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PREFACE

The research described herein was performed by The University
of Tennessee Space Institute, Tullahoma, Tennessee, for the Federal Avi-
ation Agency, Washington, D. C., under Contract No. DOT-FA70WA-2260.

The Federal Aviation Agency project monitor was Mr. J. K. jPower.
The work reported herein was performed during the time period November 21,
1969 through November 21, 1971.

This research project encompassed four main areas. The principal

investigator was Dr. B. H. Goethert, Dean of The University of Tennessee 3

Space Institute and Professor of Aerospace and Mecianical Engineering.
Mr. Robert W. Kamm, Executive Asp-itant to Dr. Goethert, was overall
administrative coordinator for the project.

The various areas inrestigated and the main investigators involved
were:

Fundamental Theories - Dr. Y. S. Pan, Associate Professor
of Aexospace Engineering and Dr. S. N. Chaudhuri, Associate
Professor of Aerospace Engineering.

Sonic Boom Reduction by Focused Laser Beam Techniques -

Mr. Ronald Kohl, Assistant Professor of Physics.

Sonic Boom Reduction by Cryogenic Cooling of Air - Dr. Marcel
K. Newman, Professor of Mechanical Engineering.

Engine Airframe Integration Avith Special Emphasis on Noncircular I
Enaine Exhausts and Jet I 'aps - Dr. Heinz Gruschka, Associate I
Professor of Physics and Mr. Philip Kessel, Ph.D. Candidate in
Aerospace Engineering.
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1. INTRODUCTION

-Even though the U.S. recently discontinued the SST project,

the problem of sonic boom attenuation is still of decisive im-

portance because of supersonic flights of present and future
V

military aircraft and future generations of space-flight vehicles,

as well as future commercial'aircraft. Flight routes, particularly

of both domestic and foreign supersonic commercial transports

will be restricted to over-water routes if the boom attenuation

efiorts are not sufficiently successful; whereas the entire air

space, both over land and over water can be opened for super-

sonic air transportation if effective and economical attenuation.

of the sonic boom can be achieved. Thus the entire future of

civilian supersonic air transportation is at stake.

Numerous theoretical and design studies as well as extensive

experiments have been conducted to gain an understanding of the

physical phenomena involved, and to develop methods for pre-

dicting and influencing the boom signature shape and intensity

through appropriate aircraft design and operation. Mainly during

the late 1960's, systematic efforts with the above objectives

in mind have gained momentum and much progress has been made.

For instance, it is possible today to predict satisfactorily

S well the sonic boom intensity and shape in the near, aid, and

far field for current supersonic afrcrait designs, aud to estimate

with adequate accuracy the influence of design changes and of

environmental parameters within the framework of today's con-

ventional aircraft designs.

1.1
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Because of the pressing urgency for finding an immediate

solution for th- sonic boom problem, most of the recent investi-

gations and analysis methods were directed towards the problems

associated with the planned first-generation of supersonic trans-

ports. As a result, unconventional supersonic transport.designs,

employing novel configurations of volume displacement, lifting

surfaces, engines and exbaust jets (jet flaps) and integration of

such components from the viewpoint ef optimum sonic boom sup-

pression have not received much emphasis. The University of

Tennessee Space Institute and the Federal Aviation Administration

recognized, however, that from a loag-range viewpoint the ga•s,

in our knowledge concerning unconventional configurations must

be filled by appropriate research. It was also recognized that

such research would not only guide the designers and operators

in devising effective evolutionary modifications of the first-

generation supersonic aircraft for the purpose of better. noise

suppression. It would also, and probably more importantly,

provide the design base for the next generation of supersonic

and hypersonic transports for coping with the sonic boom problem

more effectively than can be expected for the first-generation

supersonic aircr'aft, even after successive evolutionary improve- 3

ments.

The University of Tennessee Space Institute therefore under-

took a multiphase investigation for the Federal Aviation Admini-

stration, the objectives of which were defined in the contract as I

follows:

1.2
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"Fundamental Theories

This task will be to assess the numerous theories and
programs presently available with an objective of defin-
ing regions of applicability and areas of limitation.
Summary descriptions of near, mid and far field theories
will be compiled with statements on the fundamental physi-
cal assumptions and simple verifications of limiting factors.
The formulation ol improved potential solutions for the
far field will be explored, which are currently visualized
as utilizing not only displacement singularities in a
potential flow. Particular emphasis will be placed on
Lefining the limitations of two-dimensional theory in
predicting sonic boom signatures of aircraft. An explora-
tion and evaluation of potential solutions in the vicinity
of caustics will also be -nade. To supplement the theoretical
approach into the right direction, some orientating wind
tunnel tests will be conducted in the later phases of this
program area."

Dr. Y. S. "an and Dr. S. N. Chaudhuri each assisted by several

gr.duate students, investigated separate phases of this task.

Details of their findin~gs are reported in Sections 21.1 and 2.2

respectively, of this report.

"Sonic Boom Reduction by Focused Laser-Bean: Techniques

A feasibility study supported by wind tunnel experiments
will be conducted to determine whether focused-laser beam
techniques can be used to produce changes in the flow which
may be relatable to equivalent airframe shapes. Realistic
analyses of weight r3nalties associated with focused laser
apparatus will be included to evaluate the feasibility with
respect to aireraft application."

Dr. Ronald Kohl conducted this feasibility study, which is reported

in Section 2.3 of this report.

"Sonic Boom Reduction by Cryogenic Cooling of Air

This task will be to assess briefly the quantitative improve-
ment potential and the penalties associated with a radically
new boom suppression technique by making use of a-r-liquid-
ation effects. Disregarding the final practicability of this
novel scheme, such studies will stimulate thinking along =

unorthodox lines and thus will have significant indirect
benefits which can only be discovered by deviating greatly
from the path of accepted conventional designs."

1.3
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Dr. Marcel K. Newman determined during the first period of the

contract that the additional power required to maintain large

external surfaces at cryogenic temperatures in the Mach No. 3
flow field was excessive. Thus, with the concurrence of the

FAA Project Monit.-:, this work was discontinued and is not

reported in detail.

It is believed, however, that cryogenic cooling of the air would

be feasible in a c~nfiguratkon known as "space-plane". The
"space-plane" concept received much attention, and extensive

perfor,.ance and design studies were conducted in the early 1960

period. The 1':opulsion system of the space-plane is of the liquid -

air--t-ype in which air is liquified before it is burned in the

combustor. Sy means of the liquification of the air, the solid

displacement of a major part of the airframe structure can be

eliminated, and the sonic boom correspondingly reduced.

"Engine-Airirame Integration with Special Emphasis on
Noncircular Engine Exhausts and Jet Flaps
This task will be to explore the potential and feasibility
of unconventional aircraft configurations, in which thecomplete integration of fuselage-wing-propulsion units is
Wpproached. Special emphasis will be placed on examiningin lepth the potential of noncircular engine exhausts, pos-
sibly in combination with variable jet plumes, for b'-id re-duction. Besides other advantages of jet flaps, exhaustingthe processed air at the trailing edge of the wing either
over the entire wing span or only over part span, the reduc- Ition of the rate of area increase of the stream tube airpassing through the engine may be conveniently integratedwith the Lir frame displacement and the equivalent displace-ment due to lift. A large number of such highly integrated |engine-airframe configurations may become feasible especiallyif stability considerations of the aircraft would be elimina-

teu, and insteF I artificial stability and control relied Iu p o n . "-

1.4
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Dr. B. H. Goethert, principal investigator for this project, assisted by

Dr. Heinz Gruschka and Mr. Philip Kessel (A UJTSI Doctoral Candidate)

studied this task. Their findings are reported in Section 2.4.

-Publications in professional journals based on the research work of this

contract were:

Pan, Y. S. (1970), "Application of Whitham's theory to sonic boom
in the mid-or near-field", AIAA Journal, Vol. 8, No. 11,
pp 2080-2082

Pan, Y. S. (1971), "A method for wind tunnel investigations of sonic
boom based on large models", AIAA Paper No. 71-184

Chaudhuri, S. N. and Praharaj, S. C. (1971), "The near-field flow -

pattern of an inclined slender body of revolution", AIAA Paper
No. 71-626.

blnaddition to these publications, Dr. Pan presented Paper No. 71-184 at
the 9th AIAA Aerospace Sciences Meeting, January 25-27, 1971, New York;
and Mr. Praharaj presented Paper No. 71-626 at the 4th Fluid and Plasma
Dynamics Conference of the American Institute of Aeronautics and Astronautics,
June 21-23, 1971, Palo Alto, California.

Additional publications and presentations are also in preparation. f

1
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2. DISCUSSION

2.1 EXTENSION OF THE CURRENT SONIC BOOM THEORY AND DEVELOPMENT
OF A WIND TUNNEL TESTING MEHOD BASED ON LARGE MODFLS
by Dr. Y. S. Pan and UTSI students K. T. Wang and M. 0. Varner

2.1.1 INTRODU("ION

Because of the development of supersonic transports, the

t sonic boom problem has been receiving considerable attention

in the past decaee. Calculations of. sonic boom pressure signature

of a supersonic aircraft have been based mainly on Whitham's

supersonic projectile theory (Whithan, 1952) and the supersonic

area rule of Hayes (1947) and Lomax (1955). The supersonic

area rule shows that the pressure disturbance for a complex

three-dimensional configuration can be reduced to the calculation

of the pressure distukbance due to an equivalent body of revolution,

provided that the position of interest is sufficiently far from

the body. Whitham's theory, on the other hand, describes an

asymptotic flow behavior at a distance sufficiently far from a

body of revolution. This asymptotic flow obeys the geometric

acoustic laws. That is, the flow disturbances are linearly pro-

portional to a local F function, which is related to the shape

of the body and to the flow conditions. The values of the F

function are constant along the characteristic curves emitted

from the body. Consequently, the sonic boom signature at a

distance far from an aircraft can be calculated from the F function

of an equivalent body of revolution of the aircraft.

In experimental investigations of the sonic boom in wind

tunnels, it is usually necessary to use very small models in

order to obtain direct measurements of the far-field pressure

signature in the vicinity of a wind tunnel wall (see, for example,
,4
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Carlson (1964)). With these small models, inaccuracies with

respect to model contours, vibration of model, boundary layer

development, interferences of the sting supports, small non-

uniformities of the free stream, etc. usually arise. The present

proposed wind tunnel testing method is directed towards an

alleviation of this very small model restriction.

The present proposed method is based on large models in

wind tunnels, where only the near or the mid-field is simulated.

By measuring the pressure distribution at the vicinity of the S
wind tunnel wall. it is possible to determine the signature of

the sonic boom at large distances in the outer mid-field or in

the far-field. This method is expected to have great significance

in raking wind tunnel tests more reiable by avoiding the use

of extremely small models Vs -is usually done today.

It is well known that, in the near field of an aircraft,

the flow field -is fully three-dimensional. The supersonic area.

rule may not be applied there and, hence, Whitham's supersonic

projectile theory may not be employed directly. Moreover, the

flow disturbances in-the near field may :not be generally I

described by Whitham's asymptotic relations even within the

assumption of the linearized supersonic flow (Pan 1970 a-b,

1971). indeed, recent wind tunnel experiments (Morris, Lamb and

Carlson, 1970)'havd'shor'!1 th~it Whitha's theory-does not-give -:

good predictions of pressure" signature shape in the near field

especially at large Mach numbers- and at large angles of attack.

2A2



Consequently, the calculation of flow disturbances in a not-so-

far field from an aircraft or the extrapolation of a sonic boom

pressure signature from a known pressure disturbance at a nearer

field must be examined.

In this section, based on the well-known quasi-linear

assumptions, we shall extend the current sonic boom theory

to the near fielI. We shall be particularly concerned with

the non-axisymmetric and non-geometric-acoustic effectG in the

flow field. Based on the new extended theory, we shall present a

new wind tunnel testing method for sonic boom based on large

models.

2.1.2 EXTENSION OF THE CURRENT SONIC BOOM THEORY

As discussed in the preceding sub-section, the current

sonic boom theory is limited to predict the pressure dis-

Sturbance at a distance sufficiently far from a supersonic air-

craft. In this sub-section, we shall develop a theory to be

applicable almost in the entire flow field.

GENERAL CONSIDERATION v

Let us consider a steady, homogeneous, irrotational, I-

supersonic flow over a three-dimensional configuration such as -

San aircraft (Figure 2.1.1). The flow disturbance generated by

the aircraft in the supersonic flow propagates along character-

istic surfaces to the far field in the downstream. It is clear

physically that the flow disturbance in the far field due to the

presence of this aircraft is equivalent to the flow disturbance

2.3
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generated from a streamtube of upstream radius R, or any other

streamtubes, enclosing this.aircraft in the nearer field.

A streantube of upstream circular cross section with

radius R is chosen arbitrarily but not too close to the air-

craft (Figure 2.1.1), the flow disturbance over this stream-

tube is generally weak and this treamtube is of quasi-cylindrical

shape with a mean radius R. The flow field over this streamtube

can be treated by the well known linearized- supersonic flow

theory. The shape of this streamtube and the flow disturbance

over this streamtube at R can be represented by a superposition

of various multipole distributions. By defining a Whitham

type F function in terms of these multipole distributions, we

can obtain the F function for this streastube of upstream,

radius R, which, in turn, can be related to the various flow

disturbances at R.

The propagation of the known F function representing

flow disturbance from one streantube to another one further

afield may be treated based on Whitham's hypothesis on the in-

provement of characteristics; that is,the values of the F function.

are constant along bicharacteristics in the three-dimensional

flow. Thus the new F function is obtained for a strea-Atube

further afield. Howevvr, the new V function may genezally -

have multiple values in certain regions of its arguments;

these are due to the intersection of characteristic surfaces in

the physical space where values of physical quantities cease

to be unique. This failure of the linearized supersonic flow

theory as a description of the flow is known to be remedied by

the presence of shock surfaces. The positions of shock surfaces
2.5
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may be determined by the usual simple geometric property; that

is, to the first order of shock strength, the shock surface

bisects the angle between the two intersecting characteristic

surfaces. Having fixed the positions of the shocks, the new

F function becomes single valued, which actually 4.s the

Whitham type local F function of the corresponding stream-

tube further afield. Finally, from- the new single valued F

function for this streamtube further afield, the corresponding

flow disturbances may be obta.ined.

GOVE"WING EQUATION AND ITS SOLUTION

Let us choose the body axis to bIw the x-axis coinciding

withtthe free stream direction (Figure 2.1.2). Enclosing this

body we choose a. co-axial quasi-cylindrical st-reamtube witr ar

arbitrary upstrmam radius R (R= 0 corresponds to a general point-

nosed slender body).* On the surface of this streamtube the flow

is assumed to be disturbed at x =0 where the- origin Of- the x-axis

is located. The r-axis perpendicular to the x-axis is the

radial coordinate and e is the- polar coordinate measured counter-

clockwise- from the ver~iical downward r-direction. We further

assume that the entire pzpblem is symmetric with respect to 0 = 0

(or w) plane.

Let the free strezLu velocity and Mach number be U and

M respectively, and at a general point (x,r,e) the- local

velocity be (U-4--u,Uv,Uw)) The flow is-assumed to be irrotational,

hence the velocity disturbances- ,v, andzw-may be deduced from

a velocity potential 4., On the_ linearized flow -theary, o satisfies

the equation,

2.6-
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2 20 2

+6 1[3'2~ (2.1.1)
ar rr r7

where s = (I 1)1/2

A general solution of Eq. (2.1.1) which represents a

disturbance propagating downstream from the quasi-cylinder is,

(Ward 1955),

x-pr x-t
s-pr h (ti) f (t) dt

Cos re (2.1.2)
n -1R [(x-t)2-82r2

disturbance velocity components deduced from Eq. (2.1.2) are,

x-Br h X-_) (t-) dt

f2t 2 n (2...3)
nI-R [x-t

x-Or hn -S)f (0 ditX- h(--)f

v = cos nO f (21.4)__ r Xt ) 2 2 1 /3 r2.)

and

x-er ho s4-bt (t) ,1/ cit-
W:n sinr n g. (2.1.5)

2 Zn--
Hieref, I

hn(Z-) cosh [cosh-lt (2.1.6)

and f (t) are-the multipole distributions and may be reCated

to 1le- shape of the- quasi-cylindrica1- stteantube- (Lotx and

Heaslet, 1956)j. We sha-ll solve, for (t) inL t-etms of the flow
2v& U
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disturbances later. The pressure disturbance relates to the

velocity disturbances by the linearized Bernoulli's equation

(Ward 1955),

p-pW

- -u (2.1.7)
PC,

4

F FUNCTION AND ITS FOURIER COMPONENTS

By changing the integration variables and by replacing

x- 3r = y - pH in Eqs. (2.1.4)-(2.1.6), we have

(l+ ) (tnPR) '
U = cos n y + r n R)dt (2.1.8)

n [(y-t) (y-t + 23r

r=Z c nit a hn(l + 3Yt) f(t - pR)dt(21)
n9 % rt + Y- (yr + 13rr

w Cosi n e3 (2.1.10)

n r (y-t) (y-t +23r)]

Here, y is the characteristic parameter of a linearized character-

istic curve from the surface of the streatube of upstream cactr

radius R.

To define a bhitham type F function, we make a far-field 3

approxi-4ation, i.e., pr/y >> I and write velocity components in

Fourier series expansions. The expressions (2.1.8) to (2.1.10)

are reduced respectively to,

2.9ii -Co
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-- - - -

u-= -- u osn I 7

v = cosne = /•- c Fn(Y)n e (2.1.12)(21r)1 2 e'

(2n)e 1  n G.1 (y) csnne (2.1.12)wnSn1/2

F n 1/2 (2.1.13)

Here, I f(t - tR) dt
=Fn (Y) n/ (2. 1.14)

being the Fburie6r compuonents of the F function of the stream-

tube with upstream radius R

F(y,6) - j Fn•(Y) cosne (2.1.15)

n

and

y
G (y) = f Tn(t) dt. (2.1.16)Gn

0

It may be noted that for bodies of revolution (n=o), the

above relations are thoseasymptotic linear relations of Whitham

(1952); for bodies of revolution at small angles of attack

(n=o and 1), the above relations reduce to those of Siegelman

(1967). It may also be pointed out that in the above relations

and v vary as r and w varies as r- to the far field;

hence, in the far-field, w may be neglected in comparison with

2.10



u or v- Consequently, u, v and P may be related only to the

F function of an equivalent body of revolution. This is the

basis on which the current sonic boom calculations are made.

