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PREFACE :‘ 1

The research described herein was performed by The University
of Tennessee Space Institute, Tullahoma, Tennessee, for the Federal Avi-
ation Agency, Washington, D. C., under Contract No. DOT-FA70WA-2260.

A LRDLRR.

The Federal Aviation Agency project monitor was Mr. J. K. Power.
The work reported herein was performed during the time period November 21, !
1969 througk November 21, 1971.

This research project encompassed four main areas. The principal
investigator was Dr. P. H. Goethert, Dean of The University of Tennessee
Space Institute and Professor of Aerospace and Mecahanical Engineering.
Mr. Reobert W. Kamm, Executive Asristant to Dr. Goethert, was overall
administrative coordinatox for the project.

The various areas investigated and the main investigators involved
were:

Fundamental Tkeories - Dr. Y. S. Pan, Associate Professor
of Aerospace Engineering and Dr. S. N. Chaudhuri, Associate
Professor of Aerospace Engineering.

Sonic Bcom Reduction by Focused Laser Beam Techniques -
Mr. Ronald Kohl, Assistant Professor of Physics.

Sonic Boom Reduction by Cryogenic Cooling of Air ~ Dr. Marcel
K. Newman, Professor of Mechanical Engineering.
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Engine Airirame Integration \vith Special Emphasis on Noncircular

Engine Exhausts and Jet Flaps - Dr. Heinz Gruschka, Associjate
Protessor of Physics and Mr. Philip Kessel, Ph.D. Candidate in
Aerospace Engineering.

ic.

o o e S A, S JEN




e LT Ty ¥ .

1. INTRODUCTION

Even thouzgh the U.S. recently discontinued the SST project,
the problem of sonic boom attenuation is still of decisive im-
portance because of supersonic flights of present and future i
military aircraft and future generations of space-flight vehicles,
as well as future commercial ‘aircraft. Flight routes, particularly 2
of both domestic and foreign supersonic commercial transports

will be restricted to over-water routes if the boom attenuation

o

eiiorts are not sufficiently successful; whereas the entire air

space, both over land and over water can be opened for super-

sonic air transportation if effective and economical attenuation .

of the sonic boom can be achieved. Thus the entire future of

civilian supersonic air transportation is at stake.

&
£
F
H
H
£
£
H

Numerous theoretical and design studies as well as extensive
experiments have been conducted to gain an understanding of the
physical phenomena iuvolved, and to develop methods for pre—

dicting and influencing the boom signature shape and inteunsity

000000 0 G

tir ough appropriate aircraft design and operation. Mainly during
the late 1960's, systematic efforts with the above objectives

in mind have gained momentum and much progress has been made.

" ‘wmx‘”mm»

For instance, it is possible today to predict satisfactorily

o

well the sonic boom intensity and shape in the near, mid, and
far field for current supersonic aircra’t desigﬁs, and to estimate

with adequate accuracy the influence of design changes and of

NPTyl

environmental parameters within the framework of today's con-

ventional aircrait designs.

* 1.1
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Because of the pressing urgency for finding an immediate

solution for th~ sonic boom problem, most of the recent investi-
gations and analysis methods were directed towards the problems
associated with the planned first-generation of supersonic trans-

ports. As a result, unconventional supersonic transport_designs, '

employing novel configurations of volume displacement, lifting

surizces, engines and exhaust jets (jet flaps) and integration of
such components from the viewpoint éf optimum sonic boom sup-
pression have not received much emphasis. The University of
Tennessee Space Instituie and the Federal Aviation Administration
recognized, however, that from a loag-range viewpoint the ga,

in our knowledge concerning unconventional configurations must
be filled by appropriate research. It was also recognized that
such research would not only guide the designers and operators
in devising effective evolutionary modifications o{ the first-
generation supersonic aircraft for the purpose of better. noise

suppression. It would also, and probably more impcrtantly,

provide the design base for the next generation of supersonic
and hypersonic transports for coping with the sonic booi problem
more effectively than can be expected for the first-generation
supersonic aircraft, even after successive evolutionary improve—
r ments.
P The University of Tenuessee Space Institute therefore under-
' took a multiphase investigation for the‘Féderal Aviation Admini-

1 stration, the objectives of which were defined in the contract as

follows:
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"Fundamental Theories

This task will be to assess the numerous theories and
programs presently available with an objective of defin-~

ing regions of applicability and areas of limitation.

Summary descriptions of near, mid and far field theories
will be compiled with statements on the fundamental physi-
cal assumptions and simple verifications of limitirg factors.
The formulation o: improved potential solutions for the

far field will be explored, which are currently visualized
as utilizing not only displacement singularities in a
potential flow. Particular. emphasis will be placed on
wefining the limitations of two-dimensicnal theory in
predicting sonic boom signatures of aircraft. An explora-
tion and evaluation of potential solutions in the vicinity
of caustics will also be made. To supplement the theoretical
approach into the right direction, some orientating wind
tunnel tests will be conducted in the later phases of this
program area."

Dr. Y. S. ™an and Dr. S. N. Chaudhuri each assisted by several
gr.oduate students, investigated separate phases of this task.
Details of their findings are reported in Sections 2.1 and 2.2
respectively, of this report.

"Sonic Boom Reduction by Focused Laser-Bean; Techniques

A feasibiliity study supported by wind tunnel experiments
will be conducted to determine whether focused-laser beanm
techniques can be used to produce changes in the flow which
may be relatable to equivalent airframe shapes. Realistic
analyses of weight yp:malties associated with focused laser
apparatus will be incrluded to evaluate the feasibility with
respect to aircraft application.”

Dr. Ronald Kohl conducted this feasibility study, which is reported
in Section 2.3 of this report.

"Sonic Boom Reduciion by Cryogenic Ccoling of Air

This task will be to assess briefly the quantitative improve-
ment potential and the penalties associated with a radically
new boom suppression technique by making use of air-liguid-
ation effects. Disregarding the final practicability ¢f this
novel scheme, such studies will stimulate thinking along
unorthodox lines and thus will have significant indirect
benefits which can only be discovered by deviating greatly
from the path of accepted coaventional designs."

1.3
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Dr. Marcel K. Newman determined during the first period of the
contract that the additional power required to maintain large
external surfaces at cryogenic temperatures in the Mach No. 3
fiow field was excessive, Thus, with the concurrence of the
FAA Project Monitc.’, this work was discontinued and is not

reported in detail. )

It is believed, however, that cryégenic cooling of thke air would

be feasible in a configuratiua known as ''space-plane"., The
"space-plane" concept received much attention, and extensive
perfornance and design studies were conducted in the early 1960
period. The jropulsion system of the space~plane is of the liquid -
air--type in which air is liquified before it is burned in the
combustor. 3y means of the liquification of tha alir, the solid
displacement of a major part of the airframe structure can be

eliminated, and the sonic boom correspondingly reduced.
"Engine-Airframe Integration with Special Emphasis on
Noncircular Engine Exhausts and Jet Flaps

This task will be to explore the potential and feasibility
of unconventional aircraft configuraticons, in which the
complete integration of fuselage--wing-propulsion units is
approached. Special emphasis will be placed on examining

in depth the potential of noncircular engine exhausts, pos-
sibly in combination with variable Jet plumes, for b-zu re-
duction. Besides othexr advantages of jet flaps, exhausting
the processed air at the trailing edge of the wing either
over the entire wing span or' only over part span, the reduc-
tion of the rate of area increase of the stream tube air
passing thkrough the engine may be conveniently integrated
with the zir frame displacement and the equivalent displace-
ment due to lift. A large number of such highly integrated
engine-airframe configurations may become feasible especiglly
if stability considerations of the aircraft would be elimina-
tea, and insteri artificial stability and control relied
apon."

1.4
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Dr., B. H. Goethert, principal investigator for this project, assisted by
Dr. Heinz Gruschka and Mr, Philip Kessel (A UTSI Doctoral Candidate} i

studied this task. Their findings are reported in Section 2, 4.,

~Publications in professional journals based on the research wecrk of this

contract were:

Pan, Y.S, (1970), ""Application of Whitham's theory to sonic boom
L in the mid-or near-field", AIAA Journmal, Vol. 8, No. 11,
= pp 2080-2082

i 0

I

Pan, Y,S, (1971), "A method for wind tunnel investigations of sonic
boom based on large models", AJIAA Paper No, 71-184

LI R

Chaudhuri, S,N, and Praharaj, S,C. (1971), "The near-field flow
pattern of an inclined slender body of revolution', AIAA Paper
No- 71-6260

IR D 81

In;addition to these publications, Dr. Pan presented Paper No. 71-184 at

the 9th AIAA Aerospace Sciences Meeting, January 25-27, 1971, New York;

and Mr. Praharaj presented Paper No. 71-626 at the 4th Fluid and Plasma
Dynamics Conference of the American Institute of Aeronautics and Astrenautics,
June 21-23, 1971, Palo Alto, California,

O A s

A,

LR O

- Additional publications and presentations are also in preparation,

P,
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2. DISCUSSION

2.1 EXTENSION OF THE CURRENT SONIC BOOM THEORY AND DEVELOPMENT
OF A WIKED TUNNEL TESTING METHOD BASED ON LARGE MODFLS
by Dr. Y. S. Pan and UTSI students K. T. Wang and M. O. Varner

2.1.1 INTRODUC™ION

Because of the development of supersonic transports, the
sonic boom problem has been receiving considerable attention
in the past decade. Calculations of sonic boom pressure signature
of a supersonic aircraft have been based mainly on Whithan's
supersonic projectile theory (Whitham, 1952) and the supersonic
area rule of Hayes (1947) and Lomax (1955). The supersonic
area rule shows that the pressure disturbance for a complex
three-dimensional configuration can be reduced to the calculation
of the pressure disturbance due to an equivalent body of revplution,
provided that the position of interest is sufficiently far from
the body. Whitham's theory, on the other hand, describes an
asymptotic flow behavior at a distance sufficiently far fiom a
body of revolution. This asymptotic flow obeys the gecmetric
acoustic laws. That is, the flow disturbances are linearly pro-
portional to a local F function, which is related to the shapé
of the body and to the flow conditions. The values of the F
function are constant along the characteristic curves emitted
from the body. Consequently, the sonic boom signature at a
distance far from an aircraft can becalculated from the F function
cf an =equivalent body of revolution of the aircraft.

In experimental iuvestigati?ns of the sonic boom in wind
tunnels, it is usually necsssary to use very small models in

order to obtain direct measurements of the far~field pressure

signature in the vicinity of a wind tunnel wall (see, for €Xample,
2.1
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Carison (1964)). With these small models, inaccuracies with

respect to model contours, vibration of model, boundary layer
development, interferences of the sting supports, small non-
uniformities of the free stream, etc. usually arise. The present

proposed wind tunnel testing method is directed towards an

T T LT e T

alleviation of this very small model restriction.

The presént proposed method is based on large models in
wind tunnels, where® only the near or the mid-field is simulated.
By measuring the pressure distribution st the vicinity of the
wind tunnel wall, it is possible to détermine the signature of
the sonic boom at large distances in the outer mid<field or in
the far-field. This method is expected to have great significance
in making wind tunnel tests more réTiable by avoiding the use
of extremely small models &S ‘is usually done today.

It is well known that, in the near field of an aircraft,

the flow field is fully three-dimensional. The supersonic area

rule may not be applied there and, hence, Whitham's supersonic
projectile theory may not be employed directly. Moreover, the

flow disturbances in-the near field may ‘not be generally -

;§ described by Whitham's asymptotic relations even within the

i? assumption of the 1ineérizeq supersonic flow {Pap 1970 asb,
1971). Indeed, recent wind tunnel experiments (Morris, Lamb and
PQ Carlson, 1970) havé showz that Whitham's theory -does not give Y
good predictions o6f pressure Signature shape in the near field

{ especially at large Mach numbers and at large angles of attack.
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Consequently, the calculation of flow disturbances in a not-so-
far field from an aircraft or the extrapolation of a sonic boom
pressure signature from a known pressure disturbance at a nearer
field must be examined.

In this section, based on the well-known quasi-linear
assumpticns, we shall extend the current sonic boom theory
to the near fiell. We shall be parficularly concerned with
the non-axisymmetric and non-geometric-acoustic effects in the
flow field. Based on the new éxtended theory, we shall present a
new wind tunnel testing method for sonic boom based on large

models.
2.1.2 EXTENSION OF THE CURRENT SONIC BOOM THEORY

As discussed in the preceding sub—-section, the current
sonic boom theory is limited to predict the pressure dis-
turbance at a distance sufficiently far from a supersonic air-
craft. In this sub-section, we shall develop a theory to be

applicable almost in the entire flow field.

GENERAL CONSIDERATION

Iet us consider a steady, homogeneous, irrotational,
supersonic flow over a three-dimensional configuration such as
an aireraft (Figure 2.1.1). The flow disturbance generated by
the aircraft in the supersonic flow propagates along chavacter-
istic surfaces to the far field in the downstreaam. It is clear
physipally that the flow disturbance in the far field due to the

presence of this aircraft is equivalent to the flow disturbance

2.3
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generated from a streamtube of upstream radius R, or any other
streamtubes, enclosing this . aircraft iu the nearer field.

A streamtube of upstream circular cross section with
radius R is chosen arbitrarily but not too close to the air-
craft (Figure 2.1.1), the flow disturbance over ‘this stream-
tube is generally weak and this greamtube is of quasi-cylindrical
shape with a mean radius BR. The flow fieid over this streamtube
can be treated by the well knowr linearized supersonic flow
theory. The shape vf this streamtube and tbe flow disturbance
over this streamtube at R can be represented by a superposition
of various multipole distrxibutions. By defining a Whitham
type F function in ierns of these multipole distributians{ we
can obtain tae F function for this streamtube of upstream-
radius R, which, in turnm, can be related to the various flow

disturbances at R.

Y

The propagation of the known F function representing
flow disturbance from one streamtube to a2nother one further

afield may be treated based on Whitham's hypothesis on the im-

provement of characteristics; that is,the values of the F function,

are constant along bicharacteristics in the three-dimensional
flow. Thus the new F function is obtained for a streautube
further afield. Howev«+vr, the new F function may generally
have multiple values in certain regions-of its arguments;

these are due to the intersection of characteristic surfaces in
the physicai space where values of physical quantities cease

to be unique. Thkis failure of the linearized supersonic flow
theory as a descripticn of the flow is known to be remedied by

the presence of shock surfaces. The positions of shock surfaces

2.9
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may be determined by the usual simple geometric property; that
is, to the first order of shock strength, the shock surtface
bisects the angle between the two intersecting characteristic
surfaces. Having fixed the positions of the shocks, the new
F function becomes single valued, which actually is the
Whitham type local F function of the corresponding stream-
tube- further afield. Finally, from the new single valued F
fuaction for this streamtube further afield, the corresponding

flow disturbances may be obtained.
GOVERNING EQUATION AND ITS SOLUTION

Iet us choose the body axis to be the x-axis coinciding
with. the free stream direction (Figure 2.1.2). Enclosing this
body we choose a. co-axi2l gquasi-cylindrical streamtube with ap
arbitrary upstream radius R (R=0 corresponds to a general‘point-
nosed. slender body). On the surface of this streamtube the flow
is assumed to be disturbed at x =0 where the origin Of the x-axis
is located. The r-axis perpendicular to the x-~axis is the
radial coordinate and ¢ %s the poslar coordinate measured counter-
clockwise. from the veréical downward r-direction. We further
assume that the entire p%beEE'iS symmetric with respect to =0

(or 7) plane.

{
Let the free strezl velocity and Mach number be U and

i
M respectively, and.at a general point (x,r,8) the local

velocity be (&4-3u,§v,8w)% The flow is: assumed to be irrotational,

hence the velocitgxdigtuzﬁggcesfq,v, and:w-may be deduced from

a velocity potential &. ,G§<thefliaearized flow -theary, ¢ satisfies

the equation,
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2 2
d , 100, 1 @ 2 9"
+ === 4 et = = 0, (2.1-1)
r or ri 692 B ox

where g = (Mz- 1)1/2

A general solution of Eq.(2.1.1) which represents a
disturbance propagating downstream from the quasi-cylinder is,
(Ward 1955),

xX=pr , (&=L, £ () dt

® = - cos ré o BT . o (2.1.2)
g -gR {(x-t) - 821‘2]75

disturbance velocity components deduced from Eq. (2.1.2) are,

x-gr g, &t t)f ) dt

u==- T cos nd j 0.pr ?—-ﬂf s (2:1.3)
T -BR {(x-t) BT ]
— X—pr )f (£) at
vV = Leos neg j xt fz i) 2 5—7‘ (21.4)
x Tl 2]
and ?
*BT  p &L (t) dt
W = }:n sin ng LRY m . (2.1.5)
n -gR [{x t) -8 ]
Here,
h, (&) = cosh [n cesh-lt]i , : (2.1.6)

and fn (t) are the multipole distributions and may be related
to the shape of the quasi=cylindrical streamtube (Lomax and
Heaslet, 1956). VW¥We shall solve: for :{ig(fi} in: feras. of the flow
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disturbances later. The pressure disturbance reilates to the

velocity disturbances by the linearized Bernoulli's equation

(Ward 1955),
= —3 = - Uu (2.1.7)
P,V

F FUNCTION AND ITS FOURIER COMPONENTS

By changing the integration variables and by replacing
x-pr =y - gR in Eqs. (2.1.4)-(2.1.6), we have

Y ho@a+Lty £ (¢ -gR) at
u =~ Z cos n ef L gr__ o 67 173 (2.1.8)
n {{y-t) (y-t + 251-}]
y oty o
_ h_(1+LE) £’ (t-gR)dt
r —_-Z cos n ef y-t+gr n gr___n %2—— (2.1.9)
= o r [(y-t) (y-t + zgr)]
Y h @+t £ t-gR) at
1 w = z sin b @ J’ i a’ gr’ o 2}5 (2.1.10)
. b T [0-t) -t + 28m)]

Here, y is the characteristic parameter of a linearized character-

. istic curve from the surface of the streamtube of upstream

radius R. -

T define a hhithaé type F function, we make a far-field
approxiasation, (i.e. , 8T/y >> 1 and write veljbcity components in
Fourier series expansions, The expressions (2.1.8) to (2.1.10)

are reduced respectively to,

AP——————
i
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1 <
U = E u cosnh =~ \ F_(y) cosnog, (2.1.11)
A n (251')1/2 / n ,

n

v = z vncosnez—-&-w ZFn(y) cosng (2.1.12)
n (2pr) n u
) inng 1 G, (y) ( ) )
v = w_sinng = —————x n {y) sinneg 2.1.13)
L, n 1/2 Z n
5 r@nT g
Here,
y H
F (y) i (é 1.14)
y = - - - +i.
n (y—t}l/z

o]

being the Fourier components of the F function of the stream-

tube with upstream radius R

000 0 AR

F(y,8) = Z Fﬁ‘(y) cosn@ (2.1.15)
= .
and
y
Gn(y) =f Fa{t} dt. (2.1.16)
O

It may be noted that for bodies of revolution (n=0), the
above relations are thoseasymptotic linear relations of Whitham
(1952); for bodies of revolution at small angles of attack
(n=0 and 1), the above relations reduce to those of Siegelman
(1967). It may also be pointed out that in tée above relations
172 3/2 to the far field;

u and v vary as r and w varies as r

herde, in the far-field, w may be neglected in comparison with

2.10
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u or v. Consequerntly, u, v and P may be related only to the
F function of an equivalent body of revolution. This is the

basis on which the current sonic boom calculations are made.
REIATIONS BETWEEN THE F FUNCTION AND FLOW DISTURBANCES

It has been shown by Pan (1970 a,b) that it is possible,
within the linearized supersonic flow theory, to obtain exact
relations bhetween the flow disturbances and the corresponding
local F function on an arbitrary streamtube enclosing an axisymmetric
body. These relations are valid in the entire flow field of an
axisymmetric slender body in the superéonic flow. Now yé shall
obtain similar relations for therflow over a non-axisymmetric
quasi-cylindrical streamtube of upstream radius R (Figure 2.1.2).
At large R, these relations reduce to Egs. (2.1.11)-(2.1.13).

