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A NUMERICAL PROCEDURE FOR TNO DIMENSIONAL HEATING AND
MELTING CALCULATIONS, WITH APPLICATIONS TO LASER EFFECTS

by
Peter J. Torvik

ABSTRACT

A mothod for determining the two dimensional transient temperature

distribution and progressicn of melting in disks subjected to an applied

fiux over one.fhce is given. The calculations arc performed by dividing

the solid into & number of finite elements and performing a heat balance

over finite time increments. ‘The method was found to give good agreement

with known solutions for two dimensional heat conduction problems and one

dimensional melting prohiems. Two dimensional melting problems in alumina,

titanium, stainless steel and magnesium are also considered as examples

of the method. The results include a demonstration that the time re-

quired to melt through approaches the time predicted by a onc-dimensional

(axial) heat balance if the power per unit thickness is sufficiently

large.
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I. INTRODUCTION
If the radiation from & high intensity laser is directed onto the
surface of a solid, significant temperature rises will occur, and will

eventuslly, in the case of a continuous incident flux, lead to meltig

and.possibly vaporizatioh of tho material at the surface. As time pro- !
gressey, the region of melting may be expected to increase both radially
from the beam center, and into the solid. The heating of the material
will also lead to thermal expansion which will, in turn, give rise to '
thermal stresses which may be of sufficient magnitude to cause fracture. |
This phenomenon is most likely to occur in materials of limited ductility,
as ceramics; however, in a composite material, or in & composite struc-
ture, the differing coefficients of thermal expansion may give rise to
internal forces which bring about failure of the bonds between the con-
stituents, leading to significant degradation of the strength and use-
fulness of the parf or structure.

In addition t? welting, vaporization, and fracture due to thsrmal
stross, damag& muy'also be hrought about by other means. If the heated
object {s a load carrying member, the interaction of the thermal effcct
with the load must be considered. The increase in temperature may cause
such 8 reduction in tho yield strength of the material that the load
carrying ability of the part or structure may be seriously reduced, causing
fsilure tc occur at a load which would be in the szfe range for the un-
heated structure. Creep rates may alsy be higher at the slevated temp-
eratures brought about by laser heating. Damage may also be caused in
an indirect manner, as for example, if the laser heating brings about the

removal of a protective coating.
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In view of these many possible consequences of heating of solids,
it is imperative that methods for determining the resulting temperature
distributions be available. For a material which is thermally isotropic
and homogeneous, so that'conductivity, density and specific heat are each
a single constant, the temperature, as a function of time and position,
is the solution of the familiar heat conduction equation. If, in addition,
all thermal properties are independent of ielperature. the equation is
1inear with constant coefficients. Solutions for some interesting and
important problems may ve obtained in closed foram, or in terms of a
Fourier series. Many such solutions have been collected by Carslav and
Jasger [1). . On the other hand, if the thermal properties vary from point
to point, or are functions of temperature, the possibility of finding such
solutions becomes very unlikely. _

Problems for which an exact solution cannot be obtained may be attacked
by approximate or numerical methous. Finite difference methods have been
used oxtonsiVe§y. and have been applicd to both one and two dimensional
problems [2-6]}. In ;ddition, finite element methods for heat conduction
calculations have been developed in the past decade [7-9]. Surveys of
recent work ars also available [10,11]. One disadvantage of the numerical
mothod is that thermal strosses cannot be determined easily with good
sccuracy, for the thermal stresses depend on the gradients of temperaturcs,
and these cannot be determined with good accuracy by a method designed
to yield nunefical values for the temperatures themselves. A variational
method for heat transfer problems has been given by Biot [12] and has
been applied to problems including phase changes [13,14]. A closely re-
latcd approximate mothod has been given by Goodman [15,16]. To date,
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these methods have been applied to only one dimensional problems, but ‘
could as well be used in multi-dimensional heat conduction.

The pheromenon of phase change is not described by the heat con-
duction equation, per se, but problems involving a change in phase have
been treated by introducing a moving boundary separating the two phases,
and attempting to solve the heat conduction equation in each phase, with
the sppropriate matching being enforced at the interface. Problems in-
volving such a moving boéndary are inherently non-linear, and plane one
dimensional problems have been treated most extéﬁsively (3, 13, 14, 15,

16) by the above mentioned methods, and others [17-20j. In this case, the
moving boundary is plane. In two or three dimensional heat conduction,
both the location and the shape of the boundary are unknown, leading to
much more difficult problems [21,22]. Multiple phase changes have also
been considered [23]. )

In real materials, the thermal properties are functions of temperature,
and it is unlikely that any exact solutions will be found, although the
lpproiilate methods can be appiied [24]). The possibility of finding
exact, or even good approximate solutions, for heat conduction problems
in composite or layered materials is quite unlikely. Such problems can
be wore succes;fully treated by one of the numerical methods.

In applying the method of finite differences one first writes down
the governing differential equation, and then seeks to develop a set of
difference, or slgebraic equations through the process of discretization.

In the finite e)ement method, as used elsewhere, [9], a simple, approximate
temporature distribution is assumed for each finite element, and defined

in terms of nodal temperatures. The resulting temperature field is sub-
stituted into a global energy functional, the first variation of which

.
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leads to a set of algebraic‘relationships between the nodal tenperature;, é
at each time. In a transient problem, this system of equations must be |
solved at es~n time step, necessitating the inversion ¢f a large matrix
at gach time increment. A £in§te element approach is expected to be
particularly advantageous for heat conduction in an inhomogeneous maverial,
whether the inhomogenieities are initially present, or arise from temp-
erature dependent properties, for the thermal properties of each element
need not be the same, or constant. The possibility of treating a phase
change is algo apparent, through allowing certain of the finite elements
to.be of one phase, while other elements are of another phase. In such an
appioich. however, one would wish to use extremely small elements so that
the phase boundary can be located with good accuracy. In the finite
element methods previcusly develqped. the goal has been to use as few
elemonts as possible, because of computer storag? limitations and the long
runhing times required to solve a large system of equations at each time
increment. Consequently, in the present work, a different finite element
approach was used, one which does not require the solution of a large
systen.of equations at each time increment. For the same number of elements,
the present method is therefore expected to be less accurate than the tra-
ditional finite element methods, but is expected to be more feasible for
the approximate determination of the liquid-solid interface in two dimen-
sional heat conduction problems with change of phase.

