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A NUME3RICAL PROCEDURE FOR TWO DIMENSIONAL HEATING AND
MELTING CALCULATIONS, WITH APPLICATIONS TO LASER EFFECTS

by

Peter J. Torvik

ABSTRACT

A method for determining the two dimensional transient temperature

distribution and progression of melting in disks subjected to an applied

flIu over one face is given. The calculations are performed by dividing

the solid into a number of finite eleme,'ts and performing a heat balance

over finite time increments. The method was found to give good agreement

with known solutions for two dimensional heat conduction problems and one

dimensional melting problems. Two dimensional melting problems in alumina,

titanitm, stainless steel and magnesium are also considered as examples

of the method. The results include a demonstration that the time re-

quired to melt through approaches the time predicted by a one-dimensional

(axial) heat balance if the power per unit thickness is sufficiently

large.
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I. INTRODUCTION

If the radiation from a high intensity laser is directed onto the

surface of a solid, significant temperature rises will occur, and will

eventually, in the case of a continuous incident flux, lead to meltisig

and possibly vaporization of t.ho material at the surface. As time pro-

gressew, the region of melting may be expected to increase both radially

from the beam center, and into the solid. The heating of the material
It

will also lead to thermal expansion which will, in turn, give rise to

thermal stresses which m.y be of sufficient magnitude to cause fracture.

This phenomenon is most likely to occur in materials of limited ductility,

as ceramics; however, in a composite material, or in a composite struc-

ture., the differing coeffici'ent3 of thermal expansion may give rise to

internal forces wvhich bring about failure of the bonds between the con-

stituents, leading to significant degradation of the strength and use-

fulness of the parj or structure.

In addition tq melting, vaporization, and fracture due to thermal
I,

stress, damag% may also be brought about by other means. If the heated

object is a load carrying member, the interaction of the thermal effect

with the load must be considered. The increase in temperature may cause

such a reduction in the yield strength of the material that the load

carrying ability of the part or structure may be seriously reduced, causbig

failure to occur at a load which would be in the safe range for the un-

heated structure. Creep rates May also be higher at the elevated temp-

eratures brought about by laser heating. Damage may also be caused in

an indirect manner, as for example, if the laer heating brings about the

removal of a protective conting.
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In view of these many possible consequences of heating of solids,

it is imperative that methods for determining the resulting temperature

distributions be available. For a material which is thermally isotropic

and homogeneous, so that conductivity, density and specific heat are each

a single constant, the temperature, as a function of time and position,

is the solution of the familiar heat conduction equation. If, in addition,

all thermal properties are independent of temperature, the equation is

linear with constant coefficients. Solutions for some interesting and

important problems may be obtained in closed form, or in terns of a

Fourier series. Many such solutions hive been collected by Carslaw and

Jaeger [1). On the other hand, if the thermal properties vary from point

to point, or are functions of temperature, the possibility of finding such

solutions becomes very unlikely.

Problems for which an exact solution cannot be obtained may be attacked

by approximate or nunerical mnthoos. Finite difference methods have been

used extensivoiy, and have been applied to both one and two dimensional

problems [2-63. In addition, finite element methods for heat conduction

calculations have been developed in the past decade [7-91. Surveys of

recent work ara also available 110,111. One disadvantage of the numerical

mNehod is that thermal stresses cannot be determined easily with good

accuracy. for the thermal stresses depend on the gradients of temperatures,

and these cannot be determined with good accuracy by a method designed

to yield numerical values for the temperatures themselves. A variational

method for heat transfer problem has been given by Biot [123 and has

been applied to problems including phase changes (13,14). A closely re-

lated approximate mothod has been given by Goodman [15,16). To date,
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those methods have been applied to only one dimensional problems, but

could as well be used in multi-dimensional heat conduction.

The phenomenon of phase change is not described by the heat con-

ducteion equation, per so, but problems involving a change in phase have

been treated by introducing a moving boundary separating the two phases,

and attempting to solve the heat conduction equation in each phase, with

the appropriate matching being enforced at the interface. Problems in-

volving such a moving boundary are inherently non-linear, and plane one

dimensional problems have been treated most exteasively [3, 13, 14, 15,

16] by the above mentioned methods, and others [17-20]. In this case, the

moving boundary is plane. In two or three dimensional heat conduction,

both the location and the shape of the boundary are unknown, leading to

much more difficult problems (21,22]. Multiple phase changes have also

been considered 1231.

In real materials, the thermal properties are functions of temperature,

and it is unlikely that any exact solutions will be found, although the

approximate methods can be applied [24]. The possibility of finding

exact, or even good approximate solutions, for heat conduction problems

in composite or layered materials is quite unlikely. Such problems can

be gorC successfully treated by one of the numerical methods.

