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SECTION I

INTRODUCTION

This thesis contains a theoretical investigation into non-linear
electromagnetic-field tiieory as applied to third harmonic generation
1n bulk materials. Such a topic is of interest since the invention
of the field known as non-linear optics. With the high power levels
available from lasers, practicgl experiments in non-linear optics
have become a reality. Of ccurse, the generation of harmonics and the
heterodyning of different ‘requencies or wavelengths is desirable
for various reasons. The most compelling reavon for investigating
third harmonic generation (THG), the topic of this thesis, is for
use as a tool in investigating the structure of ultra-short laser
pulses known as pico-second pulses.1 These pulses are on the order of
pico-seconds, a time regime so short as to be unresolvable in real
time by present techniques. As a result, non-linear processes such
as harmonic generation are used to infer the characteristics of these
pico-seconc pulses. It i{s Tor this purpcse that the investigation
was undertaken.

In format, this thesis consists of introduction, the development
of the THG theory and several examples of the application of the
theory to elementary fundamental functions such as a sine wave, a

gaussian pulse and a linearly chirped pulse. The theory begins with

1. DeMaria, A. J., D. A. Stetser, and W. H. Glenn, Jr., "Ultrashort
Light Pulses," Science, Vol. 156, No. 3782, pp 1557-1568, 23 June
(1967).
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Maxwell's Equation and concludes with an expression for THG under

conditions of a uniform plane wave in an isotropic non-linear medium.
As a result of the developed theory, the influence of excitation and
material paramcters can be evaluated. Appendices are included to
elaborate on portions of the various developments that would be
unwieldy in the body of the thesis as well as to elaborate on
interesting issues of insufficient iﬁportance to be included as part
of the principal effort.
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SECTION II
A THEORY OF THG

A. Definitions. This section of the paper presents a descrip-
tion of THG &3 developed for a uniform plane wave in an isotropic
non-linear medium. The equations that are obtasined are sufficiently
general to take eony real temporal function, whether casusl or not,
and obtain the resulting third harmonic conversion in both the time and
frequency domains. For s point at which to begin, the definfition of
a Fourier transform pair is given and also symbology that will be
employed in the mathematical developments. Thus, the Fourier trans-

form,
«

F(w)=/'3(t)e-jwtdt :

-0

and its inverse transform,

EO - f Flw)e?*du

are given. In the functional notation to be used, functions designated
by script capital letters belong in the time domain and those designa-
ted by block capital letters are in the frequency domain. Also, the
Fouriesr transform relationship may be symbolized as
Ht)e— Flw) .

The functions of interest are defined as the fundamental function

or exciting function, Ef(z,t), as 5
(-]

£z 't)i%; / E (2 w)e~Sk(wk Juty,

-lD




the generated function or response functionp‘Eg(z,t), as
[ -]

Eg(z ’t)%f Eg(z ,u))e"Jk(“’)z etg,

LD

and the polarizability, P(z,t), as
@

Pz, t)=5- f Pz ,0)e b .

T

Ef(z,u) and Eg(z,u) represent their respective temporal functions
leas phase factors associated with propsgation while P(z,s) ia a com-
plete description at all points.

B. Reiating E (2,0) to P(z,u). Beginning with Maxwell's
iy

Equations, a mathemstical development will be pursued that results in
finding Eg(z,u) as o function of P(z,u). There will be approximations
made as the development progresses and these will be explicitly noted.

Maxwell's Equations:

and the additional relationshipa:

&=\

B eof 48 '
Using Maxwell's Equations, a wave equation is derived. It is

assumed that the medium is cherge free (P=0) and of zero conductivity

@=0). The following sequence outlines the derivation of the wave

equations,
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2 o _a_z_—b 32 -
Thus, v & =pu e + u === .
a2t T2

Because the medium i{s aseumed to be isotropic, propagation can be
restricted to any axis without loss of generality. Consequently,

let a uniform plane wave propagate down the z-axis. The wave equation

has now become:

2 2 2
) - 0= = 07 =
———— E =1e 5 E H—> 0 .
222 Ot2 at2

The wave equation as given above possesses no coupling between coordi-
nates due to vector operations. Therefore, the expression of the

wave equation for the components in each coordiante axis is independent
of the other two. It is possible to examine either the x-axis or y-
axis component and not lose any accuracy. Consequently, no distinc-

tion will be made and only one component will be used with the result

that the wave equation is now a scaler equation of the form:




22 2 2
;?z' £(z ,t)ruco-?—? E(Z,t)m%@(z B .
ot ot

Now that a satisfactory wave equation has been obtained, the
relationship between the exciting field ond the generated field must

be sbtained. To do this, let
E(Z,t)=ff(z,t)+fg(z,t) .
This relates the instantaneous field, £ (z,t), to the fundamental or

exciting field, Ef(z,t), and the generated field, Eg(z,t). The wave

equation now becomes:

7 2 22
'a‘z‘z‘[Ef(z,t)+fg(z,t)Heo;jef(z,t)+€8(z,t)}m;?P(z,t) .

It is desirable to relate these functions to their frequency domain
counterparts. For this reason, the following definitions, previously

preiented, will be applied to the latest form of the wave equation.

Ef(z,t);‘%{/ Ef(z,w)e-jk(w)ze‘y”t’dw

-0

Eg(z,t)=51”—/- Eg(z,w)e-.ik(w)zejwtd”

-]

Pz, 4 )= f P(z,0)e X% -

L)




Thus, )

-]

32

L -3k _
52—5[2" J Eg(z,0)e™ (w)ze;yntw%n_] B (z,0)e Klw)zgduty 5

ald

" ®

2 .
A ~Jk(w)z_jut - ,
q.eoatz,_znj' Ef(z,w)e J (w)ze,h: d‘”"—gﬁj Eg(z,w)e jk(w)zej‘”tdw]

=0

wf—t:l j P(z,0)edy]

Performing the indicated differentiation results in

(%]

znj [_ E (ZJUJ) JZk(UJ) Ef(z,w)-k(w)zn (z,w)]e Jk(w)z J(.l)t

-£0

52
*’21‘,;5 (=5 (2,0) JZk(w)-—E (z,0) k(w)ZE (2,0)Je- K@)z doty

© ©

ol | (B (z,0)e POt It g L [ (4208 (2,000 IK(0) 20ty

-0 -0

(-]

+ ["%{I ( -wz)P( z,w)e‘jwtdw] :

Assume that the conversion of the fundamental to the third H
harmonic is sufficiently small that the amplitude of Ef(z,w) is
essentially unchanged as the wave passes throuéﬁ the medium. Then
the derivatives with respect to z of Ef(z,w) may be set equal to zero.