As stated previously, the shape of the streamtube of up~
stream radius R is represented by the superposition of the
various multipole distributions fﬂ, where fn may be deterhined
in terms of the flow disturbances on the surface of the stréam-
tube by the boundary conditions of Eq. (2.1.1). By setting r=R
in Egqs.(2.1.3)-(2.1.5) [or Egs. (2.1.8)-(2.1.10)], using-
Eq.(2.1.7), and expanding the flow disturbances in Fourier
series in § [See, Egs. (2.1.11)-(2.1.13)], the muitipole éié—
tributions may be related to the Fourier coaponents of the
flow disturbances by the following integral equations; at (x,R),

f n&F+ne (t-pRat

?:;lla=j 'B?, 172 °
" o [(x=t) (x-t +2aR)]

(2.1.17)

£
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B A ™

xﬂ ’I
v :J' x~t+aR hn(sR””l) I, (t 3325*" @' 1.18)
o .1
° R Ex~t‘(x— 4—258}] ;
and
b, Gt 1)1 (- RY at oA
- w = [ 2 28R > (2.1.19) *E
=
=

n" ) R [(x-t}(xi-t-i-zgR)]lﬁ

<

¥
These are integral equations for f; of fn,andscan be solved.
Either f_or f; can be found in terms of the Fourier ccmg&hents
of the flow disturbance f’n,un,vn or W . Solutions have been
obtained and reported by Pan (1971). :
By substituting the solutions of £ and 7, into the de-
finitions of F, and G, [Eus. (2.1.14) and (2.1.16)], F, and G, 1
¢an be.written in terms-of the flow: disturbances (Pan, 1971), at
R
(21.20) 1
x . %
3 PEn 0 ) j ® T, &) at (2.1.21) : %
——ye = V_(X) - — v ’ -1.
and . . -
E Zp ) ) 1f @ 5, & av (2.1.22) !
F . = W X)) = — sw - .1,
"“""“?E i )
R(zgr) 4 " BR "8

Here S and T_ are resolvent: kernels. of x% and. 5;; respectively.
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L

K;l and J; are the differentiations of Kn and J‘n, respectively,
with respect to their arguments, where

/2

53/2 j B (x cos’z + 1) az
K (x) = £— 5 (2.1.23)
o T o (Z2+xcos 2)17 ’ )
and
n/2 2 ’ 2
23,12 {xcosz + l)b (xcos"z+ 1) dz
T ° (2+xcos z)

Sn,Tn,K' and J ’, have been cosmputed on the UTSI computer IBM

1130 and are tabulated respeciively in Tabius 2.1.1 to 2.1.4

for x from 0 to 2.0 and for n i»:m 0 to 5. [ KandJ

were denoted respectively, as S, Sl, K , and KI prenously by
Pan (1970a)]. A ’

The Fourier components of the flow disturbances may' also be

expressed in.terms of the corresponding FZ,£ or Ga’ at R (Pan 1971),

(x) A x

n 1. @ +L | F )’ &EY) at (2.1.25
| T a0 [ RORD ]

n o

BR BR "
<
v_(x) = ——5—72 F_ (x) +-- j F, (t) J & ) dt] (2.1.26)
n (253)1 [ n BR ~BR }

. X
w_(x) = o {G x) + L j (t) (x-t) dt] 2.1.27)
n ﬁ(zga)l;g n BR ‘0 % _

Since the streamtube of upstream radius R was chosen
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arbitrarily, the relationship between the flow disturbances and
F,oor G, [Egs. (2.1.20)-(2.1.22) or Egs. (2.1.25)-(2.1.27)] are
valid for any R with in the linearized supersonic flow theory.

As R»w, these relations reduce to the asymptotic linear relations,

Egs.(2.1.11)~-(2.1.13), which for n=0 correspond to Whitham's -

asymptotic relation (1952). The second terms in Eqs. (2.1.20)-

(2.1.22) and Eqs. (2.1.25)~(2.1.27) represent the corrections

of the asymptotic relations in the nearer field.

PROPAGATION OF THE DISTURBANCE

Since the relatioms, Egs. (2.1.25)-(2.1.27), axe valid
% where the flow disturbances are weak, we may now write the

expressions for flow disturbances at any distance r in terms

of corresponding local F function at r,

1 4p
y
YE Py 1 { 1\ 't oy-t
= —— 75" F(y,a )+— /,6cosng, f F_(t) (X—)dt}
4 ~u(y) (231')12 gr n I nt*%n BT
(2.1.28)
y 1
v(y) ———Q—-;— F(y,e ) +4 S-cosneo J{- F (t)d (———)dt§
(2pr) - gr _n" () ar 2
(2.1.29) é
w(y) = {""" G(y,6)+—}v- Zcosne jGn(t}x;(u)dt] %
r(25r) Lae pr L o pY 6=6,

) Based on Whitham's hypothesis on the improvement of the

! ‘ 2.18




linear theory (1952), the flow disturbance in steady supersonic
two~dimensional flow propagates along an improved two-dimensional
characteristic which is at an angle with respect to the flow
direction equal to the Mach angle. In three-dimensional flow,
the two-dimensional <haracteristic is replaced by a bi~characteristic
direction and a characteristic surface orientation. A bi-characteristic
. direciion is one which is at an angle with respect to the flow dir-
ection equal to the Mach angle. A characteristic surface orienta-
tion is one for which the angle between the normal and the flow
direction is the complemeat of the Mach angle. A bicharacteristic
line is an integral curve for the bicharacteristic direction. A
characteristic surface is a surface, the orientation of which is
everywhere the characteristic orientation. A general bicharacteristic
line through a giver point is far from unique; however, a characteristic
surface through a given smooth line in space is locally unique. Any
envelope of characteristic surface is also a characteristic surface.
To a given bicharacteristic direction at a point corresponds a
unique characteristic orientation, for which the bicharacteristic

direction is tangent to the characteristic surface. Through a

ST L ARttt e =

given non-singular point in a given characteristic surface passes
a unique bicharacteristic line in a characteristic surface (Hayes
b and Probstein, 1966).

For the present problem of the linearized supersoric slow, the
’ . characteristic surfaces are surfaces of revolution with respect to
the axis (Ferri, 1954). Through a general point (x,r,8) on a
characteristic surface, the bicharacteristic direction may be found
from the tangential direction to the characteristic surface and to

the local Machk cone.

! 2.19




Ax _ (q2 - v2) 1/2 (d+u)cosy - (I+p)vsinpy

Ar (qz-vz)l/zvcosu+ (qz-vz) singy

A8 _ g (q2 vz)l/ cos~vsiny.

Ar (¢“ - v 4y cos b+ (@ - vz) sin p

with ¢ and q being the local Mach angle and the local non-
dimensional velocity respectively.

By using the difinitions of y and q, and neglecting the
second and higher order terms of the flow disturbances, we have

the differential equations of the bicharacteristics

9% _ 54 Q¥ - v epu) (2.1.31)
or 28
99 _ B¥ (2.1.32)
or r

To obtain a set of parametric equations of the bicharacteristics,
we may substitute Egqs. (2.1.28)-(2.1.30) into Egs. (2.1.3]) and
(2.1.32) and perform the integrations on the line y =constant
and eo=constant,

I

x = pr-R)+y~-k F<y,eo)<r1/2-R1/2)- j L(y,8,;x)dr,
R
(2:.1.33)

2.20

i .7: e h - . o
,i;_‘;xi-w_ - & = . e 2 it amhitnn

S A A

P——




R i s S e o
r
6 =6, + __ My, ;r)dr, (2.1.34)
R
with
k = 27 Y2¢41) wlpg3/2 (2.1.35)
4 y
: QM- T j vyt
L(y,8_;r) =‘;1"‘"f7§ 7 cosn@ F (£)K_( ydt
o B(ZBr)s = o A n n BT
+ Mz(v+g3u) (2.1.36)
M(y,eo;r) = BW/r. (2.1.37)

Here, y and 90 are the coordinates x and 6, respectively, of a

point on the cylindrical surface R. y = constant and éo = constant

define a bicharacteristic curve from the said point; on this

bicharacteristic curve, F(y,eo) = constant. For an axisymmetric

flow field (n=0),there is no 6-comporent velocity and 6 remains

constant; Eqs. (2.1.31) and (2.1.32) reduce to Whitham's

characteristic differential equation, and "g.(2.1.33) reduces

to the improved characteristic equation obtained by Pan (1970 a,b).
After knowing F(y,eo) at R, we may integrate Egs. (2.1.33)

and (2.1.34) to obtain F{(x,r,8) at a cylindrical surface further

afield at r. The value of F at a partiéular point (x,8) at r

is equal to the value of F(y,eo) at a point (y,eo) which is on

the same dicharacteristic curve as the point (x,8) at r. Due

to the g-component disturbance the bicharacteristic curve from
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(y,eo) is generally not lying on the same 90 piane (see,
Figure 2.1 3a). The bicharacteristics which pass through the
straight line 6 = constant on the surface r originate on the

surface at R from the curve eo

eo(y). Consequently, to

determine F(x,r,@) on a line 6 constant at r, we have to

determine the curve 6 = eo(y) at R. On the plane of symmetry
=0 (or w), where w=0, all bicharacteristic curves remain in
the same plane; hence F(x,r,0) is determined only by F(y,0) at
R {see, Figure 3.1.3b).

The shape of the F function obtained at r are generally
distorted and different from the original F function at R.

The F function on a 6 = constant line at r is generally =z
multi-valued function of its argument x. The multi-valued
regions are due to the intersection of characteristic surraces
in the physical space where values of physical quantities

cease to be unique. This failure of the linear theory as a
description of the flow is known to be remedied by the presence
of shock surfaces (Courant and Friedrichs, 1948).

It is well known (Courant and Friedrichs, 1948) that the
shocks. to a first order in strength, can be determined by a
simple geometric property, that is a shock surface bisects t+-
angle between two intersecting characteristic surfaces. As
shown by Whitham (31952) the F function, at least in the far
field, gives a rough description of the flow pattern, since it
shows whether the characteristics are converging in compression,

where a shock will appear, or diverging in expansion. The shock
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position at any distance r may be determined from the F function

at R. For an axisymmetric flow, Whitham (1952) obtained a
relation called the "area-balance-rule" which states that the
lobes cut-off on 2ach side of the F function by a straight
segment which determines a shock position must be equal in
area. The slope of the straignt segment depénds on the distance
r. In the following, we shall follow Whitham's procedure to
obtain general relations for determining shock positions.

Suppose that a general shock intersects 9 = constant at r

at the point,

x = pa(r-R) - G(x,0) (2.1.38)

and the bicharactceristics, Eq.(2.1.33), specified by Yy and Yo
(y2 > yl) on 90==90(y) at R intersect the shock at this point
(see, points ¢ and d in Figure 2.1.3). The bisecliion of the
angle between the characteristic surfaces by the shock surface
requires that

oG

2 2 .;E k 12 [r(y, 6, vy 0 + F(yz,eo(yz»]
r i

-

1
+ {L(yl,eo(yl);r) + L(y2’eo(y2);r{l (2.1.59)

On the other hand, elimination of x-g{(r—~R) from the equaticns of
the shock, Eqs. (2.1.38) and of the bicharacteristic, Eq.(2.1.33),

give

L 4
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T

G(r,8) = kF(yl-Go(yl)).rl/z-Rl/z} + f L\."l,eo(yl);r)dr~y1,

R
(2.1.40)
and
r r
G(r,0) =k F(yz,eo(yz))lfl/z-nl/él4— J' L(y,,0,(y5) ;T)dr-y,,.
N R
(2.1.41)

G and v as functions of y; or y, can be solved from Eas. (2.1.39)-
(2.1.41). and then the relation between ¥y and Yo is obtained.
The relation between r and ¥y (and/or yz) is obtained by

eliminating G from Egqs (2.1.40) and (2.1.41),

F(YZ’QO(Yz)) = F(Yl,Go(yl))

YZ - Yl Ir _1
172 _1/2 R
={k@” =K ") +
F(yzteo(yZ))- F(yl’eo(yl)) J
(271.42)

:For large r, E3.(2.1.42) may be simplified to a relation obtained
by Whitham (1952) for R=0,

F(yy:6,(y5)) = F(y1,6,(¥;)) 1

T k(12 - g3

(2.1.43)
Yo 7 Y3

The geometric interpretation of Eq.(2.1.43) is that the slope
of the straight segment cd joining the points y,; and y, of the
F function curve at R relates to r only. For an arbitrary r,

the slope of the segment cd relates not only to r but to ¥1:59
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i
and F. For different shocks, the slopes of the segments are
different.

To deternine the relation between y; and y, or the position
of cd on the F function curve at R, the well known "area-
balance-rule',

Yo

j F(yleo(y))dY=i— (y9- ;) {1'"(3'1,606!1))'.L F(yz,eo(yz))},
4! (2.1.44)

is found to be replaced by the following relation,
Y2
[ R _
) f(}’,eo(}’))dy = 5 \yz yl) [F(yl’eo(yl)) F(yZ’so(yg)}

yl r

i 7
+§|F(y1,90(y1))§f [L(yl,eo(yl);r)-L(yz,eo(yz);r)] dr
. J

R
Vo .z
+f F(y8,ty My 2 L{y,8,(y);x)ar|
Loy }R 4
Y3 (2.1.45)

Now Eq.(2.1.45) together with Eq.(2.1.42) determines the
positions of y; and y, on F{yy8,(y)) for fixed r. These relat’.ns

may be used to determine the positions of other shocks. For
example, the position of the front shock ab (Figure 2.1.3) may
be determined by setting F(yl,eo(yl)) = 0 at the point a on
the F functicn curve. We may note here that Egs. (2.1.42) and

(2.1.45) are so complex that no explicit solutior for r(yl.yz)
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possible. Results may only be obtained by a numerical iterative
procedure by using Eqs. (2.1.43) and (2.1.44) as a first
approximation.

After having determinec the positions of shock waves, the
local F functicm at r becomes a single valued function except
with a finite number of discortinuities. Then the corresponding
flow disturbances may be determined from fhe local F function

and its Fourier components by Egs.(2.1.28)-(2.1.30) or the

relations (2.1.25)-(2.1.27) by replacing R by r.

2.1.3 WIND TUNNEL TESTING METHOD BASED ON LARGE MODELS

As discussed in the subsection 2.1.1, in experimental in-
vestigations of sonic boom in wind tunnels it is usually
necessary to use very small models in order to obtain direct
measuremerts of the far field pressure signature in the
vicinity of a wind tunnel wall. The present new method is

Yased on large models in wind tunnels, where only the near or

the mid-field is simulated. By measuring the pressure dis-

tribution at the vicinity of wind tunnel wall it is possible

® W“WWMWW%WWWWMMWJ; o R RIHE I B o o s

to deternine the signature of sonic boom at large distancesin

r the far-field. In this subsection, we shall present a thecretica #

study of the new wind tunnel testing method.
GENERAL CONSIDERATION

A three-dimensional model is tested in a circular cylindrica

supersonic wind tunnel with radius R (Figure 2.1.4a). The flow

2.27

A A LV SV A

__L . o e B e e s el & aih Anasiined l l N




‘IYBITI @8xy urt agniwuea.r1s

o , «q paso[oua(q) Teuung PUT M
MVL{(IIIIIV // 8 Lt (e) ‘3rexoary oTuos.radng

€ JO suxeljeqd Mold ¥%°Y°'Z FUNOIJ

(e

<K ’ I<K

2.28




‘hag

A

is assumed to be steady, homogeneous, irrotational and inviscid.
It is well known that tbe disturbance emitted from the model
is reflected at the wind tunnel wall, in ordexr that the stream-
lines adjacent to the wall ma* be always tangent to the wall.
Hence, the three-dimensional reflected pressure disturbance can
be measured at the wind tunnel wall. If the flow field over the
test model inside the wind tunnel canbe described by the
linearized supersonic flow theory and if the cumulative non--
linear effects canbe neglected within the wind tunnel, the
flow field near the wall may z1so be described by the linearized
supersonic flow equations. It is possible to relate the incident
disturbance with the reflected disturbance at the wall by
specifying prope; boundary conditions on the wall (Pan, 197Cc,
1971).

In free flight, however, streamlines over the model may
be distorted freely according to the emitted disturbance. Any
circular cross-sectional streamtube in the free stream may be
distorted into a quasi-circular cylindrical shape. The quantity
of flow in the wind tunnel of radius R is equal to the quantity
of flow coanfined in a streamtube of the same upstream radius R
enclosing this model in free flight (see, Figure 2.1.4b).
Based on the linearized supersonic flow theory, the actual
flow disturbance at the distance R in free f£light 2quals to
the incident disturbance on the wind tunnel wall with the
same radius R.

After knowing the actual pressure disturbance at a stream-

tube with upstreym radius R enclosing the model, we may now

2.29

AR SRR A | i o

TR

ARSI | i OBl

A e o ——




apply the extended theory developed in the preceding subsection
to extrapolate this known disturbance to any distance in further

afield.
WIND TUNNEL WALL REFLECTION

In this subsection, we shall obtain the relation between
the actual free flight(incident) pressure disturbance and the
measured (reflected) pressure disturbance both on the cylindrical
wind tunnel wall. We assume that the flow field may be described
by the linearized supersonic flow theory. The pressure (Mach)
waves generated by the model propagated outward and downstream
and are reflected at the wind tunnel wall; the reflected wave
will not interact with the model. Unlike the reflection of a
plane wave at a rigid plane surface which gives a constant re-
flection factor 2.0, the reflection of a curved wave from a .
cylindrical rigid surface may not be described by a simple con-~
stant reflection factor. Since the flow fieid behind a curved
wave is generally not uniform, the flow field hehind a curved
reflected wave depends on both the incident curved wave and the
distance from the wave front.

Referring to Figure 2.1.4a with the cooxdinates described
in Figure 2.1.2, the disturbance v&locity potential ¢ in the -
wind tunnel satisfies Eq.(2.1.1). Equation (2.1.1) ungether
with the uniform free stream boundary conditions may be solved

by a technique of Laplace transform, i.e.,
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[o0]
&(s,r,0) =-1-f o(x,r,0)e S/ BRay. (2.1.46)
BR %,

The general solution to the transformed governing equation

Eq.(2.1.1) is given by (Ward, 1955).

3(s,r,8) = z cosne[AnKn(-s-ll) + Bnln(il—')}, (2.1.47)
R R

n

where Kn and In are modified Bessel functions, and An and Bn

are functions of s only. [Readers should not be confused by the
nodified Bessel functions Xh used here with the functions Kn defined
by the Eqs (2.1.23)].