In applying the method of finite differences one first writes down

the governing differential equation, and then seeks to develop a set of

difference, or algebraic equations through the process of discretization.

In the finite element method, as used elsewhere, [9], a simple, approximate

temperature distribution is assumed for each finite element, and defined

in terns of nodal temperatures. The resulting temperature field is sub-

stituted into a global energy functional, the first variation of which
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leads to a set of algebraic relationships between the nodal temperatures,

at each time. In a transient problem, this system of equations must be

solved at each time step, necessitating the inversion of a large matrix

at each time increment. A finite element approach is expected to be

particularly advantageous for heat conduction in an inhomogeneous material,

whether the inhomogenieities are initially present, or arise from temp-

erature dependent properties, for the thermal properties of each element

need not be the same, or constant. The possibility of treating a phase

change is also apparent, through allowing certain of the finite elements

to be of one phase, while other elements are of another phase. In such an

approach, however, one would wish to use extremely small elements so that

the phase boundary can be located with good accuracy. In the finite

element methods previouly developed, the goal has been to use as few

elements as possible, because of computer storage limitations and the long

running times required to solve a large system of equations at each time

increment. Consequently, in the present work, a different finite element

approach was used, one which does not require the solution of a large

system of equations at each time increment. For the same number of elements,

the present method is therefore expected to be less accurate than the tra..

ditional finite element methods, but is expected to be more feasible for

the approximate determination of the liquid-solid interface in two dimen-

sional heat conduction problems with change of phase.

In the section to follow, .a general method for solving heat conduction

problems with prescribed boundary flux will be given. The geometry to be

considered is of practical interest, namely, a plate, slab, or sheet of,

uniform thickness, subject to a prescribed flux on one face. In the third

1



section, some comparisons between results obtained with the now method..

are compared with results obtained by other methods, both exact and appiox-

imate. Finally, in Section IV, some results for two-dimensional heat

flow with change of phase are given.

Although numerous, the works cited here by no means give a complete

survey of the methods available for heat conduction problems, nor of re-

suits obtained for problems involving a change of phase. For a more com-

plete treatment (through 1964), the review by Muehlbauer and Sunderland

(2SJ may be consulted. More recent work is described by Boley [26].
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II. DEVELOPMENT OF FINITE ELEMENT METHOD

We consider a cylindrical disk, with a prescribed flux having a

known variation in the radial direction and ccnstant in time applied over

the .central region. Exact solutions to this problem have boon given for
q/

temperatures below melting in a homogeneous and thermally isotropic disk

[27). For sufficiently large flux, the tempertures within the disk will

be brought to •the melting point. The determination of the temperature

and the location of the solid-liquid interface then becomes quite diffi-

cult, and has been extensively considered only for one dimensional prob-

"ole, such as occur when an infinite slab is subject to a uniform flux.,,

The. approach to be taken is to divide the region of interest into a

large number of finite segments and perform a heat balance on each. We

begin by dividing the thickness, 1, of the disk into a number, NR, of

layers which, for convenience, will all be taken to be of the same thick-

ness, although each layer can easily be assigned a different thickness, if

desired. In a similar manner, the radius, a, is divided into NC equal seg-

sants, although unequal segments may again be used, if desired, For the

case of an axially symmetric flux, there will be no circumferential flow

of heat, nor any circumferential temperature variations, and consequ ently,

no subdivision in the circumferential direction is required. Hence, the

disk has been divided into NC x NR segments, each of which is in the form

of a solid annulus. In order to provide for eventual inhomogeneities in

the thermal properties. which may arise either through consideration of

a composite material or as a consequence of material properties which are

a function of temperature, or because of a phase change, it is found to

be convenient to define certain amrays (NRx NC) describing the pr-oerties
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of each finite elew.t. In all that Is to follow, the first index de.,

notes the row number, as in Figure. 1, and is related to the z or thickness

coordinate, and the second index deniotes the column number, and is related

to the radial or r coordinate. The array shown in Figure 1 may be thought
qe

of as the right half of a diametral section of the disk.

Let

a inner radius of cells in column i. cm,

A; ro outer radius of cells in column j, cm.

Azi a area of interface separating cells in column j
2 2 2

a - rj. )- , ca

A1 . Area of interface separating cells in column j from cells in

column J 1

a 2*ro L/Nia cm2

Sj= density of cell of row nunber I and column ,gm/

NO -mass of cell i, J, .

i "p Az: I/N1
zi R

hij heat of fusion for cell I, J, joules/gm

Kj Ki a conductivity of cell i, j in radial and axial directiobs

respectively, joules/(sec ca 0C)

, Q;-a tates of heat flow out of cell 1, j in radial and axial

directions, respectively, joules/sec.

