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URGE-SCALE COMPUTER-AIDED STATISTICAL MATHEMATICS 

Peter A.  W.  Lewis 
Naval Postgraduate School 

Monterey, California 

Abstract 

Some thoughts on large-scale computer-aided statistical mathematics   (primarily 
•iHulation)  which were presented  at the 6th Annual Conference on the Computer 
Science/Statistics Interface conference are presented.    Comments of participants 
and panelists  (D.  F. Andrews, J.  N.  Arvesen,  D.  P. Caver,  and G. Marsaglia)  have 
been added  to the original text. 

: 

1.     INTRODUCTION 

The aim of  this paper is to stimulate discuaslon 

on large-scale computer-aided statistical mathe- 

matics  (primarily simulation) at this conference. 

There has been a lot of discussion of computers 

and statistics   (Hartley,  1972; Milton and Neider, 

1969; Chambers,  1970), but little of large-scale 

use of computers in simulation experiments  to 

solve open distributional problems.    This has per- 

hafa been because of the unavailability of large 

crmputers and large amounts of computer time to 

research workers and statisticians.    I think this 

vlll change rapidly over the next ten years as 

internal computation speed and the size of random 

access memories go up.    The talk given by Dr. A. 

G. Anderson at this conference has amply illus- 

trated  this  trend. 

To take advantage of this availability, and to use 

the internal time sharing of central processing 

units inherent  In multiprogramming, new statistical 

techniques which are computation-orler   ed will have 

to be developed.    There is already growing  impetus 

in this direction and this new  technology  coupled 

to the computers will make an enormous  Impact on 

statistics.    I should note,   too,   that  large-scale 

simulations are commonplace in  industry and devel- 

opment laboratories,  but  the inefficiency of most 

of  these computations is appalling. 

There are recent surveys  of  several aspects of 

statistical computing (Hemmerle,   1967;  Halton, 

1970;  Chambers,  1970; Freiberger and Grenander, 

'.971), most notably that by Tukey   (1972b)  who has 

been responsible for many of  the new ideas In sta- 

tistical computation.    Consequently,  I will only 

describe here the evolution of  a computer program 

called COMPSTAT which was developed to  try to use 

the IBM 360/91 computer at   the  IBM Research Center 

as efficiently as possible.    The problems encoun- 

tered in developing this program,  some  solved but 

others open, are more than enough  for one paper. 

»Sponsored by the Office of Naval Research through Contract NR 042-288 and   the 
Foundation Research Program at  the Naval Postgraduate School. 
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My Interest  In  the problem of  large-scale 

statistical  computation grew  from the  frustration 

ot   trying  to deal   »ith  non-normal  time scries,   in 

particular,  point  processes   (Cox and Lewis,   1966), 

and of  having  to write a book  around  the many  gaps 

In the distribution  theory.     The first problem I 

tackled was  the  distribution of  product-moment 

statistics   (Lewis  and  Goodman,   1970),  since one 

can,  in principle,  find recursion relationships 

to generate  the distribution   for successive  sample 

sizes    n.     It   took six months   to verify  the 

mathematics,  six months  to program it, and  even 

then  I wasn't  sure  enough of   the programming  to 

publish  the results.     I   then  turned  to simulation, 

and quickly ran  into several equally frustrating 

problems: 

(1) Many procedures,  notably variance re- 

duction techniques, were very particular 

to the problem at hand and difficult  to 

generalize.     For example, a technique 

which works  in estimating the mean of a 

distribution may not work when one  is 

also  interested in ectlmating the var- 

iance or higher moments. 

(2) Most published statistical estimation 

(point and interval)   techniques were 

"valid" asymptotically, and were pro- 

hibitively expensive in terms of number 

of operations  (addition and multipli- 

cation)  and memory cells required. 

(3) Most "canned" routines were slow and 

generally unreliable. 

(4) "Tooling up"  took an excessive amount 

of time, and storing results, tabu- 

lating results and manipulating results 

was difficult. 

It was therefore decided to look into the proce- 

dures and algorithms available, program them 

efficiently if they were useful, develop new 

techniques which were fast and economical of 

storage where necessary, and put them into a 

standard program which could be used for large 

scale simulations. 

Several  guidelines were set: 

a) All  procedures were  to be     omputatlonally 

simple,  use as   little mem.>ry  as  possible 

and   to be as broadly applicable  as  pos- 

sible.     In particular,    his  meant   they 

should uti as   little  Information  as 

possible about   the  statistic,   say    S,   to 

be  simulated.     For  example,   one  might  not 

want   to use the  specific   information  that 

S    was positive. 

b) To utilize the  speed  of  the  computers, 

the best way seemed   to be   to  compute  the 

distributions of  as many  statistics as 

possible simultaneously. 

c) Memory requirements  should  be  kept   fixed 

ana  relatively  small  in order   to use 

excess CPU  (Central  Processing Unit) 

time by running  in  a lowest priority par- 

tition in a multlprogrammed  invironment. 