REIATIONS BETWEEN THE F FUNCTION AND FLOW DISTURBANCES

It has been shown by Pan (1970 a,b) that it is possi.ble,

within the linearized supersonic flow theory, to obtain exact

relations between the flow disturbances and the corresponding

local F function on an arbitrary streamtube enclosing an axisynetric

body. These relations are valid in the entire flow field of an

axisyametric slender body in the supersonic flow. Now we shall

obtain similar relations for the flow over a non-axisymmetric I

quasi-cylindrical streautube of upstream radius R (Pigure 2.1.2).

At large R, these relations reduce to Eqs. (2.1.1l)-(2.1.13).

As stated previously, the shape of the streastube of up-

stream radius R is represented by the superposition of the

various multipole distributions f where fn may be deterikihed

in terms of the flow disturbances on the surface of the Strdam-

tube by the boundary conditions of Eq. (2.1.1). By setting r=R

in Eqs.(2.l.3)-(2.l.5) [or Eqs. (2.1.8)-(2.1.10)], using-

Eq. (2.1.7), and expanding the flow disturbances in Fourier

series in B [See, Eqs. (2.1.1l)-(2.1.13)], the multipole dis-

tributions may be related to the Fourier components of the

flow disturbances by the following integral equations; at (x,R),

Sx - X-tS• •n .+ 1) fn(t - 1R)dt

J• (x-t- (2.1.17)
0

2.11
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x x-thi Os(f(t l-•3-R) dt
S= - 1/2 (2.1.1)

0

and

K j(--A -- t( R dt

" JoR [(x-t) (x-t+ 2pR)]1 "

ft

These are integral equations for f' of fn andc can be solved.f

Either f or f' can be found in terms of the Fourier components

of the flow disturbance PnUnVn or- wn. Solutions have been

obtained-and reported by Pan (1971).

By substituting-the- solut-ions of fn and-?" into the de-

finitions.of En and G. [E•s. (2.1.14) and (2.1.16)1, F. and

cdan. be- writtew in terms- of the flow, disturbances (Pan, 1971), at

II-

Yix) fPn~x fPft j dt.( 2)

(2r_0-() X 1

S v(t) Tdt, (2.1.21)
(-2;8(- dt,13S(2BR) Uz n R • n0R

and

x
AGn- (x-) X-t

.w(x) (x J Wt) SO(n)j ft. (2.1.22)
1E/9Sn) - - FR fv W -.

Her Snand T.are resolventý kernels. of 4 nd J',re ecily

2.n
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- p-

and are the differentiations of Kn and Jn, respectively,

with respect to their arguments, where

ir/2hnx€s •
2

,3/2 f i (x oszl) dz
K. (x) n (2+xcos 2  (2.1.23)

0

and
ir/222

23/2 I (xcos. 2 z+l)b (xcos 2z+l)dz2 " (2.1.24) •Jn x = -2 2 -~s 1/2
f ~(2 + xcos z)

Sn T 'n and J', have been computed on the UTSI computer IBM/a

21130 and are tabulated respect'ively in Tab.ltts .10.1i to 2.1.4

for = from 0 to 2.0 and for nrm'0 to 5. (3o,T01 K, and J.

were denoted respectively, as S, 51, K , and K1 previously by

Pan (1970a)].

The Fourier components of-the flow disturbances may also be

expressed in. terms of the corresponding F. or Gn, at R (Pin 1971),

x

I- 1 f (x)+t-) f P(t) K ) d (2.1.25)
(213R)" , f2 13R

(2131() 01

Vx

F. R(2(•)'- - (t - (2.1.26)
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arbitrarily, the relationship between the flow disturbances and

Fn or Gn [Eqs. (2.1.20)-(2.1.22) or Eqs. (2.l.25)-(2.1.27)] are

valid for any R with in the linearized supersonic flow theory.

As R-3ow, these relations reduce to the asymptotic linear relations,

Eqs. (2.1.1l)-(2.1.13), which for n=0 correspond to Whitham's .

asymptotic relation (1952). The second terms in Eqs. (2.1.20)- 1I

(2.1.22) and Eqs. (2.1.25)-(2.1.27) represent the corrections

of the asymptotic relations in the nearer field.

PROPAGATION OF THE DISTURBANCE

Since the relations, Eqs. (2.1.25)-(2.1.27), axe valid

where the flow disturbances are weak, we may now write the

expressions for flow disturbances at any distance r in terms I
of ce-responding local F function at r,

1 I, I
00 1 F+L 7 V

(y) - 2 (2•r)1 [Yo(y, ) Z- cosne f Fn(t)Kn( Z)dt112 0 r n "o n( •

(2.1.28)

y

V(y) F(y,o) +- _ cosnoe t(t)Jn-dt
(213r) 1 3r 0 or -

(2.±.29)

w(y) - -1 . IG(Y,O)+L Cosn Gn (t)Kn(L-t)dt
1/2 n-cos- e Ir !

r (2fr)~ [6e. or 0n3" ~n e 0---e9
0

Based on Whitham's hypothesis on the improvement of the ! -I
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linear theory (1952), the flow disturbance in steady supersonic

two-dimensional flow propagates along an improved two-dimensional

characteristic which is at an angle with respect to the flow

direction equal to the Mach angle. In three-dimensional flow,

the two-dimensional characteristic is replaced by a bi-characteristic

direction and a characteristic surface orientation. A bi-characteristic

direction is one which is at an angle with respect to the flow dir-

ection equal to the Mach angle. A characteristic surface orienta-

tion is one for which the angle between the normal and the flow

direction is the complement of the Mach angle. A bicharacteristic

line is an integral curve for the bicharacteristic direction. A

characteristic surface is a surface, the orientation of which is

everywhere the characteristic orientation. A general bicharacteristic

line through a given point is far from unique; however, a characteristic

surface through a given smooth line in space is locally unique. Any

envelope of characteristic surface is also a characteristic surface.

To a given bicharacteristic direction at a point corresponds a

unique characteristic orientation, for which the bicharacteristic

direction is tangent to the characteristic surface. Through a 4

given non-singular point in a given characteristic surface passes

a unique bicharacteristic line in a characteristic surface (Hayes

and Probstein, 1966).

For the present problem of the linearized supersonic ilow, the

characteristic surfaces are surfaces of revolution with respect to

the axis (Ferri, 1954). Through a general point (x,r,O) on a

characteristic surface, the bicharacteristic direction may be found

from the tangential direction to the characteristic surface and to

the local Mach cone.

2.19



F-

2 2 1/2
A_ (q v Y (l+u)cos, - (1+-I)v sin L,

2_ 2 1/2 2_ 2
Ar (q v )1 vcos±L+ (q -v sin j.

rAe (q 2 _OLv2) 2 o sinu
-W 2 2 1/2 2 2Ar (q v) Vcos + (q -v) sin

with p. and q being the local Mach angle and the local non-

dimensional velocity respectively.

By using the difinitions of . and q, and neglecting the

second and higher order terms of the flow disturbances, we have

the differential equations of the bicharacteristics

13 + - u M2 (v +Du)
_.._ = + (+)4u - M2v•)(2.1.31)

6r 2

BW- (2.1.32)
6r r

To obtain a set of parametric equations of the bicharacteristics,

we may substitute Eqs. (2.1.28)-(2.1.30) into Eqs. (2.1.31)and

(2.1.32) and perform the integrations on the line y =constant 4

and e0o =constant, r

1 r/2 1/: r I

x = i(r -R)+y-k F(ye) (r R1 2 )- f L(y,eo;r)dr,

(2.I. 33)

I
3
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71 
-- W

and

r

e = eo + M(y,e 0o;r)dr, (2.1.34)-R

with

k = 2-1/2 (7+1) M40-3/2 (2.1.35)

y

L(ye9;r) - (y+)M4 ,cos n o Fn(t)Ký(y-1)dt13 (213r) n/ 0n 13rn Yt)d
n p

+ M2 (v + 3u) (2.1.36)

and

M(y,-o;r) = Ow/r. (2.1.37)

Here, y and eo are the coordinates x and e, respectively, of a

point on the cylindrical surface R. y = constant and do = constant

define a bicharacteristic curve from the said point; on this

bicharacteristic curve, F(y,eo) = constant. For an axisymmetric
0

flow field (n=O),there is no 9-component velocity and 9 remains

constant; Eqs. (2.1.31) and (2.1.32) reduce to Whitham's

characteristic differential equation, and -q.(2.1.33) reduces

to the improved characteristic equation obtained by Pan (1970 ab).

After knowing F(y,eo ) at R, we may integrate Eqs. (2.1.33)

and (2.1.34) to obtain F(x,r,e) at a cylindrical surface further

afield at r. The value of F at a particular point (x,e) at r I
is equal to the value of F(y, o) at a point (y,eo ) which is on

0i

the same bicharacteristic curve as the point (x,e) at r. Due

to the 9-component disturbance the bicharacteristic curve from

2.21
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(y,e 0 ) is generally not lying on the same &° plane (see,

Figure 2.1 3a). The bicharacteristics which pass through the

straight line e = constant on the surface r originate on the

surface at R from the curve 0o = 0 (y). Consequently, to
0

determine F(x,r,0) on a line 0 = constant at r, we have to -

determine the curve 00 = 0 (y) at R. On the plane of symmetry
0

e=O (or r), where w =0, all bicharacteristic curves remain in

the same plane; hence F(x,r,O) is determined only by F(y,O) at

R (see, Figure 3.1.3b).

The shape of the F function obtained at r are generally

distorted and different from the original F function at R.

The F function on a e = constant line at r is generally a

multi-valued function of its argument x. The multi-valued

regions are due to the intersection of characteristic surfaces

in the physical space where values of physical quantities

cease to be unique. This failure of the linear theory as a

description of the flow is known to be remedied by the presence

of shock surfaces (Courant and Friedrichs, 1948).

It is well known (Courant and Friedrichs, 1948) that the !

shocks. to a first order in strength, can be determined by a

simple geometric property; that is a shock surface bisects tV-

angle between two intersecting characteristic surfaces. As

shown by Whitham (1952) the F function, at least in the far

field, gives a rough description of the flow pattern, since it I

shows whether the characteristics are converging in compression,

where a shock will appear, or diverging in expansion. The shock

2 22
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V

position at any distance r may be determined from the F function

at R. For an axisymmetric flow, Whitham (1952) obtained a

relation called the "area-balance-rule" which states that the

lobes cut-off on each side of the F function by a straight

segment which determines a shock position must be equal in

area. The slope of the straight segment depends on the distance

r. In the following, we shall follow Whitham's procedure to

obtain general relations for determining shock positions.

Suppose that a general shock intersects e = constant at r

at the point,

x = •(r-R) - G(r,e) (2.1.38)

and the bicharacceristics, Eq. (2.1.33), specified by yl and Y2

(Y2 > yl) on e. =0o(y) at R intersect the shock at this point

(see, points c and d in Figure 2.1.3). The bisec ion of the

angle between the characteristic surfaces by the shock surface

requires that

2 _ 1 k r1/2 [F(y l ,oO(yl))+ F(Y2,o
)r 2 (Y2

+ L(Ylo(Yl)'r) + L(y2,eo(y);r) (2. O..)

On the other hand, elimination of x-B(r-R) from the equations of

the shock, Eqs. (2.1.38) and of the bicharacteristic, Eq. (2.1.33),

give

2.24
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r

G(r,O) =kF(y,'ao(y )r1/2_ R1/2] + f L .,,e,O(Y1);r)dr-yl,

R
(2.1.40)

and

G(r,) = k F(Y2 , 0o(y 2 )) r 1/2 1/2
G r~) Fyle~ [r)i + f L(y2,e0 (y2) ;r)dr-y2.

R
(2.1.41)

G and r as functions of yl or Y2 can be solved from Eqs. (2.1.39)-

(2.1.43.). and then the relation between yl and y2 is obtained.

The relation between r and yl (and/or y 2 ) is obtained by

eliminating G from Eqs (2.1.40) and (2.1.41),

F(y 2 ,e (y 2 )) - F(yle 0o(yl)) I

r r drl

[2 L ( y2 , 0o ( y2) r) - FL( yl, o90(Y l) r dry

by= fk(rl/2_Rl/2) + R
F(Y2,eo(y2)) - F(Yleo (Yl))=

(2%1.42) :

.For large r, Eq. (2.1.42) may be simplified to a relation obtained

by Whitham (1952) for R=O, I
F (Y2eo(Y21) - F(YI0o(Yl)) 1_

Y - 1/2 _1/2) (2.1.43)

2- k (r R

The geometric interpretation of Eq. (2.1.43) is that the slope

of the straight segment cd joining the points y, and Y2 of the

F function curve at R relates to r only. For an arbitrary r,

the slope of the segment cd relates not only to r but to ylY 2

2.25
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and~~=; 'F... For" difrn shck, h sopsofth sgensr

II
and F. For different shocks, the slopes of the segments are

different.

To determ•ine the relation between yl and y. or the position

of ed on the F function curve at R, the well known "area- i

balance-rule",

Y2

f F(yle°(y))dy=2 (Y2- Y)[F
2 (2 1[lo~l)) ~2 0o~ 2 J

(2.1.44)

is found to be replaced by the following relation,

Y22f 0-2 "2- Yl) Y'°Y) (2O(2

Yl r

+ ,0(Y))i f [L(Yl, 0o(Yl) ;r) - L(Y 2 eO(Y2 ) ;r dr

2- r
Y2r

+ F(yle0~ y A L(y,O (y);r)arl
R (2.1.45)

Now Eq. (2.1.45) together with Eq. (2.1.42) determines the

positions of y, and Y2 on F(yl 0o(y))for fixed r. These relat-K,ns

may be used to determine the positions of other shocks. For

example, the position of the front shock ab (Figure 2.1.3) may

be determined by setting F(yl,eo(yl)) = 0 at che point a on I

ithe F function curve. We may note here that Eqs. (2.1.42) and

(2.1.45) are so complex that no explicit solutioL. for r(Yl.y 2 )
iI

1*Y2
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possible. Results may only be obtained by a numerical iterative

procedure by using Eqs. (2.1.43) and (2.1.44) as a first

approximation.

After having determined the positions of shock waves, the

local F functicn at r becomes a single valued function except

with a finite number of discortinuities. Then the corresponding

flow disturbances may be determined from the local F function

and its Fourier components by Eqs.(2.l.28)-(2.l.30) or the

relations (2.1.25)-(2.1.27) by replacing R by r.

2.1.3 WIND TUNNEL TESTING METHOD BASED ON LARGE MODELS

As discussed in the subsection 2.1.1, in experimental in-

vestigations of sonic boom in wind tunnels it is usually

necessary to use very small models in order to obtain direct

measurements of the far field pressure signature in the

vicinity of a wind tunnel wall. The present new method is

based on large models in wind tunnels, where only the near or

the mid-field is simulated. By measuring the pressure dis-

tribution at the vicinity of wind tunnel wall it is possible

to determine the signature of sonic boom at large distances in

the far-field. In this subsection, we shall present a theoretic2a

study of the new wind tunnel testing method.

GENERAL CONSIDERATION

A three-dimensional model is tested in a circular cylindriia

supersonic wind tunnel with radius R (Figure 2.1.4a). The flow

2.27
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is assumed to be steady, homogeneous, irrotational and inviscid.

It is well known that the disturbance emitted from the model

is reflected at the wind tunnel wall, in order that the stream-

lines adjacent to the wall ma..? be always tangent to the wall.

Hence, the three-dimensional reflected pressure disturbance can

be measured at the wind tunnel wall. If the flow field over the

test model inside the wind tunnel can be described by the

linearized supersonic flow theory and if the cumulative non-,

linear effects cantbe neglected within the wind tunnel, the

flow field near the wall may also be described by the linearized

supersonic flow equations. It is possible to relate the incident

disturbance with the reflected disturbance at the wall by

specifying proper boundary conditions on the wall (Pan, 1970c,

1971).

In free flight, however, streamlines over the model may

be distorted freely according to the emitted disturbance. Any

circular cross-sectional streamtube in the free stream may be

distorted into a quasi-circular cylindrical shape. The quantity

of flow in the wind tunnel of radius R is equal to the quantity

of flow confined in a streamtube of the same upstream radius R

enclosing this model in free flight (see, Figure 2.1.4b).

Based on the linearized supersonic flow theory, the actual

flow disturbance at the distance R in free fl.ght aquals to

the incident disturbance on the wind tunnel wall with the

same radius R.

After knowing the actual pressure disturbance at a stream-

tube' with upstre&-m radius R enclosing the model, we may now

2.29
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apply the extended theory developed in the preceding subsection

to extrapolate this known disturbance to any distance in further

afield.

WIND TUNNEL WALL REFLECTION

In this subsection, we shall obtain the relation between i

the actual free flight(incident) pressure disturbance and the

measured (reflected) pressure disturbance both on the cylindrical

wind tunnel wall. We assume that the flow field may be described

by the linearized supersonic flow theory. The pressure (Mach)

waves generated by the model propagated outward and downstream

and are reflected at the wind tunnel wall; the reflected wave

will not interact with the model. Unlike the reflection of a

plane wave at a rigid plane surface which gives P. constant re-

flection factor 2.0, the reflection of a curved wave from a,

cylindrical rigid surface may not be described by a simple con-

stant reflection factor. Since the flow field behind a curved

wave is generally not uniform, the flow field behind a curved

reflected wave depends on both the incident curved wave and the

distance from the wave front.

Referring to Figure 2.1.4a with the coordinates described

in Figure 2.1.2, the disturbance v..ocity potential ( in the

wind tunnel satisfies Eq.(2.1.1). Equation (2.1.1) -. ',gether

with the uniform free stream boundary conditions may be solved

by a technique of Laplace transform, i.e.,

2.30
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4(s,r,e) =-- f 4)(x,r,e)e-SX/3Rdx" (2.1.46)OR 0

The general solution to the transformed governing equation

Eq. (2.1.1) is given by (Ward, 1955).

