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SECTION I 

INTRODUCTION 

This thesis contains a theoretical Investigation Into non-llne.ir 

electromasnettc-fleld theory as applied to third harmonic gcneiatlon 

in bulk materials.  Such a topic Is of Interest since the Invention 

of the field known as non-linear optics. With the high power levels 

available from lasers, practical experiments in non-linear optics 

have become a reality.  Of course, the generation of harmonics and the 

heterodyning of different rrequencles or wavelengths is desirable 

for various reasons. The most compelling reason for investigating 

third harmonic generation (THG), the topic of this thesis, is for 

use as a tool in investigating the structure of ultra-short laser 

pulses known as nico-second pulses.  These pulses are on the order of 

pico-scconds, a time regime so short as to be unresolvable in real 

time by present techniques. As a result, non-linear processes such 

as harmonic generation are used to infer the characteristics of these 

pico-seconc* pulses.  It is for this purpc se that the Investigation 

was undertaken. 

In format, this thesis consists of introduction, the development 

of the THG theory and several examples of the application of the 

theory to elementary fundamental functions such as a sine wave, a 

gaussian pulse and a linearly chirped pulse. The theory begins with 

1. DeMaria, A. J., D. A. Stetser, and W. H. Glenn, Jr., "Ultrashort 
Light Pulses," Science, Vol. 156, No. 3782, pp 1557-1568, 23 June 

(1967). 



Maxwell's Equation and concludes with an expression for THC under 

conditions of a uniform pxane wave in an Isotropie non-linear medium. 

As a result of the developed theory, the influence of excitation and 

material parameters can be evaluated. Appendices are included to 

elaborate on portions of the various developments that would be 

unwieldy in the body of the thesis as well as to elaborate on 

interesting issues of insufficient importance to be included as port 

of the principal effort. 

' 
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SECTION II 

A THEORY OF THG 

A,  Dcf5.nl tlons. This section of the paper presents a descrip- 

tion of TUG L 3 developed for a uniform plane wave In an Isotropie 

non-linear medium. The equations that are obtained are sufficiently 

general to take any real temporal function, whether casual or not, 

and obtain the resulting third harmonic conversion in both the time and 

frequency domains. For a point at which to begin, the definition of 

a Fourier transform pair is given and also symbology that will be 

employed In the mathematical developments. Thus, the Fourier trans- 

form. 

F(a))=r ̂(lOe-^dt , 

«nd its Inverse transform, 
00 

are given.  In »-.he functional notation to be used, functions designated 

by script capital letters belong in the time domain and those designa- 

ted by block capital letters are in the frequency domain. Also, the 

Fourlsr transform relationship may be symbolized as 

^(t)*-> F(u))  . 

The functions of interest are defined as the fundamental function 

or exciting function, £f(z,t), as      , 
m m 

Effe.t)=i|  Ef (z.*)*-*^*^   , 

- ^^M^ni 
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the generated function or response function, £ iz,t)t  as 

(i))e'^ duu . 

and the polarizabll*ty, ^(z.t), •• 

lP(z 

E (z,«i) and E (z,«) represent their respective temporal functions 

less phase factors associated with propagation while PCz,*) is a com- 

plete description at all points. 

B, Relating E (Z.M) to P(z,oi).  Beginning with Maxwell's 
O 

Equations, a mathematical development will be pursued that results in 

finding E (z,w) as a function of P(z,w). There will be approximations 

made as the development progresses and these will be explicitly noted. 

Maxwell's Eouations: 

v xT31 - it& 
tjm P 

?*# = / + ^ 

v -df = 0 

and the additional relation ships: 

r-ldf 

Using Maxwell's Equations, a wave equation is derived.  It is 

assumed that the medium is charge free (P«0) and of zero conductivity 

^TcO). The following sequence outlines the derivation of the wave 

equations. 

mmm 
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0 At2     at2' 

i? X V xf 

cr ^.r.faf) 1 

2 v2 N2 
Thus,     v    e-H«^2£*+^—2^   . 

Because the medium Is aseumcd to be Isotropie, propagation can be 

restricted to any axis without loss of generality. Consequently, 

let a uniform plane wave propagate down the z-axis. The wave equation 

has now become: 

92 -♦   a2 -♦ ?2 -» 
"T £ ■*••?' -Hi—ö(P . 
az* 0at        atr 

The wave equation as given above possesses no coupling between coordi- 

nates due to vector operations. Therefore, the expression of the 

wave equation for the components in each coordiante axis is independent 

of the other two.  It is possible to examine either the x-axis or y- 

axis component and not lose any accuracy. Consequently, no distinc- 

tion will be made and only one component will be used with the result 

that the wave equation is now a sealer equation of the form: 



1 

dz 0at^     HT 

Now that a satisfactory wave equation has been obtained, the 

relationship between the exciting field and the generated field must 

be obtained. To do this, let 

£(z>t)»ff(z>t)+fg(z,t)  . 

This relates the instantaneous field,£ (z,t),   to the fundamental  or 

exciting field, f-(z,t),  and the generated field, f   (z,t).    The wave 

equation now becomes: 

• 2    : 2 
■Jj [ff(z,t)+f (2,t)>5ie0~fef(z,t)+e (z^O^-^^Cz,!)    . 
3z' at H 

It is desirable to relate these functions to their frequency domain 

counterparts.    For this reason,  the  following definitions,  previously 

pre ientcd,   will  be applied to the latest form of the wave equation. 

CD 

f(z,t)=i   rP(z>u,)eJu,tdu,   • 

^^^■^■ta 



Thus, 

2 

jJ&J v-)«'*<'),«M*^r J ■i(.-).-*(-,»>»4.] 

^'o^C^J  V'-)»'*("),«*tHtJ ^(Z.«)e-J,t(,°)jo*'t<4l)j 

^ÄatJ   P(z,«.)ei"td.]    . 

■"erfcrming the indicated differentiation results in 

o 

i f   ^ Ef(2'a,)-J2k^^f(z^)-k^)2Ef^^)]e"Jk(u,)zeJu,tdu) 

^j   C^Eg(z,u;)-j2k(a))^g(z,lü)-k(U))
2Eg(z.u,)]e-Jk(ü,)ze>tda^ 

^ J   (••a»f(^)«"JI(C,)V*gt4HiJ (^2)Eg
(z'tü)c",5k(U,)ZeM<iu] ^o^ I 

-Hi[iJ(nü
2)P(z,(ü)e^

tdü;]    . 