In the section to follow, 'a genexral method for solving heat conduction
problems with prescribed boundary flux will be given. The geometry to be
considered is of'practical interest, namely, a plate, slab, or sheet of ,

uniform thickness, subject to a prescribed flux on one face. In the third
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section, some comparisons b-etween results obtained with the ney uethod:;
are compared with results obtained by other methods, both exact and app'fro.)x-
imate., Finally, in Section IV, some results for two-diuensioml heai

flow with change of phase are given. .

- Although numerous, the works cited here by no means give a conpleté
survey of the methods available fqr heat conduction problems, nor of re-
sult.s obtainced for problems involving a change of phase. For a more com-
plete treatment (through 1964), the review by Muehlbauer and Sunderland‘

[25] may be consulted. More recent work is described by Boley [26].
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I1. DEVELOPMENT OF FINITE ELEMENT METHOD

We consider a cylindrical disk, with a prescribed flux having a
known variation in the radial direction and ccnstant in time applied over
the central region. Exact solutions to this problen have bgen given for
temperatures below n'elting in a homogeneous and thermally isotropic disk
[27). For sufficiently large flux, the temperatures within the disk will
be brought to the melting point. The determination of the temperature
and the location of the solid-liquid interface then becomes quite diffi-
cu_llt.. and has been extensively considered only for one dimensional prob-
lem, such as occur w.hen an infinite slab is subject to a uniform flux,'

The. apl;roach to be taken is to divide the region of interest into a
large nusber of finite segments and perform a heat balance on each. We
degin by dividing the thickness, !.; of the disk into a number, NR’ of '
layers which, for convenience, will all be taken to be of the same thick-
ness, although each layer can easily be assigned a different thickness, if
desired. In a similar manner, the radius, a, is divided into N. equal seg-
ments, although unequal segments n;y again be used, if desired. For the .
case of an axially symmetric flux, there will be no circumferentizl flow
of heat, nor any circmfére‘ntial temperature variations, and consequently,
no subdivision in the circumferential direction is required. Hence, the
disk has been divided into Ne x NR.seg-ents. each of which is in the forn
of a solid annulus. In order to provide for eventual inhomogeneities in
the thermal properties. which may arise either through consideration of
a composite materisl or as a consequence of material properties which a‘i'e

a function of tempersturs, or becn.m of a phase change, it is found to

be convenient to define certain arrays (Npx Ng) describing the properties




of each finite elewent, In all that is to follow, the first index de- .
notes the rovw number, as in Figure 1, and is related to the z or thick;u.ss
coordinate, and t'hc second index denotes the column nusber, and is related
to t.ho radial or r coordinate; The array shown in Figure 1 may be thought
of as the right half of a diametral section of the disk. '

Let

rlj = inner radius of cells in coluan i, cm.
roj = outer radius of cells in columa j, cx.

.. Az, = area of interface separating cells in coivmn j
2 2 2 !
. w(roj - rxj). cm,

' A = Arves of interface separating cells in colusn j from cells in

column j + 1 .

- 2ury /Ny, on’

j -
Pyj * density of cell of row number i and column j, gu/u3

"i'j = mzss of cell i, §, gm.
- A, L/N
pij zj / R
Lij = heat of fusion for cell i, j, joules/gm

Kkij ’ Kzij = conductivity of cell i, j in radial and axial directiont
respectively, joules/(sec cm °C)
Q. .o Q = pates of heat flow out of cell i, j in radial and axial
i3 Aj
directions, respectively, joules/sec. [

6;j = Avorage temperature in cell i, j, °C

cl’ij » specific heat of cell i, j, joule/(gn°C).
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The heat fluxes for a typical element are shown graphically in Figure 2.
The rate at which heat flows radially from cell i, j into ;;11 i, j*l is
given approximately by the product of the conductivity, the area of‘thé
interface, and an approximate value for the temperature gradient at the

interface betwecn these two cells, or

= K ei,j - ei.j#l 1
®y; " MRyy Ay { a/Ng } )

Similarly, the ratc at which heat flows from the cell i, j axially into

_the cell 141,‘j is approximately

s K A w
inj 235 % { t/N } (2}

In additicn to the flow of heat from one cell to another through conduce
tion, the hoat balance must take into sccount the possibility of heat
addition to each cell from external sources, and from internal reactions,

through a heat. addition texrm for each cell which includes both effects,’

Fi .F “p (3)
3RS Ty

Pij’ the heat added, has dimensions of joules/sec. The heat balance is

performed for each cell by adding the heat entering cell i, j from the neigh-

boring cells i-1, j and i, j~1 to tae flux added, Fij’ and subtracting .
the flux leaving, QRij and inj° If cell i, j is at a temperature le:s
than the phase transformation temperature, the temporature will rise in

a time At an amount given by

8055 = 8Q;; At/(cpij Mij) 4)

TRV WAL R R o

The teipernture rise will continue in later time increments At un-

til such time as tho temperature at which the phase transformation takes

i | 5 B}
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place is reached. The total energy which must be added after the melting
temperature is reached in order to bring about a complete change of phase
of all the mass in cell i, j is given by Lij"ij° It is convenient to

compute this quantity for each cell, and store the result as an array Pij'

- Then, beginning with the first time increment in which the temperature of

the cell i, j is at or above the melting temperature T,, the stored quan-
tity Pij is reduced from its current value by the amount AQijAt in the
time increment At and-the temperature is held fixed at the melting temp-

erature. At K time increments after cell i, j first reaches Ti.
. < .