O aj Average temperature in cell i, J, °C

C a specific heat of cell i, j, Joule/(P'C).

*Pij
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The heat fluxes for a typical element are shown graphically in Figure 2.

The rate at which heat flows radially from cell i, j into cell i, j)l is

given approximately by the product of the conductivity, the area of the

interface, and an approximate value for the temperature gradient at the

interface between these two cells, or

SQR.. a KRij ARj J , att IN j

Similarly, the rate at which heat flows from the cell i, j axially into

the cell i+l, j is approximately

QZija KZij AZJ O - G1l.1 (2)Z/NR

In addition to the flow of heat from one cell to another through conduc-

tion, the heat balance must take into account the possibility of heat

addition to each cell from external sources, and from internal reactions,

through a heat. addition term for each cell which includes both effects.'

Fij FE + (3)

ij i 
Ij

Fiji the heat added, has dimensions of joules/sec. The heat balance is

performed for each cell by adding the heat entering cell i, j from the neigh-

boring cells i-l, j and i, j-1 to the flux added, Fiji and subtracting,

the flux leaving, QR1j and QZ ij. If cell i, j is at. a temperature le--s

than the phase transformation temperature, the temperature will rise in

a time At an amount given by

hoij 0 AQI* , At/(Cpij Mi ) (4)

AQij a Fi' + °Ri,j.l * Qzi-,lj - QRij " Qz1 , . (sQ

The temperature rise will continue in later time increments At un-

til such time as the temperature at which the phase trwnsformation takes

9
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place is reached. The total energy which must be added after the melting

temperature is reached in order to bring about a complete change of phase

of all the mass in cell i, j is given by Ltjj1j. It is convenient to

compute this quantity for each cell, and store the result as an array POjO

Then, beginning with the first time increment in which the temperature of

the cell i, j is at or above the melting temperature T,,, the stored quan-

tity Pij is reduced from its current value by the amount aQijAt in the

time increment At and the temperature is held fixed at the melting temp-

erature. At K time increments after cell i, j first reaches T.0

K
-ij I Fij " k l u QiJk Atk (6)

and the entire cell is presumed to complete the phase change during that

time increment in which Pij.* o. The material in cell i, j is then per-

mitted to increase in temperature once again, with specific heat and con-

ductivity now being appropri-ate for the new phase, if it is assumed to

remain on the surface. Alternatively, the material which has undergone

the phase change may be assumed to be instantaneously removed, as in the
case of ablation, or melting where sufficient forces are present to over-

come the surface tension of the melt and remove the melted material as

it is formed.. In the case of complete melt removal (or equivalently,

ablation), as .As considered in all of the examples to be discussed in the

aoxt sections, the conductivities$ KRij and KZij are set to zero at the

time the material is removed, which has the effect of removing the cell

1, j from the heat balance calculations. The flux Fgij, representing the

flux added externally to cell i, j is transferred to the cell imdiately

below, i.e., to cell iWl, j at the same time.

11



The heat balance for cells or elements on the boundary must be handled

somewhat differently from those on the interior so as to provide for the

approximate satisfaction of any given boundary conditions. In the case

of a prescribed boundary temperature, the temperature of that boundary cell

is held fixed for all time inctements. In the case of an insulated boundary,

the net flux in the direction normal to the boundary is set to zero. In

the case of a prescribed flux, the net flux in the direction normal to

the boundary is set to the desired value, and in the case of a boundary

condition described by Newton's law of cooling, the flux normal to the

boundary is set to the difference between the temperature of the boundary

cell and the surroundings, with the appropriate multiplicative constant

included. By symmetry, the radial flux entering cells in column I is

zero.

* Because of the approximate way in which the conductibn is computed

(Equations I and 2) the time increment At must be sufficiently small in

order to insure stability of the solution. The flux for the entire time

increment is computed based on the temperature difference between adjacent

cells at the beginning of the increment. It is evident that if the time

increment is permitted to be too large, sufficient heat would flow to cause

the initially colder element to become hotter than the initially hotter

element, which is obviously impossible. A physical derivation of the I
appropriate stability condition is easily obtained. If two cells, the

centers of which are a distance A: apart are initially at temperatures

T, and T2 , and if the conductivity is K, in time At the total heat flo"

will be

Qa KA At (TI T2)/Az (7)

12
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where A is the area of tha annulus separating the two elements. If the

specific beat (per unit vohCe) of efch !a PP, then at the above flux,

temperature equilibrium between the two elements is reached when

PQ. u pCV (T1 - T2)/2 (8)

%ere V is the volume of each element, approximately Aft for each. Elim-

inating Q between Equations 7 end 8, wefind

At a 0pC (A) 2/(2K) (9)

But temperature equilibrium cannot be established in a finite time, hence

At must be less than this bound. Moreover, in two dimensional heat flow,

both components of flux must be considered, leading to a more stringent

requirement. However, if the two element spacing distances, a/NC 4nd

I/NR are not comparable, the maximum permissible time increment is sat-

isfactorily determined by using the lesser distance increment in Equation 9.

