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FOREWORD 

The Quarterly Report was prepared by RCA Laboratoiies, Princeton, 

New Jersey,  under Contract No.  F30602-72-C-0486.     It describes work performed 

from September 19,  1972 to December 15,  1972 in the Communications Research 

Laboratory, Dr. K.  H.  Powers, Director.    The principal investigator and project 

scientist is Dr.  D.  A.   de Wolf. 

The report was submitted by the author on January 15, 1973.    Submission 

of the report does not constitute Air Force approval of the report's findings 

or conclusions.     It is submitted only for the exchange and stimulation of 

ideas. 

The Air Force Program Monitor is Lt.  Darryl P.   Greenwood. 
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1.     SUMMARY OF RESULTS — June to December 1972 

»•n 

The work performed in the period of June 1972 to December 1972 under 

Contract No. F30602-72-C-0486 is a logical extension of that performed under 

Contract No. F30602-71-C-0356 from June 1971 to June 1972.  The technical and 

final reports that have appeared previously under both these efforts are listed 

under [1] in the References and are cited in abbreviated notation (TRI through 

TRVI) in the text. A summary of the .ark reported in TRVI and of subsequent 

work follows. 

I 

1.1 The Furutsu Theory 

We have indicated that Furutsu's result for the statistics of the log- 

irradiance of a beam wave in turbulent ait may be Incorrect.  The error appears 

to lie in an approximation made to solve the equation for the fourth-order 

coherence: an approximation that assumes that the permittivity correlation may 

be replaced everywhere by the square law (which orTy holds for very small 

separation distances). 

1.2 The XVII--th General Assembly of URSI 

We attended the XVII-th General Assembly of the International Union of 

Radio Science (URSI) in Warsaw, Poland, August 21-29, 1972. A special report 

on this conference has been issued to all who receive Management Reports. 

Copies are available upon request. 

1.3 Resolution Study 

A simple model was constructed for the purpose of estimating when one 

can no longer distinguish two bright point features on an object in the sky 

due to intervening layers of turbulent air. The criterion of clear distinction 

between two such objects separated by a distance p is determined by the ratio 
2 1/3 3 

of D to the distance C K  L .  When this ratio becomes small, the two points 
o n m 

smear. Details are worked out for horizontal propagation and for slant-path 

propagation. 

-urt^r t«**- •    ■ ■ - linn iipuwtw ilMMIMl «MpvwMMMMMMVMMHM I 
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l.A The Log-Amplitude Variance (Plane Waves) 

The plane-wave theory of TRV has been completed, and a calculation of the 

log-amplitude variance yields <6x2> - 0.41(^/3L3c2)-1/6 ±n  ^ 8aturation 

regime.  Comparison with plane-wave data appears to be reasonable. 

1.5 Angle-of-Arrival Power Spectrum for an Interferometer 

The calculation of the angle-of-arrival power spectrum given in TRIV has 

been extended for the case of a simple interferometer of two parallel rays. 

Some closed-form results are obtained, and - specifically - the single-ray 

formulas are shown to require only slight modification in most cases of inter- 

est.  An important difference with results of other workers appears to be the 

prediction that W(u) - u"2/3 in the inertial subrange of turbulence, and not 

W(ü)) « u)"8/3: 

m n 

1.6    Spherical-Wave Irradiance in Turbulent Air 

An extension of the theory for plane waves, mentioned *\ove ±n *U**)£\0} 

1.4, has been worked out for spherical waves.    It yields <«X > 

in the saturation regime.    It is the topic of Section 2 of this report. 

This completes, and even extends somewhat, the required tasks of the 

effort under Contract No.  F30602-72-C-0486.    Extensions of this work vili be 

performed under a future contract effort. 

