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CHAPTER I

INTRODUCTION

The objective of this report was to develop optimum signal processing

techniques for discriminating between target and clutter objects in space

that have been excited by impulse-like electromagnetic waves in order to

further the relatively new field of impulse radars. The targets and clutter

specified for this study were to be of relatively simple geometries, and

to be fixed in space, but randomly distributed. The study is divided into

three major areas of investigation.

The first of these is a study of backscatter if, which several waveform

variations for the sphere, rectangular plate and thin rod geometries were

developed in an effort to determine mathematically tractable expressions for

the scattered energy from typical geometrical shapes. This study also revealed

that by combining simple methods the composite waveshape from many objects of

various geometry may be used to approximate a complex one. This section con-

sists essentially of a definition of the tools which are used in the bulk of

the report.

The second part of this program Involved the developnmnt of several

optimal-like filter configurations based upon a knowledge of the characteris-

tics of the waveforms of interest. Employing the waveforms developed in the

first section of the study, each filter was studied for its enhancement of the

output-to-input signal to clutter ratio as a function of the target to clutter

size ratio. It was found for the case of a target body much larger than the

clutter that a system encompassing a double integ;-.tor followed by a matched

filter configuration produces the greatest enhancement of the power signal to

clutter ratio. The enhancement of this ratio is proportional to the fourth

1I



power of the target to clutter size ratio.

The effect of rain as a clutter medium is studied, along with this

optimal filter configuratior, in an attempt to relate the clutter study to a

realistic situatlon. It Is shown that a golf ball sized metallic sphere in

space can produce a power signal to clutter ratio of 20 dB for an Impulse

radar of 1.5 degrees beam width in the midst of heavy rain (the clutter) at

a distance of 146 kilometers with proper range gating and the optimal filter

developed herein. This calculation Is based upon a large power source and an

infinite bandwidth system in order to obtain an upper limit of the optimum

filter's performance.

Finally, the geometry identification problem was investigated In the

third section. A system was postulated for determining the class of an

impinging waveform related to a geometry of arbitrary size. Several methods

for measuring closeness between functions, Including correlation and area

differences were Investigated, along with the need for weighting. The

decislrn template concept is shown to be the best technique for waveform

identification when the impinging backscattered waveshape is a well known, non-

corrupted waveform.

The readermay obtain an overview of the study results by referring to

Chapter V.
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CHAPTER II

PREDICTION OF IMPULSE RADAR EXCITED BACKSCATTER WAVESHAPES

A. OPENING STATEMENT

In this section a relatively simple technique will be shown which allows

the prediction of impulse excited time waveshapes of targets in a short period

of time and with a very limited number of calculations. Of particular interest

here are the responses to a perfectly conducting unit sphere, the flat plate,

and the thin rod.

The reasons for including a study of this type in a discussion of a radar

design philosophy are numerous. First, a simplified version of a signature

allows for an interpretation of signature formation in terms of the geometry

and physics of a given situation. Secondly, a more simplified signature

allows for parameterization of variables to include size considerations in

the interpretation of a signature. Finally, the prediction of signature

allows the estimation of signatures of targets whose experimentally deter-

mined data is not available, as well as allowing the designer to more easily

evaluate a proposed system design without resorting to long and expensive

computer aided solutions.

In the ideal situation the radar cross-section could be determined

through an investigation of the physics of the target and radar system and

a solution of the electromagnetic equations of the body with its accompanying

boundary conditions. The resulting differential equation forms can be solved

through conventional techniques such as separation of variables in a few

situations, namely those where one of the sixteen orthogonal coordinate

i



systems simplifies the specification of boundary conditions. In other cases,

the differential equations can only be solved through some type of numerical

approximation technique. On the other hand, the integral form can be used in

some cases to simplify the solution of these complex formulations. Specifi-

cally, the equations' solutions would yield a complete description of the

total equivalent surface currents whic& --. id be used to determine the so

called reflected fields at the receiving antenna.

In -,,aeral, however, exact solutions are not available because most

objects of interest are much too complex to result in easily simplified

or readily solved electromagnetic equations. For this reason, the use of

predicted approximate solutions to the scatter cross-section is the most

practical and really the only available approach aside from inspecting

experimentally determined data.

There are a number of approximating techniques which are used to deter-

mine the radar cross-sections of objects which are larger in size than a

few wavelengths in dimension. One of these approache; is the technique of

ý,eometric optics, which utilizes the laws of reflection and refraction applied

to the incident electromagnetic field treated in the form of rays to determine

the reflected field. This technique is similar to the one used with visible

light in the mirror problem In that its major shortcoming is that It treats

the radiation as particulate and thus fails to bring out th.R wave nature and

associated characteristics such as polarization, of the problem. Since the

wavelike nature of the interrogating waveform gives rise to some of the

characteristics which are important in predicting the reflected waveform,



for example the creeping wave on the target's surface, this first approxi-

mation is unacceptable.

Another approximation is one called the physical optics approach. Here

the wavelike nature of the interrogator is included. The basic concept here

is that the local current density at each isolated point of the illuminated

portion of the target is assumed to be equal to one which would flow at that

point on an infinite sized tangent plane. The assumption here which is

invalid is that the current density in the shadow region is zero. Also in

question is an assumption that neglects the effects of possible mutual influence

between adjacent currents on the target surface.

Still another approach is one called geometrical diffraction theory. This

technique uses some of the elements of physical optics as well as geometrical

optics with its ray theory to provide the necessary considerations of wave- •4

length, phases, polarization, and interference as well as ray reflection to

provide the reflected waveform. The concept of scattering centers becomes

introduced through this technique and it indicates that they become localized

at or near points of geometric discontinuities.

B. THE CLASSICALLY DETERMINED SPHERE CROSS-SECTION

The sphere is one of the geometries which will beccme useful later in

the discussion, partly because of its simplicity but more importantly because

of the fact that some of the clutter models can be built in the form of

assemblies of small spheres. Another reason for looking at the sphere is

that its backscatter cross-section is well known, since it is one of a few

geometries which lend themselves to separation of variables and exact solutions.

51
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A large body of work presently exists in the literature for consideration and

comparison for this particular geometry. The current distribution on the

surface is well known and therefore this geometry is an appropriate one for

using as a standard for approximating techniques. The sphere is unique in

that its scattering is independent of aspect angle; i.e., viewed from any

angle the response is the same.

In Figure 1 is shown the radar cross-section of a sphere, normalized

to ira 2, the sphere's projected area as seen by the observer. This plot is

the result of an exact solution; i.e., it was determined on the basis of a

solution of the differential equations arising from Maxwell's equations for

the surface of the sphere (see Reference 1).

There are three distinct regions In the radar cross-section for a

perfectly conducting sphere, which vary with the circumference/wavelength

ratio. In the low-frequency region, which is called the Rayleigh region, the

radar cross-section varies as the inverse of the fourth power of the wave-

length of the incident radiation. Here the frequency is such that the

circumference is iess than one wavelength. All objects whose greatest

dimensions are smaller than the wavelength of the incident radiation will

exhibit a behavior similar to that of the Rayleigh region of the sphere.

The second region, the Mie or resonance region (<21ra/A <10) is a region

of transition characterized by a damped oscillation about the a/ra2 a I value.

The oscillatory behavior is thought to be due to Interference between a specular

component and a component due to waves which are exponentially damped as they

"creep" around the shadowed portion of the sphere and circumnavigate it to be

6
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Figure 1. Radar Cross Section of a Sphere: a - radius, ), - wavelength
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relaunched in the direction of the radar receiving antenna. In the high fre-

quency or optical (21Ta/X>lO) region, the cross-section finally setcles down to

a value of a/ra 2= 1, which Is the v~sual projected area of the subject sphere.

As will be shown later, the high frequency limit agrees in the determinations

of all methods - physicai optics, impulse approximation, or in the exact theory

as determined through the Maxwell equation solution.

C. THE KENNAUGH-COSGRIFF IMPULSE RESPONSE APPROXIMATION

1. Introduction

At this point, the approach has been to indicate the results of data which

has been generated from an exact solution of the differential equations govern-

ing the current density residing on the surface of the sphere (see References 1

and 2).

Now we turn to the objective of this section of the report, the develop-

ment of an approximation to the response to an Impinging delta function. The

chief value of the impulse response is that it can add insight to the relation-

ship between the target shape and radar reflectivity. The customary approach

in developing solutions to e!ectromagnetic scattering problems is to assume

a monochromatic source with a suitable constraint on the ratio of Impinging

wavelength to the physical dimensions. When this ratio is small the solution

is merely a perturbation of the geometrical or physical optics solution. On

tne other hand, when the ratio is large the solution is very similar in form

to that predicted by the Rayleigh region scattering model. Usually most

approximations yield reasonable results in the high and low frequency regions

but fail to account adequately for the cross-section in the resonance or Mie

region.

8



A solution for the impulse response to a scatterer allows a determination

of the response to any monochromatic interrogator, or for any interrogating

waveform. The approximating solution of Kennaugh and Cosgriff is chosen such

that the cross-section is matched to both the limiting case of zero and

infinite source frequency, and constraining corditlons are met such that the

resonance region is fairly well determined.

2. Linear System Analysis

One of the concepts which will help In understanding the radar Impulse

response approximation is that of a linear system. The system will be assumed

to be time invariant, i.e., the scatterer is assumed to not move, either trans-

lationally or rotationally. Input and output electric field intensities will

be defined for two points in space and will be signified by ei(t) and e0 (t)

respectively. If the direction and polarization of the incident plane wave

are restricted, the scatter transfer function A (OW) = 0E( 4 is that of a one-
s E I JWU

dimensional linear system. Further restricting the input to an impulse or

delta function 8(t) - eI(t) will yield the impulse function output 6 s(t).

Since the process is assumed to be a linear one, the output response to

an arbitrary input function e1 (t) may be determined throu;,, a convolution

of the impulse output response and the arbitrary Input function:

eo(t) - e ei(T) 6s(t-T) dT (1)

0

Therefore, once the impulse response has been determined, the response

to any arbitrary Input function can be easily reached through this integral

transformation. It should be made clear that the transf:er function AS(JW)

and 6 s(t) are a Fourier transform pair.



3. Low Frequency Approximation - The Rayleigh Region

Let the system transfer function be approximated by a series in (Jw)

with constants a . This series can be written:
n

sO(jw) - a0 + aI (jw) + a2 (Jw) 2 + .... (2)

For the low frequency estimate to As(jw), the Rayleigh law of scattering

postulates that the first two constants are zero and the third proportional

to the -volume of the scatterer. This results in the following moment conditions

on 6 s(t) (see Reference 3):

6s(t) dt - 0
0

ft 6s(t) dt - 0

o '

ft 2 6s(t) dt - 2a 2
0

f tn 6s(t) dt- (_,)nnlan (3)
0

The first relation is equivalent to the statement that for the Impulse response

to any arbitrary shape, the DC level or average area under the time-waveshape

area is zero. The constant a2 is a constant which can be determined from a

knowledge of the scattering from static electromagnetic fields and is called

the Rayleigh coefficient. With the use of only the first three relationships

10



good approximations to 6s t)can be made, but in some special cases the higher

order terms can be used and are available.

4. High Frequency Approximation - The Optical Region

A simple yet useful approximation to scattering by a body in the high

frequency region is the physical optics approximation. In this approximation,

the local current density at each point on the illuminated portion of the body

is assumed to be equal to that which would flow at the same point on an infinite

tangent plane. Specifically, it is assumed that at each point on only the

illuminated side of the surface, the current density is equal to 2n x H, where

n is a vector normal to the surface, and H Is the impinging magnetic field

intensity. On the shadowed side the surface current density is assumed to be

zero (see Reference 4).

The electric field response which has been determined to be scattered

at large distances In the source direction as a result of illumination by an

impulse has been found to be of the form

2 14
6 Wt) I d A(z) (4)

dz

where z - -and A(z) is the silhouette area of the target as delineated by

the incident wave, which is assumed to move over the surface of the target

at a velocity equal to one-half that of the free-space velocity, c.

In Figure 2, the physical optics impulse response to three geometries,

the sphere, spheroid, and off axis square plate are indicated. The Impulses

in the responses of the cases of the sphere and spheroid result from the

discontinuity in the change of the rate of change of the radar cross-section

at the first point of incidence. In all three cases the response was derived

with the use of expression (3) exclusively.

II I '
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dd
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Figure 2. Impulse Response of Scatterers According to Physical Optics
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Figure 3 indicates the cross-section of the conducting sphere determined

through the physical optics approximation as displayed in Figure 2 for com-

parison with the more exact electromagnetic solution.

Note that the envelope size and shape in the high frequency region is

approximately correct, but the oscillatory frequency is not correct. In the

Rayleigh region the physical optics approximation is far from being repre-

sentative of thi exact solution.

5. Higher Level Approximations

The approach which has been suggested in the literature for higher

level approximations is to alter the time function determined in tht jhysical

optics solution in such a manner as to yield the Rayleigh condition. This is

done by adding additional time function data to the Information Indicated in

Figure 2, for example, subject to the Rayleigh constraints of expression 3.

Usually only the first three moment conditions are used to form this approxi-

mation (see Reference i).

A number of appropriate functions can be postulated which not only are

based upon the physical optics solution but also satisfy the Rayleigh condition.

The simplest extension or correction to the spherical impulse response

approximation is the step correction indicated in Figure 4. An investigation

of the physical optics solution indicates that it meets the constraint imposed

by the first Rayleigh moment condition, i.e., its DC or average value is indeed

always zero. Thus, the constraint which must be met by the corrector is that

its components have a zero DC level, and that the total waveform satisfy the

additional moment conditions specified in expression 3.
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Figure 5 shows the radar cross-section which results from this approxi-

mation. It can be seen here that both the high frequency and particularly

the Rayleigh region are reasonably well approximated by this waveshape. The

behavior in the resonance region is not particularly well defined, however.

Another method for correction can be studied by applying a polynomial

form instead of the step which, like the step correction starts at the final

value of the physical optics time response. Again, the moment equations are

met by choosing the polynomial coefficients appropriately. Indicated in

Figure 6 are th• polynomial corrections to the physical optics solutions for

the sphere and spheroid.

In Figure 7 the cross-section for the polynomial correction to the

Impulse spherical response is shown to be reasonably good except for a shift

in the resonant region. In the low and high frequency regions, the approxi-

mation is quite good.

Kennaugh and Moffatt indicate a more complex solution to the spherical

impulse scattering problem, which is indicated in Figure 8. ThIs approach

is based upon experimental data and a model which uses a finite number of

harmonically related plane waves which are superimposed to produce a com-

posite backscatter 6 s(t). In the figure, tabulated values of the back-

scatter waveform at given values corresponding to a sphere radius to wave-

length ratio of 0.04 to 19.0 in steps of 0.04 were used In a calculation

including 475 harmonics. In addition, the step and ramp responses to the

unit conducting sphere are Included for comparison. These waveforms will be

used in the further development of our simplified backscatter models to act

as standards (see Reference 5).
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6. Mathematically Tenable Model for the Sphere

Based upon the models and work presented thus far, a model for the

impulse excited spherical backscatter waveform which is mnathematically simpler

is desired. Specifically, a response waveform is 6esired which takes on a form

which is easily written either in the time or frequency domain. Still con-

straining this model waveform however, are the Rayleigh condition and the

high frequency region response, the latter of which is satisfied by the

physical optics approach.

(a) The response postulated in Figure 9 serves as a trial waveform

for this approach. This waveform was postulated because its

shape approximates that of the more rigorous solution indicated

in Figure 8. It was also postulated because it can be relatively

easily described mathematically.

By forcing the values of K and T with respect to T the first

Rayleigh condition can be met. Note that the area of the triangle

can be made equal to that of the impulse, as well. The equation

which describes this impulse response in the frequency domain is

I I [I.-S-ý'-T1 + 1, 2r[- cjwT]2ejJwT(5As " T" - j ''" 0(l)

To check for adherence to the Rayleigh moment condition, the

limit of As (Jw) can be taken as w approaches zero. That Is, only

the 2 and higher terms must exist as w goes to zero. Then,

A OW) [K-2]+jw[I- K(Tj)]+ (jw)2[KT2K (T + ( T)2] (6)

li m W o

21



1/2 K

0

BDI.s-W-72-094

Figure 9. Sphere Bar.kscatter Trial Response I

22



In order to meet the conditions of equations 2 and 3, the first

term will disappear if K takes on a value of 1/2, but for any finite

pulse width T the second term cannot be forced to be equal to zero.

Hence, this functional form cannot satisfy the Rayleigh condition.

(b) Another form of the backscatter response which can be postulated is

that Indicated in Figure 10. This response is suggested as an extension

of the effort in Section a, since it is the result of letting T - 0.

With this assumption the second term in expression 6 will equal zero,

and the three Rayleigh moment conditions will be met.

Letting the value of T in expression 5 go to zero, the equation which

describes the waveform of Figure 10 is given by an expression in the

frequency domain which can be written as

-jw] -I I-F -JWT

SO(jW) I[1 + C- JwT -• (7)

(c) Another proposed waveshape for mathematical simplification of the

backscatter waveshape Is indicated in FIgiore 11.

Expressed In the frequency domain, the expression for this waveshape

takes the form:

A(j,) .L 1..T- r 1 - -JwT1+ K I " C-JWr]e-JWT (8)2 JwT I I IJw I

Again checking for the Rayleigh conditions by taking the limit,

K 2<, KT 2T T,< + WT) ,>9
A&(Jw) [K-li + jw [1 (1-K) - + (jw)2[ + -+ KT (+~) 9

Ilm+2
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The first term can be forced to zero by letting K 1 1, however, the

second term can also be made to go to zero then only if T - 0. But

this is identically the case presented in part (b), since the right

positive rectangular pulse becomes an impulse in the limit as T goes

to zero.

These proposals all indicate that the best approximate waveform

which not only satisfies the Rayleigh and physical optics conditions

but is in addition mathematically simple is the one presented in

part (b).

7. Approximate Sphere Impulse Response - Model A

Still necessary to complete the model developed in part 6, equations 7 and

Figure 10 is the development of its constants, which includes the scattering as

a function of the sphere's dimension and the distance r to the observation point.

Consider first its normalized response. Figure 2 suggests, by comparison

with Figure 10, that the value of T should be d/c (Notice that the impulse and

rectangular response areas would then be the same for each except that the Impulse

area is shared between two impulses in Figure 10. Recall that the second impulse

was required to satisfy the Rayleigh condition which Figure 2 does not.) This

value of T, however, is not consistent with wide band scattering as can be

observed from Figure 8a and a consideration of the physical process. The time

to a second peak can be seen from Figure 8a to occur near 2.5 d/c rather than

d/c. This can be verified from the physics by considering the creeping wave

contribution. This contribution occurs at the time it takes the exciting wave

to sweep the sphere's diameter d to excite the sphere's backside at d, and then

travel around the circumference back to the sphere's front side. The total

26



delay from the inception of the excitation Is then d/c (1 + w/2) or

2.57 d/c.

Figure 10 may then be modified as shown in Figure 12 by increasing the

time by 2.5T and reducing the amplitude proportionally in order to maintain

equal areas. The entire function was then multiplied by T In order to preserve

its un-normalized response.

The multiplier for the waveform of Figure 12, which allows a complete

mathematical description of the sphere's impulse response, can be obtained by

investigating the sphere's radar cross-section expression. The radar cross-

section is defined as:

I 2
a 47 r 2 j j (10)

or, E,0( w1/2
EiJ) L ° (I])

At optical frequencies the sphere's cross-section is of the form o - a2 .

(See Figure 1) Then, substituting this value of a into expression 11 gives

( ,, "r> (12)
L4T 7 jir2i A

This can be written in terms of the diameter since d * 2a or

27
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Figure 12. Normalized Sphere Impulse Response (Simplified Form)
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Expression 13 is to be equated to the expression describing the approximate

sphere's waveshape (ecuation 7) at optical frequencies. To make expression 7

apply to Figure 12, T must be multiplied by 2.5 for the creeping wave effect.

Also the entire function must be multiplied by KT to un-normalize it. It is

the multiplier to be identified to complete the function.

Performing these operations on expression 7 and allowing 2wa/)A >>I,

the approximate frequency response magnitude at optical frequencies is

1As(jw)j - IKT cos (1.25 wT)I ; 12a >> 1) (14)

Notice that rather than the response being constant as shown in Figure 1, it

has zeros at (2n-I)w/2 intervals. This condition arises due to the addition

of the second impulse. Had it been a more dispersed function, this would not

,occur. Fortunately, it will be shown later that these zeros do not alter the

value of the model. This will be proven by comparing the results with both

experimental and detailed theoretical data.

Now equating expressions 13 and 14, the multiplying factor K takes on the

value c/4r. The full expression for the impulse response of a sphere of

diameter d con then be written as

2.u u(t) + u 2.51d (15)

2.5 2(t)c

Figure 13 shows this response.

The experimental verification of this model will be discussed in the

paragraphs to follow.
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Figure 13. Absolute Sphere's Impulse Response
(Simplified Form) Model A
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8. Experimental Verification of Simplified Model

Sperry Rand, under contract to RADC (see Reference 6), performed scatter-

ing experiments from many objects one of which was a sphere. Figure 14 shows

the measured incident excitation pulse identified as input pulse, and the

scattered response identified as the measured response. Superimposed upon

the measured response is the response one can obtain using the normalized model

of Figure 13. The response was constructed by convolving the impulse model

with the input pulse. This amounted to summing the contributions of two input

pulses displaced by the time interval 5 a/c plus the Integration of the pulse

over that Interval.