T(s,r,e) cosne[AnK(e) + Bnon(snO (2.1.47)

n

where Kn and In are modified Bessel functions, and An and Bn

are functions of s only. [Readers should not be confused by the
modified Bessel functions Kn used here with the functions Kn defined

by the Eqs (2.1.23)].

In Eq. (2.1.47) the terms in K which represent waves travel-
ni

ing outward from the model and downstream are the incident waves

with respect to the wall, while the terms in In which represent

waves traveling in both directions are related to the waves re-

flected from the wall. The relation between A and B may be
n Bn

determined by the boundary condition on the wall, (i.e.,

-6 •/6= 0 at r =R),

Bn =- AK' (s)/In(s). (2.1.48)

The function An may be determined from the boundary conditions d
on the model surface; we, however, shall leave it as an arbitrarY j
function.

Now the general solution in (s,re) reduced to

2.31

- ~~i .. ... "1U



• , - + .. .

'psr,ei) =Z cos no A K1  )I -. (2.1.49)
nnRL I f(S)K

n ~n n

The transformed disturbance pressure P is, by Eqs. (2.1.7) and

(2.1.46))

P(s,r, e) = ~ (s, r,e) (12.1.50)

On the wind tunnel wall (r = R), the disturbance pressure

P'(s,R,e) is the measured (reflected) pressu~re, denoted by R

~~~co ne 13 s, R) (. 1R Rn

with P~n being tche Fourier components of R-' and from Eqs.

(2.1.49) and (2.1.50),

K K'(s) I (S)
(S' ,sr " A K ( s (2.1.52)

n (S) Kn(-S )

On the otner hand, it is easy to show that the Fourier components

of the free flight (incident) disttir t-0 pressure -on the walln

P (SR) A - K n(s). (2.1.53)
in (3R n

Hence, we may relate the measured pressure with the free fl'ight

pressure on the wind tunnel wall,

2.32
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- [ Kb(s) I (s)
Pn(,R) inP (s, R)1 - (2.1.54)

nn n

We may also express the free flight pressure in terms of the

measured pressure and use the wel.3. known Bessel function

relations (Watson, 1966),

Pi(s, R) 1P R(sR) s s(s) (2.1.55)

zIn~lL Pj5R Kn (s) 'n+l' + -1is)

Now the relations between Pi(x,R) and Pn(x,R) may be

obtained by performing the inverse Laplace transform,

x

Pn(xR) (x,R)- P yR) - d x>O
-o xoo>0

=0 x < 0

(2.1.56)

Here, Rn(x) the reflection functions, are the i.nverse Laplace

transform of the kn(s),

Rs) I-s K )rn+()4I.(2.1.57)n) Ko I)n-1 (s)]

Since the Laplace inversing of Rn(s) is not known at the present,

exact values of Rn(X) for all n and x cannot be obtained.

However, for most practical cases, the argument of Rn(X) is

usually small, and we may obtain an asymptotic expressicn of

Rn(x) for small x by inverting the asymptotic expression of

Rn(s) for large s. The result is
ni
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Xm/8"'- -1

R (x) Cnm (2.1.58)
nnm
m=l

where
m

Cn = Z' (-1)jaC I M ( _ ) a n i b n j '
i=o

i+j=m

with

• ~~j=l ,.2i

1 i4(n+l) (2j-1)2 3-14 (n-1)2 (2j-1)bni = I I1I + _.

1l 2 Lj Hj

and ano = b I. Values of Rn(x) are plotted in Figure 2.1.5

for n=o to 5 and 0<x<1.7. After having obtained P in(x,R),

we may calculate the free flight disturbance pressure distribution

PI(z,R,e) on the wind tunnel wall,

L cosn e P (x, R) (2.1.59)
p ýxCD[Re) =F TE 1LI

L PROCEDURE OF THE EXTRAPOIATION OF MEASURED DISTURBANCE

After obtaining the incident pressure disturbance at the

wind tunnel wall, we may follow the extended theory developed

in the subsection 2.1.2 to find the sonic boom signature in the

far-field. In the following, we shall outline the procedures
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of the extrapolation method and list the relevant formulas in

each procedure.

A three-dimensional pressure distribution, PR(x,e.R) isR]
measured a, a circular cylindrical wind tunnel of radius R (for

example, by using a scanning system suggested by R. C. Bauer

of ARO, Inc.to this author, 1971). This three-dimensionaL

signature is expanded in Fourier series in e,

PR(xOR) Z PRn(xR) cosne;

n

the Fourier coefficients P.. of can be obtained.

The corresponding Fourier coefficients Pi(x,R) of the

incident pressure disturbance P (x,e,R) and PI(x,O,R) itself

can be found, from Eq. (2.1.56),

X

Pin(XR) = 1PI(x,'R) - 1 PI (t,R) Rn(?x-t) dt] .
2 Pr o13R

f~0

and from Eq. (2.1.59),

PI(xRoe) = Pn(x,R) cosnO.

n

P (xR,e) is a three-dimensional pressure disturbance on a

streamtube with upstream radius R, which corresponds to the

wind tunnel.

By using the pressure disturbance PI(x,RO) oi Pi (x,R),

we can calculate the local F function of this streamtube; from

Eq. (2.2?.20),
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S- - w - . . ._,_r' --' = : • • • •

F (y,R) = (21r)1/2 i (Y)- 1Rf P1 (t) S (X:1) dt
n in. n n

and from Eq. (2.1.15),

F(y,eo,R) Z Fn(y,R) cosn

n

F(y,OoR), representing the disturbance generated by the stream-
0

tube with upstream radius R or by the tested model in free

flight at R, propagates to further afield r along bicharacter-

istics given by Eq. (2.1.33),

x = 13(r-R)+y-k F(y,eO)(r1 2 R1 ) -f L(y,e0 ;r)drRI
and Eq. (2.1.34),

0 = + f M(y,0o;r)dr.

R

After shock positions were fixed on the F function by

Eqs. (2.1.42) and (2.1.45), the new single valued F(x,r,e)

is obtained at r. This new F function is then expanded in

Fourier series.

F(x,r,O) = F.(x,r) cosnO.

n

Corresponding to the Fourier components, F (x,r), the Fourier com-

ponents of the pressure disturbance, Pn (s,r), are found from
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Eq. (2.1.25).

x

Pn(x,r) + f 2n(r)/) KFnxxtr +t
nr 1 o F r t P

0I

Finally, the three-dimensional pressure disturbance P(x,r,b) .

at r is obtained by summing up all Fourier components,

P(x,r,O) = Z Pn(x,r) cos ne.
n

2.1.4 EXAMPLES AND DISCUSSIONS

Several numerical calculations of near-field pressure

signatures were performed to compare the results based on the

present analysis with those based on the current sonic boom cal-

culation and with some available wind tunnel measurements. Typical

examples are presented and discussed in the following.

Figure 2.1.6 shows a comparison of the shifts of character-

istics at different r for different points x on the axis of a

6.460 half-angle cone-cylinder body. The length, t, of the cone

portion of this body is taken to be 1.0 and the free stream

Mach number is 1.41. In this figure, yw is the shift of the

asymptotic characteristic curve based on Whitham's theory (1952) 3

from the linear characteristic curve; yI, is the shift of the g
characteristic curve based on the present analysis (Pan, 1970a).

*This author, Dr. Y. S. Pan, wishes to acknowledge Misters K. T.

Wang and M. 0. Varner, Research Assistants, for their valuable
assistance in the numerical computations.
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For this example, the present characteristics are located

generally ahead of the asymptotic characteristics. At r =0.5,

the differences of the shifts are as large as 20 percent of

Whitham's values. As r increases, the percentage oi the dif-

ference decreases.

Figures 2.1.7a - 2.1.7b show the near-field pressure

signatures at r/t = 0.5, 1.0 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0

from the axis of the cone-cylinder body described in the preceding

section. Comparisons show the differences between the signatures

of the present analysis and of the current sonic boom theory.

The differencesare due to the present correction of the linear

asymptotic relations between the flow disturbances and the local

F function and due to the shift of the characteristic curves.

The peak pressures predicted by the present analysis are generally

lower than, and located ahead of, those predicted by the current

sonic boom theory. This prediction is quali"a,o'.*1.ly consistent

with some of the near-field experimental oi-r;ations (for example,

Morris, Lamb and Carlson, 1970).

In Figures 2.1.7b - 2.1.7h, numerical pressure data are

also presented. These data were obtained by Kutler (1971)*3

using a shock-capturing finite-difference approach (Kutler a±d

Lomax, 1971). The present signatures are generally in excellent

agreement with the numerical data except at the neighborhood of

*Numerical data generously provided by Dr. Paul Kutler of NASA

Ames Research Center are gratefully acknowledged.
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the shock waves. The difference near the shock waves is due to

the fact that, in the shock-capturing finite-difference approach,

the shock waves which occur are spread over a few mesh intervals.

Therefore the exact positions of the shock waves cannot be exactly

predicted by this numerical method.

Figure 2.1.8 shows the shifts of characteristics at r =1.0

from the same cone-cylinder body at Mach numbers 1.2, 1.41,

2.0 and 3.0. Generally, the shift of characteristics increases

with increasing Macn number except at the cone portion. In

this region, the F function is positive and the shift decreases

with increasing large Mach number. Figure 2.1.9a - 2.1.9d show

the comparison of pressure signatures, based on two different

analyses, at r/4 = 1.0 of the same cone-cylinder body at severalfi

different Mach numbers. Because of the larger shifts of character-

istics at larger Mach nu-bers, larger shifts of pressure signatures

appear at larger Mach numbers. The difference of the pressure

strengths decreases as the Mach number increases.

Figure 2.1.10 and 2.1.11 demonstrate the extrapolation

of an axisymmetric pressure signature. From Kutler's numerical

data (1971) at r/,t= 1.5, a corresponding F function is obtained

and is shown in Figure 2.1.10 (the dotted data represents the =

F function based on Whithauts asymptotic relation). This F function

is propagated to r/t = 2ý0, 2.5, 3.0, 4.0, and 5.0. The corres-

ponding pressta.re sig4atures at different r/t are obtained from

different loca3 F functions and are shown in Figures 2.1.11a-

2.,.1le. CoxAparisons of the extrapolated pressure signatures

II
2.45

4Q.-



4.,
a)

r14

cra)

00

C.'ý

Cf4

r%4

mei

2.46



- Present Analysis (Pan,1970a)

-- --- Current Sonic Boom Theory (Whitham, 1952)

0. x.
M " 1.2

.)3

(a)

0.3

FIGURE 2.1.9 Nea.-field pressure signaturesx

K 12.47L2. 4



" I J

P A Present Analysis (Pan, 1970a)

P, i I

----- Current Sonic Boom Theory (Whitham, 1952)

0.04

18 2.8

M2.
r_

-0.04

0.0

2.8 3.8

M 3.j

-0.08 F

FIGURE 2.1.9 Near-field pressure signatures

2.48



Cd~

4J4
W )

04 4J

4J Q

4-'4

0

W4..

~~iI

N N

U20 a0

2.49

Lit



-~ -. . - ----------- - . .....

LP

P"- Present Analysis (Pan. 197 i)a

-)03--- Numerical Method (Kutler. 197-%.

M -1.41

T 2.u

(a)

0.03

x

2.53.

M 1.41 0

=2.5 \oý

-).)3 (b)

3u. t,3

(c)
-v. 3

FIGUflE 2. 1. 11 E~xtrapolation of pressure signatures

2. 51



Ap - Present An.lysis (Pan. 1970a)

P. - Numerical Data (Kutler, 1971)

1. 12

/3 x

4.0 5.0

M = 1.41
r 0
"i =- 4.0 

rd
- 3.2 

(0)

0.0

M 1.41 0
r 0

-5-0

(e)

i
41

I

FIGURE 2.1.11 Extrapolation of pressure signatures

25

I
Si .,



with Kutler's numerical data are again in good agreement except

at the neighborhoods of the shock waves.

Figure 2.1.12) shows the pressure signatures of a slender
j

body of revolution at r/4 =4.2 and M = 1.2. Experimental data

(Barger, 1968) are compared with the results of the two different

theoretical calculations. The difference between the two

theoretical curves is obvious. By observation, one cannot tell

which curve is in better agreement with the experimental data,

because the streamwise positions of the experimental data with

respect to the body are usually not specified. Based on Whitham's

theory, Barger (1968) developed a procedure to design a body of

revolution from a specified signature. Pan and Varner (1971)

performed a similar calculation by using the present analysis.

Examples indicate the different body radii obtained from the two

different analyses. The differences are most apparent at the

rearward portion of the bodies.

Figure 2.1.13-2.1.18 demonstrate an extrapolation of a

measured three-dimensional pressure signature. A three-dimensional

measure pressure signature is assumed in a form, PR = ~+ PRI cos e1

and is shown Figure 2.1.13. A free stream Mach number of M = 2.0

and a wind tunnel wall radius of R 0.5 are assumed. The

magnitude of the assumed pressure disturbance has been exaggerated

to apply the usual linearized approaches. Following the pro-

cedures described in Subsection 2.1.3, the corresponding incident

(free flight) pressure disturbance is calculated (n =0 and 1) and

is shown in Figure 2.1.14.
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From the incident pressure disturbance of its Fourier com-

ponents (n = 0,1) the Fourier components of the corresponding

F function are first calculated. By summing up the Fourier

components (n = 0,1), the local F function is obtained and is

shown in Figure 2.1.15. Since the kernel functions SO and S1 in

the formula for calculating F and Pn are of lifferent signs butn n

with the same order of magnitude, the near-field effects of the

F functLon are almost negligible in this example. For more com-,

plicated signatures where more Fourier component terms are re-

quired, the near-field effects on the function may be important.

The disturbance represented by the F function is extra-

polated to the downstraam at r =10.0. The local single valued

F function at r = 10.0 is obtained by following the procedures

described in Subsection 2.1.3 and is shown in Figure 2.1.16.

The F function at r = 10.0 is then expanded in a six-term Fourier

series in e(n =0 to 5). This six-term Fourier series is generally

a good representation of the F function except at certain positions

(e.g. shock waves) where the F function is discontinuous in e.

From each Fourier component of the F function, six Fourier com-

ponents of the corresponding pressure disturbance are obtained.

By summing up the six Fourier components, the corresponding

three-dimensional pressure signature is obtainea and is shown in

Figure 2.1.17. In this figure, the pressure signatures x.ear the

leading shock wave are fixed approximately from the six-term

Fourier representation of the pressure signatures which, for

0 0'0 900 and 1800, are shown by dashed lines in the same figure.
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If we take more terms in the Fourier series in tile F function,

and consequently in the pressure disturbance, the actual signature

will approach the signature indicated by the solid lines.

In Figure 2.1.18, the pressure signatures at e = 0 , 45",

900, 1350 and 180* obtained previously are compared with those

obtained directly from the current sonic boom theory. In this

example, the current sonic boom theory over-estimates the peak

pressures for 00 e- e < 90' as much as 20 percent but under-

estimates the peak pressures for 90' < e • 1800 as much as 50

percent. Although no general quantitative conclusion on the

importance of the near-field effects can be obtained from this

single example, this example does show that the near-field ef-

fects may be important for extrapolating complicated near-field

three-dimensional signatures.

2.1.5 CONCLUSIONS

The current sonic boom theory, which is based on the well

known "Supersonic Area Rule" and Whitham's "supersonic projectile

theory", has been extended to take into account the three-

dimensional near-field effects. The present extended theory

permits us to calculate the flow disturbances in the almost 4
entire flow field of a steady supersonic flow over a three-

dimensional configuration.

Based on, the present theory, a new wind tunnel testing

method based on large models is developed. This new method per- I

mits us to use the models of usuil size in wind tunnels to deter-

mine the sonic boom on the ground by measuring the pressure
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signature at tie wind tunnel wall. This method has great

significance in making wind tunnel tests more reliable by avoid-

ing the use of extremely small models as is usually done today.

2.1.6 RECOMMENDAT IONS

THEORETJCAL WORKS

It is recommended to compute a more complete set of the

kernel functions SnTn2,K and Jn which are requiired for the

application of the present theory to the practical sonic boom

calculations and to the extrapolation of pressure signatures

measured in the wind tunnels. Only part of these kernel

functions have been computed and presented in this report.

It is recommended. based on the present theory, to develop

a FORTRAN computer program. More three-dimensional calculations

are required to compare with experimental data and/or with the

calculations based on the current sonic boom theory.

It is recommended tc. develop a sonic boom theory valid at

large Mach numbers. ", the range of applicability of the

present quasi-linear approach is quite limited, a theory which

takes into account non-linepr effects at large Mach numbers

should be developed and should be of great importance in the near future.

EXPERIMIETAL WORKS

It is recommended. based on the present method, to develop

wind tunnel test procedures to produce suitable three-dimensional

pressure signatures for extrapolation to the far field that is
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for determining the sonic boom on the ground.

It is also recommended that an experimental check of the

reliability of the preseni. theory and the wind tunnel method

be made.
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2.2. FUNDAMENTAL THEORIES, APPLICABILITY AND EXITENSIONS

2.2.1. The Near-Field Flow Pattern of an Inclined Slender
Body of Revolution
by Dr. S. N. Chaudhuri, and UTSI student Sarat Praharaj

Summary

In the present paper Whitham's far-field theory of

supersonic flow pattern has been generalized for the near-

field points of an inclined body of revolution. Using the

correct expre.- non for the characteristics (as far as the

first-order theory is concerned) it is shown that the new

F-functi on which describes the near-field flow pattern is

dependent on the following besides the body geometry: the

distance from the axis of the body, the Mach number, the

angle of attack and the azimuthal plane angle. We have

obtained closed form results for the new F-function for any

smooth body of revolution. The recurrence formulas given are

convenient for computer programming. The pressure signatures

for near-field positions have also been calculated. They