■ 
/ 

MMMttMl *^^mti m 



1 

2.     IRRADIANCE SCINTILLATION FOR SPHERICAL WAVES 

The purpose of this section is to expand the plane-wave theory of 

irradiance scintillation to include spherical waves,  and specifically to com- 

pute the variance of the log-amplitude in that case.    There are several versions 

of the plane-wave theory - in diverse stages of development - in circulation, 

and the reader may have difficulty in following the development.    A brief 

guide through previous work will therefore be given. 

The first of our reports to deal with the subject is TRIII  (the notation 

for  referring to previous reports is explained on p.l).    It is chiefly a 

tutorial work that develops the basic equation  (6.10), and then works out all 

of the theory except that for the saturation regime.     Sections  10 through 12 

of TRIII are self-contained,  and serve to prove a crucial theorem in optical 

propagation through turbulent air:     the n-polnt correlation of refractive- 

index fluctuations always occurs in certain infcegrrals such that it may be 

factored into one ordered product of two-point correlations, even though it 

is not a multivariate Gaussian. 
In TRV, a first attempt was made at a saturation-regime theory.    As we 

see it now,  there are objections to be raised against the development given 

in Section III of TRV.    Furthermore,   the important parts of the theory are 

really in the Appendix, which has been very abbreviated and which yields 

Eq. (A9>   [unfortunately not labeled in TRV] as i result of a development from 

Eq.(A4)  on,  that differs somewhat from that given in this report.    Consequently, 

Sections III through V and the Appendix of TRV have been thoroughly revised 

for publication in the Journal of the Optical Society of America in February 

or March 1973. 
Therefore, there appears to be a departure from a fully logical develop- 

ment in Section 3 of TRVI, because we do indeed start from Eq.(AA) of TRV - 

bearing in mind that the development of Eq.(A4) from Eq.(A2) has been greatly 

expanded in the article to appear in the J. Opt. Soc. Am. - and then ignore 

the further development in TRV.  Section 3 of TRVI does repeat the pertinent 

development, leading to an expression for the log-amplitude variaace. also 

gi/en in the aforementioned article. 

/' 
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n 
Let us now continue the development for spherical waves. In referring 

to TRIII, we find that the first question is whether a fundamental equation 

such as (6.10) can be developed for spherical waves, using the Green's 

function G  (r.r.)  of Eq.(2.7) 
s X 

When  this Green's  function is used in Eq.(3.3), 

we can defir.e a stationary-phase exponential expdT )  as  in Eq.(6.1), but in 

this case. 

m       mm (p2, ♦ .Lt)1/2 + <pi + »y/23 - ^A« ci) m-l   m-1       m   m       mm 

and the points of stationary phase are found by setting the gradient of If 

with respect to p equal to zero. It is easily seen that the stationary- 

phase points p obey 

m 

Ap /Ar  ■ -Q /k + pjrn, 
mm     m     n n 

(2) 

where m 
j-m 

We adhere tvt the notation developed in previous work:  it is quite uniform 

and consistent.  An exhaustive glossary of symbols is given in TRIII. Note 

that the physical content of Eq.(2) is obvious and practically identical to 

that for plane waves.  The initial propagation angle is not zero but Ptt/t_ 

for spherical waves because the source is a point at p « 0, z - 0, and the 

first deflection occurs at (p ,zn). The scattering angli at rm is given by 

-Q /k, exactly as in the case of plane waves.  Consequently, the physical 
n 

small-angle approximations are identical too. 

Since this identity permits one to utilize Apm « Az^ 

in Eq.(l), one can approximate f adequately by 

, p , « z , , 
m' m-l    m-l' 

and p.. « 2 
m    m 

m2Az     \Zi   z/   m   m m    ^ m-l    m ' 

(3) 

J 
i 

,1 
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It requires some algebraic rearranging of terms to obtain this form, but 