Notice that the waveshapes over the first alternation are Identical after

which a variation does occur. If one were to average this measured response's

undershoot over the interval, its value would approximate that produced by the

model. The same applies to the second pulse's area as cumpared to the model's.

Considering the simplicity of the model this comparison Is not bad.

Since much of signal processing encompasses correlation, a measure of the

model's performance may be obtained by correlating the model's and the measured

responses and comparing their results. The autocorrelation of a function Is

defined as

*il(T) f/IfiWt) fI(t+T) dt (16)

or + -
Oil (T- 0) -/ f IFlt) dt

and it has a maximum value at T - 0.
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Figures 5s and 16 show the model and measured responses squared (f1 (t) 2), and/

their •ntegrated values that correspond to *ll(O). The maximum autocorrelation

value-, are 981.2 units for the model and 872 units for the measured, or an
7

increase of twelve percent over the measured value. This is indeed an

ac eptable deviation.

Next to be considered is the response that this model will provide for

step or a ramp excitation for purposes of comparing with the detailed theore-

tical models of Kennaugh and Moffatt,

9. Approximate Models For Step and Ramp Response

At this point a number of methods for describing the impulse response

of a conducting sphere have been investigated. It is of interest to further

evaluate the waveform of Figure 13 by looking at its response to the step and

pulse forms of excitation.

Recall from the earlier discussion that the output response to an arbitrary

function may be determined through a convolution of the impulse output response

and the arbitrary Input function (see expression 1). However, if the excitation

is a step function, then the scattered response is the integral of the impulse

response. For a ramp excitation, the response is the integral of the step

response.

a. Step Response

The step response to the approximate sphere impulse function of Figure

13 is obtained by integrating expression 15. It Is listed in expression 17

and sketched in Figure 17.

Us(t) C u(t) + u(t-2.5T) u

S1 u(t-2.5T) (t-2.5T)] (17)
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Figure 17. Normalized Step Response of a Sphere (Simplified Form)
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This figure can be compared to Kennaugh and Moffatt's high accuracy curves of

Figure 8a. The shape is approximately the same with the highest degree of A

accuracy occurring over the first positive Interval. Notice that the cross-

over time of 1.25T is the same In both. The deviations in the model essen-

tially occur in the under-swing area. Although the shapes are similar, the

model has a higher amplitude and is less broad than shown hn, Figure 8a. There

also occurs a small positive alternation beyond 3T. Overall, the times that

the peaks and crossovers occur do compare favorably making this simple model

attract ive.

b. Ramp Response

The ramp scattering response of a sphere may be obtained by integrating

expression 17. The result is

t

fjus(t) dt - c1 [Iu(t) t + T u(t-2.5T) (t-2.5T)
(18)

-1 u(t) t2 + I u(t-2.5T) (t-2.5T)2]

Figure 18 shows the ramp scattered response.

Comparing this curve with that shown in Figure 8a produced by Kennaugh

and Moffatt again the similarity Is attractive, not only in shape but in

crossover times. The portion where a small error occurs is In the undershoot.

It has been shown by these computations and comparisons with more detailed

models and experimental data, that the simple model of Figure 13 is represen-

tative of impulse back scattering from a metallic sphere'. This model will be

used in the study for those cases where qu;ck sketching results are of interest

in order to obtain an Insight Into the problems under investigation.
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Figure 18. Normalized Ramp Response of a Sphere (Simpl ifled Form)
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10. Approximate Sphere Responses - Model B

Another form for the normalized sphere step response which becomes quite

valuable in hand calculations Is the one displayed In Figure 19, and may be

described by expression 19 as

u(t) T u(t) T + u(t-2.5T) cos 2 (t-2.5T (19)
S5T

Notice that the feature of this model is that the number of terms to be

handled have diminished by a factor of two over those of Model-A. (See

equation 17.) This model approximates that of Model-A and the Kennaugh and

Moffatt model of Figure 8b.

The model's simple mathematical form makes calculation of cross-

correlations, for example, a much more tractable matter, while preserving the

Rayleigh moment conditions. The impulse excited sphere backscatter time

waveshape which would give rise to a waveform of the type indicated in

Figure 19 is shown in Figure 20. It is merely the functional derivative of

Figure 19's waveform. Expression 20 describes this waveform. This Investi-

gation of the step response has, in effect, led us to yet another approxi-

mation to the impulse response of a perfectly conducting sphere.

6 (t) [ 6(t) + T 6(t-2.5T) - u(t) sin 2r tIs Wr12 25 5T(20)

- j u(t-2.5T) sin k (t-2.5T)5T

The ramp response of this model is shown in Figure 21 and described by

expression 21. As one can see, it is a single alternation of a sinusoid.

u(t) dt C •r (0o397T2) u(t) sin (21)
.t r5 (21)

+ u(t-2.5T) sin - (t-2.5T)
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Figure 19. The Cosine Approximation to the Step Response Model B
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Figure 21. Ramp Scattering Response of a Sphere-
Model B
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This response compares favorably to both Figures 8c and 18.

11. Approximate Sphere Responses - Model C

During the study, an investigation will be performed on the classical

optimal filter. In order to perform the required factoring, the function to

be operated upon must be of a polynomial nature. An approximate model will

now be developed to meet this requirement which also follows the scattering

laws.

From past discussions, it was pointed out that at low frequencies the

Rayleigh field scattering varied as the square of the frequency of excitation.

At the very high or optical frequencies, the field scattering Is a constant

for a spherical scatterer. Applying these conditions plus the fact that there

can be no average or dc value, the following transfer function is postulated.

Ac OW) 2 (221
W •+

The time domain expression for this response is

c G) c 6 (t) 5T(2  (23)

ls(t \2 4- r 1 1.25T 1.2T(2

and it is plotted in Figure 22.

Notice that this function lacks the resonance or Mie region which accounts

for the smearing and non-peaking of the second alternation as occurs in

Figure 8a. However, the second alternation does contain the area that the

second peak would have if the Hie region were included. The undershoot
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Figure 22. Approximate Polynomial Sphere Impulse
Repponse - Model C
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area and impulse amplitudes can also be shown to be identical to all of the

prior models. Certainly this model, as in all of the others, does describe

the early time sphere scattering performance quite well.

Figure 23 shows the step response of the model as generated by expression

24. tt
u(t) - C() .-25T (I - ) (24)

Notice that the response follows the early time well as in the other cases.

The undershoot's amplitude is smeared but its area is identical to the posi-

tive portion.
Figure 24 shows the ramp response of the polynomial model as generated

by expression 25.

t

0

Comparlnj the crest amplitudes of the other ramp excited models, it is

observed that the variation Is not severe. The crest amplitude also occurs

as for the other models at 1.25T.

It has been shown that the polynomial model does present the salient

scattering responses from a metal sphere, especially in early time. Hence,

it will later be used in the analysis.

To this point we have developed scattering models for the sphere only.

Since we are also interested in other geometries In order to study the descri-

minatlon problem, we will also investigate a flat plate and a dipole rod. We

shall begin with the flat plate.
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Figure 23. Approximate Polynomial Sphere
Step Response - Model C
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12. Flat Plate Scattering Model

Figure 2c shows the waveform which physical opcics considerations predict

for a thin square plate when it is interrogated at an angle not perpendicular

to the face of the plate. The area plot A(z) indicated in the figure is

easily predicted by merely inspecting the geometry. For the special case

which will be considered in this section, the illumination and scatter of

interest will be assumed to Le perpendicular to the face of the plate. In

this case, all of the energy will reach all points of the plate surface area

at the same time. Thus, the area plot A(z) will be as indicated in Figure 2c.

Applying expression 4, one can then obtain the normalized solution shown in

Figure 2c. For the case of a broadside excitation, the normalized impulse

response can be found to be

(t) _ 12 d 6 (t) ( (26)
irc

The dimensions of the plate have been changed from d to I in order to avoid

any confusion later in the study when plate and sphere responses will be

compared. Expression (26) lacks the multiplying factor that Includes the

effect of distance on the scattering. This is necessary so that a compari-

son can be made between the scattering amplitudes of different geometries.

Notice that the time response is a doublet.

Scattering from a thin flat surface of any geometry that is uniformly

excited can be determined from the following well known expression.

E Ow, r) - 2 AJ E (j x, y) dA (27)
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The expression assumes that the observation point r from the surface is quite

distant such that near field conditions are not of concern. This is generally

not a problem unless the excitation has a very low frequency content and the

observation point is close. Since it is assumed that the excitation is uni-

form, then the integration in (27) is only over the area, hence the equation

may be written as

Eo(]O, r) jw A 
(28)_E7)TF 2ircr

Substituting for the area A, X2 and transforming the function into the time

domain gives

2
6(t) L s -(t) (29)

Comparing expressions (29) and (26) it is seen that the results regarding

the time waveshape are the same except that the function is now un-normalized

and contains the distance factor r. ;
The solution presented applies at the very high frequencies where the

excitation wavelength is much greater than 1. We require an approximate

solution that applies over all frequencies. An inspection of expression 28

indicates that the zero average value condition is met since the function is

zero at w = 0 but it does not satisfy the Rayleigh condition. Recall the

Rayleigh condition requires that the scattering increase as 2 for excitation

wavelengths large compared to the objects' dimensions. The following func-

tion is postulated to satisfy both the Rayleigh and the optical regions with-

out emphasis on the Mie region. Experimental results obtained from an ongoing
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RADC program (see Raference 7) where parabolic antennas have been excited by

fields of impulse-like nature (pulse-widths measured in tenths of nanoseconds)

have shown that the predominant scattering is derivative-like and the oscilla-

tions are quite small. This justifies the chosen model even over the Mie region.

A (W) 0 - - (30)
p 21rcr j~w aj

where a = _c

The factor a represents the frequency where the plate would experience

its first resonance.

Performing an inverse transform on expression (30) gives the time domain

scattered impulse response of a plate as

2 2 a( 2 dt- 6 6(t) + a2  - (31)6p 2t)- I dt

This response is a doublet and an Impulse at t - 0 followed by a decaying

exponential.

The step scattering response is obtained by integrating expression 31. Then

Up(t) - I [6(t) -aE-t (32)

This completes the development of a plate's impulse and step scattering

response. We shall consider next the scattering from a thin dipole-like rod.

13. Approximate Thin Rod Scattering Response

Figure 25 shows the scattering model, to be examined, where the incident

electric field E1 (Jw) is polarized in the same axial direction as the rod.

The rod has a length I and a radius "a" and it is considered, as in the other

past cases, to be in free space. The broadside sensed scattering field E0 (Jw, r)

at a distance "r" is to be described.

50

rl "• • I • -- • 10I



I

Eiij ) 2a

H0 (jw,r)

E (jw,r)

zo

BDM-W-72-094

Figure 25. Thin Rod Scattering Model
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The transfer function scattering response for this model can be shown

to be

E (jw,r) tan (c t )ow =0nk/2\ý7`c -,= (33)

dJ) EJ)5o r ÷) tan -2c'

where Z (M) is the rod's characteristic impedance, T(w) is a transmission-like

coefficient which accounts for the radiation from the rod's ends, and n, the

free space wave impedance. The derivation of this expression will not be shown

as it is extensive and beyond the scope of this effort. However, a verbal

description will be given regarding its development after a brief discussion

of its characteristics.

Notice that equation 33 satisfies the Rayleigh requirements. At w - 0

the function is zero (T, the transmission coefficient goes to 2 since the rod's

ends appear as an open circuit), and for small w values the expression increases

as w2 . The resonance or the ile region is present as can be seen by the peaking

of the function when the argument goes to w/2. There is also an optical region

where tiue function approaches a constant value of

Ad(J) = (34)
0

since the second term in the brackets approaches zero, this region presents

a radar cross section, using expressions 10 and 34 of

1f( n-) ~2(35)
0

The value of the characteristic impedance, for impulse-like excitations, has

been demonstrated by Paul Van Etten of RADC and confirmed by BDO and IKOR
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during the performance of an RADC contract and found to be approximately

220 ohms,

Satisfying the required scattering conditions has demonstrated the

validity of the transfer function shown in expression 33.

The development of the expression was along classical lines where the

rod's surface current was determined by the excitation of a uniform wave front

and the requirement that the current go to zero at the rod's ends. Once this

current was obtained, it was then possible to determine the magnetic vector

potential on the axis of symmetry. The magnetic and electric fields followed

from the curl and double curl, respectively, of the magnetic vector potential.

Figure 26 shows the rod's impulse response using expression 33, with the

assumptions that the transmission coefficient and characteristic Impedance are

essentially real quantities. Had their complex values been introduced, the

corners of each alternation would be rounded and the function would tend

towards a damped sinusoid. Later in this study the sinusoldal approximation

will be used for the purpose of calculating filter responses.

This completes the development of the electromagnetic approximate scat-

tering models. We shall now turn to their application in seeking out the

best filter which enhances the signal-to-clutter ratio and provides a high

degree of target discrimination.

53

IJ



4J

LA

E-

uu
e-

C4
- -)

E-E

C

L.

goo

4)

- U-

u N0

54



CHAPTER III

THE CLUTTER PROBLEM

A. INTRODUCTORY STATEMENT - DEFINITIONS

In this section the subject will be clutter and clutter rejection tech-

niques which are generally applicable to the Time Domain Radar System. One

of the characteristics which is sometimes ascribed to clutter is that it is

composed of a large number of scatterers, each having Independent motions,

which in turn are independent of the targets' motion. The clutter problem

may be likened in some respects to the noise problem in communications work.

In both cases a signal waveform exists in the presence of an additive com-

ponent, the presence of which it is desired to minimize as much as possible.

Our problem then is to devise an optimum transfer function which wil! output

a signal which will exhibit the highest target-to-clutter signal component

ratio.

The terms "optimum" and the input-output concept immediately suggest

some type of filter strategy. The concepts of optimum filtering techniques

and clutter rejection are by no means new to radar system design. What is

new, however, is the application of this work to the time domain radar system

philosophy.
Let us consider the special needs of the time domain radar system and

the "knowns." When designing a system the first question to be answered is

what is the desirable output. From the information to be presented later,

it is seen that the most important items to be preserved are waveshape and

magnitude information, and these should be kept as intact as possible in

order that the discrimination be optimum.
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A number of forms of clutter exist, dependent upon the environment and

application to which the system is being made. Ground, weather, and sea

clutter are only three of the types of interfering activities which oftimes

hamper the identification of radar returns.

In a conventional radar system one of the "knowns" is the reflected

waveform. The conventional monochromatic pulsed radar output signal will

be reflected not only by the target, a desired response, but also by the

clutter bodies, a highly undesired response. But here the reflected wave-

form's shape can be predicted because all reflected waveforms will be of the

same frequency as that transmitted, except for phase and doppler frequency

shifting due to distance velocity differences. The key factor in conven-

tional radar design, then, is to use the doppler and phase shift Information

to calculate velocity, while sifting out that Information which differs from

that of the target. In designing optimum filters, the factors necessary to

complete the design are a knowledge of the expected target and clutter wave-

forms, as will be seen later in the discussion. In a conventional radar sys-

tem the backscatter wavefiorm is certainly predictable because of its relation

to the interrogating waveform, and in most cases the shap. of the clutter

waveform can be either measured or predicted. Thus, a filter which is

optimal can be designed for each type of clutter, regardless of target. This

type of filter will be called a target-fixed filter.

Let us now consider the characteristics of the time domain radar system

which constrain the use of filtering schemes. As we have noted, one of the

backscatter characteristics which marks the time domain radar system is that

the reflected waveform is a function of target geometry. This means that
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the optimum filter is not target fixed; i.e., for each target of interest

and for each clutter waveform of interest, the optimal filter is required to

change configuration to insure optimality. This immediately suggests a

sequential scheme for inspecting an unknown waveform for adherence to an

expectee waveshape. The filter required here will be known as a target

variable type of filter.

A characteristic of clutter which has been overlooked in the discussion

above is that in many cases the individual clutter object size is much

smaller than that of the target. This information can be used to develop a

filter philosophy applicable to clutter of small relative dimensions.

Let us constrain the arguments in the following to stationary targets

with the nature of the clutter as Wo stationarity here unspecified. The use

of the range gate concept will be assumed possible in the following material,

inasmuch as a given segment of range space can be singled out from the

universe of all range space for processing and observation.

Techniques such as clutter mapping and blanking will not be considered

since they merely act to avoid range cells in which clutterers are present.

The following investigation assumes that a range gate interval has been

defined, and further that there is no h/r 2 amplitude dependence over this

qate. The individual objects making up the clutter and target are assumed to

not react or reverberate with one another and hence no time delay deviations

are to be considered since the source wave will be unimpeded. An infinite

bandwidth detector will be assumed unless otherwise specified.
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B. DESIGN OF OPTIMUM FILTERS FOR CLUTTER REJECTION

1. Infinite Signal-to-Noise Ratio Filter

The optimum linear filter which causes the output signal-to-noise ratio

to be infinite will be investigated in this section and it will be based upon

the prticiple of orthogonality. A deterministic situation is assumed i.e.,

both the nature of the signal and the clutter waveforms can be specified.

Let S(t) and C(t) equal the signal and clutter over a specified interval

from zero to to. Then, on the basis of orthogonality, for the condition,

when no signal is present, we would like for the filter's output at to to

be zero. Or

t
0

oC(t)[S(t) - a C(t)] dt - O at t (

The orthogonal functions are C(t) and the postulated bracketed terms where

"I'l is a constant to be determined.

Expanding the function and solving for "a"l gives

t
0

f C(t) S(t) dt
0 (37)

a to

f C2 (t) dt

0

Let us relate this information to general filter performance. The bracketed

terms in expression 36 can be considered as the filter's impulse response or

h*(t) - (S(t) - a C(t)]* (38)
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The star represents the reversal in time of this function since the filter's

output is produced by a convolution process. Considering the convolution

process "all goes to a where

t
0

f S*(T) C (t-T) dT
a O (39)t

C*(T) C (t-T) dr

o

Consider next the output that would occur from this filter if in the

presence of the clutter there appeared a signal S(t). Then convolving the

signal plus clutter with the filter's impulse response of (38) gives 4

t 0 to t 0

iS(T) + C(T)] h*(t-T) dr = S(T) S*(t-T) dr + (I-a) fS(T) C*(t-T) dr

0 0 0

t (40)A 0

-a /'.(T) C*(t-T) dT
0

Substituting the value for a from expression (39) gives the filter's output as

rR

t
0

t [~S(T. C*(t-T) d
1 ()S*(t-T) dT ----------____ (41)

JC(T) C*(t-T) dT

The results of expression (41) are interesting. The first integral is the

classical matched filter in white noise or the autocorrelation of the signal.

The second integral is the cross-correlation of the signal and clutter squared
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divided by the mean squared clutter value. The result shows that indeed an

output signal will occur when the desired signal appears providing one samples

at t = to. (Expression (41) will have a positive finite value.)

It has been shown that a filter can provide an infinite signal-to-clutter

ratio for a signal burried in clutter providing the clutter is known exactly

for all time, and that the occurrence of the signal and its form is also well

known. We have just demonstrated the best of all possible filters however,

its conditions are unrealistic. Generally the clutter's response for all

time is not known nor the time of occurrence of the signal. These factors

will be considered in the filters to follow.

2. Power Optimal Filter Criteria

Another criterion for optimality in filter design is that the ratio of

the output signal to output rms value ol,, clutter is to be maximized.

Let

c c°2 (t) dt (42)

represent the clutter rms value.

t
0

where Co (t) * h(r) C(t-T) dT (43)
f
0

Thus, the expression to be maximized is

tSo02 ( to) (4

S° (t) dt

0

over the class Lh of all linear filters.
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I
Here again the target's reflected waveform is represented by So(t) and

the clutter waveform is represented by Co(t).

An alternative expression for the clutter rms value is

to t t

t f t) dt =f h(T) h(pa) R(T-11) dTdui (45)

where

t

R(-r-p) = C(t-T) C(t-p) dt (146)
00

Define 1/A as the maximum signal-to-clutter ratio as defined in expres-

sion (45). Let g(t) be any non-trivial impulse response for which

tf g(T) S(to-T) dT - 0. 017)

00Then, normalizing the output of the optimal filter for S(to0 as• on input

t

S(to) --1 f h(T) S(to-T) dT, (48)

and further noting that

f [h(T) + C g(T)] S(to-T) dT- 1, (149)
0

We wish to have a maximum output signal-to-clutter ratio then

Co0(t) - A S0
2 (tO) >_0 (50)
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Applying expression (45) and expanding gives

t t to t.

S g2f f g(IJ) R(T-p) djdi + 2T g(T) h(ip) R(Tr-p) dTdp >0 (51)

0 0 0 0

To be satisfied for all values of c the expression requires the following to

be true.

J0S g(T) h(fj) R(T-v) dTdpj 0. (52)

However, by construction, we know that

t

J g(T) S(to-T) dT - 0. (53)
0

Thus, the integral equation for the optimal filter becomes, in this case

J h(p) R(ft-u) dp - K S(t o-T) (54)

00

(K an arbitrary constant)

Now if R(T-IJ) "(T-il), then

t
0

f h(p) 6(Tr-) - h(T) * K S(to T) (55)

and the result is the well known "'matched" filter. Now let It be assumed

that
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R(t-p) = R(t) 0 < t < to (56)

= 0 otherwise

and similarly S(t-T) = S(t) 0< t < to (57)

= 0 otherwise

Then, taking the Fourier Transform of the filter integral equation, expression

(54), the result is

-j~to

H(jw) R(w) K $(-j(*) (58)

or

-JWtHj) K S(-=
H (j K() (59)

This result is quite well known and has been derived by many. See, for

example, L. A. Zadeh and J. R. Ragazzini, Reference 8, where It is listed as

an infinite memory filter. J. B. Thomas, Reference 9, lists this as a

solution for a matched filter by prewhltening techniques.

