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DYNAMIC LOADS IN UNDERWATER EXPLOSIC11

by

B. V. Zamyshlyayev and Yu. S. Yakovlev

Foreword

In the total complex of problems in modern shipbuilding,

dynamic strength occupies a promi.nent place. Since theoretical
methods for evaluating stresses and deformation under known loads
have been thoroughly researched in many studies, there is signif-

icant value in the study of external. forces.

Dynamic loads in underwater explosion are a separate and es-

sontial part of the total problem of external forces. Final sol-
utions in the field of dynamic loads have only recently appeared
in the scientific literature. This is explained by difficulties
arising in research of similar problems. Indeed, even when eval-
uating the hydrodynamic field for the simplest case of an undeform-
ed obstacle, we must take into account the effect of a shock wave
passing around an obstacle, in addition to the reflection and re-

fraction of waves; this "rounding of waves" is usually called
diffraction. The analytic intricacy of wave equation dl.-fraction
problems is well known. It is this fact alone which has hindered

.oe &ivelopment of practical methods for dynamic calculation. of

sttuctures.

Consequently, it seemed appropriate to present the primary
findings in the field of diffraction problems of the theory of I
underwater explosion within a separate chapter of this monograph
(Chapter II). We discuss difrraction of a plane wave around a
completely rigid wedge. The first solution of this problem was
given by S. L. Sobolyov and V. I. Smirnov [18, 19]. Another

simpler method was given by A. A. Kharkevich in his study of the
diffraction field at the edge of a semi-infinite plate [211.



w-= -q

1J
The use of the method recommended by Kharkevich, which consisted

Sin using a Laplace equation in place of a wave equation, allowed us

to derive simple relationships without 4ifficulty. The use of these
relationships enabled us to explain the distinctive features of the
diffraction field by an angle and give practical methods for evaluat-

ing external forces for the effect of a shock wave on the body of a

ship whose outlines can be geometrically reduced to a polygon.

Thus we thought it necessary to explain the possible use of a
ratiation integral solution, in some Gases, in the analysis of diff-

raction problems and to indicate those cases where its use would not
lead to appreciable error.

The study of wave equation boundary-value problems permitted us
to form conclusions on the general mathematical features of a descrip-

tion of a single wave being diffracted around an obstacle, the motion
of this obstacle at a velocity which changes according to the unit

C function law, and to establish a connection between wave solutions and
solutios based on the classic notion of a noncompressible fluid. We
found tAat after a certain time interval, the load developing during
the diffraction of a wave around a body is easy to calculate in terms
of apparent mass. The proper approximation of this transient function
permits us to analyze the external forces for the entire period of
transient motion, with sufficient accuracy for practical application.
On this basia, in particular, the diffraction load on a round cylin-
der and an ellipsoid of revolution can be written in a very simple
form.

For theve reasons, we can speak of designing an approximate but

rather universal method for evaluating hydrodynamic forces, based on
ttie assumption of an obstacle having absolute rigidity (collective
forces of the first order).

The appreciable acoustic resistance of water predetermines the

21¶
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second basic problem in evaluating external forces. The moticn of
an obstacle during elastic-plastic deformations generates wave dis-

turbances which greatly affect the total hydrodynamic field. The
interrelationship between deformation and load necessitates the study

of the systems of integral-differential equations of motion. A def-

ined approximation of the kernel permits us to reduce these equations

to ordinary differential equations. The representation of motion in

Its main forms of change enables us to investigate these equations
independently of each other, in some cases. In this way, we can find
an evaluation of hydrodynamic forces of the second order which takes

into account the effect of deformation and displacement on the re-

sulting load.

In the interaction of a direct shock wave resulting from the motion
of an obstacle with an expansion wave, negative stresses may be creat-

ed in a fluid amd subsequently, areas of cavitation. This process
may no longer be described by classic hydrodynamic equations and re-

quires the development of special research methods. However, we must
take account of this process in many cases, since the external load
depends greatly on it. This type of problem can be solved by using
integrated evaluations based on the universal laws of conservation of
energy and momentum.

The entire range of questions is reflected in the contents of
Chapter III. Since the nature of interaction of a wave and a struct-
ure and the final formulas derived are in many respects defined by the
direct shock-wave curve, and since universal theoretical research
methods are based on a cert:,in apparatus of g&s dynamics, the second
and third chapters of this mo.iograph are preceded by an introductory
first chapter which briefly states the necessary data for hydrodyn-
amic fields in underwater explosion in a free fluid. Nevertheless,

some sections in this introductory chapter do contain new elements.
Subsequent development of Kirkwood's ideas in particular, permitted
us to derive a clear picture of underwater explosion at great charge
depths. Consideration of nonlinear effects with utilization of the*
Fermat principle made it possible to derive a rather simple method
for evaluating the effect of a free surface and the bottom of a basin
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in the reflection of a sphexical wave.

Very little literature excists on the subject of this monograph,
with the exception of information rcovered in Chapter I. Clarification

of questions on acoustic wave diffraction around an obstacle was facil-
itated by the work of S. _. Sobolyov, V. I. Smirnov, and A. A. Khar-
kevich. R. Cowle's book ("Underwater Explosions" [10]) and Yu. S.
Yakovlev's book ("The Hydrodynamics of Explosion"[26]?. as well as
a number of articles, mainly by S. A. Khristianovich, were of aid in
writing Chapter I and several paragraphs in Chapters II and III; these
last articles have been published at various times in the journal

"Applied Mathematics and Mechanics".

The main contribution to the solution of this problem was made,
in our opinion, by the work of Academicians V. V. Novozhilov, D. A.
Aleksandrin, Yu. V. Golyainov, M. N. Lefonova, K. V. Lopukhov, I. L.
Mironov, I. G. Novoselovs, A. N. Patrashev, A. K. Pertsev, L. I. Slep-
yah, Yu. A. Fyodorovich, L. V. Fremke, and to some degree, the authors
of this book.

The large number of papers recently published in the field of

shell dynamics compels us to view the problem of interaction between
a shock wave and a shell as a separate, important, and interesting
problem; a brief summary of even the main aspects of this theory would
require a separate monograph. In this study, we will only be con-
cerned with certain aspects of this question, mainly from the stand-
point of evaluating the diffraction field near an absolutely rigid
body.

The manuscript of this book was reviewed by L. I. Slepyan, V. A.
Timofeyev, and P. F. Fomin. Y. 1. Kolyzheva designed the layout.

To these persons, and to the scientific editor of this book, Acad.
V. V. Novozhilov the authors express their sincerest appreciation.
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Comaents and questions concerning this book should be sent to:

"Sudostroyeniye" Publishers, 8 Gogol Street# Leningrad, D-65, USSR.
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CHAPTER I

PRESSURE FIELDS FORMED DURING UNDERWATER EXPLOSION IN A

FREE FLUID

§U. Second-Order Discontinuity Surfaces. Dynamic CompatibilityConditions.

In the explosion resulting from the rapid liberation of energy,

high pressures and temperatures are formed. These quantities are
generally distributed arbitrarily along the boundary surface between
the detonation products and the ambient medium. At the same time,
the existence of this unique boundary surface of two media is incom-
patible with the laws of conservation of matter, momentum,, and energy.
Transient disintegration of the initial surface occurs as three new
surfaces are formed. The distinctive feature of each of these sur-
faces is the abrupt change in hydrodynamic parameters (pressure, den-

sity, temperature, and particle velocity). These surfaces are called
C discontinuity surfaces; if the hydrodynamic parameters themselves

change abruptly, we are speaking of second-order discontinuity sur-

faces; if their first or high derivatives change - of first-order dis-
continuity surfaces.

In underwater explosion, the surface propagated through the am-

bient medium is a non-stationary second-order discontinuity surface
(shock-wave front). The boundary surface between explosion products
and the medium is a stationary second-order discontinuity surface
(gas-bubble surface). The third surface propagated through the pro-
ducts of explosion is a first-order discontinuity surface, or the
"characteristic".

The main task of the theory of explosion in an infinite medium
is the study of transient fluid motion between two boundary surfaces,
the shock-wave front and the gas-bubble surface. This motion is char-

acterized by a system of partial differential equations. A statement
( of the problem entails the recording of this system and the definition

6



of the previously mentioned boundary conditions.

Using the law of conservation of momentum and the law of con-

servation of matter, Leonard ruler (1755) first established the equ-
ation of motion and the equation of discontinuity for an ideal fluid.
These equations, which are universal for all fluids and gases, have
the form

d;p -~ + grad p 0i.(1)

(1.2)

The two equations of motion include five variables: pressure p*,
density p, and three components of the velocity vector vx, vy, and vz.
Without adding any other variables, the equation of discontinuity
nevertheless completes the system. Sometimes, the assumption is made
that the problem can be solved, considering that density is constant
(the hypothesis of a noncompressible fluid). Accordingly, the equ-
ations of motion and the equation of discontinuity form a closed sys-
tem and for a one-dimensional case a solution may be derived using
quadratic equations. This is precisely what Lamb did at one time
(1923), the first person to theoretically derive the pressure field
in underwater explosion. To this very day, his solution has not lost
its methodological and practical value for the analysis of individual
problems.

In a general statement tf the problem, however, the use of the
hypothesis of fluid noncompressibility is inadmissible, since under
the high pressures formed during explosions fluids are highly com-
pressed. Water, for example, is compressed by more than 20% at
pressures of 10,000 atm. But this is not the deciding factor. The
main objection, with respect to the possible utilization of the hypo-
thesis of noncompressibility,is revealed on investigating the energy
balance. As is well known, an assumption on noncompressibility of a

*In studying transient flow resulting from underwater explosion,
pressure (p) is understood as being pressure in excess of hydro-
static pressure.
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medium does not permit us to take into account the dissipation of
energy, thereby totally excluding dissipative processes from analysis. ,
However, in the propagation of a shock wave formed at the beginning
of the first pulsation of the gas bubble in an underwater explosion,
one cannot ignore that about 60% of the initial energy is dissipated.
Ultimately, the hypothesis of noncompressibility excludes from dis-
cussion shock waves and their concomittant local areas of heightened
pressure and the finite propagation rate of disturbances.

Therefore, we must write additional equations to completely
describe the system of (1.1) and (1.2). Thatse equations are the

equation of state and the equation of energy. These equations con-
tain another two variables which were not previously mentioned: ab-
solute temperature T and heat flux e. However, the high rate of occur-
rence of explosive processes almost eliminates heat exchange with the
ambient medium. Heat flux is assumed to be equal to zero, and the
system of equation is closed. After excluding temperature using anc equation of state, we generally derive five equations. For of them
are universal for all fluids and gases. The difference in the phys-
ical properties of various media is reflected only in the condition '
of adiabaticity (in terms of the quantity of internal energy, defined
by the parameters of state).