Assume that the conversion of the fundamental to the third 

harmonic is sufficiently small that the amplitude of E (z,«)) is 

essentially unchanged as the wave passes through the -nedium.  Then 

the derivatives with respect to z of E-Cz,««) may be set equal to zero. 

Using the above assumption and dropping the common factor of •*■•. the 

wave equation is 

.t^^^MÜ 
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-/ k(«)^f( 2,(U)e-
Jk(u,) "e^Wj [-4V z,u))-j2k(a))^:g( 2,(0)- 

OB 

nxef A^ z,a))e-Jk(u,) S*^^-|i •%< z,a,)eJü,tdu . 

The propagation factor, k(w), Is equal to (M«) U, where f««(u) for 

roost materials and paa (assuming dielectric materials). Using the 

relationship, the wave equation simplifies to 
OS 

J     dz^ 6 oz g 
-00 

CD 

This may be rewritten to take advantage of the common variable of 

Integration und an equation consisting of one Integral can be 

obtained. 

/ 

00 

2 
[^(z^)e-Jk(w)z-j2k(u))fB fz,(U)e-J

k(tü)%u,2P(z>u))]e^
tca<ü=0 

dz2 g az g 
-00 « 

It la felt that the factor —rE (Z,üJ may be equated to zero by 
dz    8 

assuming that the envelope of the wave is slowly varying. 

This results In the equation. 

/ 
[^(z^^jSkU)^: (z,ü))e-Jk(ü))z]ejujtd(^0 . 

cz L 

*m^^^^m*ä 



For this relationship to be true over the nearly unlimited conditions 

placed upon It, the Integrand must equal zero.  Thus, the following 

equation Is obtained 

L 
Recall that k(tü)=(/it) «u and the above equation becomes 

■i*.(**)--&S1*i**hMm)* . dz  g 2c 

At this point, an equation relating E (z,w) to a generating function, 

P(Z,ü)) has been obtained. 

C.  PCZ.ü)) as a function of E (z,.,,).  In this section, a 

relationship is developed between P(z,w) and E (z,u).  In IIA, the 

following definition was given: 

(FC ̂ JPCZ^ )e^tda, . 

It follows that 

P(z,u))-f(P(z, t)e-^tdt 

Let(P(z,t) be defined in such a way that it possesses no linear 

susceptibility term. This may be achieved by allowing the permittivity, 

e , of the preceeding section to be replaced with t  which contains 

the linear susceptibility term.  Because the interest of this paper is 

THG, only the non-vanishing fourth rank component of the electric 

susceptibility tensor will be considered.  Thus, 

(P(z/t)=eoXff(z,t)
3 

where X is the non-vanishing susceptibility component. 
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i 

oo 

mm 

^ 0X(^)
3C ^(z ,u, • )e-Jk((U') Ze>'^' ] . 

c/if(iHi" )e-.*U")V 

CD 

j.-^^^^ . 

P(2,w) is merely the Fourier transform of this equation. 

00 

• )e-jk(u) 

This may be rewritten as 

00   00   00 

P(z,(ü)=eoX( ̂)3/ / / [^(••••^(Mi")!^«*»^ 

e-J[k(u)' )+k(u)")+k(u),,,) ] zp-j[m-u)' -tü,,-u),"]t. 

The relationship 

^'^"da^'tlt  . 

>*/.• dt 

^ -■ .««^fe^^riM^HM 
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may be used to obtain the equation 

OS   OD   OD 

e-jW^kU-W.)]^^,. _ 

P(2,u) ■ 0 except when <u-o)l-w"-ial" - 0, 

This condition is^uood in the form <■>•=«-a,"-w"» to get 

-co   wo 

e-J[k(uJ^"nü'")+k(l)'5-rk(cü'")]z   n( 
^"duj' 

The expression derived in the "--ceeding paragraph is quite 

gei.-eral. At this point, let it be assumed that the spectrum of 

Ef(z,*) is highly concentrated about «^ the fundamental frequency. 

The degree of concentration that is desired is enough so k(u) may be 

represented by the first two terms of a Taylor's Series Expansion. 

Under these conditions, the following expression is valid. 

k((ü)=k(m HU-n )|^ 

tXFW, 

Let k(u, )=k 
o  o 

^ • 

w=w. 

and Di 

Then 

k((ü-M)"-(1)
,,l)-ko+a(uJ-u)

n-u),,,-ju ) 

k^'O-k^Ccü"-^^ 

kCcD'^k^U'"-«^ , 

and the sum, 

■  ^- ^■^i 
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i 

TU 0 0 ' Thus, 
CO OS 

r 
i 

I 
P(z,u))-eox(^)y y Ef(2,üünü,,-tü,n)Ef(z,ü,,,)Ef(Z,cü",)e 0 0     dbH<U 

-O     -00 

Because the v'iase factor in the integrand has no dcpenaence upon 

either a," or i»"», it can be removed from the integre1, and placed with 

I the constant factor.  If 
00   00 

G(Z,U})H /* rEf(z,u3^
,,^,,,)Ef(z,'a)

,,)Ef(z>U),")(iDl,du;n, , 

«40 m£0 

then 

T o -J[3k +a('ju-3(ü„)]z 

It is interesting to note that GCz.o) is the Fourier transform of 

£f(z,t) without its associated phase factor.  Because £f(z,t) is 

I essentially unaltered by its passage through the non-linear medium, 

3      3 
then ff(o,t) ~Sf(2,t) and G(o,o>)~G(z,«.). It can also be seen that 

G(o,o)) has a« its inverse iourier transform 6 (o,t) . Thus, G(o,«.>)<-> 

c^(o,t) , At this stage in the derivations, the relationship between 

the fundamental field in the time domain, 8f(z,'c), and the rate of 

growth of the third harmonic in the frequency domain, -~E (z.w). is 
' 8z g '  ' 

emerging. 