Pij = Pij - kz; . “Qijk Aty (6)
and the ;ntire cell is presumed to complete the phase change during that
time increment in which Pij.‘ 0. The material in cell i, j is then per-
mitted to increase in temperature once again, with specific heat and con-
auctivity now being appropriate for the new phase, if it is assumed to
remain on the surface. Alternatively, the material which has undergone
the phase change may be assumed to be instantan;ously removed, as in the
casv of ablation, or melting where sufficient forces are present to over-
come the surface tension of the xelt and remove the melted material as

it is formed. In the case of cowplete melt removal (or equivalently,
ablation), as.is considered in all of the examﬁles to be discussed in the
next sections, the conductivities, xRij aﬁd Kzﬁj are set to zero at the
time the matezial is removed, which has the effect of removing the cell
i, } from the heat balance calculations. The flux Faij' representing the
flux sdded externally to cell i, j is transferred to the cell immediately

below, i.e., to cell iel, j at the same time,

11




The heat balance for cells or elements on the boundary must be handled

4 somewhat differently from those on the interior so as to provide for the ‘
. . {
approximate satisfaction of any given boundsry conditions. In thso case !

of a prescribed boundary temperature, the temperature of that boundary cell

is held fixed for all time increments. In thé case of an insulated bounda;y,
the net flux in the direction normal to the boundary is set to zero. In s
the case of a pgescribed flux, the net flux in the direction normal to |

the boundary is set to the desired value, and in the case of a boundary

condition described by Newton's law of cooling, the flux normal to the
boundary is set to the difference between the temperature of the boundary

cell and the surroundings, with the appropriate multiplicative constant

included. By synmetfy. the radial flux entering cells in column 1 is i
zero, %

Because of the approximate way in which the conductidn is computed :;‘
(Equations 1 and 2) the time increment At must be sufficiently small in |
order to insure stezbility of the solution. The flux for the entire time 1

increment is computecd based on the tempecature difference between adjacent

cells at the beginning of the increment. It is evident that if the time

increment is permitted to be too large, sufficient heat would flow to cause
the initially colder element to bgcwne hotter thin the initially hotter §}£
element, which is obviously impossible. A physical derivation of the f}“
sppropriate stability condition is easily obtained. If two cells, the |

conters of which are a distance Az apart are initially at temperatures

Ty and 7 .land if the conductivity is K, in tiwe At the total heat flow
will be '

Q= KA At (T) - Tp)/4z )

12
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where A is the area of ths annulus separatiag the two elements. If the
specific heat (p;r unit volume) of each i5 pcp, then at the above flux,
temperature equilibrium between the two elements is reached when
: Q = pCy¥ (Ty = T2)/2 (8)
shere V is the volume of each element, spproximately AAz for czach. Elim-
inating Q between Equations 7 and 8, we find
st = oC, (82)%/(2K) 9y
But temperature equilibrium cannot be established in a finite time, hence
At must be less than this bound. Moreover, in two dimensional heat flow,
both components of flux must be considered, leadiné to a more stringent
rehuiranbnt.' However, if the two element spacing distances, a/Nc and
£/Ny are not comparable, the waximum permissible time increment is sat-
isfactorily determined by using the lesser distance incregent in Equation 9.
A method given by Dusinberre '{28] for the hand calculation of transient
tenperatures is very similar to the method used here to compute the heat
conduction. If the thermal properties are uniform and cons”ant, the method
can also be shown to generate the same equations as would arise with the
wethod of finite differences, with central differences being used in the
space varigbles and a forward difference employed in time. The stability
und convergence of such techniques applied to linear problems (constant
properties and no melting) have been extensively studied [29]. Numerical
motheds for the treatment of the non-linear problems have also been dis-
cussed (V).
A computer program was written and used to perform the calculations
deacribed in the next section. A listing of that program, together with

a brief docunentation, is given as an appendix.

13
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I11. COMPARISONS WITH KNOWN SOLUTIONS

We will now consider ssveral example problems, making comparisons

between temperaturs fields predicted by the finite element method described

in ?he preceeding section, and exact solutions, when possible, and other
approximate neihods, when available,

a. One Dimensional Heating of Thick Slab

As a first example, wo will consider one dimensional heating of a
thick (infinite) slab heving propertiss approximating those of Al,0;.
Ve take '

| C 3.8 gn/c-3

K = 0,104 joule/(cm sec °C) ‘s

Cp = 0.885 joule/(gn"C)

Ty * 2313°K
and consider a uniforu flux of 4000 joules/(clzsec) striking material
initially at 300°K. The exact solution, valid to the onset of melting,

is known [1] to be

1/2 '
. 7 = 2F(at) X
T-T, _ " ierfc {Z(at)1/2 } (%0)‘

wherc a is the diffusivity, x/(pcp). and ierfc donotes the first integral

of the complementary error function. The front surface temperature is
given by
T- 7, = 2L (at/ml/? an

and, for the parameters given above, the surface melts at 0,0695 sec.
The temperature profiles given by Equation 10 are plotted at 0,02,
0.04, and 0,06 seconds in Figure 3 as the solid lines. Temperature pro-

files for the same heating conditions were determined by the finite ele-
ment method through considering a slab 0.2 om thick (from Figure 3, it

14
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can be seen that a slab 9f such thickness may be regarded as being of
infinite thickness for times less than 0.06 seconds). Tae slab was
divideci into 20 and 40 layers,.with time st?ps of 0.001 and 0.00025 seconds
useq in the two cases, respectively. (Time steps less than 0.0016 and
0.0004 are required here for stabili.t);). The average temperature in the

; 'ﬂrst 0.01 cm of the material at t = 0.06 was found to differ by less than
0.2% between the two calculations. The results of the finite element -
calcu}ations using the larger layer thickness and large time step are |

given as the circles in Figure 3. As can be seen, the results of the

. exact and approximate calculations are, for the most part, indistinguishable.