Problems of a mathematical nature compel us to reject the initial
system of equations from our analysis of the universal case of fluid
spatial motion. At the present t.me, only a few studies have been
carried out on motion having plane, axial, and spherical symmetr'.
It is namely one-dimensional motion, however, which is of practical
interest.

The initial system of equations is integrated with respect to
boundary conditions assigned at the two boundary surface - the shock-
-wave front and the gas-bubble surface. We will investigate these
conditions in greater detail, bearing in mind that the wave-front is
a non-stationary second-order discontinuity surface where the quanti-
ties of the fluid hydrodynamic parameters abruptly change.

8



If we assume that the equation of a second-order discontinuity

surface Z is

F(x, y, z, t) = 0,

then the area F > 0 can be considered relatively positive, the para-
meters of this area being assigned the index +; accordingly, the
quantities in the area F < 0 will be assigned the index .

A discontinuity or rapid change in function b on surface E we
shall call the difference in

b, -t = Ibl. (1.3)

Let us introduce the notion of the rate of travel of surface Z
at any given point. The rate of travel is the limit of the ratio of
a point traveling along a normal toward the surface to timeC

N = 11m-. (1.4)

Velocity N defines the motion of a discontinuity surface with re-

spect to a stationary observer.

Another interesting quantity is the rate of motion of a discon-
tinuity surface with reference to particles of fluid, called the dis-
continuity-surfaice propagation-rate and designated by the symbol 0.

By definition
SN-- V. v'

O_ N- o. j 1.5)

On discontinuity surfaces, as in other areas of fluid motion,
the universal laws of conservation of momentum and energy are satis-
fied a

i The mathematical form ýor writing these laws is called

9



dynamic compatibility conditions.

N. Ye. Kochin (1926) derived these conditions in the form

if-1 0, (1.6)

"[v I V- + - (1.8)

where we also designate: u - internal energy; A - thermal work equi-
valent.*

If the rate of propagation e - 0, the discontinuity surface is
not in motion with respect to the particles and is called stationary.
Based on (1.7), pressure discontinuity [p) = 0 on such a surface. By
definition, as well as on the basis of (1.8), density discontinuity

_ [p] is relative. The discontinuity of tangential v .city components
is also relative. This is easily verified by scalar multiplication of
both sides of equality (1.7) by the unit vector T which is at right
angles to F. Consequently, a stationary second-order discontinuity
surface is often called a tangential discontinuity surface or sometimes,
a contact surface.

If the rate of propagation e o 0, a discontinuity surface is
called non-stationary. On this surface there is always an abrupt
change in the quantity of pressure and the normal components of the
particle speed vector: [p] # 0, [vn] 0 0. Indeed, if we assume that
[p] = 0, then based on (1.7) Ivn] - 0 and consequently, based cn (1.8)
G = 0. According to (1.6) [p) - 0, i.e., there is no second-order
discontinuity.

Let us examine the corollaries derived from dynamic compatibil-
ity conditions for non-stationary second-order discontinuity surfaces.

'*Assuming that internal energy is expressed in thermal units.
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First ..f all, let us note that the three equations, (1.6)-(1.8) in- 4
clude seven variables: N, p+, p. v+, v_, p+, and p_*. Thus, if the

hydrodynamic parameters of an undisturbed medium are known ( +, v+, p+),

we only have to be given one element on the discontinuity surface so

that the remaining parameters are identically defined.

After excluding mass velocity v from (1.6) and (1.7), it is easy

to derive expressions for the rate of propagation of the shock-wave

front

02 - IH '(1.9)

P_ I -T, l•'(1.10)

The physical interpretation of equalities (1.9) and (1.10) will

become quite clear if we use specific volume T(T = l/p)instead of

density p. We then find that
C 0• • • -- P+

It - ' (1.11)

2 P--P+

P_ - P
•"+.= ,•• __-•-.(1.12)

It_

Let us first examine expression (1.12). For a given initial state,
the coefficient T2 is constant. Consequently, the propagation rate of

shock-waves e+, corresponding to various degrees of compression, de-

pends only on the ratio (p_ - p+)/(T+ - t_), i.e., it is a function

of the tangent of the slope of the corresponding straight lines which

connect initial point p+, T+ with points p_, T_ (Fig. 1). The pro-

pagation rate of small disturbances at point A is defined by the slope

of tangent AD

+ di -" dp +P

* 0 and u are not independent variables, since by definition 0 =
N - v_, and the quantity of internal energy u is expressed in terms

of p ang p by means of an equation of state.
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f and is equal to the speed of sound in an undisturbed medium a+. We
can also see that 0+ 1 a+.

Based on identicaW arguments (see Fig. i, 1: follows that
6+ a.

If we are examining a stationary second-order discontinuity sur-
face where N = 0 and consequently, 0 = -Vn, then the relationships

derived produce an important corollary: a second-order disc( ntinuity
can be created only in supersonic fluid flows. In the stationary
problems of gas dynamics, this discontinuity is usually called a
consolidation discontinuity.

Since passage through the local speed of sound qualitatively
changes the nature of motion, the ratio of the speed of particles to
the speed of sound, H = v/a is often used as a criterion of similar-
ity. This criterion, called the Mach number, can easily he extended

( to nonstationary processes. In this connection, we should of course
examine reversed motion by studying the motion of particles with re-
spect to the wave-front.

We will then define the two Mach numbers

- (1.13)

M - (1.14)

where M_ < 1 if M+ > 1.

In most cases which are of practical importance, a shock-wave is
propagated in an undisturbed medium. In this connection, v+ = 0,
0+ = N. Consequently, the velocity of shock-wave motion is always
greater than the speed of sound ahead of the front (M+ = (N/a+) 1).

wAs we know, pressure change is (aZp)/( ) > 0 for the dynamic
adiabatic curve of water, on which we basi the universal nature of
the conclusions formulated.

12
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Fig. 1. Schematic Comparison of Shock-Wave
Propagation Rate and Local Speed of Sound.

However, the difference in the rates of wave motion and particle mot-
ion is always less than the speed of sound behind the front (M =I
= (N - vn/a_) < 1; N < a_ + vn ). On this basis, weak disturbances in
a fluid which are propagated at-the local speed of sound can catch up
to the shock-wave front, but cannot outdistance it.

Inequality M+ > 1 > M. is often given as evidence that the only
second-order discontinuities which are possible, are those in which

pressure increases (Cemplen theorem).

Let us return to dynamic compatibility conditions (1.6)-(1.8).
After excluding the variables v and e, we find that

U- ,U . +P-) (1.15)

Equation (1.15) is the dynamic or shock adiabatic equation.

For an ideal gas, the quantity of internal energy is expressed by
a linear function of absolute temperature

U• (1.16)

and the equation of state is the Mendeleyev-Clapeyron equation

13
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P pRT. (1.17)

Moreover, the product of the gas-constant R times the thermal-
work-equivalent is equal to the difference in specific heats at con-
stant pressure and volume

Using these relationships, equation (1.15) can be written in the

form

tpýP. .) [i.. P

or, by expanding the signs of the discontinuities and performing
simple transformations,

p, ' +.~ +- k- )• (1.20)

where k = c p/cv - the adiabatic coefficient.

Equality (1.20) is the dynamic adiabatic curve of an ideal gas,
or the Hugoniot adiabatic curve. The Hugoniot adiabatic curve inter-
sects the static adiabatic curve (the Poissonian adiabatic curve)

M= (1.21)

at point (p_/p+) - 1, (p_/p+) = 1 and has a second-order tangency at
this point.

The theoretical distinction between the Hugoniot and the Poisson-
ian adiabatic curves is that the Poissonian adiabatic curve is a
single-parameter curve, whereas the Hugoniot curve is a two-parameter
curve. To exhaust all possible Poissonian adiabatic curves, one only

I has to run through a one-dimensional series of entropy (S) values;
while to exhaust all possible Hugoniot adiabatic curves, one must

14



plot "infinity squared" curves to satisfy all possible values of p+
and p4. In other words, in contrast to the Poissonian adiabatic curve,

where entropy maintains a constant value, every point on a dynamic

adiabatic curve is satisfied by a certain value of entropy which ij

inherent only to that point. Consequently, if an area of variable

pressure is formed behind the shock-wave front, there will be a con-

comittant area of variable entropy.

The function of entropy of an ideal gas is defined by the equal-

ity

A P+ (1.22)

Using equation (1.20), we can derive an order expansion Ap/p+

of function AS near point (p+, +

A (2 P+ 3/ 2 ?,.1.t " (1.23)

Based on (1.23), at small values of Ao/p+, an increment of en-

tropy in the shock-wave is proportional to the cube of relative con-

solidation. In weak shock-waves, the increment in entropy is so small

that we can view the propagation of such waves as an isentropic proc-

ess, with no detriment to practical precision.

Assertions made for a dynamic adiabatic curve of an ideal gas,

with respect to quality, are also valid for other fluids and gases.

For qaantiative evaluations, we must know the thermodynamic proper-

ties of the medium and, above all, the equation of state. Numerous

attempts a theoretical derivation of the equation of state for water

have not produced the desired rebulta; for this reason, various em-

pirical and semi-empirical equations of state for water are used to

solve practical problems which, as a rule, approximate Bridgman's

experimental data in one form or another.

For an area of high pressure (p > 30*10.1 kG/cm2 ), we can recoi-

15



mend the following empirical dynamic adiabatic equation for water:

S_ 20 '(1.24)

At pressures less than 30oi03 kG/cm2, the change in entropy may
be disregarded and consequently, the static and dynamic adiabatic
curves almost coincide and can be expressed by the so-called T~te
equation:

(1.25)

where B = p0a2/n = 3045 kG/cm2 (where t = 15°C, a0 = 1460 m/s, and
n = 7.15).

Equations (1.24) or (1.25) in conjunction with equalities (1.6)

and (1.7) constitute a system which permits us to identically define
any hydrodynamic parameter in a shock-wave front, if we are given one

4,- of them in conjunction with the parameters of an undisturbed fluid.t
For the sake of convenience, we will write the system of these

relationships after assigning the parameters of the front the index
"•" and the parameters of the undisturbed medium the index "0".

Based on (1.6) and (1.7) we immediately find that

P+ -- pa = (A -- ,s) (v4, -- a.). (1. 26)

(1.27)

%i N + _ pl P
'- (1.2 9)

If v0  0, then

P. - P.e V. (1.30)
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•. °~ (1.31)

•*-( (1.32)

Equalities (1.26)-(1.32) are valid for all fluids and gases.
For w~ter, when pressure on the front is in excess of 30,000 kG/cm2

P#P.d [(•,# d kG/cm2, (1.24a)

" -ANd cm2 /sec2 (1.33)

VP (-• 1-P 1.34)
~'= I Q ~ cm21'sec2, (.4

where d = 4250 kG/cm2 , k - 6.29.