2 
once we have Eq.(3) we can carry out all the d p Integrations In Eq.(3.3) of 

TRIII to obtain 

n 
- n 
tn=l 

Ik /dz fd2K 
mj      m 

6e(K ,z )exp 
m m -fefc-tr)«2] 

where Q" - EiJ K 
j-m i i 

(4) 

m 

This form Is analogous to Eqs.(6.10) and Eq.(9.1) of TRIII. As In the 

transition to (9.3), we prefer to rearrange the exponential terms. The 

ultimate result Is 
z1-l 

B^-n-^rydz   /d2K    6e(K4,z4) nj-l Sir 

r-l(L-zm) "ir* rs L      m J 
exp [■ K'A'^J • (5) 

where -EK.Z,/L 
J-m J  J 

This form Is the spherical-wave analog of Eq.(14a) of TRV, which Is the 

point of departure for nearly all results (except the saturation- eglme). 

Note the occurrence of the extra geometrical factors z /L which make these 
m 

exponentials slightly less significant than In the plane-wave case. All known 

results for spherical waves follow from Eq.(5). For example, the extremely 

Important Intermediate steps discussed In Section 13 of TRIII yield the same 

result as Eq.(13.5) for the bead contributions, I.e., for correlations between 

two 6e(K,z) factors of one and the same Bom term B . However, correlations 

between an 1-th B factor and a j-th B* factor of <B(1) B(N)B*(1) B*(N)>, 

or between two unasterlsked or two asterisked factors of this 2N-polnt corre- 

lation ultimately yield Eq.(16.8) with new definitions, 

m cos[K  (z /Da-zJ/k] mm m 

Cjlj)  Hcos  [V^-^CL-^/k] 

(6) 
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Note that the Q,(i) are defined in Eq.(5) above. In fact, with these 
in 

definitions, the entire development of TRIII from Section 16 on can be con- 

tinued. Likewise, Eq.(18a) of TRV also can be taken over unchanged, provided 

C, and C1(ij) are given by the above Eq.(6). 

The modified-Rytov result for spherical waves follo-s as before by setting 

c ^j) = 1# Thc error estimate is identical to that developed in Eqs. (17.12) 

and (17.13) of TRIII. The result for <6x2>, the log-amplitude variance, is 

identical to Tatarski's[2] Eqs.(49.25) and (49.36). Equation(49.36) in our 

notation is 

<6x2> - 0.124C2k7/6L11/6. (7) 

The Rayleigh 2    2 
different only from Tatarski's expression because C€ = 4Cn. 

result is unchanged from the plane-wave case because the only important con- 
2 „2 y   y 

to within errors of order Ä, /L in deviations tributions require Q^ :, « Q^ 

of C (ij) from unity. 
however, the most important matter is to derive a saturation-regime 

corollary to Eq.(7). One can start - once again - from the parabolic equation 

for the normalized field B = rE exp(-ikr): 

ATB + 2ik(r.^- ^)B + k
26eB = 0, W 

where i  is a unit vector of the radial coordinate, which is not going to de- 

viate strongly from the z-direction. It yields for ip = InB: 

A 4J + 2ik T-h + (k26e - 2ik/r) + (^) = 0, (9) 

which yields the spherical-wave Rytov approximation ^R(L) when the last non- 

linear term is dropped. I.e., 

/• 

ty (L)  = ^ /dz exp[i(2kL)"1 rXL-z)A,r]^ (0,z)- (10) 
2 .^  «.r,-, ,   TJ 

Returning to Eq.(9), we note that the plane-wave procedure for eliminating 

(^ i|02 can be repeated verbatim. This procedure was not given explicitly in 

TRV, and it will therefore be included here, based on the J. Opt. Soc. Am. 

manuscript. 