b. . One Dimensional Melting of Finite Slab

As 3 second example, we consider the one-dimensional heating and change
of phase of a ;finite slab, assuming the melt is instuntaneously removed,
For & prescribed uniform flux F on the surface x = 2, and the other face

(x = 0) insulated, the resulting one disensional temperature field is [1]

' » 2
11, » Bt o Bt {(3"2"2) -3 .S;.!f.e j“"z'z‘/" cos 2%5.} {12a)

oCpt K o2 " oel N '
- 3.'.’!5.@ ;ﬁierfc[.@':.l_).'::.ﬁo ierfe [.(31'_’_12&’.’.‘.]} (12b)
K ne 2050 2fat’ '

valid until such time as melting begins st the front surface, Masters (3]}
has given resulis obtained by a finite difference calculation for the
predicted recession of the front surface for an aluminum slab, using the
properties -

Ty * 993°K

L = 418 joules/gm

K = 2,09 joult/(cl sec °C)

16
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a = K/(pCy) = 1 cu¥/sec

L =0.3 cm
We assume the complete and iﬁstantaneous removal of the melt, resulting
from the application of a flux of 41,800 joulés/(cnzsec). Taking the
density to be 2.7 g-/cls. the value of specific heat required to yield '
& unit diffusivity is C; = 0.775 Joule/ (gn°C)

The total time required to melt & slab under one dimensional heating
is readily d;ternined from an overall heai balance to be

Ft = [L + cp(T; - To)lot C{13)

or 0.0186 seconds. From the.exact solution, (Equation 12), the time re-
quired for the front surface to reach the melting solution was found to
be 0.0011 sec., hence 0.0175 sec. are required to move the melting line
from the front to the rear surface. This time w;s also computed by the
finite eloment mcthod, first by dividing the slab into 10 ;ayers and using
a time increment of 200 u sec and by dividing tye slab into 20 layers and
using a time increaeﬂt of 50 y sec, The two melting times were determined
to be 0.0182 sec and 0.0178 sec, indicating that the approximate method
appears to be converging to the correct soluti&n as the size of the incr?~
ments is reduced. In both of these cases, the time steps used were just
under 50% of the minimum time step required for stability. The location
of the moving free surface is shown in Figure 4. The solid line is the
result given by Mastersitsj. and implies a predicted time (> 0.02 sec) which
is greater than the time deduced from the overall heat balance (0.0186 sec).
The other two curves in Figure 4 depict the results of the finite element
calculation, using 20 layers and At » 50 y sec. The lower curve depicts

the time at which various points first reach the melting temperature, and

17
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the upper curve indicates ?he times at which particles are ccispletely
melted and removed. The-@ntérval between the curves indicates the region
in the pfocess of nelting.. C
. The problem of one dimeﬂsional melting with complete removal of the :
melted natqriai'has also been treated by Citron, who has given [14] an
approximate (rather than numerical) method and some typical results. His

results are presented in such a manner as to indicate-that only a sinéle

dimensionless paramcter, M/r, is required to characterize the prbbien”

1/2 ’ X
Mo”7 CptF kT,
T 2 Tl T3

‘ |
The value of M/r for the parameters used in the previously described cal-

. a4)

sulation is 9.86. These calculations were then repeated with a flux

F = 20,750 joule/(cnzsec) so as to give a value of M/r = 4,89 identical to

the one used by Citron. The two dashed curves of Figure § are results given

by Citron as first and second approximations. The abcissa is a dimension-
less time, defined by '

1. i%-.(t - t*) - (45)

t* being the time of front surface melting. . ‘

L

The ordinate is the fraction of the thickness which has melted at
dimensionless time t. The solid curve, labeled r ‘= 0,235, depicts the reo-
sults obtained by the finite element method, and should be in agreement
with the results of Citron. The apparent discropancy at the early time
was found to be due to the inapplicability of the Citron method at small
vuiues of r, even though r doss not appear explicitly in the results. In
developing this approximate lethoa. Citron assumed the exponential terms
in Equation 12a to be n?gligible at the melting time, t*. With this

assumption, we have
(16)
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p=-t

Arof 0.235 leads to a meaningless negative time of first melting.

The

approximation made by Citron is valid only for r ~ 2/3 or greater. fn

order to compare the results of the present notﬁod with those given by

Citron with a value of r such that his results are valid, calculations

were performed for a flux of F = 20,750 joulc/(cazsec) and all properties

those of .3 cm thick aluminum, except that a melting temperature of 2373°K
was used. This leads to a value of r of 0.705, with M/r = 4.89.

results of?this calculation are given in the Figure as the indicated

solid line. Although there is some difference between the two pre-

dictions, they are now in qualitative agreement.

¢. Two Dimcnsional Heating of a Thin Sheet

.
-

The

As a third cxample, we consider the two dimensional temperature dis-

tribution resulting from a steady axi-symmetric flux of a Gaussian distri-

bution acting on a thin sheet.

T 20?2

-

17

The pre-melting solution can be compared with the temperature profiles

predicted by a computer program written at AFWL [31] which evaluates the

solution given by Oicer [27].

As an example, we will consider a titanium sheet, 0.04 cm. thick and

5 ¢, in diameter, initially at 300°K, having thermal properties

p = 4,43 gn/cw®

K » 0,145 joules/(cm*Csec)
Cp = 0.77 joules/ (gun°C)
Ty ® 1900°K

L = 390 joules/gm

We assumes the dis™ is squ;cted to a beam of peak intens .ty of ‘2000

2l

DL AR




joules/(sec cnz) with o = 0.25 cm. The pre-melting temperature field was
computed using the finite element method by (a) dividing the slad into

io layers and the radius into 40 annular regions, using a time step of

80 u sec, and (b) by dividing the sheet into 20 layers and 20 annular
rings, using a time step of 20usec. In both cases, the time step useq'

was about 40% of the minimum value necessaxy to satisfy the osne dimensional
stability criterion. In the most extremeé case, AR/Az>15, and it was assumed
. that instabilities would primarily arise due to the axial, rather than the
radial, flux. The temperature profiles at i = 0,002 cm (2/20)'werc found

t6 differ by less than 1% for all r, at times t = 0,03 and t = 0.10 sec. .
Tomperature profiles as computed with the finite_eleucnt method (solid lincs)
are compared with the results of the Fourier series solution (AFWL computer
progran).in Figure 6. The agreement is excellent, particularly within the ‘
beam radius (2¢ = 0.5 cm). Temperature profiles through the slab thick-

. ness, at r = 0.0625 cm, are compared at two values of time in Table I.