can, of course, no longer be related to the new F-functions

by simple formulas. The routine method given to calculate

the fund mental F-function and the pressure signature at near-

field p.,nts of non-axisymmetric bodies will be useful in the

preliminary design study of equivalent bodies of revolution.
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LIST OF SYMBOLS

S= Angle of attack

S= ,• 2  1 )l/2

S= Velocity potential

S= Perturbation velocity potential

. o = Axial-flow perturbation velocity potential (First Order)

= Cross-flow perturbation velocity potential (First Order)

F(y) Whitham's functiou for the points, where

or/x-pr is large

Fty,r,M,R(y),a,O} = Whitham's function at any point

f(t) = Strength of source (singularity) distribution I
g(t) = Strength of doublet (singularity) distribution

M = Free stream Mach number

Po = Free stream static pressure

A = Pressure in excess of undisturbed (free stream)

static pressure

q = total velocity

q = total axial velocity component
(x)

(r) =total radial velocity component

q =) total azimuthal velocity component

r = Distance of a point on the characteristic from the

axis of the body
I

It(y) = Radius of the body of revolution at y

U = Free stream speed

x Distance of any point measured from the nose

y = Distance of any point from the nose, where the

characteristic produced meets the axis.
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Introduction

For an axisymmetrical flow past a slender body of

revolution Whitham (1952) developed an elegant modified theory

which essentially retains the simplicity of the linearized

theory as given by Lighthill (1952) and others but remedies the

failure of the linear theory as a description of the flow

pattern. The fundamental hypothesis of Whitham is that the

linearized theory gives valid first approximation to the

flow everywhere provided that in it the appromimate character-

istics are replaced L. sufficiently good approximation to

the exact ones. This hypothesis has been amply substantiated

by checks detailed in Whitham's paper (Whitham, 1952).

The following are some of the important assumptions

made in Whitham's theory (Whitham, 1952):

(i) The body is slender and pointed at the nose, with

the front shock attached. (it may be remarked

here that even if these conditions are not satisfied,

Whitham's the,.ry can still be used to deduce the

behaviour of the flow at large distances from the

axis of the body).

(ii) Whitham's discussions of the flow pattern is limited

strictly to the behaviour at large distances from

the axis of the body. In particular, the Whitnam

function F(y) which is fundamental to the whole

theory and is the most important function associated
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with flow past a body of revolution is obtained

only for far-field pcsitions. The condition is

also valid for front shocks at any distance. This

simplifies the mathematical analysis considerably

and makes the F-function dependent only on y, the

distance of any point from the nose where the

characteristic produced meets the axis.

(iii) Apparently a third restrictive condition in Whitham's

theory is that of axial symmetry. However, Ward(1949)

has shownt that the flow becomes axisymmetrical

2_ 1/2when pr/ (x-pr) is large (See Fig. 2.2.11 Here = (M -1)

with M as the free-stream Mach number and r is the

distance of a point on the characteristic from the I
axis of the body. The quantity (x-Pr) is the

linearized from of the characteristic variable and

measures the distance from the nose at which the

characteristic starts. This Ward's condition

is clearly satisfied at large distances, but it

is also true at points on the front shocks because

the appropriate characteristic surfaces arise so

very close to the nose. Hence the results for the

front shock and all the Wbitham theory at large

distances apply unchangeui t- non-axisymmetrical

slender body. From thcs Wniillam concludes (Whitham, 1952)

that it Is reasonable to expect that his results

t This also foliows from the result established in the present

paper as will be shown later.
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for large distances apply to the supersonic flow

past any finite body. Mathematically this leads

to the interesting result that even for non-

axisymmetrical bodies the simplified Whitham F-

function can be used for far-field points.

We shall now examine the above assumptions critically

with a view to its application to the calculation of near-

field flow pattern of an inclined slender body of revolution.

The first assumption is essential to our theory because

the first-order potential equations are used. Strictly we

do not use the entire linearized equation in our analysis

as it would be had the x-axis been aligned with the free-

stream direction. This was first noted by Lighthill (1948)

The consequences of this distinction has been considered in

detail by Van Dyke (1952) and we will discuss it later.

T?±e second assumption is, in general, obviously in-

valid for near-fields. It is, however, still true for the

front shock system originating very close to the nose but

not for other points of the body. Whitham (1952) replaces the

approximate straight characteristics x- f3r by a better

approximation, y(x,r) given by equation (10)* in (Whitham, 19F2).

Whitham justifiably simplifies the "extremely complicated"

expression (10) for his far-field theory and obtains the t

Incidently, there is an error in equation (10). The second
integral on the right-hand-side of the equation should be
multiplied by (_M2 ) and not by (-2M2). This, however, does
not affect Whitham's results as he has not used equation
(10) in his paper.
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well-known results for the equation of the characteristicst

[equations (12) and (13) of Whitham's paper (1952))

x pr - k F(y) r1/2 + y

where

F(y)=f f' (t) dt
(y-t) l/2

o

and

k = 2 2 (Y+1) M4 6-3/2

Whitham notes, however, that expression (10) of his paper(Whitham,1952)

still provides the correct approximation to the characteristic

cui-ves near the body and should be used for near-and mid-

field calculations.

Using the correct expression for y(x,r) as given in

equation (10) of the above reference it will be observed that the

new F-function will be dependent on y,r,M and R(y) (see list

of symbols) for axisymmetrical flows. We have denoted this

function vy Fs{y,r,M,R(y)}. For inclined flows there are 7

two more variables on which F-function will depend, namely,

the angle of attack a and the azimuthal plane angle e.

We have obtained closed form results for the new F-

function ,or any smooth body of revolution. The recurrence

foi-mulas g-iven are convenient to use for computer programming.

2 1/ .'In Whitham's paper a- (M -1)'which we have replaced hereby 1 in order to use the Greek letter a for angle of attack.
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It is shown that if the shape of the meridian curve is ex-

pressible as a polynomial, all the integrals are related by

simple recurrence formulas and ultimately depend on one

standard form. It is a fortunate fact that any function,

which is continuous in a closed interval, can be uniformly

approximated within any prescribed tolerance, over that interval,

by some polynomial. This follows from the well-known theorem,

which states that for a continuous function y(x) in an inter-

val (a,b) there will be a po~ynomial f(x) such that If(x)- y(x)I

e E in (a,b) for an arbitrary positive E.

Once our polynomial f(x) has been determined so that

it satisfactorily approximates the given meridian curve R(x)

over a certain interval (a,b) it is easy to see that integration,

being essentially a smoothing process, will involve lesser

error than the derivations in f(x) and R(x) (Hildebrand,1956). It is of

importance to emphasize here the fact that the integrands

representing the F-functions are of the type G(x) f(x),

where G(x) are given functions and f(x) is the approximated

polynomial. Therefore the closed form solutions obtained

will introduce even smaller error than by using mechanical

quadratures.

The third restrictive condition in Whitham's theory is

that of axial symmetry. As mentioned earlier the far-field

flow pattern is not significantly affected by removing this

assumption of axial symmetry. But is is obvious that we

have to consider the effects of cross-flow for bodies at an
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angle of attack in the calculation of the flow pattern at

near-field points. This has been done by a distribution of

doublets with their axes perpendi'cular to the body center-

line. The strength of the doublets per unit length is found

to be proportional to the cross sectionnarea if we replace the

exazt tangency condition by an approximate one. This

approximation is exactly similar to the first order axial

flow pioblem.

To illustrate the type of F-curve that results from the

present theory we have calculated the new function F for

two bodies. Their shapes are given by

(a) R(x) = 0.1 x(1-x), 0 _ x _ 1

=0 x>l

(b) R(x) = 0.1 11- (l-x) 3}1, 0 I x < 1

-0.1, x > 1

A comparison of the near- and mid field F-function with the

far fi.eld F-Junctions bring out the following important

facts:

(i) As expected F-function very nearly coincides with

the F-function for points close to the nose.

(ii) At other stations there are significant differences

with changes in r, especially the peaks and troughs

of F-function.
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(iii) For axisymmetric flows F-l'unction is a weak function

of M upto about 3. This again is to be expected

from the slender body theory.

"..v) For inclined flows the effect of Mach number is

more pronounced.

Improved First-Order Theory for Supersonic Flow Past
Inclined Body of Revolution

Consider uniform supersonic flow pust a body of re--

volution inc"ired at an aagle of attack a [see Fig. 2.2.1].

The boundary condition at the body is simplified by choosing

a cylindrical coordinate system (x,r,e) aligned with the bcody

axis. We resolve the free-stream velocity into axial and

cross-flow components, as shovn in Fig. 2.2.2. The shape on the

body is defined by its continuous meridian curve r =R(x).

For moderate supersonic Mach numbors the flow is assumed

to be isei.tropic and irrotational throughout so that there

exists a velocity potential cp(x,r,e). The equation of motion

is then

r2 2 2 1 2 1 2 e 1

21 1 1 (a2 -24 •0+ (a2+ -2) --

,rr r r r

-2 ( 4 - 2x 4 - 22, x1 4x 0 (2.2.la)
r r 2

where the speed of sound a is related to its free streatti

value a by0
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Figure 2.2.1: Nomenclature

rI

U q,

Fi-ur'3 2.2.2: Nomenclature
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a2  . . . ,12 1 2.2

a2 x r 2 -U) (2.2. IbN
r r

The suffixes have been used to denote partial differentiations.

Introducing a perturbation potential Uo(x,r,e) we write

D(x,r,O) = U[x cos a+ r sinacosO+ 16(x,r,e)] (2.2.2a)

The total axial, radial and azimuthal velocity components

are then given by

q (x) =x= U(cos a + $x)

q = (= U(sinacose+ .r), (2.2.2b)

q ( )a = U(- sinasine+ 1 9)
r r

Substitutingeq. (2.2,2a) into equations (2.2.1) gives the exact equation

in the perturbation velocity potential. We need not write

the full equation for our purpose. However, in order to

bring out the distinction between first-order and linearized

equation for this inclined flow problem we reproduce the

perturbation equation partially retaining only." terms linear

in 0:

+ 1 1 x sin2  2 2
-- sn a +xrr sin a cos20

r r

+ (- - - ).,sin asin20 + sin2a -os e
; (' xr

1 1

_ $x sir,2a sin e-- Or sin2a sin20
r 2r
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2 6 sin2 asin20 + -0 sin2a s in 2e9
r r

+ the nonlinear terms ii ( (2.2.3a)

To this we add the following boundary conditions:

(i) All perturbations should vanish upstream of the

body so that

( (,t ,O) = x (O,r,e) = 0 (2.2.3b)

(ii) The flow F!7 uld be tangential to the surface of

the body s-- •!,t

16r(X,R,0) + sins cos) = R'[cosa +A1 (x,R,e)], (2.2.3c)

where
R' = dR(x)

dx

Actually, the first upstream conditions should be supple-

mented by the shock condition along the bow wave. However,

this refinement is not necessary for the order of accuracy

sought here.

The First-Oider Problem and Its Justification

The complete perturbation equation (2.2.3a) including the

non-linear terms is equivalent to the origin-l non-linear

equation of motion, Eqs. (2.2.1). Consequently, simplifying

assumptions must be mdc. in order to solve it. The well known

2.75



I t

theory of Karman and Moore (1932) or axially symmetric flow and

of Tsien (1938) or inclined flow is based upon the assumption

that the entire right-hand side of Eq. (2.2.3a) can be neglected

leaving the wave equation. Its solution will be termed the

first-order potential (Van Dyke, 1951) and is denoted by q (x,r,e).

It is clear from Eq. (2.2.3a) that the first-order and

linearized problems are the same where the free stream is

aligned to the x-axis, i.e., where a = 0. But, as mentioned

earlier, Lighthill (1948) first noted that whmcL 4 0 the linearized

problem is not the same as the first-order solution because

we are neglecting the linear terms in c in Eq.(2.2.3a). The

justification advanced for this approximation for inclined

flows follows from the slender-body theory in which the fol-

lowing are some of the important assumptions generally made:

(i) approximate pressure relation; (ii) approximate tangency

condition; and (iii) small angle of attack. Hence, Lighthill(1948)

and Laitone (1947) conclude that the exact solution of the first

order equation is fruitless and that first-order theory is

incapable of yielding results more exact than those'of slender

body theory.

The first-order problem is, therefore,

2 2err + (%r/r) + (q0,/r2) - x = 0 (2.2.4a)

C(0,r .) = (O,r,e) = 0 (2.2.4b)
x

2.76

L!• i - = • • ' lI -- ! A



(x, R, + sinct coso -= R'[cosa+xp (x,R, )) (2.2.4c)qr (x ,:

The first-order problem is satisfied exactly by setting

cp(x,r,e) = qpo(x,r) cosa + cpl(x,r) sina cose (2.2.5)

The first term corresponds to the axial component of free

stream velocity and the second, to the cross-flow component

(Fig. 2.2.2). We shallassumethatais small so that cos a 1

and sin a - a.

The lirst-order problem is thus separated into two

completely independent problems. For the axial flow,

2

%orr + (•') - I•OXX = 0 (2.2.6a)

-o(o,r) = •o(o,r) = 0 (2.2.6b)

To (x,R) - R' [ +q) (x,R)] (2.2.6c)
*or ox

and for the cross-flow,

2 2'1rr + 6"•lr/) - (q 1/r2) - f2 x, = 0 (2.2.7a)

•l(o,r) = ,)lx(o,r) = 0 (.2.2.7b)

1 + clr(x,R) = R'q. (x,R) (2.2.7c)

The general solutions of Eqs. (2.2.6a) and (2.2.7a) satisfying up-

stream conditions (2.2.6b) and (2.2.7b) are given in (Von Karman,

1932) and (Tsien, 1938).
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x-(3r

O (x,r) =- f X(t,f3r) f(t) dt, (2. 2.8a:)

0

x-•r

a).(x,r) f 1 f (x-t) X(t,,,3r)g(t) dt, (2.2.8b)
f3r 0

where

X(t,•r) (x-t) - 2 ... 1/2 (2.2.8c)

The corresponding first derivatives are

X-Bi'

ox= - f X(t,•r) f'(t) dt, (2.2.9a)

0

x-Pr

1= f (x-t) X(t,ir) f' (t) dt, (2.2.9b)
r

0

x-3r

1ix = f (x-t) X(t,pr) g'(t) dt, (2.2.9c)13r 0

x-f•r

S 2 (x-t) X(t,Br) g'(t) dt (2.2.9d)"elr f

The functions f and g are strictly determined from the

tangency conditions, Eqs. (2.2.6c) and (2.2.7c) which leads' to

Volterra integral equations, which can, in general, only be

solved numerically. For our order of accuracy as used by

Whitham (1952) we may, neglect the terp compared with cos a

in the exact tangency condition of Eq.( 2 . 2 . 3 c) and arrive at the

linearized boundary condition at the body sur"-.cz:
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(x,R.0) + a cos . - R' (2.2.10)

whore we have taken a to be small.

For first-order axial and cross-flow problems, Eqs.

(2.2.6c) and (2.2.7c) they take the form

CO).* (xR) = R'(x) (2.2.lla)

4lr(X,R) = - 1 (2.2.11b)

As remarked by Van Dyke (1951) these approximations have the

advantage that the resulting first-order solutions satisfy the

supersonic simila.rity iaw (the supersonic counterpart of the

-iethert r•,.e;, which is not true if the exact tangency coli-

dition is used. Except possibly for extremely thick bodies.

the resulting error in using the approximate tangency con-

ditions. Eqs. (2.2.11) must be small at all Mach numbers (VanDyke, 1.!5l).

The lineari:ed boundary conditions (2.2.lla) and (2.2.11b) lýad

to th'z following values For the arbitrary functions f(x)

and z.•x) (Von Karman, 1932)iTsien, 1938):

W (x) i1x) Ix dS(x) (2.2.12a

2-a dx

a nd

•(x) 2R(x) I' (x) W dS(x) (2.2.12b)
I dx

2wheru j3x) 7 R (x) is the cross-sectional rea of the body

at X.
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011y 1

Denoting the axial, radial and azimuthal perturbation

velocity components by u,v and w in this first-order solution,

we obtain

u = cox + a Tlx cos 0, (2.2.13a)

V =.P + a plrcos e, (2.2.13b)

w r = 1 sin e (2.2.13c)

where 0o,•1 and their derivatives are given by equations

(2.2.8) and (2.2.9) withf(t)andg(t) fromEqs.(2.2.12).

We now replace the straight downstream cha-acteristics

x-13r by y(x,r) as in 7,1hitham's theory(1952). With this modi-

fication u, v and w become

y y

U=-f f'(t) dt + a cose f (y-t+ r) g'(t) dt (2.2.14a)
0Y(y,t,pr) 13r 0Y(y,t,pr)

y 2

S= (y-t+3r)f (t) dt - cos f (Yt+fBr) 2g (t) dt,r 0 Y(y,t,pr) •r 2 0 Y(y,t ,) (2.2.14b)

y
w a sine f (y-t+ r)g(t) dt, (2.2.14.c)3r 2 o (y, t,,,r)

where

1/2
Y(y,t,6r) = j (y-t)(y-t+2,3r)} (2.2.15c)

y is now determined from the condition that y(x,r) = constant

is a characteristic cvrve, that is, along it
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dx cot(14 + F), (2.2.16)
dr

where • is the local Mach angle and 5 is the local flow

direction. The value of y on a characteristic has not been

defined uniquely, although on the body it must be approxi-

mately equal to x-Pr (which it replaces in linearized theory).

It is now made quite definite by taking it equal to the valae

of x-1r at the point where the characteristic produced meets

the body axis.

On expressing cot(L.+5) in terms of u,v and w by means

of Bernoulli's equation and neglecting terms O(u2+v 2+w ),

