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CHAPTER II

PRINCIPLES OF APPLICATION OF MATHEMATICAL
METHODS IN MILTTARY AFFATRS

The theory of probability is the mathematical science, which
studies the principles of chance phenomena.

A chance phenomenom is one that comes out differently each
time, during repititions af a single experiment.

Combat operations of troops are typical examples of chance
phenomen-,, since they always come out differently, regardless of
how often ti.ev are repeated.

The basic conceptions of the theory of probability are: the
event, the probability of an- event, and chance quantity.

An event is any fact which may happen or not happen as the re-
sult of an experiment.

The probability of an event is a numerical measure of the degree

of objective possibility of the event occurring.

To compare different events by the degree of the possibility of

their occuri',ncc, it is necessary to have a unit of measure. As the
unit of nmeasure we use the probability of a certain event, i. e. an
ever.i which must occur as a result of the experimnent. If to the certain
event we a.isign a p)r)).dbility equal to one, then all other event! (possible,
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but not certain), will be characterized by a probability of less than

one. ,,Cppoite to the certain cvcnt is the ir-possible event, the proba-

bility of which is equal to zero.

Therefore, the range of changing probabilities is between 0 and 1.

If, in - eries of n experiments, the event A appeared mr

times, then the frequency, or statistical probability is what we call

the rePt.iLionship

where P! is the frequency of the event,

m is the number of times the event has occurred, and

n is the total of experiments conducted.

In a large number of experiments, the frequency stabilizes,

approaching, with very little deviation, a particular constant value,

This value, to which the frequency atri,,es in a large number of experi-

ments, is called the probability of the event.

Probability is successfully applied in predicting the results of
combat operations, and also for comparing the effectiveness of different

combant variants.

Thus, if the probability of a given event in a given experiment
is exceedingly small, then one may be practically assured, that in a

one-time fullment of the experiment, the expected event will not occur.

If the prob.,bility of an event in a given experiment is close to

one, then such an event, in practicality, is close to certain.

A random quantity is a quantity which, as the result of an experi-
ment, can acquire one value or another, vhere it is not known before-

hand, what that value will be.

Random quantities can be discrete or continuous. Relating to dis-

crete random quantities are, for instance:
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- the number of hits in launching n rockets;

- the number of enemy aerial-space targets knocked down in
flight;

- the number of fragments formed by an exploding shell.

Examples of continuous random quantities are:

- the coordinates of points of impact of rockets;

- coordinates of points of interception;

rocket parameters at the end of the active portion of a trajec-
tory.

One of the most important jobs for the theory of probability is
determining the probabilities of events by known probabilities of other
events that are related to them. For this, one uses the basic theorems
of the theory of probability: the theorem of addition and the theorem of
multiplication of probabilities.

The Theorem of Addition of Probabilities

We will introduce several definitions. The sum of two events A,
and Az is the event consisting of the appearance of either of the events.
Events are called ,ncompatible when no two of them can occur at the
same time.

The theorem of addition of probabilities is formed in the following
manner.

The probability of the sum of incompatible events is equal to the
sum of the probabilities of the separate events.

P (A, + A3 +.. + A.) == P (A,) + P (A3) +.. + P (A.),

where P(A,+A 2 "+-+-An) . The probability of the sum of incom-
patible events (i. e. the appearance
of event Al, AZ, or An);
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P(Aj), P(A2), P(A.) = The probability of separate events.

Two incompatible events are called opposite if one of them must
appear in the results of the experiment. An event, opposite to the
event A, can be denoted •.

Examples of opposite events are:

- Hit and miss in rocket firing

- Shooting down a flying device or not.

Since the sum of the events A + A is a certain event, we have

P (A) + P (4 =6 1.

The Theorem of Multiplication of Probabilities

In preparation, we will introduce two definitions: the product of
events, and independent events.

The product of several events is what w.- call the event that con-
sists of the simultaneous appearance of all these events. Two events
are called independent, if the appearance of one of them does not in-
fluence the probability of the appearance of the other.

The probability of the product of several independent events is
equal to the product of the probabilities of these events:

P (A,, A.,..., A,,) = P (A,) P (A,)... P (A,,).

In practice, it is most often necessary to apply the theorems of
addition and multiplication of probabilities simultaneously. Here, the
event, whose probability it is necessary to determine, is presented as
the sum of several incompatible events, each of which, in turn, is a
product of events. We will examine several examples.

Example One: Three rockets are fired at the same target. The
probabilities of a hit in the first, second, and third firing are, res-
pectively, Pl P,, P 3.

Find the probability of any one hit.
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Solution: We will consider the event A to be equal to one hit
on the target. This event breaks down into several incompatible
-variznts: A hit in the first firirg, and a miss in the second and third,
or, a hit in the second firing and a miss in the first and third, or, a
hit in the third and a miss in the first and second.

Consequently:
A = AJ42A3 + 711AJ43 + AI~z

Applying the theorems of addition and multiplication of proba-
bilities, we .'btain:

P (A) = P, (I -- P.,) (I -- P3) + (I -- PI) P2 (I _-P3)+

+ (1-P) (1 - P.) P3.

Example Two: An aerial battle occurs between a fighter and a
bomber. In the process of the battle, the fighter makes two attacks.

The probability of shooting down the bomber the first time is

I
p I = 0. 2. If the bomber is shotvdown, it fires back at the fighter and

has a probability of shooting it down of P2 0. 3. If the fighter is not
shot down. it continues the attack and has a probability of shooting down
the bomber of Pz = 0. 4. Find the probability of either the bomber or
the fighter being shot down.

Solution: We consider the events:

A1 - bomber shot down,

AZ - fighter shot down,

The event A1 can be presented as the sum of two incompatible
events: A, --- Al + A2,

where A1 is the bomber shot down the first time

A1  is the bomber shot down the second time.

2 ý
The event A, is the product of three events: non-destruction of

the bomber in the lirst attack, non-destruction of the fighter by the

-5-
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return fire, and destruction of the bomber in the second atzack.

Consequently, on the basis of the theorem of multiplication of

probabilities, we have: 4

P(A) =( P1) (I -_ P,) P2 =0,8.0,7.0,4 = 0,224.

The probability of the bomber being shot down the second time
is equal to

0.2 + 0.224 = 0.424

The event A2 is the product of two events: non-destruction of
the bomber the first time and destruction of the fighter by the return
fire. Consequently, the probability of the fighter being shot down is

(1 - P1) P2 = 0,8.0,3 = 0,24.

Example. Three. There are three each of two types of rockets.

First, rockets of the first ýipe are launched, then, rockets of
the second type, at the same target. Upon the f rst hit, the target is
destroyed and the rocket launching ceases. The probability of a hit
when one rocket of the first type is lauaiched is Pl = 0. 1; the proba-
bility when one rocket of the second type is launched is P2 = 0. 2.
Find the probability that not all of the rockets will be spent.

Solution: We will consider the opposite event: A - all rockets
spent.J

This can occur, under the condition that the first five rocket,
miss the target. Consequently:

P (A) - (I - Pz)l (I - P,)2 == (I - 0,I1)t (I -0.o2)!• = 0,466.

The probability that all the rockets will be spent is equal to

P (A) = 1 -P(A) = 1 -0,466 = 0,534:

The Distribution Laws of Random Quantities

The distribution law of discrete random quantities is what we
call the relationship, that establishes the connection between the
possible values of a random quantity and their corresponding proba-
bilities.
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For the sznplest form of the distribution law of a discrete ran-
dom quantity X, we have a table

pI p" 'I t

In the first row are givenall the possible values of the random

quantity, in the second, the correspondir.t. probabilities of these values
appearing.

A knowledge of the laws of distribution allows us to master ran-
dom quantities to a significant degree. This fact notably eases pre-
dicting the outcome of each experiment. Graphicaily, the distribution
law of discrete random quantities takes on the form of a polygon (Fig.
6), which is called the distrikbution polygon. A distribution polygon
completely characterizes a discrete random quantity and is a form of
the distributive law.

Example Four: Rockets are launched at several targets until
the first hit. The probability of a hit for each launching is equal to P.
The random quantity X is the number of launchings. Find the distri-
butive law of the random quantity.

Solution: The possible values of the random quantity are X = 1,
2, 3 ..... ... For the value of the random quantity to be 1, it is neces-
sary that the first launching is a hit; the probability of this value is P.

P,,

P, p P2  p)3  P

Fig. 6. Distributive Polygon
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For the random quantity X to acquive a value of 2, the first launching
must be a miss and the second a hit; the probability of this value is equal
to (1 - P) P, etc. The distributive law is shown in the form of a table.

x j 2 3
P P (I-P)P (I--P)'P I . . (l--py-:p

The distributive law obtained allows one to judge with sufficient
certainty the probability of the first rocket hit after a diverse number
of launchings. If, for instance, P = 0. Z, then the probability of the
second rocket being the first hit will be 0. 16, and the probability of
the second rocket being the first hit will be 0. 16, and the probability
of the fourth rocket being the first hit is already 0. 1, or two times
less, than for the first rocket.

Of important significance in military affairs are the binominal
distribution law and Poisson's Law.

The binominal distribution law establishes the dependence of
the probability of an event occurring k times in n independent ex-

periments. In application to military weapons, this law can be used
to determine the number of hits for n independent firings at the same
target.

The probability of hitting, for k weapons iii i. independent I
launchings, is determined by the formula

1.2....k

where P (k) is the probability of a hit by k weapons with n indepen-

dent firings at the same target; and

P is the probability of a hit in one firing.

Th'e random quantity, in this law, takes the discrete values: 0,
1, 2, n. The distribution law can be written in the form of a table.
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k 0 1 2 ... ln -- I n

P4(k 0 P11npjp~-i( -I) . ..-2 nFl (1--f.) 1S

12 J___P4-2
For instance, if five rockets are launched at the same enemy

starting position, and the probability of hitting the target with one

rocket is 0. 8, then the probability of missing with all the rockets (k =
0), and in the same way. the probabilities of hitting with one rocket, two
two rockets, etc., will have values entered on the table.

K 10 1 2 3 *1 5

Pk 0,0003 0,0064 0,05 0,21 0,41 0,33

In checking the example, we find that the probability of missing
with all the rockets is considerably smaller than the probability of
hitting with all the rockets. The probabilities of hitting with either
four or five rockets are the sarme and have the largest value.

Poisson's Law expresses the dependence of the probabilities

of an event occurring k times in n independent tests, where the
probability of each event is the same. This L tr is good for mass
events (n is large) and rare events (the probability of the event occurring
is small. )

Poisson's Law is expressed by the formula

P (k) kk C-

where PN3k) is the probability of an event occurring k times in n in-
dependent experiments;

A = nP, where n is the number of experiments and P is the
probability of the event occurring in one experiment; and

is the factorial sign.
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Giving k integral values, Poisson's distribution law can be
written in t.,e form of a table.

k o 2 k

Applying Poissorn's Law will be examined below in analyzing the
theory of mass service.

Mathematical Expectancy

The mathematical expectancy of a discrete random quantity is
what we call the sum of the products of all of its (the random quantity's)
possible values by their probabilities:

S= XIPI+ X2P, + ... + XP, XP,

where M is the mathematical expectancy,

X1 , X2 , .. n are the values of the random quantity,

and P, 9 P I .". P are the probabilities of each value of the
2' n

random quantity,

Although the mathematical expectancy tells one considerably
less about a random quantity, than its distribution law, it is, neverthe-
less, an exceedingly important characteristic of the random quantity.

Example Five: Three rockets are fired at the same target, and
the probabilities of hitting it are, respectively, P1 = 0.5, P2 = 0.4,
P 3 = 0. 6. Find the mathematical expectancy 6f the total number of hits.

Solution: Applying the formula for mathematical expectancy, we
obtain:

M = XP, + X.P 2 + XSPS = 1.0,5 + 1.0,4 + 1.0,6 = 1,5.

-10-



Example Six: 40 fighters participate in an aerial battle against
bombers and have a probability of shooting one down in one attack of
Pf = 0. 6, Also participating are 20 guided anti-aircraft rockets with
the probability of a hit in one launching of Pr = 0.8. The fighters and
the anti-aircraft rockets lead one attack each on different bombers.
Determine the mathematical expectancy of the number of bombers
shot down.

Solution: The number of bombers shot down is a random quan-
tity. The mathematical expe,,tancy of this quantity is equal to

M = 40.0,6 + 20.0,8 = 40.

Dispersion

In practice, it is very important to appreciate the scattering of
possible values of a random quantity around its mathematical expecta-
tion. For instance, in rocket launching, it is necessary to know how
closely the rockets will fall near the :enter of dispersion (the point of
average miss).

By dispersion of a random discrete quantity, we mean the sum of
the products of the squares of the deviations of a random quantity from
its mathematical expectation, and the probabilities of these values.

4

D =(X,- M),P,+ (X2-M) 2P..+...+÷(X-M),p,,

where D is the dispersion of the random quantity

X 11 X?, "...' I)n are the values of the random quantity.

Pit P 2 g V' Pnare the probabilities of the values of the random
quantity, and

M is the mathematical expectation of the random quantity.

S-11-



Average Quadratic Deviation

Most frequently, the dispersion of a random quantity is charac-
terized by the average quadratic deviation, which has the dimensiona-
lity of a random quantity.

By the average quadratic deviation of a random quantity we mean
the square root of the dispersion.

where O" is the average quadratic deviation. ,.-

Example Seven: Ten ballistic rockets of the first type are launched
over the same distance. In four launchings the rockets deviated by 1
kin, in one launching by 2 kIn, and in five, by 3 km.

Ten ballistic rockets of a second type were also launched over the
same distance. In one launching a rocket deviated by 1 kin, in six
launchings by Z kin, and in three launchings, by 3 km. Determine the
mathematical expectation, dispers',on, and the average quadratic devia-
tion of misses for both tpes of rr',kets.

Solution: Accepting that the probability of an event is proportio-
nate to its frequency, one may obtain the laws of distribution of a ran-
dom quantity, of the deviation (misses) of rockets of both types. These
distributive laws can be shown in the form of a table.

A i

CC.
3XI-4qN112 np•0MAX8. mv I. 2 3

nepHuu TIM 0,4 0,1 0,5b paKeThl

BepoRTHOCT1 nosiA e-e-
111111 9TIX 3Ha'euit - 1O TOO TIM 0,1! 0,6 0,3

paxem•

Key: a. Value of miss, kin; b. probability of these values
occurring; c. First type of rocket; d. second type of

-12-



The mathematical expectation of the magnitude of a miss is equal

to
M/,= 1I.0,4 + 2.0,1 + k•.0,5 = 2,1 Km•;

MI, = 1.0,1 + 2.0,6+ 3.0,3 = 2,2 Kx.

Comparing the mathematical expectations of the size of a miss,
we can say, that in many launchings of rockets of the first type, we
will get somewhat better results in accuracy. However, a more de-
tailed examination of the other numerical characteristics of the ran-
dom quantity will allow one to bring out the positive qualities of the
second type of rocket.

The dispersion of misses will be equal to

D,= (1 -2,1)'0,4 +(2-2,1)0,1 +
+ (3 - 2,1)20,5 = 0,89 ,c.O;

=l (1-2,2)'0,1 + (2-2,2)'0,6+
+ (3 - 2,2)2 0,3 = 0,337 C.UM.

The average quadratic miss dev-.,tion forms

o -- 0,943 1CM;

o0=0,58 KV.

From here, it is apparent, that impact points for rockets of the
second type are less dispersed, more closely grouped around the average
value (and this means among themselves), than rockets of the first type.

Consequently, in single launchings of rockets of the second type, the de-
viation of the factual point of impact from the average miss value will
be about 1. 6 times less than that of rockets of the first type. And in-
sofar as the average miss value of both rockets is approximately the
same, one should prefer the seoond type of rocket for single launchings.

Distributive Functions

A continuous random quantity has an infinite set of possible
valuer', which entirely occupy a certain interval. Therefore, the

-13-
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probability that a continuous random quantity will take a certain fixed
value is equal to zero. For a quantitative valuation of the distribution
cf probabilities of a continuous random quantity, one uses the proba-
bility of the inequality P (X <x), where x is a ontinuous variable.

The probability of the inequality P (X < x) signifies the proba-
bility that the random qdantity X will acquire a value less than a cer-
tain assigned value x:

S P(x) PX< X).

The probability of the introduced inequality depends on x and
is called the distribution function. Geometrically, the distribution
function can be interpreted thus: F (x) is the probability that the con-
tinuous random quantity will acquire one of the values on the portion left
of point x (Fig. 7)

I

' IPIXI pIX< ri

Fig. 7. Distribution Function

The distribution function is also called the integral distribution
law.

The basic properties of the distribution function are as follows:

-- The function F (x) is the non-decreasing function of its argument;
-- At minus infinity the distribution function is equal to zero:

F (--00) = 0;
-- At plus infinity the distribution function is equal to one:

F(+co) = 1.

-14-



In solving practical problems, it is necessary to determine the
probability that the random quantity will acquire a value contained in
certain boundaries from A to /3 . Geometrically, this meai.s that
a point whose coordinate is equal to the random quanitity will fall on the
segment a(p . (Fig. 8).

A large number of problems of a military character, for instance,
problems in destroying enemy supply objectives, belong to this type of
problem.

I P~s) F~p)

0 -- p

Fig. 8. The Probability of a Chance Quantity Falling
on a Segment.

The probability o. the random quantity falling on the segment is
equal to the increase of the distribution function in this segment:

P (a< X < F) =(,8) -- F(a).

where P(k<X<P) is the probability of the random quantity
-alling on the segment, d /6;

F (o( ), F ( ) are the values of the distribution function at
points c4 and (3

Distribution Density

The distribution density (or differential distribution function) is
the limit of the ratio of the probability of a random quantity falling on

-15-



segment to the length of that segment, as the length of the segment
approaches zero.

f(x) = lim F(x + dx) - F(x)
Ax-O AX

where f(x) - is the distribution density, and

F(x) is the distribution function.

Consequently, we can write

dx

i. e. the distribution density is equal to the derivative of the distribu-
tion function (Fig. 9)

0

Fig. 9. Distribution Density

From this relationship one can determine the probability of the
random quantity falling on the segment . (3

P(4 X P) =f f (x)dx.

-16-



Normal Distribution Law

The normal distribution law (Gauss' Law) is the most frequently

met in solving military problems. All theoretical questions of firing,
bombing, intelligence effectiveness, radio counter-action, and relia-
bility of technical systems are based on use of the normal distribution
law. This law is the limiting law, to which all other distribution laws
approach in frequent, typical conditions.

The normal distribution law is characterized by a probability
density:

w (x) P =e V,

where f(x) is the probability density,

p " 0. 477 is the constant of the normal distribution law; and

E is the probable deviation.

The probable deviation (or average deviation) is half the length of
the segment, into which the probability of falling is 50%.

The probable deviation for the normal is connected to the average
quadratic deviation by the dependency

E = p Y" a - 0,674o,

where V is the average wuadratic deviation.

The Probability of a Random Quantity Falling on a Segment

The probability of a random quantity, subject to the normal law,
falling on a segment is equal to the difference of the values of the dis-
tribution function. The distribution function for tie normal law carries

the name, the Laplace Function (the positive region of determination).

In this manner, we have

-17-



where ý (x) is the Laplace function reduced.

Certain values of the reduced Laplace function are given in

Table Z.

TAB LE 2

0 0 0,5 0,261 3,0 0,957
0,1 0,054 1,0 0,300 4,0 0,993
0,2 0,107 1,.5 0,6&8 .1,5 0,998
0,3 0,160 2,0 j 0,823 5,0 1 0,99
0,4 0,213 2,5 0,908

If the length of the segment is equal to I (one), and the center
of dispersion coincides with 'he center of the segment, then the pro-
bability of the random quantity .L*Aling on the segment, that is, on an
infinite band of width 1 (one), equi 1 to

By this formula, with the aid of Table 2, one may calculate the
probabilities of falling in consecutive segments of length E, lying
away from the center of dispersion, which are reduced in the table below

PaccToRiHIe or uteHTpa pac- 2E/ 3E 4E
cei6saH s 5oatX E

Beposmocab, S 0, 25  0,16 J0,07 0,02

Key: a. Distance from center of dispersion in units E;
b. Probability.

In this manner, a chance quantity, subject to the normal law,

deviates, in practicality, not more than four deviations from the cen-
ter of dispersion.
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The Probability of Falling in a Rectangle

If the center of dispersion coincides with the center of a rectangle
(Fig. 10), then the probability of falling in it is:

where P is the probability of falling in the rectangle,

a, b are the dimensions of the rectangle, and

Ex, Ey are the probable deviations in the directions of X and Y
axes (the axes parallel to the sides of the rectangle).

Example Eight: Rockets are fired at an airstrip whose dimen-
sions are Z000 by 80 m.' The dispersion of the rockets is circular
with a probable deviation of 150 m. Determine the probability that the
rocket will fall on the strip.

"" X

Fig. 10. The Probability of a Random Quantity Falling

in a Rectangle

Solution: Substituting the figures into the formula for probability
of falling in a rectangle, we obtain

p F. 500, 2ooo 5- 80 , -- (6,7) $ (0,27) 1.0,15 0,15.
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The Probability of Falling in a Dispersion Ellipse

Often it is necessary to consider a system of random quantities,
distributed in space or on a plane. In the case of two independent ran-

dom quantities we may speak of the domain of their definition on a
plane.

If the random quantities are subject to the normal distribution
law, then all the possible values of two independent random quantities
are dispersed so that they will form an ellipse on a plane, which is
called an ellipse of dispersion.

Usually, two tyrpes of ellipse are considered, the unit ellipse
and the full ellipse.

By unit ellipse of disperjion, we mean an ellipse that is equal
to the probability density, whose semiaxis is equal to the principle pro-
bable deviation. Its equation takes the form

E EJ

By full ellipse of dispersion, we mean an ellipse equal to the
probability density, whose semiaxis is equal to quadruple the principle
probable deviations. Its formula is:

X2  
-

The full ellipse of dispersion contains practically all of the dis-
persions on a plane, since the probability of a random point falling outside
of its borders is small (about 0. 03). If the principle probable deviations
are equal to each other, then the ellipse of dispersion turns into a circle
and the dispersion is c..lled circular. Circular dispersion occurs in
bombing and in firing of many types of rockets.

The probability ot falling in an ellipse of dispersion, whose semi-
axis is equal to A probable deviations, is expressed by the formula

P = I• e-e'F'.
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The probabilities of falling into unit and full ellipses are equal,
correspondingly, to

P = 1 - e-P' -I - e-'-n' = 0,203;

P.o, 1- e-(' = 0,974.

As a characteristic of circular dispersion, radial probable de-
viation is often applied.

Radial probable deviation is what we call the radius of a circle
of dispersion, in which the probability of falling is 50%. Radial devia-
tion is connected to probable deviation by the relationship

Ep,,=1,75E

Mathematical Expectation of Damage

The mathematical expectation of damage inflicted on the enemy
as a result of combat operations objectively characterizes the combat
capacity of the armament and presents an average number -f destroyed
enemy units, an average reduction in the productivity of the objective,
the average destruction of separate elements of the target, efc.