This result will be used later In the determination of the optimal

signal-to-clutter ratios that can be achieved for the various conditions to

be investigated for the geometries of Interest.

In this and the prior filter the assumption was made that the situation

of interest is completely deterministic; i.e., both signal and clutter wave-

forms are known. Perhaps in the case of atmospheric noise, when the noise

can be assumed a priori to be white noise, the clutter distribution and wave-

form can be assumed to be known. But in cases other than those where the

clutter waveform ;s either known or can be determined, optimal filter theory
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has a rather limited meaning simply because not enough a priori information

is usually available to enable a design of the optimal linear filter configu-

ration.

Classical optimal filter theory traditionally has been built In an

atmosphere of synthesis and circuit theory, which serves to constrain

solutions to relatively simple ones, however, digital solutions can be used

to extend the optimal filter to more complex waveforms and transfer functions.

3. The Lee Correlation Technique

The Lee correlation technique is a periodic sampling technique which

allows the removal of a non-periodic component from the presence of a periodic

component. (See Reference 10.) This technique applies only to the situation

where the signal or target is stationary, i.e., allows the waveforms sampled

at different times to retain the same waveshape, and in addition, the clutter

or noise waveform must be specified as unstationary with a zero average value.

One of the requisites for this solution is that the target waveform be peri-

odic. The latter situation can be forced by storing all backscatter returns

taken periodically and forming a pseudo-periodic function which can then be

processed as a continuous periodic function. This method is presented by way

of demonstration to show that if the clutter is moving the signal-to-noise

ratio can be identified by a simple relationship.

Consider the total incoming waveform as an additive mixture of

S(t) + C(t) (60)

where again S(t) represents the signal waveform and C(t) represents the

clutter waveform. Let us apply the definition of autocorrelation and form

the expression
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t

•im =lnt÷ [S(t) + N(t)] [S(t+r) + N(t+T)] dt (61)
0 0 0

I
=SS(T) + NN(T) + ýSN(T) + NS (T) (62)

The first two terms of the expansion are the autocorrelations of the

signal and of the noise, respectively. The function *NN is non-periodic

and tends to zero as T goes to infinity since a property of autocorrelation is

that the autocorrelation of a random wave without a hidden periodic component I
tends to the square of the mean value as t+ -. Because of incoherence between

signal and clutter waveforms, the third and fourth terms of expression (62)

also vanish. As a result of these factors, the general shape of the auto-

correlation function of expression (62) would appear as in Figure 27 for a

periodic waveform of sinusoldal form.

The fact that the noise or clutter component of the auto.orrelation

tapers off to small values essentially zero and that the signal component

persists on a periodic function suggests that perhaps only the periodic

output function will be outputted for large values of T.

Lee also presents a scheme utilizing cross-correlation of the periodic

signal waveforms with impulses having a period equal to the period of the

signal waveform. In deriving the mathematical expressions for this operation,

particular emphasis will be placed here upon tl,,. use of the periodic unit

impulse function 6(t). Let us look first at the fourier representation of a

periodic function f(t), as indicated in expression (63)

6
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BDK-W-72-094

Figure 27. Autocorrelation Function of Sine Wave Plus Rand',u Noise.
Dotted Curve is Component Due to Random Noise (Reference 10)
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fo)+t /2
Jn~lt "JnIt 6ff(,t) = C ln /t O f- iT) -j W dT (3

n=-co t0/2

An exchange of the order of the integration and summation operations allows

writing the expression in the form

+t 012 -o

f(t) f(T) dT I/to jnw (t-T) (64)

J-t /2 0
0 fl+-c

The fourier series for the periodic unit impulse function can be written in

the form

6(t) = 1 l/t° jnwIt 
(65)

fm-

Thus, expression (64) can be written in the alternate form

ft) /2 f() 6(t-T) dr, (66)

=f-to/2
0

which, except for a factor of li/t is a convolution integral which expresses

0

the periodic function as a convolution of a periodic unit-impulse function

of the same frequency with itself. Because 6(t) is a symmetric function,

the integral expression (66) is equivalent to the cross-correlation expressed

in (67).

+t 0 /2

I/to f(t) l/to / f(T) 6(T-t) dt (67)
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Since f(t) and 6(t) are both periodic and have the same period, (67) may

be written over an infinite interval rather than over one period

Sf(t) - l I f(T) 6(T-t) dr (68)

Now write the cross-correlation of the signal plus clutter waveform

S(t) + C(t) with the unit impulse periodic function

+to

(-T) (Slim ([(t) + C(t)] 6(t-T) dt
t10 2t t (69)

Iim I +to 0to00 - _f 0c(t) 6it-T) dt
to o S (t) 6(t-T) dt + tim0 to 0 2tO0 -to

0 0~-too

The first term is by (67) lto S(t).

On the other hand, the second term in (69) may be interpreted as the

average of an infinite series of valueb of C(t) which are taken at intervals

of to. The randomness of C(t) and its zero average value insure that the

second term of (69) is zero. Thus, the cross-correlation of the periodic

unit impulse waveform with a waveform whose components are a periodic plus

a random one results in the periodic pulse as output.

This operation can be carried out physically rather simply by periodically

sampling the composite waveform at a large number of points each separated by

a timeto equal to the period of the periodic component. (In the pseudo- 4

periodic case the sampling period would simply be the data sampling rate or

range cell repetition rate.) Then determine the output waveform by averaging

the data taken with a phase shift of T. This method is illustrated in Figure 28.
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Figure 28. Illustration of Sampling a Periodic Signal Plus Noise
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Having determined the functional value for a delay of T, the procedure

is repeated on subsequent sections of the pseudo-periodic function with an

adjustment in T to reflect other values of the return.

The signal-to-clutter ratio is easily determined if the original assump-

tions of the problem are met. Computing the variance of the values f(nt +T),

it is evident that since the periodic component contributes equal values for

arguments oi t = nt + T, its contribution to the variance is zero. Therefore,

the variance of the output is equal to that of the random or clutter contri-

buted component

2 1 2Of = oc (70)

f n C

Alternatively, the rms value of the output noise is given by oc/(n 1/2

where n Is the number of sample points. aC is the autocorrelation of the

clutter for a zero argument.

Since in this method, the ideal output is the periodic component S, let

S2 be the square of the periodic component. Then the output signal-to cluttei

ratio is

s2 -Sn (71)C2 OC2

This result is interesting because it shows that for clutter moving

relative to tho target signal of interest the signal-to-clutter ratio is pro-

portional to the sample size n. Here again, but for the moving clutter con-

dition, we have demonstrate6 that an almost infinite signal-to-noise ratio

may be theoretically achieved (for an infinie number of samples). This

approach is more attrac:ive than the others, as it assumes no detailed

information of the clutter. As mentioned earlier, this one was presented for

information only, as the problem at hane is the signal deoection for a fixed

random!y spaced clutter .environment.
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4. Signal-to-Ciutter Output Relationship for a White Noise Matched Filter

Under this section we will develop the signal-to-clutter ratio relation-

ship for a filter whose impulse response is the time image of the desired

signal to be detected. No consideration will be made in the filter for a
t

general clutter source; hence the filter is essentially the well known white 4

noise matched filter. The process is then, in effect, the autocorrelation for

the signal and cross-correlation for the clutter.

In order for the autocorrelation process to occur when a signal S(jw) is

present, the filter's frequency and time response must have the form of

H(jW) = S(-JW) -_Jut0

and (72)

h(t) - S(t -t)

where to is a delay that allows h(t) to be zero at t = 0.

When a signal appears at the Input to the filter, the filter's output

response will be

-Jut0
So(jw) = S(jw) H(jw) =IS(w) 12  0 (73)

The transfer into the time domain of this function can be shown to be the com-

bination of the signal with its time displaced image or

S0 (t) =fo S(t°-t) S(t-T) dt (74)

To prove that this is identical to an autocorrelation process let

x = t-T (75)

and expression (74) becomes

So(t) = S(x) S[(to-t) + x] dx (76)
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The maximum value of an autocorrelation function occurs when the argument is

zero or, in the case of expression(76), t = to. It will have a value of
,to

So(t=to) 0 f S 2(x) dx (77)

0

which is the mean square of the power of S(t).

When the clutter C(jw) arrives, the filter's output is then

"-j to

Co(jw) = H(jw) C(jw) = S(-jw) C(jw) £ 0 (78)

The time response for this result is the same as for (76) except inter-

changing C(x) for S(x); hence it gives

to

C0 (t) =fo C(x) S[(to-t) + x] dx (79)

which is the cross-correlation between the signal and clutter.

For the general clutter case where the clutter may be random, we must

work with the clutter's power density spectrum to(=)

to(0) M - () Is(jW)I 2  (80)

The signal-to-clutter power ratio (see expression (44)) may then be expressed

using expression (77) and the implied transform of (80).

S2(max) [o S(x2 ) dx (81)
2- -C0o(t)2  I f 2

0( ) Is (J w) l 01( w) d w
".00

This ratio and the ratio formed by expresstons (77) and (79) will be used in

the later computations.
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Notice if the input clutter is a series of impulses of amplitude C and

a density of K clutterers per second, 4 i(w) becomes a constant In expression (81),

therefore, leaving the form of expression (73). But this expression was shown

to be identical to (77). The resultant signal-to-clutter ratio is then

2ot

Z s (x) dx (82)
C 0(t)z KC f

which is the solution foo the matched white noise filter.

5. Signal-To-Clutter Output Relationship for the Optimal F;Iter Criteria

The optimal filter based upon maximizing the signal-to-clutter power was

derived under Section B.2 of this chapter and shown to be (notice that IC(jw)1 2

has replaced R(w)),

H(jw) s(-ju) J t (83)
IClj(w) 

2

See expression (59). We shall now develop the signal-to-clutter output

expression in order to facilitate later calculations.

When the signal S(jw) appears, the output from theffilter will be

So(Jw) -S(jw) H(jw) w- ) C (84)

which is the signal-to-clutter ratio of the power densities. Let us deWine

the function

F(jw) = j (85)

Expression (84) can then be written as

So(Jjw) = F(jw) F(-jw) c (86)
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which has a time domain solution of

S (t) f(x) f v(tu-t) + x] dx (87)

00

t t or

=ot

So(t=t ) f 2 (x) dx (88)

Consider next the clutter performance through the filter. For a clutter

input C(jw), the filter's output is j

Co(jc) = C(j•) H(jw) = S{-1) -jwto o F(-jw) "jWt° (89)

However, when signal-to-clutter ratios are formed, the assumption is that the

average clutter power is sought. This ;:ay be achieved by taking the magnitude

squared of expression (89). Then

ICo(Jw)12 _ IF(Jw) 12 (90)

It can be shown that this function transformed into the time domain has a value

of

I F(w)12 f' d of 2 t0(t) (t) (91)Fi f-0 0

Then the signal-to-clutter ratio is shown by expressions (88) and (91)

2(ax [f~o f 2(x) dx] (92)
t~o

Co0 (t) f 2 (t) dt

0 IfI
But the numerator and denominator integrals are the same; hence,
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S 2 (Max) 2

Co-'2t) o
0

The signal-to-clutter ratio for the optimal filter is then the mean of the

square of f(t) (which Is the ratio of the signal-to-clutter). This result will

beappl led inthedeterminationof the best filter for signal-to-clutter rejection

in randomly spaced fixed clutter.

Notice if the clutter density is allowed to take on the value ot KC2 , the

output from the filter will be identical to the white noise filter of expres-

sion (82).

At this point the tools for performing the analyses to come have essen-

tially been developed. We shall now concentrate upon applying them to the

scattering geometries of interest.

C. CORRELATION TECHNIQUES AS APPLIED TO CLUTTER REJECTION

Under this section we shall investigate the signal-co-clutter enhancement

that may be achieved using a white noise matched filter both for an Idealized

impulse and rectangular excitation. The principal target and clutter scatterers

will be spheres of various sizes, and the model used in the analysis will be

the approximate one of Figure 12.

The investigation will begin by considering one targetand one clutterer In

order to determine the peak ratio of Ehe signals. Later this will be followed

by investigating the effect on the signal-to-clutter ratio as a function of

many clutterers.

1. White Noise Matched Filter Performance for Detecting a Large Target
Sphere in the Preseoce of a Clutter Sphere

a. Case I - Idealized Impulsive Interrogator

Figure 29 indicates a configuration for an active filter which utilizes a

generator that forms a waveform like that of the scattered impulse response
7';
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Figure 29. Sphere Approximate Impulse Generator
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eo(t) of a given sphere (see Figure 12).

Recall that essentially a matched-filter may be considered as a transfer

function which performs an autocorrelation. This configuration is an optimal

matched filter when the noise or clutter is white or gaussian, but for the

moment let us look at its response characteristics as a detection tool. When

the input Si(t) and transfer impulse responses are identical, the output is a

maximum. On the other hand, when the input is clutter, which may be charac-

terized by one or more small spheres in this example, the waveform will be

unlike that of the target sphere and thus the correlator output will be less

than the maximum value of the matched case. An amplitude threshold detector

at the output completes the sphere discriminator and thus detects the presence

of the large target sphere by comparing the cross-correlator maximum output

with the known autocorrelation value.

The impulse response of a "matched filter" correlator of this type should

be the time reverse of the desired signal, but for the case where the impulse

response of the scatterer is symmetrical, then the processes of correlation

and convolution are functionally equal and the result will be the same. This

principle will be used in calculating the filter's output time response.

The filter for dee,.ting the target sphere depicted in Figure 29 contains
an integrator, a delay network, and a gain term. The gain T and delay 2.5T

interatr, -*- ~1/2

are adjusted for the response corresponding to the sphere size one is seeking.

Let us look at the output of this filter for the two cases, matched and

unmatched spherical backscatter input.

Since the impulse response has been shown to be symmetrical, *then the

process can be represented by convuiution. Then convoiving expression (15),

in the manner shown In expression (76), for the impulse response of a sphere
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of parameter T1 with itself gives the white noise matched filter output

response of
T 2

6(t)Mthd = I [6(t) + 2 6(t-2.5T1 ) + 6(t-5T.)]

-0.4[u(t) - u(t-5T1)]

6.25 [u(t) t - 2u(t-2.5T1 ) (t-2.5T1)

+u(t-5TI) (t-5T1 )]

Recall that TI represents the ratio of the sphere's diameter to velocity of

free space propagation.

Figure 30 shows the output waveform of the matched correlator for this

matched input case (expression 94).

For comparison, Figure 31 shows the waveform which would be produced

with an idealized sphere backscatter input waveform, but here the sphere

scattering the radiation is smaller than that for which the filter is matched.

This small sphere might represent a single clutter object, of size T2 for

example.

This result was obtained by convolving expression (15) for two different

values of T.

In the unmatched case, the four impulses increase in size as the product
dI d2

of the sphere sizes (TT = - Z ). The solid negative portion of the wave-
]12 vv

form's duration is proportional to the diameter of the smaller sphere T2 ;

however, the amplitude of the undershoot remains constant for all T >> T2'

Size discrimination informati.in is in the waveform and this information can

be achieved by me3suring the interval between the impulses, which is 2.5T2 or

2.5_-- , a function of the unknown sphere's diameter. As the size of the target

sphere goes to zero, the amplitude an~d duration of the filter output waveform

go:s to zero.
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Figure 31. "Matched Filter" Correlation Output Waveform with Unmatched Input
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Figure 32 traces the growth of the parameters of Figure 31 as a function

of the sphere ratios as the filter's waveform evolves into the matched wave-

form of Figure 30. Plot (a) indicates that as T2 approaches T] the spacing

(represented by the letter "b" on Figure 31) approaches a value of 2.5T .

Plot (b) shows the variation of impulse height values, and (c) indicates the

variation of the undershoot magnitude. Notice in Figure 32b that when the

sphere sizes are identical the amplitude abruptly doubles. This is the

amplitude of the matched case for the center pulse.

In the case where the target sphere is greater in size than that for

which the filter is matched, the output amplitude again increases in direct

proportion to that sphere's diameter, but the variables TI and T2 in Figure 31

are interchanged.

Let us now calculate the enhancement that is possible from input to out-

put in the signal-to-clutter ratio. Since only one clutter sphere is present

(more will be handled later), the ratio is essentially that of voltage rather

than power. It will also be shown in the section to follow that the amplitude

of the impulse, if it is given a finite width however small, is always larger

than the other portions of the scattered or filter-produced waveform. The

ratio will therefore be taken between the amplitudes of the impulses.

From Figure 12, the ratio of the filter inputs for a target sphere of

size TI to a clutter sphere is

S i(Max) T1I
i (Max)T 1-= (Filter Input) (95)

However, the maximum output from the filter is shown in Figure 30 for the

signal and Figure 31 for the clutter to be
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Figure 32. Variation of Critical Parameters of Matched Sphere Filter as a
Function of Target to Clutter Diameter
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= 2 T2 (96)

Co (Max) 12_/4 T

The enhancement that can be achieved by this filter from the input to

the output is the ratio of (96) and (95) or a factor of two in voltage or

four in power. Notice also that the ratio is independent of the sphere sizes,

making this filter undesirable as a clutter rejection filter where the excita-

tion is impulse-like. The ratio may be expressed in dB as

dB - 20 log1o 2 = 6 dB (97)

We shall next look at the same filter.where the excitation is pulse-like

rather than an impulse to see if there is any advantage gained.
A

b. Case II - Finite Pulse Width Interrogator Waveform

Consider an interrogating pulse to the spherical scatterers of the form

shown in Figure 33. The scattered response from a spherical target can be

obtained by tine displacing a sphere's step response (Figure 17) and sub-

tracting the waveforms. Figure 34 shows the resultant waveform.

The output response for the filter's signal matched case may be obtained

by convolving or cross-correlating (same process since the functions are

symmetrical) the matched filter's output with the rectangular pulse's auto-

correlation function. Figure 33a shows the autocorrelation of the pulse and

expression (94) gives the matched filter's output. Figure 35 shows a sketch

of the response for a narrow pulse width T. Figures 36 through 39 plot the

filter's output as the interrogating pulse width T is increased. Notice that

its output Is of the autocorrelating form as expected. Figure 40 Is a plot

of the maximum values of the output as T is increased and it shows a peaking

of the output for T = 1.75 TI' The crest amplitude time varies according to

the pulse width as is shown in Figure 35 and the series.
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Figure 33. Finite Pulse Width Interrogation Waveforms
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Figure 35. Hatched Filter Output Waveform for a Narrow Pulse Interrogator
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We are now in a position to calculate the possible clutter rejection

effect of using a pulse interrogater. The input signal-to-clutter amplitude,

as can be seen by Figure 34, can be obtained by applying the proper designa-

tion for T. Then

S1 (Max) TI

C ( Tax) "- (Filter Input) (98)
2

because the crest amplitudes in the figure are not affected by T up to 2.5T.

The result obtained is the same as for the impulse excitation case.

The maximum filter output was shown In Figure 40 to be

So(Max) - 0.589 TI3 eo2  at T - 1.75T1  (99)

Now, in the case of a small sphere as clutter, one can show that If T2 is less

than T, which will be the case for small clutter, the filter's output will be

the convolution of a ramp and the expression used to construct Figure 31.

The ramp Is the early tinx portion of Figure 33b Aince all of the action will

take place (for a small sphere scatterer) prior to reaching the time T. Th3

maximum value of the filter's output for this case Is

Co(0 ax) - 0.306T2
2 T, eo2  at t - 1.25T2  (100)

The ratio of the two Is then

S (Max)2

C 0  ax) - 1.88T~) for TI>>T2  (101)

which is an encouraging value over that of the Impulse Interrogator [see

expression (102)], because the filter's output Increases with the sphere's

ratio squared.
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The filter enhancement In signal-to-clutter ratio over its input value

is obtained by the ratio of expressions (102) and (98) as

S0 (Max)/C 0 (max) =1.88 for T>>T2  (102)

The relationship shows that the enhancement increases linearly as the ratio

of sphere and clutter diameters for voltage and as the square for power.

The question may be asked regarding the cause of this enhancement. The

answer will lead to a filter class investigation to be performed later. The

cause is due principally to the attenuation of the clutter signal as can be

seen by comparing expressions (99) and (100). The reason is that since the

clutter is smaller than the target and the pulse duration T, its response is

essentially over during the excitation interval T, as caused by the pulse's

autocorrelation function of Figure 33b. This being the case, the driving

function to be applied to the filter's impulse clutter response (Figure 31),

in order to obtain the filter's clutter pulse output, is a ramp function.

This is the key, since a ramp is generated by an impulse exciting a double

integrator. Therefore, in effect, the clutter's high frequency content is

attenuated by the l/W2 character which is Indicative of a low-pass filter.

Later in this study we shall investigate the low-pass filter as a clutter

rejection filter.

The result that has been obtained Is quite interesting, since no con-

sideration was made to match the filter to the clutter's performance, as in

the case of the optimal filter. Speaking of the optimal filter, it will be

shown that its output signal-to-noise ratio is independent of the type of

interrogater waveshape used, because a ratio is taken between the signal and
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clutter in forming the matched filter, therefore dropping out the driving

function.