the integration of eq. (2.2.16) with respect to r yields

x = fr - c(y,r) + y (2.2.17)

where

c(y,r) -(+!)M 4 f N(r)-N(R) f'(t) dt

Y (y,~/2 f')t fdtd

2 n (r) - (y-t)1/2 N(R) + (y-t) 1/21

N(r) + (y-t)/ N(R) - (y-t)

y

(Y+l) acose J N(r)-N(R) g(t) dt

2f2 0 (y-t)1/2

_,+,÷)A4 - 22 1•2} jnfN(r)_ (-t) 1 /2 N(R) + (y-t)1/2

a cos e - 1 2 g~t)dt

2 , JN(r) + (Y-t)! N(R) - (Y-t) J
y 2 aCos ey

L =co! j9f N(r) (y-t)g~t)dt-2. f N(R)(y-t)g'(t) dt13r o R
0 0



- 2-M 2 acos ej t fN (r) - (y~t)112t d
IN '(R) - 1/2 g 1/2 ) dt

- 2 a Cos ef t{Ru~ gt) dt, (2.2. L8)

where

N (r) =F (y-, t,243r) = (y-t+ 26r) 1/ (2.2.19a)

N (R) =N[ yA, t,-23R.(-y.)) = I{y-t*2,3R (y,. 1 / 2 (.21b

and JR R(Y)

Wri~ting

'c(yr)=k T,,~;,',ze * 1/ 2  (2.2.20)

,k =2t./ 2 (7y+J.) ,U 4ý-3 2  (2.2.21)

a'nd ehanging the -.vari~bae -o- -tteg.Vation by s ubstitut ing

(2.2 .22)

tire P-f unction may 'be -wrltt~en as ý'(see Appendix 2. 2. 1).

(y) r-~i~)J 1 R(r) 1{y}

.2.



+ 4c- cos 0 1 4 a3 cos I3 R y)1'

(4+1) cor (, 2 1r (Y+1 )M2 R(y) V'2"r (2.2.23)

where

y1/2

1i(r) = f (a 2 +2 r)1/ 2 f'(Y-e 2 ) dý, (2.2.24a)

0

1 1/2

i 2 (r) = J (e2+2pr)-l/2f(y_-2) dý, (2.2.24b)

0

y1/2

i(r) =f +2 +2rr) 2 g,(y_2) dý, (2.2.24c)

0
yl1/2

12(r) =f (e2+-2pr )-1/2 g(y_e2 ) del (2.2.24d)

yi1/2

13 (r) = fP 3 (e 2 +21r) 1 / 2 gty_'.2) d2 . (2.2.24e)
o

and IR),I,(R),II(R',I 2 (R) and 13 (R) are obtained from Eqs.

(2.2.24) by replacing r by R(y).

Then the characteristics obtained by the improved linearized

theory are given by

x Br - x Ft y,r,R(y),M,a,O1jr + y (2.2.25)

where k is given by eq. (2.2.21).

If we now assume axisymmetric flow, that is, a =o the

'-funct.on becomes independent of the azimuthal angle 0,

and we obtain
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Fs{yr,R(y),M} _ 2 [I (r) - I,(R)] - 32 [1 2 (r) - 12 (R)]
2fr ('Y+I)M2 2r

(2.2.26)

where the expressions for I1 and 12 are given by (2.2.24a) and

(2.2.24b).

If we assume Ar/y » 1, wv obtain Whitham's simplified

F-function which depends only on y:

F(:,) = 2" J'fI(y- e)d2 (2.2.27)

0

Making use of the substitution (22), we can write this in the

form. given by Whitham (Whitham, 1952)>:
yI
rf (t)(YF(y) ' /2j•, '-' (2.2.28)

0 
-

F-- Funct ion

The F-function is given by Eq. (2.2.23) in which the I-

integ;ýals of Eqs.(2.2.24) can be rewritten after substitution

of the values of f(x) and g(x) from- Eqs. (2.2.12)

yl1/2

II(r) f (ý2 2pr)1/2 Sy 2 ) d2 , (2.2.29a)
2v

yl1/2

12(r) _ 1+ f (• 2+2r) -/2 S,(yS 2 ) d2 , (2.2.29b)

17T

0
1l/2

i(r) = f (t2 + 2fr)1/2s"(y- 2) dý =21 1i(r), (2.2.29c).

770

yl1/2

i2(r= (r f (ý 2 +2pr)-1/ 2 S' (y-• 2) d 23 I 2 (r), (2.2.29d)
IT 0
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yI
1/2

13(r) = 3,E +2'r) S (Y-) df
7T

0

where primes indicate differentiation with respect to the

argument (y-_ ).

The 11 (R), 12 (R) etc. are obtained from above by replacing

r by R(y).

If f(x) and g(x), which are proportional to S'(x), are given

as polynomials we proceed with the integration as given below.

If, however, the value of S'(x), which is assumed to ?-i con-

tinuous, is known for at least (n+l) values of x, say

XoX1, .. , xn, the simplest and most often used process

consists in selecting an apprcximate function yn (x) which

takes on the same values as does S' (x) for each of those

(n+l) values of x. Here again the choice of polynomials,

called the collocation polynomials, is convenient. Fox,

whereas in the general case there may be no function, or

there may be several, the existence and uniqueness theorem

states that there is one and only one polynomical of degree

n or less which takes on the prescribed values at each of the

(n+l) points. The basic interpolation formula was given by

Lagrange which expresses the approximate polynomial in terms

of only the ordinates given. It is, however, often con-

venient to use Newton's interpolation polynomial with

divided differences or Aitken's iterated interpolation

polynomials. These latter formulas are especially suitable

for the detection and F.ropagation of error at each stage.

2.85



-39

For details reference (Hildebrand,1956) may be consulted. When

the values as well as the derivatives upto a certain order of

a function are given at specified arguments, we can use

Hermite's interpolation polynomials (also called osculating

p6lynomials) to approximate the given meridian curve.

We, therefore, write

N

S y-•)= S'{ (y+2pr)- Q2+2•r• = 2 An(y'or)(+ 2 + 2 3r)n

n=o
(2.2.30)

Substituting this or its derivative in the expressions (2.2.29)

it is readily seen that all the integrals of I (r), I 2 (r),

1l(r) and 12 (r) reduce to the following form:

yl/ 2

Tp/ 2 (r) f (• 2 +23r)P/ 2 de, p=- 1,0,1,2, ... ,N (2.2.31)

0

The reccurence formula for the T - integrals is easilyp/2

established as

Tp2r 1/ (y + 2i•r) p/2 +2f•rp

T' 2 + - + 1 T (2.2.32)
p/2 p+l 2

and since

_ 1/21/12

( (2 -1/2 /2 (y+23r)0/ 2  (2.2.32)
T1 (r) +f ~213r) d .fjjy

o (20r) 11 2

U

all the integrals of Ii(r), 12 (r), 11 (r) and 1i2 (r) can be I

written in closed form.

The integrals of I 3 (r) will be of the form
/
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1l/2

F3 (2 + 26r)p/r 2 d' (2.2.34)

0

which is readily integrable as it can be reduced to a standard

form.

• (p+2)y-(4r + 201r) (2.2.35)

p (pi2)(p+4) (p+2)(p+4)

The F-function of Eq. (2.2.23) can, therefore be determined in

all cases where the body is smooth, in closed form.

The F-curve gives immediately a rough description of

the flow pattern since it shows whether the characteristics

are converging in compression (6F/3y > 0) then a shock will

appear or diverging in expansion (AF/6y < 0).. The method of

area balancing given by Whitham (1952) can be used to build up

the details of the flow pattern.

The Pressure Signature

From Bernoulli's equation, which is approximately true

since the small entropy changes at a shock contribute a

term of smaller order,

2 -y-1
+AP.+ M2 (r- )} (2.2.36)

P 0 2 12

where A\p is the pressure in excess of the undisturbed pressure.

Now
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1/4 -3/4 [11/2

1/ 2r fF(Y) dy (1-2 aB cosO)

PO (l +) 1 / 2  (2.2.39)

where Yo is the first zero of F(y), the Whitham function for

far-field points. In between -the shocks equation (2.2.38) holds.

The two integrals of Eq. (2.2.38) may be evaluatcd in closed form

using the T-integrals of Eqs. (2.2.32) and (2.2.33).

Examples

In order to compare the near-field F-curve with the far-

field Whitham function, we have calculated these functions and

the pressure signatures for two examples of body of revolution.

(a) The shape of the first body is given by

R(x) = 0.1 (x-.2), 0 < x < 1 (2.2.40)

= 0 , x>l

The Whitham F-function is easily calculated analytically and

is given by

F(y) =0.02 (l-6y+6y2 ) y 2 +2(1-2y)y 3 /+ 1 . 2 y

(2.2.41)

The F-function, as given by Eq. (2.2.23) has been expressed in

terms of the I1, 12 and 13 integrals which are in turn ex-

pressible by means of the T and Q integrals of Eqs. (2.2.32)

and (2.2.34). For this example, if we put

a = y + 2or and a = y + 2 8R(y) (2.2.42)

rq
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q2  ( 1 F oxcos 2÷ (acos O+Mr +qir acos )2

2
+ (a sinO . ml - 1 a sin 9)

r

+ 2 l+2 (°x +a plx cosO+ a~or cose) + higher order terms

and

2
t- 2 qc + a qy cos0+ a + Tor cose]
U

neglecting higher order terms.

Hence, within the order of accuracy employed in the

first-order theory equation (2.2.36) may be approximated by

Ap -_++M2 [ + +o)a cosO] (2.2.37)

p 0 0
SubstitutingPthe values of the derivatives of cpo and •1from

Eqa2.2.9) and making use of (2.2.12) and (2.2.22),Eq. (2.2 37) may be

rewritten as

1/2 1/2
M2 1y "2(- 2 y 2 ~)f~ 2)

= •f S (y-.) d -3acos 2 f Q+Fr)1/ d.j

PL (±2+t2r) - r Q +2f3r) -

(2.2.38)

Since the points of a lront shock are "effectively at large

distances", Whitham's approximate treatment (1952) is valid on

the shock and we reproduce his result with minor alteration

for the inclined body. Hence for the front shock, when r is

large
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For the near field, if we put

A = 1- a , A =1 -aR (2.2.47)r r RR

where ar and aR are given by eq. (2.?.42) the analytical expression

for the integrals required for the calculatien of the

F-curve are as follows:

(r) 0.01 [Ar(15A3-6)T 1 /2 (r) +( 6 0Ar- 6 )T 3 / 2 (r) +90A2T 5 ! 2 (r)

+ 6 0ArT7 /2(r) + 15T9 / 2 (r)], (2.2.47a)

1(r) =0.01 (3A (1 -A )T (r) + 3A(2 r +3(-IAW
i AT 12 r +3llA)T3 /2(r

- 30 A2T.i 2 (r) - 15 ArTT/ 2 (r) -3T 9 2 (r)]

(2.2.47b)

L.(r) =0.01 ((1A_6Q ()+ (6A3-) ()+90A 2 Q(r)
3A r r )Q/ 2(r r Q3.6)12( rQ5 /2r

+ 60A rQ 7 /2 (r) + 15Q9/ 2 (r)] (2.2.47c)

AgAin the values of Ii{R(y)}, 121 R(y)} and I3{R(y)} are ob-

tained from (2.2.47) by replacing r by R(y).

The pressure signature in between the shocks can be

expressed in terms of the known integrals given above

yielding
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21l(r) = 0.01 [(El-6a r+ 6 ar)T / 2 (r) + (6-12a r)T 3 / 2 (r) +6T5/i

(2.2.43a)

I 2 (r) = 0.01 r(ar- 3 a2r + 2 a3)T 1 2 (r)- (1-6a +6a 2 )T1/2(r)

- (3- 6 ar)T 3 / 2 (r) - 2 T5/2(03,

(2.2.43b)

13 (r) = 0.01 [(1- 6a + 6a2)Q1 /2 (r) + 6 (1-ar)93/2 (r) + 6Q/2 (r)]

(2.2.43c)

The Ii{R(y)}, I 2 {R(y)} and I 3 {R(y)} are obtained from (2.2.43)

by replacing r by R(y).

The pressure signature in between the shocks is given by

2P 0.02 -M2[{1+ (3 )acosO}{ (1-6a r+6a2) T 1 2(r)_

+ (6-12ar)T , 2 (r)+6Ts/2 (r)} - 1 acos0 Ii(r)] (2.2.44) 1

For the front shock the jump in pressure can be calculated

from eq. (2.2.39).

(b) The shape of the second body considered is given

by I

R(x) = 0.1 (1 - (l-x)3 ], 0 • x < 1
(2. 2. 45) i-:

IThe Whitham F-function for the far-field points is given by

F(y) = [0.3(l-y) -O.12(l-y)]yl/ 2 
- f0.4(l-Y) 3 - 0.04] y32+/

+ 0.36(l-y) 2 y 5 / 2 + 0.171(l-y)y 7 / 2 + +L y9/2 (2.2.46)
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The pressure signature in between the shocks is given by
0.02-yM [1 + (30) acose}{ (15a-oa + 90a+-54a 9)T (r)

rr r r -1/2

- (60a 3 - 180a2 + 180a + 54) T 1 / 2 (r)

+ (90a - 18Oar + 90)T 3 /2(r) + 60 (1-ar)T5 /2 (r)}
3

r acose 0i(r)] (2.2.48)

Conclusions

The worked examples, given in the paper, show a signi-

ficant difference between F--function in near aad far field

points. It is quite clear from the plots that for e = 1800

at a certain angle of attack, the peak pressures for near

fields are higher than those at zero angle of attack. From

the plot of F-function and also from the pressure plots, it

is seen that the expansion is stronger than the case of zero

angle of attack. This is even otherwise obvious from the

physical point of view. For 0 = o0, the reverse is true,

i.e., the pressure peaks become smaller and expansion becomes

'. iker with angle of attack. Thus we observe that with an

"angle of attack we have a shock-expansion system, in which

the strength varies as the azimuthal angle is varied around

the body of revolution.
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2.2.2 DETERMINATION OF A BODY OF REVOLUTION FOR A SPECIFIED
PRESSURE SIGNATURE AT ANY FIELD

Summary

Design of bodies of revolution to produce specified sonic-

boom signatures at a given Mach number and lateral spacing from

the body uses the far-field theory of Whitham and a procedure 4

has been put forward by Barger (1968) for calculating the

shape of the bodies of revolution. Since the above theory does

not strictly apply to near-field region, the present work gives

a mathematical procedure for determining the bodies of revolution

for specified s4-natures at any field. However, it should be

pointed out here that the near- and far-field theoreis merge at

a certain spacing from the body and beyond this field the far-

field theory due to Barger could be used for its mathematical

simplification.

2.95



_ • -i -• -' .. .. _T ~

Introduction

The Whitham Theory (Whitham, 1952) has been shown t ',re-ý

dict accurately far-field signatures produced by a body of

revolution. This theory, however, is not very accurate in the

near and mid-field points and Sec. 2.2.1 points out the limitations

and applicability of Whitham's far-field theory. The far-fierld

theory applicable to the inverse problem for determining the =

shape of a body of revolution that will produce a specified

pressure signature at a given Mach number and certain field

away from the body, has been given by Barger (1968). This theory

does not strictly apply to near- and mid-field points. The -

present work employs near- and mid-field theory in order to

determine a body of revolution for a specified, physically _3

obtainable pressure signature at the near-field region. Although

variations in the shape of a generating body do not normally-

prevent its signature from developing into the well-known N-shaped

wave at large distances, there are some signatures that do ndt

attain the classical N-wave form in the far-field. One such

example is given in the reference (Barger, 1968) where the specified
near-field pressure signature has a form with its positive and

negative parts separated by a section of zero overpressure.

Moreover, even if the signature does approach an N-wave, it may

* develop so gradually that it does not attain its final asymptotic

form within the distance corresponding to objectionable overpjressures.

(McLean, 1965). or even if N-wave is for&ed at the given distance

the overpressures are of less magnitude than annoying levels.
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Thereis a need for analytical methods that are capable of

accurately predicting the near flow field pressures about

arbitrary aircraft configurations for design optimizations in

connection with sonic boom as well as the performance of the

vehicle (Hunton, 1968). Near-field pressure signatures are also

of interest in connection with certain sonic-boom studies such

as wind-tunnel investigations and signature measurements using a

probe aircraft. Available theories are either too cumbersome

mathematically for ease of handling on the computer (e.g.,

method of characteristics) or are limited in range of appli-

cation (e.g., Whitham, 1952) because of some mathematical simpii-

fication such as the linear theory concept. As a result, problems

of analysis do occur in the flow regions very near the aircraft

in connection with the design and arrangement of configuration ,

components. Various wing-body combinations have to be examined

to come up with various desired configurati.ons. Whitham's theory

is easily applied to the bodies of revolution but can not be

applied to wings to determine the flow fields at the near-field

points. For these fields a wing can not be replaced by an equi-

valent body of revolution and thus new prediction techniques

wherein a wing is represented by some sort of spatial distribution

of singularities over the entire wing surface, have to be developed.

This phase of the sonic boom research is now under progress.

Thus the present work is a preliminary study towards the overall

optimization of the aircraft in connection with sonic boom.

The purpose of the present paper is to describe a procedure

for designing bodies of revolution corresponding to specified

pressure signatures at any field.

2.97
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Formulation of the Problem

Let the steady stream have velocity: U in the x-direction,

and at d general poi~nt='(x,r) let the vel.oc*ity he -(U +Uu, Uv).

Assuming the flow to be irrotational: the: per-turbation velocities

u -and v may ber-deduced from a-potential wb~ich, on the linear-

ized axisymmetrric: theory satisf-ies, the equaktion

2

where ~2(M 2 - 1) and suff Ixes denote partial- dIff erentiation.

The so~ht-ion~-of Eqi (2-2.49.) which- represents- a disturbance

propagated downstream from a body- is

f ~f (t) dt (.50

o (x.-t) r~jl

giving

J f _(t) dt-
U = - (x-t 2 - 2- 2- 1/2,'22.1

x-tOr

f (x-t-) f(t) dt (.2 2
2 ,2 2-; 1/2- 225

r {(x-t) - r

The downstream-a-pproximate character-istics of the equation are

x -8r constant. We now replace x-3r- by y.(x',r), a better

approximation to the exact characteristic-. Carry-ing out the

modification, u and' v become-
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y
u=-f ~ f(t) dt (..3

y

y is now determined from the condition that y(xc,r) =constant

is a characteristic cuzrvei7, that is, along it dx/dr =cot (4,+e),

where-i>-is the "Local Mach angle and e is the local direction of

flow. Rroceedinig as detailed in Whitham's paper (Whitham, 1952)

and assuming fPr/y »> 1, u,v and the equation of the characteristic

are given by

Fuy rý U (2.2.55)-1/2(2j3)

x 13r 'A F (y) r + y (2.2.56)

where

Iy

Fy) ff(t) dt (2.2-.57)
(y-t)1 1

and

k 1/ 2(y+l)M40731 (2.2.58)

From Bernoulli's equation, which is appzoximartely true since
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the small entropy changes at a shock contribute a =term-of smaller

order, we have by neglecting terms 0(u 2 +v 2 )

_ -u (2.2.59)
p00o-

where Ap =p- p-P is the pressure in excess of the undisturbed.
0I

pressure po.

Then the prc> m is to solve the singular integral equation

(2.2.-53) when u.(y) is given by (2.2.59).

To Find& a Bo~dyo•oRevolution- for a Given Near- or -Mid-Field PressureSignature•- ... -.

Solution of the Integral Eqjution

Method I Analyticalý-- Numerical-Method:

The integý?t equation now to be solved is

y
f -((yt (2.2.60)

,(y.-t +20~r) 2 (y--t) 1"

where u(y-) is known- from E. (2.2,59) and f' (y) is- the unknown function.

* Putting f(t) =- (t) for conveniencz, Eq. (2.2.60) may be

rewritten, as

y
u(y).= f K(y,,t) y(t) dt, (2.2.61)

0

in which the kernel has. the form

m/
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(y G (Y.,2t (2.2.62) •;
(y-t)

where

G (y,t) (y-t+23r) 1 / 2  (2.2.63)

is continuous in T(0 t b y • b(say)).

Precisely as in the case of Abel's equation, of which Eq.

(2.2.61) is an immediate generalization, we see that Eq. (2.2.61)

cannot have a continuous solution unless u(y) is continuous in

1(0 y y • b) and u(O) =0. We will assume that these conditions

are satisfied by u(y).

1/2 =fMultiply Eq. (2.2.61) by (z-y)/, where

0< z b, ,

and integrate the resulting equation with respect to y from 0

to z, obtaining

2 z 3'fo -(z~y) dy = f yIi f. - Y~(t) dtiy. (2.2.64)
(z-y) 12 '(z-y, (y-t)

00 0

The right-hand side of this formula reduces by Dirichlet's