Using the above assumption and dropping the common factor Of.E%’ the

wave equation is
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-J. k(w)zﬁf( z,w)e-jk(w) ze'jwtdn’rf ["533 (2,0)-32k(w)2 - g( Z,w) =
k(w)zﬁg( z,0) ]e-jk(“’) 2o gmmpie OI szf( z,w)e'jk(‘”) Zo 0t gy
-ueoj' szg( z,w)e-jk(w) zej'”t‘dwﬂj mzP( z,w)ej‘”t’d«u :

The propagation factor, k(w), is equal to (#E)ku, where e=e(w) for
most materials Bnd[lﬂpb (assuming dielectric materials). Using the

relationghip, the wave equation simplifies to

f[--' (z,0)- jZk(m) ~E (z,w)]e k(w)zgJuty

©

=‘1¥f sz( zow)e otq, |

-
This may be rewritten to take advantage of the common variable of

integration and an equation consisting of one integral can be

obtained.
(-]

: .
f R L () B

2
It is felt that the factor Jl—ﬁ (z,m) may be equated to zero by
3z
assuming that the envelope of the wave is slowly varying.

This results in the equation,

f tuwzwz,w)-azkm)fzng(z,w)e'ﬂ““”’zJertdw-o

e

0SS .

i
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For this relationship to be true over the nearly unlimited conditions

placed upon it, the integrand must equal zero. Thus, the following

equation is obtained

1
2
%Eg(z,w)ﬁtf(z,w)ejk(w)z . .

Recall that k(w):(yt)%w and the above equation becomes
k k
atg (ns)e-F R (e 0o K02

At this point, an equation relating Eg(z,m) to a generating function,

P(z,w) has been obtained. [

C. P(z,0) as a function of E.(z,0). In this section, a
relationship is developed between P(z,,) and Ef(z,w). In IIA, the

following definition was given:

O(Z:t)'—'_zl;IP(z:w)ejutdw .

It follows that

©

P(3.0)= ﬁp (z,t)e Mt

=G0

Leto)(z,t) be defined in such a way that it possesses no linear | 1
susceptibility term. This may be achieved by allowing the permittiQity, ‘
3 of the preceeding section to be replaced with e which contains ‘
the linear susceptibility term. Because the interest of this paper is }
THG, only the non-vanishing fourth rank component of the electric
susceptibility tensor will be considered. Thus, ’

Plz,t)=c, Xg(z,t)°

R O

where X is the non-vanishing susceptibility component.

;A_“A‘__‘_______—M
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P(z,t)=¢ oX[_Zjir-[Ef( Z:w)e-‘jk(w)zejwtdw ]3

[‘[Ef(z:“’")e-jk(w") Zede gy [ Ef(z,w"'.)e-jk(‘”m)z ey

P(z,0) is merely the Fourier transform of this equation.
«© [}

P(ZJW)=I{GOX(‘2%T‘)3/Ef(z,w')e-jk(‘”')Zejw'tdw'.
[Ef( z,w")e-jk(“’")zcj'”"tdw"[Ef( z,w"t)e‘Jk(w"')zcj'»"tdw,,,}e-jwtdt

This may be rewritten as

@©

P( Z,u)):e OX(":;-;)B/‘ .[ [ j Ef( Z,w 4 )Ef( Z,u)")Ef( z:(Dm) 1

e'j[k(“’-')+k(“"l)+k(“’""3ze'j[“"“’"w"-'wm]tdw'c},)"d”"klt

The relationship

6 (w)r;; f ooty
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may be used to obtain the equation

@ w o

R20)e X2 [ [ [ 502,008 20ME (3,68 (om0

-l) o0 =0

e"j[k(w ' )+k(w e )+k(wm) ]zdw 'dw"dw'"

P(Z,m) = 0 except whehw=o'=w"-0"! = 0.
This condition i%a“%fd in the form o'=w-w'"-u"' to get

Pzoke (32 [ i By(2,00"0")E(2,0")E, (z,u"

w0 0

e-j[k(w-w"-w'")+k(p'.9+k(m"') ]zdv"dw'"
The expression derived in the rreceeding paragraph is quite
gereral. At this point, let it be assumed that the spéctrum of
Ef(z,m) is highly concentrated about s the fundamental frequency.
The degree of concentration that is desired is enough so k(w) may be

represented by the first two terms of a Taylor's Series Expansion.

Under these conditions, the following expression is valid.

k(w)=k(w°)+(w-w°)%

=)

0
Let k(wo =k°
and £k =y .
cw
=,
Then
k(w-w"-w'"):kohw(w-w"-w'"-wo) .

k(w")=kdhyﬁu"ﬂno)

k(w'")=ko~in/(w"'~»o) s

and the sum,




k(w_wu_w||v)+k(wll)+k(w”')=3ko+o'((.l)"3.0 )
Thus, i

@ @

Plew)e (G2 [ E(z0momEy(a,0")E (2 0™e

-0 =0

Because the phase factor in the integrand has no dependence upon

either o" or o'"', it can be removed from the integre’ and placed with

the constant factor. If
@ o

G(z,u))Ef fEf(Z,w-w"-w"')Ef(z,w")Ef(z,w"')dw"dw"' ,

then
-3[3k +a(w-3w )]z
P(z,w)=cox(£%)2e © e 'G(z,w) .

It is interesting to note that G(z,u) is the Fourier transform of
E}(z,t)3 without its associated phase factor. Because Ef(z,t)3 is
esseatially unaltered by its passage through the non-linear nedium,
then Ef(o,t)3~ff(z,t)3 and G(o,0~G(z,w). It can also be seen that
G(o,v) has as its inverse iourier transform ff(o,t)3. Thus, G(o,w)<>
Ef(o,t)3. At this stage in the derivations, the relat:onship between
the fundamental field in the time domain, Ef(z,t), and the rate of

growth of the third harmonic in the frequency domain, é%Eg(z,m), is

emerging.