In Eq.(2.1.47) the terms in Kn which represent waves travel-
ing outward from the model and downstream are the iancident waves
with respect to the wall, while the terms in In whichk represent
waves traveling in both directions are related to the waves re-
flected from the wall. The relation between An and B, may be
determined by the boundary condition on the wall, (i.e.,.

od/or

]

Oatr:R),

jorl
I

4 4
- )
AnKn(s)/In(S)' (2.1.48)

The function An may be determined from the boundary conditions
on the model surface; we, however, shall leave it as an arbitrary

function.

Now the general solution in (s,r,0) reduced to
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¢o(s,r,8) = z cosn @ AnKn(——) 1-—
ST

R I,(s) K )

(2.1.49)

n

The transformed disturbance pressure P is, by Eqs. (2.1.7) and

(2.1.46),

P(s,r,8) = - = d(s,r,6) (2.1.50)
3R

On the wind tunnel wall (r =R), the disturbance pressure

P(s,R,5) is the measured (reflected) pressure, denoted by P_,

B = Z cosng Py (s,R) (2.1.51)
n
with §Rn being the Fourier components of §R’ and from Egs.

(2.1.49) and (2.1.50),

_ K. (s) I_(s)
Bp,(s,R) = - = AK (s)|1- &3 (2.1.52)
SR I ,(s) X (s)

On the ctner band, it is easy to show that the Fourier components

of the free flight (incidert) disturbance pressure on the wall is

3 s
PIn(S’R) = - g; A K (s). (2.1.53)

Hence, we may relate the measured pressure with the free ilight

pressure on the wind tunnel wail,
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K_(s) In(S)

n
2 (8) K (s)

'13R (s,R) =P, (s,R)|1 - . (2.1.54)
n n

I I

We may also express the free flight pressure in terms of the
measured pressure and use the wel) known Bessel function
relations (Watson, 1966),

_ _ r
By (s,B) = 1% (s,R) sK_(s) F““(S) + I

-
5 TRy n_l(s)J (2.1.55)

Now the relations between PIn(x,R) and PRn(x,R) may be

obtained by performing the inverse lLaplace transtform,

-~

X
_1 _1 X7y vl
Py (x,R) = , LPRn(x’R) " [) PRn(y,R) Rn(BR) dyJ » X>0
(2.1.56)

Here, Rn(x) the reflection functions, are the inverse lLaplace

transform of the §h(s),

ﬁn(s) =1-sK,(s) {In+l(s) + In-l(s)] . (2.1.57)

Since the laplace inversing of ﬁn(s) is not known at the present,
exact values of Rn(x) for all n and x c?nnot be obtained.
However, for most practical cases, the argument of Rn(x) is
usually small, and we may obtain an asymptotic expressicn of
Rn(x) for small x by inverting the asymptotic expression of

ﬁn(s) for large s. The result is
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u m-1 8m(m~1)!
Rn(X) = \ C X

2. Cun (2.1.58)
m:l
where
m
c. = Z -1 a_ b .
nm n; nj’
i=o
i+j=m .
with
i 2 2
_ 4n” - (2j-1)
ani - .TT { . ]’
j=1 J
i 2 27 & 2 2
b =1 T] [4(n+1) - (2§-1) }+ B [4(:1—1) - (2§-1) }
ni - 2 ' i . !
j=1 J =1 J
and ano = bno = 1. Values of Rh(x) are plotted in Figure 2.1.5

for n=o0 to 5 and 0 x¢i.7. After having obtained PI (x,R),
= = n
we may calculate the free flight disturbance pressure distribution

Pl(x,R,e) on the wind tunnel wall,

P.Ix,R,0) = L\__: cosng P, (x,R) (2.1.59)
I I,
n

PROCEDURE OF THE EXTRAPOLATION OF MEASURED DISTURBANCE

After obtaining the incident pressure disturbance at the
wind tunnel wall, we may follow the extended theory developed
in the subsection 2.1.2 to find the sonic boom signature in the

far-field. 1In the following, we shall outline the procedures
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of the extrapolation method and list the relevant formulas in
each procedure.

A three~dimensional pressure distribution, PR(x,e.R) is
measured a. a circular cylindrical wind tunnel of radius R (for

example, by using a scanning system suggested by R. C. Bauer -

% N e o N s e

of ARO, Inc. to this author, 1971). This three-dimensional

i

signature is expanded in Fourier series in 0,
PR(x,e,R) = Z PRn(x,R) cosn g;
n

the Fourier coefficients PRn of PR can be obtained. :

The corresponding Fourier coefficients PIan,R) of the

o —— o A2 h L miad

incident pressure disturbance PI(x,e,R) and PI(x,B,R) itself

can be found, from Eq. (2.1.56), i

X
1| _ 1 x-t
PIn(x,R) =3 !.PRn(x,R) Bri PRn(t,R) Rn(—-—BR) dt],

and from Eq. (2.1.59),

P (x,R,8) = . P. (x,R) cosnag.
I In
n

i

PI(x,R,e) is a three-dimensional pressure disturbance on a

*
L

streamtube with upstream radius R, which corresponds to the

wind tunnel. *

By using the pressure disturbance PI(x,R,B) or PIn(x,R),
we can calculate the local F function of this streamtube; from

Eq. (2.3.20),
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1/2 1 4 t 1)
- , -1 y-t
Fn(y,R) (28K) [Pin(Y) - J PIn(t) sn(BR) dtj \

and from Eq. (2.1.15),

F(y,6,,R) = z Fn(y,R) cosng,.
. n
F(y,eo,R), representing the disturbance generated by the stream-
tube with upstream radius R or by the tested modei in free
flight at R, propagates to further afield r along bicharacter-
istics given by Eq. (2.1.33),
r

x = B(r-R) +y -k F(y,6,) @'/ 2-pY/2) -[ L(y,8,;r)dr
R

and Eq. (2.1.34),
T
6 = 6, +.j. M(y,eo;r)dr.
R

After shock positions were fixed on the F function by
Eqs. (2.1.42) and (2.1.45), the new single valued F(x,r,0)
is obtained at r. This new F function is then expanded in

Fourier series.

> F(&x,r,d8) = 2: Fh(x,r) cosng.

! n

Corresponding to the Fourier components, Fn(x,r), the Fourier com-

ponents of the pressure disturbance, Pn(s,r), are found from
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Eq. (2.1.25).
x :
1 1 x-t
P (x,r) = ———=—5 [F (x,r) + — F (t,r) K (=) dt]
n (ZBr)l/z n Br ) n n Br

Finally, the three-dimensional pressure disturbance P(x,r,8) .

P

at r is obtained by summing up all Fourier components,

P(x,r,8) = }: Pn(x,r) cosng.
n

2.1.4 EXAMPLES AND DISCUSSIONS

. . * .
Several numerical calculations of near-field pressure

signatures were performed to compare the results based on the

Er R ——

present analysis with those based on the current sonic boom cal-
culation and with scme available wind tunnel measurements. Typical
examples are presented and discussed in the following.

Figure 2.1.6 shows a comparison of the shifts of chgracter-
istics at different r for different points x on the axis of a
6.46° half-angle cone-cylinder body. The length, i, of the cone
portion of this body is taken to be 1.0 and the free stream
Mach number is 1.41. In this figure, yw is the shift of the

asymptotic characteristic curve based on Whitham's theory (1952)

from the linear characteristic curve; yi, is the shift of the

characteristic curve based on the present analysis (Pan, 1970a). .

*This author, Dr. Y. S. Pan, wishes to acknowledge Misters K. T.
Wang and M. O. Varner, Research Assistants, for their valuable
assistance in tiae numerical computations.
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For this example, the present characteristics are located
generally ahead of the asymptotic characteristics. At r=0.5,
the differences of the shifts are as large as 2/ percent of
Whitham's values. As r increases, the percentage of the dif-

ference decreases. : :

Figures 2.1.7a - 2.1.7b show the near-field pressure

signatures at r/4 = 0.5, 1.0 1.5, 2.0, 2.5, 3.0, 4.0 and 5.0 P

from the axis of the cone-cyliander body described in the preceding
section. Comparisons show the differences between the signatures
of the rpresent amalyvsis and of the current sonic boom theory.
The differencesare due to the present correction of the linear
asymptotic relations between the flow disturbances and the local
F function and due to the shift of the characteristic curves.
The peak pressures predicted by the present analysis are generally
lower than, and located ahead of, those predicted by the current
sonic boom theory. This prediction is quali-z: v2ly consistent
with some of the near-field experimental o: -- r7ations (for example,
Morris, Lamb and Carlson, 1970).

In Figures 2.1.7b - 2.1.7h, numerical pressure data are
also presented. These data were obtained by Kutler (1971)*
using a shock-capturing finite-difference approach (Kutler <ud
Lomax, 1971). The present signatures are generally in excelient

agreement with the numerical data excepf at the neighborhoed of

*Numerical data generously provided by Dr. ?aul Kutler of NASA
Ames Research Center are gratefully acknowledged.
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the shock waves. The difference near the shock waves is due to
the fact that, in the shock-capturing finite-~difference approach,
the shock waves which occur are spread over a few meskL intervals.
Therefore the exact positions of the shock waves cannot be exactly
predicted by this numerical method.

Figure 2.1.8 -shows the shifts of characteristics at r=1.0
from tke same cone-cylinder body at Mach numbers 1.2, 1.41,
2.0 and 3.0. GCeneraily, the shift of characteristics increases
with increasing Macn number except at the cone portion. In
this region, the F function is positive and the shift decreases
with increasing large Mach number. Figure 2.1.9a - 2.1.39d show
the comparison of pressure signatures, based on two different
analyses, at r/4 = 1.0 of the same cone-cylinder body at several
different Mach numbers. Because of the larger shifts of character-
istics at larger Mach nu-wers, larger shifts of pressure signatures
appear at larger Mach numbers. The difference of the pressure
strengths decreases as the Mach number increases.

Figure 2.1.1C and 2.1.11 demonstrate the extrapolation
of an axisymmetric pressure signature. From Kutler's rnumerical
data (1971) at r/£=1.5, a corresponding F function is obtained

and is shown in Figure 2.1.10 (the dotted data represents the

F function based on Whitham's asymptotic relation). This F function

is propagated to r/i{ = 2.0, 2.5, 3.0, 4.0, and 5.0. The corres-
ponding pressure sigaatures 2t different r/i are obtained from
different local F functions and 2ve shown in Figures 2.1.1la-

2.1,.1le. Compariscns of the extrapolatec pressure signatures
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=== Present Analysis (Pan,1970a)

FIGURE 2.1.9

Near-field pressure signatures
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with Kutler's numerical data are again in good agreement except
at the neighborhoods of the shock waves.

Figure 2.1.12) shows the pressure signatures of a slender
body of revolution at r/{ =4.2 and M = 1.2. Experimental data
(Barger, 1968) are compared with the results of the two different
theoretical calculations. The difference between the two
theoretical curves is obvious. By observation, one cannot tell
which curve is in better agreement with the experimental data,
because the streamwise positions of the experimental data with
respect to the body are usually not specified. Based on Whitham's
theory, Barger (1968) developed a procedure to desiga a body of
revolution from a specified sigpature. Pan and Varner (1971)
performed a similar calculation by using the present analysis.
Examples indicate the different body radii obtained from the two
different analyses. The differences are most apparent at the
rearward portion of the bodies.

Figure 2.1.13-2.1.18 demonstrate an extrapolation of a
measured three-dimensional pressure signature. A three-dimensionai
measured pressure signature is assumed in a fornm, PR =P, +P

Ro "Ri

and is shown Figure 2.1.13. A free stream Mach number of M = 2.0

cos 8 ,

and a wind tunnel wall radius of R = 0.5 are assumed. The
magnitude of the assumed pressure disturbance has been exaggerated
to apply the usual linearized approaches. Following the pro-
cedures described in Subwection 2.1.3, the corresponding incident
(free flight) pressure disturbance is calculated (a=90 and 1) and

is shown in Figuve 2.1.14.
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FIGURE 2.1.14 Three-dimensional incident pressure
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From the incident pressure disturbance of its Fourier com-~
ponents (n = 0,1) the Fourier compounents of the corresponding
F function are first calculated. By summing up the Fourier
components (n = 0,1), the local F function is obtained and is
shown in Figure 2.1.15. Since the kernel functions S and Sl in
the formula for calculating F and P are of different signs but
with the same order of magnitude, the near-field effects of the
F funct.ion are almost negligible in this example. For more com-
plicated signatures where more Fourier component terms are re-
quired, the near-field effects on the function may be important.

The disturbance represented by the F function is extra-
polated to the downstrzam at r =10.0. The local single valued
F function at r = 10.0 is obtained by following the procedures
described in Subsection 2.1.3 and is shown in Figure 2.1.16.

The F function at r =.10.0 is then expanded in a six-term Fourier
series in 9(n=0 to 5). This six-ierm Fourier series is generally
a good representation of the F function except at certain positions
(e.g. shock waves) where the F function is discontinuous in 4.

From each Fourier component of the F function, six Fourier com-
ronents of the corresponding pressure disturbance are obtained.

By summing up the six Fourier components, the corresponding
three-dimensional pressure signature is obtainea and is shown in
Figure 2.1.17. In this figure, ithe pressure signatures near the
leading shock wave are fixed approximately from the six-term

Fourier representation of the pressure signatures which, for

g = 0°, 90° and 180°, are shown by dashed lines in the same figure.
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If we take more terms in the Fourier series in the F function,
and consequently in the pressure disturbance, the actual signature
will approach the signature indicated by the solid lines.

In Figure 2.1.18, the pressure signatures at 6 =C°, 45°,
90°, 135° and 180° obtained previously are compared with those
obtained directly from the current sonic boom taneory. In this
example, the current sonic boom theory over-estimates the peak
pressures for 0° £ 9 ¢ 9G° as much as 20 percent but under-
estimates the peak pressures for 90° ¢ 6 ¢ 180° as much as 50
percent. Aithougzh no general quantitative conclusion on the
importance of the near-field effects can be obtained from this
single exampie, this example does show that the near-fiezld ef-
fects may be important for extrapolating complicatied near-field :

three-dimensional signatures.

2.1.5 CONCLUSIONS

i

The current sonic boom theory, which is based on the well

A

known 'Supersonic Area Rule" and ¥hitham"s "supersonic projectile

theory", has been extended to take into account the three-

{
|
|
|

dimensional near-field effects. The present extended theory

l permits us to calculate the flow disturbances in the almost !

entire flow fieid of a steady supersonic flow over a three-
dimensional configuration.
. Based on the present theory, a new wind tunnel testiing

method based on large models is developed. This new method per-

mits us to use the models of usual size in wind tunnels to deter-

mine the sonic boom on the ground by measuring the pressure

2.61
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signature at tire wind tunnel wall. This method has great i ‘

significance in making wiod tunnel tesis more reliable by avoid-

s

ing the use of extremely smalil models as is usually done today.

Whad B

2.1.6 RECOMMENDATIONS

g 4

THEORETYCAL WORKS

It is recommended to compute a more complete set of the

’
kernel functions Sn’Tn’K; and Jn wnich are required for the

application of the present theory to the praciical sonic boom

p—

calculations and to the extrapolation of pressure signatures
measured in the wind tunnels. Only part of these kerznel {

functions have been computed and presented in this report.

It is recommended. based on the present theory, to deveiop
a FORTRAN computer program. More three-dimensional calculations
are required to compare with experimeantal data and/or with the
calculations based on the curreat sonic boom theory.

It is recommended t¢ develop a sonic hoom theory valid at
large Mach numbers. . . the range of applicability of the
; present quasi-linear approach is quite limited, a theory which
takes into account non~linear effects at large Mach numbers

should be developed and should be of great importance in the near future.

EXPERIMENTAL WCRKS

It is recommended. based on the present method, to develop
wind tunnel test procedures tu produce suitable three-dimensional

| pressure signatures for extrapolation to the far field that is
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for determining the sonic boom on the ground.
It 1s also recommended that an experimental check of the

reliability of the present theory and the wind tunnel method

be made.




2.2. TFUNDAMENTAL THEORIES, APPLICABILITY AND EXTENSIONS

2.2.1. The Near-Field Flow Pattern of an Inclined Slender
Body of Revolution
by Dr. S. N. Chaudhuri and UTSI student Sarat Prahara]j

Summary

In the present paper Whitham's far-fieid theory of
supersonic flow pattern has been gcneralized for the near-
field points of an inclined body of revolution. Using the
correct expre.- "on for the characteristics (as far as the
first~-order theory is concerned) it is shown that the new
F-function which describes the n=2ar-field flow pattern is
dependent on the following besides the body geometry: the
distance from the axis of the body, the Mach number, the
angle of attack and the azimuthal plane angle. We have
obtained closed tform results for the new F-function for any
smooth body of revolution. The recurrence formulas given are
convenient for computer programming. The pressure signatures
for near-field positions have also been caiculated. They
can, of course, no longer be related to the new F-functions
by simple formulas. The routine method given to calculate
the fund wental F-function and the pressure signature at near-
field p..nts of non-axisymmetric bodies will be useful ia the

preliminary design study of equivalent bodies of revolution.
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LIST OF SYMBOLS

a = Angle of attack

N

@ = Velocity potential

% = Perturbation velocity potential

96 = Axisl-flow perturbation velocity potential (First Order)

91 = Cross-flow perturbation velocity potential (First Order) !
F(y) = Whitham's function for the points, where

Br/x—-pr is large

Hy,r,MR(y),2,6! = Whitham's function at any point

f(t) = Strength of source {(singularity) distribution
g(t) = Strength of doublet (singularity) distribution i
M = Free stream Mach number !
P, = Free stream static pressure |
4D = Pressure in excess of undisturbed (free stream)

static pressure
q = total velocity
q(x) = total axial velocity component
q(r) = total radial velocity component
q(e) = total azimuthal velocity component 1
r = Distance of a point on the characteristic from the

axis of the body {
R(y) = Radius of thke body of revolution at y 7
U = Free stream speed ;
X = Distance of any point measured from the nose ‘
vy = Distance of any point from the nose, where the

characteristic produced meets the axis.
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Introduction

For an axisymmetrical flow past a slender body of
revolution Whitham (1952) developed an elegant modified theory
which essentially retains the simplicity of the linearized
theory as given by Lighthill (1952) and others but remedies the
failure of the linear theory as a description of the flow
pattern. The fundamental hypothesis of Whitham is that the
linearized theory gives valid first approximation to the
flow everywhere provided that in it the approxzimate character-
istics are replaced L, . sufficiently good approximation to
the exact ones. This hypothesis has been amply substantiated
by checks detailed in Whitham's paper (Whitham, 1952).

The following are some of the important assumptions
made in Whitham's theory (Whitham, 1952):

(i) Tke body is slender and pointed at the ncse, with

the front shock attached. (it may be remarked

here that even if these conditions are not satisfied,
Whitham's the.ry can still be used to deduce the
behaviour of the flow at large distances from the
axis of the body).

(ii) Whitham's discussions of the flow pattern is limited
strictly to the behaviour at large distances from
the axis of the body. In particular., the Whitham
function F(y) which is fundamental to the whole

theory and is the most important function associated

2.65
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with flow past a body of revolution is obtained
only for far-field pcsitions. The condition is
also valid for front shocks at any distance. This
simplifies the mathematical analysis considerably
and makes the F-function dependent only on y, the
distance of any point from the nose where the
characteristic produced meets the axis.