For isentropic motion (p < 30,000 kG/cm2), according to the
T~te equation N*=

~ (1.35)
~ ~~~P I* -- - _ _ __. _

to 7(r-O. ! __5' 1(1.36)

(1.37)

In studying the propagation of an underwater shock-wave having
pressure on the front less than 1,000 kG/cm2, dynamic compatibility
conditions can be linearized.

After performing simple operations, considering that p, << Bn'
we find that

(1.38)

a*M.[ a+ Igig,6-p.

On14 P0
(1.40)
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Let us note that the linearized dynamic compatability conditions
for an ideal gas have the form (for «po/p0 << 1)

S P.• (1.42)

2b= "f t(1.43)

N =aO I, t+ " ,,.,
N4 )O (1.44)

(-f J,(.-). T',;'•(1.45)

where p- excess pressure on the shock-wave front.

In contrasting (1.38)-(1.41) to (1.42)-(1.45), we can see an
identity of the systems by replacing the adiabatic exponent with the
exponent n and pressure p0 with the constant B. Let us now give a
complete general characterization of the physical-mathematical form-

ulation and an analysis of the problem of propagation of weak shock-
-waves in an ideal gas or fluid.

§2. Differential Equations of Gas Dynamics. Equations of the
cCharacteristics.

An abrupt change in hydrodynamic parameters of a fluid occurs
only on discontinuity surface. In the remaining area, the transient
motion induced by the explosion can be described by a system of dif-

ferential equations from gas dynamics. These equations are the equat- i

ions of motion, the equation of discontinuity, and the equation of
energy. The derivation of these equations has been given in many

hydrodynamics courses and thus, there is no need to repeat it here.

The equations of motion on a rect&ngular system of coordinates

have the form1



I

..f ' z "' p '.'-, O• P &-
, ±.., +• U_. + U. ý.... _ L LP

do +• 12.11+VC&- _

or in vectorial for.,

++ ;.,-) + (P . 0. (2.2)
IW

where V designates the so-called Hamiltonian operator:

A + /..+ kA(2.3)

We often can also use an equation of motion in the Gromeko-Lamb

form: *

2 (2.4)

The equation of discontinuity expressing the law of conservation

of matter has the form:

0I0
W. f-. div (1,4 ., (2.5)

or if we expand the sign of divergence,

I + L +(2.6)

Finally, the last equation which completely describes the system

*rot V designates a velocity curl - the vectorial product of the Ham-

iltonian operator V times the velocity vector v:

rx
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Fig. 2. Spherical and Cylindrical
Coordinate Systems.

is the adiabatic curve equation. This equation can be a mathematical

expression that entropy of a particle remains constant in the adia-

batic process

Inmn rolm tdl 1so 2.7)or of 4h2.8

In many problems it is more suitable if we write equations in

curvilinear coordinates, and not in Cartesian coordinates. Cylindri-

cal and spherical coordinates are special cases of the former.

The connection between cylindrical and rectangular coordinates is

defined by the relationships (Fig. 2)

gm-srin@ 0'- rctg+ '(2.9)

The spherical coordinates re 0, 6, (Fig. 2) are connected with

Cartesian coordinates by the relationships

~r slri Gc0..,mX8 _+91 +,
&;-::rsin@ fnj *i-,arctg--,---- (2.10)

I ,c-o •,eartg. 1I
The equations of motion and the equation of discontinuity in a

20



cylindrical system of coordinates have the form

Op, +' Vo!, A',or v46 Iap
ou+ , + 4. + +-- -

SIT av, ,(2.11)A , v9A,, O~ ___

01 ~ a 01 0,:'7 ~U a'

1 adfva) + 1( Was,) ý 0+ , A' • ' ÷ + -

In spherical coordinates, they are written in the following manner:

au 0ow, V4A, 00'_ w 4iaIaV, ; + O,

+ ,. * U -ust + -.- + !, -

--- --- +(2.12)
at A' 'OSna•nS"'

+ P? tie I Wp

A + I,,o) + 0-o.

In view of the difficulty in integrating these systems, we more

often examine one-dimensional fluid motion. This is motion which is
a function of one spatial coordinate r, and time t. Special cases of
one-dimensional motion are motion having plane, cylindrical, and

spherical symmetry.

On the basis of (2.1), (2.6), (2.8), (2.11), and (2.12) it is

not difficult to derive equations of one-dimensional motion in the

form

(2.13)

7 i + X " • t V, -+ P,
(2.14)

(2.15)
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~ lihere v = 1, 2, and 3, respectively, for motion having plane, cylin-
cOrical, and spherical symmetry.

For isentropic flow, equation (2.15) is replaced by an equation
in finite form [for an ideal gas - by the Poissonian adiabatic curve
p/pk =.p0/p0 for water - by the Tate equation(l.25)]. It is suit-
able, in this case, to use the variables v ands in the system (2.13)-
-(2.15) in place of the variables v, p, and p. As a result of simple
transformations we find that*

,4 A+ 2.A 0
di -a -a- 1 (2.16)

S�+ -- • 2.2 (2.1"7)

In spite of the apparent notational simplicity, no precise sol-
ution of system (2.16)-(2.17) has been derived. Consequently, we
use various approximate methods. The most widely-used and universal

4' of these is the characteristic method, the essence of which we will
explain in brief.

Let us assume that in the plane r,t we are given curve L whose
equation is r - r(t). The functions vL, aL on this curve are known.
The problem consists in defining the integrals of the system of equ-
ations (2.16), (2.17) which could be converted into the given values
in curve L. In other words, we must find the integral surface which
satisfies equations (2.16), (2.17) and passes through curve L. The
task of defining a solution with respect to these conditions is usu-
ally called a Cauchy problem.

Let us consider that the functions v and a are the analytic
functions of r and t. The following equalities are plotted on curve
L

*The corresponding system for an ideal gas differs from (2.16)-(2.17)
Ionly in that it will have the adiabatic coefficient k in place of the

quantity n.
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dut out ie
S*1. (2.18)

"eat d•a •a •

Moreover, the equations of hydrodynamics, (2.16) and (2.17),
must be satisfied on the same curve.

Let us explain which constraints are imposed on the basic system
of equations because the solution of this system must satisfy the
given values of hydrodynamic parameters on curve L. For this purpose,
let us find the magnitudes of the partial derivatives 3VL/3t and
3aL//t on the basis of (2.18), and substitute them in equations (2.16)

and (2.17). We will then find that:

U - t -+---1T" (2.19)

System (2.19), generally speaking, permits us to find the partial
derivatives 3v/ar and 3a/Br, except where the determinants are equal
to zero. Moreover, there is a countless set of values for the deriv-
atives av/8v and aa/ar which satisfy a given system, i.e., a count-
less set of integral surface may pass through curve L. This curve
is called the characteristic curve (eigenvalues).

In the universal theory of differential equations it has been

proven that:
the solution of characteristic equations is equivalent to the

solution of an initial system of equations;
the characteristics are invariant during substitution of varia-

bles which establishes an equivalent transformation of the points in
one space to the points of another space.

Characteristic equations are not difficult to write after equal-
izing the determinants of the initial system to zero:*

SThe second determinant of the system is not written out, since no
additional conditions are imposed on the hydrodynamic parameters.
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2.

-a -, (2.20)

---- vg(p-'Za Idt 2- I .da, R- (V- ) t•a(V -- re) (2.21)

The determinant of (2.20) becomes zero, if I
&,--i +a=0.T v ,

vL (2.22)
dt

Based on the equations in (2.22), the characteristics are pro-

pagated at the speed of sound.

According to (2.21)

0duL 2g "Ih _.1, ,..--(v--r') -• + .8--- I- + 02u-- --"O
st n-- #1 ' i

Where v - r'=

- ." L_--7 +av 0-.. (2.23)

The first- class characteristic value is

dr
d'•" = + a.(2.24)

In this characteristic, according to (2.23)

ev- + -- -At --
-1 di•+ --'-- (2.25)

The second-class characteristic value is

de
. (2.26)

* After defining the characteristics we will henceforth omit the in-
dex L.
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The following relationship must be satisfied in (2.26):

$4, 2 da 2-I.. .--I LIV -01 (2.27)dl w'-.I 4

First and second- class characteristic equation systems cannot be
solved independently of each other, since each of them represents two

equations having four variables. Nevertheless, it is much sippler to
integrate these equations than to integrate the initial system of
partial differential equations. This also constitutes the basic merit
of the characteristics method. System (2.24)-(2.27) generally has no
integrable combinations. However, for motion having plane symmetry,
the equations of the characteristics have first integrals.

It is now possible to find precise solutions. Let us now move to

a familiarization with these solutions.

S §3. Some Precise Solutions for One-Dimensional Transient
Fluid Motion

For one-dimensional isentropic motion having plane symmetry (v =

= 1), equations (2.25) and (2.27) are integrated and system (2.24)-

-(2.27)assumes the form

di (3.1)
v + -- a -const R
dl
-a, Iy -

. 1(3.2)
U- a-const-a 2.

Let us view r and t as functions of the characteristic integers

Sand n:

(3.3)

Since the quantity • is constant in the first- class character-

istic, r and t in this characteristic will be functions only of n
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On this basis, the first equation in (3.1) can be written in
the form

(3.4)

By analogy, in the second-class characteristic

l 4- '(3.5)

Moreover, based on the second equations in (3.1) and (3.2)

(3.6)
0 1

After substituting this result in (3.4) and (3.5), we will find
that

bM.(~n~+tI~)t 1(3.7)
System (3.7) is called a canonical system of gas dr yics

equations for motion having constant entropy. In contrast to the
quasilinear system (2.16)-(2.17), system (3.7) is linear and can be
reduced to an even simpler form. For this purpose, we only have to
differentiate the first equation in (3.7) with respect to •, the
second with respect to n, and subtract one from the other.

Consequently, we find that

or (3.8)

26



rM- • • , .. W "WV

If n-- n+- m = , where m f..s an integer, then equation (3.8)

is called a Darboux equation and is integrated in finite form. For

air in particular, assuming that n k = 1.4, we will find that m = 3.

For water, n = 7 and the quantity n + 1is a fractional number.