A block diagram of  the over ill program,   COMPSTAT, 

which was developed  Is  sh^-n  In Figure  1.     We dis- 

cuss   this program generally before  going  into 

details  of  implementation and unsolved  problems 

in later sections. 

Referring  to Figure 1,   the  symbol     n    is used to 

refer   to sample  size  in statistical  simulations, 

ao that  the statistic    S    might be  the  average 

of   the  observations  In a random sample  of  size    n. 

Any value of    n    may be used in the program, 

though  it is written so as to repeat simulations 

on successive values of    n    if required.    A number 

m    of  replications is specified by the user, with 

the option of splitting    m    into    t    blocks of 

size    m'    each    (m « rmf).    This  is done to obtain 

estimates of  the variance of estimates and also 

to allow for checkpoints to be talcen. 

On each replication the STATISTICS GENERATOR can 

call  for    Hin    r£.ndom numbers,  unsorted  or 

sorted by magnitude.    The user wrltfes  the STA- 

TISTICS GENERATOR, specifying up  to 32 statistics 

(functions of  the    I    random variates).     This 

has proved to be a very  flexible arrangement;   the 

statistics could be, for example. 
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STATISTICS 
GENERATOR 
(Max of 32) 

RANDOM 
NUMBER 

(tin) 

' I 
MOMENTSIQUANTILESI PERCENTILES 

! 

INDIVIDUAL 
TABULATION 

CUMULATIVE 
TABULATIVE 

SORTER 

SIDEPUT 
AND 

ARCHIVE 
 T 

I 
 I 

GRAPHICAL  OUTPUT 

EDITOR AND SMOOTHER 
 I 

FLOWGRAPH   OF   COMPSTAT PROGRAM 

Figur« I. 

a) the  sample serial correlatinns of lags  1 

to  32 In a series of random variables 

of length n; 

b) the waiting times of 32 successive cus- 

tomers in a simulated queue; 

c) an estimate of a parameter in a distribu- 

tion, the jackknifed estimate of the 

parameter, the jackknifed variance, and 

the pseudo-values; 

d) 32 points in the simulated spectrum of a 

time series of length n. 

There are many other possibilities.  For each of 

these statistics the user can specify that he wants 

estimates of the first four moments of S,  16 

quantiles of the distribution of S, and 16 per- 

centiles of S (or any combination of these three). 

Quantiles here is used to mean the solution x 

of the equation a • FgCx ). where a is  given and 

F (x)  is the distribution of S.  A percentile is 

just F(x) for given x. We assume the quant lie 

exists. 
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Mean Stand. Dev Lev. er Quantiles 

W "o, 001 *a. 002 X0. 005 xo, 01 0 "O. 020 X0, 025 "o. 050 X0. ion 

Normal 11.982 2. 562 f>. 989 7.197 7. 512 7. 789 8.113 8.229 8.642 9, 165 
(ExHct) 

Exponential 11.824 2.827 6.133 6, 378 6.716 7.068 7, 445 7. 580 8, 063 8   6h8 
(0,001) (0. 001) (0. OOS) (0. 003) (0.003) (0. 002) (ft. 002) (0, 002) (0. 002) (0.001) 

1/2 WeibiiU 213.828 85. 678 67   S80 72.483 80,052 87, 0b8 95. 410 98. 523 109,707 124,384 
(0.011) (0.033) (0.0671 (0. 080) (0. 082) (0. 059) (0,032) (0.030) (0.036) (0. 032) 

Skfwnesi 

^i 

Kuriotr.5 

Y~2 

Upper Quantiles 

X0. 900 "0,950 X0.975 ''0,980 X0, 990 \ 995 X0. 998 X0. 999 

Nortiial 
(Exact) 

l.-)42 IS, 324 If.764 I a.i;6 18.627 20.024 21. 415 2i.251 2 1. 638 

Exponential 1.061 2.120 IV 514 17. 064 18.5-2 14.061 20, 552 22.015 21. 055 25. 557 
(0. 003) (0.023) (0.004) (0, 005) (0. 005) (0. 006) (0, 009) (0. 009) (0. 024) (9. 033 

1/2  Weibull 1. S57 S, 082 323. 012 373,912 425.816 442, 749 496.882 553.934 634. 068 700   534 
(0. 003) (0. OSM (0.084) (0. 059) (0.136) (0.172) (0, 182) (0. 328) (0.472) (1    696) 

Table 1 

Tabli 1 shows the form chosen to tabulate the 

results (moments and quantiles) of a simulation 

Involving m replications for each n. These 

results are averages and sample standard devia- 

tions of the results of the r blocks of m' 

replications, all of this being stored In an 

archive which Tukey has aptly called the SIDEPUT, 

The estimated standard deviations of the estimates 

are given In brackets Just below tht estimates; 

below them we give (not shown) the estimated 

quantiles after subtraction of the estimated mean 

p and division by the estimated standard devia- 

tion O. This allows the experimenter to judge 

whether the statistic Is approximately normally 

distributed. 