A method given by Dusinberre [28] for the hand calculation of transient

temperatures is very similar to the method used here to compute the heat

conduction. If the thermal'properties are uniform and cons.:-ant, the method

can also be shown to generate the same equations as would arise with the

methiod of finite differences, with central differences being used in the

space varitbles and a forward difference employed in time. The stability

und convergence of such techniques applied to linear problems (constant

propexties and no melting) have been extensively studied [29]. Numerical

mothodas for the treatment of the non-linear problems have also been dis-

cussed J30J.

A computer program was written and used to perform the calculations

described in the next section. A listing of that program, together with

a brief documaentation, is given as an appendix.
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III. COMPARISONS WITHf KNOWN SOLUTIONS

We will now consider several example problems: making comparisons

between teaperatura fields predicted by the finite element method described

in the preceeding section, and exact solutions, when possible, and other

approximate methods, when available.

a. One Dimensional Heating of Thick Slab

As a first example, we will consider one dimensional heating of a

thick (infinite) slab having properties approximating those of A12 03 .

We take

P " 3.8 W/cm3  4
9 a 0.104 joule/(cm sec *C)

Cp a 0.885 Joule/(gmC)

To a 2313*K

an4 consider a uniform flux of 4000 joules/(cm2sec) striking material

initially at 300*K. The exact solution, valid to 2he onset of melting,

is known [(1 to be

e - is 2F(*t)l/2 ierfc X,, 1/_2, (10)T. o - K 2(st)1/

where a is the diffusivity, K/(pCp). and ierfc denotes the first integral

of the complementary error function, The front surface temperature is

given by

T - T 2 E (st/i) 1/ 2  (11)TO K

and, for the parameters given above, the surface melts at 0.0695 sec.

The temperature profiles given by Equation 10 are plotted at 0402,

0.04, and 0.06 seconds in Figure 3 as the solid lines. Temperature pro-

files for the same heating conditions were determined by the finite ile-

mat method through considering a slab 0.2 cm thick (from Figure 3, it

14
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can be seen that a slab of such thickness may be regarded as being of

infinite thickness for times less than 0.06 seconds). The slab was

divided into 20 and 40 layers,.with time steps of 0.001 and 0.00025 seconds

used in the two cases, respectively. (Time steps less than 0.0016 and

0.0004 are required here for stability). The average temperature in the is

first 0.01 ct of the material at t a 0.06 was found to differ by less than

r0.2% between the two calculations. The "esuits of the finite element

calculations using the larger layer thickness and large time ste, are

given as the circles in Figure 3. As can be seen, the results of the

exact and approximate calculations are, for the most part, indistinguishable.

b. One Dimensional Melting of Finite .Slab
As a second example, we consider the one-dimensional heating and change i

of phase of a finite slab, assuming the melt is instantaneously removed,,

For a prescribed uniform flux F on the surface x a A, and the other face

(x. 0) insulatedj the resulting one dimensional temperature field is [1)

•3 Z2) 2 (_,)n . _n2,2t/L2co, c1.'
T-To L W F nal C J (12a)

• 2K.i naierfc[,(2n~l) I-xj ierfc [(2nJl)Z+xl (12b)

valid until such time as melting begins at the front surface.Masters (3)

has given results obtained by a finite difference calculation for the

predicted recession of the front surface for an aluminum slab, using the

properties

To a 993*K

L * 418 joules/gm

K a 2.09 joulv!(cm sec *C)

16
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a • K/(PCp) 1 cm2/sec

A X 0.3 cm

We assume the complete and instantaneous removal of the melt, resulting

fromuthe application of a flux of 41,800 joules/(cm2 sec). Taking the

density to be 2.7 gm/cm3 , the value of specific heat required to yield

a unit diffusivity is C- 0.775 Joule/(P*C)

The total time required to melt a slab under one dimensional heating

is readily determined from an overall heat balance to be

Ft - [L + p (TS - To)Jpt (13)

or 0.0186 seconds. From the exact solution, (Equation 12), the time re-

quired for the front surface to reach the melting solution was found to

be 0.0011 sec., hence 0.0175 sec. are required to move the melting line

from the front to the rear surface. This time was also computed by the

finite element method, first by dividing the slab into 10 layers and using

a time increment of .290 sec and by dividing the slab into 20 layers and

using a time increment of SO v sec. The two melting times were determined

to be 0.0182 sec and 0.0170 sec, indicating that the approximate method

appears to be converging ýo the correct solution as the size of the incre-

ments As reduced. In both of these cases, the time steps used were just

under 50% of the minimum time stop required for stability. The location

of the moving free surface is shown in Figure 4. The solid line is the

result given by Masters [3J, and implies a predicted time (: 0.02 sec) which

is greater than the time deduced from the overall heat balance (0.0186 sec).