" extended formula (Tricomi, 5957) to

~~ G (y t) dd

o 1

If we then write
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z

FTý(Z) =f u~) dy, (2.2-.65a)
L tyf y1/2 t)

1/2 1/2 dy (z>t) (2.2.65b)

equa~tion (2.2.64) takes the form

F(z)= f L(z,t) i(t) dt (2.2.66)

We will now, show, that the kernel L of this equation is con-

tinuous in- T-, except -possibly- on the- line z=t where it is

not yet defined. For this purpose- introduce - as the variable

of integration in placez of= t by means of- the formula

(2-.267)
Z-t

We thu. get whenz > t

° 1

L zt) (2-2.68)

0.

"Since. this integral remains convergent when we. replace G by the

upper- limitt of _its.- absolute- value, it follows that it is uni-

formly convergent in T, and. since, 0. is continuous, L is also

continuous wherever- it is, define&d_!

In order next to see whether L approaches a. limit as the

point. (z,t) approaches a point- (c, c) on. the hypotenuse of- T,

we- apply the mean value theorem- for integrals- to the original .

r -
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definition of L given in Eq.(2.2.65b), getting

z

L(z,t) =G(xt) 1/ G(st),(t<s<z).
(z-y) (y-t) sin v/2

(2.2.69)

Consequently

lir L(z,t) = - G(cc) - (2.2.70)
z->c (213r)1/2
tec

from equation (2.2.63).

We see then that L is continuous throughout T, and that

if we have G(y,y)$0 at any point of I, it follows that A

L (y, y)#0 in 1.
-4

In order that the equation (2.2.63) be a Volterra integral

equation of the first kind with finite kernel, G should be such

that L(zt) have a partial derivative with respect to z finite

in D[Oz_] and whose discontinuities, if any, are regularly

distirbuted.

Let

G1 (Z't) =G=_ (z-t 213r)-3/ 2  (2.2.71)
z 2 2

which is obviously continuous in T. If we now differentiate

Eq. (2.2.68) with respect to z under the integral sign, we get

1 1/2
fC, (..L 1 (z t)ett ~(2.2.72)G[-t) e~ d.
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Since this integral is obviously uniformly convergent, we see,

by the ordinary test for differentiating an infinite integral

under the sign of integration, that

1=

3 £L f 1/2
L-(Zt) f - G1, (z-t) E+t,tJ dt,

or

" )I~/2-
SLl~L(Z't) 1f(_ d

2 1-a { (z-t) a+2r}3"/

which is valid throughout T.

It can now be shown that the continuous solution of Eq.

(2.2.66) satisfies Eq. (2.2.61) and that it is unique (Boche4

1909).

We shall now reduce equation (2.2.61) to Volterra's integral

equation of the second kind which is more readily solved by

Picard's method or numerically.

Differentiating Eq. (2.2.66) with respect to z, we have

z

F' (z) L L(z, z) Yr(z) + fL 1 (z, t) 7 (t) dt (2.2.74)

0

But by Eq. (2.2.70)

L(zz) (2) 2 $0 (2.2,75a)

it can be easily shown that (Hadamard, 1928) V
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y YF (t) dt f!QFLW.F!.•y) dt +F(y) f dt

(y-t) 3/2  (Y-t)3/2  (J:t) 3/2

Using the above formula we get,

z z

F (Z)=if u(y)--d 1u (Y) 9
6z (Z-Y)1 2 d 2 (z-y)0 0

z

_____ f Y z y U z) (2.2.75b)

2 0(z-y)

Hence Eq. (2.2.74) becomes.

F I(Z) - W(z) + f L(z,t) T(t) dt (2.2.76)

where '(z),. the known function is given by Eq. (2.2.75b) and

the kernel L I s,t) by Eq. (2.2.73)

The Kernel Fu)nction-hzt

L (Z't i~l2 t) ) +fft" (2.2. 77)

Substituting e sin e and simplifying, we have for z> t (see

Appendix 2.2.2)

Ll(z~t) 28r I(

I ~(z-t) (z-t + 2r) 1 i (z-t) (z-t 213r)1 1  ~c

(2.2.78)

where
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Z 1/2
z-t (2.2.72)A

z-t+20r

and K(c) and E(K) are conplete ellipti-c -integral of the -first

'nd the second kind.

It remains to find the-value of L 1 (z,t) for z =t. VWQ have

from Eq.j"•2.2.73)

1

(Liz~~it _1 1 F_ ,2J/
2 (2"3r)ýrW 2 -o '-(2 3/c2-

(2.,2, 80)

Method 2 - Direct Numerica-l Met-hod of "Solution

(Collocatlon -Method)

"It is, however, -possible to solve the integra- tequation iby

application of the col-location method twithout -reduction to the

second kind.

The intze-gral -equation to 'be -solved -is

y -f f"(t2) dt- u (y) (2.2.81)

-o (y-t+2r-) 1/2 (y-t)1 2 1 - u

whbre u(y) is assumed to be -a 'known -continuous function in

ItO~ybr(say)) and -u(o) = 0.

In the general case-we cann assume -that -f' (t) can be ex-

pressed in the form

-N- n

f(t) = at (2.2.82)

n=o

21b0-
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which' includes polynomi~als as special cases. We proceed to

determine the unknown coefficients, a~ by introducing expression

Eq. (2.2.82) into Eq. (2.2.53), giving

N y

na (t23)'(t 1  
-U(y). (2.2.83)

n'=o 0

The following two types of integraL- occur in Eq. (2.2.-3)

according as n 2m, an even positive intege:7 or n=2m+/1-, an

odd positive integer,

0
2m1

12(y) j t dt (224b

I (Y) f(2.2.85a)

= y-tp), (2.286a

2m,-1

2m 2m

t2 19



with

Y =y + 2fPr (2.-2.86c)

and

I (y) - -r~ Am+ (2.2.87)

where

2M(l+k) A -(2m-l.)A-

A 1 2m' 2m!-2(2 .8a
(2m+l) 2k228a

with

-~[K(kl) -E(k 1),(28b

k

A4 = 2+ K(k)- 2(1+k) E~k1) (2.2.88c)
3k4

in which the modulus kis given by

2 (2.2.88d)
y+2pr 1

aand nd ~k 1  are complete elliptic integrals of the first

and-second kind.

The integral equation (2.2.53), the-n reduces to

N
-~ an =-uy (2.2.89)

n )q Y) u Y
n---o



where (y) arc known for all values of y in I. Chosing N

suitable values of y, (y 1 ,Y 2 , ... , yN) for which u(y) is known,

we have the system of equations to determine an,

a-d 1 (y 1 ) + a 2  2 (y 1 ) + ... + aN (yl) =-u(yl),

Aly2) a2 -A 2 (y 2 ) + "'" + aNvA(Y2 ) u(Y2)

al'•I(YN) + a 2
4

2 (YN) + aNoN(YN) = - (YN)

which can be written in matrix notation as

.[4] {a } =-{ul

or

{a} - -1 (2.2.90)

KU

where

LJ ].= J, .. (ys)]: is a (Nx-1) square matrix of known elements

J{ u} = )UIY} : is a (Nxl) column matrix of known elements

{a} tar} I is a (Nxl) column matrix of the unknown
coefficients.

Hence f' (y) is approximately determined, from which the

geometry of the equivalent body of revolution may be found.

The use of the above method has been illustrated in the

"Numerical Application" later in the section.

2. 1C9
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Numerical Application

In order to illustrate the methods of solution for obtain-

ing the shape of a body of revolution that will generate a A

specified signature at a given Mach number and lateral spacing

from the body the following example is chosen.

Two of the specified pressure signatures as given by. Barger

(1968) have been selected - one with a finite rise and thp

other with a plateau with its peak same as that for the finite

rise. The sole z.eason for selecting these pressure signatures

at M = 1.2 and r/A = 4.2 is that with -these conditions, the

speCýified and experimentally measured pressure signatures agree

very well with some rounding off of the corners.

These signatures have a stretch of 15.3 cms starting from

zero strength at x- Pr =0 and coming back to zero strength at

x- Er = 15.3 cms. The peaks of the signatures are obtained by

joining straight lines rather than rounding them at the peaks

(Barger, 1968). This is done only for mathematical convenience.

The desired finite rise pressure signature at r/. = 4.2 and M= 1.2

is given by,

-_ 0.0096
0 x 4 ems.

p 4

0 0192
= 0.0096 01 (x-4), 4 • x • 11.5 cms.

4 7.5

=- -0.0096 + 0.0096 (x-11.5), 11.5 x 15.3 cms.
3.8
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and the desircd plateau pressure signature at r/t = 4.2, M = 1.2

is given by,

= _0.0096 x , O~x• 0.5 cms

PO 0.5

= 0.0096 , 0.5 < x _< 4 cms

00.0192
= 0.0096 (x-4), 4 x 11.5 cms

7.5

- 0.0096 + 0.0096 (x-11.5), 11.5 i x • 15.3 cms
3.8

I
These two signatures are plotted in Fig. 2.2.7. Since at these

conditions the far-field theory given by Barger (1968) is adequate

for determining the shape of the body of revolution, it is of

no use to modify this far-field theory at this field r/. = 4.2

with M = 1.2 or any field away from r/t = 4.2. The body obtained

by use of the far-field theory does not give any significant

difference between the specified pressure signature and pressure

signature obtained by use of the near-field theory (Sec. 2.2.1),

or in other words, the far-field and near-field merge at r/i. = 4.2

for this body at the given conditions. So the near-field theory

is of use only for fields between r/4 = 0 and r/t = 4.2 at

M = 1.2. The Lumerical procedure adopted to illustrate this is

as follows:

Barger's procedure is used to determine the shape of the

body of revolution by the use of his far-field theory. This
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procedure involves the construction of F-function and then the

F-function integral is inverted to give the shape of the body

of revolution. Then the Whitham's far-field theory (Whitham,

1952) is used to compute the pressure signature of this body at

r/t = 0.5 and also the near-field theory (Sec. 2.2.1) is us'ed

to compute the same at r/t = 0.5. The two pressure signatures

are plotted in Figure 2.2.8. It is seen that there is signi-

ficant difference between the two signatures. This suggests

that the far-field theory is not accurate enough in these near-

field points. Of course, here the body is approx-fAately 8-10%

thick and thus it is expected that thicker bodies (about 20%

thick) will give larger errors between the pressure signatures

obtained by the use offar-field and near-field theories.

Now the far-field pressure signature at r/t = 0.5, M = 1.2

becomes the specified pressure signature in that field. We

can use "method of collocation" or "direct numerical method" to

determine the shape of the body of revolution. Since in the

near-field points the F-function and pressure signature have no

simple relationship as in the case of far-field points, the

integral equation (2.2.60) is solved assuming that the character-

istics are straight. The body obtained from this procediure i•

the first approximation and then the near-field tbeory (Sec. 2.2.1)

is used to calculate the pressure signature at the above field

r/t = 0.5 at M = 1.2. It is found that this signature and the I
specified signature do not coincide, thus suggesting that the

characteristics are not straight at this field. Although the I

peaks of the signatures are the same, there is a shift in their
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positions. Thus manupulating the starting signature and iterating,

it is possible to get back the specified pressure signature at

r/t = 0.5. After one or two careful iterations, it is possible

to determine the body of revolution for the types of specified

pressure signature described here.

In the method of collocation f' (t) is assumed to be of the

form
N n

f' (t) a atY
__ n

n=1

The choice of N is important, as this deteimines the size of the
A{

matrix [/]. When N is about 12, there is loss of accuracy in

computation because of the type of matrices occuring here. To

get around this difficulty and to use the "method of collocation"

more powerfully, the series for f' (t) is assumed to be different

in different portions of the pressure signature and collocation

is done at fewer points in each portion. The coefficients of the

different series are found successively in the calculation

procedure. Since we are seeking solutions for smooth bodies,

the slopes of the area distribution are matched at the junction

points in the calculation of the coefficients of the series.

We know from slender body theory that

(t)- (t)
21T

Two integrations of the series for fit) with boundary

conditions S(o) = S' (o) = 0 for bodies pointed at nose give the

2.113
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area distribution and thus the distribution of the radius.

Conclusions

The designed bodies of revolution which produce the specified

pressure signature at Mach number M =1.2 and a spacing r/j,= 0.5

away from the body axis have been plotted in Figure 2.2.9. It is

seen from the plots that the body (1) of revolution due to the

finite rise pressure signature is much sharper at the nose and

thinner than body (2) due to the plateau pressure signature. This

observation could otherwise have been made from the physical point

of view, but the present analysis gives the exact shapes cf the

bodies. Although in the present example problem the far-field and

near-field theories tend to merge at a field r/• =4.2 and M =1.2,

for thicker bodies these cwo theories will give the same pressure

signatures at distances more than ril.= 4.2 It might be mentioned

that the effect of Mach number on both theories will nearly be the

same. In the present example, it has been checked by the author

that although the pressure signatures due to the two bodies de-

generate to N-waves at large distances, body (1) produces stronger

front shock than body (2).

Recommendation

Since the near-field signature shape is sensitive to slight

deviations in the shape of the generating body, an-extensive study

and suitable alterations of the near-field signature will make it

possible to reduce sonic boom at far-field points to a desired level.

It also may be pointed out here that the same theory is appli-

cable for a body of revolution at an angle of attack. Although

the contribution of the thickness of the body to the pressure j
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signature is much more significant compared to that due to a

small angle of attack, the work done in Secs. 2.2.1 and 2.2.2 *may be applied to determine a body of revolution at an angle

of attack for a desired pressure signature.
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APPENDIX 2.2.1

The Simplification of the Integral Occurring in Equation (2.2.18)

L = f MN (r) - (Y-t)1/2 N(R) + (y-t)1/2f

S IN(r) + (y-t) 2  N (R) - (y-t)i/2 J

where
N(r) N(y,t,21r) = +2 1/2,

(A.2)

N(R) F 14 y,t,21R(y)} ={ y-t+ 21R(y)} 1 2

The integral (A.1) may be written as

L- L -2 + -L3 (A.3)

where

y
L = f n {(y-t+2Br)'/ 2 - 1 ft) dt, (A.4a)

o

L 2 = f •.n (y-t+ 2r) 1 / 2 + (y-t)1 / 2 } fit) dt, (A.4b)

0

y
~1/2 + /21f)

=!

L3 = fn[ [y-t + 2pRy)}2 (y-t)l/]ft t (A.,4cb)
2I

0

yL3= f tn [y-t + 21R(y) 1/2+ (y-t)]12 f't) dt (A.4d)

0

Integrating by parts we obtain from Eqs. (A.4) 2
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~ y

2 (y-t)V2 (y-t+213r)V

(A. 5a)

L Y)z (1r)12 f() r I(+23)1/2 l,'2 1 +Iff (t) dtI
L2 2fy f() n (+2r + } - 1/2 (yt+2pr) !/ 2-

0

(A. 5b)

T= f(y)tm[f2j3R(y)} ~'~-f(o).tn [{y+2pR(y)} +/21/-3 y
1- f (t) dt

2 (Y--t)2 1 2 y-t+213R(y)}1 2  (A. 5c)

L4 ='f (y)f .n{2PRy)1 - f,)n{+~(y)l 1/2 _ 1

y
I f Y (t) dt (A.5d)

2 0(y-t) 2 1/ y-t+2pit (y 1/2

Combining the expressions of (A.5) an:ý, cancelling terms

yields

L = t[I(yt2ýr)12yV2 .y } f (o)

+ fy-t +213R(y) - y-t +213r 1f(t) dt
0lhy-t+2r:R(y)} 1/2(y~t) 1/2 (y-t+2ffr)1/2 (Y-t)1 2

(A.6)

Assuming the body to be pointed

f(O) R '(o -R(o) R (o) =0,
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since R' (o) is finite and R(o) 0.

We, therefore, obtain the form given in the text

Y
L =f y-t+2ER(y) 

- _y-t +2Br f(t) dt
oI(Y-t)I!2{y-t'-2i3R(y)I (y-t)1 ý2(y1t+21r 1

The other integrals of equation (2.2.18) in which the logarithmic

terms occur may similarly be treated.
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APPENDIX 2.2.2 !

The kernel function

1 ~1/2LZ't) = -
(B.1)2 L (z-t)(t+2) 1

2Substituting =sin e and simplifying, we have

7T/2
Ll(Zt) - de

(2~r11  J (1i-2  2 1/2-(2Br) 1/2 0 (I+n sin e)

f(2•r)1/2 (B2 dO "2 :' ,,.,

z-t (a+n 2sin2 9)(l+n2i2 /2' (B.s2 ))

where

z-t n2. = n 0 for z -t,

21r

The two integrals of the second member of (B.2) can Le reduced
to standard forms in complete ellipti.c integrals of the first and

second kind by introducing a vari.able X in place of e by means
of the relation

sn2X = (l+n2)sin2e (B3)l+n 2 s in 2

which reduces them to the following forms

r1/2 K(K)
de f d": - i'K ()00
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and

7T/2K (ic)
dO = K'f dn2XdX =c'E0c)

2 2 :2 2, 17 2-
0 (1+n sin2e) (1+n sin2e) e

where

2 1/2 1/2
K( zt , 0 < i<,

1+n2 z-t+2pr

and

2 1~)/21/
Ic' (1-Kc) 1  

- /
z-t+2fir

I

is the complementary modulus.i•

i
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APPENDIX 2.2.3

1. Evaluation of

J m
z (y) =f tm at

0 (y-t+213r) 1 1 2 (y-t I /2

Changing the variable of integration by means of the relation

•= (Y-t) 1/2, Ii(Y') reduces to

1/2
2 mf(Y- F) d8

I (y) = •+213r)1/2 .(C.1)

Now since

(y_ 2)M = Ty _ (e2 l 2r)M

= ym m ()ym-lQ2(2+2fir) +... + (_)r(m)ym-r( 2÷2pr)r

. ...... + (-) 2 (+ 2 1r)m

where

Y =-- y + 2pr

Iand, furthermore, since!

i
1/22 2m-1

yl/2/

Tm f (2+2Br) d= /Y + (2m-1) 20r T

o 2m 2m r-1'

with
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y1 / 2

T, jY 1/ ýt Yl /2 + yl1/2

0 ( 2+213r)1/2 1(23)1/2-)

we have the result given in the text.

2. Evaluation of'

2m+1
Y 2

12 (y) f 2 dt
(Y-t+2r)i2 (y-t)

We change the variable of integration t by substituting

2t = y sin e, yielding

m~l iv/2

i 2 (Y) 2ym+l sin,2 m+2,, dO (C.2)(y+2 fr)]/ 0 (1-k2I sin21/ eC.)

where

2 2
k + 0 < kl < I for y O.

y+2pr

Introducing the elliptic function sn X to transform the variable

of integration by means of the relation

sn X = sine

the integral on the right-hand side of (C.2) may be written as

ir/2 2m+2 K (kI) 1)

A2m+2 =f sin edO f sn£2m+X dX (C.3)
o(1-k2 sin )! 2 e) X/2

0 0

In reference (Byrd and Friedman, 1954) it is shown that
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2m(l+k.) A - (2 m- )A 2 m 2
A - 2,3,4 ......2m+2 (2m+l) kI

1i

and the first two integrals A2 and A4 are easily evaluated to

give

K(k 1 )

A2 = f dX [K(kI) E(kI)],

0

K(k1 )

A f 4 22k4 f snKx dX [2 4(k 2(l+k2) E(kl ,
O o1

where K and E are complete elliptic integrals of the first and

second kind.

The above formulas will enable us to evaluate I2(y) in

closed form.

II

!
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IMP- -T

2.3 SONIC BOOM REDUCTION BY FOCUSED LASER BEAM TECHNIQUES

by Mr. Ronald Kohl

2.3.1 The Problem

If a supersonic aircraft could be made sufficiently long

and properly shaped and designed, more favorable ground pressure

signatures could be obtained. In particular, if the aircraft's

equivalent body of revolution has certain shapes, the over-

pressure can be reduced or the shock waves in the signature

can be eliminated and replaced with finite rates of pressure

rise. The latter modification in a signature of given over-

pressure reduces the power in the signature which occurs in