The last blocks in Figure i allow for CUMULATIVE 

TABULATION on n, EDITING and SMOOTHING of the 

results (including rounding and printing tables 

for publication) , and GRAPHICAL OUTPUT as shown 

in Figures 2 i3.  It is easy to see in the figures 

that this statistic is not normally distributed 

and is converging very slowly with n to the 

asymptotic  (n^») distribution. The positive 

skewness of the distribution is also evident. 

An original, rather inefficient, COMPSTAT program 

was used to implement a study of tests of Inde- 

pendence In point processes. Twenty statistics 

were computed simultaneously on an IBM 360/91 in 

a 120K partition.  Some of these results have been 

published (Lewis, 1972) and are partially repro- 

duced here (Figures 2 and 3); others will appear 

later. 

A study on a similar scale of robust estimates of 

location was unt'°rtaken at Princeton (Andrews, 

et al, 1972); they had the advantage over me of 

both manpower and expertise. 

It is hoped to rewrite the COMPSTAT program at 

some later time in order to Incorporate all of the 

recent advances in statistical computing technol- 

ogy described below. 

2. DETAILS 

We discuss now the details of the Implementation 

of a program such as COMPSTAT. At its inception 

in  1966 we quickly  ran up agai.ist   the  lack of  real 

■ ——i gJl-v..... ■.,. "■• ,rif n /Simüfhi 
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Figure 2 

computational considerations In many standard 

statistical procedures. The situation is better 

at present, with books such as Hemmerle (1967) 

and Knuth (1969) now available. Knuth (1969) in 

particular is invaluable. There are still many 

problems, however, particularly relating to large- 

scale computations. 

a) Random Number Gfcneration 

Clearly the statistical quality of Che random 

numbers available for large-scale simulations 

will be the limiting factor in how far one can go 

In utilizing large-scale coaputera in simulations. 

In 1966 the main generator In use was RAMDU in 

the IBM SSP package. It is still widely u«ed to- 

day, by default, even though it is known to 

knowledgeable users to have poor static Veal pro- 

perties. There are no published test i suits on 

RANDU, except one brought to my attenf n at the 

conference (Bates and Zirkle, 1971) but there are 

papers published on problems which have been en- 

countered with its use. Moreover, as a statistical 

consultant one comes up against many cases in which 

strange results in simulations are remedied by re- 

placing RAMDU by another random number generator. 

In this respect it might be noted that if statis- 

ticians are guilty of igncring computational 

aspects of their procedures, computer scientists 

are equally guilty of Ignoring the statistical 

aspects of algorithms. There are hundreds of 

clever random number algorithms in the literature 

MMBM,   m—mm^mm ■     I   Hil.t/H ".^i^iMiiii ^i il EM ■ -, i, 
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Figure 3 

[see ehe bibliography by Nance and Overstfeet, 

1972] but there are virtually no acconpanylng teat 

results published.   Moreover, It is generally dif- 

ficult to do so in a computer Journal. 

In 1966 we started to investigate the problem of 

random number generation for large-scale computa- 

tion, and after extensive testing we developed 

a 31-blt pseudo-random number generator for the 

System 360.    This is a multiplicative congruentlal 

generator of the form (Lewis, Goodman, and Miller, 

1969) 

j.1+1 i AXj^    (mod    p) , 

31 5 
where p, a prime, Is 2   1 and A - 7  is a 

positive primitive root of p, thus guaranteeing 

a cycle of length p for the generator. Another 

advantage of uaing a positive primitive root for 

the multplier la that low order bits are also 

random. Beside the assembly language version given 

in the paper, a very fast version of this 

generator which generatea arrays of Integer or 

floating point numbers is available In the new IBM 

SL/MATH package. We will refer to this as the GGL 

generator; It generates a random number in 1.40 

Msec» on a 360/91 and in 16.00 ysecs on a 360/67. 

A version has been written for the 360/67 at the 

Naval Postgraduate School using a division simu- 

lation algorithm due to Lehmer (see Payne, Rabung, 

Bagyo, 1969; Llnlger, 1961). 

"i^-o,"*m""'■''" '   '' '   ■   •     "^-m^äanii  Miitüi'iMiaiiaiMiüitiiiiiiVii 
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Test results for GGL are given in Lewis, Goodman, 

and Miller (1969) and extensive subsequent use 

turned up no obvious pro.Oems, though constant 

care was exercised. For example, in Table 1 the 

maximum periodogram values with 1/2-Wcibull dis- 

tributed variates (squares of exponentially dis- 

tributed ' iriates) are very large. In this simu- 

lation r - 6, m1 - 750,000 and m - 4,500,000. 

A. ft check, normal devl'.tes were used In a very 

large simulation and no discrepancy from the 

exact distribution (shown in Table 1) even at 

0.999 quantlies was found. This GGL random 

■aumoer generator was used in the Princeton study 

(Andrews, et al, 1972) and is used in APL. 