The other two curves in Figure 4 depict the results of the finite element

calculation, using 20 layers and At d 50 p sec. The lower curve depicts

the time at which various points first reach the melting temperature, and

17
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the upper curve indicates the times at which particles are ccpletely

melted and removed. The-interval between the curves indicates the region

in the process of melting.

The problem of one dimensional melting with complete removal of the

melted material has also been treated by Citron, who has given [143 an

approximate (rather than numerical) method and some typical results. His

results are presented in such a.manner as to indicate-that only a single

dimensionless parameter, W/r, is required to characterize the problem.,

1 ,/2
IF rT (14)r U

The value of H/r for the parameters used in the previously described cal-

culation is 9.86. These calculations were then repeated with a flux

F a 20,750 jou.e/(cm2sec) so as to give a value of W/r a 4.89 identical to

the one used by Citron. The two dashed curves of Figure S are results given

by Citron as first and second approximations. The abcissa is a dimension-

less time, defined by

S- (t - t*) (15)

Pt being the time of front surface melting.

The ordinate is the fraction of the thickness which has melted at

dimensionless time T. The solid curve, labeled r' 0.235, depicts the re-

sults obtained by the finite element method, and should be in. agreement

with the results of Citron. The apparent discrepancy at the early time

was found to be due to the inapplicability of the Citron method at small

v•iues of r, even though r does not appear explicitly in the results. In

developing this approximate method, Citron assumed the exponential terms

in Equation 12a to be negl 4 gible at the melting time, t*. With this

assumption, we have at*(16)
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A r of 0.235 leads to a meaningless negative time of first melting. The

approximation made by Citron is valid only for r - 2/3 or greater. In

order to compare the results of the present method with those given by

Citron with a value of r such that his results are valid, calculations

were performed for a flux of F n 20,750 joule/(cm2sec) and all properties

those of .3 ca thick aluminum, except that a melting temperature of 2373"K

was used. This leads to a value of r of 0.705, with M/r a 4.89. The

results of this calculation are given in the Figure as the indicated

solid line. Although there is some difference between the two pre-

dictions, they are now in qualitative agreement. *

c, Two Dimensional Heating of a Thin Sheet

As a third example, we consider the two dimensional temperature dis-

tribution resulting from a steady axi-symnetric flux of a Gaussian distri-

bution acting on a thin sheet.

F(r) a (17)

The pro-melting solution can be compared with the temperature profiles

predicted by a computer program Written at AFWL [31) which evaluates the

solution given by Olcer (27).

As an example, we will consider a titanium sheet, 0.04 ca. thick and

6 ca. in diameter, initially at 300K, having thermal properties

P a 4.43 gm/cm
3

K a 0.145 joules/(cmOCsec)

C - 0.77 joules/(gx*C)

To 19000K

L 3 s90 joules/gm

We assume the dUs'% is subjected to a bean of peak inten -,ty of 2000
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joules/(sec cm2) with a - 0.25 ca. The pro-melting temperature field was

computed using the finite element method by (a) dividing the slab into

10 layers and the radius into 40 annular regions, using a time step of

80 p sec, and (b) by dividing the sheet into 20 layers and 20 annular

rings, using a time step of 20psec. In beth cases, the time step used

was about 404 of the minimu value necessary to satisfy the one dimensional

stability criterion. In the most extrem case, AR/AzIS, and it was assumed

that instabilities would primarily arise due to the axial, rather than the

radial, flux. The temperature profiles at z a 0.002 ca (1/20) were found

to differ by less than 1% for all r, at times t a 0.03 and t a 0.10 sec.

Tomperaturoeprofiles as computed with the finite element method (solid lines)

are compared with the results of the Fourier series solution (AFWL computer

program) in Figure 6. The agreement is excellent, particularly within the

beam radius (2a - 0.5 ca). Temperature profiles through the slab thick-

ness, at r - 0.0625 ca, are compared at two values of time in Table I.