In considering the military application of flying devices, (ballistic
and winged rockets, bombers) against ground targets, we may apply,
as a criterion of combat effectiveness, the mathematical expectation
of the relative damage inflicted on a flat target.

At first, we will take into account the enemy's counter action and
the technical reliability of our flying devices.

Suppose armaments are thrown at a flat-surface target, which
will destroy thc target within their radius.

We may assume, that on the area of the target there will be placed
another area -- the region of disruption. In roket launching or bombing
one is stri. sig to make the center of the target area and the center of the
area of disruption coincide. However, as a reault of dispersion, there
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is a random deviation of the center of the area of disruption from the
center of the target area. These deviations are subject to the normal
iaw.

For the real contours of the target and the area of disruption
we will substitute equal rectangles Tx T and Lx L (Fig. 11).

LLX

0--

EX

Fig. 11. To a Determination of the Mathematical Expectation
of Relative Damage

Key: a. Tx; b. Ty.

The relative area overlapped by the area of disruption and the
target area, i. e. , the area of destruction, is equal to:

M! =M NXMy,

Key: a. TxT7

xy

where M is the relative damage;

LxLy are the lengchs of the overlap area in the directions of x and y,

Tx and Ty are the dimensions of the target, and

Mx and My are the relative lengchs of overlap in directions x and y.

The mathematical expectation of the relative damage inflicted on a
flat-surface target is determined by the formula
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Since the formula for findingM and M has an unwieldy form, in
practicality, problems of determining the degree of destruction by arms
are solved with the heAp of electronic compu.ters, special tabls, graphics
and nomograms.

For stationary electronic calculators, algorithms and programs.
have :,en developed, which allow a quick determination of the degrees
of destruction of objectives by armaments.

Very good results are given by the use of tables, graphics, and
nomograms, made from calculations by electronic computers for
typical enemy objectives and basic military weapons.

If the dimensions of the target are large by comparison to the
radius of destruction and the dispersion is circular, then, for approxi-
mate calculations, one may determine the mathematical expectation of
the relat've damage by the formula

Af R, )
IRa 2I

Key: a. R ; b. Rt

Where M is the mathematical expectation of the relative damage;

Rp is the radius of destruction;

Rt is the radius of the target (the radius of a circle equal in area
to the target);

E is the probable deviation.

Probability of Destruction of a Target

Destruction of a target means that through the use of weapons the
functioning of one or more elements has been destroyed, as a result of

-23-



which, the target ceases to fulfill its tasks.

The probability of destroying a target is the probability of inflict-
ing so much damage, that the target goes completely out of order and
its continued functioning is terminated.

The probability of destroying a target depends on the destructive
power of the weapons being used, the quantity of weapons fired at
the target, the dispersion characteristics of carriers of nuclear weapons,
and the viability of the target itself.

The probability uf destroying a target is ýdentified with the pro-
bability of the weapons hitting in a circle, whose radius is equal to the
radius of target destruction. With circular dispersion the probability
of target destruction is determined by the formula

W. 1 -

where W is the probability of target destruction,

f" 0. 477 is the constant for the normal law,

Rn is the radius of destruction, and

E is the probable deviation.

We identify the ratio of the radius of destruction to the probable
deviation

R,
r :bK.

In suchan instance, the probability of destruction of a target is
written in the form

W 1 e-et".

In Table 3 are entered probabilities of target destruction in per-
centages, depending on quantities K.
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TABLE 3

_ _ _ .eciwe .0o.m

o 0o.1 (2o 0.3 : o.4 1o.s5 0.610,7 0o.8 o0.9

S 0. 0 0,2 1 2 4 61 8 11 14 17
2'0 4 29 32 36 404 485256

e 1260 63 67 70737679 81 83 85
2 3 87 89 90 9293 94 959696 97

4 497 98 ý6 99 99 99~ 99 99 99100
5 [ j100 100 0 100 100 100 100 100 100 100

, I

Key: a. Tenths; b. Whole numbers

Example Nine: Determine the probability of destroying a
launch position of the open type with a'ballistic rocket. The radius
of destruction is 2. 25 kmn, and the rocket's probable deviation is 1. 5
km.

Solution. We calculate the quantity K: K--R-- ,25= 1,5.

From Table 3 we derive the probability of destroying
the target:

W= 40%,.

Example Ten: Determine the probability of destroying a start-
ing position of the pit type with a ballistic rocket. The radius of des- 4
truction is equal , .4 km, the probable deviation of the rocket - to 1. 5
km.

Solution: We calcujate the quantity K

"Ku T' - =0,93. 1.

From table 3 we find the probability of destroying the pit type
starting position:

W-= 17%.

Example Eleven: Fighter-bombers inflict a blov on an enemy
guided-missile battery. The radius of destruction is equal to 1. 5 kin,
the probable deviat.ion of the weapons is 0. 1 kIn. Determine the pro-
bability of destruction.
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Solution: We calculate the quantity K:

-15.

From Table 3, we determine the pr;.,bability of destroying the
battery.

W= 100%.

One should note, that if K is greater than 5, the probability is
equal to 100.Vo.

Evaluating the Effectiveness of Combat Operations by Calculating the
Enemy's Counter-Action.

In analyzing combat operations, tho most important and complex
task is calculating the enemy's counteraction.

In evaluating the enemy's counter-action, we may distinguish two
basic cases:

-- When the enemy's counter-action precedes the operation be;.g
considered, whose effectiveness is being evaluated;

-- When the enemy counter-action occurs in the course of the
military task.

The first case is more simple from the mathematical point of
view and, at the same time, can be met sufficiently often in military
circumstances.

For instance, in determining the effectiveness of strikes by
aviation, we must count the losses, which the enemy inflicts upon us
in the air and on the ground. In this connection, only the planes which
reach the assigned objective will carry out a strike against it.

In the case under consideration, the enemy counter-action pre-
cedes our operation.

The scheme for calculating the enemy's counter-action, preceding
the fulfillment of a combat mission, depends on how many units fulfill
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the mission. First, we will consider the case, where the mission is
fulfilled by one military unit ( rocket, plane, artillery, battery, tank
or subdivision of motorized infantry).

As the criteria of effectiveness we take the probability of
fulfilling a combat mission W or the mathematical expectation M of
damage inflicted on the enemy. We indicate by Wd the probability that
the military unit will not be debtroyed by the enemy's counteraction.
From here on, this quantity will be called the probability of reaching
the target. Obviously, for th, military unit to fulfill the assigned
mission, it is necessary, first of all, that it not be destroyed.

Consequently, in order to calculate the preceding enemy counter-
action, it is necessary to multiply the criterion of effectiveness, cal-
culated without considering the counteraction, by the probability of
reaching the target.

Indicating the criterion of effectiveness with consideration of
counteraction by Wpr or Mpr, we obtain

WWD or Mpr MWV

Example Twelve: Our tank attacks an enemy tank located in
concealment. The enemy tank begins firing earlier than ours. The
probability of our tank being destroyed is Wo = 0. 5, and the probability
of destroying the enemy tank is We = 0. 4. Determine the criterium of
effectiveness of our tank with consideration of the enemy's counteraction
(return fire).

Solution. Applying the formula for the probability of destruction
with consideration of counteraction, we obtain

Wp= W W. i0.4(1- 0,5) = 0,2.

Example Thirteen: A bomber makes a strike against a troop con,
centration. The probability of the bomber being shot down by the enemy
anti-aircraft weapons is Waa 0. 2. The bomber's effectiveness is 0. 7,
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relative to the destruction it inflicts on the enemy troop concentration.
Determine the bombers criterion of effectiveness, takinginto account
the enemy anti-aircraft counteraction.

Solution: Applying the formula for mathematical expectation of
damage with counteraction, we obtain

"M-4o= MWV - 0,7 (1 - 0,2) = 0,56.

We will consider the case where several military units perform
a mission (tank group, infantry unit, rockets, planes).

A group of military units, used as ý' means of enemy counter-
action, is a group target.

For simplicity, we w1,l consider that the military units, making
up the group target, are subject to counteraction, independently of one
another. We indicate by W1 , W?, W3 , ... 'Wn the probabilities of des-
troying the enemy objective with ,ach separate unit, and by WId, Wzd,

Wnd the probabilities that these military units will reach the tar-
get (the probabilities of their naot being destroyerd).

Then the probability of fulfilling a mission with a group of military
units witki enemy counteraction is expressed by the formula I

W.1/, = 1 -- (1 -- W1JPLW,) (1 -- WUM).. (1 -- W1't W11').,

Key: a. pr; b. d.

If the probabilities of destroying the enemy objective by the
military units and the probabilities of their reaching the target are
correspondingly the same, then the preceding formula takes on a sim-
pler form.

Wv = 1 -(1 - WW)",

pr&

Where W is the probability of destroying the target with a group
of military units.
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Wd is the probability of reaching the target for each military unit.

W is the probability of destroying the target for each military
unit, and

n is the number of identical military units.

Therefore, if the military units are subjected to enemy counter-
action indeipendently of one another, then to calculate the enemy
cdunteraction it is sufficient to multiply the criterion of effectiveness
of each unit by the prok ability of reaching the target, and then use the
formula with the exponential law.

If, as a criterion of effectiveness, we take the mathematical
expectation of damage, then the formula for the mathematical expecta-
tion ef damage with enemy counteraction takes the form

Map;I (I(- Wl;'M,) 0 W.2 ...(1
MAP 0 -(- WWM)".

Key: a = pr; b = d

Example Fourteen: A strike is made by a chain of fighter-
bombers with the usual weapons against an enemy launching pad for
tactical-operational rockets. The probability of destroying the launch-
ing pad with one fighter-bomber is equal to Wfb - 0. 4. The probability

of a fighter-bomber being destroyed by the enemy anti-aircraft fire is
Wdb 0. 25. There are 4 fighter-bombers in the chain. Determine the
probability of destroying the launching pad with the chain of fighter-
bombers with consideration of enemy counteraction.

Solution. Applying the formula for unconditional probability of
destruction by identical military units, we obtain

OP W0 1W = I - 1 -[ (1- W16) W.. 61
--- (I -(1 -0,25) 0,4, =--. I -0 07--= 0,76.

Key: a. pr; b. d; c. sb.; d. ib.

Earlier, we considered a method of calculating enemy counter-

action, when the courteraction precedes the fulfillment of the combat
mission.
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In practice, in a number of cases, the enemy counteraction does
not precede the rrilitary mission, but occurs in the course of the
operation. This is observed especially often in conducting operations
with ground forces, an, most of all with motorized infantry and tank
units and combinations. The case that is most simple for calculating
counteraction in the course of operations is where the consecutive mo-
ments of fire are known and considered to be given. A scheme for cal-
culating counteraction, based on such an assumption, is called the
scheme of consecutive strikes of the discrete scheme.

However, one should notice, that when a large number of combat
devices are participating in an operation, mathematical analysis by the
discrete system becomes exceedingly complex, demanding the use of an
electronic calculator.

To illustrate this method, we will consider a battle between two
tanks. We will set the following battle schieme. Our tank attacks first
from a defined distance with a probability of W, (the upper index is Lhe
number of the shot). If the enemy tank is not destroyed, it will fire at
our tank and destroy it with a probability of W1. If our tank is not des-
troyed, it will continue the attack, fire a second time at the enemy tank
and destroy it with a probability of W . If the enemy tank is not destroyed
by this, it fires again at our tank and destroys it with a probability of
W2 It is necessary to analyze the firing effectiveness of each tank and
find the characteristics of effectiveness.

We will consider the different possible outcomes of the tank battle.

A1 1 - neither tank destroyed

A 1, 0 - our tank whole, enemy tank destroyed;

A0 1 - our tank destroyed, enemy tank whole.

Using the theorems of addition and multiplication of probabilities,
we obtain the probabilities of the possible outcomes of the battle.

W=.' = (0 - W1) (1 - D) ( - 1) (1 - W0;

Wo , =- Wl+ (1- VP (1- W2)- 1
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Where W1 , 1 is the probability of neither tank being destroyed in
two attacks,

W0, 1 is the probability of our tank being destroyed in two
attacks

WI, 0 L, the probability of the enemy tank destroyed in
two attacks.

From the example we have studied, we can clarify the method of
calb.ulating counteraction by the discrete scheme of battle, and also the
complications which occur in the case of a battle of a large nwunber of
units.

Fuller and more useful results for calculating enemy counter-
action may be obtained by doing "models" of combat operations on
electronic computers. I
Computing the Array of Weapons Needed to Complete a Military Mission

Choosing the array of military weapons is a most important
problem, which must be solved in organizing combat operations of units,
sub-units, combined forces, in planning operations, and in the course
of military operations.

A compiete solution of this problem is difficult without usIng
modern mathematical methods. Fcr a large number of weapons, brought
into the operation, computations become complex, and at the present time
they are more and more frequently solved on computers.

We will examine a general scheme for solving problems in the
needed array of military weapons.

Suppose we have to solve a combat mission (destroy a gro.up of
enemy rocket forces, a gronp of tanks, a troop concentration, etc. ) and
the effectiveness of its completion is judged by certain criterion of
effectiveness M or W.

It is necess!ary to determine the quantity of weapons (rockets,
planes, tanks, etc. ) for which the criterion of effectiveness reaches
an assigned value M3 or W3 .
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In the capacity of a criterion of effectiveness for fulfilli.ng a
given mission with given weapons, one may take:

-- The probability of destroying a single target;

I

-- the mathematical expectation of the number of destroyed

weapons in the composition of a group target;

-- The probPAility of destroying not less than an assigned

portion of the weapons composing a group target.

-- The probability of destroying not less than a given portion
of the area of the target.

For a single target, the problem is formulated in the following
manner; how many weapons (rockets, planes, etc.), are needed a target
with a given probability?

Suppose n independent launchings are made against a target,
and the probability of destruction is the same for each. Then the pro-
bability of destruction will be euql to

ntw = i--(1 -- )

Where Wn is the probability of destroying the target in n launchings;

W is the probability of destroying the target in one launching.

Equalizing Wn with the assigned value of the c~riterion W3 and
solving the equation relative to n, we obtein

19= 01 (- WO)

Tg-(I--w

The formula obtained is the basic one in computing the order of
forces in independent launchings.

Below is Table 4, in which for certain values of the probability
of destruction and for certain magnitudes of the probability of destroy-
ing the target with one means, are given values of the number of wea-
pons needed, for independent launchings.
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TABLE 4

M. W.'l.

50 7o 3 1 1 1601 9 4 321 ! 1
70 12 5 2 1 1
OD 15 7 3 2 1

95 29 13 6 4 2

For practical calculations, it is convenient to use a graph in-
stead of a table (Fig. 1Z).

Example Fifteen: With one volley of non-guided reactive shells
an enemy command point is destroyed with a probability of W a 0. 2.
How many volleys must be fired to destroy the command point with a

probability of W3 , 0. 8?

Solution: By the formula we have

SIg (1 - 0,8) = 7.
Ig (I - 0,2)

The same result is obtained from Table 4.

Example Sixteen: An enemy starting position is destroyed by a
rocket with a probability of 0. 4. How many rockets are needed to des-
troy the starting position with a probability of W 03 .0 95 ?

Solution.
- Ig (I - 0,95) 6.

Ig (1 -- 0,4)

Example Seventeen: An anti-aircraft rocket shoots down an

enemy plane with a probability of W : 0. 6. Determine the numbzr of
rockets necessary to destroy an enemr plane with a probability of W3

0.9.

Solution: n Ig (I -0,9)
Ig(I-0,6) -
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Fig. 12. For determining WeaponsNeeded to Secure Target
Destruction at an Assigned Level

Key: a. or

If, as the criterion of effectiveness, we take the mathernatical
expectation relative to damage inflicted on a flat-surface target, then
the needed amount of weapons may be determined by the formula

Where n is the average number of weapons;

M3 is the assigned level of destruction of a flat-surface target,
and

M is the mathematical expectation of the d,.mage, inflicted by
one weapon.

In this way, to dete:-mine the needed amount of weapons,, one must,
first of all, be able to find the muathematical expectation of the damage
inflicted by one weapon.
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For this there are many graphs and tables. We will enter one of
the simplest graphs, allowing the determination of the mathematical
expectation of damage in the application of special weapons.

The order in which a problem is solved in determining the average

value of the needed quantity of weapons with the use of the graph (Fig.
13), will be as follows:

1. We define the relative radius of target destruction by the
special weapon in units of the probable deviation.

R R

where R is the relative radius of target destruction;

R is the radius of target destruction for the special weapon,
p

E is the probable deviation in launching the special weapon.

2. We calculate the relative dimensions of the target in units
of probable deviation (we see the target approximately as a rectangle
or square): 0.

rily
S E

Key: a. T

Where T , Ty are the relative dimensions of the target;
X

Tx, Ty are the linear dimensicns of the target

E is the probable deviation of circular dispersion.

1 In the case of non-circular dispersion one must find the quantities
separately R R

Y E
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3. By the input parameters R, Tx, T we find on the graph
the relative linear overlapping of the surface of the target by the
area of disruption: ,ix and My.

4. We determine the mathematical axpectation of the damage

inflicted on the flat-surface target by one weapon:

needed to invlict a given amount of damage M 3 on a target:

n= 111(1-A1 3)
Ig(I - M) '

6. In considering the enemy counteraction, we determine the
average amount of weapons by the formula

a-- lg.(l -- MS)Ig (1 - laW)

where Wd is the probability of the carrier reaching the target.

We will analyze an example by applying this. method.

Example Eighteen: A strike is carried out by a rocket on a
tank battalion in an area of concentration. The dimensions of the I
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area are 1 x 2 km. Determine the losses to personnel in the tanks
(personnel mnade non-operative) if the rddius of destruction of our
weaponry is equal to 1. 4 km.

The probable deviation of the rocket is 0. 7 km.

Solution:

1. We determine the relative radius of destruction

1,4

Z. We determine the relative dimensions of the target

a

Key: a - T.

3. From the graph, we find:

MA,=0,81; M,=0,76.

4. We determine the mathematical expectation of damage (the
average percent of personnel of the tank battalion made non-
functional):

M . 0,81 .0,76 _ 0,62.

In this manner 62% of the personnel of the tank battalion are
made non-functional, i. e. it is, for practical purposes, destroyed.
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For the production of advance operatiye calculations of the
needed weaponry, calculations are usually made in advance on the
EVM tables, in which, for typical objectives and weapons the
needed amount is given without considering enemy counter-
action (the firing range amount).

Evaluating the Effectiveness of Weapons of Anti-Aircraft
Devices

By effectiveness of anti-aircraft defense weapons, we
shall mean their capability to fulfill a set of military objective
of destroying aerospace devices of the enemy in flight.

The criterion for a quantitative analysis of military effec-
tiveness sLems from the specific nature of the task that a
specific weapon is intended to perform.

In a n-imber of cases, it is important to know not only the pro-
bability of destruction or the mathematical expectation of the
number of destroyed targets, but ehe expected magnitude of one's
own losses. In some cases, it is necessary to know the cost of one's
expenditures (considering the expected losses) i. e., one must be

able to make an evaluation of military economy.

Finally, such characteristics, as the time required to fulfill
a military mission, have acquired great importance in modern cir-
cumstances.

However, as the most frequent criterion of anti-aircraft wea-
pons, we use the probability of destruction of an enemy aerospace
target or the mathematical expectation of the number of destroyed
targets.

If several independent .ttacks are maide on an enemy target, by
identical weapons, (where each one attacks one time) then the pro-
bability of shooting down an aerospace target will be equal to
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W, = 1 -( - WY,

where Wi is the probability of shooting down a target in attacks of

i weapons

W is the probabilitN of shooting down a target with one weapon,

i is the number of independent attacking weapons.

When an aerospace target is attacked by different types of
weapons (we will consider the attacks independent) the probability
of shooting down the target will be equal to

CL
W oP = I - (I - W,)"-(I - W.)".... (1 - W,,),.,

Key: a - por

i

where W 1 , W2 , . *., Wn is the probability of shooting down a

target with the 1, 2, . . . n-th type of weapon,

Sis the number of attacking weapons of the first type,

i is the number of attacking weapons of the second type,

in is the number of attacking weapons of the n-th type.

Knowing the average probability of destruction of one aerial tar-
get, it is easy to determine the mathematical expectation of the num-
ber of destroyed enemy flying devices:

4
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where M is the mathematical expectation of the number of destroyed
targets,

Nt is the number of targets attacked by anti-aircraft weapons,

Wj is the probability of destroying one target by the j-th anti-
aircraft weapon.

If the probability of destruction for all the weapons is the same,
then the formula will take the form

Key: a - T.

We will suppose, that Nt flying enemy devices participate in an
enemy aerial attack (rockets, airplanes). To repel the attack, there
are N anti-aircraft weapons (fighters, AA rockets, anti-rockets).

We will consider, that the anti-aircraft weapons are evenly dis-
tributed (in the attack) among the attacking group.

In this case, the probability of destroying one enemy flying
apparatus will be

N
WMP 0 I--(-- W)

Key: a - por;

The mathematical expectation of the number of destroyed targets
is determined by the formula

M= b--IV--LMNu Wa Nt[I - (1- W3J
Key: a - por; b - t.

We introduce the identity:
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The quantity At represents the correlation of forces in the air:
the ratio of the number of attacking defense weapons to tite number of

flying enemy targets.

The connection between the probability of destruction and the
quantity A is established by the formula

Key: a - por.

The obtained formula allows one to solve the following important
anti-aircraft problems:

-- to determine the relative losses of enemy flying devices from
the given effectiveness W of the anti-aircraft weapon in one attack,
and the correlation of forces in the air A .

-- to determine the needed correlation of forces in the air from

the known effectiveness Wpor and the assigned magnitude of relative
losses.

To solve problems of the second type, it is convenient to use the
formula

x Ig (I- W.Oct)
Ig(1-W)

Key: a - por.

In Table 5, values of the needed correlation of forces with respect
to relative losses and weapon effectiveness are entered.

TABLE 5

w b

0.10 J0.20 0.40 0.60 0.80 0,90 0,95

"0,20 3 1 1 1 1 1 1
0,40 5 3 1 1 1 1 1
0:60 9 5 31 1 1 1
OSO 15 10 4,2 1 1 1
0,90 22 13 6 i 4 2 1 1

Key: b - por
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We will consider several examples of the application of the
simplified method of evaluating the military possibilities of groups of
anti-aircraft weapons.

Example Nineteen. In a massive enemy attack, we may expect
up to 530 enemy airplanes.

The anti-aircraft forces have the following weapons:

-- 360 AA rocket launching pads

-- 350 fighters.

The probability of shooting down an enemy plane with a rocket
is 0. 6; the probability of shooting down an enemy plane with a fighter
if 0. Z (calculating interception and the possibility of an attack in
formation).

Considering that the enemy planes are attacked equally by AA
rockets and fighters, determine the military capacity of the anti-
aircraft system to repel the massive attack.

Solution:

1. We calculate the average number of attacks by AA rockets:
360
36 . =0,68.

2. We calculate the average number of fighter attacks

3 50 - 0,66.

3. We calculate the probability of destroying an enemy airplane
with AA rockets:

W, = 1 - (1 -- 0,6)°8 -= 0,46.