D. Determination of Eb(z,w). The actual spectral density of

the third harmonic can be calculated by assuming it to be zero at

=0 and integrating to z.
2

i
Eg(Z:UJ)=fazEg(z:u~))dz .

0

"J[3kdhw(w-3wo)]z

.




The result of IIB was that

%Eg(z’w)z"jh%gﬁp(z,w)cjk(“’)z

Then
Z
{q 7
Eg(z;w)=-jE§§%jﬁP(z,w)ejk(w)“dz
o)

Using the result of IIC,

2 .
— k(m -J[Bk +O'( =
By (3,0)--j0) ﬁeoﬂzﬁ')ze B Te o re1adk @z
o

Because of the origin of P(z,u), it is sharply peaked about 3mo, and

the expansion of k(w) about 3m° is wvalid.

k(w)=k(3n )+ (w30, ) 5
w30
Let
ik
“ow
w=3w

o]

then k(w) = k3 + 7 (w-3wo)

and then
z

l ' = ~ s ves
Eg(Z,w)= -j-c(w)e;); IG o) 03k stor (v 30)9)]2 ej[ksﬂ(w 3'.00)]2 .

2e
o
z

k(w)e - 3
= &3 - Co; G(o,,w)[ e 33k, k3+(0'-‘Y)(w-3w°)]z
2 (2n)

dz
o

&
k(w)eog - e-j[Bko-k3+(a-y)(w-3wo)]z
2 (2n) -j[Bko-k3+(a-Y)(w-3wo)]

==

o)

Sl e o




Evaluating this and recognizing that grneleo,

-J[Bko—k3+(oz-‘{)(w-3wo) lz "

Eg(z.0)= ‘5"@3” S0} o e BT -
2€ 2T'T) =J o 3 o=y /W J.)o
i
The last factor can be converted into the from e 2 sin'%. Also,

since Eg(z,w) is highly concentrated about 3“6’ let the amplitude
factor, k(w), be replaced with k3. The final equation for this section
is then

Ey(2,0)= j_féﬁ_z G(o,w)e-mko"k:&'*(“"’)(“”3%) 12/2
2 (2n)

sin{ [3k -kt (o=v)(w-30_) J2/2}
[3k°-k3+(0’-\‘) (w=3w o) Jz/2

E. Determination of € (2,t). The final step is to convert
1 £)

Eg(z,w) into its time domain counterpart. This is done by taking the
inverse Fourier transform which, due to the complexity of Eg(z,w),is

not a simple task. The equation which gives Eg(z,t) is:
@©

=00

This, upon insertion of the developed form of E (Z,w) becomes:

Eg(z:t)rzl; —'5‘—— G(o,w)e-j[3k0-1c3+(a’\‘)(“’-Bwo) Jz/2
2 (2n
sin[[Bk -k3+(0!-\)(w-3m Nz/2}

I3k —k3+(a-\ ) (w=3v )iz/2

e-.‘)k(w)z e:)wt 4

The integrand contains three principal factors which are listed here:

1) Glo,w),

|
i




[=2= =1

P g e e e

-j[3k -k3+(a-w)(w-3m )1z/2 sin{[3k -k3+(d-")(w—3m )1z/2}

[3kg—kgt(o=i)(w=3w ) J2/2

3) e-jk(w)z

treated in order.

Earlier 1t was stated without proof that G(o,m)e-»ff(o,t)3.

3

is quite true except for the scale facter associated with 8f(o,t)3.

The derivation of this relationship follows,

=3[3k +o{w=3w )]z
P(z,w)=eox(2in')2 e © " 6(z,0)

from IIC, At z=0
P(0,0)=¢ x(3)? G(o,w)
3 oX 2TT ,’L
It will be recalled that
lP(z,t)=eox8f(z,t)3
Therefore, if ¥ (o yt) G(0,0), then
¢ (3% (0,8)=¢ x€,(0,t)°
and then, by simply rewriting,

& (0,t)=(21)%€ (0,13

The second of the three principal factors is the most difficult

to evaluate. For this reason, the actual development has been

pPlaced in Appendix A. The result, however, is

e T

0 -y

e i@
o= 2
f(t) =={l ,
o, all other t

when 1t is assumed that a=7>0. A change in the sense of o=y

s 0<t<(oy)z

merely
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» assuming that k3, X and fr are constant. These will be

This
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results in a change in the sense of the inequality.

The last factor is e-jk(w)z. Using k(w)=k3+7(w-3wb), the

factor becomes

e-JEkB“*\'(w-Bwo) Jz

which is equivalent to

=3[ky=30 ¥ "
e k3 o ]Z e‘j'.ﬂ.!)

The last form consists of a phase factor for propagation of
_3[1‘3“390\' ]Z

e

and a time shift of 7z seconds.

The final bit of work consists of using the information

gathered about the three integrand factors to obtain Eé(z,t). This

hinges on the fact that

Flw)6(w) « [ £(r)g(t-7)ar .

Identifying F(u) with the sin /e function,

6(s) with € (o, 0)>

and the time delay with the dependent variable, the following ex-

pression can be obtained

( ') 4
j&xZ Sk 1 j{[Bw -——EJT-(k 3w Y)z}

0 a-y
2% (2n)2 =yl z

.(2n)2£f(o,t—'r)3d'r .

Define a change of variables
T |=T+Y VA .

and t'=t+yz .