Another interesting aspect of this filter is that when the clutter size

is small compared to the signal size for which the filter is matched, it will

produce an output, for a rectangular pulse, that approaches the impulse

response of the filter. Actually three impulse responses will occur, each

displaced by the pulse's duration, where the one at 2.5Ti will be twice that

of the others and of opposite polarity. The amplitudes of these pulses could

further be reduced If the exciting pulse did not have such a sharp rise time.

Reducing the rise time amounts to adding more low pass filtering.

The dB enhancement for this filter may be described as

dB = 10 log 1.88 T] TI>>T2  (103)

for the single target and clutter case. We shall consider the multi-clutter

case next.

2. Multiple Clutter Input to the White Noise Matched Filter

Under this section we shall Investigate the signal-to-clutter ratio out

of the white noise matched filter for twin conditions which are the period&.

ically and randomly spaced clutter. The reason for investigating the periodic

clutter is to determine the spacing conditions for a line of given size clutter

in order to obtain the maximum possible clutter level and to determine the

level. This latter determination will provide a lower bound for the signal-

to-clutter ratio from a white noise matched filter.

a. Waveform - Spacing Dependence of Targets and Clutter

Often clutter is composed of many small target objects which are each

interrogated individually. Because of their placement, however, the wave
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which is returned to the radar site for detection may be composed of a com-

posite of these individual waveforms. There are a number of constraints on

the physical orientation and placement, number and range cell size which

should be explored to ascertain the limitations of a detection and discrim-

ination system.

First, define a geometry which Is spherical and has the idealized wave-

shape indicated in Figure 41. This combination will be used to implement the

investigation.

Recall that the duration of the pulse is directly related to the diameter

of the sphere.

Let us consider first the placement situation indicated in Figure 42

Here the target objects are perpendicular to the direction of travel of the

wavyfront.

The distance D between the radar antenna and the front surface of the

target objects is assumed to be much lar3er than the largest distance Z defined

by the target area as seen at th0 receiving antenna. This constraint Implies

that - ' o and that the time differential in wave travel caused by the length-

ened path P Is much smaller than the time 2.5T. The range cell Is defined as

encompassing only the voluri- about the target spheres.

Because of the small value of a, the points a and b will receive the

transmitted energy at the same time as seen in the 2.5T regime. Similarly,

the backscatter wave components from points a and b will both be returned at

the same time. Because there is no time shift in receive times, both spheres

will also be subject to traveling waves which act at the same time. Thus,

each sphere will scatter exactly the same waveform to be received at the

receiving antenna. Of course, wave components In the same direction in space

95

4



T T

S2-5T

TmdV

2.5

Figure 41. Geometry and Waveform of Interest In the Examples of This Section

96



/r

/

FRONT SURFACE OF
SLLUM!NAT ING & TARGET ELEMENTS

DETECTION ANTENNA WAVEFRONT p O

I ~bf

WAVE TRAVEL --.
S0 .. ... RANGE

CELL

BDM-W-72-094

Figure 42. Two Target Objects Interrogated and Scattering Broadside to the
Radar Antenna
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add, as do all vector fields. Therefore, the waveform as seen at the receiv-

ing antenna will be a composite of all individual backscatter waveforms, as

indicated in Figure 43.

Generalizing the situation, the waveform resulting fron n targets in the
nT

range cell will exhibit an impulse height of L- and an undershoot amplitude of
2

nY.5. When the value of - becomes larger with respect to the conditions set

forth earlier ;n the discussion, the impulses, rather than adding, will be

time shifted from one another in a fashion indicated in Figure 44.

In the case of targets or planes of targets which are offset from one

another in depth from the radar antenna, again the backscatter from each

individual object may be thought to occur independent of the others, but the

resultant received waveform is a composite of all of the individual waveforms.

The difference in depth will be reflected In a time shift In individual

scattered waveforms resulting from a difference in the wave travel time which

is equal to twice the value ', where v is the wave velocity End I is the off-

set distance.

This situation is depicted in Figure 45a, where the range cell Is defined

here to encompass the volume surrounding the two spheres of interest. The

resultant waveform is indicated in Figure 45b.

It is of some interest to investigate the offset depth which will produce

a time delay in the second waveform which is equal to the duration of the first.

This offset distance will be such that leading and trailing Impulses of suc-

cessive waveforms will add, thus causing the magnitude of the composite wave-

form to be twice the magnitude of a single target positive impulse magnitude

for the two body situation.
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Close Proximity Objects
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Figure 46 illustrates the composite waveform resulting from this target

situation. The distance for which impulse addition due to offset occurs is
2t

computed as 1.25d between centers. Setting the Impulse offset value -- equal

to the duration of an individual waveform, 2.5T - 2.5;v, the critical value of

I is indeed equal to 1.25d.

Having considered the effect of multiple targets in the same range cell

having multiplicities in both depth and field in the antenna pattern, it is

possible to predict a composite backscattered waveform, given the individual

backscatter waveforms and the distance and pattern of the target objects.

As an example, consider the configuration indicated In Figure 47. The

two-by-two configuration of four equal sized spheres is arranged in four

layers, each a different distance from the transmit/receive antenna, and

labeled with the letters c, d, e, and f, with a second layer lying upon it.

Utilizirib the rules developed in the preceding discussion, the waveform can

be-seen to evolve as a compos!Ie, indicated in Figure 4 7c, which has thd

components Indicated in Figure 47b.

The worst case condition for multiple scatterers, from the prior results

of two bodies, occors when the scatterers are periodically separated by the

distance l.25d2 ; for this condition the steady state composite will be a

series of positive Impulses of amplitude T2 (twice that of a single clutterer)
I

with a constant negative amplitude of 7.7. This result will be applied later

to the calculation of periodic signal-to-clutter ratio determinations.

One of the results of this discussion has been that it is possible to

predict the composite backscatter waveform from a multiplicity of objects

providing their spacing is known.
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Figure 47. Example of a Multiple Target Geometry and Its Composite Waveform

104



A further result is a study of the limit upon the effect of range gating

which the waveform diuration and spacing have upon one another. Specifically,

range gating (in depth), to be completely effective in separating waveforms,

cannot be any more selective than-the limit determined by equating the back-

scatter pulse duration to twice the wave travel time differential between

the two object layers.

For example, when spheres are located one behind another within a given

solid angle cell, gating by blanking would be!'neffectlve for separating

waveforms for sphere spacings in the region 1.0 < X < 1.25d between centers,

simply because waveforms overlap in a manner similar to that indicated in

Figure 44b.

More detailed considerations of the constraints upon minimum target

spacing and range cell and gate size with respect to the expected target

waveform will be made in a later section after the requirements and techniques

of target waveform discriminat;on have been treated in detail.

3. Maximum Matched Filter Output Resulting From Multiple Clutter Spheres

Continuing the discussion regarding waveforms associated with multiple

target and clutter objects, this section specifically treats the white noise

matched filter of Section C. That is, a filter matched to a waveform from a

large sphere which has as its input the composite waveform from many smaller

spheres.

The spacing between positive impulses from the output of a target-matched

filter excited by a single clutterer was shown to be as indicated in Figure 48

(see Figure 31).

From the figure, it can be seen that when the clutter spheres are within

the same solid angle cell one behind another, the impulses of the backscatter
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Figure 48. Impulse Spacing for Non-Hatched Case-Hatched Filter
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waveform can be made to add if the spacing is made such that the waveform

from the second sphere is delayed for a time equal to 2.5T2 . The offset2*

distance between centers can be computed for this case by letting 2- 2.5T
v 2.5*

Then the offset distance k is calculated as 1.25 d2 , as was indicated in the

previous section. For the condition 1-= T (or the cittter diameter is half

that of the target) the maximum positive value will add to a maximum value of

four times that of one positive impulse, as indicated in Figure 49, as an out-

put from the filter. (This case causes the impulses of Figure 48 to be

equally spaced.) Notice that the negative portion of Figure 49 becomes a

constant negative level. This occurs by adding the underswing of Figure 31

for each clutterer.

Note that the positive maximum amplitude occurs at the end of the filter's

output for a single sphere, which represents a time delay of t' - 2.5(TI + T2)

and has an amplitude equal to four times that produced by a single clutterer.

In the case where T2 - , it is shown that for a spacing I = 2.5T2

the same time delay is required before the positive maximum is reached. This

case is documented in Figure 50. The contribution of an infinite number of

spheres, each spaced I - 1.25 d2 between centers from the next, with T2  1-

will also be equal to four times the positive impulse magnitude of a single

sphere of the same size. A minimum of six spheres in line are required to

provide this output, which again occurs at a time equal to the pulse width of

a single sphere.

In the case where the spacing is not equal to the periodic k - 1.25d2 ,

the maximum amplitude of the output waveform will be less.

In general then, the minimum number N of T2 sized spheres in line, spaced

2 = 1.25d2 between centers, required to provide a maximum cross-correlation
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Figure 49. Matched Filter Output for 1 - 1.25 d2 Sphere Spacing, T2 , T1/2
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filter output of T T2 amplitude Is given by

N 2 + __ (104)

and this maximum will first occur at the time

t' - 2.5[T I + T 21 (105)

After this time there will occur constant amplitude periodic Impulses of

TIT 2 spaced 2.5T"2 in time, plus a constant level negative amplitude of T1 /2.5.

The significance of the preceding discussion is that the output from a

matched filter, with a periodic sphere clutter Input, will be limited to a

positive maximum of no more than four times that of a single clutter body,

and that the negative maximum for this same configuration can be less than

twice that of a single clutter body when the clutter bodies are smaller than

the sphere ", which the filter is matched.

We are now in a position to determine the enhancement that the white

noise filter will provide for Impulse-like periodically spaced or excited

clutter. The peak input clutter amplitude condition was shown for clutter

periodically spaced at intervals of 2.5T"2 to be T2. For a target sphere
T I

amplitude in this clutter of - the peak filter input signal-to-clutter ratio

is then
s1i('ax) _ Tl
C1 (max) 1 T(1 106)

Notice that this periodic condition has only reduced the peak amplitude

signal-to-clutter ratio by a factor of two over that of the non-periodic case.

(See Expression 95.)

Let us now represent the clutter In the classic form as an average power

value over a given Interval. (See expression [44].) Since the clutter is
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periodic, the average value irrespective over the interval taken (provided it

incompasses complete cycles) is the same as that of a single cycle. The

average value for the clutter is then
2.5T2

2( 5 2_, I
C 12 J5T o 6s(t) dt (107)

where 6s(t) is the impulse response of one clutter sphere as given by (15).

In order to perform this calcuiation and avoid complications, let us assume

that the interrogating pulse to the clutter is finite having a very narrow

width T and an amplitude ej. Then

T + (108)

where the first term in the bracket is the Impulse contribution and the

second the undershoot. If we allow T to approach zero or T2 >> T, then only

the Impulse contribution remains.

The classic signal-to-clutter ratio in power is then (apply 108 with the

square of the signal's crest amplitude for a narrow pulse Interrogation).

S2(max) 2.5 T1 2 (109)
Sii;
Ci2

If one is willing to accept the definition of the signal-to-clutter ratio as

specified above, then the value would approach infinity as T goes to zero.

Consider next the filter's output signal-to-clutter ratio for the oeriodic

clutter model where the clutterers are spaced 2.5T2 apart. It was shown that

the filter's output, for clutter, will have the same shape as the input except

that the impulse amplitudes will be T1T2. Since we are now working with a
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pulse of finite width but very small, this modifies the clutter response from

that shown in Figure 49 to that of Figure 51. This response can be obtained

by convolving the pulse shown in Figure 33b with the impulse train of Figure

49. Performing the integration over a cycle of the figure as directed by

expression (107) gives the filter's average clutter power of

S e T 2  3-T + (110)
ol 1 3.75~~

The maximum signal-to-clutter ratio then follows from the crest signal

amplitude of Figure 9 squared and C0 2 or

S02 (Max) TI 2

-7 - 0.235 (T12)
0

The filter enhancement then follows from the ratio of the filter's output

to input signal-to-clutter ratio (expression [108] and [1103) or

0 2 0.375 (112)

The result shows that the signal-to-clutter ratio is actually reduced by using

the matched white noise filter, where the clutter is periodically spaced in a

single line, andwherethe Interrogation is impulse-like. The reduction is

essentially a factor of two and one half or -8 dB.

If this same ratio is performed only on the basis of amplitude rather

then average power, the filter's output signal-to-clutter ratio from Figures 35

and 51 is

So0(Max) T TI

C (Max) - T1- 2(13)
11 2
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Figure 51. Steady State Matched Filter Clutter Output
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and the input signal-to-clutter ratio is given by (107) or the ratios are,

So(Max)/C (Max)

S1 (Max) IC1 (Max) - 0.5 (114)

This represents a six-dB degradation.

We have just shown that the white noise matched filter does not provide

clutter rejection for a periodic return from clutter for impulse integration.

We shall next consider, as in this case, periodically spaced clutter,

however the excitation will be pulse-like rather than an impulse. It is of

interest to determine if by varying the pulse's width whether the clutter may

be reduced or made to disappear.

a. Clutter Rejection for Periodically Spaced Spherical Clutter
That Is Pulse Excited

Earlier it was shown that Impulse excited spherical clutter periodically

spaced 1.25d/c apart produced a periodic clutter response consisting of

impulses and P constant negative level. This behavior applied as an input

to the white noise matched filter produced a similar steady state output as

shown in Figure 49. The last section, Section 2, showed that the presence of

the white noise matched filter only served to reduce the signal-to-clutter

ratio between the input and output. Here we will now consider the same

conditions except that the matched filter is removed and replaced by a filter

that causes out of phase total cancellation. Thir can also be accomplished

with a rectangular pulse interrogation.

Consider a filter that has a I/w frequency response (an Integrator) and

pass the periodic signal through It. The output will then be periodic and have

a time waveshape as shown in Figures 17 or 19 dependirg upon the approximation

selected. Now if the integrator Is followed by a delay network, a polarity

reversing amplifier, and a summer as shown in Figure 52, the clutter may be
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made to go to zero. This is accomplished by adding the clutter out of phase

with itself, the delay being multiples of T = n(I.25d2/c). This arrangement

would then provide an infinite target to clutter ratio as there will be no

clutter. Of course the next question is what happens to the signal through

this filter. If the target is much larger than the clutter and the delay is

for n = 1, the output will be the target's scattered response not its integral.

This occurs because the output will be derivative-like, however, the input was

integrated, hence, cancelling it and returning the input function.

This discussion applies equally well to the condition where the inter-

rogating pulse is rectangular and has a duration equal to T - n (0.250d/).

The same result will occur as produced for the impulse interrogator and the

filter of Figure 52, When n = 1 In the delay time, then for a large target

relative to the clutter, the pulse will appear as an Impulse; hence it will

scatter the Largets' response not Its integral.

It has been demonstrated that for periodic clutter that either a filter

of the form of Figure 52 where the interrogating pulse is an impulse or the

Interrogating pulse is rectangular and of a proper duration, then an infinite

signal-to-clutter ratio can be achieved.

There remains one more test for the white noise matched filter and that

is for the condition where the clutter spheres are randomly spaced. This

will be the subject of the next section.

b. Clutter Rejection for Randomly Spaced Clutter

Lee has shown (Reference 10) that a train of randomly spaced pulses

each having the same time waveshape f(t) and being Poisson distributed, will

have an average power of
t -G

0ave a kf f 2 (t) dt (115)

0
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where k n/ to the average number of pulses expected over the interval to.

The above expression applies both for the same sign and alternately positive

and negative pulse cases that we will consider. The reason is that for the

positive pulse case generally one must consider the dc component in the cal-

culation. Since the scattering does not contain a dc component it need not

be considered.

We may now return to the previous investigations of the matched filter

and consider the random aspect. -For the impulse excitation case of C.l.a it

was shown that no enhancement in clutter rejection will occur between the

input and out,)ut using the matched filter for a single input. One can argue

rather easily that the randomness of the signal will not alter the condition.

Let us continue next to the finite pulse condition of C.I.b.

Figures 33 and 34 show the expecteJ responses for a pulse-type excitation

of a target sphere. The crest input signal value squared is then

1 2Si 2 (Max)- (e° 2 (116)

The clutter response for the case where the individual clutter size is

smaller than the target can be shown to consist of two phases of the form of

Figure 17 but displaced in time by T the exciting pulse width. These shapes

occur because the pulse essentially integrates the clutter's scattering

response. (The second pulse will be the negative of the first due to the

discontinuance of the pulse.) Notice that for each excitation pulse two

scattering pulses occur. This, of course, will increase the average power.

Performing the operation described by expression (115) on the above

function provides an average input power of

Co2  1 kT 3 2  (117)

117



- -

The input signal-to-clutter power ratio is then from expression (116) and

x i (2  (

Co2

This result indicates that the ratio is squared for the power consideration

case which it should be since the voltage is only the ratio. (See expression

[98].)

Now for the output signal-to-clutter determination, expression (99)

provides the crest value squared of the signal from the filter. The average

clutter determination requires considerable rmre effort and an outline for

obtaining it follows. Since the filter's impulse response Is symmetrical (it

is like Figure 34) and the clutter waveshape is also symmetrical than the

filter's output may be expressed as the product of the two functions in the

frequency domain or (see expression [22]).

T Io (TJ 2 2 ) 4 2I -JWT
C00W L2_ (s+a I ) 2 (s+Q 2) 2 (019)

Since we are interested in the average power, operat;ng on C0 (jw) as indicated

in expression (120)

- 2
Pave C U ICo(Jw)l dw (120)

gives

Co - 0.122 k T 12 T 25 e 2, for T2<<T (121)
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The signal-to-clutter ratio may then be formed for the output as

(0.589T 3 ) eo2 5
S 0 (max) (058 1 o 2.5 T (122)1o2o 95T1 \ 22- 0.122 k T 1 2T 2 eo02" (122)' T

C0

The overall filter enhancement is then the output to input signal-to-

clutter ratio or exDression (122) over (118). Hence,

S .2._= 0. 
(123)Si12 (Max)/C 12=092 TY2

We observe for the power ratio case of a random clutter model that the

enhancement goes as the ratio of the sphere sizes squared.

We have demonstrated under Section C that the signal-to-clutter ratio

is larger for a pulse rather than an impulse excitation (by an additional

power in the ratio) when applied to a white noise matched filter. This

suggests that preceding the matched filter by a low-pass filter enhances the

clutter rejection. We shall pursue in the section to follow various low pass

and matched filter combinations.

0. LOW PASS AND INTEGRATION SCHEMES FOR CLUTTER MINIMIZATION

1. System Philosophy

Having studied some simple geometries and their associated impulse

excited backscatter waveforms in an earlier section of this document, it is

possible now to make some general conclusions regarding the relationships

between size and waveform parameters which will help in the formulation o.

yet another detection scheme.

The first generalization is that the amplitude of the waveform from a

single scatterer is a function of its size. The second is that the composite
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wave amplitude of n objects in the same cell is limited to a finite value.

Finally, the duration of the backscatter pulse in time is a function of its

size, the larger objects having larger durations than the smaller objects of

the same class.

These wave characteristics suggest a number of detection techniques,

some of which have been considered in previous sections.

Here the primary interest, however, is in the frequency content of the

target and clutter waveforms as a possible means of sifting the two com-

ponents from one another. Qualitatively, one would expect small objects

having short duration waveforms to be composed primarily of high frequency

components and, on the other hand, large objects having long duration wave-

forms to be constituted primarily of lower frequency components in the fre-

quency spescrum.

These characteristics make filtering by selecting passbands of target

interest a possible means of rejecting the clutter waveform component while

retaining the components which are desirable and emanate from the target of

interest.

One characteristic which this process possesses, and one which is

desirable, is that it acts as a smoothing process. For example, waveforms

which possess sharp spikes like those of the idealized Impulses of the

approximations utilized here, are more difficult to successfully process

utilizing some of the proposed discrimination schemes, as will be noted in

a later section. However, a smoothing process such as the integral process

makes it possible to more successfully process these types of waveforms. One

reason for this facility is that smoothing makes the waveforms more readily

adaptable to digital processing in the time domain.
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2. Integration Followed by Low-Pass Filtering

This two stage process represented by integration and low-pass filtering

was chosen primarily because smoothing of the impulses in the sphere impulse

response, as well as of other known responses is desirable since it provides

a much smoother waveform which is more tenable both in terms of processing

but also in terms of mathematical tractability.

A signal processing scheme utilizing this filter scheme is envisioned in

Figure 53.

The a priori knowledge of the target of interest enables the selection of

an appropriate sized range cell and range gate interval which is inspected for

appearance of a waveform. The waveform Si(t) + Ci(t) enters the clutter

detector package which, in this case smooths and filters all high frequency

components from the waveform. From this package the desired output is a

clutter free waveform which enters the discriminator or identification pack-

age for processing. The resultant output is a logic statement which

identifies the geometry.

Let us examine the detector package in greater detail to ascertain its

effectiveness in clutter discrimination. Here the individual clutter body

will be modeled as a small sphere of diameter d1 and the target will be

modeled as a larg- sphere of diameter d2 . Because of Its tractability, the

approximation to .-s impulse response indicated in Figure 20 will be used in

this section.

Now if expression (20) were integrated and then convolved with the

time domain expression for the low-pass filter configuration, it can be

shown that the overall filter's output performance may be described as
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S T/2 os t-tan" 1 / -V l+(/yI e°Yt u(t)

S l+(2/y)2 (124)

+ [cos(3(t-2.5T) -tan'8i'Y u~-25

As before T is the ratio d/c, y is the filter's cutoff frequency and au2w/5T.