D» Betermination of E (z.^). The actual spectral density of 

the third harmonic can be calculated by assuming it to be zero at 

z=0 and integrating to z. 
z 

L Eg(z,lü^j'^Eg(z,(U)dz . 

L 

^m^a 
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The result of IIB was that 

9z g ^.C.,«)-^^)^«   . 

Then 

Using the result of IIC, 
z 

E (2 «1 -jtfail If     /1^2 "^3ka^«(»-3»J3i , x 
V^^-^/CV^ •   0     0  G(o,:o)}oJK^z

dz 
o 

Because of the origin of P(z,w)f it is sharply peaked about 3<a , and 

the expansion of k(<u) about .lu is valid. 

ak 
k(«>*(3»0)+(«»-3«0)S 

(w- 3a), 

Let 

Jk 
Y 3u) 

0^=30), 

then kU) = k,  +  7  (<u-3o)  ) 
j o 

and then 

lc(u))e \u);eox   r 
 P        G(o,tü)e 
e(2nr J 

-J[3ko4ty(c)-3ü)0) 3«   3Ck.^(«-aO ]■ 
e     ^ dz 

I 

I 

Hm)i ..p^o<o^rrJC3ko-*3+^^0)3- 

■ -J- 

2e(2n) 

k((ü)e  v 

>/ 
dz 

aiCarr)' 
' P.       ,e^Vk3+(a-J/)(uJ"3,J,o)^ 

■ 

-J[3k0-k3+(c/-Y)(uj-3ü)0)] 

^M-i^Mta 
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I 

Evaluating this and recognizing that « =«/< , 

-JC3k-lu+(«-Y)(»-3»J]i 

8      2er(2n)
2      -j[3k0-k3-Ka-'r')(u;-3u)0)] 

-il 
The last factor can be converted into the from e  ' sin •r'. Also, 

since E (z,u) is highly concentrated about 3«) , let the amplitude 

factor, k(o>), be replaced with k-. The final equation for this section 

is then 
k.Xz 

g 
2er(2n)' 

siji[[3ko-k3+(cy-Y)(cu-3a)0) ]z/2] 

[3ko-k3+(a-Y) U-3ü)0) ]z/2   • 

E. Determination of F (z.t). The final step is to convert 

E (z,u)) into its time domain counterpart. This is done by taking the 

inverse Fourier transform which, due to the complexity of E (z,*,)), is 
O 

not a simple task.    The  equation which gives £   (z,t)  is: 
CO g 

V1'*^ / Vz'*)e"jk(tü)ZeMd   • 
This, upon insertion of the developed form of E (Z,üJ), becomes: 

00 ■ 

FdtvJ-   f   ■  V*    ^       -Ä3k0-lt5+(«^)(«-3».0)W2 

_Sin[[3Vk3+(^v)(aJ-^o)]z/2} .^^ 
[3k-lJ(a-Y)(«)-3^)jz/2 e ed.. 

o "3 

The integrand contains three principal  factors which are listed here: 

1)    G(o,u.), 

jämtm 
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2)   e 
-j[3ko-k3+(cy-\')(u)-3u)0)]z/2    sln{ [Jk^MfiM) U^J ]z/2} 

[3ko-k3+(cy-v)(u)-3cüü)jz/2 

^ •     , assuming that kj, x and ^ are constant. These will be 

treated in order. 

Earlier it was stated without proof that G(o,o>) ^ ff (o,t)3. This 

is quite true except for the scale factor associated with5f(o.0
3. 

The derivation of this relationship follows, 

,  v   .1.2 -J[3k-k,((IJ-3u) )]z 
K«*)-V(£r«     0        0    (KMO 

from IIC. At z=0 

P(o,üJ)=eox(^)
2 G(o,xO 

It will be recalled that 

Therefore, ifir(o,t) ^GCo,^), then 

«0x(^-)^(o,t)=co*ff(o,t)3 

and then, by simply rewriting, 

^(o,t)=(2n)2£f(o,t)3  . 

The second of the three principal factors is the most difficult 

to evaluate. For this reason, the actual development has been 

placed in Appendix A. The result, however is 
3k -k, 
 "1 

f(t) - 

> ft  BIT 

J[3(Dn 

e 

L]t 

, o<t<(a-Y)z 

o, all other t 

when it is assumed that „-y>0. A change in the sense of *-y merely 

 -**   •■— ^^^ *mak 
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I 

results in a change in the sense of the inequality. 

The last factor is ."i««»", Usln k(«)=k-+y((1,-3- ), the 
J o  ' 

factor becomes 

-J[Vv(("-3oO]z 
e       -' 0 

which is equivalent to 

-J[V^nY]z , 
a        1       o   J       ^-j'.'Ztü e e 

The last form consists of  a phase factor for propagation of 

-jri<3-3uoY]2 
e 

and a time shift of 72 seconds. 

The final bit of work consists of using the information 

gathered about the three integrand factors to obtain £  (z.t). This 
g 

hinges on the fact that 

fimWm) *-*/f(T)g(t-T)dr . 

Identifying FC,) with the sin «ü/ü. function, 

G(«) with £ (o,t)3 

and the time delay with the dependent variable, the following ex- 

pression can be obtained 

,(a-Y)z 
JlCjXZ 

£ (z,t+Yz)=- 
ß 2e  (2n)2 ICk-YI z 

<»«^Miv*0v)t] 

I 
• 

•(2n)2£f(o>t-T)3dT  . 

Define a change of variables 

T'ST+YZ 

and   t'^-^z    . 

Then,  using these changes,   and  cleaning up some  simple  algebra, 

^-i   ' -"- 
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az 
3ko"k3 

jk x        /•    JlÖi0- a5rlKT,^t)-(k|.3b0Y)i) 

Yz 

Dropping all of the primes gives the third harmonic 

IMM.   's- /      e 
' 2eria-N' 

yz 

£f(0,t-T)
3dT . 