Then, using these changes, and cleaning up some simple algebra,

—— = -

T —— e E— -

S sl
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oz
Eg(2, t"*%l /
r

vz

3k _-
3{[3w - a‘_’Tki](T'-vz)-(lg-Bwov)z}
e Ef(o,t'-T')BdT'

Dropping all of the primes gives the third harmonic

3k -~
2 303 ————ﬁlwt -z}

3k, X 0 a-y
f (z t)‘ie‘l:l-\—l/ Ef(o,t-'r)ad-r .
Y2

In the time domain, the privilege of examini. both the real and the
imaginary components of a function does not exist. Consequently, a

choice must be made. If the fundamental function, Ef(o,t), is a real
function, then the generated function, fg(z,t), must also be real in
order to be observed. Applying the restriction that only Re {Eg(z,t)f

is meeningful, then £ (z,t) for this paper becomes
g

3k - 3k al
X ' B J{[3w° a_..kBJ'H{ kq' kBEA]

2% Ja=y| . ff(o,t--r)ad'r g
vz

Eg(z,t)= Re’

This becomes the final equation of section II.

az
X
E (z, t)'-z-%ﬁ / sin{[,w k3]'r+[ k3 -k3]z]E (o, t'.-'r)3d-r .
Yz

Eq(z,t) has been found as a function of the fundamental field,

Ef(o,t) and parameters of the medium such as k(w), ("%k(u), z, ¢ ond X,

E—— o
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SECTION III

EXAMPLES

A, Eternal Sinusoid. To illustrate the use of the previously

obtained equation and as a basic check on the validity of the theory,
the elementary case of the cternal sinusoid is considered. Let

Ef(o,t)zf sin o_t.
o o

Then,
oz
-k, X ) 3k =k,
- L o 3.
Eg(z,t)= 2 |o] j sin (3w, T o =ky )2)
Yz

3
o £°3 sin {wo(t---'()]d'r :

Using the identity sin3X=3/lo sinX-1/4 ein 3X and retaining only the

third harmonic term results in

o a-y

az
X€ 2 3K -
E_(z,t)z—)l-%— sin{ {3y -"—EZJT-[ =k, J2}sin{3y oft=T)}dr .
g 8€r|d ll k3

Y2

When the group velocities are matche:d,2 a=7, and the group velocities

equal the average phase veloc:l.ty,3 (3ko+k3)/2, then

3 ko=
g i i - T2 ( )
2,t)= : . cos{3m t-k.z} .
g 8 3K -k, 1ot Ky

2

2, See Appendix B.

3. See Appendix C.
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This is ir excellent agreement with previously established results
which have the intensity at 3w° proportional to
2 sin?(£ak)

(—é’-.sk)2
Thus, it is recasonable to assume this theoretical development to be
valid.

B. Gauscian Pulse. This portion of Section III consists of

an ideaslized pulse in the form of a sine wave which is amplitude
modulated with a gaussian. The third harmonic that is generated
is examined in both the time and frequency domains under conditions
of both matched phase velocity and matched group velocity.

The input or fundamental pulsc,Ef(o,t), is a gaussian modulated
sine wave. The temporal characteristics are completely described by

the equation
2 /m?
-t~/T
Exo,t)=E e / sin(v t)

where T establishes the pulse width. The spectrum, Ef(o,m), is de

fined by the Fourier transform of 5f(o,t). This is given by
2 /m2
Ef(O,w)=3{foe /T sin(wot)}
2 /n24.
%g{e-t /713 {sin w t]

where, as usual, 7J { } denotes the Fourier transform and the astrisk

.

L. Bey, Giuliani and Rabin, "Phase-Matched Optical Harmonic CGenera-
tion in Liquid Media Employing Aromalous Dispersion", IEEE Journal
of Quantum Electronics, Vol. QE-4, number 11, pp 932-939,
November 1968.
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(*) denotes convolution. Appendix E is a proof of the convolution

relationship.

f(O,w)- (/mTe T /A}*{Jﬂfa (wto )= 6(w-o )]}

_ 2 2
=j_{_2__n_ ET[e T (w-wo) /1& -e-T (u)-lu,o) /4]

The power spectrum, Sf(o,m), is given by

Sf(c,w )=Ef( O,w)Ef( O:U)) J.;::

where the asterisk (*) as a superscript denotes the complex conjugate.

Thus,

_TZ( )2 5 -T2 2 5
Sf(o’w)._-% Tz‘,-:% [e w-wo / i (Uﬂ‘wo) / ]ff

if it is assumed that the positive and negative frequency components
do not overlap. This assumption causes a component about zero

frequency to be dropped, but in the case of a laser, this causes no

difficulty.
Next, the generated field, Es(z,t), will be calculated. From

Section 1I.Z, the following equation is obtained:
a2z

X o 3k - :
Eg(z’t)i_f:jawe: f sin{[3w — k3] +[ 5 -kB]z} (O,t-T)BdT :

0 a-y
v
2,2

For Ef(o,t)=6;)e-t /T sin(wot)

2

3 o2 g

XE 3k - 3k - P

‘. (2 t)‘ET:}T,T‘ f sin{ [3u>o-073—\:1]7+[1£\,—kjw-k3]z}e‘3(t"‘) /T
Yz

o 8in°[u (t-r) Jar .

VA

- *‘_M__._..___;_.——;_“
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By use of the trigonometric identity, sin3x=3/4 sin x-1/4 sin 3x,

in the above expression and retaining only the term containing 3x
because the only interest is in the third harmonic, the following

equation can be obtainod.

k - k - RV ]
eg(z,t>—5—— -»in{£3wo%:2]T+[3‘oﬁbv-k3]z}e-3(t-T) &

Bla=yi ¢

Y2z
. Sin[.%)o(t-'r) Jdar .