The exact solution indicated that melting begins at the front surface at

t = 0,1037 sec; The two finite element solutions gave 0.1042 and 0.1064
scc., respectively. Although this is a two dimensional problem, axial

heat flow predominates and the one dineﬂsional approximation is quite
satisfactory for it leads to a predicted time to first melting which is

only 10% low.

22
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' Table I

Temperatures (°K! at r = ,0625 cm

t = 0,3 sec t = ,10 sec
- 2, | Exact Soin Appsoximats Soln Exact Soln Approximate Soln
‘ s b s b
002 852 8 8n 1743 1793 1795
.006 807 823 822 o197 | s aned
=010 766 780 780 " 1687 - 1702 1705
b .014 730 745 743 1622 1665 1667
.018 699 7m0 1500 1633 1635
{. .022 673 684 689 1564 1606 1609
02 | 652 ] 663 663 1543 1585 1587
0% | 637 647 647 1528 1569 1572
.034 626 6% 6% - 1518 | 1559 1561
.038 621 1 e em 1513 1553 1556
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" ' , 1V. APPLICATIONS

In order to gain further experience in the utilizetion of the new

method, several two dimensional heat conduction and melting problems were
studied, Applications involving scveral materials of interest were con-
sidored, viz. Al;03, Titanium, Stainless'Stegl, and Magnesium. In nons
of these cases is another solution available for comparison, although '

3 experimental results corresponding to several of these cases are availaﬁle.

a. Melting of Thick Alumina Slab

The predicted time of melting through a thick (0.952 cm) slab of

Al,03, 5 cm in diameter, due to an sbsorbed flux of peak intensity of !

4000 joules/(cnzscc) and Gaussi;n parameter of ¢ = 0.70 cm was comptited f
with a number of runs, In all cases, the following parsmeters wers assumed !
p= 3.8 gn/cus
L = 1070 joules/gm | ) \ !

K = 0,104 joules/(cm sec °C)

Cp = 0.885 joules/(gm °C)

Ty = 2313 K _ .

and the initial temperature was taken to be 300°K.- The slab was divided
into various (10,20, and 40) layers, and the radius into 20 and 40 segments.
The time steps which satisfy the one dimensional stability criterion are

.147, .0368 and .00Y2 sec., respectively. The results of the various compu-

tations are given as Table II. .The temperature at r=a and z«0 at the time
of complete melt through was found to have increased only 2°C, hence ghdse
results are also applicable tc disks of any larger diameter. hxcelleﬁt

agreement betwcen the results of various runs is evident, despite the sigJ,

nifciant variations in the size of space and time incrementi., Instantaneous

renovnl_of the melted material wes assumed.

AR
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t ) Table 1I
Timo Required to Melt AL,0; Slab, 0.953 cm Thick end 2.5 ca Diameter
with F = 4kw/ca’ and o = 0.70 cm

e

40

26

Run No.  Number Layers Numbor Radial Time Step | Melt Throughz
; Segments Sec. Time Sec.
1 10 20 .01 2.86
2 10 40 .01 2.83
', 3 20 20 "~ ,005 2.845
. 4 20 40 .005 2.85
: S 40 .0025 2.8475
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b. Melting of a Thin Titanium Sheet

We consider now the consequence of a Gaussian beam of t = 0.25 peing
absorbed by a 0.04 cm thick sheet of Titanium, initially at 300°K. We ‘
tako the thormal properties to be as in Scction IIIc and At = 80 u sec.
The times at which the various finite segments were found to be completely
melted (and assumed to be removed) are depicted graphically in Figure 7.
The times given in the Figure are measured from the onset of melting at
the front surface. The exact and discretized approximation to the prescribed
flux is also shown. The propagation of the free boundary through the saect
is shown as the solid lines in Figure 8 for peak absorbed intensities of
1500, 2000, and 2500 joules/(cmzsec). For purposes of coqparison. the pre-
dicted melting rate for one dimensional heating with a peak intensity of
2000 joulesl(cmzsec) is also given as the dashed line., As was noted in
Section Illc a Titanium sheet of this thickness can be'quite well
approximated by a one dimensional problem, despite the two dimensionality
of the temperature distribution, evident from Figure 6. Although no
analytical results for this problem are available, the predicted melt
through time is in satisfactory agveement with r.xperimentsl results [31].

c. Melting of Thin Stainless Steel

.ln an experimental test program conducted at WPAFB, a 16 wil sheet of
304 Staialess Steel was irradiated by a beam having a total power of 9
kilowatts and a diameter of 2.44 cm. Temperatures were moasured by a
thormocouple attached to the rear surface. The results [31] were as
indicated by the circies in Figure 9. From motion picturs films takensof
the event, the time at which couplete melt through occured was estimated
to be 0.40 sec. Assuming a Gaussian beam profile, a peak intensity of

3850 joules/(cnzsoc) was estimated fros the relationship

27
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V. 2xFo? . . - . an
The material was assumed to be removed immediately after melting. .
Calculations of the temperature distribution and. progressicn of melting
were made, using the following thermal properties:
o= 7.9 gjea’

K = 0.24 joules/(sec cm °C)

cP = 0.42 joules/(gn°C)