(iii) Apparently a third restrictive condition in Whitham's
theory is that of axial symmetry. However, Ward (1949)
has showx{f that the flow becomes axisymmetrical

when fr/(x-pr) is large (See Fig. 2.2.1) Here B = (M2—1) 172

rape Yy~ S
o,

with M as the free-stream Mach number and r is the
distance of a point on the characteristic from the
axis of the body. The quantity (x-Br) is the
linearized from of the characteristic variable and
measures the distance from the unose at which the

characteristic starts. This Ward's condition

is clearly satisfied at large distances, but it

= B enbids e, RN R R A e ey

} is also true at points on the Iront shoecks because

4 oy,

the appropriate characteristic surfaces arise so . i

very close to the nose. Hence the results for the

front shock and all the Whitham thesory at large

distances apply unchanget ©: ron-axisymmetrical

slender pody. From thcs - 4niiviiam concludes (Whitham, 1932)

v

that it :s reasonable to expect that his results

1 Al M W

t This also foliows from the result estaklished in the present
paper as will he shown later.
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for large distances apply to the supersonic flow
past any finite body. Mathematically this leads
to the interesting result that even for non-
axisymmetrical bodies the simplified Whitham F-
function can be used for far-field points.

We shall now examine the above assumptions critically
with a view to its application to the calculation of near-
field flow pattern of an inclined slender body of revolution.

The first assumption is essential to our theory because
the first-order potential equations are used. Strictly we

do not nse the entire linearized equation in our analysis

as it would he had the x-axis been aligned with the free-
stream direction. This was first noted by Lighthill (1948)
The consequences of this distinction has been considered in
detail by Van Dyke (1952) and we will discuss it later.
TLe second assumption is, in general, obvicusly in-

valid for near-fields. It is, however, still true for the
front shock system originating very close to the nose but
not for other points of tne body. Whitham (1952) replaces the
approximate straight characteristics x - fr by a better
approximetion, y(x,r) given by equation (10)* in (Whitham, 1972).

Whitham justifiably simplifies the "extfremely complicated"

expression (10) for his far-field theory and obtains the

*Incidently, there is an error in equation (10). The second
integral ou the right-hand-side of the equation should be
multiplied by (-M2) and not by (-2M2). This, however, does
not affect Whitham's results as he has not used equation
(10) in his paper.

2.68
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well-known results for the equation of the \;harac:teris‘-:ics'r

[equations (12) and (13) of Whitham's paper (1952)]

x = Br - k F(y) r1/2 +y

where
' £'(t) dt

y
F(y)f—-f
(y--t)l

o]

and
2

k=2 Y2+ vt g

Whitham notes, however, that expression (10) of his paper (Whitham,1952)
still provides the correct approximation to the characteristic
cux'ves near the body and should be used for near-and mid-
field calculations.

Using the correct expression fcr y(x,r) as given in
equation (10) of the above reference it will be observed that the
new F-function will be dependent on y,r,M and R(y) (see list
of symbols) for axisymmetrical flows. We have denoted this
function oy ?s{y,r,M,R(y)}. For inclined flows there are
two more variables on which F-function will depend, namely,
the angle of attack g and the azimuthal plane angle 4.

We have obtained closed form results for the new F-
function ,or any smooth body oi revolution. The recurrence

formulas given are convenient to use for computer programming.

TIn Whitham's paper ?=:(M2—1)y?which we have replaced here

2

by f in order to use the Greek letter o for angle of attack.
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It is shown that if the shape »f the meridian curve is ex- -

pressible as a polynomial, all the integrals are related by )

W Wy, €

simple recurrence formulas and ultimately depend on one
standard form. It is a fortunate fact that any function,

which is continuous in a closed interval, can be uniformly -

AR AW D0 e W 0 O

approximated within any prescribed toierance, over that interval,

by some polynomial. This follows from the well-known theoren,
which states that for a continuous function y(x) in an inter-
val (a,b) there will be a polynomial f(x) suck that 'f(x)-y(x)l
< € in (a,b) for an arbitrary positive e¢.

Once our polyncmial f(x) has been determined so that
it satisfactorily approximates the given meridian curve R(x)
over a certain interval (a,b) it is eaSy to see that integration,
being essentially a smoothing process, will involve lesser
error than the derivations in f(x) and R(x) (Hildebrand,1956) It is of
importance to emphasize here the fact that the integrands
representing the F-functioas are of the type G(x) f(x),
where G(x) are given functions and f{x) is the approximated
polynomial. Therefore the closed form solutions obtained
will introduce even smaller error than by using mechanical
quadratures.

The third restriciive condition in Whitham's theory is

that of axial symmetry. As mentioned earlier the far-field

o 5 AR A WL k8 bt 0w 44

flow pattern is not significantly affected by removing this '
assumption of axial symmetry. But is is obvious that we

have to consider the effects of cross-flow for bodies at an

2.70




angle of attack in the calculation of the flow pattern at
near-field points. This has been done by a distribution of

doublets with their axes perpendi~ular to the body center-

line. The strength of the doublets per unit length is found
to be proportional to the cross sectionrarea if we replace the
exa:t tangency condition by an approximate one. This

* approximation is exactly similar to the first order axial

flow problem.
To illustrate the type of F-curve that results from the
i present theory we have calculated the new function F for

i two bodies. Their shapes are given by

(a} R(x) = 0.1 x(1-x), 0 ¢ x¢1l _
=0 ’ x>1 g
(b) R(x) =0.1{1- 1-0)3}, 0 ¢ x ¢ 1

0.1, x>1

A comparison of the near- and mid field F-function with the

far field F-functions bring out the following important

e, 0, ) A bk

facts:

(i) As expected F-function very nearly coincides with

the F-function for points close to the nose.

e

(ii) At other stations there are significant differences
with changes in r, especially the peaks and troughs

of F-function.

S e L R R
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(iii) For axisymmetric flows F-function is a weak functior
of M upto about 3. This again is to be axpected
from the slender body theory.

_.v) For inclined flows the effect of Mach number is

more pronounced.

Improved First—-Order Theory for Supersonic ¥low Past
Inclined Body of Revolution

Consiger uniform superscnic flow past a body of re-
volution inciired at an angle of attack o [see rfig. 2.2.1j.
The boundary condition at the boedy is simplified by choosing
a cylindrical coordinate system (x,r,0) aligned with the bcdy
axis. We resolve the free-stream velocity intc axial and
cross—-flow components, as shown in Fig. 2.2.2. 7The shape on the
body is defined by its continuous meridian curve r =R(x).

For moderate supersonic Mach numbors the flow is assumed
to be isei.tropic and irrotational throughout sc that there

exists a velocity potential ¢(x,v,8). The eyuation of motion

is then
. @2-e2re _+@-¢D e+ @¥-LH Ly +(a2+§—g>5=
x! Yxx Gp) dpp 2%’ "2%s0 ¥ r
T r by by
2 . 2 G 2¢ ¢ 0 (2.2.1a)
- ;?“r¢e¢r9~ ;§¢x‘eqex Ty xr = e

where the speed of sound a is related to its free stream

value ao by
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Figure 2.2.1: Nomenclature
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Figure 2.2.2: Nomenclature
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a2 - a2 - 1"—1(<z>i . q% + L qg D (2.2.1b

The suffixes nave been used to denote partial differentiations.

Introducing a periurbation potential Ug(x,r,8) we write
p(x,r,0) = U[x cosg+ r sinacos 6+ g(x,r,08)] (2.2.2a)

The total axizl, radial and azimuthal velocity components

are then given by

Q(x) = cbx U(cos g + Q‘x),

Uyy = ¢ U(sinacos @ + ﬁfr), , (2.2.2p)

. . 1
Q) = d)e = U(- singsinf@ + 1: ¢9)

Substitutingeq. (2.2.2a) into equations (2.2.1) gives the exact equation
in the perturbation velocity potential. We need not write

the full equation for cur purpose. However, in orcer to

bring out the distinction between first-order and linearized
equation for this inclined flow problem we reproduce the

perturbation equation partially retainipg onir terms linear

in &:
1 1 2 . 2 . 2 2
drr+;¢r+;§¢se-a¢xx= d.x Sina + 4. sn?acose
1, 1 22 .
+ (= %g ¢Y)sm a sin“s + 0 sin2 g cos g

r r

-1 # . sin2ysin @ -1 ¢resin2a sin25
r 2r

’ 2.74
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s 2 &% sinza sin29 + 4% L3 sinza sin29
r r r 6

+ the nonlinear terms iu & (2.2.3a)

To this we add the following boundary conditions:
(i) All perturbatiops should vanish upstream of the

body so that
¢ (091 ’6) = ¢x(0,r;9) = 0 (2.2.3b)

(ii) The flow s* uld be tangeantial to the surface cf

the body s~ that

¢r(x,R,a) + sing cosP = R'[cosa 4—¢x(x,R,e)], (2.2.3¢)
where
R - dR(x) )
dx

Actually, the first upstream conditions should be supple-
mented by the suock condition along the bow wave. However,

this refinement is not necessary for the order of accuracy

sought here.

The First-Oider Problem and Its Justification

The complete perturbaticon equation (2.2.3a) inciuding the
non~linear terms is equivalent to the origin~1 non-liinear
equation of motion, Egs.(2.2.1). Cocnsequently, simplifying

assumptions must be mide. in order tc solve it. The well known

o somne i 08 st v et N Adn i oe o
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theory of Karman and Moore (1932) or axially symmetric flow and

of Tsien (1938) or inclined flow is based upon the assumption

that the entire right-hand side of Eq. (2.2.3a) can be neglected
leaving the wave equation. Its solution will be termed tﬁe

first-order potential (Van Dyke, 1951) and is denoted by ¢ (x,r,60).

It is clear from Eq. (2.2.3a) that the first-order and
linearized problems are the same where the free stream is
aligned to the x-axis, i.e., where g = 0. But, as mentioned

earlier, Ljghthill (1848) first noted that wheng # 0 the linearized

problem is not the same as the first—-order solution because
we are neglecting the linear terms in ¢ in Eq.(2.2.3a). The
justification advanced for this approximation for inclined
flows follows from the slender-body theory in which the fol-
lowing are some of the important assumptions generally made:
(i) approximate pressure relation; (ii) approximate tangency
condition; and (iii) small angle of attack. Hence, Lighthill(19438)
and Laitone (1947) conclude that the exact soiution of the first
order equation is fruitless and that first-order theory is
incapable of yielding resultis more exact than those' of slender
body theory.

The first-order problem is, therefcre,

2 2
opp + (0, /7) + (@eg/r ) = BTo,, =0 (2.2.4a)

¢ (0,r,8) = mx(O,r,Q) =0 (£.2.4b)
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¢, (x,R,0) + sina coso = R'[cosa-+mx(x,R,8)J. (2.2.4¢)
The lirst-order problem is satisfied exactly by setting
o x,r,8) = cpo(x,r) cosq -+ ml(x,r) sing cosg (2.2.5)

The first term corresponds to the axial component of free
stream velocity and the second, to the cross—-flow component
(Fig. 2.2.2). We shall assume that @ is small so that cosa~ 1
and sin o4 ~ .

The 1irst-order probiem is thus separated into two

completely independent problems. For the axial flow,

Yorr + (mur/r) - Bz¢oxx =0 (2.2.6a) )
15(©:7) =g (0,7) =0 (2.2.6b) :
# Oor XsR) = R [1+g . (x,R)] (2.2.6c) :
‘ and for the cross-flow, §
c + (o,./7) - (@ /rz) - !32 =0 (2.2.7a)

Yirr Y1r Y1 Pxx T T [

L ' py(0,x) =0, (0,r) =0 (.2.2.7b) % {
; i
? H
) 1+ g.(x,R) = Rg; (x,B) (2.2.7¢) i

The general solutions of Eqgs. (2.2.6a) and (2.2.7a) satisfying up-
! stream conditions (2.2.6b) and (2.2.7b) are given in (Von Karman,

1932) and {(Tsien, 1938).

3




o

X-Br
o, (x,r) = - [ X(t,pr) £(t) dt, (2.2.82)
o
x-Ar )
0,061 = 2 [ x-t) x(¢,80)g(t) dt, (2.2.8b)
Br
where
2 2 27%/2
X(t,pr) ={ &x-t)° - g°r‘} (2.2.8c)

The corresnonding first derivatives are

X-Br
Pox =~ J xit,pr) £ @) at, (2.2.9a)
(o]
x-Br
Oy = L[ x-t) xt,pr) £ (1) at, (2.2.9b)
r
o
x-Br
P1x -+ f‘ (x~t) X(t,pr) g’ (t) dt, (2.2.9¢)
Br o
x-Br
“1r =7 8{2 J x-)% x(t,6r) g’ (¢) dt ‘ (2.2.9d)
‘o

The functions f and g are strictly determined from the
tangency conditions, Egs. (2.2.6c¢) and (2.2.7c) which leads to
Volterra integral equations, which can, in general, only be

solved numerinally. For our order of accuracy as used vy

ol AR ¢ 1 v e

Whitham (1952) we may, neglect the term, compared with cosa
in the exact tangency condition of Eq.(2.2.3c) and arrive at the

linearized boundary condition at the body surftice:
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Q)r(X:R..G) = COS & - R, (2.2.10)

where we have taken o to be small.

For first-order axial and cross-flow problems, Egs.

(2.2.6c) and (2.2.7c) they take the form

oy (KR = R (%) (2.2.11a)

-0y (XR) = -1 (2.2.11b)

As remarked by Van Dyke (1951) these approximations have the
advantage that the resulting first-order solutions satisfy the
supersonic similaerity iaw (the supersonic counterpart of the
Gouethert ruie’ ., which is not true if the exact tangency cou-
dition is used. Except possibly for extremely thick bodies.

the resulting error in using the approximate tangency con-~

ditions. Egs.(2.2.11) must be small at all Mach numbers (VanDyke, 1u51i).

The linearived boundary conditions (2.2.1la) and (2.2.11b) iead
to th2 following values for the arbitrary functions f(x)

and wix) {Von Karman, 1932)i{Tsien, 1938):

1{x) R(x) R (x; L Qﬁi&l_ (2.2.12a
27 dx
and
s(x) - 2R(x) R (x) R 48(x) (2.2.12b)
m dx
where JSiv) 7 Rz(x) 1S the cross—-sectional rea of the body
at x.
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Denoting the axial, radial and azimuthazl perturbation
velocity components by u,v and w in this first-order solution,

we obtain

U =9, taop, COS 6, (2.2.13a)
V=09, t 2 0,.C08 6, (2.2.13b)
= 2 in g

w == % o9, sin g (2.2.13c)

where o ,04 and their derivatives are given by equations
(2.2.8) and (2.2.9)withf(t) andg(t) fromEgs. (2.2.12).

We now replace the straight downstream cha-acteristics
x-Br by y(x,r) as in ¥hitham's theory (1852). With this modi-

fication u, v and w become

! y ’
u=-J £ () 44 4 2 COSO j‘(y—t-rBr)g (t) 4+ (2.2.14a)
o Y(y,t,pr) pr , Y(y,t,pr)
y ’ y 2
v o1 f (y=t+Br)f (t) 44 _ acoge f (y-t +81)7g (t) at,
r  Y(y,t,pr) pr- o, Y@,t '} (2.2.14b)
y( )g(t)
i -t t
w=-23100 [Lot+BrIETE) 4, (2.2.14.¢)
BT o Y(y,t,8r)
where
, 1/2 -
Y(y,t,8r) =1{ (y-t) (y-t + 287)} (2.2.15¢)

y is now determined from the condition that y(x,r) = constant

is a characteristic cuvrve, that is, along it
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== =cot(u + &), (2.2.16)

where |, is the local Mach angle and 5 is the local flow
d;rection. The value of y on a characteristic has not been
defined uniquely, although on the body it must be approxi-
mrtely equal to x - pr (which it replaces in linearized theory).
It is now made quite definite by taking it equal to the vale
of x-pBr at the point where the characteristic produced meets
the body axis.

On expressing cot(u+5) in terms of u,v and w by means

2
of Bernoulli‘s equation and neglecting terms O(u‘-fvz-sz),

the integration of eq. (2.2.16) with respect to r yields

X =8r - c(y,r) +y (2.2.17) %
where %
4 3 %
28 o (y-%) 3
y
2 [ (3@ - G-0)Y7 M@+ G P g
+ M in 172 172
o N(r) + (y-t) N(R) - (y-t)
4 y \
(1+;)M q oS 8 j N(r) - Ill/(lzi) g(t) dt
28 o -t)
; 4_ g 2.2 y ( 1/2 1/2 :
v+1)M™ - 2M°8 4 COS 8 ]w N(r) - (y-'c)1 - N(R) + (y~t) g{t)dt |
2? SN s -0 N - -0
32 Y , #2a cos 8 4 ' :
+ 2 gqcos 9 [ NG (y-t)gl)at -EZE22 9 [ n(ry ¢y-1)g'(t) at :
Br o BR f
o j
2.8° %
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y i
: (w12
o N(R) - (y~t) ‘
J
y Ry V2
- 22 3cos o [ 4n {——L} glt) at, (2.2.18)
o T
where
N(r) = N(y,t,2Br) = (y—t+23r)1/2 {(2.2.19a)
_ . on: . oro11/2
NR) = My,%,28R(y)} = {y~-t+28R(3)} (2.2.19b)
and R = R(y).
Writing
c(@y,r) = k Fly,r,Rly) ,M,q,3} r/2 (2.2.20)
witere
x = 22 441) w32 (2.2.21)

and changing the wvarisble of integration by substituting

-2 g, 2

thre F-~function may ‘be written :as ‘(see Appendix 2.2.1)

Hy,r,R(y),M,a.6 = I;(x) - 1A R} ]
> a/?a?[ Tt R

a8 () - 1{ Ry}
('y-f-l)uz'vzer 2 2 ]

2qc0S9 .= = J. 1 20c0osf = . =
23805Y rI. (r) -1 ARG ] + === [1 (r)--I{R(y)}
'V2ﬁr [t 1 ] VZBr 2 2 ]

2.8
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+ 4aB8 cos ¢ ig(r) _ __4aB cos @

— = T{riy)} |
(y+1)M2r‘,23r (7+1)M2R(y)'V26r 3 (2.2.23) )
where
y1/2
Il(r) = f‘(€2+-25r)1/2 f?y-&z) dg, (2.2.24a)
(o]
y1/2
1,0 = [ (€2 +28m)7 Y20 (5-¢2) e, (2.2.24D) :
o]
y1/2 '
31(r) = f'(&2+—25r)1/2 g?y-gz) dg, (2.2.24c¢)
o
y1/2
1, = [ €®r2en) Y2 gy-¢?) ae, (2.2.24d)
y1/2
33(r) = j~g3(£2+-25r)1/2 g?y-iz) dt. (2.2.24e)
(o]

and 11\3),1,,(R),’il(m,iz(m and I,(R) are obtained from Egs.

PRy

(2.2.24) by replacing r by R(y).