The identity, sin x sin y = [cos (x-y) - cos (x+y)]/2, may be used

to rid the integrand of the product of trigonometric functions. Thus,

3 oz
8 2 /R
~2(t-7
Eg(z’t)‘ﬁ%é— / o~3(t=7)/T
Yz
3k - -k
oCOu[rém k3]T+[ —k3]z—3u tlds
oz
Ty P 3kky 3k -k
—f e 3(t-1)%/1 cos{[-v-——im_(_’Y ]T+[——2a ~ \-k3]z+3wot}d'r b
Yz

For the case where the phase velocities are matched, e.g.
3k°=k3 (see Appendix C ), the expression for fg(z,t) becomes
X 2 /R
Fa (Z,t) — e-3(t-7) /T
=y l -
Y2
o2z
2 jod
" -3(t-1)"/1
e cos{ 6»07-k32-3mot}d'r -COS[B‘”ot—kBZy- e d

Y2 :

For the case in which the gaussian modulation varies slowly when

compared to 6“6 and the interval (a-7)z>)6u6, the first integral




can be neglected and then

S

oz

-k, XE 2,2

Eg(z’t);léia-$|e COS{Bth-kBZ{f. e-a(t-T) /T dr . ]
r

Y2

The spectrum for the above expression is given by

Eg(z,w)'—-g {Eg(z,t)}

_jkaEOBT/? ~Jkyz -T2(w-3wo)2/l2 e"J(“"'S””o)C"Z __e"j(“"B‘“"o)\’z
32/ 3 1amyie, ©

w=3w 3

jRBZ -T(GHBCD )2/12 "'J(uﬁ'Bwo)O!Z "'j(UJ’i'BUJO)YZ
(o}

+e e e ==
w+3wo

The power spectrum is found as before. Neglecting the

positive and negative frequency overlap,

2.3 6.2 2 . i 2, .
A (z,w)..ﬁ X°€ “T"nz ‘/:_ sin{ (w-BwO)(af-:)z}'l e-—T (w-{;wo) /6
g 3072 er2 H T T—" J

[sin{ (w3, ) (v )% ]2 1 (wt30 ) /6
+ e
(w+30 ) ()%

The above calculations are similar in principle to those performed
earlier for the fundamental wave. Due to the more complicated func-
tions, these calculations are more involved and not particularly

enlightening. Consequently, only the results are shown here. 1

of matched group velocities between the fundamental, Ef(o,t), and the
third harmonic. The output under matched group velocities, ec.g.

|
|
The third harmonic, €é(z,t), can also be found under conditions 1
[
a=Y (see Appendix B), is obtained by takinz the limit of Eg(z,t) as ! j

a approaches V. The treatment is as follows.




5 4
} & (Z t)—lm!%ﬁ:F— _B(t"T) /T‘d

3k -k
o cos{ [6y —— = ]T+[———2V-k3]'-3w t}dr
oz
2 3k -
= f e"3(t-'r) /T cos{[~ k3]T+[ s ‘3‘7-:(3]2{-3\0 t}d-r]
Yz

Because the limit is being taken, ic is reasonabie to extract the
gaussian function from the integrand by substituting Yz for r. The

equation then becomes

oz
3
> ¢3 2 /2 304
Albvz) /T ..V 1 0
| £t 2V el f conlLbny 2
l 3k -~k L
+[-——3- -k3]z-3u)ot}d'r
Q/Z
k 3k =k
-f {[- 3]¢+r 3\( k3]z+3w t}dr
vz

This can be reduced to

-k3x£ 3, sm{——ﬁz} 3k +k.3

(o]
3k _}, cos { 2 ‘"'Bonz }

i

2

Eg(z,t‘—

" e

2
° COS{3:00t"3L00YZ}e"3(t"Y5) /Tzlim —0'::;
o

Q/-—bY
The limit in the above expression mercly establishes the sign of
Eg(z,t)- A sin (x)/x relationship with respect to the phase velocity
match {s obtained while an oscillating relationship is obtained
. between the average of the phase velocities and the group velocity

which is then weighted by z.

IS S S S
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The various spectra are found to be

3k =k
E (z w).--kBXEOBZ/TTT sin{-—;*iz}

g 16 /'3— . 3kg-}:3

2 2
3k - o =T (w=30_)</12
o cos{——%—l-{z- z—BwOYz}e“j'“"Y“ fe <
t
T (wt30,)%/12
e

=y
o=y /

}Jinl—ﬁii-

and

8 (3,003 = 62?2 f sm?-{__‘iz}
768 ¢ ‘ 3 )2

3k -k “1%(0-3p )%/6 12 2
.0082{__%3. ‘3JJ°YZ}{e = Bg)"/ 1e (w+3w°) /6} .

A concluding comment and calculation give some insight as to the

effects of the phase velocities and group velocities on THG.

peak intensity of the THG pulse is calculated and then normalized to
the peak intensity obtained when the independent variable is zero,
then a plot of this ratio can be made and a qualitative feeling for

the process developed. In the case of matched phase velocity, the

ratio is given by the equation
2T 2

2 za—Y 52 5 .
oy
L (B X ax
ﬁ? = ( Y Z) ~/' € y

m 0
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| ”\
! l where I = pesk intensity as a function of the independent variable, ‘

| ( G;F peak intensity under the condition of matched group velocity ]
> (a=Y) and

T = a parameter directly related to pulsewidth.

In the case of matched group velocities, the expression is

3k -k
aindf 0 3
/I\.—_oln{ ; 2}
- 3k -
Im {———‘—g .42

when the group velocities equal the average phase velocity. These

functions are plotted and presented in the accompanying Figures I

and II,

C. linearly Chirped Rectangular Pulse. This portion of Section

III presents the types of calculatisns made and the results obtained
from these calculations for the third harmonic generated by a linearly

chirped rectangular pulse. The calculations will be only briefly

described because of the complexity of the expressions and the
difficulty and bulkiness involved with executing the required

operations.

Assume a fundamental pulse

1-.2) _T_,_T
s COS{wot+2;J.t }, -2_<_t§_2

Ef(o,t)n {

0, otherwise

The spectrum of this pulse is given by

Ef(o,w).—:? {Ef(o,t)}

T/2
=1 & COS{wot%- n tz]e'_']uut dt 1
-T/2

1
. - IJ
. i az — gme R e B e




(whw_ )2 B
1 -_2_.:0-" T/2 j &[t uHu)o 5
ot L & BT g
..T/2

By the use of the Fresnel Integrals,

X
C(X)‘—s cos(% x ) dx and
o

X

S(X)*S sin(§ x %) ax
(o]

it is found that

et 7 ({1
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Following the previous examples, it {s scen that the spectral power

density, Sf(o,w), is equal to

ol 2] Byt )
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The equations presented in the preceeding paragraph are fairly
large and do not leave the reader with a rcasonable feel for the
shape of the function. The equations developed for the THG as a
result of this fundamental excitation become much more: cumbersome and
unvieldy. For these recasons, information on‘th; spectra will not be
presented.