In this case, however, as is shown in paper [26], after choosing the

appropriate form of approximation for the condition of isentropy the

system of equations of plane motion can be reduced to a Darboux equ-

ation.*

Let us touch upon yet another case of isentropic motion of a

fluid having plane symmetry which permits integration of gas dynam-

ics equations in finite form. Let us assume that the quantities of

parti'2le velocity v and the speed of sound are constant values
along one of the first-series characteristics in plane rt.

according to the first equality in (3.1), this characteristic will
be a 3traight line, since it has dr/dt = constant. The second-class

characteristics LI, L2 ,...Li intersect this straight line at pointsM M11 M2,...Mi.

For the points indicated, the following equalities are valid:

2
2 4 211,

and since the quantities v and a are constant at points M1, M2,.*. Mi,

the characteristic integers n1, 12' "9yii become equal.

* At pressure up to 2,000 kG/cm 2, one possible form of this approx-
imation is

In this connection, the quantity m in the Darboux equation equals
one. 27



S Thus, the relationship is

V-- 21a 2% (3.9)

will be satisfied not only along the given characteristic, but in
its entire plane.

If we now express the quantity a in terms of v and substitute
it in the equation of motion (2.16), we will arrive at a partial
differential linear equation of the first order

- + -[.Lu-(V- I)(n A- 0, (3.10)
01 2 &O

which is equivalent to a system of ordinary differential equations

di.
- + (3.11)2 -. 01 - 1)

( The common integral of (3.11) is

, 2 - :-, .- l 1 () (3 .12)

This result was first obtained by Riemann in 1860. The solut-
ion of (3.12) and (3.9) is called a Riemannian trend or a unidirect-

ional direct wave. If we assume, by analogy, that the quantities

of particle velocity and tho speed of sound are second-class char-

acteristic constants, we get:
[N= n u---- +I ) t.(u). (3.13)

-" ",(3.14)

The solution of (3.13) and (3.14) is called a uaidirectional
backward wave.

Unidirectional direct and backward waves, which depend only on
one arbitrary function, are not special cases of the general solution
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of initial system (2.16),(2.17). They are particular solutions

of this system which describe completely fixed physical processes.
The chief feature of these solutions is that motion characterized

by a unidirectional direct or backward wave can be associated with

an area of rest or, generally, with an area of stationary medium

rotion.

If the function *(v) or 1 (v) in (3.12) or (3.13) is exactly

equal to zero, then motion is only a function of the ratio of r/t.
The distribution of hydridynamic parameters at various points in
time will oe similar to each other, only differing in scale. This
type of motion is called self-similar. The natural extension of

self-similar motion is the dependence of hydrodynamic parameters on
the parameter t a/rO where a and B are constants. For self-simi-
lar motion, integration of a system of partial differential equations
can always be reduced to integidtion of ordinary differential equat-

( ions.

Let us touch briefly upon yet another class of precise solutions
for transient motion of a fluid which is valid for studying disturb-
ances of infinitely low amplitude. These solutions are often called

the acoustic approximation.

Let us c~te the hydrodynamic equations whicl are required for
further statement in acoustic approximation, restricting ourselves
to an examination of one-dimensional motion.

Let us assume that

P •Pe .P(3.15)

The ratios pl/p0 and v/a 0 will be considered small, of the first

order. Then, according to (2.13), (2.14), and (3.15), for one-dimen-
( sional motion we will find that
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"dU '. -- ,,O (3.16)

+ + +(COO -$ +-I' + (3.17)

Disregarding numerically-small second-order values in equations
(3.16) and (3.17) and bearing in mind that

we will have + it 0.

W.47 a (3.18)

Differentiating the first equation in (3.18) with respect to r,
the second with respect to t, and subtracting the second from the
first, we find that

alp#* I alp' (sI i
( ~r~~j *(.3.19)

a a ,

After substituting p0 rt r we will find that

-•; -- ,'+ '-'- - L - .=o. (3.20)

Equation (3.20) is called a wave equati.on. It is easy to prove
that this type of equation will be satisfied by p' and v for the
assumptions formulated.

For motion having plane symmetry (v - 1), the solution of the
wave equation is

(3.21)

Based on the structure of (3.21), this equation represents the
sum of two traveling waves; any disturbance formed at some point r

travels at the speed of sound a0, remaining unchanged in form.
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For the case of motion having spherical symmetry, the physical
sense of the wave equation solution remains the same, the difference
being that disturbance amplitudes will change in inverse proportion

to the distance

(3.22)

The solution of (3.20) for motion having axial symmetry has a

slightly more complex form:

,P P= , -( R, 4•- '

where we designate the distance from a point having pressure p' to
the origin of the coordir.,ates ip terms of r, as before; and the dis-
tance from the same point to the axis of symmetry in terms of R.

( In all these cases, the functions fl and f 2 have been set on
the basis of the problem's boundary conditions.

In conclusion, let us formulate recommendations for the prac-
tical application of the acoustic approximation. For this purpose,
let us evaluate the order of magnitude in the initial equation of
motion, (3.16). Let us note that according to dynamic compatibility
condition,

The spatial and temporal characteristics are associated by the
scale of the speed of sound

Consequently, the term v 3r, which was rejected in acoustics
Q • equations will be of the order of magnitude p'/p0 al in comparison

to - and L. -to3
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Let us assume than an error of u5% is possible. In other words, let

- 0.05.

Substituting the appropriate density and speed of sound* values
into this equation, we come to the conclusion that the use of the
acoustic approximation for water is possible with the error indicated
where pressure on the front is 1 1100 kG/cm2 ; and in the air where

2Apo < 0.07 kG/cm

In our arguments we have been based on dynamic compatibility
conditions and therefore, the conclusion that we formulate, strictly

speaking, is only valid for the proximity of a shock-wave front.

§4. Laws of Similarity in the Theory of Explosion. Gas Bubble

Expansion.(ii
Generally, in motion of a compressible, ponderable, viscous

fluid, the conditions of similarity require the equality of four
dimensionless criteria at similar points in flow:

homochronicity number, or Strouhal number

Shb ,= * (4.1)

Froude number

Fr , (4.2)

Euler number

(4.3)

P-r water, po - 102 kG.sect/m , a 1500 m/sec.1 for air, p=

0.125 kG.sec 2 /m4, c0 n 340 m/sec.
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Reynolds number

Re (4.4)

where g - the acceleration of gravity; V - the kinematic coefficient

of viscosity.

In most problems in the theory of explosion we can utilize the

notions of an ideal fluid from gas dynamics. Consequently, we only
have to consider two of the four criteria of similarity - the homo-
chronicity number and the Euler number. Nonfulfillment of similarity
for the Froude and Reynolds numbers does not entail a scaling effect.

Let us assume that natural and test explosion are being produced

in the same medium (p0 - p0 )" On the basis of dynamic compatibility
conditions, irrespective of Ehe cause of shock-wave formation, there
is an equivalent interrelationship between hydrodynamic parameters on

Sthe front. Consequently, it we established that pressure quantities on

the wave-front are identical at certain distances from the explosion
centers of two charges, then the Euler numbers would be identically
equal

P.O V; (4.5)

Based on the condition of homochronicity, (4.1), it follows that

&s . (4.6)

Thus, in simulating fluid motion induced by an explosion, the

scale of linear dimensions must be identical with the time scale.

The typical linear dimensions defining the scale of effects in

explosion in an infinite medium are the charge dimensions. The
following law of similarity for explosion of identical explosives is
based on this: the parameters of transient motion induced by an ex-
plosion do not change if the scales of length and time, by which these
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Sparameters are measured, are increased or reduced by the same number

of times as are the charge dimensions.

The formulation of the laws of similarity is slightly complicated

when contrasting the hydrodynamic fields in a fluid which are formed

during the explosion of different explosives. As experience shows us,

our similarity can be based on the energy principle. Of course, ow-

ing to differences in boundary conditions in direct proximity to a
chazge, no similarity in the fields will be observed. However, since
the energy dissipation process occurs at a high rate for strong shock

waves, the time inevitably comes when the pressure values will be id-
entical at certain distances from the centers of two different chargesl
and consequently, because of dynamic compatibility conditions, the
quantities of density and particle speed will be identical.

Compatible points may be characterized by an equation of the
ratiosC

;E, gE,(4.7)

where E1 and E2 - energy liberated during the explosion of two dif-
ferent charges.

Compatible time periods will be found in -he same relationship
3--

•, "•"(4.8)

The energy of an explosion is proportional to the weight of

the charge, G. The la'1ter, in turn, equivalently defines the quantity
of the radius of a spherical equivalent charge, because

G- = RwoT. (4.9)

where y - the density of the explosive. 4

Given that y = 1.6 i/cm3 for trinitrotoluene, we will find that
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R. 0 ,053 • (4.10)

where R- the charge radius, m.; G - weight, kg.

These notions will be used many times henceforth. I
In addition to the shock-wave front, the gas-bubble surface is

a limiting surface of transient fluid motion during an explosion.

Let us first discuss, after Lamb [36], the expansion of a gas
bubble in an infinite noncompressible medium.

Considering the motion has spherical symmetry, we will write
the equation of discontinuity in the form

-5 (.•,+ =0 2.14)

Given that p = constant, we will find that (

+d "J- (4.11)

Integrating (4.11), we find that

"(4.12)

where f(t) - an arbitrary function of time.

Let us use the equation of motion

V + + I(2.13a)

After substituting the quantity v in it according to (4.12), we will
have

3 4.13)
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t• Integrating equality (4.13) with respect to r, we find

, -E'-'IIft)l + Ft. (4.14)
2r4

where F(t) - another arbitrary function of time.

The value of F(t) is found based on the condition that r + • p +

+ p0o where p0 - hydrostatic pressure deep in the explosion center:

P. = Ps + -H. (4.15)

Pa - atmospheric pressurel y - gravimetric density of water; H -

explosion depth.

Since f (t) and f' (t) are finite, we will find that from equat-
ion (4.14) F(t) p P0 and consequently, p!

P e+ (14.16)

The function f (t) can easily be evaluated on the basis of dyn-

amic compatibility conditions at the boundary of the gas bubble.

Since this boundary is a stationary second-order diacontinuity sur-
face, the following equalities must be satisfied in it, according

to (1.6) and (1.7)
•: Iul =0. 0

~.0.1
A=I 0.1 (4.17)

Let the radius of the gas bubble be characterized by the co-
ordinate R. Then, according to (4.12) and the first equation in
(4.17)

dR i(1L
W RS (4.18)

whence RD .-. i

"•I ± l +2R OR I

(4.19)
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If we also designate pressure on the gas-bubble surface in terms

of Pr on the basis of (4.16) and (4.19) we can write for this sur-

face

Pr-Pe= [RIB "-f" + 2R, .

or by solving with respect to d2R/dt 2 ,

I ~deft = ~p._ 3ti '.d ,"
de p.R 2 -• (4.20)

An ordinary differential equation, (4.20), permits us to define
the motion of the gas-bubble surface R(t), if we are given the pres-

sure change within it Pr (R).