The exact solution indicated that melting begins at the front surface at

t * 0.1037 sec. The two finite element solutions gave 0.1047 and 0.1064

sec., respectively. Although this is a two dimensional problem, axial

heat flow predominates and the one dimensional approximation is quite

s3tisfactory for it leads to a predicted time to first melting which is

only 10% low.
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Table I

Temperatures (OKI at r * .0625 cm

t 0.3 sec t .10 sec

a Exact So. App~oximato Soln Exact Soln Approximate Soln
a b a b

.002 852 871 871 1743 1793 1795

.006 807 823 822 1697 1745 174I

W.010 766 780 780 1657 1702 1705

.014 730 743 743 1622 1665 1667

.018 699 711 710 1590' 1633 1635

.022 673 684 689 1564 1606 1609

.026 652 663 663 1543 1585 1587

.030 637 647 647 1528 1569 1572

.034 626 636 636 1518 1559 1561

,038 621 631 631 1513 1553 1556
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IV. APPLICATIONS

In order to gain further experience in the utilization of the new

method, several two dimensional heat conduction and melting problems were

studied. Applications involving several materials of interest were con-

sidored, viz. A1203 , Titanium, Stainless Steel, and Magnesium. In none

of these cases is another solution available for Comparison, although

experimental results corresponding to several of these cases are available.

a. Melting of Thick Alumina Slab

The predicted time of melting through a thick (0.953 cm) slab of

A1203 , S ca in diameter, due to an absorbed flux of peak- intensity 4i

24000 joules/(ca sec) and Gaussian parameter of a a 0.70 cm was computed

with a number of runs. In all cases, the following paremeters were assumed

P a 3.8 gn/ca 3

L a 10?0 joules/pa

9 a 0.104 joules/(cm sec 'C'

C a 0.885 joules/(ga "C)

Tm a 2313 "K

and the initial temperature was taken to be 300"K.. The slab was divided

into various (10,20., and 40) layers, and the radius into 20 and 40 segments.'

The time steps which satisfy the one dimensional stability criterion are

.147, .0368 and .0092 sec., respectively. The results of the various cowpu-

tations are given as Table II. The temperature at roa and zwO at the time

of complete melt through was found to have increased only 2"C, hence these

results are also applicable to disks of any larger diameter. Lxcellent

agreement between the results of various runs is evident, desv?ite the sig-.

nifciant variations in the size of space and time increment5. Instantaneous

removal of the melted material was assumed.
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Table 11

Time Required to Melt At2 03 Slab, 0.953 cm Thick tud 2.5 ca Diameter

2with F - 4Kw/cm and o a 0.70 cm

Run go. Number Layers Number Radial Time Step Melt Through
Segments Sec. Time Sec.

1 10 20 .01 2.86
10 40 .01 2.83

3 20. 20 OOS 2.845

4 20 40 .005 2.85

5 40 40 .0025 2.8475
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b. Melting of a Thin Titanium Sh•eet

We consider now the consequence of a Gaussian beam of T - 0.25 jbeing

absorbed by a 0.04 cm thick sheet of Titanium, initially at 300*K. We

take,the thormal properties to be as in Section IIIc and At a 80 P sec.
4°°

The times at which the various finite segments were found to be completely

melted (and assumed to be removed) are depicted graphically in Figure 7..

The times given in the Figure are measured from the onset of melting at

the front surface. The exact and discretized approximation to the prescribed

flux is also shown. The propagation of the free boundary through the sheet

is shown as the solid lines in Figure 8 for peak absorbed intensities of

1500, 2000, and 2500 joules/(cm2sec). For purposes of comparison, the pre-

dicted melting rate for one dimensional heating with a peak intensity of

2000 joules/(cm2sec) is also given as the dashed line. As was noted in

Section IlIc a Titanium sheet of this thickness can be quite well

approximated by a one dimensional problem, despite the two dimensionality

of the temperature distribution, evident from Figure 6. Although no

analytical results for this problem are available, the predicted melt

through time is in satisfactory agreement with vixperimental results [31].

c. Melting of Thin Stainless Steel

In an experimental test program conducted at WPAFB, a 16 oil sheet of

304 Stai.aless Steel was irradiated by a beam having a total power of 9

kilowatts and a diameter of 2.44 cm. Temperatures wore measured by a

th.armocouple attached to the rear surface. The results [311 were as

indicated by the circles in Figure 9. From notion picture films taken' of

the event, the time at which complete melt through occured was estimated

to be 0.40 sec. Assuming a Gaussian beam profile, a peak intensity of

5850 joules/(cm2 sec) was estimated from the rilationship
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P ", W 2  -(7)

The material was assuaed to be removed immediately after melting. '