. 
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We integrate Eq.(9) along geometrical-optical rays with coordinates 

r = [p'(s),s] where s is a ray coordinate and^pj(s) = [x'(s).y'(s)] are two 

Mutually orthogonal coordinates such that £(s) and s are the three components 

of a locally orthogonal coordinate system. Let e(z) be the angle between s 

and z after traveling a distance ^z along s. Let ex and ey be the projections 

of e(z) upon the y = 0 and x = 0 planes, respectively. It can be seen that 

3/3x= o /e)3/3x' + (ex/e)(i+0
2)"1/23/3y' + ex(i+e

2)"1/23/3s 

3/3y = -(6 /9)3/3x' + (9 /9) (l+92)"1/23/3y' + 9v(l+9
2)"1/23/3s 

x y 

3/3z - (l+e2)"17^^' + (l+92)"1/23/3s 

In particular, we note from Eq.(ll) that 

3/3z = 3/3s + 0(9) 

AT - AT' + 0(9). 

Furthermore, it can also be seen from the coordinate transformation that 

3/3x' = (9 /9)3/3x - (9 /9)3/3y 
y       x 

3/3y'  =  (l+92)"1/2[(9  /9)3/3x + (9  /9)3/3y - 93/3z]. 
x y 

2 
With Eqs.(11-13), we can rewrite Eq.(9) after dividing by k , 

(12) 

(13) 

(14) 

To do so, we 

[2ik'13/3s + 0(9)]^ + [k"2^' + 0(9)]^ 

-2ik/r + 6e(pJ(s),s) + [(k"1^' + O(0))^]2 = 0 . 

Now we shall choose 6 and thus define the ray coordinates, 

define the complex-angle  vector 

I = k-^cf - ±k\x = -ik"1^ . (15) 

Thus. 6 has two complex components, 9 and 9 , defined by replacing^ in 

Eq.(15) by x3/3x and y3/3y, respectively. The magnitude  of 9x(ey) is the 

square root of the sum of the squares of both terms of the 9x(9y) component 

of Eq.(15). Note in particular that 9 = k" [(^«W + (1TX)
2]- 



■ ■' '~~\ 

' 

Using Eq.(13) with Eq.(15), we see that V^ = 0 witl this choice. The 

last term of Eq.(lA) is therefore zero, except for corrections of 0(6) in- 

cluded in the other terms.  Consequently, the solution of the thus linearized 

Eq.(14) becomes 

KL) . ^fdz  exp[i(2kL)"
1za-Z)Ar] 6£[p(z).z]. (16) 

0 

where we have replaced ds by dz and L-s by L-z, and have written 

6e(s) = öe[p(z),z] in terms of the old coordinates.  The crucial difference 

from Eq.(10) is the dependence of 6e upon the coordinate p(z) which is given 

by the fundamental relationship, for z £ L, 

dp/dz = e(z) , (17) 

with ^(z) given by Eq.(15).  The set of three equations (15-17) comprises a 

nonlinear set of equations for ^(L). The procedure for solving them is not 

quite as circular as it may seem. Assume that we know Kz) for z < L- 

Equations (15) and (17) then determine p(z) for z < L.  The result is inserted 

into Eq.(16) to yield l|)(L). At the very least, this suggests a numerical 

procedure. It does more than that, however, because the role of p(z) appears 

only to be a description of the refractive  properties of the radiation, not 

of the diffractive properties. It is for that reason that one may ignore 

diffraction in Eq.(15) and utilize simple ray formulas. Thus, Eq.(15) is 

approximated well by 

^(z) = $0 +\J'dz1   ^SetO.z^ 

0 z 

= ^ _ -^ fdz.   /d2K KfietK.z.) , 
0 Sir2   {     1J 1 

where t    is the initial angle of the unscattered ray from source to point of 

scattering with the z-axls, and 6e(K,z) is the two-dimensional transverse 

Fourier transform of 6e as usual. 

We note that <5x2(L)>= -<x(L)> where the mean <x(L)> is determined by 

the real part of Eq.(16). It can be seen that Eq.(16) and the above con- 

siderations yield 

(18) 

8 

J 
j - - _^_^^^ ^*^mmmm 
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<6x2(L)> = ^ JdzJd2K  sin[K2(L-z)z/2kL2]<öe(K,z)exp[-lk-p(z)]> 

0 

(19) 

^ 

The remaining problem is to substitute Eq.(18) into Eq.(19) and perform 

the calculation. The procedure is quite comparable to the plane-wave case. 