Nevertheless, valid doubts continue to be expres- 

sed about the use of the GGL generator in large- 

scale computations, particularly in light of 

Marsaglia's results (Marsaglia, 1968, 1972) on the 

structure of sequences of numbers from congruen- 

tlal generators. These results have shed a lot 

of light on problems which can be encountered 

with congruentlal generators, but I don't be- 

lieve they tell the whole story. There are also 

new types of generators being advocated.  Some 

of these are too cumbersome for consideration, 

but others are popular, in particular the Taus- 

worthe or shift register generators (Tausworthe, 

1965).  Some doubt has been cast on the statis- 

tical properties of these shift register pseudo- 

random number generators recently; my own 

preference is, for speed and simplicity, to go to 

shuffled congruentlal generators (Marsaglia and 

Bray, 1968). Tukey (1972) ascribes this Lea 

to Gentlemen but it seems quite old and was put 

forward by Marsaglia In the early 1960's. I 

have found no documentation of the statistical 

properties of shuffled generators, although they 

are intuitively appealing. 

We have undertaken further statistical tests of 

some of the above generators at the Waval Post- 

graduate School. In particular, we have been 

Interested in correlating test results with 

* I am indebted to Dr. L. R. Turner, NASA 
for these numbers. 

results of Couveyou and MacPherson, 1967; (see 

also Knuth, 1969, pp. 82-10Ü.) and Marsaglia, 1972. 

It seems to me that the Couveyou-hacPherson Fourier 

analysis is the best analytical tool for predicting 

performance of random number generators that has 

appeared. Marsaglia's results [1972] on the lat- 

tice" structure of the congruenti.-'i. generators «re 

also useful. 

The tests referred to started with Lhe GGL random 

number generator, RANDU and a TAUSWORTHE generator 

(Tausworthe, 1965) ciu the runs test. As in Lewis, 

Goodman, and Miller (1969), runs of length eight 

or longer are pooled and a Chl-square statistic 

computed. Nominally, this has a Chl-square dis- 

tribution with 7 degrees of freedom und we denote 
2 

it as Xn-    Table 2 gives summary Fca\.lstics on 
16 

20 runs of 2   numbers each for the three gener- 

r'ors. The Tausworthe generator is now analytic- 

ally known to have poor runs performance (Toothlll, 

Robinson, and Adams, 1971). The runs test rejects 

neither GGL nor KANDU if the test statistic is as- 

sumed to be distributed as a Chl-square varlate 

with 7 degrees of freedom. As mentioned before, 

RANDU is known to be poor; this is shown in Table 

3 giving the Couveyou-MacPherson wave numbers for 

GGL and RANDU for dimensions up to 7. It is in 

higher dimensions that RANDU is particularly poor^ 

Table 2. Runs test; Chl-square statistic 

4 o , 

GGL 6.846 4.084 

RANDU 7.939 3.502 

TAUSWORTHE 9.972 10.428 

Table 3. Wave numbers for two generators.* 

GGL RANDU 

Dimension 

2 16 ,807 23,172 

3 638.9 10.86 

4 146.25 10.77 

5 67.21 10.77 

6 29.92 

7 16.55 

Lewis Research Center, Cleveland, Ohio, 

.^-^..a... 
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A comparison of the  three samples of  size 20 using 

a  two-sample Kolmogorov  test rejects  the hypothesis 

that any of  them are from the same distribution! 

This  Is a sad  result  for large-scale  simulation, 

particularly If one were trying to simulate the 

distribution of the Chl-square summary statistic, 
2 

X7,    for the runs test. 

The  three generators have been shuffled and the 

Chl-square statistics  of  100  tests  for  samples 

of  size 2      numbers  from each generator were 

found  to be dlstrlbutlonally commensurate.    The 

shuffled Tausworthe generator was still suspect, 

however. 

Results of  this testing will be given elsewhere; 

other statistical tests are being evaluated.    The 

conclusions so far are Interesting.     There Is 

ml id evidence  that shuffling helps.     The main con- 

clusion seems  to be, however,  that the runs test 

is virtually useless.     (Note  that Bates and Zirkle 

accept RANUU,  partly on the basis of  runs tests.) 

And although recent books  (Newman and  Odell,  1971; 

Maisel and Gnugnoli,   1972)  tout the runs test as 

amongst the best, I have been unable  Co find any 

documentation for this.     It seems  to be an example 

of  a stochastic rumor  to which I too have contri- 

buted  (Lewis,  Goodman,  and Miller,  1969).    Perhaps 

some readers  can guide me to work on  Che power 

of  the runs  test; Lehman (1959, p.   155)  points 

out that a modified runs test has cercaln optimum 

properties in testing for Independence in a binary 

sequence against Ist-order Markov alternatives. 

Even results on th« power of the runs  test re- 

lative to the serial correlation test  for first 

order normal autoregressive schemes would be of 

Interest. 

There is clearly such work to be done  In random 

number generation.    I have also not mentioned 

the need for efficiently generated, reliable nor- 

mally distributed random varlates.    These, and 

perhaps several other kinds of random deviates 

should be provided as primitives, Just as random 

numbers are provided  as primitives in APL.    A 

package to generate normally and exponentially 

distributed random variables  is available from 

Marsaglla at McGlll University.     It uses some of 

Marsaglla's own methods and  is very fast.    A survey 

of  some of  these methods is given by Ahrens and 

Dieter  (1972). 

b)     Ordering. 