The third harmonic, Eg(z,t), that is generated by the chirped
fundamental will be calculated for the case of matched phase velocities

between the fundamental and the third harmonic. TFrom Section II,

part E,
o2
r 3k -k 3k -k
o I . DO i SRS
Eg(z,t) = TEe. sin {[30, e i G il gy ]2)

Y2

off(o,t--r)3 dr .

Under the condition of matched phase velocities, 3ko=k3, then




(041

=k X
. 3" ; G _\3
Eg(z,t) -] sin[&.uoT }.BZ}Ef(o,t )’ dr .
Y2
{
| Because Ef(o,t) is expressed in a piece-wise fashion, Eg(z,t) is

also obtained in a piece-wise fashion. The limits of the integralin
Eg(z,t) are affected and the expression of Eg(z,t) is rather cumbersome.
An explanation of the effect that Ef(o,t) has on Eg(z,t) with respect
to the integration, and an example establishing the integral limits
for the various regions of Eg(z,t) is presented in Appendix F.

There is a general form for Eg(z,t), under various conditions of
a,Y, 2, T and t. The following equation presents this form while the
accompanying table, Table I, presents the conditions, regions, and
integral lfmits for the four cases considered.

In general,

-k3x503 -2 o
Eg(z,t) = m—rj sin{3w Tk 2} cos{3w (t-1) + % T (6-m)%) ar .
pi |

Eg(z,t) is necessarily zero except in regions I, II and III as given
in Teble I. The actual solution for the first two cases will be
given. This is considered to be sufficient, because these consider
the situations in which the pulse is smaller than ja -Y|z and also
larger than !la-Y!lz. Interchanging the group velocities does not

csuse a drastic change in the character of the solution. The solutions

are:




1) e>y, T2 1a~y1 2

| i?l:_f%_ \/‘{ 39- — ' ‘/3’1 (t-yz)” sin (3ut-ky2)
+ l:_s [V/%-: %] -S[‘/g (t-*{z)] ] cos (Bwot_RBZ)}’ yz-fg<_t_<_az-%

S B LV o] <[V ] o
k3z) + [S [@ (t-o:z)] é[‘/-’j_% (t-yz)] ]cos (Bwot-ka'&)},

Eg(z)t)=1

ke

T
azpsbeve

TZ?:_E\%; V%*:: [C [‘/—% (t-az)] 'C[V/SFFE '_1'2_J ]Sin (Gwyt-ky2)
k+ [S [V/% (t-az)‘.l —S[\@‘: %] ]cos (3u,°t..k32)} , Yz%tgz%

and

l 2) a>y, T< 1o~y 2




3
x& 3 [ag
Tavie, 55'{[4[ 0 %] -C[ g (t-VZ)] ]sm gty

' + [ { N T] [\/Z (t-vz)] ]cos (3 +-k32)} ; Yz-%<_t<v2+§
)
|

[ ]
w
frem——
= '
NI
| N |
[¢]
(o]
(4]
~
é”
¢
o
N
N’
<
N
%
3
N
o

XE 3
f:?:ﬁ'e_{{ V/_' (t-az)] [ ]Jsin (3w t-sz) +
[S [@ (t-orz)] -S[‘/%: (t-yz)] Jcos (3w°t-k32)} " az-'Tegtsyz%

\

For all t other than specified above, Eg(z,t) is necessarily zero.




The third harmonic, Es(z,t), that is generated under matched
group velocity conditions will now be calculated. Thi, e obtained

by evaluating Es(z,t) in the limit es a »7. Thus,

¥ az

Bk = 3k -
& g{Zt)= liL 2—[1’3-*—“—5 sin{[3u - k3]‘r+I: k3 \-k3]z}
Yz

L r(o’t'T)B dr .

For the chirped pulse case, this-can be seen to reduce to

£ (z, t)-_“z_costan o) + 35 (640 1tn ko
e

oz

3k -
S sin[[3wo-7;;—y:] ’*[vaﬁ v-iyJz} dr
Yz :

Upon evalustion, Ea(z,t) becomes

’ 3k _-
-k1XE°32 sin(—3—=2]
B 3k
b 4 [o]

2

oY
fg(z,t) = 4

-t ? 3}( + _
*lim (L-a-y )Sin[BwO\'z - '—2_51} cos[Bwo(t-Yz)+% m (t.-yz)z]

PP i | £ %

==

. o ] = = Al G
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The effects of several parameters on peak intensity will be

shown now. As before, the information will be shown graphically and

in a normalized manner. The development used is quite similar to that
of the gaussian case, although this time it is not pogsible to present
as much information as would be desired due to the number of variables
involved and the complexity of the function. For the phsse velocity
matched case, the particular case of @a)7, T Sla-71z will be considered.
In addition, only Region II of the solution will be evaluated unde:-

the assumption that it dominstes the peak intensity. After normalizing,

the peak intensity is given by:

(C(X)2 + S(X)z)/xz, where X = \/;3":"- % !

thus containing both 4 and T. A plot of this function is shown in
Figure III, where the pulse width, T, is held constant.

Another case, when g 1s held constant and T 1s the variable
parameter, is also presented. The peak intensity is proportional to
cx)? 4 s(x)2 and o plot of this function is shown in Figure IV.

Finally, the case of matched group velocity is shcun in Figure V.

This is simply the sinz (x)/x2 function that appears to be the charac-

teriatic function essociated with mismatched phase velocities.

il =

— —— e,
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SECTION IV

CONCLUSIONS

A theory for THG has been developed from Maxwell's Equations for

a uniform plane wave in an isotropic medirm.

general with the only outstanding assumptions being that the generation

This theory is fairly

process is assumed to be relatively inefficient and that the spectral

bandwidth of the pulse about the center

frequency is sufficiently small

that the propagation coefficients of the fundamental and third har-

monic can be represented by a truncated

present state-of-the-art in optics, these assumptions are

tical.

A series of three examples were then examined.

Taylor's expansion. For the

en eternal sinusoid, was examined to determine whether the results

of this theory fit previously obtained results. A comparisoﬁ was

made with the results of a recognized group of worker

and a favorable outcome was obtained.