The adiabatic expansion of TNT denonation products was studied

by Jones. The Jones adiabatic curve is shown in Fig. 3 which has
been borrowed from Cowle's book[101. It can be approximated by the

Ic • relationship

A
a•, '(4.21)

where R = R/R 0 - the relative radius of the gas-bubblel A, x -

coefficients which are const&.c for a fixed range of variation in
S(Table 1).

Assuming that density and pressure within the gas-bubble are

uniformly distributed (the so-called notion of "ordinary" explosion),
we integrate (4.20) using (4.21):

introducing another variable

I dR •.

,•df OR do, ,• •• , OR (4.22)

we derive a linear differential equation with respect to •:

" -- (4.23)
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Fig. 3. Adiabatic Curve for Products of TNT

(according to Jones).
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The solution of equation(4.23) has the form

CI A
RD -!3h• (4.24)

Since at the point of maximum gas-bubble expansion its surface speed
is equal to zero, when WR = Rmax' dR/dt = 0 and • = 0, whence

Substituting this value in (4.24) and returning to the variable

we find that:

--t . " (4.25)

A numerical integration of (4.25) permits us to find the relat-

ionship of the gas-bubble radius as a function of time. Having this

relationship, we can easily calcualte particle speed at any point in

the medium:
dRS~dt

,= RD dR (4.26)

On the basis of (4.26) and (4.16) the quantities of pressure are

defined. A final solution is derived for the problem. However, in

view of previously-state concepts (cf. §1), this solution cannot even

be utilized for the approximate evaluation of pressure fields in an

underwater explosion. At the same time, it does pernmt us to derive
"a simple relationship for calculating the first pulsation period of
"a gas-bubble.

Let us return to equation (4.25) for this purpose. If we exclude

the initial expansion section from our examination, then starting with

some > > 1, we can disregard the first term in brackets in the radi-

cand of (4.25). Instead of (4.25) we will then find that

"_X k ' -- (4.25a)d i 3
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based on which the gas-bubble expansion time to its maximum radius

will be dzfined by the relationship

man V =-22 (4.27)

Introducing another variable x = ( 3 ) and considering that
1 Rmx

X= 1 - 0, we will write formula (4.27) in the form
max

ills,, . /• , .-• IA ., - )'(1 -',x,
(4.28)

where r = 5/6 and q = 1/2.

As we know*, the integral in (4.28) is a total 6-function (a J.
primitive Euler integral):

It can easily be calculated in terms of r-functions:

8(r,q) r(V)r,.,q)

specifically, r r(÷)(÷
B 4___ 2,24.43÷)

Substituting this result in (4.28), we can write
t. 0,••R•.95P _. (4.29)

The first pulsation period is

* VCf. E. T. Whittaker, J. N. Watson, A Course in Modern Analysis,
Part II, GIRML (1963).
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r ia m 01 a (4.30)

or in a dimensionless form,

7 ,. ,0  . (4.31)

Let us return to equation (4.27) which will now be written in
the form of an integral having a variable upper limit and new vari-

ables y = R/RmaX, T = t/T.

We have

0.67j~ I
- (4.32)

When y >> 1, the integral of (4.32) is calculated by parts:

S' =0,268 (jOA-- Ae'"') (4.33)

or similarly,

0'- I + T~)' 0.(4.34)

where _ p.5 •R'
3-73 (4.35)

Relationships (4.34) and (4.35) permit us to approximately cal-
culate gas-bubble motion for any initial hydrostatic pressure values.
In this connection, the only parameter which must be given is the

first pulsation period (or maximum radius).

Evaluations made on this scheme do not produce considerable

error for small p0 i until it becomes necessary to calculate the in-
ternal energy of the detonation products (R < 0.4 m x
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I
tg Henceforth, we will need more complete and precise information

on gas-bubble motion. This information forms the basis of the theory

developed by Herring [10].

Let us give a brief account of Herring's solution, supplementing

it somewhat. Let us return to Euler's equation for motion having

spherical symmetry

P (2.13)

Integrating this equation from the gas-bubble surface to infin-

ity, we find that:

We will introduce spherical divergence of velocity as a new

variable

Let us integrate the first term in (4.36) by parts, using

this expression:

d, dr.

ot W

but
V 1Kd% a R ), (Rd', of ,' , ;,.,V ,,s 71 "Rli/

Thus,

R il k -R tIt 2 d" - )- I
*11

The second integral of (4.36) is taken by parts:
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Equation (4.36) can be written in the form

R.E-- ..-- ( R..-k- ,k ,i dP (4.37)

If we are examining a range of pressures which are not in excess
of 1000 kG/cm , we can use the acoustic approximation to define the
integral consisting of the left side of equation (4.37). Function
A will then be the solution of a wave equation of the type (3.20):

Considering this, we can write4 U
lr ~dr z=-a4.(Ar) dr -agr;. zagRL (R).

and equation (4.37) is reduced to the form
S3 i •R,,•.(2f_ I_ R _i

Let us note, furthermore, that according to the equation of dis-
continuity, (2.14),

i (R)•. -J ' p

Therefore#

I- \ 1" .. j
e--!-+ ;. A!•.' - 1 -. d •_d.dit 2• di atp. d i,. aa "do.-

Within the range of pressures assumed, we can state rougnly
that a Z a0, P = P0. Consequently,

lR-•-•. (AR R4 I d ----.--. (4.39)

Equation (4.39) differs from (4.20) only in the first term onthe right side which takes into account compressibility of water.

The left side of (4.39) is a derivative in terms of R of the function
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(1/2)R 3 (dR/dt) 2 divided by R2 . Considering this fact, and choosing

a value of R* as the lower limit of integration where the assumptions

are valid to a certain precision, let us integrate (4.39). Conseq-

uently, we will find that

.P " .(--- 2R'dR. (4.40)

Multiplying both sides of the equation by 2wp 0, let us rewrite

equation (4.40) in the form

,jR(4.rR.)dR -+. (R'-R'),-

) ((4.41)

It is not difficult to give a physical picture of the relation-

ship derived. The left side of equation (4.41) characterizes the

increment in kinetic energy of a radial flow of fluid. The fizst

term on the right side defines the work performed by detonation pro-

ducts during expansion of the gas-bubble from R* to R:

p ,(4r.Rs)dR .,,(4wR')dR - p, (4eR')dR.

.(R*)- E.(R), (4.42)

The second term on the right side is equal to the work performed

in overcoming hydrostatic pressure during expansion of the gas-bubble;

the third term on the right side defines the energy expended in the

radiation of pressure (shock-wave) during expansion of the gas-bubble

from initial radius R* to the flowing radius R. Let us combine the
terms containing the initial radius R* as a parameter, and designate
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that

++ E(R 43

Then, (4.42) can be written in the form

(4apok ()' +E. (R)*+ -L. :Rlps M E$ - EV(R). 44

where
R

E*,,(R).= ao 1t~I.AI h yl.L ,,.dRt -

:- dp\ I dRI

0 Rdi . (4.45)

Using concepts from the theory of similarity, let us reduce

(4.45) to a dimensionless form. Assuming that

R,

where R0 - initial charge radius calculated according to (4.10),

we will find that

T fr'- + (" " -- ). (4.46)

where

6 * t P�~ i�.�( ÷ 4.48)

o3 1 I -- KIWI?. (4.49) i
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Fig. 4. Time Rate of Change in' Gas-Bubble Radius.

Equation (4.46) is an integro-differential equation* with respect
to R It can be numerically integrated without difficulty. It is
advisable, in this connection, to calculate from _ to R* 2. **S~ax

In the interval R < 2, the process of gas-bubble expansion is only
slightly affected by hydrostatic pressure and therefore, this range
can be calculated once and for all by the characteristics nmithod

(see §5).

Subsequently, cplculations for various p0 are carried out from
Sto Rmax

Omitting details of calculation, let us only cite the final
results, with a brief explanation of their physical nature. Let us

ftrst note that energy expended in the formation of an underwater
shock-wave is as great as hydrostatic pressure p0 is small.

*If we reject c 3 ' '(4.46) becd es an ordinary differential equation
of the 1st orde . 2
**Based on data of study [10], it was assumed that P0 ' 2.55 kG/cm

S max- 22.3. Also, s* 2, tV 1.17, - .* 38,300 kG.cm/cms.
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inA rough approximation of the corresponding calculations results
in thLe expression

W,;. . . . . ., - " ,+(+ ," .) - 0 ,56 - 1.06 . 10-- ' -P•, - I ,C,, -O)(4.50)

where e n - total explosive energy; p0 - initial hydrostatic pressure,

adjusted to 1 atm.

The nature of gas-bubble motion in time is shown in Figs. 4 & 5.

For the range 1 < jo < 100,

(I + 2i)" 2 < R < o,640.11,
R" I *(si•-" (4.51)

According to (4.46) and (4.50), the maximum radius of the gas-
-bubble can be derived from the equation

3404(0

R-'ma ,, 1.77 +).I. 76,3a -"). (4.52)

whose solution results may be accurately approximated by the relat-

ionship

Rm = o.•(4.53)

The first pulsation period is roughly equal to

T- 1--.-- I= 0,307- -(;t (4.54)
W144J au '.4

Relationship (4.54) almost coincides with the semi-empirical

formula whose structure was derived from Lamb's solution [10).
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(1 Fig. 5. Relative Size of Gas-Bubble as a Function
of Relative Time in Underwater Explosions in an
Infinite Medium Having Different Initial Hydro-
static Pressure.

§5. Approximate Evaluation of Pressure Field in Underwater
Explosion in an Infinite Fluid.

The limiting conditions on a shock-wave front and gas-bubble
surface previously examined permit us to move on to the integration
of hydrodynamics equations for evaluating transient fluid motion
induced by an explosion.

From the many currently-known approximation integration methods,
let us touch upon only the one proposed by Kirkwood and Bethe [10],
who examined isentropic one-dimensional motion having spherical sym-
metry. They found it convenient to introduce another variable -

C enthalpy - which is associated with internal energy, pressure, and
density by the expression
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Sw= E+--

whence

dwnd+-- Hi-L). (5.2)

According to the laws of thermodynamics,

dQ-rdSdE~pd(5.3)

Since entropy S is considered a constant, on the basis of (5.2)

and (5.3),

dpSdw,- .(5.4)

The equation of motion and the equation of discontinuity were
SC previously written in the form

(2.2)

S+ p div • - + dlv (p) 0 (.
dt (2.5)

Let us introduce, following Kirkwood and Bethe, so-called kinet-

ic enthalpy, defining it by the equation

2mw-I+.. (5.5)
2.