Ordering  (sorting)   of quantities, or obtaining 

ranks.  Is a basic  opeiation in statistical compu- 

tation;  a survey is  given by Martin (1971).     The 

main use we had  for  it initially was in quantile 

estimation, and here it was a bottleneck since, 

in general,  ordering of    n    quantities  takes  a 

number of operations proportional to    n(in n)     and 

memory capacity proportional  to    n.    The quantile 

estimation problem is discussed below;   the use of 

ordering is now used mainly  in COMPSTAT  in gener- 

ating statistics such as the median.    There ore 

several  points  to be made here. 

(I) Uniformly distributed   random varlates 

can be ordered by address modification schemes 

(Isaac  and Singleton,  1956)   in time propor- 

tional to    n,     although for large computations 

3n    memory positions &ie needed to avoid over- 

flows.    An algorithm for  this type of sorting 

is provided  in COMPSTAT. 

(II) It is clear  that by  using pilot estimates 

of a non-uniform distribution, address modi- 

fication schemes can be used on any data. 

These take,  asymptotically,    n   operations, 

but for reasonable sample  sizes the procedure 

Is slow and cumbersome programming-wlse.     The 

scheme Is due  to Floyd at  Stanford.     There  is 

renewed  interest  in this area and Chambers 

(1971)  has a scheme for partial sorting which 

is more efficient  than an    n(ln n)     sort. 

Andrews   (personal communication)  also has  a 

scheme for obtaining the median;  it uses a 

pilot estimation scheme and  is subject to 

overflows which could be a problem in large- 

scale simulations. 

(ill)     Schemes using the Markov property of 

the gaps   (differences between successive order 

statistics)   (see David,   1971, p.  17)  are 

available for producing ordered uniform var- 

lates   (Schucany,   1972;  Lurie and Hartley,   1972). 
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We had  tried In COMPSTAT an equivalent scheme 

basfid  on  the  Independence of   the gap  statis- 

tics  for  exponentially distributed varlates. 

These schemes  for moderate    n    are more  time 

consuming   than the     n(log n)     schemes,  but  are 

more efficient in use of memory space.    Their 

primary use would seem tc be when only a few 

of  the  low  or high order statistics  are  needed. 

Two points  should be made here; 

1.     It is computationally easier  to generate 

high order  statistics,   rather   than  the  low 

order statistics advocated   by  Lurie and 

Hartley   (1972)  and  Shucany   (1972).     Denoting 

the uniform variates by 

uniform variates by    U 

U      and  the  ordered 

probJu (1)^ U(l)|l,l+1 

(1-1.2,...n; 
'(1) 

(i)' 

(1+1) 

£ u 

we have 

(1+1)' un+l  =  l) 

If only  low order uniform order statistics are 

required,   they are generated  as    üj.v  « I - 

U(rH-l-i)- 

2.     The  time consuming operation In  the above 

Is to take  tho  (l/i)th power.    This  is done, 

usually,  using logarithms and  the scheme is 

then equivalent to  generating order  statistics 

from a unit exponential distribution.    However, 

since it  Is much faster to generate  exponen- 

tial variates using some of Marsaglla's sam- 

pling procedures than It. is. .to generate them 

by taking  the logarithm of  a^ uniform variate, 

it Is faster to generate ordered uniform ran- 

dom numbers by starting with exponential var- 

iates. 

The basis  for this  is  that  if    E/n.   i 1,   2. 

...n,    denotes ordered unit exponential vari- 

ates from a sample of size    n,    and we let 

Efn.  ■ 0,   the gap statistics  (Cox and Lewis, 

p.   26-27) 

'(i) "(1)        (1+1) 
(i -  1.  —, n) 

are independent exponentials with mean 

E(D,n)  -   (n+l-i)"   .    Thus  If we have    n    unit 

exponentials, generated say by one of Marsag- 

lla's schemes, we generate 

i 

'■m  "  I     (n+l-J)   E (i  -  1,   ...n) 
K   '    j-1 J 

and 
U 

(D 1  - exr  iE(1)^ (i  "  1. .n). 

An    n(log n)     sorting  and  ranking  scheme  is  also 

provided  In COMPSTAT,   for sorting  and ordering with- 

in the  STATISTICS GENERATOR. 

c)    Quantlles and  Percentlles. 

Estimating quantiles was  the  second biggest  bottle- 

neck  In  implementing COMPSTAT.     Quantlles  are more 

brjic   in characterizing distributions than percen- 

tlles,   although,   for  example,   one   is  interested   in 

percentlles when evaluating by  simulation  the power 

of a  test based  on a  statistic     S.    Thus,   given 

the    a-quantlle    x       of     :     under a null  hypothesis, 

one wants  the percenttle corresponding  to     S    and 

x      under a different   hypothesis. 