This expression applies equally as well to the case when the clutter Is pres-

ent by allowing T to take on the clutter dimension.

Figure 54 shows So(t) plotted for a range of 0/y ratios. The waveforms

resulting from low 0/y ratios are passed relatively unaltered. On the other

hand, wiaveforms which have associated with them high B/y values are shown

to be highly attenuated and altered in shape. We wish to take advantage of

this effect in order to reject the clutter. Note that the individual clutter

in general is smaller than the target hence the large 0/y ratio will prevail.

It is of Interest to determine the relationship that establishes the

maximum value of S0 (t) as a function of Vfy. This can be obtained by classical

techniques and It will be found to be

S (Max) -nL* I 2 (125)S5 [l+(a/y)2]

for a large and y small. This crest value Is negative and It occurs at the

time t - A/8. See Figure 54 for a plot of the negative maximum of S (t) as a

function of 0/y, (point C).

There also occurs a positive maximum that shifts to the right as a

function of 0/y. In the limit as 0/y goes to Infinity, the crest value will

center about the time t = w/20 shown as point B in the figure. For the limit,

for large values of 0/y the amplitude approaches a value
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Figure 55 shows a plot of this positive crest amplitude for a range of

values.

Beforeproceeding to tCe signal-to-clutter calculation, let us dwell for

a moment on Figure 54. Notice for the case where O/y o 0.1 the waveshape is

essentially the integral of the scattered sphere response (see Figure 19) with

a slight distortion. Now for 0/y>>I, not only does the amplitude diminish

but the shape changes. This suggests that one select a value of 01/y = 0.1

for the signal to be detected and hopefully the clutter's a2/y is very large

which in general will be the case for small clutter.

Let us now calculate the signal-to-clutter ratio for the filter arrange-

ment of Figure 53 for the conditions as stated in the prior paragraph (ai/' -

0.1 and 82 /y>>I). The amplitude ratio of 155 and 156 is then (where S0(Max)

represents the clutter crest amplitude).

C0 (Max) 2 \8l (127)

or in the limit

0a 2 ¢) (128)
Co ~( (Y /T 2 /

The above express;on is the ratio of the crest values. Notice that it has

the same form as for the pulse excitation case studied under C.l.b (see

expression [101). Figure 56 is a plot of expression (128).

For the power signal-to-clutter ratio the results of voltage signal-to-

clutter expressions are squared.
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Let us now determine the enhancement between the output and inpLt signal-

to-clutter ratios. The input signal-to-clutter ratios for impulsed spheres

was shown earlier to be

si (Max) T_
T (Max) 1  (129)

therefore

S 0(Max) IC 0(Ma -x) I \TN(130)
S I (Max)/ iC (Max) yJT2)

In terms of power the enhancement is

[ 0o (Max) IC 0(Max) 12 '18\SI(Max)/Ci (Max) ") T21

If we wished to preserve the waveshape for the case 1 /y- 0.1 In Figure

54 for the signal of interest, then the result of expression (131) Is reduced

by a factor of one hundred. That is to say then for a zero dB enhancement,

the ratio of the target-to-clutter must be 10. However, if the preservation

is not of Interest, making y small Increases the enhancement. This will be

the subject of the next section.

3. The Multi-Pole Low-Pass Filter

Having achieved a favorable signal-to-clutter ratio utilizing a single

pole filter and an integrator, the Investigation continues by applying addi-

tional sections.

A two-pole filter and integrator detector package Is shown In Figure 57.

The conditions are the same as for the prior section with the exception of

the additional filter. The output from this arrangement may be obtained by
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Figure 57. Two-Pole Low-Pass Filter With Integrator Detector Package

129



convolving the impulse response of the additional filter with the results

of the prior section (expression [124]). The result for the case where

Ya = Yb = Y is

S(t) T/2 2 m(tt, (/)21 - _t -2 ir(~t2 i
0 ~l(t* ++0y (/~) +1 Yj] +u~t .5TJ~~~) .5T]+*L)

+1(0/y) 2 -1 - y(t-2.5T)l c-ylt-2.5T) (132)
(8/y) +1

where

=/2 - 2 tan 13/y (133)

We shall now investigate the limiting conditions where the desired sphere

backscattered signal is minimally distorted, (hence y/ 131<<I or that the band-

width is much larger than the significant frequency of the signal 81) and

where the clutter sphere's size is so small as to place its significant fre-

quency 8 2 much beyond the bandwidth y or B2/y,>>. For the first condition 1'
expression (132) gives

Sol (Max) - T1/ 2  (134)

For the second, the output becomes

S 2 (max) - Co(Max) - ( 2) T2  (135)

2

hence, the signal-to-clutter ratio (Voltage) is

S (max) 1(0 2 )\2TL 01/ 1
2 T1\3 (16

C0 (Max)F T2  G

This is quite an encouraging solution since the signal-to-clutter ratio

increases as the cube of the dimension ratios. However, notice that the
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multiplier 0 /y must be made small if one wishes to preservz the desired

signal and it varies as the square. This causes the multiplying factor to be

.r- 1l in expression (136).

Addition of one pole to the original configuration is shown to raise the

order of the signal-to-clutter maximum amplitude ratio by one. (See expression

[128].) In addition, the multipole low-pass filter sections leave the integral

of the target weveform unaltered for values of O/y < 0.1 but the waveform of

the clutter signal becomes distorted from its original shape and its amplitude

is highly attenuated. Thus, the target integral waveform is available in

essentially its original form at the discriminator input for comparative

processing, which will be considered in detail later in this raport.

Consider next the performance of a bandpass filter and an integrator.

4. Integrator With a Bandpass Filter

Having investigated the frequency domain expression for the sphere's

impulse response, it was noted that much of the power in the waveform Is

centered about the frequency w = B- . (This can be deduced from the frequency

response of expression [20].) A filter configuration which takes advantage

of this characteristic is the Bandpass Filter characterized in the Figure 58.

The outputs resulting from feeding this filter with both sphere and

plate related backscatter waveforms will be developed here to determine

specifically the discrimination possible for similar sized objects. This

will b6 followed by the sphere-on-sphere case.

Driving the system with a sphere's return results in an expression of

the form

Sol W T1/A jw[jw+y] [l+eJw(2"5TI)] (17

=( O 2[ 0 2 1][W+Y)2 +2 ( 137) j
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where TI and a1 are the sphere's parameters and as Identified in the past, y

determines the filter's bandwidth and 8o is the frequency that filter is

centered on.

The transform of this expression to the time domain for the case a1 =

gives

So(t) I (Y2+2012) (!-."Yt) cos ait +yOl(l+j'Yt) sin 0it0 2yN 2 r+4812]

*ju(t)-u(t-2.5T1, (138)

The star represents convolution and makes the result appear less complicated.

The total expression should be Interpreted as the time function, as specified

on the first line, plus superimposed , . it the same function but displaced

2.5T!.

Next applying the plate's Impulse response, In place of the sphere, through

the filter arrangement gives
T2

S ) - 2(w)w+y) (139)
o(2]W+U 2 )[(jw+y)2 + aO2]

where

T2 - .and c 2a •2 (140)

The plate's expression was obtained from the early development where the

result is shown in expression (30). The transform of this expression into

the time domain is

S (t) (y 2) 2 + 802] (y-2) C 2  + JYt[Y(afy) 802]]cos O0t

+ 0oa2 sin Rot (141)
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Computer calculations were made varying the sphere-to-plate area ratios

plus the bandwidth y on expressions (138) and (141). Figure 59 is a plot of

the maximum amplicudes of the sphere-to-plate ratios using these expressions.

The areas of the bodies are their projected cross-sectional ones.

From this plot it can be seen that discrimination is enhanced for cases

where the bandwidth is reduced. Also it is seen that the signal-to-clutter

(voltage) ratio is reduced to 1.0 when the sphere-to-plate area ratio becomes

approximately 1.

Now as the ratio y/$ is made small and a 2 is much larger than 01 then

the signal-to-clutter ratio becomes

S 0 ( a) nT I -Sn7y/ a 1] .5 V(d 1 2
C (Max) 80 . [l- 2 2k,)(12

The above conditions refer to a narrow bandwidth and a large dimension ratio

between the sphere and the plate. Notice when the ratio y/8! is very small

then the signal-to-clutter (voltage ratio) varies as the ratio of the dimen-

sions squared. It Is Interesting that the final result is independent of

the precise value of the bandwidth.

Consider next the same arrangement as in Figure 58 except we shall now

determinethe sIgnal-to-clutter ratio where the clutter consists of small

spheres. For this case the clutter 02 is much much larger than the o of

the filter. Then performing the inverse transform on expression (137) where

the subscripts are changed to 2 to represent the clutter, and taking the

limit of the resulting function 82/ 0 >> I gives the crest amplitude of

T2

So2 (max) - C C0 (max) (143)
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The maximum signal amplitude of the desired larger sphere Is
T IoM)= = -(144)

hence, the signal-to-clutter ratio is

s0of (Max) T 1 [lEY8]~~L)J)(145)

C 0(max) T 2 B2 T2

for the case where y/8I is small.

Comparing the filter's output for the plate and spherical clutter cases,

equations (142) and (145), we see that the bandpass filter is more effective

against plate clutter than It Is against spherical clutter for the same target

impulse excitation.

We shall now turn to the addition of a matched filter to the low-pass

filters in order to observe the enhancement in clutter rejection.

E. COMBINATIONS OF LOW PASS AND MATCHED FILTERS

Our prior results have shown that an integration or a low-pass filter

scheme tends to enhance the overall clutter teJection. We shall now precede

a white noise matched filter with various low pass filters to determine the

scheme that provides the best rejection.

We shall begin by Investigating the signal-to-clutter ratio that may be

obtained from an integrator and a matched filter. In particular the case

where the target sphere and the plate clutter have the same cross-sectional

areas and the limit as the clutter becomes quite small.

I. Integrator and Matched Filter Combination

a. Spherical Target-Plate Clutter

Consider passing the returns from a sphere and a plate through a filter

matched to the target (sphere) response. The filter scheme is indicated in
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Figure 60 where the matched filter has the integrated response of the

spherical target to be detected. Figure 19 shows its impulse waveshape.

The frequency response function for passing a plate through the filter

is as follows (where the I subscript applies to the sphere and 2 applies to

the plate).

CO) = 'T1T2
2  (W) 2 (1+-jw2.5T 1 ) (143)

0(0) 2+012] (jw+( 2)

Its output time response can be shown to be
To t I T2 ('81]/2)2 ' 2\2-a 2t

0 r[+(c)/8 1) 2] C-8/ cos 81 t + sin 0lt

{u(t) + u(t-2.5T1, 
(144)

The maximum output occurs at a time of

t = (145)

with a value of

CTT22 - +C-"2/0 (146)0oMx T= -'- + /2) 2

Now for the case of the signal passing through the filter, Its fre-

quency response is the square of the expression shown for the matched filter

in Figure 60. The time response Is

T12

So(t) = (sin ait + 01t cos a 1t)

(147)
": {6(t)-26(t-2.5Ti) + ,(t-sT,)}

and its maxima occurs also at the time of expression (145) but with an

amplitude of

137



s ~I,• - -•.,,1I o,,
F INTZGRATOR 7717; 1F, 7FILT E R

T 1 Ji4+,.t)) SOW + CO(t)

FILTER COMBINATION

BDM-W-72 -094

Figure 60. Integrator-Matched Filter Combination
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2rT1

S0 (Max) = I (148)

The signal-to-clutter ratio may then be formed between the sphere target

and the plate clutter as

So0(Max) . (2.5n []+($I /a ) ] 2 \1 9

C = 0"\t1 7 J (•T (0'F9)

"We see in the expression that the signal-to-clutter voltage ratio varies as

the square of the ratio of their sizes. However, as the ratio increases

beyond three times then it varies as

0o(max) = (2.--- 
(150)"MxIT 2

This Investigation indicates that the Integrator-matched filter combination

may be a good filter arrangement for rejecting plate clutter since the signal- i
to-clutter ratio varies as the second power of voltage and the fourth power

for power.

Let us see how well this filter performs for a spherical clutter passing

through it.

b. Spherical Target - Spherical Clutter

The expression describing the filter's output for spherical clutter

may be obtained by the product of the matched filter function of Figure 60

with itself except making the second function have the subscripts 2. The

Inverse transform of this expression can be shown to be

139



TT2

S02(t) W Co(t) 14022_ al2) [1! sin BIt - 02 sin 0 2t]

*{6(t) + 6(t-2.5T2 ) + 6(t-2.5Ti) (151)

+ 6(t + 2.5(t 1+T2 )A

The crest value for this function where the target Is larger than the clutter

is TI T2 I
C 0o(ax - T1T2  A-/_)_2_1 (152)

The signal-to-clutter ratio then for spheres is the ratio of equations (148)

and (152) or,

S (Mx lTiý2 T2\2](13
C((Max) I- TI) forT J for(153)

a very interesting result. Comparing expression (153) for the spheres to the

sphere-plate result of (150) suggests that this filter Is better for plate

than sphere clutter. This effect will be noticed again further along in this

discussion and it will be shown that the least similar that the clutter is to

the matched filter, the better will be its performance.

We shall continue our investigation by next considering a two-pole or

double Integrator filter preceding a matched filter.

2. Double Integrator and Matched Filter Combination

This investigation will prove quite Interesting as it will be shown that

for small clutter sizes relative to the target of interest, this arrangement

is an optimum case since the integrators serve to essentially 'Awhiten" the

clutter signal, and the arrangement becomes the classical matched filter for

white noise. Figure 61 shows the combination.
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The investigation to follow will include clutter that consists of

spheres, plates, and rods with the target of interest being a large sphere.

a. Spherical Target with Spherical Clutter

When the desired spherical target S,(t) appears at the input to the

filter it will have the waveform as shown previously in Figure 20. After it

has passed through the double integrator, the signal will change to that

of Figure 21. This shape cf course is what the impulse response of the

matched filter SI(t) of Figure 61 is patterned after.

Let us now determine the maximum signal amplitude S (Max) for the case
0

when the desired target signal Si(t) appears. We know that the maximum out-

put will occur for an auto-correlation process when one signal is identically

atop of the other; hence
2.5Ti

S (Max) fo S1 2(t) dt 0.2T1
5  (154)

Expression (21) may be used for S (t).

Consider next the effect of applying a small spherical clutter Input to

this filter. The double integrator output CI(t) wtll appear for this case

as shown in Figure ý2a. For T2 << Tp, the clutter sphere much smaller than

the target sphere, the duration of the clutter sphere becomes much less than

that of the target SI(t), hence, its effect on the matched filter is similar

to exciting it with an impulse of the area of CI(t) as shown in Figure 62b.

This is quite important as we have shown that the integrator tends to pre-

whiten the clutter sphere's response.

The impulse amplitude is found by performing the integration shown in

expression (154) except for Sl(t) rather than S 12(t). The resultant area is

shown in the figure and the clutter impulse time representation becomes
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Figure 62. Cl(t) Clutter Representation for Small Spheres

143



=2 3
6c(t) W -T2

3 6(t) (155)

The output C (t) that this impulse function produces is SI(t) multiplied

by the coefficient of (155) or

c0() 0. T 3T 2
Co0 (t) - O17--8 T2 TI sin BIt 0 < 1 t < Tr (156)

The output voltage signal-to-clutter ratio may then be formed as the

ratio of expressions (154) and (156) as

S0 (Max) (157)
C0(Max) 4 T2
C0  7r (T2

This solution is very encouraging as It represents the largest signal-to-

clutter ratio obtained for targets and clutter of the same form (sphere-on-

sphere).

For the sigr.al-to-clutter power ratio calculation where there will be

"k" random clutterers per range gate sampling time, the average clutter power

is obtained by multiplying (154) by "k" or

Co2 -. 1.25 15k(58

The power signal-to-clutter output ratio is then

S(Mx (159)
- 2.5 kT1\T 1

Notice that the result Is dimensionally correct and that the ratio diminishes

proportionally to the number of clutterers In the gate. The ratio also

increases as the sixth power of the sphere ratios. Also If the range gate

time is 2.5T,, which allows the entire spherical target to be processed, and
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k is the average number of clutter for that time (n/2.5T1), then n may

replace k TI and the absolute ratio value is then obtainable.

The clutter rejection enhancement that occurs between the filter's out-

put and input is a function of the Interrogating waveshape. The use of the

impulse response of targets creates problems since the impulse's energy is

infinite. A way around this problem is to assume that the interrogating

pulse is an exponential of the form

61(t) W -ycYt as y approaches .(160)

This expression is impulse-like and has a finite energy.

Performing an average power calculation similar to (154) for "k" random

spaced clutter spheres per sampling interval and assuming that 2.5T2 y " 1,

gives for the Input side

27 h(i ) (161)

The assumption makes the Interrogating pulse also appear impulse-like for the

small clutter sphere. Notice the problem that one would encounter if the

actual impulse were used. In that case as y - also would become

infinite.

The input signal-to-clutter power ratio Is then

si2(ax) I T2 (162)
Ci2

The maximum signal Si(Max) is the impulse amplitude T1 /2 multiplied by

exponential y.
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The output to input enhancement will then be by the ratio of expressions

(159) and (162) or

2 2(max) T 4

2 2 yT" I\T (T63)

The latter expression shows that the enhancement varies as the ratio of

the dimensions to the fourth power. The y in the denominator suggests that

this ratio is very much dependent upon the shape of the interrogating pulse.

If one wished to determine the same enhancement using voltage amplitudes,

the approach is as follows. The Input signal-to-clutter ratio is just the
ratio T- Expression (157) gives the output ratio; hence

T2"

S (Max)/C (max) (164)
Si (Max)/Ci (Max) 

(164)

Notice that the same ratio occurs if we square this value (to relate to

power) and compare it with (163). This result Is quite encouraging.

We shall next investigate passing plate clutter through the arrangement

of Figure 61.

b. Spherical Target with Plate Clutter

Passing a single plate clutter of dimension T2 through the double

Integrator of Figure 61 gives the following response

2 2  t2
C1 (t) - T- T2 (165)

where the parameters are as identified under expression (137). Here we see

if a2 is very large (inversely proportional to the clutter size), this

function will be impulse-like for a large target size. This is the same
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argument that was used under "a" of the prior section and It amounts to a

pre-whitening process of the clutter. Then the clutter may be represented

as an impulse or

T 26 (t) 2-"2

W 2 2 (166)

Exciting the matched filter with this impulse gives the matched filter's

impulse response which is

Co(t) - " T 2T sin Bit O<0t<ir (167)

The amplitude signal-to-clutter ratio may then be formed between expressions

(154) and (167) as

S o(Max) . / (T (168)

C (Max) 2T 1\ r/\

Notice that the ratio is raised to the same power as for the sphere-on-sphere

case (see expression [155]), however, It produces ir times more enhancement.

This appears reasonable since in past calculations we have noted that the

enhancement is better between geometries that are different.

Performing the power calculation as described In the prior section gives

s0 (Max) (140° 7 (169)
2-5 - k T

C
0

which is 2 or approximately ten times greater than for the sphere-on-sphere

case. See expression (157).

Obtaining the output-to-Input amplitude or power clutter rejection for

this case Is meaningless since one must deal with impulses and doublets for

which energies are undefined. We must look at this filter's performance in
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terms of its relative enhancement in output signal-to-clutter ratio as compared

to the other filters considering that their outputs occur as a result of

i mrpulse interrogation.

c. Spherical Target With Rod Clutter

We shall now consider the problem of passing a rod or dipole type clutter

through the filter arrangement of Figure 61. The transfer function describing

the rod's scattering was given as expression (33), however, in order to make

it manageable for this analysis it will be approximated by the following

relationship

KT (JW)2 I
r (J+o) 2  2 (170)

(wa0)+0 r

where

Ki=---,Tr - •and r -0 (171)o c r

This approximation will provide a time waveshape similar to that shown in

Figure 26 except that the edges are not as sharp. The degree to which the

function is damped is determined by ao.

Passing expression (170) through the double integrator of the filter,

and transforming the result into the time domain gives

CI( KTr "tt sin rt (172)
Tr

For the same argument that was applied to the sphere and plate clutter where

it is assumed that the clutter size is very small compared to the target sphere,

the impulse-like representation of tha rod is then

KT
6r(t) 2 r 6(t) (173)

0 r

148



This input will cause, as for the other cases, a filter impulse response

of the form

0.4T 2TrT r K
CoW r sin a11t o<0 t<Tr (174)0o+ r2

The amplitude signal-to-clutter ratio between the sphere and the rod Is

then the ratio of (154) and (174) or

S (a) .T3 (Za)i.) [,(%j o.2] (175)
C0o(Max) 7-2 \ '/\•r L) r/J

For the thin rod case, it is conceivable that the ratio of characteristic to

wave impedance can be approximately one half, and that the damping term is

smaller than the resonant frequency. Under these conditions, the multiplier

is 7
3/4. This represents a signal-to-clutter enhancement of w times greater

(for the filter) for the rod case over the plate for the same length, and rr2

for the rod over the spherical clutter.

