytic support,
is not Zlways a possible way out of problems, al-
though some people feel simulation is the last

resort., Other questions discussed below indicate

that there are simple problems we cannot handle.

a) Conditional distributions.

Conditioning poses problams in simulations which
Thus, in

fitting exponential polynomials to data from a non-

I do not know how to trandle efficiently.

homogeneous Poisson process (Lewis, 1972) observed
one wants to condition on the
The

for a time to.

number, n, of events observed in (0,t

0

times to events t, are then order statistics

i

from a uniform random sample of size u. In test-
ing for a second order term in the polynomial one
wants the conditional distribution of Zti, given

n and Zti' Conceptually this is simple to see,

-
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as ;tl is the distance from the origin to the

n -1 dimensional hyperplane defined by fixing

:ti' The joint asymptotic normality of th and
Iti give the result that for large n, th/n

has a conditfonal normal distribucion with mean
(Lewis, 1972).

)
). M= E(Etf'“;Eti) - Lé ;;é - %
and standard deviation
o 2o
- 4 (lzn)l/z ‘

Hou does one simulate this problem for small n
and assess the rate of convergence to n? This

must be a very common problem,

b) Multivariate problems.

1 have not mentioned simulation of multivariate
statistics S. An immediate problem here is that
quantiles and percentiles are not uniquely defined,
so one has to use joint moments, which could be
estimated in COMPSTAT, or rely on probability
density functions. I have not discussed density
estimation here at all. Multivariate problems,

of course, also bring in new aspects of graphical

and tabular output which are non-trivial.

¢) Simulated maximum likelihocd.

As a last stab, I would like to mention another
area which interests me. In complicated time
series we now have compucationally feasible tools
such as spectral analysis to help in defining and
delineating models. Once this is done, however,
there are often no reasonable ways of estimating
parameters of the model, especially since likeli-
hoods cannot be derived, even though the model is
structurally simple. It would be useful to simu-
late the joint density of the observations at the
observed data point as a function of the para-
meters so as to find the maximum likelihood es-
timates of the parameters. 1 assume this is worth
the cost to the experimenter. One then has a more
complicated case of a), closely related to re-
sponse surface designs. The solution seems to be

far away.

The reader is referred to the papers by Tukey

(1972 a, b) for further problems.
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