Percentile estimation  as  a binomial process  is es- 

sentially straightforward  and   Ideal by our  criter- 

ion of  simplicity and   economy of   computation and 

memory  requirements.     It  is alsc unbiased.     However, 

it appears  that  greater  efficiency should  be ob- 

tained  by coupling estimates at different     x  's, 

although I haven't  been able  to do so.    Most  schemes 

.•ppear  to require assumptions about boundedness of 

the probability density function.     Somervllle  (1970) 

has some results  in  this are«;   it  appears   to be an 

area for further research. 

Quantlle estimation based on order statistics  is 

advocated in most  texts   (see David,  1971).     For 

large-scale computation the sorting time required 

and  the memory capacity is prohibitive.     Stochastic 

approximation schemes   (Robbins and Monro,   1951; 

Hodges and Lehman,   1956)  were  then tried but  found 

to converge at an impossibly slow rate for  large 

quantlles.    These  two quantlle estimation  schemes 

are prime examples of  statistical procedures which 

are not  attuned  to computing realities,  and whose 

asymptotic properties are deceptive as far as prac- 

tical applications are concerned. 

A solution was finally found  (Goodman, Lewis, and 

Robbins,  1972)  which combined  the stochastic  ap- 

proximation with a data  transformation.    Typically 
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If   the     cn-quanclle was  required     (a>0.5),   the 

maxima  of  successive groups  of size    v    of   reali- 

zations  of    S    are  found.     The problem Is   then 
v 

one,   If    tx    - a  ,  of  finding  the    x   ,    quantlle, 

which  Is  equal  to    x   ,    In a distribution which 
h 

Is  the    v—   power of the distribution    S,     F  (x). 

By   taking    v    large  enough  to make    a' ~  1/2     the 

problem becomes one of estimating a median,  al- 

though  other values  of    v    can be  used.     Stochastic 

approximations work well with medians,  but  as   the 
-1/2 bias   Is   apparently  of order    m ,     jackknlfing 

Is   required   to  reduce the bias. 

The present  scheme   (Goodman,  Lewis,   and  Robbins, 

1972)   based on  the  maximum  transformation and 

stochastic approximation solves  the basic pro- 

blems  of  quantlle  estimation,   but   research   Is  con- 

tinuing  to Improve  it.    Computationally it  is very 

good  since  finding  a maximum requires  only   two 

memory   cells  and   computation  time  is   linear   in    IP, 

the number  of  realizations  of    S    which are  gen- 

erated .     It  Is also  simple  to compute  in parallel 

the quantlles  for  several  levels,  e.g.    a » 

0.990,  0.995, 0.999. 

D,  Salsburg has raised the question as  to whether 

one wouldn't want  to order  the data anyway  to do, 

for instance, a normal probability plot of   the 

simulated distribution.    This may be  true for 

samples  of size    m    equal to about  500; beyond 

that  the sorting in a large-scale simulation be- 

comes onerous,  time-wise and memory-wise, and  I 

feel a plot using  16 quantlles, as  in Figure  2, 

plus  the moments in Figure 3,  is as  good as  or 

better  than a full probability plot. 

d)     Bias and Bias Reduction. 

It  is essential  for sensible and interpretable 

simulation results to have estimates of the var- 

iances of  the simulated quantities.     However, 

sectioning the    m    replications in a large-scale 

simulation into    r    sections of    m'     replications 

to estimate the variance of estimates  (see 

Hosteller and Tukey,  1968)  brings in problems of 

bias.    This is because one wants    r     to be about 

10 to get reliable estimates of the variance, but 

the rr iiilLing    m'    may be too small  to reduce the 
10 

bias  In  the  simulated  quantity to acceptable   levels. 

This problem seems  to be well  In hand  because  of 

the jackknife  technique  for  bias  reduction which 

was developed by Quenoullle   (1956),  pushed by 

Tukey  (1958)   and  generalized  by Schucany, Gray, 

and Owen   (1971)  and Gray and  Schucany   (1972).     A 

similar  technique was  used   by Gaver  and Hoel   (1970) 

In examining small-sample Polsson probability es- 

timates.     Some price may  be  paid   In   inflation  of 

the variance of  the estimator   (Miller,   i96A;   also 

Goodman,   Lewis, and  Robbins,   1972,   for a spec If lc 

case). 

In C0MPSTAT  the  jackknife   is quite  simply Incor- 

porated  into  the STATISTICS  GENERATOR. 

e) Variance Estimation. 

The problem of bias  appears  to have  been alleviated 

directly  by  the jackknife,   and indirectly because 

of a suggestion by Tukey   (1958)   that   the sample 

standard  deviation based  on  the pseudo-values   in 

the Jackknife procedure be  used  to estimate  the 

variance  of  the jackknlfed   estimate.     There   is 

some evidence  tha»-   this procedure  is  broadly 

applicable,  although Miller   (1968)   pointed out 

cases where  it can give poor  results.     In general, 

n-fold jackknlfing in a small sample of size    n 

can give an estimate with a very inflated variance, 

though this problem disappears as    tf*00.    Relevant 

references are Arvesen  (1969),  a review by Arvesen 

and Salsburg  (1972),  and Hosteller and Tukey   (1968). 