The first step is to integrate ^(z,) from z1 = 0 to z. = z in Eq.(18) to 

obtain p(z) according to Eq.(17).  If this is done with the boundary conditions 

p(0) = p(L) = 0 one obtains 
L 

P(z)  = 8^1  /dzj^ Md.z.z^ /VKKÖeOC.zp 
0" . 

M(L,z,z,) = z.(L-z)/L  ,  z1 < z 

(20) 

= zd-z^/L z1 > z 

Two steps are required to reduce Eq.(19) to a form suitable for computing 

closed-form expressions [see the Appendix]. They are 

<6e(K,z) exp[-iK-p(z)]> = <-i(Se(K>z)K-p(z)>exp[-K2<p2(z)>/4] 

<-i6e(K,z)K-p(z)> = («2/4)K2$(K)(L-z)z/L 

(21a) 

(21b) 

A calculation of <p (z)> remains to be performed. We utilize Eq.(20), 

and the usual approximations as in the Appendix calculation of Eq.(A.8) to ob- 

tain from straightforward calculation 

<p2(z)> -  (e2/247r)y dKK3$(K)  z2(L-z)2/L 
0 

= 4Yr(7/6)cV/3 Z
2
(L-Z)

2
/L, 

(22) 

where y is defined below in connection with Eq.(23). The remaining work is 

completely analogous to the derivation of Eq.(18b) in TRVI. Equations(21a) 

and (21b) are substituted into Eq.(19), and the steps described beyond Eq.(18a) 

in TRVI are repeated verbatim except that the above spherical-wave forms are 

used. The result is 

.4  - - • m^mm^ä MMMtti 
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<6X
2> - V/6L11/6C2 fdy y

5/6(l-y)2/dx X
1/6 exp[-xajf (y) ] 

0 ^ 
where y = 0.033TT2 « 0.326 and f (y) = Yr(7/6)y(l-y)

2. After performing the 

dx Integration, and some reordering of factors we obtain 

(23) 

7/3,3,2,-1/6 
<6x2> = e«;^ <>' (24) 

where 3 = ^(7/6)] 
-1/6 i/dy y-^^l-y)173, 

and after a numerical integration we obtain 

<5x2> - 1.25c<:/3L
3<)-i/6 (25) 

Equation(24) is the final result for spherical waves. It should be noted 

that Eq.(23) yields the result <6x
2> « 0.005 </3L3< in the limit c^ -> 0. a 

result that agrees with Tatarski's [ref. 2. pag. 251] for spherical waves. 

There is therefore as much measure of confidence in Eq.(25) as in the plane- 

wave result. 
Let a2

( = 0.124 k7/6L11/6C2. the well-known spherical-wave result for the 

log-amplitude variance in the Rytov approximation [see Eq.(6)]. It is easily 

seen from Eq.(25) that 

<6v2>«0.88(K2L;k)-7/36(ae
2)-1/6. A m 

and therefore at k - 107 m"1 and Km = 1000 that 

(26) 

<6x2> «0.36(a2)"1/6  at L = 1 km (27) 

«0.41(a2)"1/6  at L = 0.5 km 

We have utilized Eq. (27) as a basis for comparing the available published 

data  in Fig. 1 we have plotted data by Kerr[4]. 0chs[5], and Gracheva et al. 

[6]  Two lines in the saturation regime represent the mean data of these two 

sources. The standard deviation around the mean is of the order of 50%; thus, 

the theoretical curve [Eq.(27)] appears to be low but still within the 

standard deviation. 

10 
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Figure 1. Log-amplitude variance <6x > vs. parameter a~ = 0.124 k  T.   C 
for spherical waves: data and theory. 