Then the characteristics obtained by the iwproved linearized

theory are ygiven by

x =58r - & Pl y,r, R0, Ma,8r7% +y (2.2.25)

where k is given by eq. (2.2.21).
If we now assume axisymmetric flow, that is, o =0 the

F-function becomes independent of the azimuthal angie 6,

and we obtain

ol A0 ol g
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Fg{y,r,R(y),M} = [1,(r)-1,(R)] - [I5{r) - T,(R)]
2pr (v+1)M% 2 )
(2.2.26) 1
where the expressions for I1 and 12 are given by (2.2.24a) and ]
(2.2.24b). ' :
F~function which depends only on y: .
V7 1

If we assume Ar/y > 1, we obtain Whitham's simplified
R 2
F() = 2 f £ (y-£%)ag (2.2.27)

o
Making use of the substitution (22), we can write this in the
form given by Whitham (Whitham, 1952):°

F(y) = J i A1 2.2.28)
1/2 (2.2.
y- /
F-Function

The F-function is given by Eq. (2.2.23) in which the I-
integials of Eqs.(zl.z. 24) can be rewritten after substitution

of the values of f(x) and g(x) from Egs. (2.2.12)

J1/2
L@ = = [ ¢2vr2en)l/? s"(y-£2) at, (2.2.292)
L 2 o
J1/2 ) |
@ = = [ ¢+ -¢2) at, (2.2.29b) :
ZTTO ;:
F ,1/2 f
- 8 [ (t® 2801/ 38" (5-¢%) a€ =28 1;(x),  (2.2.29) ]
V -
_ ,1/2
| I, = f g'(g2+-25r)‘1/zs'(y-g2y ag = 28 I,(r), (2.2.29d)
2.84
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yl/z :
is(r) =B j'g3(§2+-2%r)1/2 S”(y—&z) d¢ 1
T

{
(o]

where primes indicate differentiation with respect to the

argument (y-&z).

The II(R), Iz(R) etc. are obtained from above by replacing
r by R(y).

If f(x) and g(x), which are proportional to S'(x), are given
as polynomials we proceed with the integration as given helow.
If, hcwever, the value of S'(x), which is assumed to r~ con-

tinuous, is known for at least (n+l) values of x, say

X, oXys  evs Xps the simplest and most often used process

consists in s2lecting an agpreximate function yn(x) whicl

takes on the same values as does S'(x) for each of those

(n+1) values of x. Here again the choice of polynomials,

called the collocation polynomials, is convenient. Forx,

whereas in the general case there may be no function, or

there may be several, the existence and uniqueness theorem

states that there is one and only one polynomical of degree

n or less which takes on the praescribed values at each of the

(n+1) points. The basic interpclation formula was given by

Lagrange which expresses the approximate polynomial in terms

3 of only the ordinates given. It is, however, often con-

venient to use Newton:s interpolation polynomial with
divided differcnces or Aitkenrs iterated interpolation

polynomials. These latter formulas are especially suitable

e St oA AL oG st

for the detection and rropagation of error at each stage.
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For details reference (Hildebrand,1956) may be consulted. When
the values as well as the derivatives upto a certain order of
a function are given at specified arguments, we can usé
Hermite's interpolation polynomials (also called osculating
pOlynomials) to approximate the given meridian curve.

We, therefore, write

N
s’(y-gz) = 8'{ (y+2pr) - (§2+2ﬁr)} = Z A (y,pr) (g2+23r)n
. n=o0
(2.2.30)
Substituting this or its derivative in the expressions (2.2.29)
it is readily seen that all the integrals of Il(r), Iz(r),
Tl(r) and iz(r) reduce to the following form:
1/2
4 /2 2
Tp/z(r) = [« +2ar)"/ d¢, p=-1,0,1,2, ...,N (2.2.31)
o .

The reccurence formula for the Tp/2 - integrals is eaéily

established as

T o (r) = v2 @ + 281 P72 + 28T q (2.2.32)
p/2 p+1 p+1 B%Z
and since
1/2
y 1/2 1/2
2 -1/2,, _ y + (y + 28r) (2.2.32)
T_y /o) = [ (87 +28r)7 7 "ag = tn 2nr) /2
o Br)

all the integrals of I,(r), I,(x), Tl(r) and 1,(r) can be
written in closed form.

The integrals of 33(r) will be of the form
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[ 322+ 28072 G¢ (2.2.34)

which is readily integrable as it can be reduced to a standard

fornm.
) i?..:. 3 i §+ 2
Q5 - (p+2)y = 4AT (o | 9apy2 " T, 2028007 (2.2.35)
P (p+2) (p+4) (p+2) (pi-4)

The ¥-function of Eq. (2.2.23) can, therefore be determined in
all cases where the hody is swooth, in closed form.

The F-curve gives immediately a rough description of
the flow pattern since it shcws whether the characteristics
are converging in compression (JF/dy S 0) then- a shock will
appear or diverging in expansion (3¥/dy < 0).. The method of
area balancing given by Whitham (1952) can be used to build up

the details of the flow pattern.

The Pressure Signature

From Bernoulli's equation, which is approximately true
since the small entropy changes at a shock contribute a
term of smaller order,

X

A i 2 “i-l
8B _ ey 4 a2 - 9} - 1 (2.2.36)
p, ) 2 v?

where Ap is the pressure in excess of the undisturbed pressure.

Now
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1/4 -3/4 o 1/2
AR _ (28) 71/1/'2 fF(y) dy (1-2 48 cos )
P, (1++~) o (2.2.39) .

where Yo is the first zero of F(y), the Whitham function for
far~-field points. In between tﬁe shocks equation (2.2.38) holds.

The two integrals of Eq. (2.2.38) may be evaluated in closed ferm

using the T-integrals of Eqs. (2.2.32) and (2.2.33). ' . §

Examples

In order to compare the near-field F-curve with the far-
field Whitham function, we have calculated these functions and
the pressure signatures for two examples of body of revolution.

(a) The shape of the first body is given by

L]

R(x) = 0.1 (x-x2), 0 ¢ x ¢ 1 (2.2.40)

0 s X>1

The Whitham F-function is easily calculated amalytically and

is given by

F(y) = 0.02 [(1-6y+6y2) yy2+2(1-2y)y3/2+ 1.2 Y5/2]

(2.2.41)
The F-function, as given by Eq. (2.2.23) has been expressed in
F terms of the Il’ 12 and 13 integrals which are in turn ex-
pressible by means of the T and Q integrals of Egs. (2.2.32)
' and (2.2.34). TFor this example, if we put
\ a =y +2r and a, =7y + 28R(y) (2.2.42)

2.88




ACOoS 6)2 1

9
Q. . (1 +~ - 2 ;
? = (1 ¢ ox T @My COS + (yco0s 0+mor+q‘ir

+ (a sing =+ L ®; @ Sin (9)2 p
r .

U

1+ 2(q;ox+q 915 COSO + ag,,. cOS @) + higher order terms

and

2
q -
1 - ;-2—-’-"-— 2 [“’ox AC cos 6+ o ¢, cosf]

neglecting higher order terms.
Hence, within the order of accuracy employed in the

first-order theory equation (2.2.36) may be approximated by

A 2
_pR =~ M [0, + (ogy * Pop) & COS6] (2.2.37)
[0

Substituting the values of the derivatives of ¢ o and 94 from
Eq{Z.2.9) and making use of (2.2.12) and (2.2.22),Eq. (2.2 37) may be

rewritten as

A s o e

J1/2 172

F n
ap 1&12 i s"éy-ﬁz) 5 dt - 3a cos 9 (Ezgﬁr)s {Y;Ez) at
P, 7 L, (¢ -4-2f3r)1/ Br o (E7+2pT) /2

(2.2.38)

Since the points of a Iront shock are "effectively at large

distances", Whitham's approximate treatment (1952) is valid on
the shock and we reproduce his result with minor alteration

* for thke inclined body. Hence for the Iront shock, when r is

large

.
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For the near {ield, if we put
A =1-a , A, =1-a (2.2.47)

£,

where a_ and ap are given by eq. (2.2.42) the anzliytical expression
for the integrals required for the calcvlaticn of the

F-curve are as follows.
3 3 2
I)(x) = 0.01 [A (1543 = 6)T, o (r) + (60AZ = 6)T; o (<) + DOAT, /o (x)
+ 60ArT7/2(r) + 15T9/2(r)}, (2.2.47a)

53y

2 3 = —10a2
I,{r) = 0.01 [3A].(1 Ar)T_l/z(r)-+3Ar(2-uar,T1/2(r)-+3(1 10Ar)T3/2(r)
- 30 A% (r) - 15A_T, ,, () - 37,0 ()]
r /2 Setrs2\t/ T Ygs2
(2.2.47b)
1.(r) = 0.01 [A_(1545-3)Q, ,.(z) + (60A5-6) () + 9042Q, . (r)
3{r) = 0.01 [A,{154,-5)Q, , r 893 9 r35/2

+ GOArQ7/2(r)+-15Q9/2(r)] (2.2.47c)

Aghin the values of I,{R(N}, I{R(} and I{R()} are ob-
tained from (2.2.47) bty replacing r by R(y).
The pressure signature in between the shocks can be

expressed in terms of the known integrals given above

yielding
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Il(r)

2 Y
(2.2.43a)

_ Caa2 . ..3 - (1- 2
Ip(r) = 0.01 [(a -3a +2a )T ) p(r)~ (162 +62)T o (r)

- (3-—6ar)T3/2(r) -2 Ts/z(r)],
(2.2.43b)

I3(r) = 0.01 [(1-6a_+6a2)Q ,p(x) +6(1-a)Qy o (r) +6Qg o (r)]

(2.2.43¢)
The I,{R(}, L{R(} and 1{R(»)} are obtained from (2.2.43)
by replacing r by R(y).

The pressure signature in between the shocks is given by

B2 _ 0,02 yM2[{1+ (3B) x cos oH (1—6ar+6a§) T_; o®
Po . |

+ (6-12a )T, /5 (x) +6T4,, (0} -~ L acoso 1,()] (2.2.44)

For the front shock the jump in pressure can be calculated
from eq. (2.2.39).
(b) The shape of the second body considered is given

by

!

R(x) = 0.1 [1 - (1-x)%], 0 ¢ x ¢ 1

(2.2.45)
=0.1 R x5 1

The Whitham F-function for the far-field points is given by

F@y) = [0.3(1-y)%-0.12(1-y)]yY/2 + [0.4Q-y)3- 0.04] ¥/ %

+0.171(1—y)y7/2+:%5~ y/2 (2.2.46)

+ 0.36(1-y)2y5/2
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The pressure signature in between the shocks is given by i 1

i\f = 0.02yM° [{1+ (38) acos e}? (15a% - 50a2 + 90a2 - 54a_ + D)T_; ,» (x)
- (5025 - 18027 + 180a,, + 54) T, /o (@)
+ (9022 - 180a_ +90)T, ,, (r) +60(1-a )Ty /o ()} ]
- % acosg I;(r)] 7 (2.2.48)
Conclusions

The worked examples, given in the paper, show a signi-
ficant difference between F-function in near aad far field
points. It is quite clear from the plots that for 6 = 180°
at a certair angle_of attack, the peak.pressures for near
fields are higher than those at zero angle of attack. From
the plot of F-function and also from the pressure plots, it
is seen that the expansion is stronger than the case of zero
angle of attack. This is even otherwise obvious from the
physical point bf view. For 8 = 0°, the reverse is true,

i.e., the pressure peaks become smaller and expansion becomes

.g-?
.
ww

“ﬂ’%“g‘!

v 1ker with angle of attack. Thus we observe that with an

)

oy
o
&

4

angle of attack we have a shock-expansion system, in which

the strength varies as the aZimuthal angle is varied around

the body of revolution.
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figure 2.2.4:

//-Far-field theory

Pressure signature for the body R(y) = 0.1 y(1-y)
with and without angle of attack (»r - 0.125 for
all cases).
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s Far-field theory (o = 4°,6 = 7,M = 3)
+ ,///r: Far-field theory (g 0°,M 3)
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Figure 2.2.6: Pressure signature for the body
R(y) = 9.1[1-(1-y)3] with and without. angle of
attack (r = 0.125 for all cases).
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2.2.2 DETERMINATION OF A BODY OF REVOLUTJON FOR A SPECIFIED
PRESSURE SIGNATURE AT ANY FIELD

wr e
ko

Summary b

[
i o

Design ¢f bodies of revolution to produce specified sonic-

boom signatures at a given Mach number and lateral spacing from

the body uses the far-field theory of Whitham and a procedure

has been put forward by Barger (1968) for calculating the

shape of the bodies of revolution. Since the abceve theory does
not strictly apply to near-field region, the present work gives

a mathematical prccedure for determining the bodies of revolutian

for specified si~natures at any field. However, it snould be

pointed out here that the near- and far~field theoreis merge at

a certain spacing from the body and beyond this field the far-

field theory due to Barger could be used for itsmathematical

simplification.
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Introduction

. 4
The Whitham Theory (Whitham, 1952) has been shown t -re-, =

dict accurately far-field signatures produced by a body of -

Ty )

w
oy B W g ool RN § i

revolution. This theory, however, is not very accurate in the

3

near and mid-field points and Sec. 2.2.1 points out the limitq%ions

and applicability of Whitham's far-field theory. The far-field

theory applicable to the inverse problem for determining the : :

shape of a body of revolution that will pébduce a specified

P s nes

preésure signature at a given Mach number and certain field i
away from the bedy, has been given b} Barger {(1968). This theory §

does not strictly apply toc near~ and nid-field points. The j : i

VAR A e oty

b

present work employs near- and mid-field theory in order to

s 1

deternine a body of revolution for a specified.physically |
o?tginable pressure signaturg at thé>near;field region. Although é
va?iations in the shape of a generating body do not normailyg ; i
prevent its signature from developing into the well-known N-shaped :
wave at larce distances, there are some signatures that do nét .
attain the classical N-wave form in the far-field. One such

example is given in the reference (Barger, 1968) where the specified

near-field pressure signature has a form with its positive and

negative parts separated by a section of zerc overpressure. ;

Moreover, even if the signature does approack an N-wave, it may

develop so gradually that it does not attain its final asymptotic

A
(N

form within the distance corresponding to objectionable overpressures
{Mclean, 1965), or even if N-wave i5 rormed at the given di§?ance

the overpressures are of less magnitude than annoying levels.

2.96
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Thereis a need for analytical methods that are capabie of

”
A e

accurately predicting the near flow field pressures about

arbitrary aircraft configurations for design optimizations in

T R
e

QAW T s

connection with sonic hoom as well as the performance of the

- vehicle (Hunton, 1968). Near-field pressure signatures are also

Ly

P

of interest in connection with certain sonic-boom studies such

.
w_~

as wind-tunnel investigations and signature measurements using a

probe aircraft. Available theories are either too cumbersome
mathematically for ease of handling on the computer (e.g.,

method of characteristics) or are limited in range of appli-

cation (e.g., Whitham, 1952) because of some mathematical simpli~

fication such as the linear theory concept. As a result, problems

of analysis do occur in the flow regions very near the aircraft

E
g
=

[reT—— P

A

in connection with the design and arvangement of configuration E

components. Various wing-hody combinations have to be examined

to come up with various desired configurations. Whitham's theory

is easily applied to the bodies of revolution but can not be

A

applied to wings to determine the flow fields at the near-field
points. For these fields a wing can not be replaced by an equi-
valent body of revolution and thus new prediction techniques

r wherein a wing is represented by some sort of spatial distribution

. of singularities over the entire wing surface, have to be developed. -
This phase of the sonic boom research is now under progress.

Thus the present work is a preliminary study towards the overall

optimization of the aircraft in connection with sonic boom.

S

The purpose of the present paper is to describe 2 procedure
for designing bodies of revolution corresponding to specifie%

préssure signatures at any field. e
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Formulation of the Problem

Let the steady stream have velocity- U in the x-~-direction,
and at d general point-(x,r) let the velocity be (U+ Uu,Uv).
Assuming the flow fto be irrotationa®¥ the perturbation velocitées
u ‘and v may be deduced from a potential & which, on the linear-

ized axisymmetric theory satisfies the equation

l - —— z - e ™
Iz + - g = By =0 ' (2.2.49)
. 2 HZ PN . - e
where 8 = (M" - 1) and suffixes denote partial differentiation.

The solution.of Eq: (2.2.49) which represents. a disturbance

propagated downstream from a body is

X-3r
) ___f(t) dt.
g==/ - : —— A (2.2.50)
o x-t)% - ﬁzrz}’l‘/ < :
giving
. X-gr .
) [ _f (t) dt )
== ) 3 S TR WL R . (2.2.51)
{ (-t)2 - fgzrz 1/2 ,
X-Ar ,
1 (x-t) £ (t) dt .
V= T2 2.2 172 (2.2.52)
r o, t{x=t)" - ry

The downstréam dpproximate characteristics of the equation ave
X - Br =constant. We now replace x- gr by y(x,r), a better °
approximation to the exact characteristic. Carrying out the

modification, u and v become

Ly
o B RN s

e &

Vr s 1

it
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B

£ (t) at ,
a4 = - , (2.2.53)
({{(y-t)(y-t +2ﬁr)]T/ ‘ :

0 0 0

f i 4 . A
A P, G W B D R I
wr Y

y
v =l [G-tipre’ (¢) dt

r , [(y-t) (-t +2pr)]

173 (2.2.54)

TOTII as »

y is now determined from the condition that y(x,r) = constant

is a characteristic curye, that is, along it dx/dr = cot (u+9),

0 A

where ;. ~is the local Mach angle and ¢ is the local direction of

flow. Froceeding as detailed in Whitham's paper (Whitham, 1952)

and assuming Ppr/y >> 1, u,v and the equaticn of the characteristic

are given by

[~ w=- 29 2 v o, (2.2.55) - g
(2) :
g . i oz 5
: X=pr-x F(y) 2 + vy, (2.2.56) 2
i B
g | where £
#
s .5 z
; v, :

Foy) = f1L80.4L (2.2.57)

A o W-t)

F : and

- 4

Fg i k = ‘2'1”2(?4-1);&43'3/2 (2.2.58)
: From Bernoulli's equation, which is approximately true since

-

F
z 2.99




the small entropy changes at a shock contribute & iterm of smaller ﬁ

order, we have by neglecting terms O(uzi-vg), 2 g
A 8 Pt
AP _ -y v (2.2.59) :

Py d

where AP=p- P, is the pressure in excess of the undisturbed -

pressure p.

% . Then the prcblem is to solve the singular integral equation

Fd

(2.2.53) when u(y) is given by (2.2.59).

To Fipd a Body. ci Revelutioa fcr a Given Near- or Mid=Field Eressure

S1gnature‘ o T -

o - * . H £

Sslution Qf the Iategral Equtlon

A A A o

Method 1 = Analytical—- ﬂumerzcal Method:

—

The integrzl equation now to be solved is

y

) . {t) dt -
~uiyi = j~ {(2.2.60)
) o -t : + 2pr) 1/ 2 (y-1) 7 2

where u(y) is known. from Eq. (2.2.59) and f’(y) is the unknown function.

Putting v(t) =-1' (t) for conveniencz, Eq. (2.2.60) may be

rewritten as :

: y .
uy) = [ K@y,t) vet) at, (2.2.61)
O i - ] ~

z
-

in which the kernel has the form




L

T m“ "
) Vo \
i

Sy

K(y,t) = =208, (2.2.62)

(y-t1)

where

G(y,t) = (y-t+2pr) /2 (2.2.63)

is continuous in T(0 ¢ t ¢ y ¢ b(say)).
Precisely as in the case of Abel's equation, of which Eq.
(2.2.61) is an immediate generalization, we see that Eq. (2.2.61)

cannot have a countinuous solution uniess u(y) is continuous in

I(0 ¢y ¢ b) and u(0) =0. We will assume that these conditions

are satisfied by u(y).

Multiply Eq.(2.2.61) by (z-y)/2, where
0«2z <¢hb,

and integrate the resulting equation with respect to y from O

f
gl

to =, obtaining

2z Z y
fumy dy _ [__1 J ,G(Yu.}.tr v(t) dtuy- (2.2.64)
L enY? T en? ] g-0/? -

The right-hand side of this formula reduces by Dirichlet’s

. extended formula (Tricomi, {357 ) to
z z
| Jray [—FFE o ayat.
° ¢ EVT UG-t

If we then write

2.101
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z
F{z) = f——l‘—gﬁ-—— dy, (2.2.65a)
TR
z :
Lex,t) = [ (z-yﬁggit)lfz dy  (@>t) (2.2.65b)
t

equation (2.2.64) takes the form

z
F(z) = [ L(z,t) v(t) at (2.2.66)
" .