In the time domain, the privilege of examlnx..", both the real and the 

Imaginary components of a function does not exist. Consequently, a 

choice must be made.  If the fundamental function, £,(o,t), Is a real 

function, then the generated function, f (z,t), must also be real In 
O 

order to be observed. Applying the restriction that only Re {£ (2,t)| 

Is meaningful, then £ (z,t) for this paper becomes 
8 

Cc(2,t)=Rejr-—-2-— o P  /« *     >3J 8 (2eriQr-Yl    / tf(o,t-TrdT 

vz 

This becomes the  final  equation of  section II, 

n 

YZ 

-c 
3k —k_   3k -lo 

o a-Y a-Y 

£^(z,t) has been found as a function of the fundamental field. 

£f(o,t) and parameters of the medium such as k(w), ^-4c(«), z, r and X. 

^^M 
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SECTION III 

EXAMPLES 

I 

A, Etern.il Sinusoid. To Illustrate the use of the previously 

obtained equation and as a basic check on the validity of the theory, 

the elementary case of the eternal sinusoid Is considered. Let 

fr(o,t)»f sin » t. f '   o    o 

Then, 
M 

-k, x   f 3k-k.   3k -k. 
e^t)= ä^M   )     8in ^o-^^-^rH^ 

Yz 

• £ 3 8in3{a> (t-T))dT . 

Using the identity sin X=3M sinX-1/4 sin 3X and retaining only the 

third harmonic term rcbults in 

atz 
k_x£ *    f 3k -it,   3k -k_ 

yz 

I 
I 
I 

When the group velocities are matched, ««y, and the group velocities 

equal the avernge phase velocity/ (3k +k-)/2, then 
o 3' 

MV 
3k -1 

UM). ,, 

2 .  See Appendix B. 

3 . See Appendix C, 

z   sin- Ä 
3k J— cosfoi^t-kjz) 
C3 

■MM 
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I 

I 

I 

I 

I 

I 

This  Is lr excellent agreement with previously established results' 

which have the intensity at 3u> proportional to 

sin' 
!(|sk) 

(fk)2 

Thus, it is reasonable to assume this theoretical development to be 

valid. 

B, Gaus* an iulso. This portion of Section III consists of 

an idealized pulse in the form of a sine wave which is amplitude 

modulated with a gaussian. The third harmonic that is generated 

is examined in both the time and frequency domains under conditions 

of both matched phase velocity and matched group velocity. 

The input or fundamental pulse, Ef (o,t), le a gaussian modulated 

sine wave. The temporal characteristics are completely described by 

the equation 

2M.Z 
e^o^the^ * siiiUot) 

where T establishes the pulse width. The spectrum, Ef(o,u.), is de 

fln^d by the Fourier transform of f (o,t). This is gi/dn by 

2 2 

^(Oi»)-9(fe«
a4 ^   Bluest)} 

Jonr -t2/T2]^3Uin 'JO t} 

where, as usual, 'J i   [ denotes the Fourier transform and the astrisk 

Bey, Giuliani and Rubin, "Phase-Matched Optical Harmonic Genera- 
tion in Liquid Media Employing Aromalous Dispersion", IEEE Journal 
of Quantum Electronics, Vol. QE-A, number 11, pp 932-939, 
November 1968. 

- • 
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(*) denotes convolution. Appendix E Is a proof of the convolution 

rclatlonchip, 

y...v|f {/7i e-T2'"2A)*(Ws(^..0)-!(^o)]) 

OJiZ   foT[e-
T2(<»-V2A .e-

T2(™l"//4
]   . 

The power spfictrum, S (o,«.>), is given by 

Sf(c,tü)=Ef(o,uJ)Ef( ^ Jf 
where the asterisk (*) as a superscript denotes the complex conjugate. 

Thus, 

Sf(o,^)^ T y= [e     
0   +e     

0   £ 

if it is acsumed that the positive and negative frequency components 

do not overlap.  This assumption causes a component about zero 

frequency to be dropped, but in the case of a laser, this causes no 

difficulty. 

Next, the generated field, £ (z,t), will be calculated.  From 
O 

Section II.2, the following equation is obtained: 
az 

s     ^
X        r 3K-K       3k -1 tf(l„ 3.. • 

2    2 
For ^(o^tWe"* /T eMu t)    , 

o —o- 
az 

^ 

2 ,„2 
*i*il%^W-^-^*-^)2/' o   a-S 

Yz 

sin:>rujQ(t-T)]dT  . 

■ - rt^^^Bi 
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By use of the trigonometric identity, sin x^3/4 sin x-lM sin 3x, 

in the above expression and retaining only the term containing 3x 

because the only Interest is in the third harmonic, the following 

equation can be obtained. 

y* .*££; /    =^0ÄM^-.^!e-*-)2A: 

yz 
•sin[3.)o(t-T)]dT . 

The identity, sin x sin y = [cos (x-y) - cos (x+y)]/2, may be used 

to rid the integrand of the product of trigonometric functions.  Thus, 

..tvÄ I  (z 
g *  loic-^'ie 

r cez 

/•-' 

-3(t-T)2/T2 

yz 

3k -ko   3k -k 

az 

[        -3(t-T)2/T2   , 3k
0-
k^   3k -k, 

yz 

For the case where the phase velocities are matched, e.g. 

3koek3 ^see APPendix c )» the expression for f (z,t) Incomes 

g    ■^p-YJSj. 

o-z 

/ 

.^(t-t)2/!2 

Yz 

crz 
C 2 2 

• cos{6'ijoT-k3z-3a)0t}dT -cosilw^-luzU e'3^"^ /T di 

Yz 

For the case in which the gaussian modulation varies slowly when 

compared to 6uio and the interval (o-7)2»6w , the first integral 

mm* 



22 

can be neglcctod and  then 

c/z 

iiuj-kjz]! e-3(t-T)2/T2 dT   # 

YZ 

The spectrum for the above expression is given by 

Eg(Z,aJ)^7{fg(Z,t)3 

"32/3 i«-Vie. (ü-3CU. 

Jk.1     -1(^3'^ )2/l2     -^^3a)0)az     -J(U)+3ü)0)YZ 
^   ^     ä o   '        e ^e  

uH-3a)^ 
+e e 

The power spectrum Is found as before. Neglecting the 

positive and negative frequency overlap, 

kJx2e VTTZ
2
    r 

sjiHiM—8—« i 3072 i. (•-a»0)(<r-v)J 
-»2(»-3»0)2/6 

t 8iii{(ürt-3.o0)(*-Y)|} 

(urf3a)rt)(a^)f 
Q 

The above calculations  are  similar in principle  to  those performed 

earlier for the  fundamental wave.     Due to the more  complicated func- 

tions,   these calculations  are more  involved and not particularly 

enlightening.    Consequently,  only the results are  shown here. 