Then#

vT hw ..= - (V);. (5.6)

In view of (5.4) and (5.6), the equation of motion (2.2) can be

written thus:

W V2. (5.7)
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Let us furthermore note that

A. A10, do
e• dp di asdp p d d(

Using this equation and relationship (5.5), let us transform
"the equation of discontinuity (2.5):

, ,v. 2

"as 0 2 (5.91

Let us introduce velocity potential

X* -vQ . (5.10)

jrt then, the equation of motion is written in the form

• • = -•-;(5.11)

the equation of discontinuity

The Laplace operator for one-dimensional motion having spherical

symmetry is

Allowing for this, (5.12) can be written in the following way:

,-" T',• ,, - - 2 d- di (5.13)

If we seek a solution in the form * = */r, then in place of
S (5.11) and (5.13) we will have:
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Ca.1 '(5.14)

•a (5.15)

The derived equations, generally speaking, are no simpler than
the initial e&uations. However, they present a clear physical pic-
ture and permit us to examine the two limiting cases without diffi-
culty - an incompressible fluid and the acoustic approximation -

which in turn enables us to project simpler schemes for writing
approximate solutions.

Indeed, when a ÷' (incompressibility hypothesis)& 0 =O (t),
S= •( and we arrive at the expression for velocity v -s given

by Lamb [see (4.12)]. When a - 0 ' particle velocity is small and
the right side of (5.15) can be assumed to equal zero. In this case,

./• l•(5.16)

The function of G -rA, according to (5.16) and (5.14), is equal
to

as (5.17)

Considering that in this case

and introducing a new function

we can derive the Gilmore solution [331 from (5.17) and (5.18):
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S•~~.p + ip'-.... (;- 5.19)

= + .( (5.20)

This solution differs from the acoustic solution [cf. (3.22)]

only in that the quantity rAp is not propagated at a rate a,0 but
at G = rl. However, this difference is often considerable. Thus,

in the proximity of the gas-bubble some time after the explosion,

the speed of sound is close to a0 and the ratio of v/%0 is small.

At the same time, the quantity (1/2)p0v 2 is not only not less than
Ap, but much exceeds it.

In spite of this, the Gilmore solution does not guarantee

sufficient precision of evaluations both in the proximity of the
shock-wave front and at the origin of its tail section. Kirkwood II

and Bethe suggested examining the permutation of function G with
some variable velocity c for waves of finite amplitude:

LOJn$t (5.21)

The function r(G,t) can be plotted in the form of a series of

curves in plane r,t for various values of G. If the parameters of
gas-bubble motion are given, is is easy to define the function G at
its boundary at a given moment in time tr . The propagation rate of

quantity G(tr) is a function of the parameter tr and the coordinate
of point r(G,t):

c (t,, ,).

The time interval in terms of which quantity G becomes equal to

G(t r) at point r is

( ,5.22

Time T is often called the "lag time".
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By definition of function G, kinetic enthalpy 9(r,t) is

tJ(r, ) a O(.,) 0( R) (5.23)

where S(t r) is defined at the boundary of the gas-bubble R at time

tr.

Therefore, in order to evaluate pressure fields, we only have to

calculate the kinetic enthalpy on the gas-bubble surface and find the

lag time T. The first problem is easily solved using relationships

established in the preceeding section. We must know the function

of c = c(tr, r) to define the lag time. Kirkwood and Bethe carried

out these calculations only for the shock-wave front proximity.

For this area, they were able to assume that

c =a rv: (5.24)

( where - the Riemannian function:

a, do j " 15.25)

p..

and moreover, to roughly assume that

vf . (5.26)

Since each of the quantities a, p, a, and w near the front is

a function of Ap, the lag time T can be easily calculated and this

problem is brought to final solution. However, Kirkwood and Bethe's

scheme is untenable for calculating pressure on the wave tail, be-

cause mass velocity v at that point is considerably greater than a

and equation (5.24) is invalid.

To define the function c = c(tr, r), more general considerations

are required. Let us return to equation (5.15) for this purpose. Let

us seek its solution in the form

(5.27)
53.
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where r - the running coordinate; r* - the distance from explosion

center to a certain fixed observation point; c = c(r*) - the pro-
pagation rate of function G(tr) at point r*.

Let us express mass velocity v and its partial derivatives in
terms of function $

W-I =43- -' VI0.

du 20, 2 dd* I C" 8 2uls I
Wr rs *r r 1 r -0 -a

O! t = s t r •at °

Substituting the relationships derived in (5.15), we will find
that

# ( or, in view of (5.17),

- + 2v + 20- 20).j" at - t a (5 .2 8 )

Allowing for (5.27), equation (5.28) will be written in the

form

ON 0" -(V 20u W
LI lV € C (5.29)

or

as (5.30)

Let us assume that

c =a+ v-. (5.31)

I Then, we can assume that 6 << a for pressures which are not too
high; and that c2 /2 = 1 to a precision within small quantities of the
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first order.

Therefore, instead of (5.30), we will derive

A

or, since

4"v'
0"= ±*.±(u =,)ad49=-- sio-)e __-- (9o-- )..

(5.32)

The local speed of sound a and mass velocity v enter into (5.32)

in addition to 6. The speed of sound can easily be calculated acc-

ording to the given excess pressure Ap, if the equation of state is

given. The mass velocity of particles is associated with the func-

tions 0 and 9 by the equation

v(I, r)- = L.....±+ t+ 1 v (5.33)

Relationship (5.33) is valid for the entire area of transient

fluid motion, including the boundary of the gas-bubble R. Since

the quantities v and 9 can easily be calculated at this boundary,

we have for the function of potential $ from (5.33)

S(t,) = Wv'. (5.34)

where
I,

cyt,. Rj' (5.35)

Considering the small function of the second term in (5.35)

and the small difference between c and a0,in equations (5.34), (5.35),

we can assume that c(t., R) = moo Then, using (5.33)-(5.35), let us

,( derive an expression for defining mass velccity an terms of the known

parameters of gas-bubble motion
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R--'

Ru * RU-r-- ,. (5.36)

where

us=Vr *
v" =u,--• • 5.37)

For practical calculation of pressure fields, we only have to

represent the quantities w and a as functions of pressure.

Let us use the condition of isentropy in the form of a Tate

equation for this purpose:

ep= It t], (1.25)

For Ap < B let us derive:

I.+ + &I

W. UB (' 5.38)

+ .... (5.39)

2
For Ap < 1000 kG/cm2, we will derive from (5.5) and (5.39) with

great precision that

ki**.1~ I

PO 2 -(5.40)

According to (5.24), (5.36), and (5.40), excess pressure on the

shock-wave, expressed in terms of gas-bubble parameters is

-%' V. ( 1"0 -- T -• (5.41)

( •[ where
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,I :.*•pr + I U
(I ,- r+ -2 *• ' (5.42)

or, using dimensionless parameters,

R

, (5.43)

- ' - B' 1"aa. Pi41r7 -RI +0 .(5.44)

where

•V2r = - P "•'" (5.45)

nl (5.46)

Let us return to the definition of lag time T. Formula (5.32)

was previously derived, into which enter the quantities v , a, and

an/3t. The first two quantities have already been calculated [cf.

(5.36), (5.40), and (5.41)]; to evaluate the derivative M/Dt we
can roughly assume that

- .(5.47)

The relationships derived, in conjunction with the more refined
data on gas-bubble expansion (of. §4) and widely-known empirical
formulas for evaluating pressures on a shock-wave front were used as

the basis for calculating pressure fields in underwater explosion at

various depths. Omitting the details of calculation, let us cite

only the firial results.
Pressure on a shock-wave front is defined by the relationships*

*The second part of (5.48) taken from Cowle [101.
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SP", a l ". Ij where 6 . 12
S533. "'1 * .t

33 -•L i• where 12 < i<240. (5.48)

The arrival time _t of a wave-front at a given point ? is char-
acterized in the data of Table 2.

...... e5 & j 7 II• "• ,%6 7 M 11), I I I

i 2.3 3.1 :1,9 . , .) 4 10

For > 12, the following approximation is valid:

10,6 1.51 (5.49)
mr-- 11,4 - -- + -.

When the charge is not too deep (p0 < 10 kG/cm ), pressure in the
proximity of the shock-wave front can be described by the expressions:

where 1<0

- where 0 < t N< (5 -,- I0)0 (5.50)

I

where e - the exponential damping constant depending on distance

N 3. 5 I 7-0,-
a- * where .30 .'240. .(5.51)

In accordance with (5.50), the pressure surge quantity is

where i < 0
( ~J ....)= Pro• 0 (5.52)['2 -+ 0,368 I11)0 (5.52)

I ';" Where 0<t•( .I)O

An important feature of fluid motion during explosion is the energy
flux density. It is customary to call this the 1...] integral*

[Translator's note: two items on this page designated I...] indicate
words and symbols missing in original tex>,S* ~A here also designates an increment in the quantity enclosed in
brackets in equation (5.53). Therefore, integral (5.53) expresses ex-
cess energy transmitted by a shock-wave through a unit of surface.
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At pressures less than 1000 kG/cm 2, we can disregard the first

two terms in equation (5.53).

Since the rate of particle motion near the shock-wave front can

also be calculated in the acoustic approximation

v, .., (p--p8 1,, ;I•.,-.*t (p - p~) dl. (5. 54)
'I

we will derive an expression for energy flux density in the form

""' ' (5.55)

In proportion to the increase in distance r, the second term,

which represents the influence of the so-called "speed of the retard-

ing flux" would become negligibly small in comparison to the first.(
Using (5.50), we will derive

(5.56)

where t 9

.'t 135 - - .• . :'(5 . IO ,
D " "J.e.'" where

Ji _.-t3 where t< (

0.0 l O.. 135 4! 2_ where 1 ,t ( : 0)0.

Let us remember that relationships (5.50)-(5.56) are valid for

[...] < 10 kG/cm2 and t < 10 8.

The calculated findings of pressure change for a wide range

of charge depths and for the entire effect-time of the compression
* and reflection phases are shown in Figs. 6 & 7. We can see that as

hydrostatic pressure p0 increases, excess pressure drops considerably
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solely in the tail section of the shozk-wave. For p0 < 100 kG/cm

pressure hardly changes when t < 0.

2i
Ap, kG/cm2

i4

to
I'IT

Fig. 6. Change in Excess Pressure Behind Shock-Wave
Front for F-= 60 at Initial Period in Time.

theoretically calculated
------------------------ calculated by empirical formula

The entire range for F> 10 and p0 1 100 can be approximated by the
relationships:

ofl, ivr,'.I6 j where <E

".7~IJ I~:"g~ where >

t0

where p* is defined prior to some point in time f, by equation (5.50);
and in the interval E,< according to the formula:

( sp* 7320 (5.58

60
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40

3D

to

Fig. 7. Time Rate of Chanqe in Excess Pressure
for r = 60 in Underwater Explosion in Infinite
Medium.

t ,(5.59)

850 2D

(5.61)

S- 2 PW P+-

0" hydrostatic pressure, adjusted to 1 atm.