' o
W 1 O o ot e ot ] gl At o R 0 % s |

N S w0 o gy

We will now show: that the kermel 1, of this equation is con-
E tinuous in T, except possibly on the Iine: 2=t where it is w
not yet defined. For this purpose: introduce £ as the variable
of integration in place: of t by means of the formula
- . [
£ = =e, (2.2.67) i
z-t i
We thus. get when =z > t
1 ) i
S L@ty = fELEL) B EL (2:2.68) 1
S, @-e) T

Since. this integral remains convergent when we. ¥eplace G by the

upper- limit of its. absolute value, :_:Lt follows that it is uni-

formly convergent in T; and. since: G _is continuous, L is also

gy
e

continuous. wherever- it is defined:
In order next to see whetheér L approaches: a. limit- as the
point: (z,t) approaches a peoint (c,c) on the-hypotenuse of T,

we apply the mean value. theorem: for integrals. to the original

3
.
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definition of L given in Eq.(2.2.65b), getting

=
L(z,t) = G(x,t) [ dy = —T  G(s,t), (t¢sez).
L @Y2e-0)% " sinayz
(2.2.69)
Consequently
lim L(z,t) = 7 G(e,c) = -—-1—1—/3 (2.2.70)
Z>C (2pr)
t>c

from equation (2.2.63).
¥We see then that:L is continuous throughtout T, and that
if we have G(y,y)#0 at any point of I, it follows that

L(y,y)#0 in I.
In order that the equation (2.2.63) be a Volterra integral

equation of the first kind with finite kernel, G should be such

that L(z,t) have a partial derivative with respect to z finite

in D[iii%i} and whose discontinuities, if any, are regularly
—
distirbuted.
1et
G @ t) =8 o -1 @t +2pr)3/2 (2.2.71)

which is obviously continuous in T. If we now differentiate
Eq. (2.2.68) with respect to z under the integral sign, we get

1, w2
S {—%} G [ z-t) E+t,t] dt. 2.2.72)
1_

o

o

0 s

i

e
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AP iy gl

Since this integral is obviously uniformly convergent, we see,
by the ordinary test for differentiating an infinite integral

under the sign of integration, that

1/2

L ¢ :
L, (,t) = — = ¢ ) G,[ (z-t) E+t,t] d€,
. - il e 1l 14d¢
or
1 1/2

LGt =~ [ E —d
2, 1-¢ { z-t) e+2pr}
which is wvalid throughout T.

It can now»be §hcwg that the qontinuoué solution of Eq.
(2.2.66) sétisfies Eq.(ziz,ﬁl) and that it is unique (Bochey
1909). ' |

We shall now reduce egaa?iog (2.2.61} to Volterra's. integral
equation of the seeanéikind wﬁich is more readily solved by
Picard's method cr nunerlcailya %

Bzfierentzatzng Eq. (2.2.66) with respect to =z, we have

z

F (2) = L(z,2) ¥(@) + [ L;(z,t) ¥@t) at (2.2.74)
[ 4]
But by Egq. (2.2.70)
L(2,2) = —2——5 # 0 (2.2.75a)
(2ﬁr}1/2
1t can be easily shsﬁn that (Hadamard, 1928) 3

2.1¢4
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y y y a
F(t) F(t) - F(y) dt

FEE o ap = fE® XY g4 4 riy) f—-—-——j

o (y-1)%/2 ° y-ty%/2 o v-t)%/ '

A e 1 N> 0 "
A m

Usirng the above formula we get,

Z z
3 uly) 1 fu(y) d :
F(z) =2 -2 gy = - = § 2208 :
oz @-y)/? 2 @-y)/?
A
__1 j‘u( ) —u(z) d u{z) P
=31 fuy)-uz) .. . : (2.2.75b)
2. (z-y) 3/ 2 S 172
Hence Eq. (2.2.74) becomes.
Z
F(z) =—2—— viz) + J L, (2,t) ¥(t) dt (2.2.76)
(2pr) /2 " 1

where F (z). the known function is given by Eq.(2.2.75b) and
the kernel Ll(s,t) by Eq.(2.2.73)

The Kernel thctiﬂn*Ll{zjt}

1l

1/2
L (z,t) =-% [ £ _df , (2.2.77)
! Q-0 (o-t) gr2pr} 32 |

R Bt sesss o

b

Substituting £ = siaze and simplifying, we have for 2>t (see

Appendix 2.2.2)

$

S L (z,t) = —2B ____ E(x) - 1 K(x)
1 (z-t) (z~t + 28r) /2 (z-t) (z-t + 2pr) /2

P (2.2.78)

where




k= (—ZFE) (2.2.72;
z-t+2fr

and K(x) and E(x) are conmplete eliiptic:integral of the first .

<nd the second kind.

It remains to find the value of Ig(z,ti for z=t. °‘Fe have

from Eq.(2.2.73)

1
: 1 1 . “ ¢ /2 ar i
@0, =-= e S EF P o e — T
-3 z=t = 2 @725 1-¢ 4(2pry>/2
(2.2.80)
‘Method 2 - Direct Numerical Method of Solution K

(Collocation ‘Method)

It is, however, possSible to solve the integrail -‘equation iby
agpiiication of the collocation :method without reduction to the
s=zcond kind.

The in:sgral -equadtion 1o ke solved is

fwat ' |
_ 75 = y) (2.2.81)
° iy~t+25r)1/2(y+t}1/2

where u(y) is assumed :to ‘be -a ikinown -continuous Ffunction in

I{0 ¢y ¢ b(say)) and u(o) = 0.

In the genersl case we can -assume that i'(t) can be ex-

pressed in the form

.-s ,-2
£ () = 5_ 2;2 (2.2.82)
n=o

(]
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which includes polynomials as special cases. We proceed to <3
determine the unknown coefficients, ay by introducing expression

Eg.(2.2.82) irto Eg.(2.2.53), giving

N y t’% o

S oa_ L = = ~ u(y). (2.2.83)
) 172 3

Lo o etizen 2 -0y

The following two types of integral: occur in Eq. (2.2.83)
according as n=2m, an even positive intege:' or a=2m+l, an

odd positive integer,

i 1o o 1

y m.
t dt (2.2.84a)

o -tezpr) V2 -0 1/
2m+1

t 2 at ) (2.2.84b)
(y-t+2pr) /2 (y-1 ;172

1

I,

e

LT

I,(y)
(¢4

In Appendix 2.2.3, it is shown that

AR AR ottt sy o1

I

N . - m -1 i r .m =T, - .
LG = 2T, - (D YT L+ SDTE) YT, DT
£ (2.2.85)
%- where
1/2 172
1. T, = 4n (L—-l—j—z-—), (2.2.86a)
) (283)
" and the recurrence formula for the evaluation of Ta is
!; Z2m-1
1/2, 2 4 7
7= LY L) g (2.2.86b)
} , 2m 2m
|
2.197
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|
with o
Y=y + 2pBr (2.2.86¢) E'
:
gyl § H
I,(y) = —X—0 A (2.2.87) . % 1
2 (izpmy /2 2mi %
where N
2m (1+k2) A, - (2m~1)A,
T . 1 2m 2m=
Aomi2 = ) (2.2.88a)
(2m+1) Ky
with
1 i
1 14
H
A, =L read) k) - 2042 Ek) (2.2.88c) ’
g =57 L3 Rl 1) Bley)] -2.88c
l
‘ in which the modulus kl is given by ;
4
K2 - —X 0 ck2 1 ’
1° : <% < (2.2.884)
y+28r

and H(kl) and E(kl) are complete elliptic integrals of the first

and .second kind.

2

The integral equation (2.2.53), thén reduces to

: N s Do
E }_ a, ,}Qn(y) = - u(y) (2.2.89) T
) n=o
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where Jgn(y) arc khnown for all values of y in I. Chosing N

suitable values of y, (yl,yz, ceey yN) for which u(y’ is known,

we have the system of equations to determine as

a}ﬁl(yl) s agﬂz(yl) R aNAN{yl) = - u(yy),

aqul(yz) 3 azufiz(yz) + ..+ aNoé;(yz) = - u(yz),

31"41(%} + azﬂz(yN) + .. 4 aNi/é;(yN) = = u(yN),
which can be written in matrix notation as

(A1{a} =-{u}
or

-1

{a} ==~ L4177 {u} (2.2.90)

where

I

{usr(ys)]: is a (NxV) square matrix of known elements

~

{u}

is a (Nx1) column matrix of known elements

fulyg)}

{a}! = {ar} . is a (Nx1l) column matrix of the unknown
coefficients.

Hence f' (y) is approximately determined, from which the
geometry of the equivalent body of revolution may be found.
The use of the above method has been illustrated in the

"Numerical Application'" later in the section.

2.1¢9
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Numerical Application ; 51

e

w

i
&

In order to illustrate the methods of solution for obtain-

P R

RO A: 1

ing the shape of a body of revolution that will generate a

v

specified signature at a given Mach number and lateral Spécing

W g

from the body the following example is chosen. i

A A

Two of the specified pressure sigpatures as given by Barger

(1968) have been selected - one with a finite rise and the

other with a plateau with its peak same as that for the finite

rise. The sole reason for selecting these pressure signatures
at M = 1.2 and r/4 = 4.2 is that with these conditions, the
specified and experimentally measured pressure signatures agree

very well with some roundaing off of the corners.

These signatures have a stretch of 15.3 cms starting from
zero strengih at x- pfr=0 and comgng back to zero strength at
X-Br=15.3 cms. The peaks of the signatures are obtaxined by
joining straight lines rather than rounding them at the peaks
(Barger, 1968). This is done only for mathematical conve%ience.
The desired finite rise pressure signature at r/4 = 4.2 and M=1.2

is given by,

Ap 0.0096 x

sy 0 g x < 4 cms.
P 4

L

= 0.0096 - 20192 (. 4y 4 . x ¢ 11.5 cms.
7.5

0.0096
3.8

= - 0.0096 + (x-11.5), 11.5¢x¢15.3 cms.




and the desircd plateau pressure signature at r/4 = 4.2, ¥ = 1.2

is given by,

ép___Q_ﬁQﬂ@_x y Ogxg¢ 0.5 cms

b, 0.5
= 0.009%6 , 0.5 ¢ x ¢ 4 cms
= 0.0096 - 20492 (o 4y, 4 < x ¢ 11.5 cms
7.5 :
- - 0.0096 + 2-0096 (x~11.5), 11.5 ¢ x ¢ 15.3 cms
3.8
These two signatures are plotted in Fig. 2.2.7. Since at these

conditions the far-field theory given by Barger (1968) is adequate
for determining the shape of the body of revolution, it is of
no use to modify this far-field theory at this field r/f = 4.2
with M = 1.2 or any field away from r/f. = 4.2. The body obtained
by‘use of the far-field theory does not give any significant
difference between the specified pressure signature and pressure
signature obtained by use of the near-field theory (Sec. 2.2.1),
or in other words, the far-field and near-field merge at r/f = 4.2
for this body at the given conditions. 3o the near-field theory
is of use only for fields between r/4{ = 0 and r/t = 4.2 at
M = 1.2. The rumerical procedure adopted to illustrate this is
as follows:

Barger's procedure is used to determine the shape of the

body of revolution by the use of his far-field theory. This

O R M B NG AR st s 2 2

P




procedure involves the construction of F-function and then the

F-function integral is inverted to give the shape of the body

of revolution. Then the Whitham's far-field theory (Whitham,
1952) is used to compute the pressure signature of this body at
r/% = 0.5 and alsc the near-field theory (Sec. 2.2.1) is used
to compute the same at r/{ = 0.5. The two pressure signatures
are plotted in Figure 2.2.8. It is seen that there is signi-
ficant difference between the two signatures. This suggests
that the far-field theory is not accurate enough in these near-
field points. Of course, here the body is approx: iately 8-10%
thick and thus it is expected that thicker bodies (about 20%
thick) will give larger errors between the pressure signatures
obtained by the use of far-field and near-field theories.

Now the far-field pressure signature at r/¢{ = 0.5, M = 1.2
becomes the specified pressure signature in that field. We
can use "method of collocation" or "direct numerical method" to
determine the shape of the body of revolution. Since in the
near-field points the F-function and pressure signature have no
simple relationship as in the case of far--field points, the
integral equation (2.2.60) is solved assuming that the character-
istics are straight. The body obtained from this procedure i<
the first approximation and then the near-field theory (Sec. 2.2.1)
is used to calculate the pressure signature at the above field
r/L = 0.5at M=1.2. It is found that this signature and the
specified signature do not coincide, thus suggesting that the
characteristics are not straight at this field. Although the

peaks of the signatures are the same, there is a shift in their

2.112




positions. Thus manupulating the starting signature and iterating,
it is possible to get back the specified pressure signature at

r/£ = 0.5. After one or two careful iterations, it is possible

to determine the body of revolution for the types of specified
pressure signature described here.

. In the method of collocation f'(t) is assumed to be of the

form H

(M=

f'(t) = a_t

1=

=]
1l
foodt
Y 4 B ity L

The choice of N is important, as this detem ines the size of the

matrix [JQ]. When N is about 12, there is loss of accuracy in

INGA BN bk « i ma =

computation because of the type cof matrices occuring here. To

get around this difficulty and to use the r»method of collocation”

NS S

more powerfully, the series for f'(t) is assuvmed to be different
in different portions of the pressure signature and collocation
is done at fewer points in each portion. The coefficients of the
different series are found successively in the calculation
procedure. Since we are seeking solutions for smooth bodies,

the slopes of the area distribution are matched at the junction

points in the calculation of the coefficients of the series.

m.‘u-mwwwvimwmWlwwmﬁmwmﬂﬂmkimwhm| -

We know from slender body theory that

S ()
27

. £ @) =

Two integrations of the series for fit) with boundary

conditions S(o) = S’ (0) = 0 for bodies pointed at nose give the P

3
g
E
2
2
]
2
E
H
2
2
£
E
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area distribution and thus the distribution of the radius.

Conclusions

The designed bodies of revolution which produce the specified
pressure signature at Mach number M=1.2 and a spacing r/{ =0.5
away from the body axis have been plotted in Figure 2.2.9. It is
seen from the plots that the body (1) of revolution due to the
finite rise pressure signature is much sharper at the nose and
thinner than body (2) due to the plateau pressure signature. This
observation could otherwise have been made from the physical point
of view, but the present analysis gives the exact shapes cf the
bodies. Although in the present example problem the far-field and
near-field theories tend to merge at a field r/£=4.2 and M=1.2,
for thicker bodies these ¢wo theories will give the same pressure
signatures at distances more than r/t =4.2 It might be mentioned
that the effect of Mach number on both theories will nearly be the
same. In the present example, it has been checked by the author
that although the pressure signatures due to the two bodies de-

generate to N-waves at large distances, body (1) produces stronger
front shock than body (2).

Recommendation

Since the near-field signature shape is sensitive to slight
deviations in the shape of the generating body, an:extensive study

and suitable alterations of the near-field signature will make it
possible to reduce sonic boom at far-field points to a desired level.

It also may be pointed out here that the same theory is appli-
cable for a body of revolution at an angle of attack. Although

the contribution of the thickness of the body to the pressure
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Signature is much more significant compared to that due to a
small angle of attack, the work done in Secs. 2.2.1 and 2.2.2 : ‘
may be applied to determine a body of revolution at an angle

of attack for a desired pressure signature.
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APPENDIX 2.2.1

The Simplification of the Integral Occurring in Equation (2.2.18)

1/2

y
Lo [0 0= G072 8@ + -t

£(t) at (A.1)
e+ -0 xw - -2
where %
N(r) =K(y,t,28r) = (y-t+2pr)1/2, ;
\ (A.2)
_ 1/2 :
| NR) = My,t,28R(M} ={y-t+ 2R ()} :
The integral (A.1) may be written as i
L=L - Ly,+ Ly =L, , (A.3)
where 3
y 3
: L, = fn{ -t +280)Y2 - (v-0)¥2 tle) at, (a.4a) i
3 o i
y
Ly, = [l G-t + 280022 & -0)V?% £le) at, (a.4b)
(o)
y 3
| i = [t (y-t+28R} 24 5-0)1/2] £lo) at, @.1c)
3 [o]
_ y
L, = Janfly-t+28r Y2 4 3-0)Y3] £l0) at (A.44d)
o
e Integrating by parts we obtain from Egqs. (A.4)
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L, =1(y) 40 @280)Y 2~ 1(0) tnf (y+2pr)t A=y _ 1 EICN
2 , (y—t)" “(y-t+28r)
(A.5a)
L, = £(y) tn(281) /%= £(0) 40{ (y+2pr) 1/ 24y1/3} 41 1 C—
2 , G-t)7" " (y-t+2pr)
(A.5b)
1-3=f(Y)'ﬁn{ZBR(,V)}1/ ‘~ f(o)4n [{ Y‘*'zﬁR(Y)}* 2 1/2]
y
r L1 £(t) dt
v
2 ° (g-t) Y y-ts28R (1)} /2, (A.5¢)
L, = () en{ 28R (2= £ (0)am[{ y+2pR1n)} /2= y 1/
y
-1 1(t) dt , (A.5d)
2 0 (-0)H y-teapr ()} 2

Combining the expressions of (A.5) an:i cancelling terms

yields

L [{ (pe28r) 124 y¥ 21 (yr28R@ ) 2 oy 1/2}] £ (o)
{ (y+2pr)Y/2- h 172}1 (y+26R (v)) 1/ 245/ 2

fr_ y-t +28R(v) y-t + 28T

Assuming the body to be pointed

—————_ T T

1

fo) = 38 _ pio) Rlo)
s 27

i
o
~
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since R'(o) is finite and R(o) = 0.

We, therefore, obtain the form given in the text

y
L = f [ y-t+2BR(y} y-t + 2pr
[ o]

-

G-t3Y % y-ta28R ()} (y-t)d 2 (y-t+2pr)1 2

] f(t) dt

The other integrals of equation (2.2.18) in which the logarithmic

terms occur may similarly be treated.
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APPENDIX 2.2.2

The kernel function

1/2
Lzt =-1 f 152 dg 573 (B.1)
2 o =074 @-t)t+2pr}
Substituting €:=sin29 and simplifying, we have
/2
1 do
Li(z,t) = = ——% ____
1 (2ﬁr)3‘/2 0 (l-4~nzs:ln2(5v)l/2
_(28r)1/2 i
3 do
J 22 2 2 173 (B.2)
z-t o (1+n"sin®s) (1+n”3in’g)
where
‘EZE = n? >0 for z 5 t,
2Br

The two integrals of the second member of (B.2) can Le reduced
to standard forms in complete elliptic integrals of the first and

second kind by introducing a variabie X in place of g by means

of the relation

2 .2

2

sn?y = (1+g ) gln 2] , (B.3)
1+n"sin“s

which reduces them to the following forms

/2 Kx)
3 d¢ 75 = k' j‘dx =k K(k)
o

o (I+n sinze) +
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and
/2 K(Ké
de If !
= K andX = K E(IC)
o (l-i-nzsin:'ae)(1+n"zsin26)l/2 o
where
2 1/2 - 1/2
IC=(n2) =(Zt) ,0<IC<1,
1+n z-t+28r
and
1/72
¢ = - o (2B
z-14+2fr

is the compiementary modulus.
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APPENDIX 2.2.3
1. Evaluation of
y

t™ 4t
1,(4) = [
! o (y-t+2pr)1/2

1
(y-t) /2
Changing the variable of integration by means of the relation
E= (y-t)l/z, Il(y) reduces to
/
y1.,2

2.m
(y=£°y" a¢
&) =2 [ . (€.1)
! o (¢%+2pr) /2

Now since

3-£5) = {y - (tZ4epr) ™

=Y - D Y leeary .4 =) YT (¢%42pr)T

..... + ™ (e2i2pr)®
where
Y-_-y+2Br
and, furthermore, since
Y1/2 -1 1/2 225£ .
T = f (¢%42pr) 2 g XX 2 v @D o g |
m m—-1
2m 2m
')
4 with
E
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1/2
/2 | J1/2

Ty = J s 7z - o @ +’1[/2)
(E7+2pr) 2pr)

we have the result given in the text.