4. We calculate the probability of destroying an enemy airplane
with fighters:

W2= 1 -(1 -0,2)-'6= 0,1o.
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5. We calculate the probability of shuoting down an enemy air-
plane in a joint operation of AA rockets and fighters

w ,v Ip-- 1 - ( I -- W ,) ( I - - W ,) --

1- (1 -0,46) (1-0,10)'-- 1-0,54.0,9= 0,51.
71

6. We calculate the matheroatical expectation of the number of
enemy airplanes shot down, by AA rockets and fighters:

a b"
M- N.WVP. M 30.0,51 = *0.

Key: a- t; b - por.

Example Twenty: 400 rockets/can participate in a simultaneous
launch.

Spearheads of rockets are attacked by 300 anti-rockets. The pro-
bability of destroying a spearhead with one anti-rocket is equal to 0. 4.
Determine the military capabilities of the group of anti-rocket com-
plexes.

Solution:

1. We calculate the average number of attacks, conducted against
a spearhead:

*300i .= 0,75.

2. We calculate the average probability of shooting down a spear-
head.

P -(I- = 1--(1- 0,4)°'7 = 0,32.

Key: b - por.

3. We calculate the mathematical expectation of the number 'f
destroyed spearheads:

M = NA I-.P = 300.0,32 - 96.

Key: a -t; b- por.
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Under present conditions, with the rapidly changing aero-space
background, such a means of solving target-assignment is not suffi-
cient.

The Commander will not have time to make a decision, supported

by calculation and, in addiLion, the actual situation will be so compli-
cated, and the number of possible variants so great, that quickly
making the right decision, without special calculations, will be very
difficult. From here, it follows that the problem of choosing a target-
assignment, as the most important task in the dynamics of anti-

aircraft defense operations, must be solved with the use of an
electronic calculator.

Below, we have briefly laid out several means of solving
target-assignment problems for different conditions, stemming from
operacional-tactical demands.

The problem of target-assignment for anti-aircraft defense
weapons is very complicated in its full extent. In solving it, one
must consider many factors: setting boundaries for the anti-aiir'raft
defense weapon base with respect to the defended object or territory,
the dimensions of zones in which enemy flying machines are observed
by directional radio equipment, the temporary characteristics of
channels, manueverability of targets, the possibility of applying
active and passive obstacles, enemy counter-fire, and the presence of
especially important targets in the composition of an attacking group.

All of these circumstances, to one degree or another, are con-
sidered in making concrete algorithms of target-assignment, which
are used in machines designed for autormatic control systems.

To clarify a principle aspect of the target-assignment problem,
we will consider simplified schemes or models, in which target-
assignment is determined from different points of view. This will
help in clarifying basic principles, and the effects of target-assign-

ment on anti-aircraft effectiveness, and to determine the degree of
centralization necessary for anti-aircraft defense units, etc.
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Example Twenty-One: From the conditions given in Example
Nine determine themilitary ca.abilities of an anti-aircraft group,
considering that fighters attack first, and then AA rockets attack
those airplanc6 that have broken through.

Solution:

1. We calculate the average number of fighter attacks

350
W = 0,66.

2. We calculate the probability of destroying an enemy plane
with fighters

Wa -- -(I - 0,2)°'6 - 0,10.

3. We calculate the mathematical expectation of the number of
enemy airplanes shot down by fighter.

M, = 530.0,10 = 53.

4. We calculate the mathematical expectation of the number of
enemy airplanes breaking through the zone of fighter cover

OP= 530 -- 53 - 477.

Key: a - pr.

5. We calcul te the average number of AA rocket attacks

360
4.-• • 0,7&

6. We calculate the probability of destroying an airplane with
AA rockets:

W3r= 1 -(1 -- 0,6)°3s . 0,51.

7. We calculate the mathematical expectation of the number of
emy airplane's shot down by AA rockets:

7 M2 =477.0,51 =24&

f
/1
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8. We calculate the mathematical expectation of the number of
enemy planes shot down by fighters and rockets (by their consecutive
entry into the battle):

M = 53 + 243 = 296.

9. We determine the percentage of destroyed airplanes (the
effectiveness of the anti-aircraft defense group):

f ~ ~ Ct, . 296..,,,• • -• ,u--56%ý

*1 /Key: a - dest.

1 Analyzing the probable variants of an enemy attack, and the diverse

wa4,s that its forces may be distributed, one may find optimal variants
of -epelling the attack, which must be worked out beforehand as
characteristic.

Problems of this sort are most successfully solved by using

mathematical models on electronic calculators.

Prpblems in Target Assignment for Anti-Aircraft Forces

'Target-assignment is fixing a specific aero-space target for each
ttpe of anti-aircraft apparatus.

If there are several aero-space targets, whose attack we must
. repel, and we have at our disposal several weapons (fighters, AA

rockets, anti-rocket rockets), then the organization of our fire-
power begins with the making of a decision. In this decision, it is
indicated which unit to aim at which target. It may turn out that
several units will be aimed at the same target, but certain targets
will not be fired upon.

Solving the problem of target-assignment is a typical example of
a tactical decision, touching upon the means of applying already
existing technology to battle.

Under the conditions of the last war, a decision of target-assign-
ment was usually made by a Commander on the basis of experience
and with regard to circumstances.
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Target Assignment by Mathematical Expectation

The problem ýan be formulated in ttle following manner.

Suppose there are n anti-aircraft weapons, and there are N
aerial targets. Each weapon makes on attack (launch or take-off),
and may fire at any target, but without the same effectiveness. The
probability of'destroying each target, by any means, is given.

We must• find an optimal target-assignment, i. e. one for which
the mathematical expectation of the number of planes shot down is
maximum.

As a result of the solution to this problem, each anti-aircraft
weapon will be assigned a specific target,# upon which it must fire,
(here, it is possible, that one target will be fired at by several AA
weapons).

We indicate the probability of destroying the j-th target with the
i-th weapon by Pij" The totality of the possibilities of destroying
different targets by anti-aircraft weapons can be written in the form
of a table, which is called a matrix of effectiveness.

P1 P1 .. p ill/

, .P,,2 ... P.NI

In this matrix, for example, P 2 1 is the probability of destroying
target number one with the second anti-aircraft weapon, etc. The
numbering of weapons and targets is done beforehand, but arbitrarily.

This problem is called a problem of target assignment of n X N.

Let us suppose that an anti-aircraft weapon is defending a certain
territory. Then it is natural to assume, that the damage, which can
be inflicted on the defended territory will Le approximately propor-
tionate to the number of targets (attacking), that break through. The
task of the defense consists of keeping this damage to a minimum'.

-48-



Therefore, as the criterion of effectiveness, we rmay choose
the mathematical expectat'on of the number of targets shot down.

N

J=1

where M is the mathematical expectation of the number of targets
shot down,

W. is the probability of shooting down the j-th target.

The probability of shooting down a target depends on the type of
target-assignment, and in a given target-assignment is defined by
the quantity P...

It is necessary to find a target-assignment for which the mathe-
matical expectation of the number of shot down targets will be maxi-
mum.

We will explain how the probability of shooting down a target is
determined.

Suppose two weapons with numbers i and k fire at target number
j.

The probability of not hitting the target with the i-th weapon is equal
to ( 1-Pij); the probability of not hitting the target with the k-th weapon
is (1.Pjk).

The probability of not bitting the target when it is fired upon by
the two weapons is

(0 - P,J) (I - P*J).

Therefore, the probability of hitting the target with the two wea-
pons is

'W/ = 1 0 ( id 0- ,)( - Pkj).

Analogously, we may obtain the probability of shooting down a
target with any number of anti-aircraft defense weapons.
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Let us assume that the target-assignment has been completed,
that is, that each anti-aircraft weapon is directed at a completely
determined target.

This means that the dependency j(i) is established; that the
number of the target is determined synonymously by the number ef
the weapon (but not vice-versa, since in the case under consldera-
tion several weapons may fire at the same target.)

The function j(i) is called the target-assignment function.

The problem of finding a target-assignment function can be
solved by a direct analysis. Actually, the number of combinations
for assigning n weapons among N targets if finite, but for large
values of n and N, it is very great. If we analyze all the combi-
nations, and for each of them calculate the mathematical expectation
of the number of downed targets and find the target distribution j(i),
for which the mathematical expectation has the largest value, then
the target-assignment problem will be solved. For large values of
n and N a direct analysis of the possible variants is a long process,
and now such problems are solved on electronic computers.

Examining the different variants for constructing a group of anti-
aircraft weapons and the different variants of attack, one may obtain
a recommendation for the most reasonable construction of the anti-
aircraft group. The target-assignment problem allows clarification
of the demands, presented to perspective anti-aircraft weapons when
considering the question of repelling an attack by new or perspective
weapons of aerial attack. Making a model of the problem on an
electronic calculator, we may receive two important results, which
will allow us to answer the following questions:

-- How to construct an anti-aircraft defense group, and what
demands there are to be met with new weapons, so that the number
of targets breaking through to the defended area is made minimum.

-- How to construct an attack by your own aviation, (order of
battle, routes) so that che number of planes that break through is
maximum.

The last problem is particularly important for the future of avia-
tion.
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In order to graphically portray the essence of the problem of tar-
get-assignment by mathematical expectation, we shall examine some
examples.

Example Twenty-Two: A target-assignment problem of 2 X 2
is characterized by a matrix of probability of downing targets:

Target numbers
Weapon numbers 1 2

.1 0 0,6
2 " 00,

We must find the optimal target-assignment.

Solution:

We will write down all the variants of target-assignment as
pairs of columns, where on the left we indicate the weapon numnber,
and on the right the target number. In our case, four variants of
target-assignment are 'possible.

I 11 111 IV
(1 1) (1 1) (1 2) (1 2)
(2 1) (2 2) (2 2) (2 1)

The mathematical expectation of the number of shot down targets
for each variant of target-assignment will be

M = 0,8 + (1 - 0,8).0,7 = 0,94;

M11 = 0,8 + 0,1 = 0,9,

AMl = 0,6 + (1 - 0,6).O,1 = 0,64;

Miv = 0;6 + 0,7 - 1,3.

Therefore, the most effective is variant IV. In this variant,
the first weapon does not fire at the first target, in spite of the fact
that it has the most effectiveness when firing at it.
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Example Twenty-Three: The target assignment problem is
given by the matrix:

Target numbers
Weapon Numbers 1 2

1 0,6 0,1
2 0,8 0,2

We must find the optimal target assignmenc.

Solution: The possible target-assignment variants are as
follows:

I1 11!V
(1 1) (1 1) (1 2) (1 2)
(2 1) (2 2) (2 2) (2 1)

The mathematical expectation of the number of targets shot down
for each variant will be :

M, 0.6 + (I -- 0,6). 3 = 0,9'2;

M1 1 0,6 + o,2 =o,8;
M, =0,1 + (1 -0,1).0,2 = 0,28;

MIv 0,1 +0,8=0,9.

In the given case, variant I is the optimal, i. e., both weapons

must fire at the first target.

The Target Assignment Problem with Consideration of Importance of
Targets.

In repelling an enemy aerial attack, that is especially massive,
it is necessary to consider the danger which one or another target pre-
sents. In such an approach to the organization of reflecting an enemy
attack, it is necessary to add coefficients of value to the targets, which
are also known as the "weight" of the targets.

Increased "weights" may be assigned to the carriers of nuclear
weapons (if they are distinguished by some sign) to reconnaisance
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devices, hindrance producers, and targets located on the threshold
of destruction.

Suppose separate targets are assigned weights K_, K2,,.•• Kn,
expressing the numbered degree of danger from the targets. As a
criterion of effectiveness in such a situation, we must apply not only
the mathematical expectation of the number of targets shot down, but
the so-called "weighted" number i. e. including the importance of
the target:

Methods of finding the optimal target-assignment remain the
same, but with the difference, that in the matrix of probabilities of
shot down targets each column is multiplied by the "weight" (level
of importance) of the corresponding target.

Target-Assignment by Mathematical Expectation, But When Firing
at the Maximum Possible Number of Targets

Target-assignment by the mathematical expectation of the number
of shot down targets sometimes leads to several targets not being
fired at. This occurs, when the probability of hitting certain targets
is so small, that it is more useful not to use a weapon by itself, but
with the help of other ones. Target-assignment, based on such a prin-
ciple, can lead to the enemy, having understood our tactics, deliberately
drawing fire away from important targets to less important ones,
placing the latter into situations where the effectiveness of firing at
them will be high.

Therefore, it is necessary also to have other principles of
target-assignment, which contain a limit to the number of targets
which pass through without being fired upon. It is efficient to make
the following demand: to fire at every target, if it is possible, and
to concentrate the fire of several weapons on one target only when
all possible targets have fired upon one time.

With this limitatiun, the optimal target assignment also corres-
ponds with the maximum mathematical expectation of the number of
shot down targets.
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In such a target-problem situation, there can only be targets not
fired upon when the number of anti-aircraft defense weapons is less
than the number of targets. In order to prevent other weapons from
firing at a target that has already been fired upon, one applies, in
practice, the so-called "prohibition markers". These are special
signs or symbols, which are supplied to targets that have been
fired upon on the aerial situation screens or in the memory banks of
the electronic computers, that are automatically controlling the
weapons.

We will examine a target-assignment problem of n X N, where
n is less than N.

With this condition, each weapon must be directed at only one
target, and each target must be fired at by only one weapon. The
target-assignment j(i) defines the mutually identical correspondence
between the nmbers of the weapons and of the targets.

The number of possible targe, -assignment variants will, in the
given case, be equal to

N(N- 1) (N---2)...(N-- n+ 1).

Example Twenty-Four: We have a target-assignment of 2 X 3,
i. e. two anti-aircraft weapons for three targets. The matrix of
shoot-down probability takes the form:

I Number of Targets
Number of Weapons 1j 21 3

1 0,6 0,4 0,3
2 0,8 0,2 0,4

Find the optimal target-assignment.

Solution:

In examining the example, we see how many variants of target-
assignment there are in all: 3 X 2 6.

These variants are as follows:
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I I II. IV V" V1
(1 1) (1 1) (1 2) (1 2) (1 3) (1 3)

(2 2) (2 3) (2 1) (2 3) (2 2) .(2 1)

The mathematical expectation of the number of shot down targets
for each variant of target-assignment will be:

S,6 + 0,2= 0,8;
.4, = 0,6 + 0,4 = 1,0;

Min = 0,4 + 0,8 = 1,2;
• = 0,4 + 0,4 = 0,8;
Mv•;- 0,3 + 0,2 = 0,5;
M~=0.3 +0,8 = 1,1.

The optimal target-assignment corresponds to variant III; the
first weapon fires at the second target, and the second weapons fires
at the first target.

Target Assignment by Probability

In modern conditions, the important role of anti-aircraft is to
destroy all targets. This might be in defending an important objective,
when the enemy is using nuclear weapons, and the penetration of even
one of the targets is enough that the objective will be destroyed. In
such cases, the effectiveness of the anti-aircraft defense cannot be
judged by the mathematical expectation of the number of targets shot
down, since one cannot allow the penetration of even one carrier to the
objective.

Therefore, it is necessary to take, as the criterion of effective-
ness, the probability of not allowing a single target to get to its ob-
jective. Suppose we are given a matrix of probabilities of shot down
targets by anti-aircraft weapons as follows:
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P1, P12  ... Pi.I

We must find the target-assignment, for which the probability of
destroying all of the targets has the maximum value.

Obviously, for this all of the targets must be fired at and the
problem has a solution only if i is greater than or equal to j, (we
are examining a case, where each weapon fires only once).

If the probability of shooting down the j-th target by firing at it
with several weapons is equal to Wj, then the probability of destroy-
ing all the targets (considering that the events, that compose the des-
truction of separate targets, to be independent) is equal to

W==WIW 2... WN.

The optimum target-assignment will correspond to the maximum
value of the probability of destroying all of the targets.

Example Twenty-Five: We are given a matrix of shoot-down pro-
babilities of 2 X 2:

Number of Targets
Number of Weapons i 2

• i, i ifi

S I 0,:8 0,7

Determine the optimum target-assignment by probability.

We examine the possible variants of target-assignment:

I II III I'.:

(1 1) (1 1) (1 2) (1 2)
(2 1) (2 2) (2 2) (2 1)

Of these four variants, two (I and III), are clearly useless fur
solving the problem of target-assignment by probability, since, in
them, only one target is fired at.
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The probability of shooting down both targets in variants II and
IV will be equal to

Wi-= 0,6.0,7 = 0,42;
W1v = 0,8.0,9 = 0,72.

The optimum target-assignment by probability corresponds to
variant IV: the first weapon fires at the second target, and the
second weapon at the first target.

Target-Assignment for Identical Shoot-down Probabilities

In practice, one often meets the case, where anti-aircraft wea-
pons have approximately the same probability of shooting down enemy
targets. This, for example, corresponds to the case of repelling an

attack by targets of one type, by using defense fighters with the same
tactical and flight specifications, or anti-aircraft rocket complexes
with the same characteristics.

We will consider a target-assignment problem of n X N with
identical shoot-down probabilities.

Pit P11=... P.N- =

This problem can be solved with two criteria of effectiveness:

-- by mathematical expectation;

-- by shoot-down probability,

We solve the problem by mathematical expectation.

If n is less than N, the solution is trivial: each weapon may
fire at any target, but no two weapons may fire at the same target.

Now, suppose that n is greater than N. We will consider that
the number of weapons is a multiple of the number of targets:

n = KN,

where K is a whole number.
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It can be proven, that the optimum target-assignment can be
reached, if we distribute the weapons equally among the targets,
with K weapons for each target.

Then the probability of shooting each target will be:

We will consider a more general case, when the number of wea-
pons is not a multiple of the number of targets.

.=KN +- .

In this case, it is useful to distribute the anti-aircraft weapons
in the following manner: at each of e targets we direct K + 1
weapons, and K weapons at each of N - e targets.

Therefore, the optimum target-assignment for identical shoot-
down probabilities corresponds to the most even distribution of
anti-aircraft weapons among the targets.

We analyze the case, when as a criterion of effectiveness, we
use the probability that not one target will get past the line of de-
fense.

The probability of shooting one target will be equal to

where Wj is the probability of shooting down the j-th target,

W is the probability of shooting down a target with one anti-
aircraft weapon,

K is the number of anti-aircraft weapons, firing at the target.

The probability of shooting down all the targets will be

0- K N
Wf 9= 1 -(1- W)I.

Key: a - por
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If we change one of the weapons from one target to another, the
criterion of effectiveness will become equal to

W" 0_=-I i _ (I - )II] N-I IW 1:I
X [I_( - )K<-].

Key: a - por

Calculating WIpor from Wpor, we obtain

W -- _W= [i -.. ( -- W)KN-2(1 - W)K-1 W > 0.

Key: a - por

Here it follows that Wpor if greater than W' , i.e. the opti-
mum target-assignment also corresponds to the gven distribution of
weapons on targets.

Combat Effectiveness of Fighter Aviation

The probability of shooting down an aerial target can serve as
the criterion for evaluating the combat effectiveness of fighter avia-
tion.

The probability of destruction, as the probability of the combina-
tion of several events, will be equal to

Key: a - por; b - int; c - obs; d - at; e - sd.

where Wpor is the probability of destroying an aerial target,

Wint is the probability of interception,

Wobs is the probability of observing the aerial target with
fighter equipment,
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S/

Sg er t is the probability of the attack (the probability that the
fighter will be located in an area, where it can perform a maneuver
to occupy a starting position for the attack).

Wsd is the shoot-down probability.

If an aerial target is attacked by several different tyes of fighters,
then the probability of destrucLion will be equal to

W. =I- (I 1 - (i" -d ,,,

Key: a - por

where Wpor is the probability of destroying an aerial target

W1 , WZ, ... Wn are the probabilities of destroying a
target in one attack, for different fighters,

i1, i1, ... , i are the number of attacks on the aerial tar-
get by different fighters.

It should be borne in mind that, depending on the correlation of
forces (attacking enemy targets and fighters sent to repel them), the
quantities i1 , iZ, in can be less than one.

To compute the probability of destroying an aerial target in
several attacks by fighters, we may use Table 6.

TABLE 6

a nProbability of destruction in
Average number of one attack W
attacks per target, i ... por

0.25 0.0.60 0.,5 0.9 0.9

0,2 0,06 0.13 0,24 0,37 0,50
0,4 0,11 0,24 0,42 0,48 0,60
0,6 0,16 0,34 0856 0,62 0,75
0,8 0,21 0,42 0,67 0,72 0,84
1,0 0,25 0,50 0,.75 0 80 0,90
2,0 0,44 0:75 0,94 0,96 0,99
3,0 0,58 0,88 0,98 0,99 0,999

/-60- /



To calculate the mathematical expectation of the number of des -

troyed enemy targets, one may use the formula (for identical pro-
babilities of destruction):

M =NaW.P

Key: a - t ; b - por

where M is the mathematical expectation of the number of destroyed
enemy targets,

Nt is the number of attacking targets,

Wpor is the probability of destroying an aerial target (taken
to be the same for all targets).

We will consider several examples of calculating the probability
of destruction.

Example Twenty-Six: Determine the probability of destroying a
bomber with fighters armed with cannons for W = 0. 25 (the proba-
bility of a simultaneous occurrence of eventA: observation, attack
and shooting down with answering fire included in calculations). The
number of attacks is 2.

Solution:

W =-(-- 0,25)= 0,44

Key: a - IA.

If 50 bombers participated in an attack and they were each
attacked twice, then the mathematical expectation of the number of
bombers shot down would be

41 = 50.0,44 = 2Z

Example Twenty-Seven: Determine the probability of destruction
and the mathematical expectation of the number of bombers shot down,
if each bomber is attacked once by a fighter with cannon armament
(Wl = 0. 25) and an anti-aircraft guided shell is fired at every other
bomber (W2  0. 75) without considering interference or answering
fire from the bomber.
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Solution: WHA 1-(1-,25) (1 - 0,75)0-5

oCl jiii 0,75.0,5 = 0,62. 5
Mf- 50.-0,62 = 3 1.

Key: a - IA. ]

Example Twenty-Eight: Determine the probability of destruction
and the mathematical expectation of the number of bombers shot down
(100 bombers are participating in the attack).

In the first variant, all of the bombers are attacked evenly by
100 fighters with cannon armament (Wl1 0. 25), 20 fighters with

winged air-to-air rockets (Wz = 0. 9), and 20 AA (ground-to-air)
rockets (W3 = 0. 75).

In the second variant the bomber attack is in four groups with
25 airplanes in each group.

The distribution of forces by group is entered in Table 7.

TABLE 7

rpyuna ucTPe6xeTab- NclpNeb-
wIs saISaN I, X3X 2IMaLuI S 3YP

A nymUa IM C YPC

1 50 10 10
II 25 5 5

'W 13 5 5
IV 12 0 0

Key: a - group; b - weapons; c - fighter aviation with cannons;
d - fighter aviation with guided rockets; e - AA rockets.

Solution:

We determine the probability of destruction and the mathematical
expectation of the number of bombers shot down in the first attack
variant.
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W = - (I - 0,25) (1 _ 0,9).2 (1- 0,75)0.2 -

S1 - 0,75.0,50.0,76 = 0,72;

M 100.0,72 =72.