The third harmonic,  £■ (z,t),  can also be  found under conditions 

of matched group velocities between the fundamental, cf(o,t),   and the 

third harmonic.    The output under matched group velocities,   e.g. 

a=7(see Appendix   B),   is obtained by taking the limit of £   (z,t)  as 
I 

a approaches 7.    The  treatment lb as follows. 



n • • 

2^ 

f (z,t)=liin 
5    a^Y 

V£°   If .^(t-T)2/^ 

3k —k   3k —k 

• cos^^o-^V^3T+["^V"k3]X"3u,ot}d'r 
az 

Yz 
Because the limit is being taken, 11 is reasonable to extract the 

gaussian function from the integrand by substituting 7z forr . The 

equation then becomes 

im(*,th V^o       -3(t-Yz)7T 
2/m2 

I I6e. o-A' iÄr 
O'Z 

r        3ko-k3 

3k -k 
Yz 

O'Z 

-/ 

,    3k -k 3ko-k. 
cos^-^37-1]^[~JY-k3]z+3%t}d1 

Yz 

This can be reduced to 
3k -Ic, 

y'.tV-F1-  -&± «»t-P*-3.0Y.) 
£ 

• cos[3:ü0t-3Lü0Yz}e-3(t-Yz)2/T2
:Lijn   o-v 

o^Y 

The limit in the above expression merely establishes the  sign of 

£   (z^t).    A sin (x)/x relationship with respect to the phase velocity 
O 

match is obtained while  an oscillating relationship is obtained 

between the average of  the phase velocities and the group velocity 

which is then weighted by  z. 

^MÜ 
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E 
g 

The various  spectra arc  found to be 

(Z,(u)=—^ B       g 
16/3" er 3ko-k 

*cosi    §   * z-3u) VzJe JXYZ   <e 0 

<i o • 2 

,2,   ..    ,2 
-Tfc(^f3(.)n)7l2. fe 0 lü«-« 

and 

'j)0Yz}|< I 
A concluding comment and calculation give some insight as to the 

effects of the phase velocities and group velocities on THG. If the 

peak Intensity of the THG pulse is calculated and then normalized to 

the peak intensity obtained when the independent variable is zero, 

then a plot of this ratio can be made and a qualitative feeling for ' 

the process developed. In the case of matched phase velocity, the 

2   C^Jl 

^ ^M* 
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"1 

vhcre I H p«ak Intensity as a function of the independent variable, 

I^s peak intensity under the condition of matched group velocity 

(a=7) and 

T E a parameter directly related to pulsewidth. 

In the case o£ matched group velocities, the expression is 

2r3ko"k3 t   Sin[ 
t.   f

3ko-k3 ,2 

when the group velocities equal the average phase velocity. These 

functions are plotted and presented in the accompanying Figures I 

and II. 

c« Linearly Chirped Rectgngulat Pulse. This portion of Section 

III presents the types of calculations made and the results obtained 

from these calculations for the third harmonic generated by a linearly 

chirped rectangular pulse. The calculations will be only briefly 

described because of the complexity of the expressions and the 

difficulty and bulkiness involved with executing the required 

operations. 

Assume a fundamental pulse 

6*(o,t)- 1 
e0 cos{iüot+|^t2}, -|it<| 2 - - - 2 

o, otherwise 

The spectrum of this pulse is given by 

Vr(oJ«)-9Uf(o«t)]   . 
.T/2 

f0cos[<J)rtt4^ t2}e"ja,t » 
'-1/2 

3 

■L '0   2 

t^t^^tm* 
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1 

• dt + i e     2 ^ 
.ji^oL   T/2       - 

•'-«/a 

tUm 
J5Ct-^ o,2 

dt 

! 

By the use of the Fresnel Integrals, 

■f cos(| x 2) dx and 

■f s(xU   ■laCS x 2) dx   , 

I 
it is  found  that 

I 
(Oü-CI)0) 

n 2      " ■]) 

f;[l-?>.H#[|.?]) 

■   m *^mmmm 
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+ s (/;[ 
(tu+u) )' 

o 

'M^ 25 [*[i^) 

+ C (fip-'fl) 

-'KÄi-?]).<#-?])|]. 

Following the previous examples, it is seen that the spectral power 

density, S (0,01), is equal to 

^-^|[cW[i^]) 

+ c iß-^Mm^ : 

— — 
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+ S (#-^])]2'lc»^])-(Ä-^])] 

I 

I 

I 

I 

i 

tö^)-P-^f 

The equations presented in the preceeding paragraph are fairly 

large and do not leave the reader with a reasonable feel for the 

shape of the function. The equations developed for the 1HG as a 

result of this fundamental excitation become much mor«: cumbersome and 

unv/ieldy. For these reasons, information on the spectra will not be 

presented. 

The third harmonic, f (2,t), tha'c is generated by the chirped 
O 

fundamental will be calculated for the cape of matched phase velocities 

between the fundamental and the third harmonic.  From Section II, 

part E, 

-V       r 3ko-k3   3ko-k3 
V^= fe;     sin [[3'v -Ä^c^ v-v*} 

r,'Yz 

.ff(0,t-T)
3 dT . 

Under the condition of matched phase velocities, 3k =k-, then 

^* M i 
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Because ff(o,t) is expressed in a piece-wise fashion, £ (z,t) is 

also obtained in a piece-wise fashion. The limits of the integral in 

f (z,t) are affected and the expression of £ (z,t) is rather cumbersome. 
O O 

An explanation of the effect that ff(o,t) has on €  (z,t) with respect 

to the integration, and an example establishing the integral limits 

for the various regions of 8  (z,t) Is presented in Appendix F. 

There is a general form for £ (z,t), under various conditions of 

a , t,   z,  T and t. The following equation presents thi«: form while the 

accompanying table, Table I, presents the conditions, regions, and 

integral Mmitt for the four cases considered. 