2. Evaluation of

2m+1
2
I(y) = j‘ T dt
2 L -t+2er) V% o) /2

We change the variable of integration t by substituting

t =Yy sinze, yielding

/2
gy"t1 sin2™2g g
Iy(y) = 172 5. 2..1/2 €.2)
(y+28r) 0 (l-klsin e)
where

2 2
ki = T_z—_ » 0 < ky < 1 for y # O.
y+2fr

Introducing the elliptic function sn ¥ to transform the variable

of integration by means of the relation
sn X = sing

the integrai on the right-hand side of (C.2) may be written as

/2 Kk,
. 2m+2 1
sin 6 4o 2m+1
A = =/ so®™x ax (C.3)
2m+2 . (l—k?sinzs)llz .

In reference (Byrd and Friedman, 1954) it is shown that
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T - -~ ""‘ﬁr—‘r D A —
. . - L o
2m(1+k2) A,_ - (2m-1)A
1 2m 2m-2
A2m+2 = 5 s =2,3,4, .....
; (2m+1) kj
and the first two integrals A2 and A4 are easily evaluated to :
give
K(k,) -
N ¥ 2 1 cvr
g9 = sn X dX = 1—{—2- [K(nl) - E(kl)]:
‘ (o] 1 ' '
K(k;)

second kXind.

The above formulas will enable us to evaluate I,(y) in P

closed form.
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2.3 SONIC BOOM REDUCTION BY FOCUSED LASER BEAM TECHNIQUES
by Mr. Ronald Kohl '

2.3.1 The Problem :

If a supersonic aircraft could be made sutficiently long
and properly shaped and designed, more favorable ground pressure

signatures could be obtained. In particular, if the aircraft's

equivalent body of revolution has certain shapes, the over-

pressure can be reduced or the shock waves in the signature

J I Lt s M

can be eliminated and replaced with finite rates of pressure

rise. The latter modification in a signature of given over-

pressure reduces the power in the signature which occurs in
the frequencies audible to the human ear (Hilton and Newman,
1966; 2epler and Harel, 1965; Kryter, 1965).

To obtain such pressure signatures, however, the aircraft

lengths required for an aircraft of 350,000 lbs, flying at Mach

LB A I b i s v

number 2.7, at an altitude of 65,000 feet, range from 500 ft

PR

up depending on the effective bodyshape desired (Mclean, Carlson,
f and Hunton, 1966). Stil! longer lengths are required for the

planned SST cruising weight of about 600,000 1b. Aircraft

structures of these lengths are considered too long for

. economical reasons. A means must be found to create airflows
similar to those that would occur about the longer aircraft,
but which keeps a structural aircraft length near the 300 ft.
length considered for the present SST. (See Figrvve 2.3.1).

To deflect the airflow without using structure, energy could be
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introduced into the airflow and here this energy must be intro-
duced at distances the order of 100 ft or more from the aircraft
structure. To do this, novel means must be used.

The idea was advanced to use present or future lasers to

acconplish this. The feasibility of the use of lasers depends
on, among other things, the power required to be introduced into
the airflow. Of particular interest is the power required in
the region out in front of the aircraft where the front of the
pressure signature would be affected and where the introduction

of burning fuels may not be feasible.
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2.3.2 The Method Used

In the presencc of one of these uneconomically long noses
of a de-ired shape, the flow streamtubes take certain forms.

The flow outside of a :streamtube, including the ground pressure

signature,

what means are used to produce the streamtube, if the streamtube

is produced, the desired ground pressure signature is obtained. ;
The idea here is to produce the streamtube desired by adding heat

to the fiow inside the streamtube rather than having a nose’ of

the desired shape located inside the streamtube. In this way there

is a "phantcm" nose present. To find the power requirements, we !

A o a e

is completely determined by the streamtube. No hatter

find the streamtube area developments and the pressures produced

on the surfaces of the streamtubes by the uneconomically long

nos2 of a

desired shape. The input power required to duplicate

the area development and surface pressures of a given streamtube

is then found by considering the streamtube as a one dimensional

channel and finding the heat addition required to duplicate the

surface pressures which exist in the actual flow. For a given

nose the calculation is done for several streamtubes of differing

initial arez to determine thz effect on the streamtube power re-

quirement

To obtain linear finite rates of ground signature pressure i

rise with
(Whitham,
S = axs/z
tip. The

signature

of the initial streamtube size.

a structural nose, application of Whitham's approach

1952) shows the well known axisymmetric area development

is required where x is the axial distance from the nose
constant a is related to the desired rate of ground !

pressure rise dP/dt by




16 \/ib;;
2 ; . 2 -1
ISM [YK X P U /(dP/dt) + (¥+1) M rB "]

a =

where Mw, Poo and U°° are the upstream Mach number, static pressure,
and velocity at the altitude of interest r. The quantity Bm is
,/Mi -~ 1 and ¥ is the ratio of the specific heats for air. Kr is
the reflection coefficient, the factor by which the magnitude of
the pressure in the ground pressure signature is increased over

the free stream pressure signature due to the presence of the

ground. Here Kr - 2 was used. Ka is the correction coeflicient

of Kane (Kane 1966; Kane, 1967) which is the ratio of the pressure
variation at sea level in the U. S. Standard Atmosphere to the
pressure variation at sea level in a uniform atmosphere of pressure
P_. For an altitude of 60,000 ft. this factor is Ké = 4.33. For
the purpose of this work the small differences in pressure signature
lengths between the uniform and standard atmosphere signatures are

ignored. (Hayes and xaefeli, 1968).

To find the streamtube area or radius development with x
; and the streamtube surface pressures for a given nose, the nose
was replaced by flow sources on its axis in the usual slender
body - perturbed flow approach. The streamfunction ¥, when written

in the form

" 1.2
\f/meoo = -2—1‘ + ¢,
where P is the upstream density at the altitude of interest and

r is the radial distance from the axis, was found to be given by

A u
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= e rm, A s e

X .
cosh (’{3)?) ‘
¥ o= - f f (x-pr cosh ¢) PBr cosho d:

o

where f(x) is the usual axial source distribution in the slender

body approach

1 dS .
0 = 77 ax-

The radius of a streamtube, selected upstream where y = 0, was : :
then traced through the flow using the constancy of ¥. Pressures é !
Eo

on the streamtube surface were found through the pressure coefficient J
bp =P 9

1 U2 =-2u-V, f
3P

o 0

,cp =

where the flow velocity in the axial direction is (1 +u)U, and

in the radial, va, with u and v given by the well known relations

-1,x
cosh (E;)

u = - f f' (x-B8r coshg) dc

v = f fr (x-8r coshg) p coshc do.

where f'(x) = df/dx. In order to calculate the heat addition re-

quired to obtain pressures in the streamtube-channel which match

the known pressures at the surface of the streamtube, the inviscid
equations of conservation of mass, momentum and energy, the egquation

of state (perfect gas) and the definition of the stagnation tempera-

: ture To are combined urder the assmwmption of one dimensional depen-

dence to obtain the power addition per unit axial length
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aT
dp _ o
dx_pooUooAcocpdx
where
dT
3 0 -1 1dA

+ 82y W21 4 (v-1) w277t 1

with Bz = Mz-l and M2 the square of the Mach number. M2 is found

down the channel by applying

2 ar

1 dM -2 2 2, 1 o
;{'2"3';="ﬁ 14+ (¥-1) M%/2] (1+3M);ir;ax—

+ 28721 + (v-1) W%/ 2] %%ﬁ-

These expressions can be found in Table 8.2 of (Shapiro, 1953).

The calculation moved down the channel by steps of axial
displacement Ax, the approximation to dx, which was chosen to be
sufficiently small for the sake of accuracy, but not so small as
to take unreasonable computer time, The quantity dA/A was used in
the form 2dr/r where dr is known from

=0 = Y Iy
d(¥/p U ) = 0 = rdr + 5T dr + 5% dx,

where
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- “ﬁ B -—m_,—,_‘_“ =

gosh—l(é%)
St _ j £’ (x-pr cosh o) ,Bzr cosh? g do

or

posh- (-é-‘i:)
- j f (x~pr cosh o) g cosh o do
o .
and
cosh-1(3%)

¥ __f B !

= f (x~pr cosh o) Br cosh o do. i
ox o ;

The chauge in streamtube radius Ar with axial displacement Ax

from axial position X, was found by using Ar irom a previous

trial (beginning with the final value of Ar from the previous
step) to obtain r, =ry + Ar/2. This value was used with

X, = X; + AX/2 in 3y¥/Or and 3y/dx to obtain a new trial Ar.

This process was continued until the relative difference in

succeeding trial Ar's was less than 1:106. The streamtuhe

—

radius at X9 = Xg + Ax was then Ty =Ty + Ar. To guard

against wandering from the original streamtube in moving dbwn
the flow, the difference in the value of the actual and original
stream function was nmonitered. Thke relative error in stream-

tube radius was always less than 1:103.

The quantity dp/p is >

QB=(C+ 2 -1 :

) dacC .
p p 75;5 p

0

Where the nose first hegins to influence the streamtube &CD
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is the order of Cp)so Ap/p, wkich was alvzys small, was used in the

form
- 2

In moving down the strezmtube, the numeraior was monitered

for possible ioss of sagnificant figures as Cp2 approached

Cpl.

Knowing AA/A and Ap/p, ATO/To can be determined accurately
by knowing Mz at X=X,. For small Ax, Ma = (M1 + Mz)/z and M2
is found by successive trials, beginning with a trial value

for M, (initially M, was used), obtaining a trial ATO/TO and
AMZ/M2 and thus a new value for M2 and Ma' This was continued
uniil successive trial values of Mé differed by less than 1:105.
This approach in obtaining Ma was also used in (Miller and
Carlson, 1969).

A program was developed to calculate the desired quantities

along the lines given above for phantom noses of area develop-

ment S = ax" with n>2. All integrands for such noses are
finire. ‘The integral evaluations in this program were done
with a combination of Simpson's rule and Newton's 3/8 rule

with ihe number of intervals adjusted for accuracy and speed.
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To speed up the computer runs on conical noses ‘1 =2) the
integrals were done analytically. The results obtained

using numeric and analytic integrations always agreed to better
than 12103. All computer runs were don on the IBM 1130

system here at the Institute. -

To establish minimum power requiremenis, noses which pro-

duce finite pressure rises in the pressure signature were

joined tangentially to the etfective body of revolution of an ; i

SST so that the body was enclosed within the nose. See Figure 2.3.2. <
The pewer required to duplicate the flow caused by the presence i

of the phantom nose betweeu the phantom nose tip and the SST
body tip was then calculated by summing the power require-
ments per step down the channel until! the characteristic from

the SST body tip was reached. To duplicate the flow produced

by the phantom nose behind the position of the SST body tip charac-

teristic would require cooling the flow to compensate for the com-

pression oi the flow impinging on the SST. 1If no cooling is

allowed and we still wish flow behind the SST b _ tip to have
the characteristics of flow cver the phantom nose, an even
longer phantom nose would be required for a given rate of pres-
sure signature rise. Thus for a given nose shape, the length

cf nose considered here, the distance frcm the phantom nose

tip to the SST body tip, is 2 minimum ancd the power requirements

obtained are minimum power requirements. .
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FIGURE 2.3.2. Establishment of minimum power requirements.
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2.3.3 Results

Results for a typic..: =ase are given in Figures 2.3.3,.4,.5

and .6. In this case a phantom nose whbich produces a ground
pressure rise of 2 1b/ft2 in 10 msec from an altitude of 60,000
teet at a Mach number of 2.7 is joined to the effective body

of a 600,600 1b. SST resultiag in a phantom nose length of 249
feet to be duplicated by heat addition. In this example the
streamtube of 00 ft2 initial area is the one considered as
shown in Figure 2.3.3. 1In Figure 2.3.4 the required power in-
put per unit axial length, the required input power distribution,
is plotted down the streamtube. Figure 2.3.5 shows the integral
of the curve in Figure 2.3 -4, or the total power required.

Using the energy available from the combustion of a pound of

jet kerosene and the SST cruise velocity of 1,780 m/hr, this
quantity is given in pounds of fuel per mile of sonic boom
abatement system operation. The power required to simuiate

the presence of the 249 foot nose is the power produced by
combusting 43 pounds of fuel per mile ov 420 Megawatts. Figure
2.3.6 shows that this result depends only slightly on the stream~
tube~-channel chosen for the cross sectional heat addition. The
input power distribution is also practically independent of
streamtube area as shown in Figure 2.3.7.

A comparison of the power rcquirements for various phantom
noses is shown in Figure 2.3 8. The power requirements are
plotted against the rate ¢ ground signature pressure rise pro-
duced by the ncses. These rates range from a barely finite rate

to » rate where the ground pressure does not reachk2lbs/ft2, the
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unmodified, predicted SST maximum overpressure, for 160 msec,
which is onc¢ fourth the predicted SST pressure signature length.
Thus, Figure 2.3.8 indicates that if a barely finite rate of
pressure rise can be obtained, beneficial rates of rise can be
obtained with au increase in power of the order of 50% or less.
A comparison of power requirements as a function of nose
shape was also made to see if relaxing the phantom nose shape

5/2

from the desirable S = ax shape might bring a helpful re-

duction in the power requirement. Here a conical nose (S::axz)
and a nose of area development S==ax3, both of the same length

and base area as the nose of Figure 2.3.3 are compared to the

nose of that figure. A lomngitudinal cross section of the ncses

is shown in Figure 2.3.9. The resultant input power distributions
are compared in Figure 2.3.10 for an initial streamtube area of
100 square feet. A comparison of the total power required tc
duplicate the effects of these noses, and noses similarly ob-

tained, is shown in Figure 2.3.11. While the input power dis-

tributiors are some what different, the total power required

is practically the sam for the various shapes. (One can show
that for slender noses of area development S::axn, the linear
5/2

rise or S=ax nose shape produces a minimum average pressure
rise and a ninimum maximum pressure rise in a shockless signature,
as well as being ithe shape which produces a shockless pressure

signature at a maximem distance from the nose axis. A shape of

S=ax" with n less than 5/2 does not produce a shockless signature).

o>

. 2 3 .
The power roguirements for the S=ax and S=ax noses, as with
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10°FT 1.B. 3EC

- T T

FT.

POWER

INPUT

PER

UNIT

LENGTH
-l
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L + $
0 1oy 200

AXIAL DISTANCE FROM PHANTOM NOSE TIP

FICURE 2.3.4. Input power per unit axial length. The
input power distribution required to cduplicate the
nose and streamtube of Figure 2.3.3.
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FIGURE 2.3.9. Comparison of nose shapes. Longitudinal
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area. The linear rise nose is the nose of Figure
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noses of the same length and base area.
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the linear rise noses, do nct depend very much on the particular
streamtube~channel chosen as shown in Figure 2.3.12. For all
the nose-streamtube combinations the Mach number in the stream-
tube-channel stayed above one. See Figure 2.3.13.

Consideration of the above resuits leads to an approxi-

. mation scheme. In the expression for T;1

dTo/dx since the
p_ldp/dx term is observed to be small compared to the A" 1aa/ax
term except near the region where the streamtube considered is
first affected by the nose, and as M and To undergo small changes

in that region compared to the changes occuring further down the

streamtube, we neglect the effect of the p-l dp/dx term and write

—2 > [1 + (y-1Me/2)" A

T, A
and

dM> ~ _ dA

S =

=
3

Thus M2A is a constant which can be evaluated upstream to give

M2 = Mi Aw/A where Aw is the upstream, or initial, streamtube

area. Then

dT _
—2 . [a+ (1) ¥A /2771 aa
T © %
o
2 - .
3 and T [A + (y=1) M_A /2] 1 js a constant. This yples that the
9 o R

power addition per unit streamtube-chaanel length is
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dp pwUmel O dA

— = -— = UecT —

p
dx 1+('y—1)M°2°/2 ax TP @ gx

where T°° is the upstream static ‘ewperature. Since the stream~
tubes considered heire are sufficiently close to the axis com~
pared to the phantom ncse surface, slender body theory should
apply and the rate of streamtube area change at a given cross
sectional plane should be determimed to a sufficient approxi-
ration Hy the axial flow sources at the intersection of the -
plane and axis. That is,

= 27f(x) = ds

dx

& &

where, as above, S is the cross sectional area of the phantom
nose. The channel heat addition per unit length can then be
written as

dsS

= i 'mUwC pTw ;‘; .

&5

This last expression essentially reproduces the curves of
Tigure 2.3.10 except for the spike at the front of the conical
nose curve which is due to the steep, but small. increase in
pressure thece, a feature one would not wish to duplicate in
any event. This last expression was derived by Svigart and
Lubard (Swigart and Lubard, 1969) in 2 different approach aad

the above discussion shows the circumstances under which the

answers obtained by their approach will agree with those obtained

v bl Sl
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by a oue dimensional channel approach as used here and clse-
where (Miller and Carlson, 1959; Siegelman, 1970). Relating

the mass source per unit length represented by the axial sources,
S5, = 27p_U_T(x). to the equivalent heat zources per unit

2

length. Q'f = emeSL {Tsien and Beilock, 1949; willmaxrth, 1957),

one has dP/dx = QP tc the above approximation.

2.3.4 Discussion

The power requirements ag obtained ahove have serious con-
sequences for the use of any laser system. For the purpose of
this discussion we shall use i1he 420 Megawatt power require~
ment figure for the phantom nose of Figure 2.3.3 which gives a
finite rate of pressure rise of 0.2 (lb/ftz)/m sec, equivalent
to the attainment of 2 1b/ft2 in I7 milliseconds. The power

requirement for this rate of rise is compzred to those of other

rates of rise in Figure 2.3.8.

Many laser systems rely on electric energy as their initial
energy source either through the use of flashlamps or through
electrical discharges of various types. Questions of laser
efticiency aside, the generationda 420 Megawatts of electrical
power carries a severe weight penalty. At these power levels

magnetohydrodynamic (MHD) generators offer the smallest equipment

i -
1 weight per kilowatt, bhut turbo-alternators offer the lowest

. specific fuel consumption assuming environmental air is used as
Y the oxydizer {Cooper, 1971). The YHD equipment weight is about

0.2 pounds per kilowatt or 84 thousand pounds for the generation

’ ) 2.153




of 420 Megawatts. This weight is 30% of the nonfuel takeoff
weight of the commerical version of the Boeing SST (Aviation

Week, 1970). The MHD generator specific fuel consumption is

{
i 1

about 1.1 (lb/sec)/MW cr 930 1b of fuel per mile of sonic boom

abatem€nt operation during SST cruise. With the turbo-alternator,

o R o AN Ve BN (S 0 e T

which wiil involve higher equipment weight, this figure is 470
1b of fuel per mile. Both figures assume ‘he use of environmental

air as the oxydizer.