The output signal-to-clutter power ratio can be shown to be for the

sphereical target and the rod clutter, for the prior mentioned conditions and

a random Input, is then

S2 (mx) 6 TL\6

S° • 2.5Tlk \Tr)

0

The enhancement that the filter offers In amplitude signal-to-clutter

ratio may be calculated since the rod's crest Is an Impulse of KT r which the

Input of the filter will see. The Input signal-to-clutter ratio Is then

Si (Max) T1  (177)
Ci (Max) 2KTr
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The output signal-to-clutter ratio is obtained from (175) hence,

S 0 (Max)/C 0 (Max) 2  (178)

S I (Max)/Ci(Max) G r

Notice that this filter has an output-to-input enhancement of 4w times as

great as the sphere-on-sphere.

These series of calculations have indicated that the filter arrangement

of 61 appears to be the best all around filter investigated thus far. We

shall next consider the optimal filter case.

F. OPTIMAL FILTER PERFORMANCE

We have examined various forms of filter networks and conditions with

and without correlation schemes such as the matched filter. The next logical

step is to investigate the so-called optimal filter and determine if it can

perform as well or better than any of the prior ones for the conditions of

interest.

The approach is to essentially apply the principles discussed under

Chapter III, Section B.5 to the target sphere immersed in small clutter con-

sisting of spheres, plates nnd rods.

1. Spherical Target with Spherical Clutter

The approach here will be, as before, to determine the signal and

clutter output from a filter, but in this case the filter has a frequency

response given by expression (83). As a result of this response, there is

generated a function F(Jw) (see expression [85]) which is the ratio of the

target-to-clutter frequency response. This function is then operated upon

in order to determine the power signal-to-clutter ratio in a random clutter

environment (see Figure 63 for the filter configuration).
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Figure 63. Optimal Filter Arrangement

151



Because of the nature of F(jw) it becomes necessary in the cases of

similar geometries to limit its bandwidth by introducing a low-pass filter of

the form shown in Figure 57 or

C 1 (J0w) (179)

This will be made clear soon. Also in order to assess the filter's output-to-

input enhancement, the input signal must be something cther than an Impulse

because of the energy argument expressed earlier. A gool substitute for the

Interrogating Impulse is the function given by expression (160) which turns

out to be the time response of (179). It will be shown shortly that the

filter's output is independent of the interrogating pulse since it gets

factored out In F(jw).

We begin by fo:ming F(jw) by using model-C for the sphere's scattering

transfer function (see equation [22]) therefore

Si (JW) IT !T1 JO'+2

F(Jw) - ~~[w+012  (180)

Notice that "k" the random occurrence parameter is also included. Observe

also that the interrogating function would be factored out whatever It is.

Hence this function deals essentially With the ratio of the objects' transfer

functions.

An Inspection of expression (180) indicates that there are as many zeros

as there are poles; hence, the frequency response is not zero at infinity

which will give rise to impulses In the time domain. This Is the reason for

the bandlimiting filter.

The transform into the time domai, of F(Jw) to f(t) with the bandlimiting

filter gives
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Y* ft) = I YCYt + 2 ( c-a ) + t( 2 - a1 ) 2 C- 1  (181)r T2L(2" ( 8)

The sphere parameter ot I is defined as

a1 - 1 (182)

and a 2 is the same except a change of the subscript.

Now when the signal Si(Jw) appears, we see from Figure 63 that the out-

put is the combination of f(t) with its image limited by the bandpass filter.

This Is essentially correlation, as has been discussed earlier, and its maxi-

mum output occurs at t-to when one function Is exactly on top of the other.

The value is obtained from equation (93). This also turns out to be the

filter's signal to clutter power ratio; hence

0 (t-t 0) f2(t) dt (183)

Co Jo f
Performing this operation, but taking the product of f(t) and expression (181)

for f2(t) under the integrand, provides a series of terms where the largest is

the impulse-like one or
2 (t -t

C 2t t k T )2  (184)

0

We see here that if y Is allowed to go to infinity, the output is also intinite.

The result Indicates that the upper limit is determined by the bandwidth of the

filter. Otherwise, the ratio increases as the ratio of the dimensions squared.

This solution may be deceptive. Let us Investigate the input signal to clutter

ratio and then determine the overall enhancement.

The crest amplitude of the target sphere's response as caused by the j
Impulse-like excitation of expression (158) Is
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Si(max) = T (185)

The average clutter sphere's power for the random condition is by the follow-

ing integral kyT2

C2 = k C 2(t) dt =-2-- (186)

where Ci(t) describes the small sphere's impulse response (expression 23) as

caused by the impulse-like excitation. The principal term of the integration I'

of (186) is shown as it Is so much greater than the others. It is due entirely

to the impulse-like excitation. The Input signal to clutLer ratio is then

Si2(Max) 2
- = (- (187)
72k(T 21

However, a scan back to (184)shows the same answer; hence, for an Impulse-

like excitation there Is no clutter rejection enhancement with the optimal

filter. In. reality, there can be and that depends entirely on the form of

the input signal to clutter ratio. Recall that the filter's output signal to

clutter ratio is Independent of its input shape. Now if we had made the input

impulse's time constant Ya and the filter's bandwidth Yb' the enhancement

becomes 2So2(Max)/Co 2 b

0  -0  b (188)2 - Ya
Si(Max)/C2 a

or the ratio of the interrogating signal to filter bandwidth.

In terms of the output to input signal to clutter voltage ratio, this

can be shown to be
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S0(ma x) /s (Max) i--co(a) T ~e (189)
C (Max) I C.(Mx

for thie impulse case.

We have observed from this investigation that the configuration of Figure

63 does not provide the desired enhancement in clutter rejection for the

Impulse excitation case.

Consider next passing a rod through the filter.

2. Spherical Target with Rod Clutter

Proceeding along the same lines as for the development of the sphere

clutter In the prior section, let us now replace It with rod clutter. Using

the approximate transfer function expression of the rod (see expression (170))

with that of the target sphere, one can form the ratio F(Jw) as
22

. TL- ./\[(Jw+a°) 2 + 02 1

r Or
F(Jw) - 2-K•r J 12 (190)

the conditions are the same regarding the excitation and the band-limiting as

for the prior section as it is apparent from expression (190) that time

impulses are going to occur.

The inverse transform of (190) convolved with the filter's band-limiting

y gives

ye"Yt * f(t) = •JkK...)LyCYt + 2(ao-aC)e I + [02 + (ao-ex2)]ts1 j (191)

Performing next the operation implied by expression (183) gives

S2 (t-t )T2(1)0 0 TI (192)
2 T= 2 IT)C 2Kk(Ti
0
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This result has the same form as for the spherical clutter which is

that the output signal to clutter power ratio Is proportional to the filter's

bandwidth. If the analysis were continued to determine the enhancement for

impulse excitation, the result will be the same as for the spheres. We may

then conclude that this filter arrangement Is also not good for clutter

rejection.

The reason that these two filters have not performed well is that their

signal and clutter pole structures are similar. In the following case of

plate clutter, this situation will improve.

3. Spherical Targets with Plate Clutter

The impulse excitation conditions will be changp.d in this case from the

prior ones due to the derivative scattering nature of the plate clutter.

Although it will still be Impulse-like, its shape will be triangular, having

a base dimen5ion in tim.e of 2T and a crest amplitude of unity. Another dif-

ference is that the band-limiting filter of Figure 63 will be removed.

Applying the normalized plate transfer function of expression 30 and

that of the target sphere to F(jw) gives

WT I J w+c2 ]
F(jw) M T- 1j + 2 (193)

where

2 2 an (194)

Here we see that there are more poles than zeros in the function; hence, the

output is finite.
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Transforming F(Jw) to a time function gives

IT T -at
f(t) 1- f + (a2-aI)te195)

A T2  
2

The power signal to noise ratio then follows from expression (183) as

S o(ax) n4 T * I 1 T2 2

F 2 kT1 T2  (1 .2570 (1
This is a very encouraging result over the prior two clutter conditions.

What i, more, this is essentially the same value (for T1 >> T2 ) for the

double integrator followed by a matched filter case of section E.2.b (see

equation 169). This is the type of result one enjoys, as it confirms the

prior filter as being optimal-like.

Consider now the output to input signal to clutter enhancement. The

input target signal for the triangular unit amplitude pulse is

Si (Max) - T1/2 (197)

The average power clutter may be obtained as per expression (186) after

developing Ci(t) using the normalized plate impulse expression of 32 and the

triangular pulse. The result is then obtained as

T 2k( (198)

C 7- (.) _i

The input signal to clutter ratio is then

S 2 (M a x ) 2 1T 
(199)
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The output to input enhancement follows as

S2 (a) S(Max) (T\/XT\3[ T\2
o / = ,w^2 #2 ) L , 2  (200)

C 2C. 25r
0 / I

which is very good. Notice that as a multiplier there is the ratio T2/-

which is the plate's propagation time across its face to the pulse width of

the Interrogating pulse. This is certainly one of the best clutter rejection

filters along with the double integrator matched filter. The same result will

be obtained for the enhancement for the other filter too.

We have shown to this point that the best practical filter arrangement is

that of Figure 61. Let us now determine the enhancement it provides for a

rain clutter condition which will b-c the subject of the next major section.

G. CLUTTER REJECTION OF RAIN

The performance of an impulse radar system may be degraded In part by

the effects of precipitation. The total effect is twofold.

First, there is a scattering effect related to the cross sectional area

displayed by the mass of raindrops to the Impinging electromagnetic fields.

Secondly, there is the absorption of energy which can be associated with

the body of precipitation acting as a conducting medium through which both the

scattered target and rain associated electric fields must propagate. We shall

take these two effects into consideration when determining the signal to

clutter enhancement that may be obtained by the filter of Figure 61.

Some of the statistics obtained during a literature search on rain are

as follows.

For a rate of rainfall of 2 millimeters per hour, which would be classed

as a "moderate" rain, there would be on the average about 60 drops per cubic
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meter in the air above the ground having diameters between 1 and 2 milli-

meters, but only one drop in every 20 cubic meters with diameter greater than

3 millimeters. In the very heavy rain associated with thunderstorms, there

might, on occasions, be as many as 500 to 1000 drops per cubic meter with

diameters between 1 and 2 millimeters and one or two per cubic meter as large

as 5 millimeters in diameter.

We shall begin the investiation by determining the expected attenuation

as a function of frequency through rain.

1. Attenuation of Electromagnetic Waves through Precipitation

Figure 64 shows the expected one way attenuation through various rates of

rainfall as provided by Skolnik (see Reference 11) for a range of frequencies

of from one to ten centimeters of wavelength. Since we are interested In the

attenuation over a broader frequency for impulse application, this required

the extension of the above figure. Considering the physics of the propagation

of an electromagnetic wave through a lossy medium, the attenuation prccess

may be described as

eo(x,jw) = e (O,JW)E"(JW)x (201)

where x represents the distance propagated from the source point in kilometers,

W(JO) represents the attenuation as a function of frequency, and e0 and eI the

fields at x and at the source, respectively. This functional character also

appears in the re-plot of Figure 64, as shown in Figure 65.

Since we are interested In a worst case condition, the expression for the

heavy rain of 40milliimeters/hour was determined to be
(5.6xi -1 f)3.33x

e (x,J;w) - eo(x,O)E-.26xO0 f) x (202)

where the factor f is the frequency in hertz.
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Figure 64. One-way Attenuation (dB/km) in Rain at a Temperature of 180C
(Reference 11)
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Figure 65. One Way EM Field Attenuation Through Rain Due to Absorption

for Two Ranges and Two Rainfall Rates
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The above expression will be applied later to the signal to clutter

enhancement problem to be investigated.

2. Scatter!ng From Precip it.tion

Skolnik identifies a parameter Z which he associates with the reflectivity

of randomly spaced particles within a given volume. This reflectivity is the

summation of the backscatter cross sections of all the particles within the

volume. When the backscattering particles are spheres such as rain, and are

small with respect to the excitation wave length so that the Rayleigh approxi-

mation can be used, then

n (203)

where d Is the particle diameter inmillimeters and n is the number of particles.

We will be using expression (203) to determine the number of rain drops there

are in a given volume for heavy rain (see Reference 13).

Now Z is a meterological parameter that depends only on particle size

distribution and concentration. It is desirable to relate it to the precipi--

tation rate "r". Marshn!l-Palmer have done this (see Reference 12), where

they hiy"c empirically derived the relationship

Z - 200 rl'6 (204)

which they have found accurate to within ±50 percent in most stratiform-type

rainfall distributions found in nature where the rate is between 0.5 to 70

millimeters per hour.

Equating expressions (203) and (204) and assuming an average rain drop

size d in a given volume gives the relationship

1.6
200 r"n - per cubic meter (205)

d
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Let us now determine the number of rain drops in a cubic meter for the heavy

rain rate of 40 millimeters/hour for drop sizes of approximately two milli-

meters. The drop sizes were mentioned in the introduction of this major

section as being typical for heavy rain. rhe number per cubic mater is then

calculated to be 1,140 particles, which is in the range of values indicated

earlier.

Now that we have established the number of particles, we must next

investigate the expected scattering response of these dielectric spheres of

diameter d=2 millimeters. Although the literature gives the radar cross

section of dielectric spheres, it generally treats them in the Rayleigh region

for radar applications. For the purpose of our investigation, we shall modify

our scattering models such that their Rayleigh regions have the same value as

for dielectric spheres; however, the total description will go beyond this

region in our model. In effect, we are seeking a scaling factor to account

for the dielectric aspect of the particle sphere. The reason for this model

is to bound the frequency response of the dielectric sphere rather than allow-

ing it to continue on to infinity in Rayleigh fashion as the frequency is

increased.

Skolnik gives the Rayleigh cross-sectional scattering of a dielectric

sphere as (see R:ference 13)

d=5 2 6  (206)

where X is the wavelength and IK12 is the dielectric constant factor which

has a mean value of 0.917. Let us now determine the cross-sectional scatter-

Ing in the Rayleigh region of the model B sphere approximation of Figure 20.
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Its transfer function is

Tl/2 (Ju)2[ + -jw 2.5T1]

A (jW)= 2 2 (207)
(JW) +

Taking this function In the limit as w approaches low frequencies gives

2T (jW) 1222
A5(OW) = 2 --- 1 (2-5) T3(Jw), (208)

Applying next the definition of radar cross-section (expression 10), the d/c

value for TI and w in terms of X gives

5 616 Tr d6
as = 16 (209)

Comparing this cross section with the one given fnr a dielectric sphere of

(206) Indicates that the model has 16 times the effective cross section. This

amounts to decreasing the transfer function (207) by a factor of four in

order to represent a water drop.

With the attenuation expansion of the prior section, for rain absorption

and a wide banded frequency model, and the number of drops for heavy rain per

unit volume, we are now prepared to perform a calculation to determine the

performance of the prewhitened matched filter In rain.

3. Signal to Clutter Calculation of a Spherical Target In Rain

This investigation indicates that the filter that gives the best signal

to clutter ratio for a spherical target in spherical clutter is the pre-

whitening matched filter combination of Figure 61. We shall now determine the

volume that can be range gated before the quantity of rain within that volume

causes the signal to clutter power ratio to approach 20 db or less. This

20 db level is the minimum level many radars require In order to function
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effectively.

Since the pre-whitening double integrating portion of the filter causes

the frequency response to diminish as 12w , it can be stated that the atten-

uation discussed under sub-section "1" will have more of an effect on the

clutter than it will on spherical targets of interest. The reason can be

seen by referring to Figure 6, and noticing that cutoff effects begin in the

vicinity of 10 gigahertz for heavy rain and a one way distance of 10 kilo-

2meters. The /1w effect will have certainly reduced the target scattered

spectrum appreciably before this cut-off frequency. Hence, ignoring the

attenuation effects will provide a conservative answer in terms of the volume

that can be scanned. As It will be shown, the volume will still be immense.

Let us assume for the sake of determining a conservative maximum cross-

sectional area that may be radar-like excited by a single Impulse, that we

have prior knowledge as to where the spherical target is in space and know its

diameter d1. We have shown, at various times, that for an impulse excitation,

the scattered duration of a sphere Is 2.5T1 , where T1 is di/(.. Let us then

adjust the range gate such that we only observe over this interval. There Is

a subtle point here that bears emphasis and that is that although the sphere

occupies d1 length in the range gate, the observation is over the space

interval of 2.5d; hence, the clutter over this Interval must be considered.

See the discussion under this chapter, section B.2.a for multiple clutter.

It is also assumed that the number of clutter responses per range gate is the

same meaning that any clutter entering from the prior range gate Is balanced

out by the number that is not recorded in this qate that will appear in the

next one.

The expression for the pre-whitened matched filter adjusted to account

for the dielectric clutter by reducing T2 by a factor of four is from
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expression (159)

S02(Max) d . 6 (210)
0 2.5T k d)1 2

C
0

Now, if "k" is the to-:al number N of clutter particles observed over the time

2.5T1 , it may be expressed as

Nk = 2-5TN _ 211)
2 S1

But N Is determined by the volume density "n" and the volume Interrogated.

The range gate volume may be expressed as

V - 2.5di A (212)

wrere A Is the cross-sectional area. The total number N of clutters is then

nV. It follows that applying this result to (211) gives

2.5 d1 Ank - (213)
2.5 T1

Applying (213) to (210) aid solving for A gives

d /\ 6  C2

A = . 0 0 square meters (214)

We may now calculate the cross-sectional area that a radar beam can

impulse interrogate to seek a one meter diameter sphere during a heavy rain

and stili have a signal to clutter ratio of 20 db (a fac,.jr of 100). The

heavy rain of 40 millimeters per hotr was shown to conslt of 1000 drops of

2 millimeters In diameter. Then

A I 6• /_L_ _\61_ o'
2.5(0)(103) (2xl0-I i0"1 x 10(215)

a rather impressive area.
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Now, if we wish to determine the range in meters that this area, formed

into a conical beam, would create, the relationship is from basic principles.

R = --- 6--- (216)

where R is the range in meters and e is the beam width in degrees. Applying

the value for area obtained above gives a range for one and a half degree

beam width of 146 million meters. This very large number indicates that one

has a large degree of freedom in terms not only of the choice of the sampling

range gate interval but also in the beam width and the target sizes to be

examined.

Let us next look at a golf ball size metal sphere for the sante above con-

ditions. Consider d1=4 centimeters. The resultant area A can be shown to be

I megameter square or, for the same beam width, project this area at 146

kilometers of range.

We have demonstrated that the pre-whitened matched filter combination

does indeed provide a high degree of clutter rejection for a high density

rain environment.

This completes the investigation for selecting a filter that provides a

high degree of clutter rejection. We shall next concentrate on the discrimi-

nation problem.

167

S.r



CHAPTER IV

WAVEFORM DISCRIMINATION AND GEOMETRY IDENTIFICATION

A. GENERAL CONSIDERATIONS

This section treats the problem of discriminating or sorting waveforms by

class for the eventual identification of a target geometry. The major assump-

tion here is that the waveform which enters the discriminator package is

indeed a product of backscatter from the target of interest and therefore is

not corrupted by the effucts of clutter or noise.

It has been shown in earlier sections of this report that certain types

of clutter can be adequately preprocessed out of the signal path by applying

suitable filtering to the total input waveform prior to its entry into the

discriminator package. Therefore, the pure or non-corrupted signal assump-

tion is considered to be a reasonable one.

It was indicated earlier in the discussion on waveform approximation that

geometries of the same general class but of different shapes can possess the

same backscatter waveform when interrogated and viewed from a particular aspect

angle. One example is the backscatter from the general class of cylinders of

equal length viewed end-on. In this case, all cylinders of equal cross-sectional

area but of different cross-sectional geometry will possess the same back-

scatter weveform.

This means that for the purpose of identification at one particular

aspect angle the returned waveform does not necessarily uriquely identify the

target geometry. It does, however, identify the target class. In order to

uniquely identify a target object, such as the cylinder in question, the target
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would require interrogation at more than one angle with respect to the target,

since depth-geometry (area) variation has been shown to be a primary factor in

forring at least the optical portion of a backscattered waveform. A determi-

nation of uniqueness for waveform-geometry pairs is outside the limits of this

discussion, however. It will be assumed here that a backscatter waveform

uniquely defines an abstract geometrical class rather than a particular geometry

which must be identified. This uniqueness criterion will be deferred for later

investigation.

A number of methods are presently available for classifying data. Among

them are correlation methods and the pattern recognition technique, wnich will

both be discussed in this section.

First, however, let us discuss the general philosophy of sorting or classi-

fication. The problem of classification of data is a classical problem and all

solutions require the same basic elements, whether the solution is by correla-

tion or even simple amplitude measurements.

Any data set which must be Judged can bc divided first into n separate

measurements, which are represented by an n dimensional vector In what is

called observation space. The ith measurement expresses a particular property

of the total measurement of the event, and each particular coordinate of the

vector has associated with it a numerical value which corresponds to the

amount of each Individual property which the event measurement contains. A

set of events which belong to the same class correspond to a single point In

observation space only if all events are exactly the same. In the more realistic

case where measurements of the events in the same class are only simil!r but not
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equal, the points corresponding to the individual events in observation space

correspond to an ensemble of points scattered within some region of the space.

A set of points from a given class might be expected to form a cluster in the

n-dimensional space in the sense that distances between members of the same

class are smaller than those between points which belong to different classes.

A simple illustration of this concept in two dimensional space is given

in Figure 66, where the ensemble of points A represents different samples

of class A, and those labeled B represent samples of class B. The m and n

represent mth and nth data measurements and d represents a metric.

The measurement technique to be utilized which provides the greatest

distance between observation points belonging to different classes while pro-

viding the least distance between points belonging to the same class is the

prime consideration in most sorting systems (see Reference 14).