In general, 

V2'^ = 8|(Ale J  ^^VV5 cosf3cü0(t-.T) + | f, (t-t)2} di . 

6 (z,t) is necessarily zero except in regions I, II and III as given 
O 

in Table I. The actual solution for the first two cases will be 

given. This is considered to be sufficient, because these consider 

the situations in which the pulse is smaller than|a-7|z and also 

larger than la-7lz.  Interchanging the group velocities does not 

cause a drastic chnnge in the character of thp solution. The solutions 

are: 

^■^Mta 
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1)   a > Y» T >  lor-vi z 

£g(z,t)= 

sin (So^t-loz) S^ÄW^iWV?^)] 

[-«[^   l]   ■"  V?^-^)] jc03 (30)^-^)1, Yz-^^2"! 

fer; ^ {KV? (t-2) ] ^[V? (Wz)] ] sd. (3.0t- 

y)    +   [>[^(t-<m)j   -^V2^ (t-Yz)J Jcos ^t-y)), 

T T 
orz-^<t<vzf2 

Sfe v^l l0t^ (wz)l *\& fl ]sta (>J'ot"l!3Z) 

[s[^ a-«) I -sk^ |1 Icos ük0t-y)}, vi|9a»iij f 
and 

2)   a > Y» T < Ky-jyi  z 

Bka^aakM^iHM Ml 
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£g(M0= 

'    3 

+ [^[V? I] ^[>f (Hf)] ]coS ü.0t-^.)j, ^<,.q 

For all t other than specified above, £  (z,t) is necessarily zero 
C 
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The third harmonic, £ (t,t), that is generated under matched 
ft 

group velocity conditions will now be calculated. Thi.^ s obtained 

by evaluating £ (z,t) in the limit as a-*?. Thus, 
ft 

f-(2,t)= UL —-^ f   min!r%n 21-2 
8     a-*  *! 

R^J     -40., - ^ L
]T+[- Ö 

Y« 
•-V f-Jtjlz} 

• 6f(0,t-T)
3 dT . 

I 
For the chirped pulse case, this-can be seen to reduce to 

-kvf 3 
fg(z,t>=     g^-0   cosl^^t-vz) + | Ü (Wz)2}       lljn 

ouY a-^ 

i r J5A. "■(O»»-^33    »K?^»^W*. 

I 

I 
I 

[ 

I 
I 

Upon evaluation, f  (z,t) becomes 

* 3kn-lc, 

8e. 3VÜ 

^g(z,t) = , 

• Ilia tef")sinf3oü0YZ -      2      ^] C08[3u)0(t-Yz)+| IT (t^z)2] 

for YZ -2~t~y<Z+2 

I- otherwise 

-■    -   - ^MM^Bi m 
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The effects of several parameters on peak intensity will be 

shown now. As before, the Information will be shown graphically and 

In a normalized manner. The development used Is quite similar to that 

of the gaussian case, although this time it is not possible to present 

as much information as would be desired due to the number of variables 

involved and the complexity of the function. For the phase velocity 

matched case, the particular case of a>y, T <lar-y|r will be considered. 

In addition, only Region II of the solution will be evaluated unde 

the assumption that it dominates the peak intensity. After normalizing, 

the peak intensity is given by: 

(c(X)2 + SU^j/X2, where £. JK | 4 

thus containing both ? and T. A plot of this function is shown in 

Figure III, where the pulse width, T, is held constant. 

Another case, when JT is held constant and T is the variable 

parameter, is also presented. The peak Intensity is proportional to 

2     2 
C(X) + S(X) and a plot of this function is shown in Figure IV. 

Finally, the case of matched group velocity is shcii. in Figure V. 

2     o 
This is simply the sin  (x)/xz function that appears to be the charac- 

teristic function associated with mismatched phase velocities. 

.^_ mm* 
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I SECTION  IV 

CONCLUSIONS 

I 

A theory for THG has been developed from Maxwell'. Equations for 

a unlfom plane wave In an Isotropie medl-m. This theory is fairly 

general with the only outstanding assumptions being that the generation 

process 1. assumed to be relatively inefficient and that the spectral 

bandwidth of the pulse about the center frequency is sufficiently small 

that the propagation coefficients of the fundamental and third har- 

»onic can be represented by a truncated Taylor's expansion. For the 

present state-of-the-art in optics, these assumptions ar- quite prac- 

tical. 

A series of three examples were then examined. The first of these, 

an eternal sinusoid, was examined to determine whether the results 

of this theory fit previously obtained results. A comparison was 

made with the results of a recognized group of workers in the field 

and a favorable outcome was obtained. 

The second example was a sine wave that was amplit^e modulated 

with a gaussian wave form. This fundamental pulse was then examined 

for THG under conditions of matched group velocities and of matched 

phase velocities. For matched group velocities, the variation of 

peak intensity followed a sin2 (x)/x2 function while for matched 

phase velocities, the peak inten.lty followed a erf (x)2/x2 function. 

The third example was a linearly chirped rectangular pulse,  rhis 

example was quite difficult from a mathematical point of view and 

only the most interesting results and calculations were presented. 

The THG pulse was examined under the conditions of matched group 

■  tm    i ^^mm 
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velocities and of matched phase velocities. For the condition of 

matched group velocities, the peak Intensity followed a sin2 (x)/x2 

function.  For the condition of matched phase velocities, the THG pulse 

was examined as a function of frequency modulation and as a function 

of pulse width. In both cases oscillatory behavior was observed. 

When the frequency modulated case vas examined, the peak Intensity 

followed a (C(x) + S(x)2)/x2 function. When the pulse width 

modulated case was examined, the peak Intensity followed a C(x)2 + 
2 

S(x) function. This oscillatory behavior is quite interesting and 

could possibly be seen in an experiment if, for example, a train of 

plco-second laser pulses were to change pulse width as the pulse 

train progressed in time. 

la conclusion, this work has developed a seemingly valid 

theory of THG and has, within limits, begun to identify 

THG results as a function of material and excitation parameters.  It 

le sincerely hoped that this effort will benefit others In this 

field of endeavor. 