The jackknlfing procedure will probably be most 

useful when available computation  time  is  too  short 

for sectioning.    For a description of variance 

estimation  techniques  based  on sectioning,  see 

Hosteller and Tukey  (1968). 

f) Variance Reduction Techniques. 

I have not discussed variance reduction techniques 

so far.    An excellent review is given by Gaver 

(1969);   ciee also Hammersley  and Handscomb  (1964). 

These variance reduction techniques can be Imple- 

mented in COHPSTAT but  there seem to be several 

drawbacks, mainly  that the methods are particular 

to the problems at hand.     Thus, a large amount of 

time can be spend deriving,  say, an antithetic 
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varlate  for  a partlcuiar problem and  this may, when 

l.irg'   computers are available,  be  an  Inefflclert 

way  to use  statisticians. 

The moat   Important drawback  tu most methods,  how- 

ever,   Is  that a method that reduces  the variance 

of an estimate of  the mean of a statistic    S    will 

often inflate  the variance of an estimate of  the 

variance  of    S.    This  is clearly true for many 

antithetic  variate  techniques   (Hammersley  and 

Mauldon,   1956)  and would be worse when quant lies 

or percent! Us are  also required.     This may  be 

all   right   in nearly  normal  situations, but  not  in 

others. 

Much more  research  is required on variance reduction 

techniques  that are  applicable to all aspects of 

the characterization of a distribution,  and  are 

easily derived.    Control variable  techniques 

(Fieller and Hartley,  1959)   seem to me the best 

candidate   for this  role. 

An empirical control variable  technique can be  im- 

plemented  with COMPSTAT when exploration is re- 

quired  around  a null situation.    This may,   for 

instance,   be a test  of hypothesis  in which power 

against  small deviations is of interest.    Again, 

small variations  in scheduling       jorithms  in com- 

plex queues might be of Interest  to see what 

improvement  they make to, say,  throughput time. 

One might   then do a very precise simulation of  the 

characterizations of the statistic under  the null 

hypothesis.    Fix    m',    the  number of  replications 

per section, and  let    r,    the number of  sections, 

be large and denote by     ^\(r)     the estimated 

quantity under  the null hypothesis.    This will be 

the average of  the estimates of     0     from the    r 

sections.     Results  for the sections are kept  in 

the SIDEPUT,  together with  the seed for  the random 

number generator which initiates each section of 

the simulation.    The quantity is estimated under 

alternative conditions using the same random num- 

bers using only    r'    sections, where    r'  <<  r. 

Call this quantity     ^(r*).     If     %(r')     is  the 

null  (average) estimate from the first    r'     sec- 

tions,      (LCr-r1)     the null   (average) estimate from 

variable estimate  is 

\ir') -  \(r') -  e0(r') +  e0(r) 

tf-t 0c(r')  -  ('-*-)    f^r') +  £?-)  T0(r-r.), 

Then 
var[ t£ ( r'))  » var[ t^r')]  +  (—Vvarl ^(r'))  - 

(^)cov[F(r,)fcp(r,)] + (I~'-)var[1(r-r')l. 

The common random numbers  used  to generate  the es- 

timates should make  the estimates     (  (r')     and 

tJr')    highly correlated,  and  the above equation 

is  the variance in the usual control variable sit- 

uation except  for  the last  tern'.     If    r    Is  large 

relative to    r"     this  last  term should be small 

relative  to the other  terms. 

It  is possible  to use  subsequent  sections of  size 

r'     in the original simulation of     tu    to explore 

other alternatives,  say      6   ,    t    ,   ....    There are El       i-2 
interesting design and analysis  problems In  this 

scheme which will  be explored  elsewhere. 

One final point should be made here about control 

variables. Let 6 be the uncontrolled estimate 

and c the controlled estimate (generated from 

the same random numbers). It is not often real- 

ized that even with a regression adjusted control 

(see Gaver, 1969) the maximum attainable variance 

reduction is 

yarl|). 
var(ff) o2. 

the last r - r'  sections, then the control 
11 

where P is the correlation between  6 and  6. 

It can be very difficult and time-consuming, es- 

pecially for the Inexperienced practitioner, to 

find t.  control which gives a high enough o  to 

justify the pratltioners time. And in many cases 

equivalent speed ups can be achieved by using more 

efficient random number generators, ordering rou- 

tines, etc. 

The time factor to achieve a high p is one rea- 

son for putting forward the empirical scheme above. 

g) Planning Simulation Experiments. 

The empirical control variable suggestion in the 

previous section brings up the whole question of 
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the design of simulation experiments.  Thus, It 

would be reasonable to use the empl leal scheme, 

or plan an experiment around the null value  L? 

This would be appropriate If the ringe of para- 

meters of Interest were known In advance.  The 

empirical control variable technique seems at- 

tractive as an on-line, Interactive procedure, 

especially when estimates of the variances of the 

estimates are callable, as In COMPSTAT.  Some 

formal analysis is still needed and this could 

be formidable. 