Key: a- IA

For the second variant, we will determine the probability of
destruction and the mathematical expectation separately for each
group.

WA = (1 - 0,25)2 (1 - 0,75)0." (1 - 0,9)0.,

I - 0,5.o,58 o0,40 = 0,83;M, = 25.0,88 = 22,
WMAII - I -- (I -- 0,25) (1 -- 0.75)0'2 (1 -- 0,9)°'2

0,. == 1 - 0,75.0,76.0,50:-- 0,72,

.N = 25.0,72 = 18;
WH•m 1 -(I o0,25)O (1 - 0,75)0.2 (1 - ,9)4z=

=1 - 0,84.0,76.0,50 = 0,67;

Afm = 25.0,67 - 17;,

WHAIV r.- 1 -( ( 0,25)0.--0,13;

Mf = 25.0,13~ -

Key: a - IA

The geneial number of bom.bers shot down in tne second variant
of attack and the given distribution of forces is

M=22+18+17+3=60.

From the analyzed example,* it is apparent that the tactic of
evenly distributing weapons among the bombers is useful for anti-
aircraft defense. Therefore, it is more convenient foz the bombers
to arrange their attack, so as to cause a more uneven distribution of
fighter forces among the attacking group.

The Military Effec tiveness of Bomber Aviation.

As the criterion of evaluating the military effectiveness of
bombers, we may use such quantities, as the probability of destroying
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certain separate targets, or the mathematical expectation of the area
of the target destroyed, (the mathematical expectation of damage in-
flicted on the target).

In addition, it is still necessary to consider the technical reliability
of the airplane (or winged rocket).

A combat flight can be conditionally devided into the following
stages:

-- the flight to the target, where the airplane is subjected to
the influence of different flying devices of the fighter type.

-- entry into the target area with the use of corresponding navi-
gational devices,

-- using weapons against the target,

-- return to the airport (for apparati of repeated use).

All targets are divided into two groups. To the first group belong
small targets, for whose destruction one hit by the correctly chosen
device will be sufficient. To the second group belong area targets,
for whose destruction several hits are necessary.

As the criterion of combat effectiveness for destroying small
targets, we can use the probability of destroying a target.

Considering the probability of each stage (event), we present
the criterion of effectiveness in the form of the probability of des-
troying a separate target:

W = wwIV, W,

Key: a - por; b - d; c - t; d - b.

Where Wpor is the probability of destroying a separate target,

Wd is the probability of technical reliability of the flying
device,

Wb is Lhe probability of destroying the target, under the
condition that the bombers reach it.
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The probability of reaching the target is the probability of the
opposite event with respect to the bombers being destroyed by
fighters. It can be written

6,- •-•) -wi (I ).. - wo)'%

Key: a-d.

or for small W1, W2 , ... Wn

W , eOWI ý4 -- + . ,where W1 , WZ,,..., Wn are the probabilities of shooting down
rombers with fighter type equipment,

i, , .. In are the number of attacks by different types
of fighter equipment.

We will consider now the probability of destroying a target,
which can be knocked out of commission by one hit. We will indicate
the probability of a hit with one bomb by the letter P 6* Then the
probability of destroying the target with even one bomb will be

where P 6 is the probability of hitting the target with one bomb,

n6 is the number of bombs dropped as a volley.

The probability of a hit when one bomb is dropped, (the probability
of hitting a rectangle) is equal to

Where • is Laplace's Function

a, b are the dimensions of the target

E is the probable deviation of a bomb.

Finally, the probability of fulfilling the mission, the destruction
of a separate small target, can be written in the form

-



W.0p-- , [1 -(1 -,)" W+W+nWN

Key: a - por.

We will consider bomber operations on area targets.

Suppose objectives are laid out on a certain area, and it is not
expedient to distinguish them as independent targets. In this case,
combat effectiveness can be judged by the magnitude of the mathema-
tical expectation of the area that falls into the zone of destruction (to
a given degree).

If, without considering counterfire and technical reliability, the
mathematical expectation of the relative damage for one bomber is
equal to M, then the mathematical expectation of relative damage,
considering counterfire and technical reliability, will be equal to

Key: a- pr; b - t; c - d.

where Mpr is the mathematical expectation of the relative damageconsidering enemy counterfire and technical reliability,

Wt is the probability of technical reliability,

Wd is the probability of reaching the target.

The probability of reaching the target is determined by the for-
mulas introduced before. The probability of technical reliability
must be given on the basis of experience.

In this way, determining a criterion of military effectiveness of
flying devices of the bomber type for operations against area targets
merges at the base with determining the unconditional mathematical
expectation (without considering enemy fire and technical reliability)
of the relative damage inflicted on a target by one flying device.

If n independent launchings (bombings) are conducted on a tar-
get, and in each separate ca',e the relative damage is the same and
equal to M, then we can write
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Mn = 1 -0( -M),

where Mn is the mathematical expectation of the relative damage
inflicted on the target in n independent launchings
(bombings),,

M is the mathemiatical expectation of relative damage,
inflicted on the target in one launch (bombing), and

S~/

n is the nUmber of firings (bombings).

Most often, it is necessary to know how many units must be
dropped on the target, in order to inflict a given amount of damage.

0

Fr5m the preceding formula we may obtain the following expres-
sion for n, without considering enemy counterfire or technical
reliability (for independent bombings):

= Ig 0 -- Mo'

This quantity is called the firing range array of weapons.

In Tabl'z 6, we have entered values of M, depending on the
mathemt.tical expectation of the relative damage in one bombing M,

and on the number of bombings n.

TABLE 8
M0.,0 10 . [ I, I ., 10

Io 0.20 0,30 0 .40 1 0.5 0.60 0.70 0.80 '09

1 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0o80 0,90
2 0,19 0,36 0,51 0,64 0,75 0,84 0,91 0,96 0,99
3 0,27 0,46 0,66 0,78 0,88 0,94 0,97 0,90 1,00

4 0,34 0,59 0,76 0,87 0,94 0,97 0,99 1,00 -

5 0,41 0,67 0,8 0,92 0,97 0,99 1,00 - -

From the table, it follows that, for instance, to inflict damage
over 50% of the target area, it is necessary to have the following num-
ber of bombings:

-- one, if M: 0.5,
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-- two, if M: 0.3,

-- three, if M = 0. 2.

Example Twenty Nine: Compare the combat effectiveness of
piloted bombers and winged and ballistic rockets in an operation
against the runway of an airfield with a metal cover 2500 X 100 m.

The relative radii of destruction (expressed in probable devia-
tions) are:

-- 3 for piloted bombers,

-- 6 for winged rockets,

-- 0. 6 for ballistic rockets.

The probability of reaching the target, for a ballistic rocket, is
equal tc one. For a winged rocket, it is 0. 8. The technical realiability
probability for a ballistic rocket is 0. 9; for a bomber or winged rocket
it is 1.0.

On the average, piloted bombers are attacked once by fighters
with cannon armament (WIA = 0. 25), and every third bomber is attacked
by an AA rocket (War = 0. 7).

Solution:

1. Relative radii of destruction:

Rp = 3; Rwr = 6; Rbr = 0.6.

2. We determine the relative dimensions of the target (expressed
in units of probable deviation). Let:

U /J12,5; L =0,5; L..K. =25;

.- ! 11,c.=2,5; IIy.c 0,1.

Key: a - p; b - wr; c - br; d-T.

3. By the graph (Fig. 13) we determine the mathematical expecta-
tion of the length of the area of overlap for corresponding values of R
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and T. Then, multiplying them, we obtain the quantities M:

Ma--0,5.0,95=0,48; A'[,bh=0,50.1=0,50;
= 0,29.0,28 = 0,08.

Key: a - p; b - wr; c - br.

4. We determine the probability of reaching the target for the

bombers:

= (I - 0,25) (1 - 0,7)o" = 0,52.

Key: a - d; b - ar; c - IA.

5. We compute the criterion of combat effectiveness:

CM • --0,48. -110,52 = 0,25;

=.p.,p 0,5..10,806 0,40;

M6.CpP= 0,08.0,9 ' I = 0,07"

Key: a - p. pr; b - wr. pr; c -br. pr.

In this way, for the given conditions, winged rockets have the

most combat effectiveness, and ballistic rockets - the least.

Example Thirty: A strike is made against an objective whose

dimensions are 4 X 4 km by piloted bombers, winged, and ballistic

rockets. Compare the effectiveness if the relative radii of destruc-
tion are Rp Z 20, Rwr : 4, and Rbr : 2.7.

The objective is protected by anti-aircraft rockets with such a
density, that on the average each bomber and each winged rocket is

attacked one time. The probability of being shot down in one attack

is: for a bomber, 0. 7; for a winged rocket, 0. 5. The probability

of a ballistic rocket reaching the target is 0. 9. The technical

reliability probability of all these weapons is one.
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Solution:

1. We determine the relative dimensinns -f the target:

LixM.-LLYCAC= U4O - .,= 2;

=L"6.= 1,3.

Key: a- T; b - p; c - wr; d - br.

Z. McA= 1.1=1;MK =0,98.0,98 = 0,96;

M =_ 0,92.0,92 = 0,'85.

Key: a - p;b - wr; c - br.

S1 --0,7 0,3 Wx . == I -0,5 =- 0,5.

:3. W =1 0 ,7 =0,3;jLx-

Key: a -d.p, b-d.wr.
M=,. C, =-- 1 .0,3= 0,3; M,. ,

4. Am. o P . --p=0,6- 1.,= 048

M6a. c= 0,85.1.0,9 = 0,77.

Key: a - p. pr; b - wr. pr; c - br. pr.

From the example, it is apparent, that in the solution of this
problem, ballistic rockets have the most combat effectiveness, and

piloted bombers, the least.

Example Thirty-One: A strike is made on a target objective
20 X 10 km.

The relative radii of destruction are equal to

RCM= 35; R.p = 3,5; R6.p = 2,3.

Key: a- p; b - wr; c - br.

Anti-aircraft defense along the route is such that, on the average,

each bomber is attacked twice by fighters with cannon, (%A 0. 25)

and an anti-aircraft rocket is fired at every fourth bomber (W = 0. 7).
Every second winged rocket, in approaching the target area, is
attacked once by an AA rocket (War 0. 5). The technical reliability
probability of the winged and ballistic rockets is 0. 9.
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Compare the combat effectiveness.. of the flying devices.

Solution:

1. The relative radii of destruction:
R,=,5; . =3,5; Rc 2,3.

Key: a - p; b - wr; c - br.

Z. Determine the relative dimensions of the target:

010U1, cam= 50; L4CIM25;

IH,. ,:r - 5; 14.• •. 2,5:

/4°.p=3,3; Lo.p= 1,7.

Key: a - p

3. Determine the mathematical expectation of damage:

Ie. I.I = 1; M".P =-- 0,91. 0,96 = 0,87;

M =.p 0,86 .0,90 = 0,77.

Key: a - p.

4. Determine the probability of reaching the target:

Wf/•. . = (1 - 0,25)2 (1 - 0,7)0.25 - 0,56.0,74 = 0,42;

.. p= ( - 5)0.' = 0,7.

Key: a-d.p; b -d.wr.

5. Compute the criterion of military effectiveness:

M44'eA'.a, - I .I. 0.42 = 0,42;
MA.p = 0,87.0,9.0,7 = 0,55;

MA. .np -=- 0,77.0,9. 1 = 0,69.

Key: a - p. pr; b - w~r. pr; c - br. pr.
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In this example, ballistic rockets also have the greatest combat
effectiveness, and piloted bombers, the least.

Calculating the Array of Air Weapons Needed to Decide a Combat
Mission

All problems that are involved with evaluating the effectiveness
of fire on single, group, and area targets are related to the type known
as direct problems.

A direct problem is set in the following manner. A certain de-
tachment of weapons is assigned to solve a given military problem.
One must determine a criterion of effectiveness.

For practical planning of air operations, we are interested
not only in direct, but in inverse problems. In this case, we are
given a value for the criterion of effectiveness; we must determink.
the combat conditions, for which the criterion of effectiveness reaches
this value. Inverse problems are of great significance in practical
planning of combat air operations. To this group belong problems
involved in calculating the array of weapons, needed to solve a mili-
tary mission.

One may introduce the following examples of calculating an array
of air weapons:

-- how many bombers are needed (fighter'-bombers, winged

rockets) to destroy a single target with a given probability,
&

-- how many weapons to apply against a group target, so that the

average number of destroyed units reaches a given value,

-- how many fighters must be dispatched so that in repelling an
attack, not less than K enemy units will be destroyed with a given
probability,

-- how many bombings are needed against an area target, so

that the average relative destruction of the area of the target and
the probability of destroying not less than K% of the area of the tar-
get reach their assigned values.

-72-



All problems of calculating the array of weapons are solved by
the same methods. The scheme for solving a problem in deter-
mining an array of weapons can be given in the following sequence.

-- we choose a criterion of effectiveness ( this can be the pro-
bability of fulfilling a mission W3 )

-- we calculate the probability of destroying the target with one
"shot" (bombing, launching), W,

-- we calculate the probability of destroying the target in several
(independent) shots:

Sl -( - WY';

-- we set the probability of destroying the target W3 ,

-- we determine the needed number of "shots" to fulfill the com-
bat rmission

n, Ig ( -- W3)
g0(-W)"

Example Thirty Two: The probability of destroying an enemy ship
with one bomber with the usual means is equal to 0. 2. How many
bombers are needed to destroy a ship with a probability of 6. 7?

Solution:

In our example W3 = 0.8, W = 0. 2.

Placing these figures into the formula, we obtain the needed num-
ber of bombers. .

n= Ig(I-0,7)
Ig I(l - 0,2)

If the number of weavons needed to destroy an area target is
being determined, we must use the formula

10-M)
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Example Thirty-Three: One bomber inflicts on a town rela-
tive damage of M = 0. 2 (destroys 20% of the area of the target).
How many bombings are necessary (bombers reaching the target)
to invlict damage of M 3 = 0.8?

Solution:

Substituting the given quantities in the formula, we have

Ig (1 - 0,8) --0,699I -g (I - O,2) - -0,0-6 =7.

The same results may be obtained with the aid of a graph (Fig.
12).

The Target-Assignment Problem for Bomber Aviation

Solving a target-assignment problem is the basis for planning
the application of bomber aviation.

As a basis for solving a target-assignment problem, we may use
an evaluation of the effectiveness of bombing separate targets which
make up a complex.

If we have the problem of choosing a target-assignment on the
condition of obtaining the maximum average total relative damage,
or on the condition that the average damage must have a given value,
then we must speak about target-assignment by mathematical expacta-
tion.

If we are given a target-assignment problem on the condition of
reaching a maximum or given value of probability of fulfilling a com-
bat mission, then we can speak of target-assignment by probability
of fulfilling a combat mission.

The Problem of Target Assignment by the Mathematical Expectation
of Relative Damage.

This problem is solved in this sequence

Suppose we are given enemy targets and different aviation weapons.
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First, we will determine the average amounts oi damage, in-
flicted on the targets by the explosion of one, two, or more devices.
Then we will calculate the amounts of relative damage as the ratio
of the average amounts of damage to the total area of all the targets.
We will set up a matrix, whose elements are amounts of relative
damage.

Now, the optimum target-assignment problem becomes F_ pro-
blem of distribution of (explosive) devices among targets, to yield
a maximum mathematical expectation of total relative damage.

We will consider the order of solving a target-assignment with

an example.

Example Thirty-Four: There are two equally vulnerable targets,
whose dimensions in units of probable deviation, are equal. For the
first target Tx 2 , Ty 3. For the second target Tx = 4, Ty- 3.

We may apply devices against the targets which, upon exploding,
produce an area of destruction with a radius, expressed in units of
probable deviation of R : 2. There are four such devices. Determine
the optimum target-assignment, using the maximum mathematical
expectation of the total relative damage.

Solution:

First, we make calculations to evaluate the effectiveness of bomb-
ing each target. From the graph (Fig. 13) we determine the mathema-
tical expectation M of relative damage. In our example:

-- for the first target M 1 = 0. 214,

-- for the second target M 2 : 0. 180.

The average relative area of destruction (damage), accumulated
on one target in several bombings, is determined by the formula

Completing the calculations, we obtain:

-- for the first target -
for two bombings - 0. 387,

for three bombings - 0.512,
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for four bombings - 0. 615,

-- for the second target:

for two bombings - 0. 335,
for three bombings - 0. 445,
for four bombings - 0. 540.

We set up a matrix of amounts of relative damage.

-Target Number
Number of Bombings 1 2

1 0,124 0,2IW
2 0,387 0,333
3 0,512 0,445
4 0,615 0,540

In the first column of the matrix are placed amounts of relative
damage, taken in relation to the area of the first target. In the second

column, they are taken in relationship to the area of the second target.
Such amounts of relative damage cannot be compared with each other.
One must go to general units of damage. For this, we may recalculate

the amounts of relative damage by absolute units, or by relative units
determined by their relationship to the sum area of both targets, i. e.

by dividing absolute amounts of damage by the total area of the targets
2X 3+ 4X3 :18.

Tables have been introduced below, in which we have entered
absolute and relative amounts of damage with respect to the sum area
of the targets.

Matrix of Absolute Amounts of Damage

Target Number
Number of Bombings _____ 2

1 1,284 2,160
7- 3 2,322 4,020

"3 3,072 5,340
4 3690 6,480

A matrix of relative amounts of damage (relative to total target
area)
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Target Number
Number of Bombings T Number

1 0,071 0,120
2 0,129 0,223
3 0, 170 0,297
4 q,205 0,360

We solve the problem by a method of sorting the possiblevariants of target-assignment. The different variants, distinguished
by the quantitv of shells used against the taegets, are entered in the
ta,)le below.

Target Number
Variant N,-nber 2

I 0 4
II 1 3

III 2 2IV 3 1V 4 0

Using the matrix of relative amounts of damage and the table ofdiffere'.t possible variants, we may determine the average total re-
lative amounts of damage.

A, 0,360;,

u --- 0.071+0.297=0,368;
AIu =0,129 + 0,423 = 0,352;
Mfv = 0,170 + 0,120 = 0,29,Mv = 0,205.

We enter these results in a table

Variant Number Total Relative Damage

" 0,360
11 0,368
111 0,352
IV 0,290
V 0,205
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Therefore, the optimum target-assignment corresponds to
Variant II, where one device is aimed at the first target, and three
at the second.

We would have arrived at the same results, if we had used the
matrix of absolute amounts of damage.

Variant Number Total Absolute Damage

I 6,480
II 6,624
I11 6,342
IV 5,232
V 3,690

From ;:his, and the preceding table, it is apparent that the
variants of destroying both targets are arranged, by their effective-
ness, in the following order: II-I-IV-V.

We will consider a variant of the target assignment problem,
when for each ta:get there is an assigned, necessary, relative
amount of damage, and all targets are lined up by their importance.
Here, it is considered th~t each target is destroyed by one one type
of weapon, and dispatching weapyui to destroy less important objectives
is not allowed until weapons have been assigned for the destruction of
more important targets.

To solve the problem, we must, in advance, determine the neces-
sary number of launchings of each weapon (considering reliability and
enemy cour.terfire) to inflict the desired relative amount of damage to
each target. After this, a matrix may be set up, whose elements are
the number of launchings inflicting the assigned damage on the targets.

Type of No. of Target Number
Weapon Weapons -. -

• nit • • n13 . . . n 1"

. . . . . . . . . . . . . . . . .

0 N n nnmi .. na,
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The elements of the matrix signify (for instance): nil - the

number of weapons of the first type, needed to inflict the assigned
damage on the first target; nmn - the number of weapons of the m-th
type, needed to inflict the assigned damage on the second target, etc.

First, it is necessary to consider all of the weapons and only
one target (the first is the most important), In the matrix, we must
sort out (underline) all elermients that do not satisfy the given indica-
tions. This sorting out occurs when:

-- for a given weapon the target is unattainable,

-- the weapons cannot fulfill the mission in the given time,

-- the weapon will not secur the safety of its own forces,

- etc.

The logic of exclusion may be considered in the program to solve
a target-assignment on an electronic calculator.

After this, we separate the elements that pertain to the second,
third, fourth, fifth targets, etc. in order of decreasing target impor-
tance.

The target-assignment problem is solved in the sequence, which will

be shown in the example.

Example Thirty-Five: Find the optimum target-assignment for
two type's of weapons and three targets. There are four shells of the I
first type and three shells of the second types. The average relative

amounts of damage, which we wish to obtain, (in respect to the area
of the corresponding targets), will be assigned as follows:

TABLE A

Target No. F I 21 3

Assigned Relative Damage
0-793
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The number of times we must fire at the target and the types of
destructive devices are given in Table B.

TABLE B

Type of Des- N•o, of Target No.
tructive device Shells 1 2 3

14 6 4 2
2 1 3 3 2

We will examine the column for the first target.

TABLE C

Type of Des- No. of Targ4 No.
tructive device Shells

4 6

3 3

We conduct the sorting out. Since there are four shells of the
first type, then, in using weapons of the first type, we mnust lay out
prohibitions. Insofar as there is no choice, we should assign three

shells of the second type for the first target.

In Table C, we underline the first column and change the quantity
of shells of the second type by 3-3 z 0. We obtain Table D.

TABLE D
Type of Des- No. of Tarft, No.

tructive device Shells 2 3

1-4 4 2
2 0 2 1

We examine the column for the second target

TABLE E

Type of Des- No. of Target No.
tructive device Shells I 2

1 4
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From Table E it follows that, insofar as there is no choice, all
four shells of the first type must be aimed at the second target

The target-assignment is completed. In examining the example,
it will be as follows: three shells of the second type are aimed at
the most important target, and fours shells of the first type are
aimed at the target that is second in importance. The third target
(in importance) is not fired at, since there are not enough destructive
de.vices.

In it's final form, the matrix of target-assignment(firing chart)
will be as follows:

Type of Destruc- No. of Target No.
tive device Shells 1 2 8

14 0 4 0
2 3 3 0 0

-I

In actuality, the quantity of targets and of weapons sent to destroy
them can be much larger.

To solve the optimum target-assignment problem for many wea-
pons and many targets in the usual way is impossible. Such problems I
must be solved with the aid of electronit- calculators.

Calcalations for Planning Combat Operations to Destroy Ships

In planning operations against ships, calculations are made to
plan the needed array of weapons, to destroy the basic forces of an
enemy group of ships.

!

These calculations, for whose production one widely applies the
methods of the theory of probability, can be broken down into the
following steps:

-- choosing the best route of interception for airplanes (or sub-
marines) from their base to the region of the enemy ship's location.

-- determining the optimum distribution for the aerial (or
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submarine) strike group among the elements of the ship formation,
considering the relative importance of these elements.

These calculations allow one to determine: 4

-- the most useful region for making the strike,

-- the optimum variant of aerial (or submarine) interception,

the distribution of aerial (submarine) strike forces,

-- losses to aviation (submarines) enroute and in making strikes

on objectives at sea.

We will examine approximate formulas, which can be used for
calculations in planning VMF (Voz-dushnay Morskoy Flot) (naval air
force weapons) for a battle with an enemy ship.