L = 390 joules/gm

1; = 1700°K
An_initial temperature of 300°K was assumed and a disk radius of 5 cm was
used. The disk was divided into 10 layers and 20 annular rings, and a
time step of SOusec was used in the calculations. Absorbtances of 0.2 and

0.3 were first assumed, leading to the predicted rear surface temperatures

shown as solid 1lines in Figure 9. The predicted melt through times for

these absorbtances were 0.387 sec and 0.256 sec, respacti&ely. While an ‘

absorbtance of 0.2 leads to a melting time which is close to the observed
Qalua, the predicted temperature history at the rear surface is significantly
different from that which was observed. The observations appear to correspond
to an absorbtance of about 0.08 at early times, followed by a ;ransitiﬁn

to a higher value, perhaps 0.24, Based on this observatioﬂ, the computer |
program was modified so that the flux enteping a cell on the surface would
increass from the lower to the higher value when the average temperature

of that cell reached 600°K. The resulting predicted time for complcte

welt through is 0.416 sec., and the thermal history of the.rear surface can

be seon from the dashed curve to be in satisfactory agreement yith the

oxperimentally determined results. These results would seem to 1ndi$aeo

that a significant change in sbsorbtance of Stainless Steel takes place

3
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at temperatures well below the melting temperature. It is conjectured -

» S AasE

that this change takes place due to the formation of an oxide layer on the
heated surface. The formation of such an oxide layer can be expected to
depend not .only on the curfent temperature, but also on the temperature
history of the surface, which would be depenéent on the magnitude of the
applied flux. ‘ .

d. Melting of Magnesium Sheets | %

Sin?e the time required fér complete melt through of a sheet is very
easy to calculate (Bguntion 13) if the heat flow is entirely ixial, and

very difficult if it is not, it would be very advantageous if there were

|
i

some means of knowing, a priori,x whether or not a one dimensional
approximation is appropriate for any given heating situation.

A computational study, considering magnesium of thicknesses from
0.08 cm to 1.28 cm, beam parameters (o) from .32 and 1.287cm and peak
intensities of 1, 3, 5, and 10N3bules/(cnzsec) was undertaken. A cylindri-
cal disk, 10 cm. in diameter, and having tho following thermal propertiesl
was considered, and the melt was assuwed to be instaptaneously remove%

o= 1.77 gn/cu3

K = 0.96 joules/(cm sec °C) - ‘ ]

Cy = 1.04 joule/(gm °C) |

L = 338 joules/gm

T, * 905°K : _ %
iach disk was subdivided into 10 layers, regurdless of thickness, and the
_radius was divided into 20 segments, except in the case of ¢ = 0.32) The
disctctizatioq of the incident flux was found to lead to significant‘orrors

when the baianetor ¢ is comparable to the size of the radial segment, or

gon
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groater, pgcessitating the use of 40 segments for the case of ¢ = 0.32 cm.
In all cases, time steps were kept below 50% of the minimum value required
to insure stability. '

The results of these calcuiations are given'as Figure 10, where the L
tin_e to melt is z'iven as a function. of thickness for various beam parameters.
As can be seen from Ithe figure, large spot size and higher levels of flux
both lead to'nelting times in.closer agreement with the melting time for
one dizensiocial problems, as given by Equation 13. \‘

a0 might be expected that the ratio o/2, being the ratio of the only
two lengths present, would characterize the "degree of one-dimensionality"
of n given heating situation for a given material. This was not found
to be the case. The ratio, for example, of t/t) for F = § Kw/c: can be
uontovaryfronl:uaato ctnOSZdowntolessthan1lforo-z- Y
1.28. A more promising means qf interpretation appears to be a plot such |
as is given in Figure 11, wherein the normalized melting time is given.as ‘
a function ot: totel power, for yu‘igus sheet thicknesses. The time to |
wmelt through has been normalized by division by the time required for a
uniform beam of the same poak intensity to melt through a s.iailar slab,
assusing one dimensional heat flow. Computed points are shown, for the various
thitknesses, as circles, squares and triangles, but all the computed
peints do not appear to fall on smooth cum.s. For this xeason, deduc-
tions about the one-dimensionality of problems well outside the range" of
‘parameters considered in this.study should not be attempted, but these
results do appear to suggest that the total power, is a more significant ‘
paremeter than the pesk intensity,. spot size, or the ratio of spot size

to thickness. From Figure 11, it can be seen that the curves of t/t;, ;
l k.
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Figure 10 Melting Time of Magnesium Sheet as a Function of Thickness,

for Various Beam Parameters '
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vs.power for different thicknesses are all parallel, that is, if each is
translated along the horizontal axis, the three curves can be made to '

concide, Moreover, the distance that each curve must be translated is

inversely proportional to &, i.e., t/t; = £(P/t). Thus, rather than a

dependence of melting time on the various psrameters having the form

’ ty = f(o,F,1) (18)
é we can write y
ty® QEE/H) | 19y R
3 where t, is the time required to melt a small.hole with a beam of - ;

intensity ¥, gaussian parameter ¢ in a thickness £ of some

material

t; is the time required for one dimensional melting of the same
matorial, with flux F and thickness £,
- (Lo g - Tl Rk ) (20)

ﬁ is the total power
‘ P = 25Po? T (2

8. is the thickness

and f is a single valued function, which we may expect to be differ-
ent for each material.

For naguezium, £(40,000) - 1.1 so the time required for melting can be

epprexixated to within 10% by the time required for one dimension of meltlng hhcnevé

24Fa4;e > 40,000 joules/(cm sec). For comparison, £(4500) ~ 2.0 indicating

that welting will required twice as long as in th; one dimensional care.

In this case, 50% of the flux ippliod at the center of the heated area

is conducted axially, and 50% radially.
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The results presented in Figures 10 and 11 should be regarded as ﬁ
being somewhat tentative, as muitiple computations of cach case, using

varieus spatial and temporal step sizes, were not undertaken to insure

convergence of these numerical results,
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V.  CONCLUSION

In the preceding sections, a method for determining numerically the
temperaturs distribution within a disk of arbitrary dimensions and thermal
properties subject to a prescribed flux over one face has been given.