The concept of automatic sorting is presently being utilized in automatic

character recognition and voice recognition and decoding devices. In the case

of the character device, the problem is simplified because the input is re-

stricted to a finite number of characters which are of a given size. This

means essentially that the universe of possible character decisions is known

a priori. Returning to the observation space concept, a known universe of

decisions allows the construction of an optimal transformation in observation

space which forces fie situation that points belonging to the same class are

brought closer together and points belonging to different classes are further

apart. This general concept of closeness is essential for comparing waveforms

and will be considered in a study of a number of metrics in this section.
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THOSE OF 'B' 1k. WITHIN C2

(see Reference 14)

BDN4-W-72-094

Figure 66. Clustering of Sample Points in Classes in Observation Space
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Measurement of closeness in any system implies that the vector components

comprising the observation point or region corresponding to the classes of

interest have been defined. In one sense, definition of the class vectors

implies the definition of a library of typical furctions which are each defined

by a finite number of points. The cutput of the distance measuring process

in most systems corresponds to a scalar magnitude which is compared using an

amplitude categorizing process.

The final step in the decision-making process is a logic step based on

comparison of a threshold value, determined from previous measurements, and

the discriminator output amplitude.

Figure 67 Indicates the generalized sifting or discriminator package

described in this section.

B. PATTERN RECOGNITION

Pattern Recognition is a general concept framework which is used to

organize the classification process. Its value in the problem at hand is that

it allows an overview of the problem and a framework for the solution.

The Pattern Recognition prcocess consists of two steps; learning how to

categorize the class in which a particular group of objects belong, and of

deciding whether a new event belongs to the category or not. In terms of the

discussion in the opening remarks, the learning process consists of defining

the region of similarity in observation space. Recognition, on the other hand,

consists of examining each new input and identifying the name of the region of

the space in which the input is contaired. In the character recognition problem

the region can be rigorously defined and suitable transfbrmations of observation

space made such that regions of commonality and intersection are minimized,
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simply because the problem is completely defined. In the problem where the set

of possible decision sets is not closed, as in the general geometry identifi-

cation problem, the concept of defining decision functions and their optimi-

zation is not wholiy applicable.

Another concept useful to the theory and application of pattern recognition

is the consideration of methods which exploit the dissimilarities that exist

between the different classes of interest. This, of course, takes advantage

of the situation that most characteristics of like sets will be similar, thus

resulting hopefully in less computational effort and/or storage capability in

the case of a positive identification. Methods which exploit class differences

are sometimes termed discriminant techniques because they emphasize properties

which allow discrimination between classes.

On the other hand, the use of discriminant functions is considered inferior

to the use of likelihood ratios, which are based upon an a priori knowledge of £

class difference. This is clear, since the decision function approach uses

less information on which to base its decisions.

The pattern recognition approach can most easily be understood by citing

an example of its use. Many uses are found in the social sciences, where data

are generally more difficult to process. In the classification of people into

classes, each characteristic, for example height, weight, color, age, etc., is

considered as one measurement vector in observation space. Each subject is

measured for each characteristic and his measurement vector is plotted as a

point representing the tip of a vector in n dimensional observation space. Only

those characteristics are measured which the experimenter wishes to use to par-

tition the space. PartitionIng is done by encircling the regions representing

the class of interest and finding these points enclosed by the solid in the

space.
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Let us attempt to apply the pattern recognition concept to the impulse

signature problem. The raw data which we wish to classify is in the form of

an electric field or voltage waveform which is a function of ree! time. This

waveform must be transformed by some as yet undefined process in such a manner

that it is represented by a vector in obsetvation space; more specifically in

n - dimensional observation space, when the partitioning in general will be

more definative as n goes to infinity.

Consider the signature for a moment as an ensemble of points spaced in time,

each of which is a measurement of some abstract characteristic of the target.

Figure 68 illustrates this concept. The partitioning is simply a sampling

of the signature, and the optimum number of samples necessary to completely

characterize a function is given by the sampling theorem of information theory.

It was shown earlier in Chapter II that members of the same class but of

different sizes are merely altered in magnitude and duration. This character-

istic immediately suggests that some type of size normalization should precede

the characterization process. Since stretching the input signature waveform

cannot easily be done, it is recommended that the input be fitted with a

suitable numerical procedure as It enters the discrimination section. Then

measure a size-related characteristic of the input waveform and proceed to

generate or reconstruct a replica of the signature normalized to and based upon

a given class size stored in the memory unit of the discriminator package. Or

for the purposes of both computational and time economy, the waveforms of the

function library could be initially fitted to allow analytical "stretching"

transformations during the identification procedure. This would eliminate the

curve fit operation but would still require the generation of a family of class-

related waveforms.
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Figure 68. Partitioning the Signature
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C. SIZE DISCRIMINATION

Consider the problem situation where an input waveform of the form shown in

Figure 69(a) Impinges upon a processor In which Is stored a waveform as

shown in Figure 69(b). Clearly, the form Is similar, but a point-by-point

examination will not identify the points as being equal, since very few points

directly correspond, and a cross-correlation will not identify the functions

as being of the same class since the cross-correlation would be less than the

decision value directed by the autocorrelatlon of Figure 69(b).

The second function is, from the previous discussion, simply related to the

first through a sizing parameter. It then becomes clear that in order to pro-

cess functions having varying sizes in such a manner that a standard functional

library can be used requires a size normalization process.

Let us assume that the sphere's response data is stored as its second

integral, parameterized to reflect the size related information. The stored

function generator would take the form (see expression 20) indicated in

Figure 70.

A similar parameterized waveform for the second integral square plate

waveform takes the form indicated in Figure 71.

The parameter K can be readily determined from a given input waveform by

simply measuring its maximum value. Having ascertained the size parameteri.ation

constant K, the various waveforms In the storage library can be generated to

correspond to the size of the target object In question. The size detection and

normalization scheme is indicated in Figure 72.
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Figure 69. Impinging and Stored Waveforms Related to Objects of the Same
Class But of a Different Size
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Figure 70. Parameterized Library Waveform for Second Integral of Sphere
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Figure 71. Parameterized Library Waveform for Second Integral Square Plate
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D. MEASURING CLOSENESS OF FUNCTIONS

1. Cross-Corre'ation

a. General

The cross-correlation operation is useful in situations where the

input function has been properly size normalized to allow comparisLn with a

predetermined autocorrelation or threshold value. In this section three

geometries ard their cross and autocorrelations will be investigated to deter-

mine the effectiveness of the correlation technique for discriminating the

waveforms of geometry classes. Here it is assumed that the size of the

input object has not been normalized. Because of the smoothing which inte-

gration produces, an integrator and a low-pass filter step have been apolied

to the input waveforms to produce the following transformed yet unique

signature waveforms.

The value of the correlator output is proportional not only to the

value from the correlator integral operation on the two functions of interest

but it is also directly proportional to the leading constants of the respec-

tive functions in the correlation. This means that the correlator output is

size magnitude related. Let us investigate the values which result from both

auto and cross-correlations of the three functional forms indicated in

Figure 73. (These waveforms have been normalized by removing the c term.)

First, an explanation of the symbols and assumptions to be used is

in order. The correlations will be defined by the integral operation Indicated

in Figure 74.

The first subscript denotes the type of signal Inputted and the

second denotes the type of stored waveform with which it is being correlated.

PS, for example, denotes that a decaying exponential caused by a plate scatterer
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Figure 73. Defining Signatures Used in This Section
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f12 (T) "f f (t) f2(t-T)dt

SECOND SUBSCRIPT DENOTES STORED FUNCTION

- FIRST SUBSCRIPT DENOIES INPUT FUNCTION

Figure 74. Explanation of Symbols and Assumptions
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is impinging upon a system which has stored in its library a semi-sinusoid

denoting a sphere. *ss denotes an autocorrelation of the sphere's response.

Another assumption which will be used is that the leading constants in the

expressions for sphere, plate, and rod integral responses can be written as

Ks, Kp, and K respectively when they are being used in the btnred or filter

functions. The leading constant is the frequency independent portion of the
Tc

backscatter expression. Here, for example, K denotes the value T . This
8r

simplification will become valuable later in the discussion.

Because amplitude detection is generally used in discrlm~nation

problems, it ;s of interest to determine the maximum values of the aito and

cross-correlatioris.

The autocorrelations are : for P sphere,

•ss ax) 1 5 Ts 2

= (Mx T s (217)
f2 16r

or, assuming the stored magnitude given only by Ks,

CKs 25 Ts21
Oss (Max) -- j (218)

and, for a plate,

2 T
p (Max) a C. R (219)

p

or, assuming the stored magnitude given only by Kp,

cK T
p (Max) . P P (220)

2r ii2ap
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and, for a rod,

'¢rr (Max) = fn 2_Z_. 2][j[W r2 + 8r](21
1(m2x2 r- r - (221)

or, assuming the stored magnitude given only by Kr,

rr (Max) = -" ZKn rr r

Assume a filter with an input response like that of the square plate,

K p p t, with a rod's impulse response

C rt sin B rt cTr/40r [in L -_ ] (222)

as defined by expression (222) impinging upon it. The cross-correlation

output has the form of

K T 2 € " 8 r1

rp(T) = pn,-l2 (- +a 2 +p r r T<-O. (223)

The maximum value occurs at T = 0 and has the value

K 2  $~

OrP (Ma'x) nPur 2 c $r (T - 0) (224)
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Corresponding output values for other waveform combinations are

2K T 2  E-MpT ar

Opr (T) = 4r (T-<O) (225)

and

2K T 2 0
Opr (Max) + 2 2 2 c (t - O) (226)S•(kap" + r2 + r

For T >O,

(T) - 2 -r KT 2  c [ap + p'sin+ 8 r + Br2 T 1
di (a + + Or ] (~c 27

q•Pr (x € 2K T• 2 "• [a + r]S5nB T"+ 8 r cos BrTlwL ( Cr .r

(T) -E0pT.. C r ) 2 T+O r ( ) (228)

Now assume a filter with a response like that of the sphere,
Ks [sin Bst u(t) + sin Bs(t - 2.5Ts) u(t - 2.5Ts)], (229)

with the plate's backscatter waveform impinging upon it. The graphical

form of the cross-correlation for T:50 is indicated in Figure 75, and the

cross-correlation expressions in this region are

2T 2  F 1;
Kp ; Ks " p2 O 2'5T s + (Ts5 088) (230)
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Figure 75. Sphere-Plate Cross-Correlation for Tr.O
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and

asp = KLp 7 ap T 2 sE + B (T:O) (231)

P S

For OT<2.5T s, the cross-correlation is indicated in Figure 76. The expres-

sions for the cross-correlation In this region are

Tp 2 2apT -2.5apTs apT

= K 2 + s + C P (a sin sT + sCOS sT
ps S Ts a 2  [85:25a T a t

(232)
and anl.25T2 T a -. 5aps •T at

= K C o T aL[-2.5 5 + E ap (a sinO T+8 COS a.T)sp p Tr 2a +s2 s8 ( p SnS

(233)

For T > 2.5Ts sp 5 . .ps M 0

Envisioned for a discrimination scheme utilizing cross-correlation is

the system indicated in Figure 77. The decision threshold chosen for this

exercise Is the auto-correlation of the backscatter waveform of interest. Of

Interest, then, is the degree of discrimination or enhancement which the cross-

correlation technique provides for the geometries which are being treated In

this exercise.

Because the functional form of sp and PS is rather simple, let us

look at these functions in greater depth to investigate for discriminat~on

characteristics associated with the correlation function.

Since the generalized decision process is based upon a decision thres-

hold, it became necessary to determine the maximum value for )sp and 4 P. This

was done by the usual calculus procedures, and the results are indicated in

Figure 78. This figure indicates the value of T as a function of the s/ap
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Figure 76. Sphere-Plate Cross-Correlation for OSTxE2.5TS
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Figure 77. Discrimination System Utilizing Cross-Cirrelation
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(size) ratio for which the maximum cross-correlation occurs. From this curve,

the expressions for the correlation functions were evaluated.

Figure 79 displays the 4ss/Ops and 4pp/Osp ratios as functions of the

sphere diameter to plate side ratio d/t.

A number of conclusions regarding the use of correlation as a discri-

minant can be made by studying the figure. Note, for example, that for one

d/k ratio, both ratios are equal and thus no discrimination can be attained.

On the other hand, as the d19. ratio becomes greater or less than this value,

the ability to discriminate becomes greater. For example, with a d/I ratio of

one, the ss /Ops ratio is 2.7; whereas the pp/4sp ratio is 0.8, a ratio of

discrimination of 3.4. When the d/k ratio rises to 1.5, the respective ratios

are 8.5, 0.34, and 25. In general, then, this exercise indicates that the cor-

relation technique is a useful one for purposes of discrimination, but that it

exhibits one major shortcoming: There is a range about a size ratio value

where very little discrimination Is expected.

An extension of this technique can be made to an n class system. In

that situation, the plot equivalent to that of Figure 79 would be in an (n-0)

space. In that case, an examination of the n correlation ratios would neces-

sarily identify the target. Again, however, there would exist a space of size

ratios (equivalent to the point indicated previously in two-space) for which

little or no discrimination would be possible.

b. Transformations on the Correlation Function

Having found correlation to be a valuable tool, the exploration

of transformations on the correlation Integral was felt to be a valuable

exercise. Specifically, here we will investigate the form
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n
012W(t) f 2 (t - -0 dt (234)

and its discrimination function through an exercise letting n - 2 and where

f and t2 are the familiar sphere and plate double integral waveforms.

Carrying out the operation, the cross-correlation can be written,

F15TS~ 21[T]2 L-(T -2.5T)
L . 2 T s4 1 - e • ' Ts

sp(T) W 7t 2(K2+0)6s 2K

+Ksn+ cos 1r i " OS TS22-5T (235)

where K = a3s

Again, because It Is of Interest to utilize a threshold or maximum

amplitude device for decision making, it Is necessary to find the maximum

value of sp. In the size ratio range of interest, the maximum cross-correlation

occurs in the O<T<2.5Ts range. The maximum value of expression (235) was cal-

culated In a manner similar to that described in the previous section.

The autocorrelations again maximize for a value of T-O, and have

values of

Cs(Max) _ 37 .25T>2 .0235T 9  (236)

and
T89

4pp (Max) = - .00818Tp (237)

p
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The ratios

2s (T asp (a2)

Max Max (238))

are plotted in Figure 80 for comparison with the similar ratios determined

by the conventional correlation integral. Again the values of the correlation

ratios are equal for a particular size ratio and they diverge as the size

ratio becomes either greater or smaller than the critical value. For par-

ticular ranges of the values of the values of the discriminate function are

more divergent using this method than in the conventional case, thus providing
d

a high degree of discrimination ability. For example, for the d ratio of 0.16,

the 0 pp2/0 sp2 ratio is 3.6x 103 and the *ss2/Ops2 ratio is 3.25 x 10" 3, a

x16
discriminant ratio of 1.1 x 10 . This compares with a discriminant ratio of

4.22 x 103 with the correlation technique reported in the previous section. In

the region where d/A is 1.5, the higher order process yields a discriminant

ratio of only 2.48, which compares unfavorably with that of 25 found by the

previous method. This indicates that neither technique is optimal over the

full d/1 range, but rather that each is best used over a particular range if

high discrimination potentials are desired.

2. Area Differences

investigating the correlation process reveals that the basic distance

measuring technique upon which it is based is the simple Euclidean metric,

for this type ol problem simply involves measuring the absolute distance between

points of two functions having equal abscissas. More generally, it is a

transformation which may be considered as a summing of the individual metrics

under an equal weighting. In general, when correlation is used, problems
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Figure 81. Area Difference Integral Waveform Identification Scheme
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Figure 82. The Area Difference for a Sp~iere-Plate Discriminator
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The cross-hatched region is the area difference between the two

functions and is a measure of their similarity or oissimilarity, since only a

matched condition will produce a zero area difference.

Figure 83 is a plot of the integrator output as a function of the

plate length to sphere diameter ratio (the waveform for one of which would be

stored in a recognition situation). Note that while in a recognition status

the output of the integrator would be a null, the area difference in the

plate-sphere situation exhibits a lower limit. The null provides positive

identification of waveform similarity, since the only constraint upon the

identification decision is the degree of deviation from a null which the

designer allows in the decision criteria. As the similarity of waveforms from

different classes becomes greater, the allowed deviation from the absolute

null value will require tightening. This Is equivalent to reducing the inter-

sect regions of presently overlapping sets by simply reducing their volume.

A technique which may be used to facilitate declsion making may be

to transform the decision function in an advantageous manner. For example,

decision functions may be transformed by reciprocating or antilog transfor-

mations. Two integral differences could be quite close together, but first

reciprocating aid then taking the Inverse logarithm will produce transform

discriminant values which will allow a greater ability to select the match

function because a small difference is amplified oy the transformation.

One advantage of this scheme is that it does not require a complex

implementation package. Only a size normalization, a trigger to initiate

processing, a function generator, and a null [range] detector are required

to produce a waveform recognition package.
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Figure 83. Plate/Sphere Area Difference Integral
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3 Weighting Functions

a. General

Weighting has a number of uses in measuring closeness between

points and sets of points. In the two methods treated thus far, similarity

was treated in terms of transformations based directly upon the Euclidean

metric or mean square distance. The method of measuring distance was not

further treated or specified but rather left as a generalized distance con-

cept becaiuse there are many metric forms, only one of which is the Euclidean

form.

In some cases, however, it is desirable to weight some of the

measurement data more heavily than other of the data, depending upon the

degree of its contribution in defining the class of the subject of interest.

A key to understanding this concept is the term "feature weighting," which

serves particularly well in exemplifying the use of the weighting function

in the problem at hand.

Suppose that there exist n classes, each of which is defined by

a waveform which exists exclusively between the limits Oý5TI. Sippose

It
in addition, that all are the same or similar with the exception of a region

of A width between tl: t5t 2 as shown in Figure84. !

With an a priori knowledge of the nature of these waveforms, it

would be desirable to heavily weight the data in the region tI S t St 2 and

less heavily weight the data outside the region. This is clear and in 4
keeping with the philosophy initially discussed in this chapter, since it 4

indeed exploits the dissimilarities in samples of different classes while

similar regions of the functions play only a small role in determining

similarity.

2
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One type of metric which has been used earlier in this chapter

is the Euclidean form

d(a,b) = la-bi (239)

or2
d(a,b) = (a-bn)2 (240)

n-i n n

A form of weighting which is often used is the one described by the metric

d(a,b) WN (an- bn) 2  (241)
nlI

where W is the weighting function.
n

A more complex form is the functional weightlng

d(a,b) = f(la-bl). (242)

A good example of the functional weighting is the exponential weighting

indicated by the expression

d(a,b) -K expy (a )2 (243)
~~ ni n

b. Distribution Weighting

Not all waveshapes emanating from the same object class are

necessarily the same. However, certain portions of the waveforms are more

alike than others, and these are the portions which characterize the wave-

form as belonging to that particular class. Consider defining a class and

performing experiments in which each element of the class is illuminated

with the impulse waveform. One could expect to find a distribution of

return signatures as indicated in Figure 85.
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The mean value of the distribution can be determined and it as

well as a standard deviation from the mean at each point are indicated in the

figure. One step simpler is the situation where the deviation from, the mean of

the experimentally determined signatures is not a function of t. Consider the

situation where the signatures are distributed Gaussian about the mean value

function. This is a reasonable assumption since many natural phenomena

distribute Gaussian. Figure 86 indicates the Gaussian distributed signature

pattern. A suggested weighting scheme which heavily weights signature

characteristics of a similar nature and the converse is to weight an unknown

input function with the value of the distribution for that point in time. I

Consider an input function fl(t), to determine whether or not It belongs to the

class defined by the distribution defined in the figure. The discriminant func-

tion is given by expression (244)

d exp [-a Ifm(t) - fn(011 (244)
n 1nnol

The value of a is dependent upon the distribution and is determined experimentally.

In the region a - b the weighting would be ecual Lo I, a full weighting, and in

other regions the weighting would be less, depending upon the value of

exp[-I(xI-x)I] at that point. The selection of the threshold value for d at ,4

which a class identification is made is based principally upon the types of

class waveforms which all of the classes exhibit, as well as their similarity.

When two or more classes are similar, regions in observation space may overlap,

thus creating set intersects which result in identification of a waveform as

belonging to more than one class. This situation can be alleviated by either I
increasing the discrimination thresholds of the Intersecting functions or by
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adjusting the weighting with the constraint that the number of correct identi-

fications be maximized.

4. The Decision Template Concept

The latter work with distribution function weighting suggests the

construction of a mathematical template which may be used to compute a dis-

criminant function. A very simple scheme is to assign a weight of one

[recognitibn] to a partition value if it lies within the template region

and zero [no recognition] to the partition value when it lies outside the

template region. Here again the decision threshold value selection is based

wholly upon the similarity of waveforms belonging to classes other than the

one of interest.

It was desired to develop a system which would identify a waveform

given that the input sample had no deviations from the waveform stored in the

library. It was also desired that the value of the discriminant function be

as large as possible when the recognition state was met and as small as

possible when any other state was met.

A suggested scheme is a decision template like that described above

and implemented by an exponential transformation. The exponential transfor-

matlon of expression
N -alfl(t) - f 2 (t)I

n exp (245)

is a metric much like the one discussed in the section on distribution weighting,

but here there is no distribution and a controls the allowed width of the

decision template. The discriminant function will have the form indicated in j
expression (242). It Is desired that since the input is an exact replica of

one of the waveforms stored in the function library, that the template width
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be made 6 wide [a line width] to just accommodate the function itself. This

can be done by letting the value of a in the exponential become a large number.