The route of serial (submarine) interception must be planned
with consideration of:

-- the time to inflict the strike,

-- the tactical operational radius of the aerial (submarine) group,

-- the possibilities of enemy anti-aircraft (anti-submarine) de-

fenses along the route.

We will start by considering the possibilities of enemy PVO (Pro-
tivovozdushnaya Oborona) (anti-submarine defenses).

The effectiveness of the enemy's PVO (PLO) can be evaluated
by the probability of reaching the objective for an aerial (submarine)
group.

The probability of reaching the target is determined by the for-
m ula a - I ( - ) ,

Key: a-d.

-82-



where Wd is the probability of reaching the target for aircraft
(submarines),

w 1 , W2 , ... , Wn are the probabilities of the airplanes

(submarines) being destroyed by the enemy PVO (PLO)
weapons in a single attack.

iz, ... , in are Lie number of 4ttacks on each airplane

(submarine) by different PVO (PLO) weapons.

The mathematical expectation of the nuniber of planes (submarines)
breaking through some line of defense will b4 equal to

f =*jt N (i- Wry"(1 - W,)...-.)"

Key: a - d.

where M is the mathematical expectation of planes breaking through
the line of defenses of PVO (PLO).

N is the number of planes (submarines) in the group, in-
cluding supply units.

If one must expect to encounter new enemy PVO (PLO) forces on
the route of intersection, then the mathematical expectation of the
number of airplanes (submarines) thdt break through to the objective
(last PVO' , ship's own defense) must be determined sequentially,
calculating the probability of reaching the target after a certain boun-
dary, then multiplying it by the mathematical expectation of the number
of planes breaking through the preceding boundaries.

Example Thirty-Six: To strike at a convoy of shil.s, a group of
naval rocket-carrier aviation of 80 airplanes is dispatched. On the
chosen route of the flight, we may expect two lines of enemy PVO.
Participating in attacks at the first line, we may expect:

-- up to 60 fighters, with a probability of destroying one of our
planes in one attack of 0. 2.

-- up to 20 AA rockets with a probability of shooting down one
of our planes in one attack of 0. 6.
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On the second line one may expect:

-- up to 100 fighters with a probability of shooting down one of

our planes of 0.2,

-- up to 50 AA rockets; some probability of 0. 4.

Determine the mathemaL'.al expectation of the number of air-
planes, breaking through to the convoy to make the strike.

Solution:

1. We calculate the average number of fighter and AA rocket
attacks on our planes at the first line.

-t 8 =0,75; i3 =2 =0,250,75; ' 0,25.

2. We calculate the probability of reaching the target (the pro-
bability of breaking through the first line of PVO):

Wix = (I - P,)" (I -- P2)" = (I - 0,2)"'" (1 - 0.6)'•-25
"= 0,86 .0,79 = 0,68.

Key: a - d.

3. We calculate the mathematical expectation of the number of
planes breaking through the line of PVO:

Mt = NW,1 = 80.0,68 = 54.

Key: a - d.

4. We calculate the average number of attacks by fighters and
AA rockets against the remaining aircraft at the second line:

100 50

5. We calculate the probability of reaching the target (the pro-
bability of prnetrating the second line of PVO):
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W , 1 -- = d- P ,) 0. ) = ( l - o ,2 ) '1 • (1 0 ,4)# 9 2 =
.- 8 =0,58.5&

Key: a - d.

6. We calaulbtat fhz tj3 -Pematical expectation of the number of
airplanes penetrating thr se$•ond line of PVO:

M2A MW 2A = 54.0,58 =31.

Key: a - d

Therefore, 31 air?Ianes (39%) out of the group will reach the
area where the convoY i's located.

Analogously, we may determine the number of submarines,
breaking through lines of anti-submarine defense.

Sorting all af the pegsible routes o. the flig.: and the different
arrangements of cornmnatIons and units, we -:.ay choose the optimum
variant for the attack.

We will coyvrjWer-the opnmam variant for the attt4'or tnter-
ception) to be the one . 'vaich:

-- all demands are met for making the strike at t~e assigned
moment,

-- the mathema:4.. expectation of -be num.ber of airplanes (or
submarines) bre&difl -Af4gh the defenst.lines is at maximum value.

The next step c*44a calcqation is determining tht damage, in-
flicted on an objective. .-y acteial (submarine) units with different
armaments, and finding A p•inum plan for distributing the striking
aircraft among the shliPC, considf.Kog the relative importance of the
objectives.

Because of the !arge number of variants, which must be examined,

problems of this king z..ust oe 7o;- ed on electronic cormputers.

SReproduced from •'
best available copy.

-~85 -



A Probability Evaluation of me Time Spent on the Guidance Cycle

In Chapter I, condition, were introduced, characterizing the
operativeness of guida

3P X 4 . - R,.L

Key: a - 'uic.. b - crit; c - oper.

where Tguid is the time s tent on the guidance cycle,

Tcrit is the :ritica'l time,

Toper is the time r.;eded by the forces to fulfill their mission.

In its turn:

S= 71 + T, + 7',,

Key: a - guid.

where TI is the expendicure of time in collecting information,

T 2 is th., expenditure of time on reaching a decision (working
ou. the information), and

T is the time to transmit the information to the forces.
3!

In making ,:ac:ical measurements of the time expenditures listed
above for any actual guidance cycle, we invariably receive a scattering
of values, since .he continuousness of each process depends on chance
factors.

To increase the reliability of our calculations in eva•uating the

operativeness of a guidance system, we must introduce averaged
characteristics into the calculations and consider magnitudes of
possible deviatio.. from them in separate cases.

To evaluate the time. T, and T 3 it is convenient to use the magni-
tude of the mnathematical expectation (average value) of these times,
which determine .he frequency with which these or other values will
appear in our chronometry study. Thus, for instance, if, in the
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results of ten measurements of time Tl., we receive 1 min. in four
cases, 2 min. in one case, and 3 min. in five cases, then, assuming
the probability of these values appearing to be proportional to the re-
sultant frequency, we arrive at the following law of distribution of
time s T 1 :I

Values of Ti. min. 2 2 3

Probability of' these 0,4 0, 0,5

values 041

The mathematical expectation of the time T , equal to the sum
of the product of each of these valuet, and its probability, will, in this
case, be equal to

Mr, = 1.0,4 + 2.0,1 + 3..0,5 = 2,1 ,UaW.

Key: a - min.

SThe •w•.rage quadratic deviation of time T from its average
'value is equal to

art, =]" 1 - 1)3 .0,4 -- (2 - 2,1):.0, 1 + (3 - 2,1i)2.0,5 -

"--0,943 u.uu-0

Key: a - min.

What time T must enter the calculation? To answer this ques-
tion, we must bear in mind that the time T1 can be larger than its
mathematical expectation:

-- by 0. (i. e. be equal to 2. 1+ 0. 943;z3 min) in approximately
"1 one case out of six,

- - by 2a, (i.e. be equal to 2. 1 f 2 " 0. 943- "4 min) in approxi-
mately two'or three cases out of 100,

-- by 31-r, (i.e. be equal to 2. 1t 3"0. 943w 5 min) in one or two
-ases out of 1000.

But on the other hand, the time T, can be less than 2. 1 with the same
probability. In this connection, as a rule, we can use the mathematical
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expectation of the time T in our calculations, i. e. the value 2. 1
min. And only in separate, especially important cases will we con-
sider its maximum value to be equal to 3, 4, or even 5 rmin.

To evaluate time T and T , we may use another method of
substitution, according 4 o whic the expected time to make a decision
(operation) is determined by the average of three other valuations:
the minimum (optimistic) T , the maximum (pessimistic T (these
are the values that may be Anet in very favorable or very unfavorable
circumstances, but not more often than 1% of the cases), and the most
probable Tv (the one most often met in practice). Then the expected
time to make a decision (or operation) will be 2qual to

T= T'+47A.-6
Key: a - o; b - v; c - p.

and the average quadratic deviation is

Key: a - p; b - o.

Thus, for instance, if in very favorable circumstances the staff
is able to prepare a solution to a given problem in 10 ruin, in very un-
favorable circumstances - in 1 hr. 40 min. , but usually settles the
matter .in.4.0 min. , then the expected time to prepare the decision will
be T- 0 + 4.40 + 100 =45. rmin. Here the average quadratic deviation

6 -- 10
will be equal to '0r 7 -- 'a5

This means that in one case out of six the staff will need

45 t" 15 60 min; in two or three cases out of 100, it will need

45+ 2 • 15 1 15 min; and in one or two cases out of 1000

45+ 3- 15 1 hr. 30 min. may be spent.

As a rule, we may use the expected time in our calculations (in
the example, it is equal to 45 min. ). And only in special, very im-
portant cases must we expect it to reach 1 hr., 1 hr. 15 min, and
even 1 hr. 30 min.
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Obtaining, by one method or another, values of time expenditure
T 1 , TV T3, and their sum Tgui, and also, values Tcrit and Toper'
we may establish how well each guidance organ solves different pro-
blems for each concrete instance. We may take the necessary mea-
sures to increase guidance operativeness.
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CHAPTER IV

Applying Methods of Mathematical Programming in Military Affairs

The Subject of Mathematical Programming

Mathematical programming is the totality of the mathematical
methods designated to solve problems of optimum planning of guiding
processes.

By guiding processes we mean processes of human activity,
through which we exert different kinds of influence.

Modern science gives a lot of attention to questions of planning
in all spheres of human activity: in industry, in transport, in agri-
culture, etc. Of exceptionally great significance is planning the com-
bat operations of troops, which consists of rationally using forces and
weapons (means) in combat and in operations.

In its most general form, the problem of optimum planning may
be presented in the following manner. Suppose one must organize
certain measures or a series of measures, in pursuit of a determined
goal. Such goal oriented measures are sometimes called "operations".

The problem consists of planning an operation in such &. way thb.t
it will be most effective, i. e. that it answers the problem assigned to
it in the best way.

To give the assigned problem of optimum planning a concrete,
quantitative character, we must introduce a criterion to evaluate the
success and effectiveness of the operation.

The criterion of effectiveness, as indicated ir .hapter I depends
on the character of the operation, its goals, an, its composition and
is chosen for each concrete instance.

The problem of optimum planning will be contained in the choosing
of a means of organizing activities, for which the criterion of effec-
tiveness of the operation would have a minimum or n'aximum. If we
are interested in increasing the numerical value of the criterion of
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the criterion of effectiveness (for instance, the number of destroyed
enemy objectiveL-), then we must find the maximum of the criterion.

If, as the criterion of effectiveness, we have taken a quantity
whose decrease is useful to us (for instance, the time to transport
troops to a combat area), then we must find the minimum of this
criterion. The problem of minimizing a criterion easily merges
with the problem of maximizidg it, for example, by reversing the
sign of the criterion.

Modern mathematics deploys a whole row of methods, allowing
one to solve problems of optimum guidance, which can be united
under one name; "methods of mathematical programming."

The name "programming" points to the fact that the methods
allow one to find a "program", a plan of action, and to change from
one program to another, better one.

Methods of mathematical programming can be conditionally
divided into classical and nonclassical.

To classical methods, observed in the course of mathematical
analysis, belong methods of finding the maximum and minimum of
functions, and also ca

To non-classical methods, developed in the last 20 or 30 years,
belong: linear, non-linear, integral, stochastic, and dynamic pro-
gramming.

The method of finding the maximum and minimum of a function
has an exceedingly wide application in problems of optimum guidance,
including military problems.

Its essence is contained in the fact, that to find the maximum and
the minimum of a criterion that is a function of many variables (in the
general case), one finds the derivatives of this function, for all
variables, and sets them equal to zero. From the resultant system
of equations one determines the values of the variables (and these in
turn provide the optimum guidance), for which the maximum or mini-
mum of the criterion is reached.
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However, this method is not always applied to solve problems
of optimum guidance, especially in many military problems for the
following reasons.

In the first place, if there are many variables upon which th9

criterion depends, then such a method of finding the optimum be-
comes very clumsy.

In the second place, this method does not guarantee that a

solution will be found. It is known that having a derivative of zero
does not signify that the function is maximum or minimum. One
must make an additional check, calculating second derivatives, which

complicates the problem even more.

In addition, this method does give the possibility of finding the
n-a-imum (or minimum) if it lies not within, but on the border of
areE.s of possible values of variables. Such a case is the general
class of problems of optimum guitiance which merge with lincar

programming.

Finally, we must add, that in a number of practica1 cases,
especially in solving military problems, the criterion of effectiveness
in general cannot be differentiated (derivative dctermined), because
independent variables can be continuous quantities, and discrete.

The calculus of variations is a method of finding the maximum
and minimum of functionals.

By functional, we mean a function which depends itself on another
function or functions.

The calculus of variations allows one to solve complicated pro-
blemý, of optimum guidance, in which the criterion of effectiveness
depends not on a collection of variables, but on a collection of func-

tions.

However, this method is also limited in its application in practice
for essentially the same reasons as the method of finding the maximum
and minimum of a function.

Linear programming is a me-hod of finding an optimum solution
when the criterion of effectiveness is a linear function of independent
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variables, and the limits, imposed on the variables, are also expressed
as linear dependencies.

At the present time, this method has received widespread use in
solving many military problems. In another chapter this method is
examined more closely, using examples for illustration.

Non-linear programming_ is a method of finding optimum solu-
tions to problems in which the criterion of effectiveness and the
limits of the problems are expressed by non-linear dependencies on
the variables. This method is more complicated and at the present
time is being developed rather strenuously. Many problems, in
planning the application of weapons, for instance when several wea-
pons are applied to one target, become problems of non-linear pro-
gramming.

Integral programming is the method of finding the optimum
solution to a problem in whole numbers, that is, when the hoped-for
solution, corresponding to the maximum or minimum of the criterion
of effectiveness, is determined by the total of variables, which are
whole numbers.

In solving a problem of optimum guidance, when the variables

are whole numbers, diffv.ent methods of mathematical programming
are used, but with a defined specification. This specification served
as a nudge to developing a special method of integral programming.
Many military problems, such as problems of target distribution of
anti-aircraft defense weapons, ground weapons of destruction and
others demand the method of integral programming.

Stochastic programming is a method of finding the optimum
guidance in operations in which chance factors play an essential role.

In such problems, the guidance process is not only determined by
the initial state of the process and the .. ,osen means of guidance, but
depends also on chance, insofar as certain variables are of a random

character. For this reason, this method of finding the optimum
solution became known as the stochastic (or probability) method.
Certain problems of stochastic programming are solved by examining
only the average characteristics (mathematical expectations) of the
process.
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Since the pattern of the random process (which is averaged, not
random, and determined) changes in advance, before the problem is
solved, this method is approximate, and not always applied very ex-
tensively.

It gives good results only in those cases where the guidance
system consists of a sufficiently large number of objectives (for
instance, a system of anti-aircraft defense weapons). In many
stochastic problems of planning this method cannot be applied, inso-
far as in single cases it gives too great an error, and in others it
is generally useless.

At the present time there are still other special methods of
approaching such problems that are just being developed

Dynamic programming is a method of finding the optimum step-
by-step planning for a process of many steps, when for each step
of the planning there is only one optimum step in the process.

The essence of this method is that in searching for che optimum
guidance, the operation being planned is divided into a number of
sequential steps, or stages. Correspondingly, the process of
planning acquires many stages and developes sequentially, from stage
to stage, whereas each time the guidance is optimized by one step.
One must bear in mind that at each step the guidance must be chosen
with respect to its previous and future states.

Dynamic p.-ogramming is far-sighted and p -rspective. In appli-
cation to planning military operations, dynamic -rogramming allows
one to make quantitative recommendations for distributing forces and
weapons (means) by stages (tasks) of an operation, in such a way that
the operation will be most effective.

To illustrate how a problem of dynamic programming is put, we
will cor.sider the following example. Suppose we are planning a
fighter-bomber attack to destroy enemy anti-aircraft weapons. The
enemy anti-aircraft weapons are in echelons of several parallel lines.
Before choosing a given line, the fighter bombers pass through a zone
where they are subject to attacks from the anti-aircraft weapons of
that zone. The weapons of a given line may conduct fire not only at
fighter-bombers attacking targets on that line, but at fighter-bombers
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zttacking targets beyond other lines. A fighter-bomber attack come s
in sequential waves: The first wave attacks the anti-aircraft weapons
of the first line, the second wave attacks targets on the second line,
etc. The first wave crosses the anti-aircraft zone of the first line,
and carries several losses, after which the remaining fighter-bombers
attack the anti-aircraft weapons of the first line, as a result of which
part of these weapons is destroyed.

In the attack of the first wave, the first line of defense is partly
suppressed. Then the second wave of fighter-bonmbers attacks. It
passes the partly suppressed first line, loses some of its planes
there, enters the anti-aircraft zone of the second line, again losses
some of its airplanes. The remaining fighter-bombers strike against
the anti-aircraft weapons of the second line, etc.

The problem of planning the attack can be set up in the following
manner: distribute the lighter-bombers i ,waves in order to maxi-
mize the average number of anti-aircraft weapons destroyed on all
lines.

This problem has been set up under the assumption that the goal
of the combat operation is to destroy the enemy anti-aircraft weapons.
The criterion of effectivenes- is the average number of enemy anti-
aircraft weapons destroyed.

We may consider another problem where bombers must overcome
an e-chelon system of anti-aircraft defense, in order to deliver a
strike against enemy troops and objectives, located in the rear. To
successfully fulfill this basic mission, some of the bombers are sent
to suppress the enemy anti-aircraft weapons.

As a criterion of effectiveness of such military operations, it is
useful to choose the average number of bombers that cross all of the
lines of anti-aircraft defense and are ready to fulfill further combat

operations.

This problem may also be solved by the method of dynamic pro-
gramming.

The method of dynamic programming rray be applied to evaluate
prospective systems of armaments for whose creation different type
of resources will be used.
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We wiil lay out schematically an approach to solving a problem
by the method of dynamic programming.

It was pointed out earlier that in the process of step-by-step
guidance planning, each step must be riade with consideration of
future ones There is an exception to this rule. The last step is the
only one that may be planned for the greatest usefulness as such.

Having planned the last step in the best manner, we may "attach"
to it the next to last, and to that we may "attach" the next one in line,
and so on.

Solving a problem by the method ol dynamic programming is
conducted in a reverse-time order; from tie end of an operation
to the beginning. One must note that the solutions of practical
problems by the method of dynamic programming will allow one to
obtain important quantitative recommendations tor organizing opera-
tions. This method is of exceptionally great significance in military
affairs, because many military operations are step-by-step processes.
In solving complex problems of dynamic programming, demanding a
large number of calculations, electronic calculating machines are
used, with much success.

At the present time, however, the most practical application is
that of linear programming, to which more of this chapter is devoted.

The Method of Linear Programming

The method of linear programming, which appeared about two
decades ago, is widely used at the present time in questions of
organizing and planning production. Recently, this method has been
given a wider application in military affairs. Linear programming
is used to solve problems in which certain weapons must be assigned
in the best fashion, with certain limits laid down.

In application to military questions, the method of linear pro-
gramming enables one to solve a number of tactical, operational and
other problems in the presence of many mutually related factors.

For this, one of the quantities under analysis (for instance the
*.'rion of effectiveness) and also the conditions of the problem are
expressed as functions, dependent on a number of variables.
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Then a maximurn (or rn-irmnmrn) value of this criterion is found,

and corresponding values for the variables.

These variable quantities can be, for instance: TNT equivalents,
the number of anti-aircraft defense weapons to deflect an attack, the

number of troops and material awaiting transport, and other impor-

Lanit xponents of military activity.

In the results of the solution, we obtain such values for the

variable quantities that we may obtaifi optimum distributions of wea-

pons (the greatest effectiveness of military operations).

In problems of linear programming, the conditions which are
imposed on the variables (limits of explosives, limits of anti-aircraft

weapons, etc.) are determined by a system of (linear) inequalities or

equalities of the first degree, where the function whose maximum (or

minimum)values are being found, is a lirear function with the same
variables. This fact is underlined by the name "linear programming".

I- analyzing practical problems, for instance problems of opti-
mum di.tribution of military weapons in the course from one solution

,o the next one must make corresponding sequential examination of

different plans (programs) of veapon distribution. Here, the name

"linear programming" originates.

The practice of solving problcms with linear programming has
shown that for a large number of variables we must use an electronic

calculator. In this case a problem which a man will spend months on

can be solved in several minutes on the machine. For a large number
of variables, these problems can only be solved with the help of the
machine.

"I o solve simple problems with small numbers of variabies, we
may get along without even the simplest of calculating devices.

To clarify the essence of the method of linear programming, we
will consider several problemi, met in tactical-operational calcula-
tions.
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The Problem of Transport

At two dispatching stations are concentrated, correspondingly,

al and a tons of fuel (Fig. 17). This fuel is needed at three assigned
points B 1 , BZ and B 3 ; and bl, bZ, and b 3 , tons of fuel must be sent

to each one.

r22_ B2
A2 (02)

Fig. 17. Scheme of transporting loads

The cost of transporting one ton of fuel from any dispatch point
to any receiving point is considered to be known. We must make a

plan, so that the overall cost of transport will be the least.

We indicate by xij the number of tons of fuel to be sent from

point Ai to point B . Then the amount of fuel to be sent from points

A 1 and AZ to point BI will be:

X11 + X21.

But since we must have bI tons at pont B 1 , we have the equation

XII + X21 == bi.

Analogous reasoning leads to the-formulas:

XJ2 + X•2 b2;

X4, + X2 .



Furthermore, we have limits, because the fuel sent from points

Al and AZ must be equal. to the amounts stored at these points

X11 + x12 +- x, = a,;

x21 + xrz + x2s = a2.

These correlations are easier to obtain if all of the quantities
are entered into a table, called the transport matrix.

b

a. I - -, 1

A,- X12 X13  a
.41 Ij 1 Z b 2•l I b2

Key: a - Dispatch points; b - Receiving Points;

c - Reserves; d - Needs.

The overall cost of transporting the fuel will be equal to

C = C11X11 + C12X12 + C13X13 + C21X21 + C2Xn + C2 1X2 3,

where C is the overall cost of transporting the fuel,

cij is the cost of transporting one tone of fuel from point
A1 to point Bj,

xij is the amount of fuel, designated from point Ai to point B..

As a result, the mathematical formulation of the transport pro-
blem (by critprion of cost) can be presented in the following form:

We are given a system of five linear algebraic equations with
six unknowns:
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The geometrical method is simple enough, but, unfortunately,
it can be applied in practice only when the number of unknowns is
two or three. For a large number of unknowns, the geometrical
method is exceedingly complicated.

X,2

30 .-

C.

201V VulL 3)

0 to 2 30 Ig,

Fig. 18. Polygon of Solutions for the Transport Problem

We examine the above problem by the geometrical method.
(Fig. 18). We choose a system of rectangular coordinates with
axes x1 1 and x 12 . Limits are written down (1) - (6); if we place
only equal signs in them, they form geometrically straight lines.
In Fig. 18 all the straight lines, expressed by the equations, are con-
structed, and for every straight line there is a corresponding number.
The intersection of the lines forms a polygon, which is shaded in on
the figure. This polygon is called the polygon of solutions of the given

system of inequalities.