• 
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Case Region 

I 

Interval 

Yz 

T2 

or > Y 
T                        T YZ-2<t<az-£ -1 

T > Icr-jyl z II az-^<t<Y2 + 2 YZ az 

, 
in T                        T YZ + 2<t<orz + - -i OfZ 

a > Y i 
T                         T 

yz~-2<t<yz+^ Y« t + | 

T < Icr^Yl   z n T                       T YZ + gltlQrz-^ »1 -1 
m orz-|<t<az+2 -1 arz 

Y > a i 
T                        T 

crz-2<t<Y2-2 -1 M 

T > |cy-V(   z ii 
T                        T 

YZ-5<t<az + 2 Yz az 

in T                       T 
az + ^<t<YZ + 2 Yz -i 

Y > a x T                       T az-|<t<az + ^ -1 az 

T < (a-*,'|  z n T                       T 
t + | t.| 

ni Ya-|<t<Y2 + | YZ •-! 

I TABLE I.    Integral Limits for THG of Linearly 
Chirped Pulse. 
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FIGURE I. 
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Peak Intensity of THG of a Gaussian Pulse as a Function 
of Group Velocity Mismatch. 
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FIGURE II. Peak Intensity of THG of a Gaussian Pulse as a Function 
of Phase Velocity Mismatch. 
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FIGURE in.   Peak Intensity of THG of a Linearly Chirped Pulse as a 
Function of Variable Chirp. 
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FIGURE IV. Peak Intensity of THG of a Linearly Chirped Pulse as a 
Function of Pulse Duration. 
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FIGURE V.    Peak Intensity of THG of a Linearly Chirped Pulse as a 
Function of Phase Velocity Mismatch. 
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APPENDIX A 

EVALUATION OF THE  INVERSE FOURIER TRANSFORM OF: 

-J[3k0-k3+(a-^) ((ü-3U)0) >/2    sinj [Ik^+ja-y) OrgO W2) 
8 [3k0-k3+(a-,')(uj-3a)0) ]z/2 

!0( 

Postulate a function f(t) and knowledge of its Fourier transform, 

FCw). Denote the transform pair relationship by the symbology 

f (t) *-»F(w) 

Let F(oü) . t-MC»nO slnrAfm-.^l 
A(u)-A) 

From the expression In the title, it is seen that 

A S (a-^)2/2 

Thus f(t) «■ 

The scaling relationship, 

f(at)   - 

is applied yielding 

e-JA(u)-A)       sjjif AQn-.n) ] 
A(a)-iO 

JL F(ai) 
iai '^a' • 

f(At) = TAT   ej(cü"A)    3^-A]    , 
cum. 

The frequency shifting property, 

*J 
F(u)-u)0) , f(t) e 

is applied yielding 

f(At) e"^1 ♦-* -L-   e"^ sljl'J) 

IAI e     ,0   • 

Finally, the time shifting property, 

f(t-t ) «-* F(«) e"Jwto 
o 

is applied and the scale factor I Al is transposed. Thus, 

iAlf(A[t+l]) e-JßACt+l)^ ^l^j. i 



I 

! 

U3 

If dCO^^i- , then 

d(t) - j %, -1 < t < 1 

' 0, otherwise ■ 

There now exists the equivalence 

d(t) - IAI£(ACt+l]) e-^^*
0  . 

Allow a change of variable, 

t» - A[t+l] . 

Thus f(t') -7X7d(^-- 1) e3-t,  . 

Deleting the primes and using the definition for d(t), 

0, otherwise  . 

If A < 0, the inequality is reversed. Using the definitions of A and 0 

originally stated, 

J[3. 
3k -k, 

o 3 

l«-V|2 
i  ."   o     a-y  e 

] t 
, 0 < t < (a-Y)2 

f(t) 

0, otherwise  . 

^^^mm* 



APPENDIX B 

mLüATING £ {z,t) WHEN a_Y 

I 
I 
[ 

let ^(o^t) = Co sin <o0t 

.£0
3Bin3{%(t-T)}dT    . 

Coneidering only the third harmonic, £ (z,t) becomes 

v^-StjC-tK-2^^^« 
• 8ln{3u)0(t-T)}dT    . 

Uoing sin x sin y = J[cos(x-y)-cos(x+y)], 

kJtf '     r ^-erz 3k -k,       3k -k- 

/.»■ 3krt-k,       3k-k, T 

Perfomdng the indicated integration and simplifying. 

■■* d 
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*.<■•'> - Sr; 
O n,-JU \ 

ain{6a) az-3k Z-3OJ tl o o       o 

L     o      or-V 

- sinC^Yz-k^z-^t} 1 

3^- [ 8M3u}ot-3koz)-8in(3u)0t-k3z} 

Taking the limit as cr-»Y, 

kJiC.3 

£g(«.t)--^2-   ^ijg   8ln{60,^2-^3-3«,^) 

- »InC6^^2-3^-3«,^)+8ln{3u,0t-3k0zJ-8lii{3u,0t-I^z}      . 

Ualng aln x - sin y - 2 sin i(x-7) cos i(x+y), 

3 p (a,t). 5öi üä&S 
-r ^ 

3k -k, 
cost3u,rtt+     "   ^ -6u,«Yz} O *i o 

+C08{3u,  t -^..] 
Finally, using cos x + cos y • 2 cos iU+y) cos J(x-y), 

3k,. 
lc,xr3z   sin{~ 2       '1 55 

3k -k, 
cos[3(«QYz-      o^ z}cos{3ttj t-3u, v«} . o   —o' 

^■^^ 
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APPENDIX C 

REUTING k TO PHASE AND GROUP VELOCITIES 

Th« accepted definition of ph««e velocity It the velocity at which 

a fixed polr : In phase travels. For a simple traveling sine wave, 

sin (wt-kz), the phase velocity la given by 

Thua, k - -=- . 

P 
3.    •. 

If 3k - k,, then  —£ - -i- 
Po    P3 

I and alnce <*. - 3«* , the conclusion la that V  ■ y  . 

./ Po    P3 Historically, the phase velocity has been considered to be the speed 

of light In the medium under consideration. Thus, 

I 

I 

\rp-c/n 

where c ■ apeed of light 

n ■ Index of refraction. 