Calculations of the temperature distribution and progression of melting

were made, using the following thermal properties:

a a 7.9 gm/cm3

a a 0.24 joules/(sec cm "C)

C P 0.42 joulus/(gpC)

L a 390 joules/p

To 1700'K

An initial temperature of 300%C was assumed and a disk radius of 5 cm was

used. The disk was divided into 10 layers and 20 annular rings, and a

time stop of 50sec was used in the calculations. Absorbtances of 0.2 and

0.3 were .first assumed, leading to the predicted rear surface temperatures

shown as solid lines in Figure 9. The predicted melt through times for

these absorbtances were 0.387 sec and 0.256 sec, respectively. While an

absorbtance of 0.2 leads to a melting time which is close to the observed

value, the ptedicted temperature history at the rear surface is significantly

different from that which was observed. The observations appear to correspond

to an absorbtance of about 0.0.8 at early times, followed by a transition

to a higher value, perhaps 0.24. Based on this observation, the computer

program was modified so that the flux entering a cell on the surface would

increase from tha lower to the higher value when the average temperature

of that coll reached 600%C. The resulting predicted time- for complete

melt through is 0.416 sec., and the thermal history of the. rear surface can

be soon from the dashed curve to be in satisfactory agreement with the

experimentally determined results. These results would sees to indicate

that a significant change in absorbtance of Stainless Steel takes place
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at temperatures well below the melting temperature. It is conjectured

that this change takes place due to the formation of an oxide layer on the

heated surface. The formation of such an oxide layer can be expected to

depeid not .only on the current temperature, but also on the temperature

history of the surface, which would-be dependent on the magnitude of the

applied flux.

d. Melting of Magnesium Sheets

Since the time required for complete melt through of a sheet is very

easy to calculate (Equation 13) if the heat flow is entirely axial, and

very difficult if it is not, it would be very advantageous if there were

some means of knowing, a priori, whether or not a one dimensional

approximation is appropriate for any given heating situation.

A computational study, considering magnesium of thicknesses from

0.08 cm to 1.28 ca, beam parameters (a) from .32 and 1.28-cm and peak

intensities of 1, 3, S, and lOK1Joules/(cm2 sec) was undertaken. A cylindri-

cal disk, 10 cm. in diameter, and having the following thermal properties

was considered, and the melt was assumed to be instantaneously removed

P a 1.77 sm/cm

X a 0.96 joules/(cm sec *C)

cp 1.04 joule/(p "C)

L u 338. joules/ga

Tm s 905K

Each disk was subdivided into 10 layers, regurdless of thickness, and the

radius was divided into 20 segments, except in the case of o a 0.324 The

discretination of the incident flux was found to lead to significant; errors

when the parameter a is comparable to the size of the radial segment, or
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greater, necessitating the use of 40 segments for the case of a - 032 ca.

in all cases, time steps wore kept below 50% of the minimua value required

to insure stability.

The results of these calculations are given as Figure 10, where the

o: time to melt is given as a function. of thickness for various beam parameters.

As can be seen from the figure, large spot size and higher levels of flux

* both lead to melting times in-closer agreement with the melting tine for

on. dimensioaal problems, as given by Equation 13.

m uight be expected that the ratio a/f, being the ratio of the only

two lengths present, would characterize the "degree of one.dimensionality"

of a given heating situation for a given material. This was not found

to be the cases. The ratio, for example, of t/tI for F a 5 Kw/cm2 can be

seen to vary from 1.348 at a I a 0.32 down to less than 1.1 for a * I;

1.28. A more promising mans of interpretation appears to be a plot such

as is given in Figure 11, wherein the normalized melting time is given as

a function of total power, for various sheet thicknesses. The time to

melt through has been normalized by division by the tim required for a

uniform beam of the same peak intensity to melt through a similar slab,

assuming one dimensional heat flow. Computed points are shown, for the various

thitknesses, as circles, squares and triangless but all the computed

points do not appear to fall on smooth curves. For this reason, deduc-

tions about the one-dimensionality of problems well outside the range of

parameters considered in this. study should not be attempted, but these

results do appear to suggest that the total poweo3 is a nore significant

parameter than the peak intensity,, spot size, or the ratio of spot size

to thickness. From Figure 11, it can be seen that the curves of t/t 1 ,

33
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re.power for different thicknesses are all parallel, that is, if each is

translated along the horizontal axis, the three curves can be made to

concide. Moreover, the distance that each curve must be translated is

invepsely proportional to Z, i.e., t/tI a f(P/L). Thus, rather than a

dependence of ielting time on the various parameters having the form

a,- f(O, ,0 ) (18)

we can write

ta tlf(P/I) (I9)

where tM is the time required to melt a small-hole with a beam of

intensity F, gaussian parameter a in a thickness Z of some

material

tj is the time required for one dimensional meltiag of the same

material, with flux F and thickness 1,

t [L÷ Cp(T - TO) L (20)

P is the total power

P. 2002  (21)

L is the thickness

and f is a single valued function, which we may expect to be differ-

ent for each material.

r mptesitum, f(40,000) . 1.1 so the time required for melting can be

apprvxated to vithin 10% by the time required for one dimension of melting 'henev4

1402/t > 40,000 joules/(cm sec). For comparison, f(4500) - 2.0 indicating

that melting will required twice as long as in the one dimensional care.