The ;cthod takes into account a change of phase, and can be used to predict
the time required for partial or complete melting of the material. The
sothod was applied to a number of examples and was found to give satis-
factory agrecement with other sulutions and with experimental evidence

when aveilable,

Although no calculations for composite materials were included in
tho oxamples, tho mothod was developed with such calculations in mind,
specifically, so that one or more layers could be taken to have the thermal
propertics of a material which might be used as a protective coating.

The method can alsQ be expected to handle a number of other problems,
and can be modified to incorporate other factors. A single phase change
from solid to vapor (rather than liquid) can be handled by the method
without any wodification. 1Two phase changes, as first a transition from
s0lid tr iiquid, followed by heating of the retained liquid and the
aveatusl vaporization of the liquid can be readily incorporated inte the
wet’ od, ‘rovision was alsc made for the addition of heat to each ceil, 54
ti:at ho~t releasing reacrions within the material might be considered.

A time dependent prescribed filux can be handled without difficulty, as

»an boundary conditions other than the corpletely insulated boundary;
which was assumed in the examples considered here. Changes in flux as

8 function of surface temperature, such as can occur through a temperature
dependent absorbtance can be treated by this method, as was demonstrated

.0 one example, Prescribed fluxes which are not axially symmetric could

38
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:
in principle bo trecated by a finite slement method such as this, butiit is
auticipated that the large number of elements which would be necessary to
handic a third component in the heat flux vector would require inordinately
large computer storage and running times for these transient applications.
Certain quasi-three dimensional problems, in which the prescribed flux is

a tws dimensional function of the surface coordinates, but for which the
hcat {low is primorily one dimensional are probably amenable, however,

Such probloms mipkt arise from the spatial and temporal fluctuation of

a distribution of radiation.

Significant remaining problems in determining the consequences

of laser heating of materials would appear to be in the development of

models for predicting the rate of mass removal and for predicting the
rate at which hzat is liberat d in such materials as titanium and magnesium,
a3 h«s been observed, and in determining the absorbtance as a function of

surface conditions,

B e e T e
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A Fortran Program was written to perform the two dimensional heating
and melting calculations by the method described in Section II. A brief

ﬁ : docdmontation follows:

Card Numbers

APPENDIX

Computation Performed

Input data read in. All temperatures Kelvin; other

dimensions joules, cm, gm, and sec. NC and MR are

each one greater than the number of columns and

55 2

rows. A is the radius and D the thickness, AT
the time step and TREF the initial temperaturé.
FL is the incident flux, and ABC the fraction ab-
sorbed.

Arrays, describing the propertié§ of the elecments

are computed. Here, a homogeneous material is assumed.

Gaussian bear profile approximated by discretiza-
tion. For small SIG (o) only those cells entirecly
within the beam receive flux, leading to significant

error if DR comparable to SIG.

Beginning of main computational cycle.
Temperature distribution printed every NPRO time
steps, if desired (NPUT = 0). Temperatures not |
printed for other value of NPUT.

Heat flux for all but edge rows and columns.
Heat flux for all remaining cells computed.

ticat balance performed.

45




Caxrd Numbers

111-112
114-115

121-129
134

135

137-144
145

147-153

Computation Performed

Raise temperature of cell, if not at melting.

Apply heat towards the phase change, if cell is

_at melting temporature.

If cell completely melted, remove from problem.
End calculation if melt through has occurred at
disk center.

End of main computational cycle.

Print parameters used for computation.

Give error count (number of times the heat fqu
"went the wrong way") as determined by coumtefs
in lines 79 and 86. |

Print time at which each cell was removed.

-

46

SR TI T RO P IT W

RIS ArNesetan  pr gravs

o Bk snnaey




e

——— —

ne

TRITHIRY Cacioa e o

57 = €I1°r)anNd9

.. IN¢T=F J2 OO
(I32I2=0%2)E)2ld=v 3y

:3+1¥=02

No=2JId4=1I)

=14

J34¥¢T=1 22 0¢

T=-2N=0ON

. T=aN=3IN

(C°*T-3Nd4)/70=20

(C°T-IN2) /V=aC

ON=ON4d

d eN = aiNa

(dJa0+42) /NUI=4VYD

NOU=0ONOU

5 = (In)XUK

GT®T = In S 00

(THI) L¥nNavd

TZT iINIad (2°3N°inNdN)SI

. (N LT49) LVHEOS

9135€713%0cv%3324%E06 OVIY

‘ (DTICL°CTa8-T12%6°5T42) LYNGOS
SZLSNCLC43N IOy €226 QOV3H
(9°3T4C) LYnN03
LVALESIENDISIANOTISNI* Iy ¢T22 aV3e
L SNLILNDD
SNIHION N33 2 S3AIL SNILTI3IN 523 T 3INIKAASSAS 803 ¢
FHELY
iNon
10d65
JcdN
CusN
= Yi%¢

non

[

)

{
. 72191 °¢
: (22%T2) A28 (TT) Wn® 42247251092
(02972)3035¢(12402) 204 (£2%,2)206 (1282221318 (T28T2)2%1°2%22)d3vaT
Ctu2t¥2IXNNIC (P T2IINISC(S2902) K034 (32%32)4van $E: 00 W)

T46T 233wIld33 €T NO T3i75173°3 N33 <3¢NS
33TUYAT VY SNILTED3EDUNT L3S =siia

& 3 7t ;