If VD ■ V«   »  t^en neceasarlly nan.. 

Packets of electromagnetic energy are usually  conaldcred to 

travel at a velocity called group velocity rather than the phaae 

velocity.    Using a spectrum closely grouped about w   ,   the group 

velocity la 

Thua a and 7 as uaed In the paper art reciprocal group velocities. 

• 

^^M 
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APPENDIX D 

REIATING |^ TO n AND -^ 

l 
I 
I 

II 

Because nsoet Infonnetlon relating propagation to materials used 

in optics is given in the form of n(X), it is sp^ropriste to relate 

the group velocity to n(X). 

^»t A - xjn,  where AÄ is in vacuo, then 

O"  Ow  A« 

Becauae 

The more coninon optical term is dispersion which is ^-.    This will 

be related to ^. 

dXÄ     5«    dX~ 

L 
ll 

I 

OX"' " x   5 

.   dn ^o     ^n 
i 

— ■ 



I 

maao** dm
mc      c  2.e    &„ 

2   0 

A  Ji Ao   ^" 
O O 

ffa-1^) • 
Because a and y are each expressed as ak 

•■rW-^lr > -ir.Jv**. 

rr^ 

A graphical Interpretation of this is possible using normally avallabl« 

graphical material. The graph below is an example which shows A , 

dn   . dk 
§Ä7'ndc^ 

n(A ) 
o 

c h 

n(AO 

n(A) for a typical material 

The ordinate intercept gives directly the value c 5^. ' From a graphicai. 

conatruction such as this, a match of phase velocity and group velocity 

can eaaily be made. 

^^^i 
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APPENDIX E 

A CONVOLUTION RELATIONSHIP 

Prove: 

■r- F(.)*GU) 
Zir 

I'roof: 

f(t)g(t) 

■fa K^OU)«^^*1 j-^ f F(«-u)G(u)du[ 
—a» 

^-^j j-^f  F(«-u)G(u)du [   e J",t 
do. 

Due to the frequency shifting property, 

Thus 

) eJwt U . f(t) ejut . 

"27 F(U))*G(U)) if«- )f(t)e3ut du 
-f(t)|if G(u) 

—a> 

^ du 

y- F((ü)*G(Oü) —* f (t)g(t)  . 

49 
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APPENDIX F 

1 

- 

ESTABLISHING THE LIMITS OF INTEGRATION OF f   (z,t) FOR A 
8  * 

RECTANGULARLY PULSED f (o,t) 

Por expressions of £f(o,t) that are in a plecewlse manner 

rather than a single analytically expressed function, establishing 

the limits of integration for f (z,t) is not always simple.  It is 

the purpose of this appendix to illustrate a useful graphical 

technique for determining these limits. 

L.t€£(o,t)-|l, -I^tlf 

(0, otherwise 

and let 

oz 

£g(z,t) -j £f(o,t-r)
3dT. 

7z 

Such a function is sufficiently close to the actual function of 

Cf(o,t) and £ (z,t) for this illustration to be valid but simple 

enough to convey easily the Intent of the illustration. Assume 

oz>7z and that T^to-Ylz. For t<yz-|, Figure A-IV(a) represents the 

region where the integrand is non-zero and the region of integration 

do not overlap. The integral is necessarily zero for this 

condition. As t increases, ff(o,t-T) moves to the right and finally" 

T 
enters the region of integration. This occurs at t-yz-r and the 

T        T 
limlte of Integration become yz and t+r until t-i^az. This condition 

is shown in Figure A-IV(b), As CfCo.t-T) continues to move to the 

right, finally it spans the entire region of integration and the inte- 

gral limits become yz and «z. This condition begins at t-feoz and 

T 
lasts until t-j-vz. This condition is shown in Figure A-IV(c). 

. 

.4_^^MBM^Ma 
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I 
f 

After t-^yz, f .(o,t-r) begins emerging from the region of Integration 

T T 
end until t-rsawz, the Integral limits are t--r and «rz. This Is shown In 

Figure A-IV(d). The regions depicted In Figures A-IV(b), (c), and (d) are 

called Regions I, II and III respectively and are the regions In 

which f (z,t) Is not necessarily zero. For t-T>az, £,(o,t-T) has 

completely emerged from the region of Integration and B  (z,t) Is 
8 

zero. This Is shown In Figure A-IV(e). 

The results of this exercise and the remaining cases Involving 

az, '/z  and T are tabulated In Table A-IV for an Integral as shown 

here: 

fg(z,t) C e.,(o,t-T)3 d 

- "  i ' "l*  • ' mt*Am 

^mmM 
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I 
I 

I 

(I 

II 

L 
I I 

I 

I 

dx e> 
\ * • 

Cape Region Interval i .   i 
a > Y I Ya-|<t<az-| Yz -f 

T > la-YI a n afZ-|<t<Yz + | Yz arz 

in Yz + |<t<az + | »1 az 

Of>Y i Y«-|<t<Yz + | Y» **l 
T< |a-Y| z n YB + |<t<crz-| •1 ♦ *l 

in T                             T 
QfZ-^<t<az + j »1 crz 

V>a i orz-|<t<Yz-| **l orz 

T > |a-\' | z n T                             T 
Yz-5<t<az + ^ YZ cyz 

in crz + ^<t<Yz + | YZ -i 
Y>af i T                        T 

Qrz-^<t<az + * -i arz 

T < |a-Yl z n az + |<t<Yr-| -i »1 
• in Y«-|<t<Yz + | Yz »1       . 

Table A-iv. 

Convolution Integral Limits. 

. 

■  -   ■ 
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£f(0,t-T) 

Region of 
Integration 

•I -I Yz orz 

(a) 

ef(o,t-T) 

Region of 
Integration 

*-§ Y«' t + 2 az 

ff(o,t-T) 

(b) 
Regie of 

Integration 

Region of 
Integration 

t-| Yz 

(c) 

a     t + | 

gf(0,t-T) 

Y«  % - f «I 

Region of 
Integrate nn 

(d) 

JZ 

-I 

£f(0,t-T) 

Yz OfZ  t - ^ -i 
(•) 

FIGURE A-IV.   Convolution Integral LlMts Relationship. 
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