In this case, 50% of the flux applied at the center of the heated area

is conducted axially, and 50% radially.
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Ihe results pro.sented in Figures 10 and 11 should be regarded as I
being somewhat tentative, as multiple computations of each case, using-

varlous spatial and temporal, step sizes, were not undertaken to insure

convergence of these numerical results.

I7
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V. CONCLUSION

In the preceding sections, a method for determining numerically the

temuperature distribution within a disk of arbitrary dimensions and thermal

properties subject to a prescribed flux over one face has been given.

The method takes into account a change of phase, and can be used to predict

the time required for partial or complete melting of the material. The

mothod was applied to a number of examples and was found to give satis-

factory agreement with other solutions and with experimental evidence

when avwilable.

Although no calculations for composite materials were included in

the examples, tho method was developed with such calculations in mind,

specifically, so that one or more layers could be taken to have the thermal

properties of a ziatorial which might be used as a protective coating.

The method can also be expected to handle a number of other problems,

and can be modified to incorporate other factors. A single phase change

from so.•,, to vapor (rather than liquid) can be handled by the method

without any modi.•ication. Two phase changes, as first a transition from

solid to, iiquid, followed by heating of the retained liquid and the

,:ventual vaporization of the liquid can be readily incorporated into the

•,r c~d. :rovision was also made for the addition of heat to each cell, .f'

that ho-t releasing reactions within the material might be considered.

A time iependent prescribed flux can be handled without difficulty, as

rn boundnryr conditions other than the cotipletely insulated boundary

which was assumed in the examples considered here. Changes in flux as

a function of surface temperature, such as can occur through a temperature

dependent absorbtance can be treated by this method, as was demonstrated

.o one example, Plwescribed fluxes which are not axially symmetric could
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in principle be treated by a finite element method such as this, but it is

auticipated that the large number of elements which would be necessary to

handle a third component in the heat flux vector would require inordinately

large computer storage and running times for these transient applications.

Certain quasi-three dimensional problems, in which the prescribed flux is

a two dimensional function of the surface coordinates, but for which the

hcat Zlow is primarily one dimensional are probably amenable, however,

such probloms mijtht arise from the spatial and temporal fluctuation of

a distribution of radiation.

Significant remaining problems in determining the consequences

of lasor heating of materials would appear to be in the development of

models for predicting the rate of mass removal and for predicting the

rate at which h',at is liberal, in such materials as titanium and magnesium, I
as h4. been observed, and in determining the absorbtance as a function of

surface conditions.
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APPENDIXI

A Fortran Program was written to perfom the two dimensional heating

and melting calculations by the method described in Section 11. A brief

documentation follows:

Card Numbers Computation Performed

15-20 Input data read in. All temperatures Kelvin; other

dimonsions joules, cm, 'gi, and sec. NC and NR are

each one greater than the number of columns and

rows. A is the radius and D the thickness, AT

the time step and TREF the initial temperature.

FL is the incident flux, and ABC the fraction ab-

sorbed.

25-4S Arrays, describing the properties of the elements

are computed. Here, a homogeneous material is assumed.

48-56 Gaussian beam profile approximated by discretiza-

tion. For small SIG (a) only those cells entirely

within the beam receive flux, leading to significant

error if DR comparable to SIG.

60 Beginning of main computational cycle.

66-72 Temperature distribution printed every NPRO time

steps, if desired (NPUT a 0). Temperatures not

printed for other value of NPUT.

76-82 Heat flux for all but edge rows and columns.

83-94 Heat flux for all remaining cells computed.

95-106 float balance performed.
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Card Numbers Computation Performed

111-112 Raise temperature of cell, if not at melting.

114-115 Apply heat towards the phase change, if cell is

at melting temperature.

121-129 If cell completely melted, remove from problem.

134 End calculation if melt through has occurred at

disk center.

135 End of main computational cycle.

137-144 Print parameters used for computation.

145 Give error count (number of timws the heat flux

"went the wrong way") as determined by counters

in lines 79 and 86.

147-153 Print time at which each cell was removed.
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