LI ST, B IS IO 4 V)
i

€V 2y et

3
IS R §

og

Se

a2

ST

™~
<




T TR Sy T e e s L g

T + (2)Xvn = (2)XTw (L*53°17°(ré1)2z0)a1
37 (P*IIINID= (P T+ IThi=(Pr¢D) L4 )=(r4L) 20
- af1=C 37 OU
Zaﬂ"H st 00
T~dgON= s
T-J00N=K
SNANILINOD 22
3NNILINDD T2
(3GNOJISSH244%°2T3¢ v SdW3Ll HOT/) L9Ws0d £¢2
. €3°34C2)Y179KHauO4 22 u¥ 3
(3INST=PP ..ﬂﬁ.xyvhwzh..ww iINIad
tc = 33N (P2°19°33n) A1
33N = dON
. dION¢TI=3N T2 00
=X - 83
3AIl*S2 iNIed
3¢ 01 09 (1°29°1NdNY 4l
8¢ 24 29 (JddN®aIN°XN)sX
TEXAH=XA
431SN¢T=% 302 OU 338
T - D¥dN = &AM
6°5=3H1L
33N3NU3S 2HIL NIY3G J
6V =+1
BIadT 2 (*T=I1d) 2 (°T=T3)=Td2T3) alax (222 (DIS/72)23%=)dXInV4=(I¢TIXN13 G2T 59
dax(S*~1d)=2
i=13
9ISeN*I=I 32T Ou %2°7
25798 45°2=9I8S2N £27
821 31 929 39
JON=3ISEN
- £2% Ga. 33 (*c/v°*370°91I3)31
AT IENNZAX3 ATlgenlS
NI AINGD 42
4344 = (I*P)i3n2 S%
Incaadalia¥3=u=(I*r)&s¢s :
ceT=qiteYy Ny
awqu/uu Am.ﬁvrzuu

‘\

48




1

PATISSATLY T Ll

v 0L 09 (2°39°*indn)si

LInl=(r43)13n1

S8 OL Su (LAL°23°(r*I)13nl) 4l

(PI)ddPIa (L WAL=(PCI)LiZnL)=(PTI)LuS4=(L*TI) Ly 3H
13 (LD ONST=(P*1DLU34=( ¢TI LIV3H

6¥T 04 O3u

(PEI) V7L TP DIDNZ2+4 (PSTIDASHL=(N T 13M)

J6 0L 09 (LAHL°29°(M€1)i3nb) 4]

3TT 0L 395 (3°:°U53°(PSI)ZINOI) al

JIN*T=C 5FT OG

2IN¢TI=I STT QUL

(P 0=(T4T) 0=-(T¢T)XNIS=(T¢T)DI3L

SANILNGD

Aﬁ.«ouu~u+.n.H~¢U0~a.H~rcog«.uuxaqu (F¢31)01350C
sON¢2=I 90%F 0G

2NANILINOD

(T~ ﬂ.avuo¢aﬂ.«.cnoﬂn.avnncﬂv.ﬁvxngm (ré¢T)nI30
QINC2=P $6 20
3ANILNDD
SANTILNDD

. (Pr41)Z3=-(ré1)¥0~- 1
(T=T¢I)204 (P T=-I) ZL+(PCIIXNIS=(r*I) D130
JaNé2=r 32 uC

¥ON‘¢2=1 si O

(OIS cONY 2D
(IONSSINIZY
*nNl11122
LGl NONIZL

d3/7CIEIN) NI ((T+I423N) i3l = (L%¥IN)13-4L)= (I%aonN) =0
- HET = I 35 Ou

SANILINDS

Cer=2(L3N%1) S0

P+ (2)AVa = (ZIAEA (L°3°%°i0°(r*¢I)2Z20Y31

ZO/7 M1 ZND D4 (LS THIVLIHL=-(F4IILIHL) = (5N*I)Z0
I =71

N*'T = 1 39 Uu
EHEYY
U“JZ’PJU‘
<P ITY) SNISA (YL 3128 e POV Eahl)=4r 3T 0

0°3
3°0

1P

ot UV

[VVRREY}

U
Uy Uy

Sty

G¥T

S07

ot

*7

5o

28

.t




EY n
Lt

o

R

P

UiNa
- : 4018
) 562 91 U9
( N SASTéH*°BIGEXTILUNEId  ToH
(SON®T = FS(P*1)3NDI)*T091NIaa Cih
GE = dUN (D2°19°03nN) 31
. JON = dON
5IN¢T = I 35% 0U
(ONILI3N 340 3SAIL H3T//)1¥ad03 T02
Tug iNloco
(ITIOT®2XYUn ) LiVAods 038
XVA €98 iINIdgd
(h°DT3%2=9ISa N 2T 3% e=14a¢4°0T3¢6,=38Ua 00T 46a=4321 2) LVABId £08
JIS*14%08v 330l .,um INIde
- (31%a=d3L1SNa‘T
3°0T3%a=1Ca®SI%a=Na€351¢%s -ozw.a.aﬁu.w Ox®9°0F3%2=V 2)ivino0d 208
d3LSNCLGCanN*ONSJ¢Yy %20¢ inNIad
(9°CT3%=T
1741 2®9°0T3%a=d0a%0 0 au..-zug».:.,«u. =NIISN3 a9 0T344=00T+) LYNJ04 T08
LWAL6cIENOI*NOISNS¢DOna ¢T08 INYad
_ 3NIINOU Tu2
123+43WTIL=3RTL 332
T3IC 0L 09 (0°3°S3°(T¢4uN)13InL) I
a3lS 3+IL iv NOILvIA3IvD ON3
(3NILI3A 113D H2T4GI2H°2T3%=3kIL HS)1TWeOS 19
SANILNDJ 53T
SONILROS JTT
P = (réi)aang
(r*3)3nug
*a=(r4I)xXnid
(FET41) XN 3
CSALSINNNDL
i= n.H.Nrcu
3229 Ad19
C3T U4 an
i 02T 34 02(3°5°20°(P%I)1van) 3i
. InNIIMNOG 2w

[ ]
©~
-

4
("f1Yyxad
5°
3

ITIEIL04 INILIEA 2

(%

3% S

ost

sYT

ot

[T4)
(32}
«t

"eT

527

52%

S>7