In the illustration there is a straight line, expressing the depen-
dency of the overall cost C on xll and x 12 (for C = 128).

This straight line is the geometrical location of points for which
the cost C has the assigned value. By changing the value of C, we

obtain different lines, but they are all parallel to one another. In
changing from one straight line to another, the value C changes. The
arrow on the illustration indicates the direction in which we move,
when going from larger values to smaller ones.
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X,1 + X21 = 62;

x 13 + x 23 =--8;

X1 + X12 + X13 = a,;
X21 + X2 + x22 = a..

In addition, we are given a linear function, the cost of transport:

C cj •qxl/.

We must set up a transport plan so that the overall cost of trans-
port will minimum.

For observation, we assign numerical values to the known quan-
tities, which we enter into the table. In the center boxes we write
costs of transport in rubles per ton.

X rYHXTM Mpasseim B. .. Tic. m

.11

Key: a - Dispatch points, b - Receiving points,
c - Reserves 1000 t., d - Demands, 1000 t.

Then the system of limits and overall cost of transport takes the
form

X,1 + X21 = 10;
X12 + X,2 = 30;
X13 + X.3 = 10;

X11 + X1, + X13:= 20;
x,1 + Xr. + x23 = 30.
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We t.l~e xll and x 12 as independent unknowns, and express
the others in terms of them1

xt = 20 - x, 12;
X21 10 - X1 I;x. -- 30-- x,_,;

x23 =--10 + x11 + x1

The overall cost of transport is expressed in independent un-
knowns, thus:

C = 330 - 2x,, - x12

Since we hovc a solution for the system for non-negative values
of the unknowns, we obtain the following inequalities:

20-- x11 - X12  (>)
(2)

10- X11 >0;30-- X2 >i 0; .(3)
--10 + X11 + X1, 0; (4)

*(6)1
-x,1 0;

- x, O. (6)

Our problem consists of finding values of the unknowns (quantities
of transporced fuel) which satisfy these inequalities and give a minimum
cost of transport, i. e. the minimum of the function:

C - 330-- 2x11 - x,4

Even the simplest problem of linear programming becomes cum-
bersome from the point of view of calculations. There exist several
methods of solving linear programming problems: the geometrical,
the simplex method, the method of reverse matrices, etc.

1 As is known, a system of equations has a solution, when the number

of unknowns is equal to the number of equations. In problems of linear
programming the number of equations is less tha,.n the number of un-
knowns. Therefore, some unknowns must be expressed as independent,
the number of which is equal to the difference between the number Gf un-
knowns and the number of equations.
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It is obvious that the optimum solution, corresponding to the
minimum cost, will occur if the line C passes through the vertex of

the polygon, shown on the illustration by a small circle. In this

case, the cost C wiil, in fact, have the smallest value, and the

unknowns will satisfy the limits of the problem.

When introducing proof we will point out that the optimum solu-
tion of the problem, merging with linear programming, corresponds
to one of the vertices of the polygon of solutions (in the general case -

a polyhedron of solutions). In this example, the optimum solution

will be: xll = 10; xKZ = 10.

The remaining unknowns are found from the limiting inequalities:

X=O ; xS= 0; x = V20;, =- =10.

The minimum values of cost will be equal to

c =330 - 2.-10-10=WIc.PY6.

Key: a - thou. rubles.

The optimum transport plan will be as follows:

flnystKT oupulN I I~t~h~ HN-eu Me C aac
I as 'as• 1.... 4 1 3.€

A,  10 10 1 20
A, 7 0120 t01 30

11~p6HCHTU. 1101t 30 I10 50

Key: a - Dispatch points; b - Receiving points;

c - Reserves thou. t; d - Demands, thou. t

Any other plan can only lead to increased transport costs.
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The Problem of Distributing Weapons on Enemy Objectives
(By the Maximum Number of Targets Destroyed) I

The distribution of weapons among enemy objectives is immensely
important in solving an operation. If a strike is made by one weapon
on each objective, and we must distribute the weapons so that the
total damage, inflicted on the enemy objectives, is maximum, or that
the total force used is minimum, then the problem becomes one of
linear programming.

Solving a problem of optimum distribution of weapons of 80 x 100
or 100 x 150 presents great difficulty and can be fulfilled only on
electronic computers.

To illustrate an application of the method of linear programming
we will consider the simplest problem of distribution; two weapons
for three objectives (a problem of 2 x 3).

On the line of attack there are eight targets, which can be classi-
fied as three types. To destroy them we have eight weapons of two

types. To destroy thern we have eight weapons of two types. The pro-
bability of destruction is given1 for each type of target. Only one wea-
pon is assigned to each target.

We must distribute the weapons so that the mathematical expecta-
tion of the number of destroyed targets will be maximum.

Let the numerical data of the problem be shown in a table

O, Ton Tutn ire.iti K OA114ek:l7l

5oepJc•. i 2 6ovi.,nuco-

I ,..o,7 X12/0, X13/0, 3
-x/0,3 x2 lO, 4  x•J0,6 5

qhivcio uejiend I 2I

Key: a - Type of weapon; b - Type of target;
c - Quantity of weapons; d - Number of

targets.

The mathematical formulation of the problem will take the form:
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wt

X1 1 + X, + Xis -3;

X21 + Xi2 + x,3 5;

X11 + X21 5;

x, + x,, -2;

XIS + X2S 1.

The mathematical expectation of the number of destroyed targets
will be equal to

M -,7x 1. - o,9x1 -+ 0,8x1 s + 0,3x2 " + 0,4x, + 0,6xs,

where x is the quanz±ty of weapons of the i-th type, designated for
targets o type j (i : 1, j = 1, 2, 3);

0. 7; 0. 9, etc. are the probabilities of destroying targets.

We take xll and x12 as independent unkaowns, and express the
remaining unknowns and the mathematical expectation of the number
of destroyed targets in terms of these unknowns.

As a result, we obtain

X1 = 5 -X 11 X;

X= 2 -x;

XIS-- X1 - + Xn;I

X28 X11 - Xn;

M= 4,1 + 0,2x,, - 0,3x,,

Going to conditional inequalities, we obtain

5- xj > 0, (1)
2 - x. > Q0 (2)
-- X1 + x2.. > 0;, (3)
X11 - X2 > 0; k(4) )

x11• 0; (5)
X22 >1 o. (6)
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The problem consists of finding a distribution of weapons among

targets, so that the quantity M is maximum.

3-(6)

(4) (3
2-

I M

0 12ý 3 ~

Fig. 19. A polygon of solutions for a weapon distribution problem.

In Fig. 19, we have introduced a graphic solution to this problem.
In a system of coordinates of x and xlz are constructed straight

lines, expressing the limits of tMe problem. From the intersections
of the lines, determined by the inequalities (2), (3), (4), and (5), a
polygon is obtained, any of whose points is a reachable solution, but
they do not become the maximum function M. The maximum function

M (shown on the graph is a dotted line) is reached when this straight
line passes through the vertex of the polygon, indicated by a circle.

This vertex has the coordinates: xll = 1; x2 2  O0.

Substituting these values into the limiting equalities of the pro-
blem, we obtain the valuez; of the remaining unknowns:

x12=2; x2j=4; x13 =0; x2 3=l.

Here, the mathematical expectation of the number of destroyed .

targets will be equal to

M-=4,1 + 0,2.1 -- 0,3.0 = 4,3. I
The results of the problem solution are entered into a table. I
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I •3 Tan e~elI •KomxecTso
THn 60oenPnaco,,I 2 2_3 _ enpxnsco

icio ueefl d 5 2. 8

Key: a - Type of weapon; b - Type of target; c - Quantity
of weapons; d - Number of targets.

Therefore, under the condition of the problem, the mathematical
expectation of the number of destroyed targets will be maximum if we
accept the following plan for weapons distribution:

-- one weapon of the first type is aimed at targets of the first
type; two at targets of the second type, and none at the third type;

- four weapons of the second type are aimed at targets of the
first type; none at targets of the second type, and one at targets of
the third type.

For iny other plan of distribution, the effectiveness of the strike
will be less.

We will consider another problem re optimum distribution of ex-
plosive-carrying devices amnong enmmy objectives.

Suppose there are two types of weapons-carriers: ballistic
rockets and fighter-bombers. We are assigned three types of enemy
targets: rocket fir..ig positions, command posts, and supply houses.
The probabilities of destroying any of the enemy targets by rockets
and by fighter bombers, and the number of carriers and targets, are
given in a table. The probabilities of destroying targets with fighter-
bombers have been made considering the need to overcome enemy FVO
(Protivovozdushnaya Oborona) (anti-aircraft defense). For each tar-
get, we are planning to use one rocket or one fighter-bomber wing.
We must distribute these carriers, so that the mathematical expecta-
tion of the number of destroyed targets will be maximum.

A table is given in the following form.
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0- ~ ~ ~ c Tan lienS oxien
(cu~p~oa~e • 2 9 3 S ocUTeAelnoýTSIT ) (Krl) cicaau)

I Bamma.cmqecixe x1 /0,6 x,2/0,5 xIdO,3 40
paxerm Q..xII HcTpeGHteAH.6x.- x 1/0, 4 x2/ /O,7 x0J0,2 20

qNCAo Lteaed 25 j 15 120 60

Key: a - Type of carrier; b - Ballistic rockets;-d - Fighter-
bombers; d - Type of Target; e - Rocket positions;
f - CP's, g-warehouses; h - number of carriers;
i- number of targets.

The quantities in the boxes indicate as follows; the numerator
is the number of rockets or fighter-bomber wings, planned to des-
troy targets of a given type; the denominator is the probability of
destroying a target. The limits of the problem may be written thus:

x1, + x,, + x,, = 40;

x21 + x222 + x,, = 20;
x 11 + x31 - 25;
X12 + X2 = 15;

X13 + X23 = 20,

The mathematical expectaticn of the number of destroyed targets
will be

M = 0,6x,, + O,5x1 2 + 0,3xs + d,4x 21 + 0,7x2 + 0,2x2 ,.

We choose x 11 and x2 2 as independent unknowns, and express
the remaining unknowns by the independent ones.

x,!=-- 25 -- x j;

x,, -- 15 - x,,;x 13 -40 - x ,, - 15 + x n -25 -x,, + x. ;
x,., = 20 - x- -25 + x11 = -5 + x11 -. X2.;

AM- 0,6x11 + 0,5 (15 - X2 2) + 0,3 (25 - x1 + x??) +
-+ 0,4 (2 5 -- x,,) + 0.7x.:, + 0,2(-5 + x, -x"..)+

-24 + X1 I + 08 3x- .
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Demanding non-negative unknowns, we reach the following
limiting inequalities:

25 -- x,, 0;15 -- x2: >0

25 - x,, + x1. > 0;

x 11 > O;

xY2.- O.

We must find integral values for the unknowns which will saLisfy
the inequalities and yield the maximum mathematical expectation of
the number of destroyed targets, (M).

Xx2

20

-(2

10M

-to/

4

-20.

Fig. 20. A Polygon of Solutions for the Weapons-Carriers
Distribution Problem

The polygon of solutions for the given problem is shown in Fig.
20. On the figure there is a straight line, expressing the dependence
of M on x, I and x2 2 for the value of M = 25. The arrow shows
in which direction the straigbt line moves for increased values of M.
The optimum solution, correspoihding to maximum M, will be at the
vertex of the polygon, shown by a circle. Thus, we obtain x 1 1  25

and x2 2  i5.
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The remaining unknowns are found from the earlier limiting in-

equalities:

x12 --0; x2,=0; .x 13 = 15; x.3= 5.

The maximum mathematical expectation of the number of des-

troyed objectives will be

Amax: =24 + 0,1.25 + 0,3.15 =-31.

For any other distribution of weapons-carriers, the enemy ob-

jectives will receive less damage.

In the given example, the optimum distribution is as follows:

-- 25 ballistic rockets must be planned for enemy firing positions,

15 for supply houses, and none for command posts.

-- 15 fighter .bomber wings must be planned for enemy command

posts, and 5 for enemy warehouses.

The Droblem of Distributing Weapons-Carriers (By Minimum Force)

There are two types of carriers and two types of targets. There

are four carriers of the first type, and two of the second type. There

are two targets of the first type, three of the second type, and one of
the third type. The effectiveness of the carriers is determined by
the minimum amount of explosives on each one, for which the level

of destruction is not less than that absigned (for instance, not less

than 60%).

We assign concrete conditions to the problem in a table.
('x., ~ n !b Tmn ue.nit I c

(A- TIl I-i Ko0wnecTSo

Hoc •TeA• I 2 3 1I 1oct1eaeA

I XJ:4O 41 5

qcjAo tte~eAe I 2 7

Key: a - Type of carrier; b - Type of Target; c - Number of
Carriers; d - Number of Targets.

-110-



- -'- "- .. . . . .- -. .. ..- ' .. . . - " - N

The numbers in the boxes in the table indicate the quantity and

power of the armaments in some kindi of units of .-neasure.

The limits of the given problem can be written in the form

X11 + xI., + x,3 = 4;

X21 + x. + x 2, 3;
X11 + x-- 2;

x12 + x22 3;

X13 + x2s 2.

The overall power is

Q = 40x,1 + 50x 12 + 80xis + 30X21 + 6Ox•2 + 10Ox;.

The quantities xij (i = 1. 2; j - 1, 2, 3) indicate the quantity of
armaments of the i-4h type, planned to destroy targets of the j-th
type.

We take xll and xlz as the independent unknowns, and express
the remaining unknowns through them.

x2 =2 -- X1;
x12' 3 -- X22;

XIs = 1 - X1 1 + x2;

XIs = 1 + x --x22

The overall power is expressed in terms of the independent un-
knowns as follows:

Q = 360 - 30x,, - 10OXV

The condition of non-negative unknowns leads to the following
limits to the problem in the form of inequalities:

2 - X11 > 0;
3 - X2 > 0;

-x11 + X> 0;

1 + x 1 1 -- X2> 0;

Xj>•o,
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We are solving the problem graphically, for which (Fig. 21) we
enter straight lines on the graph, which define the polygon of solu-
tion:i.

The optimum solution is located at the point wher-, the straight
line, expressing the dependence of Q on the independent unknowns,
touches the vertex of the polygon of solutions (shown by a circle). The
coordinates of this vertex are: x,1 = 0; x2 2 = 1.N3. ( -2)

2

o : \ . 3 (5)
Fig. 21. A Polygon of Solutions of the Problem of

Finding the Minimum Total Power

The values of the other unknowns will be:

x12 =2; x.,= 2; x1,=.2: x, = 0.

The total power, which here is minimum, is equal to

Q,,1, =360- 10.1 =350.

The results of the solution of the problem are entered in a table.

, _ T un • . _ • T m n u e j e A

.o•..•, T - 2 3

I0 7
2l1 '2 t 0

Key: a - Type of carrier; b - Type of Target.
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Therefore, under the conditions of the given problem, the opti-
mum distribution of carriers to tar-ets, for which the mission is
completed with a minimum expenditure of power, will be as follows:

-- the first type of carrier strikes at two targets of the second

type and two of the third type;

-- the second type of carrier strikes at two targets of the first

type and one target of the second type.

The Target-Assignment Problem in Anti-Aircraft Defense (PVO)
Forces.

We will examine the next important problem of target-assignment
in PVO forces. In repelling an attack with a limited number of weapons,

each aero-space target is attacked with one PVO weapon. We must
distribute the PVO weapons among the targets, so that the attack is
deflected with the greatest effectiveness.

As the criterion of effectiveness we take the mathematical expecta-
tion of the number of enemy aero-space targets destroyed.

We will consider a concrete example of this problem. Suppose
we have two types of PVO weapons: AA rockets and fighters. These
weapons may repel an attack of three types of enemy targets.

The probability of destroying any of the enemy targets with each
type of PVO weapon, and the overall quantities of weapons and targets

are shown in the table.

TwiI AH0CToTunl x DNA CPe~t ICL2 CPtACS

D 3yp 1 x11/ )1 /,7 x,1/0,6 I 20II c HcTpeftIeAH Jx,/0 6 x,10,3 jx10, 5 40

"tIHcao tteaef, 20 10 30 60

Key: a - Type and form of weapon; b - ZUR (Guided anti-aircraft
rocket); c - Fighters; d - Type of target; e - quantity of
weapons; f - number of targets.
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The quantities in the numerators indicate the unknown quantity

of PVO weapons planned for the destruction of a given type of target.
In the denominator is the probability of destruction.

We will consider that each aerial target is attacked by only one
PVO weapons.

The limits of the problem will take the form

-ýu + Xn +- Xis - 20;

X1 +x. + x. = 20,
XLI + xV21 -- 20;

XIS + x2 - 30.

The mathematical expectation of the number of destroyed targets
is written in the form

M = 0,8x11 + 0,7x,, + O,6xt + 0,6x,2 + 0,3x22 + 0,5xn,

We choose xll and xZ as the independent unknowns and ex-
press the remaining unknowns in terms of them:

x21 = -20 - x,,;

x12 = 10 - x;
x=20- x4 -- 10 + x, -, 10- xn1 + X

= 40-202+ x = - xn =20 + x, - x2,

The mathematical expectation of the number of destroyed targets
is expressed in terms of the independent unknowns in the following
manner:

M 35 + 0,1x 2 - 0,3x2,

Since the solution to the problem corresponds to non-negative
values for the unknowns, we come to the following limiting inequali-

ties:

20-x,, >&
10O-X 2 2 >

10 -- X1 + Xn > 0;10 + x11 -- xn >• 0;
X) I >O;
X22,> 0.



The problem consists of finding values of the unknowns which
satisfy the system of inequalities, and give a maximum value for
M.

The polygon of solutions for the given problem is as shown in
Fig. ZZ. In the figure is a straight line, expressing the dependence
of M on x 1 1 and xZ2 . The arrow shows the direction in which
the line moves for increasing M.

31 Xn

20-

()M
-.(2)

ro('I

0 tO 20 jo0 XI

Fig. ZZ - The Polygon of Solutions for the Problem of
PVO Target-Distribution

The maximum of quantity M will be reached in the vertex of
the polygon, shown by a small circle.

The values of the independent unknowns at this vertex will be x1 1

Xll ý 10; xz z2 0.

We obtain the values of the other unknowns from the limiting in-
equalities: X12= 10; X2 1 = 10; Xs13 -O Z 2 = U..'\)

The ma•ximum value of the mathematical expectation of the number
of destroyed enemy aerial targets will be

Mmn C= 35-+ 0,1.10==36.

Therefore, the optimum target-assignment, under the conditions
given in this problem will be as follows:
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Two

ten AA rockets must be sent to destroy targets of the

first type and ten for those of the third type;

-- ten fighters must be sent to destroy targets of the first type,
none for targets of the second type, and 30 for those of the third type.

The Problem of Optimum Distribution of Naval Weapons in a Battle
With Enemy Ship 3

We will examine the prot m of distributing naval forces in a
battle with enemy ships, through an example.

There are two types of enemy ships and we have three types of
weapons: submarines with torpedoes, naval rocket-carrier aviation,
and submarines with ballistic missiles. The probabilities of destroying
enemy targets, for each type of weapon, and the number of weapons
and targets are entered in a table.

•'l~l •e~e• I Xoxnlqecml;

(4_Tun i eNA CPeACr3 2i epCAeCT&

Ij) fJ i C Topneiamu x,,/0,4 x12/0,6 2
II o_. MPA c xpunamutHi x,,10,7 x,/0,8 3

pageTaNIIIl

In;-g d c 6anwicziqe- x311O,3 x121O,6 1
CHHMIII paxeTaOM -

.q9 cO neaefI 2 4 6

Key: a - Type and form of weapon; b - Type of target;
c - Number of weapons; d - PL (sub) with Torpedos,
e - MRA (rocket-aviation) with winged rockets;
f - PL with ballistic missiles; g - Number of Targets.

The quantities in tie numerator indicate the unknown numbers of
naval weapons, planned to destroy each type of target, and in the
denominator are probabilities of destruction.

We will stipulate that for each target there is only one weapon.

The limits of the problem take the form:
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X225t(sj

4()

2

0 t 2ft

Fig 23. Polygon of Solutions for the Problem of
Target-Assignment Against Enemy Ships.
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X1 + X12 -=2;
x2, + x•.,-= 3;
xSI + x82 1;

X12 + x,, + X.11 = 2;xl., " x.,• +k x3, =4.;

The mathematical expectation of the number of destroyed ships

is written in the form

M = 0,4x,, + 0,6x,. + 0,7x 2, + 0,8x2 + 0,3x, + 0.,6Y82..

We take xI and x2? as the independent unknowns, and express

the remaining unknowns and the wuantity M through them.

Xl.. =- 3-- x.,

_V3 =2-x, -- 3 + x.= -1IX1 + x,;
X32= 4 "-2 + X -X.. 2+ xj1 -- ,

l- 4,2 + O,1x 11 --O,2x,,.

Since the solution of the problem corresponds to non-negative
values for the unknowns, we arrive at the following limiting inequali-

ties.

3-x,> 0;
-1-- x 1 + Xn > O;,

2+ x,, - Xn > 0,
X11 > ,Xn4>O.

The problem consists of finding values for the unknowns that
will satisfy the system of inequalities and yield the maximum mathe-

matical expectation for the number of destroyed enemy snips.

The polygon of solutions of this problem is !,hown in Fig. 23.

The straight line M is shown in the figure, and the direction in
which the line moves for increasing M is shown by an arrow. The
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optimum solution corresponds to the vertex of the polygon with
coordinates Xll = 0; x -2 0 1.

Values for the remaining unknowns may be obtained from the
limiting inequalities: x12=2; x2 =2; x31-=0; x3 2=1.

The maximum mathematical expectation of the number of
destroyed targets will be equal to

-M... = 4,2 -0,2 14.1

Therefore, in order to fulfill this mission with the most effective-
ness, we must distribute the naval weapons among the targets in the
fol]owing manner:

-- no submarines for targets of the first type, two for targets
of the second type,

-- two winged rockets for targets of the first type and one for a
target of the second type,

-- no submarines with ballistic missiles for targets of the first
type, one for a target of the second type.

With such a distribution we may expect four enemy targets to be
destroyed.

In any other distribution the number of destroyed targets will be )
less.

The Problem of Distributing Means of Observation

We will examine the following problem which is one of optimum
distribution of means of observation for a given effectiveness.

There are three types of means of observation: an airplane with
a photo-apparatus, and airplane with a radio direction-finding
apparatus, and a submarine. There are also two types of targets
which must be found by our reconnaisance. The probabilitie- of de-
tecting and locating any target, for each type of apparatus, nd also
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the number of apparatuses and targets are entered into a table.

o Tun neieAN Koamqecymo
(.4-HNn R ,,..i cpe.AcT I | 2 o cpemns

I Cam°jer C a poroannapa- x,,IO,5 x,1]0,7 4

CaoeT c paAHO.OKa- Xl,/O,6  x2,O,5 3

nluuornl annat°fl xg1/0, 7  xn/O,6 4

SqiIca ueneF I4

Key: a - Type and form of apparatus;
b - Type of Target
c - Quantity of Apparatuses
d - Airplane with photo-equipment

e - Airplane with radio d. f. equipment
f - Submarines,
g - Number of targets

The quantities in the numerators indicate the unknown numbers
of recon devices. Probabilities of determining target locations are
shown in the denominators. We will stipulate that only one recon
device is sent to find each target.