Figure 87 illustrates the decision template.

When a is a large value, only those Euclidean distances which are zero

will make a contribution to the discriminant function, since in effect, those

points which lie exactly on the curve will contribute a value of one and those

not lying on the curve will contribute a value of zero. Any other function will

be assigned a value of one only at the points of intersection while the

replica will be assigned a value of one at all points for which it Is sampled.

The value of a is dependent upon the implementation of the system. Specifi-

cally, a finite template width must be constructed to accommodate nonlinear-

ities in the system which would force an exact replica Impinging upon the

system to deviate from the stored waveform when It is measured.

As an example of the use of this concept to generate discriminant

function values, the plate and sphere impulse waveforms, normalized to

produce equal amplitudes, were used in a scheme having n partition values.

Either of the waveforms could play the role of the Impinging waveform.

Assuming that the replica Is impinging for either waveform; the output value

would be computed as n for either curve, since a value of I would be assigned

at each partition point. Again it must be cautioned that size normalization

must precede this process and further that sampling must be over a time width

at least equal to the width of the library waveform for this process to be

successful, Figure 88(a) shows the two functions of Interest in this section,

and Figure 88(b) shows a plot of their difference magnitude.
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Figure 88. Sphere and Plate Waveforms and Their Difference Magnitude
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The variable N was assigned values of 31 and 61 and the variable

a, reflecting the width of the decision template was assigned arbitrary

values of 10, 20 and 40. Not only the discriminant of expression (245) but

also the discriminant

d n-exp (fI(t) - 2 W) (246)

indicated in expression (246) was investigated for correspotijing output values

with these two functions.

The discriminant values were computed as follows:

fI/f2 fI/fI or f 2 /U2  Discriminant Rat!i

(n=31; a-10) dI = 6.306 d = 31 4.93

(n=31; 'tv20) dI - 4.502 dI a 31 6.9

(n=31; a-10) d2 - 2.380 d2 - 61 13

(n-31; a-20) d2 - 1.475 d2  61 21.1

(n=61; a-10) d2 - 4.492 d2 - 61 13.5

(n-61; a-20) d2 - 2.491 d2 - 61 24.5

(n-61; a-40) d2 - 1.549 d2 - 61 39.4

Bearing In mind the construction of this technique, the combination

of highest value of both n and a is seen to be nmst advantageous since it

maximizes the Discriminant Ratio.
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Since Increasing the value of n was seen to be advantageous, a

continuous measure was felt applicable. Here the discriminant is defined by

expression 2.5Ts

""-cl P -sin asTIj
d =j dt (247)

0

7he integral was solved graphically based upon the data indicated in Figure

89. Here the area under the envelopes represents the discriminant function.

Again the matched case is simpiy solved but the discriminant value here is

' Ts dt - 2.5Ts (248)

0

For the unmatched case the discrlminant values were calculated for the

continuous sampling as

fI/f 2 Discriminant Ratio

d( =10) - 0.17Ts 14.7

d( -20) - 0.0729Ts 34.3

d( =40) = 0.0425Ts 58.8

The discriminant ratio is defined as the ratio of the matched dis-
criminant value (here a constant - 2.5T s) to the unmatched discriminant value.

The most advantageous case is the one for which a - 40, the highest discrlm-

inant ratio. It Is conceivable that as a a', d(ac=)+ 0, and the

Discriminat Ratio will go to Infinity. But the value of a must be selected
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based upon the quality of the implementation system and the degree of replication

of the waveform of interest to the stored waveform. As in previous cases, the

limitations upon the lower value of the discriminant threshold are a function

of the specific classes which will be treated in the system and of their

similarity. These are decisions which the designer must make based upon the

expected system inputs. If the expected inputs ire unknown with exception

to the one of interest, the safest course is to raise the threshold until

the point is reached for which incorrect classifications are being made. The

result is that the choice of the discrimination function threshold is dependent

upon the statistics of the problem and therefore cannot be chusen or dictated

without specific knowledge of the problem at hand.

5. Summary

This section of the report has addressed the problem of geometry

identification through classification of the backscattered waveform. One of

the assumptions upon which this study has been made is that the backscatter is

unique for each geometry class. As has been shown in Section II, the back-

scatter is physically dependent only upon area and depth relationships, but

not necessarily the total geometrical configuration. This however, is a

problem involving multiple interrogation by radar sites removed from one

another with respect to aspect angle and must be addressed as a separate

problem.

This study has indicated first that the object size must either be

known or that sie normalization procedures must be Implemented prior to the

identification process.
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A thorough search of the current literature in the area of pattern

recognition and waveshape identification, along with the study of a number of

techniques for determining metrics, were carried out. These studies revealed

that the basic concept of recognition of waveshape necessarily requires a

system of the form indicated in Figure 72. This system incorporates a func-

tion library, a size normalization (if a size range Is desired), a distance

measuring unit, and a decision unit. Most decision functions are implemented

by comparing the length of the decibion function vector with a predetermined

threshold value. The problem which remains, however, is how does one best

measure the distance between two functions which represent two different

geometry classes.

Two rather easily implemented techniques based upon cross-correlation

were advanced. These studies indicated that a sphere and a plate can be (
identified based upon threshold values, but that there is a size ratio range

where discrimination is not possible.

Another simple technique which was investigated is the area differences

technique. With this technique it was shown that a sphere and plate could be

differentiated and that there exists a size ratio where the discriminant

function assumes a minimum value not equal to zero.

In a further investigation the concept of feature weighting was

studied. This technique is particularly applicable to problems where the

classes are defined by waveshapes which are somewhat similar with exception

to a po)rtion of the waveform where features play a decisive role in dis-

crimination. It is for this reason that the decisive portion of the waveform

Is heavily weighted in the decision process and, conversely, the somewhat

similar portion of the waveform Is weighted less heavily.
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In studying the weighting process, several metrics were discovered

which allow distance measurement based upon probabilities of decisiveness of

various portions of the waveform. This in turn lead to the formation of the

concept of the decision template, which was shown to allow a very accurate

decision based upon the nulling process. Here the decision threshold is the

null, and the process is limited only by the clutter rejection technique and

the quality of the class definition in the waveshape library. Theoretically,

if the target function is known using this technique it will be identified,

since the output will be a null, and otherwise the output will be finite value.

In no case can a particular measurement technique be classified as optimum or

"the best one can do" simply because the nature of the problem of optimization

constrains the technique.

2
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CHAPTER V A

RESULTS AND RECOMMENDATIONS

This chapter 0ill provide an overview of the results of this study

followed by a series of briefs on areas for future study.

A. SUMMARY OF RESULTS

This report is divided into three chapters, each of which concerns itself

with a single aspect of the detection and dizcrimination problem.

In Chapter II the backscatter waveshapes of three basic geometrical con-

figurations were developed. These shapes are: the sphere, the thin flat plate,

and the long thin rod. Because the sphere has been studied in great detail and

is well documented in the literature, this shape and its waveform served as a

firm fnurdation for postulating simplified waveshapes. Starting with the

work of Kennaugh and Moffett (see References 3, 4, and 5), it was shown that

the impulse response of the sphere can be approximated quite well by several

simple and mathematically tenable models. One of these models Is the form

6s(t) = 1 6(t) + 16(t-2.5T) - + u( tt-2.T (249)
st 4r222.5 % 2.5 t2.T1

(where T Wde is the target dimension to velocity ratio and "r" is the obser-

vation distanca) which became quite useful in later work. Another model which

is not unly quite useful in work involving filter analysis but is also verified

quite well by experimental work Is the form

6 (t)=l[I (t) + 1 6(t-2.5T) ' lu(t) sin - t - -u(t-2.5T) sin 2- (t-2.5Ts (t) r 2 2 5 5T 5 5T

(250) 1
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Another sphere backscatter impulse response. approximation which was

found to be particularly useful in frequency domain filter analysis was the

form

s(t) = " (t) 12T 1.25T (2  (251)

5() 4r\T21L'' .25T l2T'

The flat plate tcattering of dimension "'I" was determined by two methods. A

first approximation, which is based upon the methods of Kennaugh and Moffett,

resulted in a model of the form

2t d 6(t) (252)•pt. ) r dt

An extension of this model led to an expression which more closely aDproxi-

mates experimentally experimental work in which BDM has participated. This

model postulates a time waveshape of the form

6 (t) = 2' d 6(t) - ct6(t) + 2E(253)

p 271cr Ldt-
The thin rod was modeled by studying the impulse of a thin monopole

antenna absorbing and reradiating energy In space. Its transfer function was

developed and shown to be

KT (rw)2

r 0W) 2r (254)
r (j•,+ 0)2 + ar

where K is a constant, Tr is L,/c, a o its damping constant and 0 r its resonant

frequency.

In Chapter III several filter configurations were investigated for their

signal-to-clutter enhancement capabilities. The orthogonal filter was advanced

as a filter which, although it is not a practical configuration, theoretically

can produce an infinite signal-to-noise output ratio. The Lee correlation
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technique is another technique which was advanced for informational purposes.

With this technique, a clutter waveform can be removed from the target wave- 6

form and an infinite signal-to-clutter ratio will be seen at the filter out-

put so long as the clutter is moving randomly with respect to the target.

The white noise matched filter configuration was studied for its enhance-

ment of the signal-to-clutter ratio for a target in the presence of clutter. 4

For a target sphere and spherical clutter with impulsive interrogation, the

output signal-to-clutter ratio was found to be (the 1 subscript relates to the

target and 2 to the clutter)

S 0 (mx) ITA

C 0 (max) = T2  (255)

or a power S/C ratio proportional to the square of the sphere diameters. How-

ever, only a factor of four in enhancement between input and output power

rat;os can be had with this configuration. With the same filter configuration

but with a finite pulse width Interrogator, the filter enhancement in output

to Input signal-to-clutter power ratio was found to be

2 7-2
S 0(max) /C 0  IT (562=3.54 (256)

72(max)/C V2

The relationship shows that the enhancement Increases with the second

power of the sphere and clutter diameters.

Multiple clutter objects were investigated to ascertain the effect upon

the composite backscatter waveform of placing many objects with various

spacings In height and depth In the same range cell. It was found that

spheres, to possess unique waveforms in time, must be displaced at least

1.25d between centers in depth. Placing several similar objects of the same
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size exactly in the same range from the radar unit and in the same range cell

will add to form a composite waveform with the original period and the compo-

site amplitude. It was found that the maximum matched filter output resulting

from multiple sphere targets placed one behind the other in a line will possess

a backscatter waveform which will be limited in amplitude to four times the

amplitude of that produceo by one sphere's backscatter waveform.

In the case of randomly spaced spherical clutter surrounding a large

spherical target, the output-to-input signal-to-clutter power enhancement

with the white noise matched filter configuration was found to be 4
2

S0(mx/ 0 . 0.92 T,(257)

S2 (max)/C-2 (-T2

which is again proportional to the ratio of their diameters squared.

The low pass filter was advanced as possible means for taking advantage

of the fact that clutter might have a peculiar frequency domain character.

With the configuration described In this report, whlch was composed of a low

pass filter preceded by an integrator, the power output-to-input signal-to-

noise enhancement was found to be

s /CI (max)) ]T)2  (258)

where 81 is a parameter of the target and y is the cutoff frequency of the

filter. It is possible to preserve the target waveform's shape by making the

Sratio 
le'.s than 0.1. This characteristic is of possible Interest.

Y

A multipole low pass filter was designed by adding a second stage to the

single pole configuration. This effort resulted in a greater enhancement of

the output-to-input signal-to-clutter ratio.
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A bandpass filter was next considered. The full filter configuration

was an integrator followed by. a band pass filter. Of interest her- was the

ability of the filter to discriminate between a sphere and a plate of approxi-

mately the same size. It was found that the output signal-to-clutter ratio

for a sphere target and plate clutter is on the order of 1.0 for the equal

cross sectional area case.

Since prior results indicated that a low pass filter scheme tends to

enhance clutter rejection, combinations of low-pass and matched filters were

then investigated. For the configuration composed of a matched filter pre-

ceded by an integrator, the sphere target-plate clutter situation resulted in

an output signal-to-clutter power ratio

r2 7? •(259)

With a spherical target and spherical clutter the same output power ratio
is2

S 0 (max)j = 2 'LT2 1 '

rT(mx4r T- (260)

Comparing the expression for spheres to the sphere-plate result suggests that

this filter is better for plate than sphere clutter.

Considered next was a configuration composed of a double integrator fol-

lowed by a matched filter. With both a spherical target and spherical clutter,

the output signal-to-clutter power ratio was determined as

2l
so (max)] 12 (
Co-(max')j: T\T)(261)

This result proved to be rdther encouraging, since it represented the

largest signal-to-clutter ratio obtained for targets and clutter of the same
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configuration.

In the special case where "K" random clutterers per range gate sampling

time were considered with this filter configuration, the output signal-to-

clutter power ratio was found to be

S 2(max) (22C 2.5 kT T2(2)

0

It was also shown that the filter enhancement ability is a function of its

interrogating waveshape.

With the same filter configuration but with a spherical target and plate

clutter, the corresponding output signal-to-clutter power ratio for "k"

randomly spaced plates in the range gate has the form

S2 (max) 4 
((T,3

0°-- 7r.Tk 1• (263)

0

which is Tr or approximately ten times greater than for the sphere on sphere

case. Because of the high enhancement capabilities of this configuration, it

was found to be the best for the case where the target object is larger than

the clutter object.

The optimum filter configuration, which is essentially a "prewhitening"

filter followed by a mptched filter was considered next.

In the treatment of a spherical target amidst spherical clutter it was

found that there is no clutter rejection enhancement between the out',)ut and

input signal-to-clutter power ratio. In reality, there can be, however, and

that depends upon the form of the input signal-to-clutter ratio.

In the case of rod shaped clutter and a spherical target, again the filter

did not perform well. The reason that the filter does not perform well,

224



however, is that the signal and clutter pole structures are sirrilar.

In the case of a spherical target immersed in plate clutter, the output-

to-input power signal-to-clutter ratio is

2 2TIN3FA2S (264)

.xT 2 I .2 57 2 I( )

0 ~

This enhancement figure is very good and compares quite favorably with the

configuration described previously, that of a double Integrator followed by a

matched filter.

Rain was studied as a practical clutter medium. The case of excessively

heavy rainfall and Its raindrop size and density was studied to determine a

realistic clutter situation. This information was used with the prewhitened

matched filter to achieve a quite good output signal-to-noise power ratio of

s 2(max) 6~2 d1 6
So = 1 k (d)(265)S2"5T Ik d 2)

0

where Ik" is the total number 'IN" of clutter particles observed over the time

2.5T . The cross-sectional area was calculated which one might be able to

observe In space with the high clutter environment with a given deterioration

of the signal-to-clutter ratio. It was found, as an example, that with a

signal-to-clutter ratio of only 20 dB, a golf ball sized target could be

identified in a heavy rain environment at a range of up to 146 Km with this

prewhitened matched filter.

In Chapter IV, the problem of identifying a given object by Its geometry

class from its Impulse waveform was investigated. It was determined that the

problem could be essentially formulated as a pattern recognition problem.. One

of the points of interest in this section is the problem related to object
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size and the backscatter waveform. It was shown to be a relatively easy

matter to build a system which could incorporate the ability to discriminate

between objects of the same object class and of a different size.

Next, a number of schemes were developed to measure distance between

functions. Essentially, the classification problem when classifying waveforms

is a distance measuring process. The crcss-correlation operation was used,

along with the autocorrelation value as a means of measuring the metric. It

was shown that the technique Is valuable and Is capable of a high discrimina-

tion ratio, but the discrimination ratio is a function of the sizes of the

waveforms stored in the function library.

The concept of feature weighting was described. This is part;cularly

valuable In cases where large portions of waveforms of differing classes are

similar, but the marked differences appear only as a fine grain feature area.

The area difference integral was shown to also be a valuable tool for

measuring the metric between function representative of two different classes.

Its value is that the function is positively identified, because upon positive

identification state the discriminant transforms into a null or zero state.

Finally, the discriminants associated with the pattern template concept

were investigated. This is a very interesting technique and the discriminant

can best be described by

to -alfl (t)-f2(t)l

d = e 1 dt (266)

where a is a large number.

In this method, a limiting v3lue is outputted for the discriminant when

the waveform like the one stored in the system impinges upon its input.
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Otherwise, a small output or one equal to zero, as shown in the exercises, is

outputted for the discriminant value.

B. RECOMMENDED AREAS OF POSSIBLE FUTURE STUDY

The following paragraphs will briefly list areas of possible future

study.

1. Experimental Verification of Performance of Best Filter Determined
in This Study

This study showed that the filter that provided the best signal-to-clutter

enhancement was a matched filter preceded by a double integrator. It is recom-

mended that the predicted performance be confirmed by laboratory experiments.

This could be accomplished by obtaining an off-the-shelf random noise gener-

ator and applying its output to a filter that produces time responses that

represent the impulse scattering response of clutter objects of interest.

This output then becomes the random spaced time response of clutter objects

as might be observed by an impulse excitation of clutter objects in space.

The clutter rejection filter described above would then be assembled and

tested for the above input with and without the presence of a desired target

signal. Tests could then be performed which could Include varying the ampli-

tude and spacing of the clutter (along with Its shape) and observing the

filter's output performance.

This could be followed by varying the occurrence or the target signal

and its shape to confirm its detectability.

At the satisfactory completion of these laboratory tests, the next step

would be to use this filter arrangement In conjunction with an impulse radar

and determine the signal-to-clutter rejection that can be aci,.eved in various

small clutter environments such as rain with various targets present.
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2. Overall Impulse Radar Performance Study for Clutter Rejection using
the Derived Filters of this Study

Knowledge and experience is currently available as a result of RADC-

funded contracts and other work such that an entire signal processing study

could be performed on an impulse radar. It is recommended that impulse

radars, as currently configured, be analyzed in conjunction with the filters

determined in this study in order to assess their application for clutter

rejection and detection. An obvious consideration is that the impulse radar

does not generate a single impulse (since it cannot transmit dc) but it

transmits either a monocycle or its derivative. This study centered on a

pure impulse excitation. It should be determined what effect the change in

waveshape has on the filter performance' or if an additional modification is

requi red.

This study should also consider the practical limitations Imposed by the

radar's parameters such as the antenna, transmltter, and receiver bandwidth,

and other characteristics. Further work shoula also be undertaken to deter-

mine environmental effects upon the spectral content of the Impulse output

signal. Particularly important are the effects of tile earth (groundscatter

and absorption), weather, and of radiators and absorbers of EM In the path

between the antenna and the target. Normal receiver ai0d antenna noise should

also be considered.

3. Cataloging Impulse Scattered Wave Shapes In Order to Construct
Discriminator Decision Functions

For indications which will become helpful in designing an appropriate

decision function for various geometries, a number of various objects having

the same general characteristics and geometry should be Irradiated as targets

to determine the deviation from a mean value function. This mean value and
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deviation could then be used as a standard decision function for further work 4
in the area of target geometry identification. This investigation would also

point up the target characteristics which give rise to variations in the fine

grain structural variations in the backscattered time-waveshape.

Because the impulse radar time waveshape is indicative only of area size

and depth variations, it Is not a sufficient Indicator of the geometry of a

three-dimensional object, especially that of a complex object. It is of

interest to investigate possible schemes for further enhancing or interro-

gating the target return in order to obtain a complete indication of the

geometry of interest.

Therefore, a study item should be to determine the effect in scatter

transform space of rotating the geometry of the scatterer in real three-

dimensional space. It is suggested that a number of objects--rod, plate, and

oblate spheroid--be studied by slowly rotating them a few degrees and record-

ing the time-waveshape as a function of their angle. Then develop a technique

to Incorporate this rotation in the processor.

In terms of theoretical analyses, it is suggested that an investigation

be made of the discrimination potential of polarization of the receive and

transmit antennas. This Is best Investigated by looking at the electromagnetic

equations with sufficient boundary condition dependent upon the scatter

geometry.

Further extensions of the waveform Identification and pattern recogni-

tion work should be studied in order to determine the optimal transformation

which provides the decision function for arbitrary input functions.
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4. Backscattering and Target Identification Studies

In the area of target identification, the rotation study suggested earlier

could be applied to a system utilizing multiple interrogators and a correla-

tion scheme to analyze the backscatter from a number of points. This system

would allow a decision of the three-dimensional geometry of the target.

Further work should be done to provide a more sophisticated scheme for

predicting the waveshapes backscattered from complex, multifaceted geometries.

While the work of Cosgriff Is helpful in determining the waveshape of simple

geometries, it incorporates a degree of unsophistication which makes It dif-

ficult to theoretically predict backscatter from objects having many surfaces

and boundaries.

Moving objects require additional receiver processing. Methods parti-

cularly suited to the Impulse ... w technique, and related necessarily to the

range gating problem, should be investigated to determine how to best solve

the clutter/identification/translation/rotation problem associated with the

moving target.

Experimental work should be undertaken to determine the specific effects

of dielectric constant upon the cross-section of an object. Theoretical data

is available on dielectric constant variation of a sphere's cross-section,

but this should be verified experimentally. Preliminary Indications, gleaned

from the literature, indicate perterbatlons In the cross-sections across the

band. In addition, other geometries' dielectric dependence should be seriously

investigated.
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