We have also reexamlned plane-wave data by Grachcva et al.[6], and hy 

Mevers et al.[7], replotted in Fig. 2. Data spreads are of the order of 50% 

around the mean. The theoretical curve is based on Eq.(21) of TRVI, and it 

appears to be systematically on the low side (spherical-wave data appear to 

agree better with the analytical predicticn). 

The spherical-wave curve appears to fit the data slightly better than 

the plane-wave curve. It is interesting to note, particularly from Fig. 1, 

that the data do not exhibit an outspoken frequency dependence - in accord 

with the saturation-regime prediction. It should also be noted that the 
—7/18 

theoretical curve is proportional to K     .We have arbitrarily chosen 

i    = 6  mm, but a choice of &    =12 mm will move the curves up by a factor 1.3. 
o o 
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Figure 2. Log-amplitude variance <6x >  V8- parameter cre = 0.31 k  L   Cn 

for plane waves: data and theory. 

Even so, it appears that both theoretical curves are slightly low. We do 

not understand why this is the case at present, but hope to study this problem 

later. 
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APPENDIX 

Derivation of Equations(21) 

The derivation of Eqs.(21) from Eq.(19) is not quite trivial.  The 

correlation <6e(K,z,)exp[-iK'p(z)]> must be computed at the point z' = z. 

Tatarski has used variational (or functional) derivatives to yield a result 

for plane waves[3], but it appears possible to obtain similar results more 

simply: 

First of all, we note from Eq.(19) that p(z) is a Gaussian random 

variable with zero mean. Although a rigorous proof of this statement is not 

given, it can be verified heuristically by applying a central-limit theorem 

to the sum of sections of the integral, each of which is several macroscales 

long. 

The next step is to note that 

<Se(l.z')[p(z)],n> - m<6e(K,z')p(z)><[p(z)]m"1> (A.I) 

where m is an integer. The easiest way to see this, is to write out the 

left-hand side as a product of m integrals dz1 dzm after substituting Eq.(20) 

for p(z). The correlation is then essentially 

<6e(K,z')6e(K1,z:)) 6e(Km,zin)>, 

a product of m + 1 factors. Now, whenever z1 and z^ (1 < j <. m) are both 

at least several macroscales L0 distant from each and everyone of the m-1 

remaining z coordinates one can factorize Eq.(A.2) Into 

(A.2) 

<6e(K,zf)6e(K.,z,)><6e(K1,z1). •/■ 
.6e(Km.zm)> . (A. 3) 

where the slash indicates that 6eCK. ,z.) is missing in the second correlation. 

Of course, it is also true that we could have separated just z' and then 

factorized (A.2) into <6e(K,z,)> and an m-point correlation, but <6E(K,Z,)> = 0 

so the next non-zero factorization to look at is Eq.(A.3). The factorization, 

Eq.(A.3), is not possible when both z1 and z. are "near" (with respect to 
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length L-) to one or more of the remaining m-1 points. However, that 

situation restricts the dz.. dz integration to an effective multiple- 
X Hl n 

integration region that is less by a factor of order (Lo/L) than in the case 

of Eq.(A.3). Of course, this is only a heuristic description of a theorem 

that we have proved more rigorously in Sections 11 and 12 of TRIII.  The net 

result is that we may replace Eq.(A.2) by 

m 
E<6e(K,z,)6e(K,,z,)><6e(K1,z ) /- 
j-1 3 j     1 i 

-öe(K ,z )> 
m m 

(A. 4) 

It is easily seen that Eq.(A.4) yields Eq.(A.l), which is now used in 

the following sequence of steps: 

.. Nm 
<6e(iz')e-iK,p(z)> = E-^- <6£(^,z')[i^(z)]m> 

m=0m- 

m: 
i:^r<6e(K,z')K.p(z)><[K.p(z)]m-1> 

(A. 5) 