Time E1 is derived from the equation

is 4

( 2, i(- 10 "•' goi;; (5.62)

quntity m = r - Y, according to formula (5.49); and time f is

counted from the moment that the shock-wave approaches the observat-

ion point.

Since the second terms in the formulas of (5.57) change in pro-
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portion to 1/ r', they can be rejected when r > 60. For this purpose,

A the range of distances is

.*i-"-(")''i ]where t"

,$pO, r-. p°e) _L (0'-* °0*z4 6.1po°*'1=2-30.7/; 0'"E:) (5. 63)

r (5.63)
1 where F> •E*

The physically-dimensionless time F* characterizes the positive
phase of the kinetic enthalpy quantity 9(t) and in formula (5.63) it
coincides with the positive excess pressure effect time (•* = E+).
The relationship + +(r) where j = 1 is shown in Fig. 8.

Fig. 8.Duration of Excess Pressure Compression
Phase of Underwater Shook-Wave as a Function of
Distance in Underwater Elplosion in an Infinite

! ~Medium,, for p0 = 1 kG/cm.

S~The shortest compression phase occurs at distances equal to the

S~gas-bubble radius, when the pressure inside it becomes equal to P0:

40 ,•n -0 . (5.64)

The change in the duration of the compression phase as a funct-
ion of hydrostatic pressure# where S h 60, can be judged on the bas-

is of (5.60). We can easily calculate minimum pressure in the re-
flection phase from (5.57), if we assume that* a- e u ( l t t):

mI

AN,,.•- 7 ° 7 °" _ : (5.65)

Wit is also "apparent that APmin = 'max/•, where Ap. - pressure in the
gas-bubble corresponding to Rmax.me

620



-' , ;I f•• • ,;, • ~ • • •e/ ••••~

The results of calculations made according to these formulas

I permit us to form a total judgment about the effect of initial hydro-

static pressure on shock-wave parameters. For small values of p0,
the initial time interval of abrupt pressure change (7t= IT) is con-
siderably less than the duration of the entire compression phase (e.g.,

where p0 = 1 kG/cm2 and r = 60, F+/• 230). As p0 increases, the

duration of the compression phase is shortened, and where p0 = 100
kG/cm2 it exceeds 9 by only 6 times.

To an even greater extent, the duration of the reflection phase

is shortened as p0 increases. The reflection phase exceeds t+ by

about 8.5 times where p0 = 1 kG/cm2 and by only 4.5 times where p0 =

= 500 kG/cm2 .

U.II

50

Ino 190011 49
20

Fig. 9. Change in Mass Velocity of Particles in
Shock-Wave Where r = 60 in Underwater Explosion in
an Infinite Medium having Initial Hydrostatic Pressure
P0 = 1 kG/cm2 .

The derived results also permit us to calculate the quantity of
the total momentum in both the compression and reflection phases.

Specifically, the positive phase momentum for • > 60 can be described 4
by the relationship .,
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, [k 780N 2
1kG/cm 3. (5.66)

We can use equation (5.54) to evaluate the momentum of part-

icles where F > 60. Where F < 60, we should use the more precise

relationship (5.36). The nature of variation in momentum for

=60 and p0 =1 is shown in Fig. 9.

The maxi'mum migration of particles during the passage of a

shock-wave is roughly equal to

0Z -- where < 2Rmax
(5.67)

3.55 W50
0.* +" where r > 2R,

One should note that the relationships cited, which character-
( ize the effect of initial hydrostatic pressure of the parameters of

the hydrodynamic field during underwater explosion, have been derived
by approximate theoretical calculations and have not been experiment-

ally verified,

§6. The Basic Equations of Short-Wave Theory. Asymptotic
Presentations of an Underwater Shock-Wave.

As we move away from the center of explosion, the motion of

the gas-bubble has a decreasing effect on the parameters of the under-
water shock-wave. It becomes feasible to study the propagation of
shock-waves as a physical process, independent of the conditions of
its formation. Despite the fact that we are assuming considerable
distances from the center of explosion, the acoustic approximation
cannot always provide qualitatively-correct descriptions of this
process on account of the specific properties of shock waves and
the factor of nonlinearity which is part of their nature. The study
of shock-waves require-. a fundamentally different theory. A theory
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I
which is suitable for this purpose is the short-wave theory which

has been developed in recent years by S. A. Khristianovich, A. A.

Grib, and 0. S. Ryzhov 12].

Let us state the principles of this theory in brief form.

Let us examine isentropic axial-symmetric fluid motion. Using

the variables Vr, v0 , and a in system (2.12), let us write the equat-

ions of motion and the equation of discontinuity in the form

- + .t., + + _ a 0.

-+V- + 0' +,(.01 Or '-+-,- i - a,
So asn-- I 1 (6.2)

AL+ V,, A +1 04 ,',. +

+0-+ 2,+%c,,o)=o.O (6.3)

It becomes convenient to replace independent variables, defining

their association with earlier proofs by the equations

S1(6.4)
'• * hilt. J

Performing the appropriate transformations, we will find that

. -•-1 -- - o.f--=o, (6.5)

-•;.- -•-i~, a',• +it-I :i 091.
ar Ou +O 2 da 0

.', (6.7)
'" +'o• ! • + 2p,, + vo ctgO 0)--0.(6 7

The reduction of the basic system of gas dynamics equations to

the form (6.5)-(6.7) is of a preparatory nature.

"1 •The chief prerequisites of short-wave theory amount to an
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assertion that we may present the variables which enter into theseSequations in the form

6.6* / n+1

F ao (I + 'L+-, M"O)
2 I) (6.8)

a= a ( I+ !-21M't),

where M*, V*, 9* - small quantities of the first or higher order;
e, V, Y, 6, a - quantities on the order of one.

In other words, this assumes we are studying motion char-

acterized by change in hydrodynamic parameters in a relatively small
area adjoining the shock-front. The ratio of the length of this area
to the distance from the center of explosion is on the order of M*.
Consequently, an assumption that M* is a small quantity is an assump-
tion that the wave is short.

Using new variables, system (6.5)-(6.7) can be reduced to the
form

a :I:1t

(6.9)
-- i; -. ' •-- 0,
W' d? (6.10)

L+I + 0'
-h 2+ TV 2, .o (6.11)*

I-%• (it,--) - + "0." '

* The first equation in (6.1) rel Ees to the case of motion in the
(• proximity of the axis 0 = 0 and the second, in the proximity of a

finite angle 0.
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The derived equations are much simpler than the initial equat-
ions. They permit us to find solutions in finite form for a series
of important practical problems. Specifically, Khristianovich ex-
amined the propagation of an underwater shock-wave at considerable
distances from the point of explosion from the standpoint of short
wave theory [22J. Let us mention the ba3ic premises of this study.
Equation (6.11) becomes an ordinary differential equation and adopts
the form

Fi' 0

or likewise,

P - (6.12)

The common integral of (6.12) is

C - It In It (6.13)

or, using the variables v. r, and t and using equations

V --- Op. (6.14)

r aW (I M.. Al•'-2(I" . ' (6.15)

we will derive

l. 4 74(2 a* M (6.16)

Relationship (6.16), in con3unction with dynamic compatibility
conditions (1.38) and (1.40), permits us to establish the laws of
motion of an underwater shock-wave front. Using expression (1.38),
equation (6.16) can be written in the form

- -d. a ± 2 BX 2 B BnMa (6sm
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It is convenient to replace the arbitrary constant C with another

arbitrary constant, assuming that

C-In -• '

Then,

r.a(I + L+-, ±C in 4..
2 Ba (6.18)

Differentiating, we find that:

2 Bit PO) 28. (6.19)
,, (in 1'- -!) dP..

On the other hand, according to (1.40)

A, a@ (+ L+, 4.'=.(1"+4 On)n

or, likewise,

d • s 4 e. (6.20)

Excluding dr from (6.19) and (6.20)and performing elementary

transformations, we get:

,n - 2-'-,

Integrating, we derive
"Ca 2 (6.21)

It is known from the theory of similarity that equal quantities

of p,:essure on the front are satisfied by equal compatible distances
and times, the modulus of similarity being the radius of the charge.

I For this reason, it is appropriate to introduce another constant, A,

in place of the integration constant C1 :
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Thus,

b -2 (6.22)

Taking account of (6.22), relationship (6.18) can be written

in the form

I +p
A 2 0. P2

R O I (6.23)

Equations (6.22) and (6.23) express the asymptotic laws of
change in pressure on the front of an underwater shock-wave as a
function of distance and time. The constants A and p* which enter
into these equations have been used on the basis of analyzing ex-

C perimental data.

Let us find the spatial extension of a section of a shock-wave

from the front to a point having a given amplitude of pressure p.
According to (6.15)

r# -- r =-eO as* f* (a, - 6), (62
2 (6. 24)

according to (6.13), however,

it. , (C -- l ) " ( In )

In the proximity of the front, we can consider that

V 00

Therefore,

ai. C69
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f. or, since

C- In-
BaAI

RnAM P (6.25)

Substituting (6.25) in (6.24), we will have

4r m IV* ( "p# In 2L -ptn In
Us P* pP)

or, according to (6.22)

In -- - • In --
, .. A + I P# P* P

"R. -n 2 --V i' -- " (6.26)

The effect-time of pressure as amplitude changes from pC to p
Sis

"oi (6.27)

Specifically, assuming that p = p,/e, we can derive the time

interval during which pressure drops e-fold from (6.26)-(6.27):

n+. . A (e--I1n-P---i
R. 2 ( 6 .2 8 )

In order to use fixed relationships in quantitative evaluations,
Khristianovich suggested the use of the arbitrary constants entering
into (6.22)-(6.28) based on an experimental pressure-time contour
recorded at the relative distance of F - 90. The quantities A and
p* which were calculated on the basis of conditions of equality of

pressure on the wave-front and at point AV = 0, in this connection,
were equal to p* = 17,000 kG/cm2 and A = 16,200 kG/cm2 .

70



This choice of constants A and p* introduced some error into
the theoretical formulas which can be reduced. Indeed, the wave

contour naturally affects the asymptotic law of pressure damping

on the front. The assumption of self-similar motion leads to a
wave form similar to triangular. At the same time, the actual law
of change in the press~lre-time curve differs considerably from tri-
angular (Fig. 10). Thi self-similar solution rather precisely de-
scribes the drop in pressure behind the front for a time inter-
val which is considerably less than 0. Consequently, the best con-
vergence of theoretical relationships with experimental data can be
attained if we require equality in the slope of pressure contours
in the proximity of the front, in addition to equality of pressures
on the front, as our approximation conditions.