the frequencies audible to the human ear (Hilton and Newman,

1966; Zepler and Harel, 1965; Kryter, 1965).

To obtain such pressure signatures, however, the aircraft

lengths required for an aircraft of 350,000 lbs, flying at Mach

number 2.7, at an altitude of 65,000 feet, range from 500 ft

up depending on the effective bodyshape desired (McLean, Carlson,

and Hunton, 1966). Still longer lengths are required for the

planned SST cruising weight of about 600,000 lb. Aircraft

structures of these lengths are considered too long for

economical reasons. A means must be found to create airflows

similar to those that would occur about the longer aircraft,

but which keeps a structural aircraft length near the 300 ft.

length considered for the present SST. (See Figu-e 2.3.1).

To deflect the airflow without using structure, energy could be
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I

introduced into the airflow and here this energy must be intro-

duced at distances the order of 100 ft or more from the aircraft

structure. To do this, novel means must be used.

The idea was advanced to use present or future lasers to

accomplish this. The feasibility of the use of lasers depends

on, among other things, the power required to be introduced into

the airflow. Of particular interest is the power required in

the region out in front of the aircraft where the front of the

pressure signature would be affected and where the introduction

of burning fuels may not be feasible.

I

i

I
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2.3.2 The Method Used

In the presence of one of these uneconomically long noses I

of a de',ired shape, the flow streamtubes take certain forms.

The flow outside of a -;treamtube, including the ground pressure i

signature, is completely determined by the streamtube. No matter

what means are used to produce the streamtube, if the streamtube

is produced, the desired ground pressure signature is obtained.

The idea here is to produce the streamtube desired by adding heat

to the flow inside the streamtube rather than having a nose'of

the desired shape located inside the streamtube. In this way there

is a "phantom" nose present. To find the power requirements, we

find the streamtube area developments and the pressures produced

on the surfaces of the streamtubes by the uneconomically long

nose of a desired shape. The input power required to duplicate

the area development and surface pressures of a given streamtube

is then found by considering the streamtube as a one dimensional

channel and finding the heat addition required to duplicate the

surface pressures which exist in the actual flow. For a given

nose the calculation is done for several streamtubes of differing

initial area to determine the effect on the streamtube power re-

quirement of the initial streamtube size. j
To obtain linear finite rates of ground signature pressure

rise with a structural nose, application of Whitham's approach

(Whitham, 1952) shows the well known axisymmetric area development

5/2
S = ax is required where x is the axial distance from the nose

tip. The constant a is related to the desired rate of ground

signature pressure rise dP/dt by
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2 16 /P-.r1 .-

15MO K Kr X.P U,,/(dP/dt) + ( O+l) r

where M 0, P and U are the upstream Mach number, static pressure,co 0

and velocity at the altitude of interest r. The quantity P" is
- 1 and Y is the ratio of the specific heats for air. Kr is

the reflection coefficient, the factor by which the magnitude of

the pressure in the ground pressure signature is increased over

the free stream pressure signature due to the presence of the

ground. Here Kr - 2 was used. K is the correction coefficient

of Kane (Kane 1966; Kane, 1967) which is the ratio of the pressure

variation at sea level in the U. S. Standard Atmosphere to the

pressure variation at sea level in a uniform atmosphere of pressure

P... For an altitude of 60,000 ft. this factor is Ka - 4.33. For

the purpose of this work the small differences in pressure signature

lengths between the uniform and standard atmosphere signatures are

ignored. (Hayes and !iaefeli, 1968).

To find the streamtube area or radius development with x

and the streamtube surface pressures for a given nose, the nose

was replaced by flow sources on its axis in the usual slender

body - perturbed flow approach. The streamfunction T, when written

in the form

1 2i{/p U=r + b,

where p. is the upstream density at the altitude of interest and

r is the radial distance from the axis, was found to be given by

I
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cosh (X-)

f =- f (x-rsr cosh ) (3r cosho d,
0

where f(x) is the usual axial source distribution in the slender J
body approach I

1 dS

f(x) = 1w dx

The radius of a streamtube, selected upstream where 0 = 0, was

then traced through the flow using the constancy of T. Pressures

on the streamtube surface were found through the pressure coefficient

P P-P 2
12- 2u-v

pU

where the flow velocity in the axial direction is (1 + u)U• and

in the radial, vU , with u and v given by the well known relations

cosh (- )

f Or f'(x-Pr cosho) do
0

cosh- ()
P3r

v = f f,(x- r cosbo) 1 cosho do.
0

where f'(x) = df/dx. In order to calculate the heat addition re-

quired to obtain pressures in the streamtube-channel which match

the known pressures at the surface of the streamtube, the inviscid
I

equations of conservation of mass, momentum and energy, the equation j
of state (perfect gas) and the definition of the stagnation tempera- f
ture T are combined ur.der the assilmption of one dimensional depen-

dence to obtain the power addition per unit axial length
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dTdP ddP U A cp dx

where

1dT0  K22]-l1 dA! = [1 + (W-l) M/21]- A dx
To x + A dx

+ ~2 )r IM2[I + (T-1) 112/211l 1I
p dx

2 2  2 2with M 1- and M2 the square of the Mach number. M2 is found

down the channel by applying

2 -2 2 21 dT0
12dx 3- 2 - l [+ (1-l) M 2/2] (1l+ IM 2)1

111dM2 d-x22] •2 To dx

+ 2=-2 [1 + (Y-I) i2/2] +1 d
A dx.

These expressions can be found in Table 8.2 of (Shapiro, 1953).

The calculation moved down the channel by steps of axial

displacement Ax, the approximation to dx, which was chosen to be

sufficiently small for the sake of accuracy, but not so small as I
to take unreasonable computer time. The quantity dA/A was used in I

the form 2dr/r where dr is known from

d(i/pU) = 0 rdr + -? dr + dx,

where
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-1 x
cosh l(T)=Jf' (x-i•r cosh a ) r32 r cosh 2 u da

or

0

and
cosh- ()

- - f (x-Ir cosh o) r cosh a da.
0

•xx

The change in streamtube radius Ar with axial displacement Ax

from axial position x 1 was found by using Ar from a previous

trial (beginning with the final value of 6r from the previous

step) to obtain ra = r 1 + Ar/2. This value was used with

xa = x1 + Ax/2 in 6#/3r and v/6x to obtain a new trial Ar.

This process was continued until the relative difference in

succeeding trial Ar's was less than 1:106 The streamtubNe

radius at x2 = x 1 + Ax was then r2 = r 1 + Ar. To guard

against wandering from the original streamtube in moving down

the flow, the difference in the value of the actual and original

stream function was monitered. The relative error in stream-

tube radius was always less than 1:103

The quantity dp/p is j
_ =(¢p + 2_ )_-1 dCp.

p TM

Where the nose first begins to influence the streamtube tC
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is the order of C pso Ap/p, wh..c7 was alv.,.ys small was used in the

form

2- (Cp2 - Cpl)

p C A- C + 4/-YM2.
p 2 PI C1÷

In moving down the streamtube, the numerator was monitered

for possible loss of significant figures as Cp2 approached

Cpl.

Knowing AA/A and Ap/p, ATo/To can be determined accurately

by knowing M2 at x=xa. For small Ax, Ma = (M1 + M2 )/2 and M2

is found by successive trials, beginning with a trial value

for Ma (initially M, was used), obtaining a trial AToiro and

AM2 /M and thus a new value for M2 and Ma. This was continued

until successive trial values of Ma differed by less than 1:10s

This approach in obtaining Ma was also used in (Miller andMa!
Carlson, 1969).

A program was developed to calculate the desired quantities

along the lines given above for phantom noses of area develop-

ment S = axn with n>2. All integrands for such noses are

finite. The integral evaluations in this program were done

with a combination of Simpson's rule and Newton's 3/8 rule

with the number of intervals adjusted for accuracy and speed.

A
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To speed up the computer runs on conical noses A =2) the

integrals were done analytically. The results obtained

using numeric and analytic integrations always -agreed to better

3
than 1:10 . All computer runs were dont on the IBM 1130

system here at the Institute.

To establish minimum power requirements, noses which pro-

duce finite pressure rises in the pressure signature were

joined tangentially to the effective body of revolution of an

SST so that the body was enclosed within the nose. See Figure 2.3-2.

The power required to duplicate the flow caused by the presence

of the phantom nose between the phantom nose tip and the SST

body tip was then calculated by summing the power require-

ments per step down the channel until the characteristic from

the SST body tip was reached. To duplicate the flow produced

by the phantom nose behind the position of the SSr body tip charac- I.

teristic would require cooling the flow to compensate for the corn-

pression o,' the flow impinging on the SST. If no cooling is

allowed and we still wish flow behind the SST b tip to have

the characteristics of flow over the phantom nose, an even

longer phantom nose would be required for a given rate of pres-

sure signature rise. Thus for a given nose shape, the length

of nose considered here, the distance from the phantom nose

tip to the SST body tip, is a minimum and the power requirements

obtained are minimum power requirements.
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FIGURE 2.3.2. Establishment of minimum power requirements. I
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2.3.3 Results

Results for a typic.: -,:ase are given in Figares 2.3.3,.4,.5

and .6. In this case a phantom nose which produces a ground

pressure rise of 2 lb/ft in 10 msec from an altitude of 60,000 i

feet at a Mach number of 2.7 is joined to the effective body ,

of a 600,000 lb. SST resultin,.g in a phantom nose length of 249

feet to be duplicated by heat addition. In this example the

2
streamtube of 100 ft initial area is the one considered as

shown in Figure 2.3.3. In Figure 2.3.4 the required power in-

put per unit axial length, the required input power distribution,

is plotted down the streamtube. Figure 2.3.5 showis the integral

of the curve in Figure 2.3 .4, or the total power ,'equired.

Using the energy available from the combustion of a pound of"

jet kerosene and the SST cruise velocity of 1,780 m/hr, this

quantity is given in pounds of fuel per mile of sonic boom

abatement system operation. The power required to simulate

the presence of the 249 foot nose is the power produced by

combusting 43 pounds of fuel per mile or 420 Megawatts. Figure

2.3.6 shows that this result depends only slightly on the stream-

tube-channel chosen for the cross sectional heat addition. The

input power distribution is also practically independent of

streamtube area as shown in Figure 2.3..

A comparison of the power rcquirements for various phantom

noses is shown in Figure 2.3 .8. The power requirements are

plotted against the rate of ground signature pressure rise pro-

duced by the noses. These rates range from a barely finite rate

to P rate where the ground pressure does not reach 2lbs/ft 2 , the
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unmodified, predicted SST maximum overpressure, for 100 msec,

which is one fourth the predicted SST pressure signature length.

Thus, Figure 2.3.8 indicates that if a barely finite rate of

pressure rise can be obtained, beneficial rates of rise can be

obtained with an increase in power of the order of 50% or less.

A comparison of power requirements as a function of nose

shape was also made to see if relaxing the phantom nose shape

5/2from the desirable S = ax shape might bring a helpful re-

2duction in the power requirement. Here a conical nose (S = ax2)

3and a nose of area development S =ax , both of the same length

and base area as the nose of Figure 2.3.3 are compared to the
i

nose of that figure. A longitudinal cross section of the noses

is shown in Figure 2.3.9. The resultant input power distributions

are compared in Figure 2.3.10 for an initial streamtube area of

100 square feet. A comparison of the total power required to

duplicate the effects of these noses, and noses similarly ob-

tained, is shown in Figure 2.3.11. While the input power dis-

tributions are some what different, the total power required

is practically the sam for the various shapes. (One can show

thaL for slender noses of area development S =ax n, the linear

rise or S =ax5/2 nose shape produces a minimum average pressure

rise and a minimum maximum pressure rise in a shockless signature,

as well as being the shape which produces a shockless pressure

signature at a maximum distance from the nose axis. A shape of

S=axn with n less than 5/2 does not produce a shockleas signature).
2 3

The power requirements for the S=ax and S=ax noses, as with
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FI( URE 2.3.4. Input power per unit axial length. The

input power distribution required to duplicate the
nose and streamatube of Figure 2.3.3.
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FIGURE 2.3.5. Total power required up to the axial
position indicated. The integral of the curve
in Figure 2.3.4 in lbs. of iuel/mile of SST cruise.
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parentheses in feet.)
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FIGURE 2.3.9. Comparison of' nose shapes. Longitudinal
cross sections of' noses of1 the same length and base
area. The linear rise nose is the nose of' Figure
2.3.3.
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LENGTH AND BASE AREA

20

1NITIAL
STREAMTUBE 2

AREA 100 FT2

10,I '
.20 .04 .02

RATE OF PRESSUR,_ RISE PRODUCED LB/FT2

BY LINEAR LINE NOSE mSEC

FIGURE 2.3.11. A comparison of the power required to
duplicate the linear rise (S , ax 5 / 2 ) noses of
Figure 2.3.8, and the conical (S -: ax 2 ) and S - ax3

noses of the same length and base area.
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the linear rise noses, do net depend very much on the particular

streamtube-channel chosen as shown in Figure 2.3.12. For all

the nose-streamtube combinations the Mach number in the stream-

tube-channel stayed above one. See Figure 2.3.13.

Consideration of the above results leads to an approxi-

mation scheme. In the expression for I dTo/dx since the

p- dp/dx term is observed to be small compared to the A- IdA/dx

term except near the region where the streamtube considered is

first affected by the nose, and as M and T0 undergo small changes

in that region compared to the changes occuring further down the

streamtube, we neglect the effect of the p dp/dx term and write

dTo_o1 2f -1 dA
_ •- [I+ (-y--l)M/2]TO A A

and

2dM - dA2
M A

Thus M 2A is a constant which can be evaluated upstream to give

2 = M2 A./A where A is the upstream, or initial, streamtube
00

area. Then

-[dT - A + (--l) M2 A,/2]- dA

T
0

and To[A + (-I) V2A /2] is a constant. This %,ples that the

power addition per unit streamtube-chaanel length is
4
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dP _ p Uc W TO A . T'
d_ cocop o• dA dA

2 00 P cTdx 1+(-y-l)M /2 dx dx

where T is the upstream static temperatture. Since the stream-00

tubes considered he±-e are sufficiently close to the axis com-

pared to the phantom nose surface, slender body theory should

apply and the rate of streamtube area change at a given cross

sectional plane should be determined to a sufficient approxi-

nation by the axial flow sources at the intersection of tne'

plane and axis. That is,

dA dS
2w= 2f(x) =

dx dx

where, as above, S is the cross sectional area of the phantom

nose. The channel heat addition per unit length can then be

written as

dP U CO cUPTCpO dS

dx dx

This last expression essentially reproduces the curves of

"?igure 2.3.10 except for the spike at the front of the conical

nose curve which is due to the steep, but small, increase in

pressure there, a feature one would not wish to duplicate in

any event. This last expression was derived by Swigart and * r
Lubard (Swigart and Lubard. 1969) in a different approach and

the above discussion shows the circumstances under which the

answers obtained by their approach will agree with those obtained
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by a one dimensional channel approach as used here and else-

where (MilJer and Carlson, 1959; Siegelman, 1970). Relating

the mass source per unit length represented by the axial sources,

S= 2n'p I f(x), to the equivalent heat sources per unit

length. Q c T S. (Tsien and Beilock, 1949; Willmarth, 1957),

one has dP/dx Q to the above approximation.

2.3.4 Discussion

The power requirements as obtained above have serious con-

sequences for the use of any laser system. Foi the purpose of

this discussion we shall use ihe 420 Megawatt power require-

ment figure for the phantom nose of Figure 2.3.3 which gives a

2
finite rate of pressure rise of 0.2 (lb/ft )/m sec, equivalent

9
to the attainment of 2 lb/ft in 1) milliseconds. The power

requirement for this rate of rise is compared to those of other

rates of rise in Figure 2.3.8.

Many laser systems rely on electric energy as their initial

energy source either through the use of flashlamps or through

electrical discharges of various types. Questions of laser

efficiency aside, the generationct 420 Megawatts of electrical

power carries a severe weight penalty. At these power levels

magnetohydrodynamic (MHD) generators offer the smallest equipment

weight per kilowatt, but turbo-alternators offer the lowest

specific fuel consumption assuming environmental air is used as