The limits of the problem have the form

X-, + X1 =j4;

V. + XU=3;

xs1 + x,, 4;

Xu + X2 + X1 = 4;

X,2 + X2 + x 32 =7.

The mathematical expectation of the number of detected targets
is written in the form

M=_-0,u 4- 0, 1.F-+--O,G•'('O,5xsi+" O',9xs"-FOG6x 3 3.

Taking xl and x22 as the independent unknowns, and expressing
the other unknowns and the function M in terms of them, we obtain
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X1 -- 4-- 2 2X21 3 -- xi2;

X32 = 3 +" x,, -- xrIj
M- =7,9 - O,5x, + 0,2xr*

X22 (4)

/

Fig. 24 - Polygon of Solutions for the Problem of Distributing

Recon Devices

The condition of non-negative solutions to the problem leads to
the following limiting inequalities:

4 -- x,, 0;Q,
3 -- x2, >,O;

1 -x1 1 + xi,•>O
3 + xz -- -.:

X1, I> Q,
xn> 0.

The polygon of solutions for this problem is ,hown in Fig. 24.

The direction in which the line moves for increasing M is shown by
the arrow.

The optimum solution of the problem corresponds to the vertex

of the polygon with coordinates x1 1  0; x 2 = 3.

-121-



The values of the remaining unknowns are obtained from the
limiting inequalities:

X, 2 - 4; x, = O; X31 = 4; x32.•2-- 0.

The maximum :naLhernatica! expectation of the numbe.r of targets
ob.,erved is equal to

Mmx -7,9 + 0,2.3 = 8,5.

Consequently, in the conditions of this problem, the distribution
of reconnaisance forces will be ds follows:

-- aircraft with photo equipment will not be used to observe
targets of the first type, but two will be used for targets of the second
type,

-- aircraft with radio direction-finding equipment will not be
used to detect targets of the first type, but three will be used for
targets of the second type,

-- four submarines will be used to detect targets of the first type,
but none for targets of the second type.

The Problem of Constructing a Defense System by Cost Criteria

In all of the earlier examples, the area of realizablt- solutions
was closed, forming a four- or five-sided figure. However, there is
a class of problems in linear programming, in which the area of
realizable solutions is unlimited, but, as in the preceding examples,
the solution to this proble.m is also found on a graph of this area.

We will consider the problem of constructing a PVO (Protivovoz-
dushnaya Oborona - anti-aircraft defense) defense system, with
minimum cost as the criterion.

We will assume that it is necessary to build an anti-aircraft
system to defend an objective.

We do not know from what height the enemy aerial attack will
come, but we may assume, that a maximum of 100 planes may attack
from a low altitude, 150 from a medium altitude, and 100 from a high
altitude.
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2) 0,5x + 0,5y> 150.

This inequality expresses the demand that at medium altitudes
the mathematical expectation of the number of planes shot down by

low-.tltitude (0. 5x) and high-altitude rockets (0. 5y), is not less than

150.
3) 0,25x + 0,75y > 100.

This inequality demands that not less than 100 planes are shot

down at high-altitudes.

In addition, there are two limits, as follows:

4) X>o;
5) y.>o.

These inequalities express the fact that the unknown number of
high- and low-altitude complexes cannot be negative.

We will transform these five inequalities, giving them a simpler
and more convenient form:

1) 3x+y>400;
2) x+y>300;

3) X+ 3.P >400;

5) y>0.

If we ignore the sign "greater than,,, and observe only the equal
sign, then all five equations, insofar as all of their unknowns are of
the first degree, are equations of straight lines (linear).

We construct these lines on a graph (Fig. 25). It is evident on th!
graph, that the equations x = 0 and y = 0 are the axes of the coordin;Ltes,
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At our disposition there are two types of anti-aircraft rocket

complexes, high- and low-altitude, which have a different probability

of destroying a target, depending on how high it is flying. In addition, the

high-altitude rockets are twice as expensive as the low-altitude roc-

kets.

H3w many and which sort of complexes should be used, so that

on the one hand the expected number of destroyed targets is not less

than the number of planes that may participate in an attack, and, on

the other hand, the cost expenditure ;s kept at a minimum?

1
To solve this problem we enter initial figures into a table

b~ BOTpoamo nopmxetims nexem l mo~
Ua HSa DUCOTS1 pixeTb

Tma KONmUsexcO e(ANHROOZ

SI I Ipeike b~oibw Oc XOC")

.ManfoBwcoTrRue9 0,75 05 0 25 25
Bbicoi~be 0,25 00:5 0:75 50

MaKC11Ma3JbHOe 4HCJIO 100 1i 0 100

I aTaKy1otm1x caMoneTOB
"Ha BbncoTax

Key: a - Type of complex e - high
b - Probability of destroying f - Cost of Rockets (in

targets by altitudes units of cost)

c - low g - Low altitude

d - medium h - High Altitude
i - Maximum number of attacking aircraft

by altitudes.

We indicate the unknown number of low-altitude complexes by

x and the number of high-altitude complexes by y.

The limits of the problem will have the form

1) o,7f•c + 025y > 100.

This inequality expresses the demand that the mathematical ex-
pectation of the number of planes shot down at low-altitudes, by low-

altitude rockets (0. 75x) and high-altitude (0. 25y) rockets, does not

total less than 100.

TThe initial figures are of a purely. illustrative character.
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and the remaining three equations form three intersecting straight
lines, ;nclined at different angles. Here, the heavy broken line

ABCD defines the border of the region of realizable solutions (shaded
in on the giaph). This means any point on the given area will have

coordinates (x, y) that satisfy the five inequalities introduced above.

However, the problem is not solved yet.

The problem is that from the entire set of these points we must
find a point which will fulfill another demand, the achievement of a
minimum cost for all of the rockets, expended in repelling the attack.

"-4=7c0I fblcomnb/X poaem

3 # =400 A6 C 6oya m u u3x~~00. O/acn OpL4etun7 U• b

"C- 25x * 50

,. B

0 !00 200 c 300 400 50) 600 700 800
MucQo ManoeBIcomU6lM paffrm

Fig. 25 - To Solve the Problem of Constructing a Defense

System by Cost Criteria

Key: a - Number of High-Altitude rockets;
b - Region of realizable solutions

c. - Number of low-altitude rockets

'to find this point, we form the equation which defines the cost
C. The overall cost of rockets (in units of cost) is the sum of the

cost of x low-altitude and y high-altitude rockets, i. e.
C - 25x + 50y.

This equation is also a straight line. Depending on the magnitude
of the cost C, this line will move on the graph parallel to itself
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(dotted line). Here, the lower the cost C, the closer the line is to
the origin of coordinates 0.

The po':'t, which is the solution of the problem, must satisfy
two conditions:

-- it must not be outside the limits of realizable solutions,

-- it must lie on the line of minimum cost.

Obviously, the point that satisfies both conditions is the point
C on the graph of realizable solutions.

The coordinates of this point (x = 250, y = 50) are also the solu-
tion to the problem. In fact, in using 250 low-altitude and 50 high-
altitude rockets, we will, in the first place, secure the destruction
of not iess than the assigned number of targets for each altitude,
and in the second place, have minimum expenditure.

The expenditures will be equla to.

C = 25x + 50y = 25.250 + 50.50=
= 8750eAHH Uc CTO.IOCTI.,

Units of cost

It may be shown that any other point in the area of possible solu-

tions will yield a larger cost. The comparative cost of a PVO (anti-

aircraft) system, (for points A, B, C, and D), are shown in the table.

I Qb Toqxx

0- I [ g- Za .It r

x 0 50 250 400
Y 400 250 50 0
C 20000 13750 8750 10000

Key: a - Quantities d - B
b - Points e- C
c -A f -D

From the table it is apparent that the solution found by the
method of linear programming (point C) will secure a minimum

cost for the system.
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The Problem of Distributing Weapons by Time Criteria

To solve this problem we use another so-called tabular method,

and apply it to a conditional problem, created for illustrative purposes.

Suppose we have three military groups, with a different number

of units in each one:

-- Group I - 100 units,

-- Group II - 100 units,

-- Group III - 120 units.

The problem is to destroy objectives, sequentially, in the

shortest time (it is assumed that each unit is capable of reaching

any objective). We will assume that in earlier calculations we found

that:

For the Ist target, 40 units are needed

For the 2nd target, 80 units are needed
For the 3rd target, 80 units are needed
For the 4th target, 80 units are needed
For the 5th target, 80 units are needed.

In addition, it is known that the intervals between the application

of military units, from each group, will be as follows:

For Group I, firing at the first objective -- 2 mrin., at the second
objective, - - 1 min., at the third, -- 2 mrin., at the fourth, -- 3
min. , at the fifth, -- 3 min.

Analogous figures pertain to Groups II and III.

With these figures, how does one find the best variant from the

planning table, when the possible variants number into the millions?

Linear priogramming allows this to be dove in a limited number of tries.

First of all, we oistribute the objectiveL. among the groups,

applying the most obvious program: we use all of the units of Group
I, and when their limit is reached we begin to use units of the next
grout. As a result, we obtain the following table for the firing plan.
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0._ I-A llapRaH

ouep rpynupom HoepoI Ko.oiecmo C.
n2 1 3 T .5 1 oeoia esmnua

________n~pao I I I I 5 °' ' ''

1402 1401 )3 1OS 0 100
11 W-1010 6024011 02 00

I0I 0 3 0 (14•(4 802 120

.oAII'lCcTSo 6•oe. .10 -10 80 80 1 80 320

Key: a - 1st variant c - Number of military units
b- Group number d - Objective number

The table shows how many units are launched from each group to
each target. The corresponding interval between the use of differcnt
units is indicated as an exponent (index of degree). From the table

it follows that:

The 1st objective is fired at for 80 min. (40 units at 2 min. each)
The 2nd objective -- 40 min. (40 units, 1 min. each),
The 3rd objective -- 160 min. ( 80 units, 2 min. each),
The 4th objective -- 80 min. (80 units, 1 min. each),
The 5th objective -- 160 min. (80 units, 2 min. each)

The total is 520 min. (8 hrs. 40 min.).

What should be done further to shorten the time expenditure?

Examining the first row of the table, we find the first zero (it is
in the fourth column and shows that units from Group I do not fire
at the fourth objective).

We increase the zero to one (we check to see if we can gain
time if Group I sends even one unit against the fourth objective). This
means that we must change the table somewhat to that the sums in
the rows and columns are maintained. The table will appear as
follows: . 2-A mapHAaw

Ioe 0. Homep OOheKTOD JOI~ qCN
rpyanNIpoaoK I 2_ 3 4 60Sca w c ASEKK2Z

40I 40 (20-1)2 (0+1)3 0

0I 0 (60+1)1 (40-1)l 0
0 0 0 40 80 -_ 0

KOJIHqeCTBO 140 401 80 80 80J 320
6"Bbix eAHHH11
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Key: a - 2nd variant c - Objective Number
b - Group Number d - Number of military units.

We test this change. Taking one unit from Group I from the

3rd objective, we gained 2 minutes, but assigning it t6 the fourth ob-
jective, we lost 3 min. (total loss of 1 min.). Adding one unit from

Group II to the third objective, we lose Z mrin., and by taking it from

the fourth objective we have gained 1 min. (total loss of 1 min. ).

In all. we have obtained an insignificant result; the overall firing
time has increased by 2 min.

Then we try increasing the second zero to one (first row, fifth

column), while at the same time rearranging the plan so that the sums

uf the rows and column stay the same. We obtain the third variant of
the table. - - 3-A 3apHaHT

C. Houep - • foxep oGirroa IKo~ectio
. I 1 1 2 3 4 e1 2l4 l

1 40 140 J(20 l)!2 (0+1)1 (0+1)3 1 100
S 0 0 (60+1)2 (40-1 0 100

0,II 0 0 (40%1)I (80-1)• 120

(a/ KoX.qeCT0o .40 1 40 1 80 1 80 80 I 320
6oeBMx eJtIwIItHI "lI

Key: a - Group Number c - Number of military units
b - Objective number d - 3rd variant.

For Group I, the time has decreased by 2 min. and increased by
3 min. (a loss of 1 min.); for Group II, the time has increased by Z
min. and decrea:sed by 1 min. (a loss of 1 mrin.); for Group III the

time has increased by 1 min. and decreased by 2 min. (a gain of 1 min.).

However, in all, we have lost one minute.

We will do this experiment with the next zero, and with all of the
zeroes in order, entering the results of the changes in a table.
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-- PesyJbTaThi eAHHqHHMX HSMe~eHeHt

-- .•omep o~seaToip o qe~ o

bHouep rpyn.p15
40 12 1 i 3 j MOM

AAInm0
3  

0~3

402 401 20602 +40 +10 100

II 0+1 032 0 400 1 802 120

A K o n, , t1 U B r a 6 oe b b i x -1 0 1 4 088H 
I0I l 

3

Key: a - Results of changing zeroes by one;
b - Group Number
c - Objective number
d - Number of military units,

The lower indices by the zeroes show the change in firing time
for each time the zeroes were replaced by ones. From the table,
we see only one useful change, when one unit from Group II is sent
to the 5th objective instead of the fourth. This reduces the firing
time by one minute. Then we use this solution by changing all 40
units of Group II from the 4th objective to the 5th (that is, we do the
maximum that is possible in reducing the time).

Performing the corresponding change, we obtain the 4th variant

of the table. I
A•i 4-A apHa.T

• . b Homep o0•eukos C., Xo.a,:ecmo
O Howep rpynDHpoaoC doe,.X

I 40' 40t 20W 0 0 1000I 0 2 O 60 2 0 1 4 n' 100
I1l 01 03 02 80w 402 120

C-. Koaw~ecmo doenisu1 40 j40 80 80 8 2
eAHHHU

Key: a - Group Number c - Number of military units
b - Objective number d - 4th variant

The overall firing time in this case will be
- . I I I ! I

O6iuee BpeMS1 CTpeJIb6bw B wTOM ciyqae 6yAeir paBHo:
(40.2) + (40.1) + (20.2) + (602) + (80.1) + (40. 1) +
+ (.40. 2) = 80 + 40 + 40.+ 120 + 80 + 40 + 80 = 480 muRtL

Key: a - 480 nin. (8 hours)
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In comparison with the original plan, we have gained 40 minutes.

Continuing with this newer and more useful table of firing, we
apply the same method, that is, we change each zero to one, in turn.
The results of these changes are entered into a table.

a.. PesyhbT&Tm eANHHUHMX xSMeHeHMA

6 .... Houep out. 1 Ico-mecTSo
1 2 34p r p y n5n p oM•~ o I4

.40P 401 202 0' 42 100
02 +1 0 ,, 0 +1 401 100

III (PS 0+1 02lJ 80 40 120

Koriniecgo ftesbixj 40 I4C 80 I80 I801 320
eAUJELI I I

Key: a - Results of changing zeros into ones;
b - Group Number
c - Objective number
d - Number of military units

out that we may also receive a gain herc if we transfer
Group III to the third objective. We transfer all 40 rockets from the
5th to the 3rd objective. We obtain a new varianit of the table.

0',-5.4 BrApHU

C HOMp Oue•p6Ut4O IKoAItTO06 Homep rpynnwpowox 1_ "leux

. 1 2_ _ . AJ1 _ _ __

I 0 0 201P 0 0 100
11 '0 0 2M .080' 10

III 0_040 0 120

KornHqecauo6oeiblx 40 41 .0 1 0 320

Key: a - 5th variant c - Objective number
b - Group number d - Number of military units.

The overall firing time in this case will be:

O6uee Bpem.i crpenb6m s 9TOM cnyqae •6yAel panso:
(40.2) + (40.1) + (20.2) + (20.2) + (40.2) + (80. 1) +
+(80.1)=80+401+40+40+80+80-i80=440 ..

Key: a - 440 min. ( 7 hours 20 minutes). This means we
have gained 40 minutes.
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Once again we change all of the zeros into ones and enter the re -

sults into a table.

Results of Changing Zeros into Ones

. .Pesyn•*bia eMIHHH4HbX HsMe~IeHUS

C=_Homep OitXTexo RoXHUe¢o6 Houtp rpylIUM.Po,, ýbx
1 1 2 1 3 4 5 ovHH

140r 40, 'o202 02 032 100

II 0 {1 202 01 801 100
III 0s , 0+2 402 80' (41 120

dKonii'ecTSo °Oeowx 40 1 40 80 80 80 320

Key: a - Group number c - Number of military units.
b - Objective number

From the table it is apparent that none of the changes leads to the
desired result. Any change can only increase the firing time (or leave

it unchanged).

This shows that we have obtained the optimum solution to this pro-
blem (the 5th variant of the table). In comparison with the first plan

(1st variant) we have economized on time by 1 hour and 40 minutes,

and for military operations, such a gain is extremely important.

The General Problem of Linear Programming in Tactical-Operational
Computations

We have examined particular problems, from which it is apparent
that methods of linear programmig can be used to solve important

practical problems of a military character.

In all cases, we have examined tables (matrices), in which the
number of means (weapons), multiplied by the number of targets, is

equal to six. This was explained by the fact that in such a matrix

one may apply a visual and simple geometrical method, where the
optimum solution is obtained from one of the vertices of the polygon

of solutions. If the number of independent unknowns is equal to three,
the optimum solution is obtained from one of the vertices of the poly-

hedron of solutLons. If the number of independent unknowns is greater

than three, then the problem does not have a simple geometrical
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interpretation, although in these cases one does use a concept of
multi-dimensional geometry.

To solve problems of linear programming for large values of
m and n such methods are apphe.c, as the simplex-method, the
method of inverse matrices, and others. However, in the cas e of - I
large matrices, the solution, by any method, becomes so clumsy,
that it becomes difficult co obtain it with the simplest of calculation
methods. At the present time, the largest problems connected with
linear programming, are successfully solved on electronic computers.

Problems of optimum distribution cf forces and means in
operations, can often be linked to methods of linear programming,
where the number of types of weapons and objectives is significant.

The basic ind-cator that a problem of weapons distribution in an
operation may be linked to methods of linear programming, is when
each enemy target has only one weapon attached to it. If more than
one weapon is planned against one target, then such a problem, as
was said before, is linked to methods of non-linear programming.

The general sequence of solving proglems in which linear pro-
gramming is applied to optimum weapons distribution will be as
follows. First of all, we must determine the combat .ffectiveress
(probability of destruction, relative damage, probability of detection,
etc. ) of each type of weapon (means) on each type of objective.

Then a matrix is formed, in which the rows correspond to the
weapons, and the columns to the objectives. In each cell of the
matrix is the unknown quantity of weapons and the known effective-
ness of the given weapon for the given objective. Assigned quanti-
ties of weapons and targets are written in the matrix.

After this, limits to the problem are written, in the form of
equalities or inequalities. Depending on the character of the problem,
a criterion is chosen, which characterizes the general effectiveness of
the weapons distribution (the total power of the armaments, the total
relative damage, the mathematical expectation of the number of des-
troyed targets and others). The criterion of effectiveness must be
expressed in terms of an assigned effectiveness for the separate
weapons and the number of weapons assigned to each type of target.
If, in the formulation of the criterion of effectiveness, and in the
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equations which determine the limits of the problem, the unknowns
are of the first degree, then the problem is one of linear programming.
Different methods may be applied, depending on the dimensions and
complexity of the matrix.
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CHAPTER V

THE APPLICATION OF THE THEORY OF MASS SERVICE TO
MILITARY AFFAIRS

The Theory of Mass Service

The theory of mass service investigates the quantitative side of
processes related to the organization of mass service. Here, by
"service", in the broadest sense of the word, we mean the function-

ing of some system of apparatuses, designed to fulfill massive and
uniform demands.

In practical human activity, a situation is often created, where
a massive demand arises for service of some special form, but the

service system, deploying only a defined number of service appara-
tuses with limited productivity, is not always capable of satisfying
all the requests. For illustration, one may introduce the tasks of
telephone exchanges, airports, mooring places, gasoline filling
stations, hospitals, ticket counters, repair points and other institu-
tions of mass service.

In all similar cases, this theory solves one basic problem. It
establishes, with all possible accuracy, a relationship between the
number of service apparatuses ( with a given productivity), and the
quantity of demands arising, so that the productive capacity of the
system satisfies these demards.

The significance of this theory is very great in military affairs,
where there so very often arises ccnflict between the need to satisfy
demands and the possibility of fulf,lling their with a limited number
of service units that make up a system.

Examples of System3 of l1ass Service

We will introduce three examples of mass service of a military
character, suing the following terminology.
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As is apparent from these examples, the term "service" is used
here not only in the sense to which we are accustomed. If, in cus-
tomary speech, service is associated with the satisfaction of certain
needs, then in the theory of mass service, it acquires a wider mean-
ing (this is apparent, in particular, from the second example in the
table).

The task of the theory, is the expi in the basic quantitative
characteristics of the process of mas. service, allowing one to
evaluate the quality of the organization of that service. Using such
characteristics, one may find the weak places in the organization,
and consciously work to its improvement.

As is apparent from the table, a flow of input demands enters
the service system, and an output flow leaves it.

Diversity of Systems of Mass Service

The productive capacity of a system may be sufficient or insuffi-
cient. By "insufficient", we mean a system which, in a unit of time,
is capable of serving less than the demands made on it.

In those cases, when the prodalctive capacity of a system is suffi-
cient, there is no waiting line for the system's input, and the output
consists only of demands that have been fulfilled.

M pQwcaufamu

, ~ annapamw al

Fig. 26 - Productive Capacity of a Sufficient Service System

Key: a - Input flow of demands c - Service apparatuses
b - Service System d - Output flow

The basis quantitative criterion of the quality of the work of such
a system is the fullness of the load (the average percent of use) of the
service apparatuses. Here, a small percent of use indicates a super-
fluous number of service apparatuses in a given system, as a result
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o0 wL1ich when a given number of demands arrive in a given unit of
time, a significant number of apparatuses are not in use.

In cases (Fig. 27), when the productive capacity of a system is
insufficient, but the demands can wait for the service to begin, (for
instance, airplanes entering a repair shop) the output flow will con-
sist entirely of serviced demands, (repaired aircraft), but here, a
line of demands begins to accumulate (planes, awaiting repair).

Such a system is called a system with waiting. The basic quan-
titative criterion of the quality of the work of such a system is the
average length of the line (the average number of demands, awaiting
service).

b

mpO[dr -- -

Fig. 27 - A Service System With Waiting. The Productive
Capacity of the System is Insufficient; the Demands
Can Wait.

Key: a - Line of demands
b - Serviced demands

A number of other criteria are of interest, in particular, the
average waiting time before service begins. Here, the criterion
of fullness of load becomes secondary, or auxiliary.

In other cases, (Fig. 28) a demand may not wait for sei vice
to begin (for instance, enemy planes flying into our defense lines),
and if the productive capacity of the service system (Group of anti-
aircraft complexes) is insufficient, then the output flow must consist
of both serviced demands (aircraft shot down) and unserviced demands
(planes breaking through).
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a ---- - r - pedoeamug

mpedogasew .J 0 -

Fig. 28 - A Service System with Losses. The Productive
Capacity of the System is Insufficient, the Demands
Cannot Wait.