In general, it would seem that the output of 

large-scale simulation would be a fertile field 

for application of techniques of analysis of var- 

iance and experimental design.  I am not familiar 

with much by way of specific applications; several 

recent books, including that by Mlhram (1972), 

which I have not. examined carefully, do treat 

analysis of s Tiulatlon experiments.  The tendency, 

however, do^s seem to be to Just regurgitate the 

old theory without specifically worrying about 

particular problems of simulation experiments. 

A simple case occurs when an experimenter has two 

variance reduction techniques available, say two 

control variables, and a fixed number of repli- 

cations m he can perform. He wants to  choose 

the control variable which minimizes the variance 

of the final estimate of a parameter, say  9, 

which could be the mean of a statistic S.  If 

IT'  IS large enough so that ttu; estimates In each 

of the r sections  (ris'"m) are unbiased and 

normally distributed, this is a classical two arm 

bandit problem. 

I know of no one, however, who has actually done 

this, probably because the benefit of reduced 

variance doesn't outweigh the extra cost of tool- 

ing up for two estimates of  &  It could be 

feasible with COMPSTAT.  Once more than one para- 

meter la Involved, say the mean and variance of 

S, the problem Is much more complicated.  In 

general I think, however, that as computers de- 

velop simulation will make many statistical prac- 

tices developed in vacuo widely useful. 

seen by considering Figure 2, where estimated quan- 

tiles of a distribution are plotted.  One would 

generally want to smooth these plots or fit some 

regression function to assess the rate of conver- 

gence to the asymptotic normal distribution.  There 

are problems in that the number of simulations, m, 

was fixed in advance and thus, the variances at 

each n vary.  Moreover, one would want to couple 

the smoothing or regression analysis of the var- 

ious quantiles.  These are both functionally and 

statistically correlated for each n across 

quantiles and with n  for each quantile. 

Detailed analysis of such grajhic output needs 

much more work; it is possible that the work of 

Efron and Morris (1972) may be relevant to this 

problem. 

Besides the smoothing, any program such as COMPSTAT 

should provide facility for direct plotting of 

output tables of rounded and perhaps smoothed data. 

This is one facility computer scientists can pro- 

vide us with. 

3.  MISCELLANEOUS PROBLEMS AND OPEN QUESTIONS. 

I have not touched on many questions in large-scale 

simulation. A few are discussed here to emphasize 

that there are mariy problems that do not even start 

to fit on present or future computers. Thus, sim- 

ulation, especially without some analytic support, 

is not always a possible way out of problems, al- 

though some people feel simulation is the last 

resort.  Other questions discussed below indicate 

Chat there are simple problems we cannot handle. 

a) Conditional distributions. 

Conditioning poses problems in simulations which 

I do not know how to handle efficiently. Thus, in 

fitting exponential polynomials to data from a non- 

homogeneous Poisson process (Lewis, 1972) observed 

for a time tn, one wants to condition on the 

number, n, of events observed in  (O.t-).  The 

times to events t  are then order statistics 

from a uniform random sample of size n.  In test- 

ing for a second order term in the polynomial one 
2 

wants the conditional distribution of Zt.,  given 

„    ,       .       ,  i     ui      u       n anc' Et-i- Conceptually this is simple to see, 
Some of many other open design problems can be  ^ 1      '    ' 
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as  i.t.  is the distance trom the origin to the 

n - I dimensional hyperplane defined by fixing 
2 

tt   ,    The Joint asymptotic normality of T.t,    and 

It.  give tf.e result that for large n, Zt^/n 

has a conditional normal distribution with mean 

(Lewis. 1972), 

^I'^V'C nlM 
and standard deviation 

4 (12n)1/2 " 
Hou does one simulate this problem for small n 

and assess the rate of convergence to  n? This 

must, be a very common problem. 

b) Multivariate problems. 

I  have not mentioned simulation of multivariate 

statistics    S.    An immediate problem here is  that 

quantiles  and percent lies are not uniquely defined, 

so one has to  use joint moments, which could be 

estimated  in COMPSTAT, or rely on piobability 

density  functions.     I  have not discussed density 

estimation  here  at  all.    Multivariate problems, 

of course,  also bring in new aspects of graphical 

and  tabular output which are non-trivial. 

c) Simulated maximum likelihocd. 

As a last stab, 1 would like to mention another 

area which interests me.  In complicated time 

series we now have computationally feasible tools 

su.-h as spectral analysis to help in defining and 

delineating models. Once this is done, however, 

there are often no reasonable wayü of estimating 

parameters of the model, especially since likeli- 

hoods cannot be derived, even though the model is 

structurally simple.  It would be useful to simu- 

late the joint density of the observations at the 

observed data point as a function of the para- 

meters so as to find the maximum likelihood es- 

timates of the parameters. I assume this is worth 

the cost to the experimenter. One then has a more 

complicated case of a) , closely related to re- 

sponse surface designs.  The solution seems to be 

far away. 

The reader is referred to the papers by Tukey 

li 

(1972 a,  b)   for   further  problems. 
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