the oxydizer (Cooper, 1971). The MHD equipment weight is about

0.2 pounds per kilowatt or 84 thousand pounds for the generation
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of .120 Megawatts. This weight is 30% of the nonfuel takeoff

weight of the commerical version of the Boeing SST (Aviation

Week, 1970). The MHD geneiator specific fuel consumption is

about 1.1 (lb/sec)/MW or 930 lb of fuel per mile of sonic boom

abatenidnt operation during SST cruise. With the turbo-alternator,

whici.h Will inVolve higher equipment weight, this figure is 470

lb of fuel per mile. Both figures assume 'he use of environmental

air as the oxydizer.

There are laser systems;\ recently announced in the literature,

which do not require the generation of electric power. These are

the purely chemical or direct combustion laser (Cool and Stephens,

1969) and gas dynamic laser (Gerry, 1970; Meinzer, 1971). Putting

questions of suitability for heating the airflow aside, these

carry severe weight penalties also. The chemical laser referenced

here rdquires no electric discharge to attain partial dissociation

of the reactants, a procedure which is used on other chemical

lasers and typically requires an electrical input power many times

the laser output power -'Spencer et. al., 1970). But the laser

type referenced here dorm require a non-cycling mass flow. Accord-

ing to the article cited, this flow would have to be so large that

any practical application is fully unfeasible. There are unclassi-

fied, unconfirmed reports of the attainment or future attainment

of 100 kilowatts per pound of flow per second from a direct com-

bustion laser, but this would still leave an unfeasibly large

flow requirement.

With gas dynamic lasers the spaci.ic power figure of 2 to 3

kilowhtts per pound of flow per second is still far too small

for a single use flow. In gas dynamic lasers the mass flow can
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be cycled. The laser output would then originate in the com-

pressor driving the flow circuit (Hertzberg, Johnston, and

Ablstrom, 1971). The best mechanical power generation to equip-

ment weight ratio has recently movec. from 5.0 kW/lb (Wood, 1968)

to 6.5 kW/lb (Aerospace Association, 1970). Even at the latter

figure, however, 65,000 pounds of equipment 24% of the nonfuel SST

takeoff weight, would be required to generate 420 Megawatts of

mechanical power for the compressor. This figure does not include

the weight of the compressor itself. It is to be kept in mind

that the sonic boom reduction by means of lasers can be readily

restricted to sensitive parts of the overflight terrain by means

of turning on and off the laser equipment.

2.3.5. Conclusions and Recommendations

It is concluded that large amounts of power will be required

to produce desirable finite rise time pressure signatures. This

is shown in subsection 2.3.3 It is also concluded, as dLscussed

in subsection 2.3.4, that at present there exists no system which

can generate such power in laser emission without severe wieight

penalties.

In view of the amazing advance in the maximum average output

power of lasers in this past decade, laser progress should be infor-

mally monitored for the discovery of a system which obtains its

output chemically from its fuel with power output to mass flow

ratios approaching those available from the combustion of commercial

fuels. It should be borne in mind that heating of the airstream

by laser emission can be accomplished not only by gas breakdown,
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so far achieved only by Q switched or gain switched lasers using

some form of direct or indirect electrical excitation, but also by

abscrption in an atmospheric absorption band such as the CO2 band

at 4.3 •m.

i

i
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2.4. ENGINFE-AIRFi-AME INTEGRATION WITH SPECIAL EMPHASIS
ON NON-CIRCULAR ENGINE EXHAUSTS AND JET FLAPS

1.4.1 Pressure Distribution of Deflected Two-Dimensional Jets Behind Wings

by Dr. B. H. Goether-, assisted by Dr. Heinz Gruschka and UTSI
Student Mr. Philip Kessel

One major part of the sonic boom signature is produced by the lift of

an aircraft; this part is usually much larger than the sonic boom part due to

the solid displacement of the aircraft structure. Thus, the major effort of this

study was directed towards determining which sonic boom alleviations can be

obtained by appropriately utilizing the lift component of deflected exhaust jets

of turbojet or ramjet engines.

On Figures 2. 4. 1 to 2. 4. 4 some fundamental relationships in the forma-

tion of the sonic boom signature for two-dimensional lifting surfaces are

depicted. It is demonstrated on Figure 2. 4. 1 that the downward momentum

behind a wing without ground effect corresponds to one-half of the total lift on

either side of the wing. On the other hand, if the pressure and expansion waves

impinge upon the ground, the total impulse submitted to the ground is equal to

the full amount of the lift. As Figure 2. 4. 2 also indicates, the dividing stream-

line behind the wing approaches again the undisturbed position after passir_ý through

the reflected wave system, because all waves cancel each other at large distances.

On Figures 2. 4. 3 and 2. 4. 4 it is demonstrated that the sonic boom signa-

ture on the ground spreads over a larger distance and has a smaller pressure

peak when the lifting wing has a larger chord; that is when the lift is spread

over a larger distance in the flight direction.
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The purpose of this investigation is to show that the distribution of the

lift in the flight direction can occur not only by means of stretching the wing

chord, but also by having a part of the total lift produced by the deflected exhaust

jet of the engine (see Figure 2. 4. 5). In the case of a deflected exhaust jet,

it is to be understood that the entire vertical component of the deflected jet,

that is the lift component, is transferred to the wing at the deflection point

of the jet, that is in the exhaust nos; However, as far as the action on the

flow and particularly also on the wave system which finally impinges on the

ground it. concerned, the lift component of the jet is distributed over a distance

downstream of the exhaust nozzle.

This phenomenon has not been fully recognized in the past. Therefore,

on Figure Z. 4. 6, various force equilibrium sketches are prepared which

show that the reaction on the flow behind the wing, equivalent to the vertical

lift component of the jet, is caused by the aerodynamic pressure difference

between the upper and the lower surfaces of the deflected jet. In effect, the

deflected jet acts like a solid plate in the flow which is curved according to the

jet.

A theoretical two-dirr Lonal calculation was conducted as shown in

principle on Figure 2.4.7 and on pages 2. 167 a and b.

A numerical evaluation of the pressure distribution curves is shown on

Figure 2. 4. 8. The rearward shifting of the lift is larger the larger the Mach

number is and the larger the jet momentum coefficient is.
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A comparison of the jet lift was conducted with respect to the lift

generation by means of wings and mechanical flaps (see Figure 2.4. 9).

A jet flap operating at a Mach number oi M = 3 with a momentum coefficient

of C = 1. 4 has the same lift-producing effectiveness as a wing in supersonic

flow. In subsonic flow, a jet momentum coefficient of approximately

C =1. 9 is required to produce the same lift as a wing.p.

At a jet momentum coefficient of C = . 5, figure 2.4. 9 shows that

in flight at Mach number 3, the jet flap would be identical in effectiveness

as a mechanical flap with a flap chord of approximately 35 percent of the

main wing. The same jet momentum coefficient C = . 5 in subsonic flow
IL

would have the same lift effectiveness as a flap of 13 percent chord length.
i

In the following, some applications of the new theory on lift shift

and performance changes due to jet flap deflection are shown for the Mach

number range up to M = 12.
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2.4.2 SHIFT O)F LI:'T BEHIND SOLID WING AND AIRCRAF'T PERFORMANCE
CHANG'-S DUE TO DEFLECTED JETS

Figure 2.4. 10 shows the airframe and propulsion system data used in

this study. The Lift Over Drag (L/D) ratios from various configuration studies

iere plotted and a boundary curve drawn which is believed to be representative

of the most optimistic L/D ratio obtainable. The curves in Figure 2. 4. 10 give also

ramjet and turbojet performance and the values of air specific impulse, Ir,

as a function of Mach number. This data is used to calculate the exhaust

momentum to thrust ratio and also the jet momentum coefficient, C

J v 1
m 1+ co
T g I.air

J = exhaust momentum
m

v = flight velocity

g = gravitation constant

T = thrust

I = air specific impulse.air

The data from Figure 2. 4. 10 was used to calculate the ratio of jet lift to wing

lift. This data is plotted in Figure 2.4. 11. The effect of jet flap on aircraft

LID and range is shown in Figure 2.4. 12. In these plots the advantage of exhaust

deflection at high Mach numbers shows quite plainly. It is also obvious that for

every Mach number there is an optimum exhaust deflection, measured from the

horizontal, which will maximize range. The optimum range factor varies between

+0. 7%1c at 60 for Mach 2, to +27% at 13.50 for Mach 12.
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The expression for pressure distribution along a jet f2ap can be rearranged

in terms of aircraft and propulsion parameters by substituting the engine mass

flow and aircraft geometry factors we get:

4%, Bt B.B.,N P B3. 4q 1
x= _ 5 e L a B

o a W/S te mu te

te S te 
e

wherc

B.js P xNon-dimensional flap lift
BteW/S

te

B. Width of jet flap

B Trailing edge span
te

W/S aircraft wing loading

AP pressure across flap at status x
x

6 0jet flap deflection

q dynamic pressure

a -

ri- engine mass flow

u e engine exhaust velocity

The pressure distribution for some typical aircraft are shown in Figure 2.4. 13,

2.4. 14, and 2.4. 15.

A lift discontinuity exists at the trailing edge of the wing due to the abrupt

change in the direction of the airflow caused by Lhe jet flap. The extent of this
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discontinuity can lhe limited by decreasing the span of the jet flap. Since rnomenLurn

considerations insure that the total lift must remain the same, we can predict that

the lift distrribution of the jet with smaller span must extend further behind the

aircraft.

In~these figures the width of the jet is varied from 0. 25 to 1. 0 times the

trailinig edge span. The approximate lift distribution on the wing is also plotted

in order to.shov" graphically the order of magnitude affect oi the lift on the flap.

For this purpose .he thickness effects and the fuselage effects, if any, ?re ignored

which results., using conical flow theory, in a constant spanwise averaged lift

distribution.

As aircraft Mach-nurnbers increase, the exhaust volume flow from conventional

engines becomes larger due to the -decrease in air specific impulse. At Mach 12

the mass flow frorn two cylindrical exhausts would fill the entire base of the

aircraft. -Engine cowl drag would become a predominant factor in this case atnd

would obviously force a compromise between cowl drag and expansion ratio. The I

lift distribution for aircraft having two cylindrical exhausts is shown in Figure 2. 4. 16.

Note that at Mach 12 the width of the jet exhaust, Lj, is equal to the trailing edge span

and hence the je-. flap is shifting "lift" far behind the trailing edge of the wing.
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2.4.3 FINITE ASPECT RATIO EFFECTS

The preceding calculations have Leen conducted with the assumption that

the downwash behind the wing can be neglected as in two-dimensional theory. If

thc downwash is taken into consideration, however, the exhaust jets are more

slowly bent into the direction of the undisturbed horizontal flow. In frictionless

flow, and with exhaust jet spans smaller than the trailing edge spar, of the wing,

the jet flow is completely imbedded in the downwash flow and will asymptotically

reach not the direction of th-- undisturbed flow but the direction of the downwash

flow behind the wing. At very large distances, the downwash and the jet will

eventually impinge upon the ground and will be tnrned int.o the horizontal direction. J

The turning of the downwash fiow at the impingement on the ground will

pioduce a pressure phenomenon which can be integrated as a secondary sonic

boom signature which moves along the ground with the Mach number of the

aircraft, but with much larger rise times than are experienced in the primary

sonic boom. (See Figure 2. 4. 17).

The slower turning of the jet flow in the downwash has the result that the

jet lift is shifted much further behind the solid surfaces of the wing than is

shown in figures 2. 4. 13 to 2.4. 16. Consequently, the sonic boom alleviation

effects are more pronounced whbn the finite aspect ratio effects are taken into

consideration. It is recommended to examine numerically the effects of down-

wash .n the lift shift behind the wing and the secondary sonic boom signature in the

impingement region of the downwash on the ground.
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jLh0 streamline deflect ion

JAP dx 0. 5 lift of wing

A,0

FIGURE 2.4.1. 2 Dimensiorc~l flat plate at small angle of attp'ck
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ent~ire effect of
-I/ / / wing is cancelled

Ldx =total lift of wing

FIGURE 2.4.2. 2 Dimensional flat plate in ground effect

i
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_deal wing flat plate

1-\h° streamline deflection

1v,0

leading edg P1
shock for ideal I%*
wing having same
pressure signature
at distance larger Ahl
tha-L at A,

(\'Pl'>AP2) 
A

. h =Ah2 \ \

FIGURE 2.4.3. 2 Dimensional flat plate at small angle of attack
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Ah

common end of expansion wave

\I , •

,iAp dx 1o5 lift \

equal for both win-gs A

FIGURE 2.4.4. Lift on 2 dimensione L wings of various chord lengths
and same lift
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wing lif t I ift
thrust •increment

L J = Jsin5.

5 0T thrust loss
eJ (I-Ccos )
Dl 0

\ jet exhaust

expansion waves

FIGURE 2.4.5. Jet flap principles

2
3
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Forces acting on jet in supersonic flow

"Im J nlet,

A nozzle force cn jet

B aerodynamic force on jet

Forces acting on free jet alone
J

Jm

J (I-cos5 thrust lossB

Aerodynamic forces acting on exterior of jet nozzle and free jet

J control surface

C aerodynamic force

on nozzle exterior

forces.Q and @ do not balance

FIGURE 2.4.6.

2. 169



-V -

SO. 
deflector length

5 measured relative
cc• '• h to V C, positive

--- s down

upper surfac dp = centrifugal ;ressure

50 upper surface slope

5 = intermediate surface
slope

pressure 0

shaded area represents
additional lift of jet

lower surface

FIGURE 2.4.7. 2 Dimensional jet flap in supersonic flow
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FIGURE 2.4.11. Ratio of jet lift to wing lift
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Mach number 12
Jet deflectiDn= 20
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3. CONCLUS ONS AN') RECOMMENDATIONS

3. 1 Considerable progress was made in this contract in dce-eloping a new

theory which permits the use of nor.mal size models in wind tunnel tests

to determine the sonic boom on the ground by measuring the pressure

signature in the wind tunnel test section. The theory has been developed

for axisymmretric flow conditions- and a start has been made on the

theory for non-symmetric lifting configurations. It is recommended

that the non-symmetric lifting theory be completed and that procedures

for checkdng the theory in a wind tunnel be developed and suitable

verification tests conducted.

3. 2 Some calculations were carried out by means of an improved method

for determining aircraft contours with desirable finite pressure rise

times; included also was the determination of phantom body shapes

which have predetermined finite rise times which can be simulated

by heat addition to the flow upstream of the aircraft, for instance by

lasers.

Concerning the application of laser beams to produce a desired heat

inple distribution through the mechanism of focusing laser beams and

ionization of the flow, a few experimental test points, from previous

tests with different objectives, are available. It is reconmended that

brief laboratory tests be designed and conducted in order to determine

to what extend the control of the heat input at desired specific locations
I

can be accomplished in laboratory and in flight operations.
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3. 3 Many previous ine tlgations have shown that deviations from the

convenlional circular engine exhaust can cause dramatic improve-

ments of the maximum lift coefficient and large effects on the nois'e

level o: engine exhausts. The research under this contract has shown

that a slot-type engine exhaust has the unique capability of shifting

lift from '_he solid surfaces of the wing to the region behind the wing,

as far aS the effects on the external flow and on the sonic boom are

concerned. These results, which for the first time have clarified

an important characteristic of slot nozzles, have beer. developed for

two-dimensional flow conditions. It was shown that not only a shifting

of the lift on the main wing and an associated reduction of the sonic

boom was achieved, but also favorable effects on the performance of

the aircraft in certain flight regimes and configurations were obtaint~d.

In view of the current interest in the application of non-circular engine

exhausts for maximum lift and noise attenuation purposes, it is recom-

mended that the two-dimensional theory for the slotted nozzle exhaust

effects be extended to the three-dimensional theory, to be used as the

basis for subsequent verification testing in wind tunnels and eventually

in flight.
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