Key: a - Input flow of demands; b - Serviced demands;
c - Unserviced demands.

Such a system is called a system with losses. The basic quanti-

tative criterion of the quality of the work of such a system is the pro-
bability of refusal of service, i. e., the probability that, at the moment

a demand arrives, all of the service apparatuses will be occupied
with demands that have arrived earlier. Such a criterion, as the
average number of apparatuses, occapied with service (i. e. the above-
mentioned fullness of load of service apparatuses once again becomes

secondary.

In practice, one meets other diverse systems of mass service,
of a more complex character. Special literature is devoted to these
systems, which we will not be concerned with here.

The Necessity of Applying the Theory of Mass Service

When the time interval between arrivals of demands for service
is steady, and the time of servicing one demand is also steady, then
no problem, studied by the theory of mass service, will arise. In

this case, it is easy to find the needed number of service apparatuses.

For example, if four tanks were to appear every minute in an anti-tank
defense zone, and one anti-tank complex took 0. 5 min. to destroy one

tank. then we would need 4 x 0. 5 = 2 complexes, so that not a single

enemy tank would remain undestroyed ("unserviced").

The theory of mass service is needed in cases where the inter-
val of time between arriving demands, or the time to service one
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demand, or both of these quantities, are not steady, but oscillate
within some boundaries around an average value.

As a rule, in, the majority of military problems, the input flow
of demands does not depend on our will, but on a nuniber of chance
factors, and in particular, the intentions of the enemy. Therefore,
to determine the number of demands, arriving over a certain inter-
val of time, one m-ust resort to the probability characteristics of
the input flow.

The time it takes to service one demand with one service appara-
tus is also, in the general case, an unsteady quantity. In fact, each
of the planes, arriving in a repair network, will need a different
amount of work done to it, depending on the nature of the damage.
The firing cycle of an anti-aircraft complex can also vary, depending
on the nature, altitude, speed, and parameters of an aerial target.
Therefore, for each process of mass service, a law of service !ime
distribution must be found, i. e. a function that will, for each interval
of time, determine the probability that the service will be cornpleted
in this time interval.

The Probability Characteristics of An Input Flow of Demands

For many actual processes, the flow of demands is sufficiently
accurately characterized by Poisson's Law of Distribution, according
to which, the probability of exactly k demands arriving at a service
system over a time interval t, is determined by the equation

where Pk(t) is the probability of k demands arriving over time t,

A is the density of the flow (the average number of demands
arriving in a unit of time,

t is the time,

k is the number of demands in tirtie t
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e is the base of the natural logarithms1

2is the factorial sign

In making a mathematical description of the maLhematical pro-
cesses, one must consider that reality is always richer than the prin-
ciple, with whose aid we are trying to reflect it. Therefore, a distri-
bution law reflects principles, not inherent in an input flow of demands
actually met in practice, but in a type of input flow, defined by certain
boundaries.

So, it is with Poisson's Distribution. In order to apply the princi-
ples of Poi.son's Distribution to an actual input flow of demands, the
actual flow must be contained in the following framework.

In the first place, the number of demands, making up the flow,
must have only integral values (including zero).

In the second place, the number of demands, arriving for service
in a given time segment, must not depend on the number of demands
arriving at some other time segment. In other words, the arrival
of demands at a given moment of time must not be connected with the
arrival or non-arrival of demands at other moments of time.

In the third place, the arrival of two or more demands simulta-
neously must be practically excluded.

In the fourth place, the ar;'ival of demands must be distributed
in time in a random fashion. In other words, the input flow of de-
mands must be characterized by a stable average number of demands
arriving in equal (and sufficiently large) time intervals.

This average number of demands, designated in the formula by
is called the density of the flow.

1The base of the natural logarithms is e = 2. 718. To ease calcula-
tions, a table is given in the end of the book of values of e-x for different
values of x (Appendix 1).

ZThe symbol k!, called the k-factorial, is the product of all intergral
numbers from 1 to k, i. e. ' 2' 3 ... (k-1)k. Thus, for instance, 4! =
4" 3'. 2- 1 24. At the end of the book there is a table of different values
of Md for different values of k (Appendix 2).
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In spite of the seemingly rigid conditions, there are many real
input demand flows, for which Poisson's Distribution is applicable,
and this enables it to be used for practical calculations.

A flow of demands, which is subject to Poisson's law, is some-
times called the "simplest". 1

Thus, for instance, for an attack density of one plane per
minute ( A = 1), the probability of different numbers of planes passing
the given zone per minute is given in the following table.

qtico caMo- 0 I 2 3 4 6 7
0ý,_aeToSB 5MH-HyTy, k

BepoyryoM 0,3679 0,3679 0,1839 00613 0,0153 0,0031 0,0005 0,0000
i'lOHBJleH'4R

3Toro %11CAa
camone-

Too, PDt (1) ,

Key: a - Number of planes per minute, k
b -. Probability of this number appearing, P(1I

k(1)

From the table it is evident that the expression "density of
attack equal to one plane per minute" cannot be interpreted as if
every minute one plane will pass through. One plane per minute is
only the average. There will be minutes when no planes fly into the
area (almost 37% of all cases). And there will be minutes when two
(18% of all cases), three (6% of all cases), or more airplanes enter
the area.•

Graphically, this distribution appears in the following form (Fig.
29).

1If a distribution law is obtained by sorting the statistics of some

flow of demands met in practice, then one of the indications that this
distribution is subject to Poisson's Law is even the most approximate
equalization of the mathematical expectation of the chance quantity
and the dispersion of this quantity (concerning methods of determinirg
the mathematical expectation and the dispersion of a chance quantity
see Chapter II).
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0Bepermecma Pi(,]

0 2 3 4 5 6 7
p I~~uR.Ji cao, toemos X

Fig. Z9 - Law of Distribution of a Flow of Demands

Key: a - Probability Pk(l); b - Number of airplanes k;

From the table and the graph, it is apparent that the passage of
four or more airplanes per minute is practically impossible, (the
probability of this event is so small, that it can be ignored), but
we must consider the passage of two or three planes per minute
in organizing against the assault, since this can happen approximately
one time out of four.

The Probability Characteristic of Service Time

For many random processes met in practice, the law of service
time distribution is sufficiently accurately described by an exponential
function

where F(t) is the probability of completing the service in time t,

Yi is the mathematical expectation of the service time (average
time of service) of one demand by one service apparatus, **

e is the base of the natural logarithms.

* To ease practical calculations of the quantity e Pt, the table of values
of e-X, at the end of the book, may serve;

** If V/p is the average service time for one demand, then the inverse
quantity P is the average number of demands, served in one unit of
time by one service apparatus.
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Thus, for instance, if the average time of servicing one demand
by one apparatus is equal to 1 minute, the probabilities of completing

the service in different time intervals are d-fined in the following
table.

1, .- 2. 3 4 5 1 6

Bep0, M OCt' Ho - I0 0,6321 0,8647 0, 09817 0,993
Ia... o6cnv),eaH.I,7
3aBPCMSIt"(F~~l))O M

Key: a - Time interval t, min.
b - Probability of completing service in time t (F(t)).

Graphicai.Iv. this distribution appears in--the following 4orm.
BepokmmVocmb F(t]

1,0 - - - - - - - - -. . . -

0.9.

147
0.5.
0,4-
0,3

0 6
Rnemt M•m

Fig. 30 - The Law of Distribution of Service Time.

Key: a - Probability F(t); b - Time t, min.

In general, there is sufficient reason to consider that the real

process of service is subject to the exponential law, if the probability

of completing the service soon after it has beguni is high, and it is

not probable that the service will exend over a protracted length of
time.
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Several Military 'roblems as Problems of the Theory of Mass

Service

If the input flow of demands and the time to service one demand

do not depend on us, then organizing the functioning of a service sys-
tem. particularly the choice of the number of service apparatuses,
is entirely up to our competition. What does it mean to organize a
service system well? This means that a long line of demands does not
form, that unserviced demands are not left over, and that our service
apparatuses are not idle. It is necessary, first of all, to dispatch a
corresponding number of service apparatuses (for instance, to
correctly determine the array of forces, participating in a defense),
to correctly group the service apparatuses and to distribute the de-
mands among them in the most reasonable way (i. e. to make the most
rational distribution of targets among defense weapons).

The value of the theory of mass service is increased by the fact
that it gives us a means of quantitatively evaluating the quality of
service, which is expressed by quantities characterizing the input
flow of demands and the service time.

In the military, the theory of mass service can be most applied
in the following problems:

-- problems of organizing various kinds of service systems, with

the goal of constructing the optimum system for each concrete case;
in this respect we have, first of all, evaluating the quality of defense
systems, and also of repair, supply and medical-sanitary systems;

-- problems of organizing the guidance of forces in battle; in this
respect we have, first of all, evaluating the quality of systems of
communicating and revising information about a situation, which is
especially important in creating automatic guidance systems;

-- problems associated with forming models of the processes of

military operations.

For instance, in organizing a PVO (Protivovozdushnaya Oborona -

Anti-aircraft Defense) or PRO (Protivoroketnaya Oborona - Anti-
rocket defense), the pocess for firing at bombers (rockets) can be
considered as a process of mass serNice, and the arrival of target
data (points) on a radar screen can be seen as the arrival of demands
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for service. Using methods of the theory of mass service, one may,
in this case, calculate, for example, a criterion of effectiveness,
such as the number (percent) of bombers (rockets) not destroyed by a
given defense organization, which is the essential element in evaluat-
ing the combat capability of a given anti-aircraft rocket group. The
theory of mass service will also help us to calculate the number of
rocket complexes needed, so that with their given quality maintained,
the aerial space or objective will be properly defended, and there will
be no extra complexes.

An Example of a System of Mass Service with Losses.

We will examine a conditional, numerical example. Suppose we
want to create a defense system, with the condition that the proba-
bility of breaking through this system is not more (in a given direc-
tion) than 0. 02, i. e., that less than 2 out of 100 targets would penet.rate
the system. It is necessary to determine from what number of defense
complexes the system must consist. It is obvious that the defense
system can be related to systems of mass service with losses, since
undestroyed targets will leave the defense zone without having been
serviced. Therefore, the probability of breaking through the system
is equivalent to the probability of denial of service. Consequently,
the quality of the defense can be characterized by the probability of
denial of service and the completeness of the load of the defense com-
plexes in the course of repelling the targets. We will calculate these
quantities.

Let us suppose that the flow of enemy targets in a given direction
is simplest with a density of A = 4 (the average number of targets
reaching the defense zone in a unit of time is four) and the average
time to fire at one target with one complex is I/p 1 (on the average,
one complex can fire at one target in one unit of time). We will also
consider that the probability of destroying an enemy target in one
round (volley) is equal to one (i. e. firing at a target is equivalent
to destroying it).

The probability of breaking through some defense system is
equal to the probability that all of the complexes of this system will
happen to be busy (will be firing at other targets).

The needed number of defense complexes may then be found
from an inequality, which stipulates that the probability of all the

-146-



complexes of this system will happen to be busy (will be firing at
other targets).

The needed number of defense complexes may then be found
from an inequality, which stipulates that the probability of all the
complexes being occupied is not more than 0. 02.

For a system of mass service with losses, the probability of
all complexes being occupied is equal to 1

Key: a - occ

where Pocc is the probability that all complexes will be

occupied,

,A is the density of the target flow

/• is the aegetime for oecmlxto fire atonith average tiefrone complex tofr tone
target,

r is the number of defense complexes,

m is a running parameter, taking values from 0 to r.

Since we want the probability of all complexes being occupied to
be less than 0. 02, i. e. so that the condition

< 0,02,

Key: a - occ

1 This formula was obtained by Erlang, and is named after him.
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is fulfilled, we must find a number of complexes r for which the
above expression is less than 0. 02.

To find the quantity r, we make a graph on whose abscissa
we place the number of complexes and on whose ordinate we place the
probability of penetrating2 the defense system, calculated for this
number of complexes, (Fig. 31).

The graph of Pocc' as one might expect, shows that as the num-
ber of complexes in a-defense system increases, the probability of
penetrating this system decreases. At first, this decrease is sharp,
but then it becomes shallower and shallower.

If we place two complexes against a flow of targets of four per
minute, and each of these complexes is capable, on the average, of
repelling one target per minute, then the probability of both com-
plexes being occupied simultaneously will equal to almost 60%. This
means, that about 60% of the targets will not be destroyed.

Adding one more complex (making r = 3), will decrease the pro-
bability of penetration to 43%, i. e. by 17%.

With six complexes, the probability of penetrating the system
will be equal to 1Z%, and the addition of one more complex (r = 7)
will decrease it to 6%, i. e. by 6%.

Naturally, for an assault with a different density, the probability
of penetrating this same system will be notably different. Thus, if
the density is twice as high (eight targets per minute instead of four),
the probability of penetration for a system of two complexes will rise
to 78% (as opposed to 60%), and the probability of penetrating a sys-
tem of six complexes will rise to 39% (as opposed to 11%).

This visually affirms the assertion that the reliability of a de-
fense system cannot be judged without regard to the nature of the
penetration of the enemy, who i.s trying to overcome it. If the sys-
tem is sufficiently reliable for one variant of enemy activity, it
may still turn out to be unsatisfactory for another variant. Therefore,
a reliably constructed system must be calculated for the worst variant.

Returning to our example, we determine by the graph that, in the
given case, in order-to obtain a probability of penetration of less than

2 The probability of penetration is equal to the probability of all com-
plexes being occupied Pocc"
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0. 02, the number of complexes must not be less than nine.

It would seem that simple reasoning would lead to a different con-
clusion. In fact, fi, for instance, four enemy targets appear in a
minute, and each complex spends one minute firing at each one,
then it would be enough to have, in all, four complexes, so that not
a single target would penetrate. Why then, does the theory of mass
service demand that we establish nine complexes so that not more than
two out of 100 targets will penetrate? This is because a density of

= 4 indicates that four planes per minute is only the average. If,
for instance, in the first minute five targets arrive, in the second -
three targets, in the third - six, and in the fourth - two, i. e. in all
16 targets in 4 nin., then, although on the average there are 16/4 =
4 targe's per minute, with only four complexes there will be one tar-
get allowed through in the first minute and two in the third, which is
a total of three out of 16. This means that, for this reason alone,
the probability of penetration i four minutes will be high (about 19%),
and the demand was that the probability be less than 2%.
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Fig. 31 - The Probability of all the Complexes Being Occupied
Simultaneously and the Average Percent of Occupied

Complexes
Key: a - occ; b - Number of complexes.
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One must also not fail to consider that firing at one target re-
quires one minute, only as an average. This time can actually turn
out to be more or less than a minute.

When considering all of these vaccilations of flow density and
time of service, we must have nine complexes to keep the probability
of penetration from exceeding 27%. With only four complexes, an
average of 30%o of the targets will be let through (as is apparent from
the graph), i. e. approximately every third target.

In the given example we see that when a process is of a random
nature, simple reasoning can lead to a rather serious error.

Calculations which are not shown here, show that the average
number of occupied complexes at each moment in the reflection
of an assault will be four (out of nine). This means that each com-
plex will be occupied 4/9 x '00 = 44. 5% of the time of the assault.
If there are four launching pads in all, the average number of
occupied complexes will be 1. 74. Consequently, each launching pad
will be busy 1. 7414 x 100 = 43. 5%6 of the time of the assault. There-
fore, with nine launching pads the defense of the aerial space is in-
creased, and the fullness of load on the launching pads does not de-
crease.

In Fig. 31 a dotted line shows the fullness of load on the corn-
plexes, for different numbers of them, pertaining to the example
we have just analysed (here, by fullness of load we mean the ratio
of the average number of occupied complexes to their overall number,
expressed in percentages). From the graph it is apparent, that the
greatest fullness of load is achieved when r 6 complexes (52. 3%6 of
the time). However, here the probability of all six complexes being
occupied simultaneously is P o,= 0. 12 (i. e. 12 targets out of 100
may penetrate). Obviously, the chief criterion in the given problem
is the realibility of the defense of the aerial space. The criterion of
occupation can only be secondary.

An Example of a System of Mass Service with Waiting

We shall analyze another example. Suppose our staff is given
the problem of dispatching duty equipment of a certain type to
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destroy targets that have just been discovered by aerial reconnaisance.
The question arises: "How many units should be sent?"

From the viewpoint of the theory of mass service, each duty
device can be seen as a service apparatus, and the total of these as
a service system. in this case, the demands for service are reports
of newly discovered targets, whose destruction is decided by the duty
devices. The process of service itself will consist of firing at the
targets.

What may be saidin the given example, about the number of de-
mands arriving in a unit of time ? Obviously, it will not be constant.
In certain hours, orders to fire at targets will come more frequently,
at other hours more rarely, and at other hours, none at all.

However, on the basis of the preceding experiment it may be es-
tablished that in given meteorological conditions, at a given time of
day, for a given number and type of reconnaisance, and observation
regions of the same dimensions, one may expect, on the average, a
certain number of commands per hour. Suppose the mathematical
expectation of the number of commands per hour is A = 8.

What may be said about the time to service one demand with one
service apparatus in the given example? Obviously, this will also not
be constant. The time spent by one device in shooting at one target
will consist of the time to transmit the coordinates, the time to make
a decision, the time to transmit the commands, the time to prepare
the initial launching data, and the time to strike against the target.
Each of these time segments will have a different value in an actual
situation.

However, on the basis of the preceding experiment, one may
evaluate the average time to use one device on one target. Let the
mathematical expectation of this time be equal to i/" = 12 hr. (where
(3- 2, i. e. one duty unit can destroy, on the average, two targets

in 1 hour)

Consequently, the problem of determining the needed number of
units is a problem, which demands a solution by the methods of the theory
theory of mass service. Unlike the preceding example, where we were
dealing with a so-called system with losses, (the demands could not
wait for service to begin), in this example we are studying a system
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with waiting (the demands can wait for service to beginl, a line of
demands may accumulate.

To determine the quantity of duty equipment we will attempt at
first to use simple reasoning. In fact, if one duty unit can fire at
two targets in one hour, and in the course of one hour information
arrives concerning eight targets, then it would seem that four duty
units would be enough (r = 8/2 = Z), so that all of the newly discovered
targets would be fired upon on time.

However, as in the first example, one must not forget that the
arrival of information of eight targets per hour is only an average.
In certain hours more information may come, and there will not be
enough units, and in other hours less data will arrive and units
will be wasted.

In particular, if we consider, that the flow of demands in the
given case is subject to Poiss Wns Law, we may find that the proba-
bility of exactly A = 8 demands arriving in the course of an hour
is not very high. It will be equal to

P(•t)• _•

S () 8.1 e..a. 8, e14

i. e. exactly eight demands will arrive in only 14% of the cases. If
daylight lasts, for instance, 15 hours of the day, then exactly eight
demands will arrive in two of those hours. In the remaining 13
hours, fewer or more demands will arrive.

One must also not forget that one unit can fire at one target for
half an hour only as an average. More time may be expended on some
targets, and less on others.

1 However, they cannot wait for service more than a definite amount

of time, upon whose expiration the target will change its coordinates,
will have to be resighted and placed in line for service once again.
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In particular, if we consider that the time of service is subject
to the exponential law, we may find that the probability of completing
our firing in one half hour is not very large. It will be equal to

F(,) I -

from which , 11 0
_e 2 =_ C_ý 13

i. e. in 37% of the cases firing at one target will occupy more than
half an hour. Therefore, simple reasoning, as in the first example,
has lead to a mistake.

In particular, for a service system with waiting, we may say in
advance that if the number of service apparatuses is less than the
ratio A/p or equal to it, i. e. jf

r<

then the line of unserviced demands (and consequently, the time of
waiting for service to begin) will grow without limit.

Therefore, the first step in checking such systems is to deter-
mine the ratio A/13 . In our example A/t, = 8/2 = 4, from which we
may draw the conclusion that the quantity of duty equipment must be
more than four. In some cases, we must stipulate that a target must
be fired upon not less than 30 minutes after its discovery. In other
cases, we may be satisfied with 2 or 3 hours, 24 hours, etc. This
depends on the character of the target and conditions that complicate
the situation.

Returning to the solution of our example of finding the needed num-
ber of devices, and setting up five of them (r =5), we study the

characteristics of this service system with waiting. I

1 Once again a reminder is made that the formulas introduced below
are correct if r > A/(3 (in our example they can be used as long as
the number of batteries is r > 4.
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First of all, we must find P 0 - the probability that when the next
in line command arrives, all five units will be free.

P=O
m------0-1) rP-4)(1

where m is a running parameter, acquiring integral values from 0
to r - 1, and the remaining symbols are clear from the preceding

examples.

In our example r 5, A 8, (3 2, therefore

PO -4 F 0,013= 1,3%.

I 4m . 2.41-M- 41i Tr
m----

Then we will find Pr, thB probability that at the moment the

next in line command arrives, all five units will be occupied.

-- (r- 1)t(rp-- T)) .

from which 4L
P, .-r•_-2=- 0.013 -0,55 = 55%.

Now we calculate P r > ý , the probability that the next target

after it will have to wait more than t hours for service:

>f == P, e'rP-Av.

Assigning a value to t of 0, 1/2, 1, and 2 hrs. we may, with
the aid of this formula, find a law of waiting time disth-bution

1 4 1 0 1/. 1J

S,>t 0,55 0,2 0,075 0,01
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Graphically, this law will appear in the following form
Pr.t

O'S"0,.6
0,.n

Fig. 32 -Law of Waiting Time Distribution

Key: a - hour

Therefore, the probability that a target will he fired at, later
than one half hour after discovery, is equal to 0. 2, '. e. this will
occur in every five targets.

Thus, the average time of waiting for service to begin will be
equal to ._P

T= PrT-_

from which .
T=-- 05.--_ .0,'275 q=16,5 mut.A

Key: a - hour; b - rain. I

SFinally, the average number of units, not occupied in firing, will

be equal to

from which

R '-m4'.0,013.- L.

1In particular, the probability that t:,e waiting time will be more

than the average waiting time will be equal to

i• P•o.•6 0,•5-O"°b "• 32 =32 %
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Consequently on the average one unit will free and four will

be occupied, therefore, the fullness of use for each unit will be

4/5 1 100 = 80%. If it is light for 15 hours, then each unit will be

occupied for 12 hours of that time.

These calculations show that if five units are designated for
duty, then on the one hand newly discovered targets will be fired upon

soon enough (in 16. 5 min. on the average), and on the other hand,

there will be a sufficiently high load on these units (80%).

In many mass service problems, met in practice, the input

flow is simplest and the service time is completely subject to a well
defined law (in particular, the exponential law).

However, in other practical problems, the input flow may be any-

thing but the simplest; the law of service time distribution may turn

out to be arbitrary, and the organization itself may be of a compli-

cated, multiphases nature.

Developed analytical methods still do noL exist for all cases,

but is is possible for us to obtain interesting quantitative characteris-

tics of service quality by modeling the service processes on electronic

computers.
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