= <-i6e(K,z')K-p(z)><exp[-iK'p(z)]> 

2 
We obtain Eq.(21a) from this last step by noting that <exp?> = exp<^ /2> 

for a Gaussian random variable E,  with zero mean, and by noting that x and y 

components of p(z) are equal and uncorrelated. 
->•   -»■->■ 

Now we derive Eq.(21b) by substituting Eq.(20) into <-l6e(K,zl)K'p(z)> 

to obtain /■ 

-iß-n2)'1 fdzl Md.z.z^/^KjK.K^Se (K,z
,)6e(K1,z1)>, 

and apply Eq.(17) of TRV [or Eq.(5.2) of TRIII] to reduce this to 

L L 

(€2K2/2)[(l-z/L)^z1z1$?(K,z
,-z1) +ydz1(z-z1)<D2(K,z

,-z1)] 

(A. 6) 

(A. 7) 

where $9(K,Az) is a partial spectrum, namely the two-dimensional Fourier 

transform of the stationary correlation function 

<6e(p+Ap,z+Az)6e(p,z)>/<(6e) > with respect to Ap. By ignoring soine boundary 

effects of 0(L /L) we can reduce Eq.(A.7) and obtain 
o 

14 



■ •■ 

TT 

<-i6e(K,z,)K-p(z)> = («2K2/2)<J>(K)z,(L-z)/L  ,  z^z 

= (e?-K2/2)$(K)z(L-z,)/L 

(A. 8) 

z'>z 

Note that the two results in Eq.(A.8) become equal at z' ■ z. However, 
2 ■♦' 

Eq.(A.8) does not lead to the right answer for <6x > in the limit p(z) +  0. 
2 

The limit then yields a value for <6x > that exceeds the geometrical-optics 

approximation by exactly a factor 2. Apparently, there is a factor 1/2 

missing in Eq.(A.8).  The same discrepancy holds in the plane-wave case.  We 

have included an extra factor 1/2 in Eq.(21b), as we did in Section 3 of 

TRVI for plane waves. The following argument is suggested: When z' > z it 

cannot be, physically, that p(z) is correlated with SeO^z') because p(z) is 

the transverse coordinate of a ray traveling from z^ = 0 to z^ = z, and the 

medium at z' > z does not influence the medium at z. < z beyond several 
-v 

macroscales L .  It is true that the boundary condition p(L) ■ 0 forces the 
0 -> 

above formal  result for z' > z - which seems to imply correlation of p(z) with 

öeÖ^z') for z' > z - but the ray can only arrive at p(L) ■ 0 because the 

medium beyond  z, = z makes the ray bend into p(L) = 0.  In fact, we could 

physically change the medium beyond z    = z  and it appears obvious that p(z) 

will be unchanged. The above result, Eq.(A.8) for z' > z, appears therefore 

to apply to the reciprocal situation: a ray traveling from z = L to z = 0. 

This situation cannot be distinguished in this formalism, but it is physically 

different.  Somehow, the information about the direction  in which the rays 

travel has been lost. If a time-dependent formalism were pursued more carefully, 

we would obtain a Green's function in iKz), hence in p(z), that would be zero 

for "advanced" times, i.e., for a field at z, = z due to a signal emanated 

from z, = z' when z' > z, and that will rule out correlation in Eq.CA.8) for 

z' > z if this correlation is defined more carefully. Note that reciprocity 

is not in question: the result for z' > z is perfectly symmetric with that 

for z' < z provided the ray direction is considered. The suggested form of 

Eq.(A.8) for rays traveling from z1 = 0 to z1 » L is J 
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<-i6e(K,z')K.p(z)> « («2K2/2)<D(K)z,(L-z)/L  ,  z' < z 

«0 ,  z' > z 

(A.9) 

and a reciprocal version "ith zero for z« < z when rays travel in the other 

direction. There is a jump discontinuity at z' = z where half the sum of the 

values lor z' < z and z' > z in Eq.(A.9) should be taken. That finally yields 

Eq.(21b). 

i 
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