The second example was a sine wave

quite prac-

The first of these,

s in the field

that was amplituce modulated

with a gaussian wave form. This fundamental pulse was then examined

for THG under conditions of matched group velocities and

phase velocities. For matched group velocities, the variation of

peak intensity followed a ain2 (x)/x2 function while for matched

of matched

phase velocities, the peak intensity followed a erf (x)2/x2 function.

The third example was a linearly chirped rectangular pulse.

example was quite difficult from a math

only the most interesting results and ¢

The THG pulse was examined under the co

ematical point of view and
alculations were presented.

nditions of matched group

This

RN
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|
velocities and of matched phase veloci*ies. For the condition of 4
matched group velocities, the peak intensity followed a sin2 (x)/x2 ‘
function. For the condition of matched phase velocities, the THG pulse 1
vwas examined as a function of frequency modulation and as a function 1
of pulse width. In both cases oscillatory behavior was observed.
When the frequency modulated case was examined, the peak intensity
followed a (C(x)Z + S(x)z)/x2 function. When the pulse width
modulated case was examined, the peak intensity followed a C(x)2 +
s(x)2 function. This oscillatory behavior is quite interesting and
could possibly be seen in an experiment if, for example, a train of
pico-second laser pulses were to change pulse width as the pulse
train progressed in time.

Ta conclusion, this work has developed a seemingly valid
theory of THG and has, within 1imits, begun to identify
THG results as a function of material and excitation parameters. It

is sincerely hoped that this effort will benefit others in this

field of endeavor.

:
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FIGURE I. Peak Intensity of THG of a Gaussian Pulse as a Function
of Group Velocity Mismatch.
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FIGURE II. Peak Intensity of THG of a Gaussian Pulse as a Function
of Phase Velocity Mismatch.
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APPENDIX A

I EVALUATION OF THE INVERSE FOURIER TRANSFORM OF:

' | -J[Bk -k3+(cv-¥)(w-3w ))z/2 sin{[3k -k3+(cv-'v)(w-3w )]z/2} _,
[3k, K5+ (=) (w30 ) 1z/2

Postulate a function f(t) and knowledge of its Fourier transform,
! F(w). Denote the transform pair relaticnship by the symbology
£(t) «>F(w)

Lot Flu) = o) slnfhluza)]

From the expression in the title, it is seen that
A= (a~y)z/2

3k
- o
AT Mg = '3?5 y
Thus f(t) P, e'JA(U)-.n.) Si!Alz A‘“Z'ﬂ “ . ) |
W=n

The scaling relationship,
—_ (L i

f(at) |a|F()’ |
is applied yielding

£(AL) = Th- oJ(w=n) szafw-n}

W=n

The frequency shifting property,

o t
£((t) e ° - F(w-wo) s
is applied yielding

f(ae) At o L -l sing
w

Finelly, the time shifting property,

£(t-t ) > F(o) o Iete .

is spplied and the scale factor iAI is transposed. Thus,

IALE(A [t+41]) cEMGL) e | :




- e o e e . i

There now exists the equivalence

L3

sine
© )

If d(t) e then

d(t) = 3&,-1gt$1

0, otherwise .

d(t) = IAIE(ACEs1]) o JRACEAD)

Allow a change of variable,

t! = Alt+l] .

Thus f(t!) = T}TI- d(tr' - 1) edet’ .

Deleting the primes and using the definition for d(t),

1
£(t) = -z—l-ATejm,OStSZA-

0, otherwise .
1f A € 0, the inequality is reversed. Using the definitions of A and Q

originally stated,

’ 3ko-k3]
36 - t
L e s e ,OS_tS(a-Y)z

la=7|2
£(t) = ¢

0, otherwise .




APPENDIX B
EVALUATING Cg(z,t) WHEN oy 4
Let £.(o,t) = € sin w ot

€g(z,t) —5——/‘:2 sin[[Bw o.k3]‘r+[ -k3 Y k3]z}
Y

2la¥| e

o anaina[wo(t-'r) Jar

- Considering only the third harmonic, Cg(z,t) becomes

Xt > ks 3k -
C (z,t) = E?Wv/yz sin{[Bw k3:|-r+[ k3 Y.k3]z}
o a:ln[BwO(t-r)}dr . {

Using sin x sin y = 3{cos(x~y)-cos(x+y)],

x€ 3
E(zt) = Ellbﬁl-e- [faz cos{ [bw - °'k3]r+[ -k3 Y3 Jz-3u t}dr

Yz

k - k -
-faz cos{[~ - lﬁ3]r+[3 k3 k3]z+3w t}d-r] ‘ l
Yz

Performing the indicated integration and simplifying,

i
1




b e et e  aaaeee . R e PO

g3 | «
£‘(z,t) = B?:-‘?Icr %ko-l_cz (sin[&yoaz-3koz-3wot}
bug- a=y
- ain[&noyz-kBZ-Bm ot})
+ -3?1_—, (sin[Bw Jb-3k_z}-s1n{3u ot-k329 .
oy

Taking the limit as qy,

¢ 3
Ss(z,t) = %f— -BT‘-OJ_? ll:sin[&noyz-sz-Bmot}

- sin{ by oYz-3k 2-3uw t }+sin{ 3w Jb=3k oz}-sin[Bm ot-sz}] :

Using sin x - sin y = 2 sin #(x-y) cos #(xty),
3¢,k
€32 sin(=2 K
eg(z,t) = %}E 8 [ 2 z}[c03[3wot+ @ -&”OYZ}

’ Bk?'e- s 3k
+cos[3w°t- -—°-f3 z}] :

2

Finally, using cos x + cos y = 2 cos #(x+y) cos 3(x-y),

5’(8 3 s:ln[——_—k2
r 3k "3 -

2

Eg(zt) =

t

L5

3k -
cos[3woyz- —025 z}cos[Bwot-Bwoyz} ’




APPENDIX C

RELATING k TO PHASE AND GROUP VELOCITIES 1

The accepted definition of phase velocity is the velocity st which 1
8 fixed poirt in phase travels. For a simple traveling sine wave,

sin (wt-kz), the phase velocity is given by

-l
p k
Thus, k = <=
y 3
) @
If 3k, = ky, then — = =
L P3

end since -j - 3.0, the conclusion is that\ro = Vp3 .
Ristorically, the phase velocity has been considered to be the speed
of 1ight in the medium under consideration. Thus, .
v, - c/n ' !
vwhere ¢ = speed of light

n = index of refraction.