There are laser systems, recently announced in the literature,
which do not require the generaticn of electric power. These are
the purely chemical or direct combustion laser (Cool and Stephens,
1969) and gas dynamic laser (Gerry, 1970; Meinzer, 1971). Putting

questions of suitability for heating the airflow aside, these

carry severe weight penalties also. The chemical laser referenced
here réquires no electric discharge to attain partial dissociation
of the reactants, a procedure which is used on other chemical
lasers and typically requires an electrical input power many times
?he laser output power I{Spencer et. al., 1970). But the laser

type referenced here dof: require a non-cycling mass flow. Accord-
ing to the article cited, this flow would have to be so large that

any practical application is fully unfeasible. There are unclassi-

R AR i oy

fied, unconiirmed reports of the attainment or future attainment
of 100 kilowatts per pound of flow per second from a direct com-

bustion laser, but this would still leave an unfeasibly large

T Y

flow requirement.
With gas dynamic lasers the spz2cific power figure of 2 to 3

kilowatts per pound of flow per second is still far too small

for a single nse flow. In gas dynamic lasers the mass Ilow can
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be cycled. ‘The laser output would then originate in the com-
pressor driving the flow circuit (Hertzberg, Johnston, and 1
Ablstrom, 1971). The best mechanical power generation to equip- )
ment weight ratio has recently moveca from 5.0 kW/1lb (Wood, 1968)
to 6.5 kW/1b (Aerospace Association, 1970). Even at the latter

. figure, however, 65,000 pounds of equipment 24% of the nonfuel SST
takeoff weight, would be required to generate 420 Megawatts of

mechanical power for the compressor. This figure does not include

the weight of the compressor itself. It is to be kept in mind

that the sonic boom reduction by means of lasers can be readily

restricted to sensitive parts of the overflight terrain by means

of turning on and off the laser equipment.

2.3.5. Conclusions and Recommendations

It is concluded that large amounts of power will be required
to produce desirable finite rise time pressure signatures. This
is shown in subsection 2.3.3 It is also concluded, as d:iscussed
in subsection 2.3.4, that at present there exists no system which

can generate such power in laser emission without severe weight

b o g gk, | 4!v1|vth"'nil!WWMW\1Nlmﬂmm@mmw&ﬂﬁmmmﬂammww*

penalties.

In view of the amazing advance in the maximum average output
power of lasers in this past decade, laser progress should be infer-
mally monitored for the cdiscovery of a system which obtains its
output chemically from its tuel with power output to mass flow
ratios approaching those available from the combustion of commercial
fuels. It should te borne in mind that heating of the airstream

by laser emission can be accomplishad not only by gas breakdown,
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so far achieved only by Q switched or gain switched lasers using
some form of direct or indirect electrical excitation, but also by
abscryption in an atmospheric absorption band such as the 002 band

at 4.3 um.
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2.4, ENGINE-AIRFIWAME INTEGRATICN WITH SPECIAL EMPHASIS 1
ON NON-CIRCULAR ENGINE EXHAUSTS AND JET FLAPS

o
N

.1 Pressure Distribution of Deflected Two-Dimensional Jets Behind Wings

by Dr. B. H. Goether: assisted by Dr. Heinz Gruschka and UTSI
Student Mr. Philip Kessel

One major part of the sonic boom signature is produced by the lift of

an aircraft; this part is usually much larger than the sonic boom part due to

the solid displacement of the aircraft structure. Thus, the major effort of this
study was directed towards determining which sonic boom alleviations can be
obtained by appronriately utilizing the lift component of deflected exhaust jets
of turbojet or ramjet engines,

On Figures 2.4.1 to 2. 4.4 some fundamental relationships in the forma-
tion of the sonic boom signature for two-dimensional lifting surfaces are
depicted, It is demonstrated on Figure 2.4.1 that the downward momentum
beil:ind a wing without ground effect corresponds to one-half of the total lift on
either side of the wing. On the other hand, if the pressure and expansion waves
impinge upon the ground, the total impulse submitted to the ground is equal to
the full amount of the lift. As Figure 2.4.2 also indicates, the dividing stream-

line behind the wing approaches again the undisturbed position after passin: through

the reflected wave system, because all waves cancel each other at large distances,
On Figures 2.4.3 and 2. 4.4 it is demonstrated that the sonic boom signa-

ture on the ground spreads over a larger distance and has a smaller pressure

T ——

peak when the lifting wing has a larger chord; that is when the lift is spread

over a larger distance in the flight direction.
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The purpose of this investigation is to show that the distribution of the
lift in the flight direction can occur not only by means of stretching the.wing
chord, but also by having a part of the total lift produced by the deflected exhaust
jet of the engine (see Figure 2.4.5). In the case of a deflected exhaustkjet,
it is to be understood that the entire vertical component of the deflected jet,
that is the lift component, is transferred to the wing at the deflection point
of the jet, that is in the exhaust noz: .« However, as far as the action on the
flow and particularly also on the wave system which finally impinges on the
ground it. concerned, the lift component of the jet is distributed over a distance
downstream of the exhaust nozzle. -

This phenomenon has not been fully recognized in the past. Therefore,
on Figure 2, 4.6, various force equilibrium sketches are prepared which
show that the reaction on the flow behind the wing, equivalent to the vertical
lift component of the jet, is caused by the aerodynamic pressure difference
between the upper and the lower surfaces of the defiected jet, In effect, the
deflected jet acts like a solid plate in the flow which is curved according to the
jet.

A theoretical two-dimr tonal calculation was conducted as shown in
principle on Figure 2.4.7 and on pages 2.167 a and b,

A numerical evaluation of the pressure distribution curves is shown on
Figure 2.4.8. The rearward shifting of the lift is larger the larger the Mach

number is and the larger the jet momentum coefficient is.
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A comparison of the jet lift was conducted with respect to the lift

generation by means of wings and mechanical flaps (see Figure 2.4.9).

A jet flap operating at a Mach number oi M = 3 with a momentum coefficient

of C =1.4 has the same lift-producing effectiveness as a wing in supersonic
v

flow. In subsonic flow, a jet momentum coefficient of approximately
Cp = 1.9 is required to produce the same lift as a wing.

At a jet momentum coefficient of Cp. = .5, figure 2,4.9 shows that
in flight at Mach number 3, the jet flap would be identical in effectiveness
as a mechanical flap with a flap chord of approximately 35 percent of the
main wing. The same jet momentum coefficient C = .5 in subsonic flow
would have the same lift effectiveness as a flap of 13 percent chord length,

In the following, some applications of the new theory on lift shift

and performance changes due to jet flap deflection are shown for the Mach

number range up to M = 12,
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2.4.2 SHIFT OF LIFT BEHIND SOLID WING AND AIRCRA T PERFORMANCE
CHANG'S DUE TO DEFLECTED JETS

Figure 2.4.10 shows the airframe and propulsion system data used in

this study. The Lift Over Drag (L/D) ratios from various configuration studies
were plotted and a boundary curve drawn which is believed to be representative

of the most optimistic L/D ratio obtainable, The curves in Figure 2.4. 10 give also
ramjet and turbojet performance and the values of air specific impulse, Iair’

as a function of Mach number. This data is used to calculate the exhaust

momeatum to thrust ratio and also the jet momentum coefficient, C .
B

= -~
g

Jm = exhaust momentum

v, = flight velocity

g = gravitation constant

T = thrust

I. = air specific impulse,
air P P

The data from Figure 2. 4. 10 was used to calculate the ratio of jet lift to wing

lift, This data is plotted in Figure 2.4.11. The effect of jet flap on aircraft

L/D and range is shown in Figure 2.4. 12, In these plots the advantage of exhaust

deflection at high Mach numbers shows quite plainly. It is also obvious that for
every Mach numbcr there is an optimum exhaust deflection, measured from the
horizont4l, which will maximize range. The optimum range factor varies between

+0, 7% at 6° for Mach 2, to +27% at 13, 5° for Mach 12,

] 2.160
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The expression for pressure distribution along a jet flap can be rearranged

in terms of aircraft and propulsion parameters by substituting the engine mass

. flow and aircraft geometry factors we get:
" 4qm Btez B,
. BAP_ _ B, . 4 1 T =
El_W/_ ‘;:L— o a w/s te « m a, te
te 'S te
where
BIA Px = Non-dimensional flap lift
B, W/S
te
B. =  Width of jet flap
1
Bt = Trailing edge span
e
w/Ss =  aircraft wing loading
AP = pressure across flap at status x
5 = jet flap deflection
o
1 q, = dynamic pressure
a = M 2 -1
@
m =  engine mass flow
u, =  engine exhaust velocity
} The pressure distribution for some typical aircraft are shown in Figure 2.4.13,
P ’ 2.4.14, and 2. 4. 15,

A lift discontinuity exists at the trailing edge of the wing due te the abrupt

change in the direction of the airflow caused by ihe jet flap. The extent of this

—— gy Y T T T ¥ T T
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discontinuity can he limited by decreasing the span of the jet flap. Since rnomentum
considerations insure that the total lift must remain the same, we can predict that
the lift distribution of the jet with smaller span must extend further behind the
aircraft,

In.these figures the width of the jet is varied from 0.25 to 1. 0 times the
trailing edge span. The approximate lift distribution on the wing is also plotted
in order to.shov graphically the order of magnitude z2ffect of the lift on the flap.
For this purpose he thickness effects and the fuselage effects, if any, =ze ignored
which resulte, using conical flow theory, in a constant spanwise averaged lift

distribution.

As aircraft Mach numbers increase, the exhaust volume flow from conventional
engines becomes larger due to the decrease in air specific impulse. At Mach 12
the mass flow from two cylindrical exhausts would fill the entire base of the
aircraft, Engine cowl drag would become a predominant factor in this case and
would obviously force a compromise between cowl drag and expansion ratio. The
lift distribution for aircraft having two cylindrical exhausts is shown in Figure 2. 4. 16,
Hote that at Mach 12 the width of the jet exhaust, I'j’ is equal to the trailing edge sran

and hence the je: flap is shifting "1ift" far behind the trailing edge of the wing.
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2.4.3 FINITE ASPECT RATIO EFFECTS

The preceding czlculations have Leen conducted with the assumption that
the downwash behind the wing can be neglected as in two-dimensional theory, If
the downwash is taken into consideration, however, the exhaust jets are more
slowly bent into the direction of the undisturbed horizecntal flow. In frictionless
flow, and with exhaust jet spans smaller than the trailing edge spar of the wing,
the jet flow is completely imnbedded in the downwash flow and will asymptotically
reach not the direction o{ the undisturbed flow but the direction of the downwash
flow behind the wing. At very large distznces, the downwash and the jet will
eventually impinge upon the ground and will be turned into the horizontal direction. J

w '

The turning of the downwash fiow at the impingement on the ground will : |

produce a pressure phenomenon which can be integrated as a secondary sonic

L R L) ™

boor signature which moves along the ground with the Mach: number of the
aircraft, but with much larger rise times than are experienced in the primary

sonic boom. (See Figure 2.4, 17).

The slower turning of the jet flow in the downwash has the result that the

jet lift is shifted much further behind the solid surfaces of the wing than is

T A ot i b RN

shown in figures 2.4,13 to 2. 4,16, Consequently, the sonic boom alleviation

effects are more pronounced whan the finite aspect ratio effects are taken into

. consideration, It is recommended to examine numerically the effects of down-

wash on the lift shift behind the wing and the secondary sonic boom signature in the

impingement region of the downwash on the ground,
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FIGURE 2.4.1. 2 Dimensioral flat plate at small angle of atteck
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FIGURE 2.4.2. 2 Dimensional flat plate in ground eifect
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FIGURE 2.4.3. 2 Dimensional flat plate at small angle of attack
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} Forces acting on jet in supersonic flow

et

“~

Jm = Jm inlet

A nozzle force un jet

aerodynamic force on jet

Forces acting on free jet alone
J

/

CUHS

J sinfg

Jm(I-cosso) = thrust loss

1 Aerodynamic forces acting on exterior of jet nozzle and free jet

bl e R I S e ey iy

control surface

aerodynamic force 0‘

on nozzle exterior ~
! forces;@ and (ydo not balance

9]

FIGURE 2.4.6. :
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2 pimensional jet flap in supersonic flow

2.170

down :

o oo Ot g iy 8 N o by




T T e - -

1af TeuoTSUBUIP-Z ¥ SUOTEB UOTINGTJIISTP danssadld ‘8 'p'g JUNDIL

aal

—

%
2.171

IUDYOTI 200
wnjuasuwow 33l = 1O

e f C'p




|

|
WJ

v

R g g w0 e

det g

(g =1
189l oruosagadns

(0 = W)
duerr 19f cruosgns

s

smﬁpmwzwsw:m 37TT v

VO

"0 ‘3UdTOT SIS0 UNIUBUON 3af

ST e

"

I

TesTURBYDAW

-

—

TeLTUBYOSW

ﬂ.ﬂlql

2.172




8

L

JaqunN yoew

\(

jafoqany

iey0a

]

astndur Jf® OTFroads pue oriex Jeuan/3iv |

0

02
Log |
n
ebe
H
e lp W
H'G
R
e 0
b
n -

09 o 4
o

08 ols
o
]

00T

02z

(03 4

cen oo w0 YN BRI ey

P o 0% 10
I

JaqunN yoew
8 9 14

Ly e oA,

‘0T '¥ g FUNOIA

AN

N

ISS -

8ZT¥-Ud~-NL

‘sojleBUOUY ‘aaqay ¢ 'SFog

1 1

21

allsonn

vi

2.173




e e BT X —~—

e

4 et s NS S B Bk N s Lo e e

-5 ol - -
? b, = 35° | 33°® 25°
i
H .
2.0 o o J ]_
)
i I,
1.5 o

/
Jet 1ift / /
Wing 1lift AZ(

1.7 — : /

N s T ET

6
Mach number

FIGURE 2.4.11. Ratio of jet 1lift to wing 1lift

B Bt v

NI

PR YRR PR

R L

2.174

. AM,,‘,A‘___A_.A—.,.‘,

e o e i e o




-

OT3iBX alued 37BIOITE pue OTled 38Ip/1ITT Te30L

e TR T e T i Tt T R T2 T P O

_ Jequnu youg

- — A

[RETY s TP,

21 °¥°'2 AUNDIL

(Al 01 8 9 0
! 0
ﬂ>
Gg 0
[+ m n m. n
l:lllllllll m:ﬂan us o
8310
wml.fylli 8-
o 0g )
\\.\1!
\ —— 0°'T
ce
° \\‘
02 \
°¢ = Jotp” z'1
VI
#
. . R .




S S e MO W L

YSBMUMOD 3INOYUITA UOTINQTJIISTP aanssaad dery jar

®31/x

([

e

9.
o

— -

wenensensatinesiihy i Ane A0S en sttt etesne-obh

€1 'v ¢ JYNOI4A

0
m L]
s/h °¥1.
X
i G |
01
c'1
[0z  €9T°

P ittt il

2.176

_3FT[ 3uth
1ITT
o0 = UOTOATIAP 38
g .= Jaqunu yoep




v

REPPRIRL i {o i P il M |y

USemMuMOp INOUITA UOTINGTIISTP eanssaxd dery 3er “pI ‘v’z TUNDIJ

Qu..m\vn
v 2" 0 z2°- v - 9~ m.m
ﬂ >
N .q
\
\
\
\\ .
L/ P
7 0°'1 s/n 2
£ . X
~ = 05 X3 "q
31 0¢ .k\
1
q_l S 1
*1
0 %’ . _33T1 Burpm
~-— 3] 1 - L0° = J7(T 3or
* ) _ - 02 = u0;308TJep 3ap
‘ . —_—10'g ° £ = Jaqunu yosly

2.177




| Mach number = 12 2
"] - A | Jet deflection= 20p i3
- Jet 1ift
i —— Jet 1ift _ ; 73

E LiL o * Wing 1ift 7 =

AR

1.9

Lte W/S §
’

o

FIGURE 2.4.15. Jet ."Lup pressure distribution without downwash

B T R T R TN R

2.178




EY B

UOTIBILSTIUOD 3TX 1af [BOTIPUTIAD g

o s conmumaman SR A A A ey

I

‘9T "V 'Z AUNOI1L

a3
31/ /x %1/ 1/%
0 0°1- 0°g- 0 g - 0°1- 0 g~ 0°1-
_— \u i
L
1
. e m: o
01 = /b oz = 1/t £€r" Nﬁ\mg
gL'1T = "1/71 got = M1/ g0 - ™/t
gT = UYOEN .9 = youy € : uoe
2
-t o3 -

3TXD 8T2Z2Z0U ISNEYUYXd T~

aura

/,mu;

(uotioorzep 3af ,0% 1e uorsuedxs TINJ)

2: 1?9

i




LT P2 IUNHII

§31081J0 OoT1ex 3oadse alTuTg

or Suw zuué

oxaa xmaao>

L__ ]
IARERER

2.180




3. CONCLUS ONS AND RECOMMENDATIONS

LA e A ——

3.1 Considerable progress was made in this contract in developing a new
theory which permits the use of normal size models in wind tunnel tests
to determine the sonic boom on the ground by measuring the pressure

signature in the wind tunnel test section. The theory has been developed

for axisymmetric flow conditions. and a start has been made on the !
theory for non-symmetric lifting configurations. It is recommended

that the non-symmetric lifting theory be completed and that precedures

for checking the theory in a wind tunnel be developed and suitable

verification tests conducted.

D) i+ o ¢

3.2 Some calculations were carried out by means of an improved method

for determining aircraft contours with desirabie finite pressure rise
times; included also was the determination of phantom body shapes

which have predeterrnined finite rise times which can be simulated

o 0 O

by heat addition to the flow upstream of the aircraft, for instance by

lasers.

Concerning the application of laser beams to produce a desired heat

b : input distribution through the mechanism of focusing laser beams and
F jonization of the flow, a few experimental test points, from previous
’ -
’ tests with different objectives, are available. It is recoamended that {
i

i brief laboratory tests be designed and conducted in order to determine |
1 to what extend the control of the heat input at desired specific locations

can be accomplished in laboratory and in flight cperatioas.
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3.3 Many previouas inve tigaticns have shown that deviations from the
conventional circuiar cngine exhaust can cause dramatic improve- <
ments of the maximum lift coefificient and iarge efiects on the noi;'e
level o7 engine exhausts. The research under this coniract has shown

that a slot-type engine exhaust has the unique capability of shifting

lift from ‘he solid surfaces of the wing to the region hehind the wing,

gy

as far as the effects on the external flow and on the sonic boom are

concerned. These results, which for the {irst time have clarified
an important characteristic of slot nozzles, have beern developed for

two-dimensional flow conditions. It was shown that not only a shifting

of the lift on the main wing and an associated reduction of the sonic
boom was achieved, but also favorable effects on the performance of
the aircraft in certain flight regimes and configurations were obtained.
In view of the current interest in the application of non-circular engine
exhausts for maximum lift and noise atienuation purpceses, it is recom-
mended that the two-dimensional theory for the slotted nozzle exhaust
effects be extended to the three-dimensional theory, to be used as the
basis for subsequent verification testing in wind tunnels and eventually

in flight,
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