If Vpo-vp3’ then necessarily noe=n .

Packets of electromagnetic energy are usually considered to
travel st & velocity called group velocity rather than the phase

velocity. Using a spectrum closely grouped sbout wo the group ‘

velocity 1is

R A

Thus @ and Y as used in the peper are reciprocal group velocities.

~ |

= = S ———
i, e SRR W g
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APPENDIX D

% .
RELATING ™ T0n AND-%X

Beceuse most information relating propagation to materials used
in optics is given in the form of n()\), it 1s apnropriate to relaste

the group velocity to n()).

£.Q &

but A = Aoln, vhere A, 1s in vacuo, then

%-%(3{:&) :

Becsuse
&, a '
Ao €
E-fa
. - Oon
-.C.+.C.aﬂ °

The more common optical term is dispersion which is fi'—. This will
be related to ?.




Because a and v are each expressed as %
1 AL Q0

: 1 "n 1
D agd y=2 (r\8 - Ag §A—° |
Ao ™ Ag ‘ 2o ® 4y

A graphical interpretation of this is possible using normally available

;i'aphical material. The graph below is an example which shows Ao?

n &k
&-lndca-:
n(a )
°
n(1) for a typical material
c % ™
. ““"q‘
‘H‘
-“
S
LIPL I S e S,
h
'
0 1
0 A

Ao

The ordinate intercept gives directly the valuec %. ‘ From e graphicai
construction such as this, s match of phase velocity and group velocity

can easily be made.

i e s




APPENDIX E

A CONVOLUTION RELATIONSHIP

Prove:
-21—1; F(us*c(u) «— £(t)g(t)
Proof:

L
-21;- F()*G(w) 3'1 -zl'-f F(w-u)G(u)duz

-

FQ

) ®
i -21— G(u) ;%f Flo-u) e3*t
2o

8

Due to the frequency shifting property,
. ®

'-2}; IF(w-u) It do u £(2) oI §
-

Thus

ol a
71; F(0)*G(Ww) «> %f-f G(u)£(t)edVt gy
44N )

a
—f(t) g-zl—,'r'j G(u) e‘mt du;

5 - F@)*6() — £(e)g(t) .

r B :
i—-)'zl—r' I%r-f F(w-u)G(u)duz ¢ 3% 4
/5 ()

dw‘du .

- T e

e

e

e ——— s p—am— ) 1




APPENDIX F

ESTABLISHING THE LIMITS OF INTEGRATION OF Eg(z,t) FOR A

RECTANGULARLY PULSED Ef(o,t)

For expressions of Ef(o,t) that are in & piecewlse manner
rather than a single analytically expressed function, establishing
the limits of integration for Eg(z,t) is not alwayas simple. It is
the purpose of thia appendix to ifllustrate a useful graphical
technique for determining these limits.

Let £.(o0,t) a{l, - %gtﬁ

0, otherwise
and let
az
g0 = | g0, %,
Yz

Such a function is sufficiently close to the actual functioﬁ of
ff(o,t) and Eg(z,t) for this illustration to be valid but simple
enough to convey easily the intent of the illustration. Assume
az)fz and that T{ia-7iz. For t(Yz«%, Figure A-IV(a) rcpresents the
region whe;e the integrand is non-zero and the region of integration
do not ovérlap. The integral is necessarily zero for this
condition. As t increases, Ef(o,t-r) moves to the right and finally"
enters the region of integration. This occurs at taYzaI and the

2
limits of integration become Yz and t#% until t+§aaz. This condition
1s shown in Figure A-IV(b). As E¢(o,t-7) continues to move to the
right, finally it spans the entire region of integration and the inte-
gral limits become yz and az. This condition begins at t+§=az and

lasts until tdgnvz. Thie condition is shown in Figure A-IV(c).
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After td%nvz, ff(o,t-f) begins emerging from the region of integration

and until td%aaz, the integral limits are td%-and az. This is shown in
Figure A-IV(d). The regions depicted in Figures A-IV(b), (c), and (d) are
called Regions I, II and III respectively and are the regions in

which Eg(z,t) is not necessarily zero. For t~%>az, Ef(o,t-r) has
completely emerged from the region of integration and Eg(z,t) is

zero. This is shown in Figure A-IV(e).

The results of this exercise and the remaining cases involving

@z, vz end T are tabulated in Table A-IV for an integral as shown

here:

T,

2
& (z,t) -s f_f(o,t:-r)3 dr .

b
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1'2 .
E (z)t) =J fr(oat-T)B dr 1
g T
Case Region Interval i 1 _1'_2.
a>y I yz-%f_tsaz-% Yz t+§
T T
T2 lay| 2 II az-istgvz+§- Yz az
III Vz+g-$tsaz+§ t-g az
@>y I vi-Fstsva+l t+3
T< law| 2 II yz+§5tgaz-§ t-% t+§
III az-§5t5a2+§ t-% az
Y>>« I az-%stsyz-% t+§ az
\ ' T T
T2 lay|2 II yz-istgaz+§ YZ az
T
II1 az+-2-5tgvz+§ Yz t-%
Y>a I az-%stsaz+§ t+§ az
I R 3 I I 4
T< |aw| 2z IT az+25tsv. 2 t+2 t-2
. ;
III yz-%gtgyz+5 Yz t-g {i
Table A-IV. :
- Convolution Integral Limits. }
| .
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Region of
Integration
Ef(o,t-fr)
t - -g- t t + % Yz oz
(a)
Region of
Integration
Ef(o,t--r)
t - % Yz- t+ % az
(b)
et
egration
Eglo,tmr)
i
!
t - % Yz o t+ %
(c)
Region of
Integration
Ef(o,t.—'r)
'
}
vz ¢ -% oz t+ %
(a)
Region of
JIntegration Cf(o,t-'r)
'
[
1
Yz az t - % L+ s
(e)

FIGURE A-IV. Convolution Integral Limits Relationship.
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