Since the initial drop in the actual pressure contour can be
well described by the exponent

P P=Pe •.(6.29)

then, differentiating we will derive

.I, PO (6.30)

Considering (6.26), these conditions may be presented in the
form

PA(in i : --n

So4 (6.31)

Equations (6.31) and (6.23) can be utilized with greater prec-
ision than (6.28) and (6.23) for defining the constants A* and *.

Let us note that this is not the only means of studying the
asymptotic laws of shock-wave propagation. Other research means
have been developed, at one time, in the studies of Kryussar [5],
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Alb. L. D. Landau 111], Osborne and Taylor 139], Kirkwood and Bethe [10],,
L. Ya. Gutin and P. F. Korotkov [9]. All of them proceeded from

several assumptions on wave-form and the nature of energy dissipation
on the front.

Following the common ideas of these studies, we can easily
derive more refined asymptotic relationships for an underwater
shock-wave front. For this purpose, our first initial premise
will be that in the area of a low-amplitude spherical wave-front,
the quantity pr = constant = k is traveling at a velocity

a+v= I+(6.32)

The validity of this assertion was explained rather thoroughly
in the preceding section : to be spacif c, it follows from the
Kirkwood-Bethe theory. Our second initial premise will be the
dynamic compatibility conditions.

Let there be on some spherical surface I a change in pressure
in time. To evaluate the time of passage of the quantity k and
its corresponding pressure p = k/F through an arbitrary point k,

we can then write

aQ, n1
2nB

=•4+ip I.1 n ; (6.33)

where to - passage time of quantity k - pF through initial observat-

ion point.

Equation (6.33) is the approximate solution for hydrodynamics
equations describing the head of a spherical shock-wave at great
distances from the explosion (for an underwater shock-wave at dis-
tances of more than 60 R0). Specifically, for pressure on a wave
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5%

Fig. 10. Comparison of Pressure Contour
Used in Khristianovich's Self-Similar Solution
with Experimental Contour.

experimental curve;
----------- used in Khristianovich's solution;
-.-.-.- initial curve according to Cowle's

data.

front according to (6.33),

to =i+'- P.. In (6.34)

ioreover, dynamic compatibility conditions are satisfied in the

wave-front:

dr. - NdtI - (I + + .). (6.35)

In the proximity of a wave-front (where t0 < 0), according to

(5.50),

pe (1) ", P•'t• (6.36)

where VO - time, counted from the time the wave-front arrives at

the initial observation point R.

Based on (6.36),

0 In II "' t #•,,,n •, *j. _

I Pu 7h



Substituting this result in (6.34) and differentiating, we

find that

2n3P(I + In ) 1W*

n1 I n --(-2nD A (6.37)

Excluding dt from (6.35) and (6.37), we derive:

R4-' p.jP(I+2In.A)+A~4jd.m
L ,,InP + d, .

or =- - ( ,inB .--lR%+ P4)dp

r_ _ , ---. (6.38)P4 , 2 P,6 ±9,.•_1 !#
WII~.2D0 4 '*

The approximate solution for ordinary differential equation

(6.38) for a shock-wave having an exponential profile has the form*

1+ 1 ,,8 +296..39

where pm and -0 - pressure on the front and the constant of expon-

ential damping on initial surface R.

After defining pressure on the front p,, we can easily find

a relationship for p, F, and AE by using equations (6.33), (6.34),

and (5.50). Consequently, let us derive
2"Bp '90 f +

S 0. In L .pu p >--..+ 
4

(0,368) Inb ip<

*If we asume that -O/p To/pj - constant at the initial point

(where To0 = 0 0TO/R 0o T0 - effect-time of positive pressure phase),
j a precise solution can be derived for differential equation (6.38)

which will correspond to the asymptotic behavior of a shock-wave
having a linear profile.
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Fig. 11. Comparison of Asymptotic Solution for p,
with Arons' Experimental Data.

- explosion of charge, G = 11.3 kg;
x - explosion of charge, G = 25 kg.

where

-tL

At is the time interval, counted from the wave-front arrival

at point r.

Hence, we immediately find the characteristic time e, corres-

ponding to an "e"-fold drop in pressure:

O=?(b- I-nb)+ 0.632 -LB p ".* (6.41)

Using the surface R = 240 as the initial surface and using
the semi-empirical formulas of the preceding paragraph, we can

find a simpler expression to characterize asymptotic change in pres-
sure on the front of an underwater shock-wave, after calculating

instead of (6.39)
P4 10000
4igr-".4 (6.42)

A similarly-derived formula for the constant of exponential
damping does not diLfer greatly from (5.51) and has the form

*= 3.71/IR;- (6.43)
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f The theoretical findings from formula (6.42) are compared with

Arons' experimental data [27] in Fig. 11. A good convergence of
theory and exper` sent permits us to recommend final fixed relation-
ships for practical evaluations.

As additional research has shown, the pressure contour of an
underwatei shock-wave does not change much as the distance from the
explosion-increases; even at a distance of 100,000 radii from the

charge, the approximate relationships of the preceding section
i ~[formulas (5.50)-(5.67) in §5] are valid.

§7. The Effect of a Free Fluid Surface on Pressure Fields
in Underwater Explosion.

In underwater explosion at relatively small depths, a free
fluid surface exerts a considerable effect on the parameters of the

( hydrodynamic field. The moment a shock-wave encounters a free sur-

face, a refracted compression wave is formed in the air and a re-
flected expansion wave is formed in the water. Owing to a signif-
icant difference in the quantities of acoustic resistance of the
media, the rate of particle motion on the free surface is almost
double that of particles behind the wave-front in an infinite medium.

The motion of fluid at elevated velocities leads to a reduction

in fluid density in a specific layer; this, in turn, entails a drop
in pressure. Propagating at the local speed of sound, this disturb-
ance creates a combination of elementary waves having reduced pres-
sure and different amplitudes (characteristics).

If we are examining an explosion at great depths, and measure-
ments are made at relatively small distances from the epicenter,
the difference in the propagation rates of the characteristics is
negligible. We can then solve problems using the acoustic (linear)

L approximation. In this case, the limiting conditions are satisfied
by applying two fields of different signs. The simplest method for
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LFree *

- 4surface

Fig, 12. Digram of Mirror Reflection
of Source and Runoff.

calculating the effect of a free surface is the method of mirror re- ¶

flection of the source and runoff, the main point of which is illus-

trated in Fig. 12. A direct wave is viewed as a disturbance origin-

ating from the source in the lower-half-plane; a reflected wave is

* an imaginary runoff in the upper half-plane.

Since the pressure field in the acoustic approximation of a direct

wave can be expressed by the relationship

where
r : j" ±' (I-H -h?

0' where t < r/aO,

the net pressure field is

"7 7



where
,=''L2 + (H + h?.

A formal corollary of (7.2) is the possible formation of neg-
ative stresses in the fluid.

The question arises as to whether water is capable of with-
standing these stresses. Individual enperiments have shown that,
under certain conditions, water which is free of mechanical impur-
ities can withstand negative pressures of up to 280 kG/cm2 (cf.,

for example, [283).

In practical applicatien, however, we most often observe the
rapid development of cavitation phenomena and a drop in pressure to

the state of vacuum.

(. The reflection of shock-waves on a free surface has been well J
recorded by experimental methods. We can show the moment that a

reflected wave approaches a point by shearing the pressure curve
in an explosion oscillogram. Several oscillograms are shown in Fig.
13 to illustrate this point. The solid lines in Fig. 13 indicate
pressure oscillogramt obtained by experimentation; the dotted lines
indicate pressure oscillograms calculated according to formula (7.2).*
As we can see, there is total coincidence of theoretical and experi-
mental data, prior to the moment when the expansiun wave converges.
The theoretical curves indicate the possible existence of an area of
negative stresses which was not recorded in the experiment.

The effect-time of the positive pressure phase is apparently
*A form of the functions Pm(r) and f(t - r/a 0 )is used according to
data of §5.
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Fig. 13. Typical Pressure Oscillograms,

allowing for the effect of free surface (where

G = 53 g).
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defined by the difference in the arrival times of a direct wave and
a wave reflected on a free surface at a given point.* Since the
distance traveled by a direct wave is equal to /L2 + (g - h)-- and
the distance traveled by the reflected wave is equal to /L2 + (H + h)-
then

tan : L, L !±T1 L2 +(H--h)J

1). (7.3)

For small quantities H and h, it is roughly equal to

I- where IW"-- < 0.1
211h (7.4)
-- where HL<0.2.Li

Hence, it follows that the effect-time of the positive pressure

phase, allowing for the free surface in the acoustic approximation,
is defined by purely geometric features and does not depend on the
weight of the charge (except for previously-specified cases).

A reduction in the duration of the positive phase of a shock-wave
brings about a change in its integral characteristics.

Based on an exponential pressure-to-time curve for total moment-
um where ta < 0, we will derive

* a

J, e = pe-"dpO e) (7.5)
0 1

For values of the ratio ta /0 that are not too great,

~JL1 0.35
'an :/ where T

whr -oot . (7.6)|P~t,,where < 0.04.

*This is valid if the arrival time is shorter than the duration of
the excess-pressure positive phase,which always occurs in shallow
explosions,
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Where taK < 0 [cf. (5.53)-(5.56)], energy flux density is

-47 (7- 2g1.7)E=:(

For distances • > 20 (with error not exceeding 5%),

J - . (7.8)

We have discussed a scheme for calculating the effect of free

surface of a fluid in the acoustic approximation which is clear and
simple, but has a limited field of application. If we examine pres-

sure fields near a free surface at a distance from the epicenter
which considerably exceeds the depth of explosion, then we must take
into account the nonlinearity of the reflection process: nonlinearity

is associated with the difference in the rates of propagation of
elementary pressure-reduction waves. Low-amplitude character-
istic waves, propagating at the local speed of sound, can sometimes

overtake the shock-wave front and weaken it. In contrast, some
characteristics, having considerable negative amplitude and propag-
ating at the speed of sound in an undisturbed medium, will recede
from the front. Therefore, the nonlinear effect of free surface
may be revealed both in a reduction cf direct-wave amplitude and

in a distortion of the entire pressure-time contour, as the total
duration oZ the positive phase increases.

A number of researchers undertook the study of these phenomena.

The primary findings were achieved by S. A. Khristianovich, A. A.

Grib, A. G. Ryabinin, Ya. F. Sharov, B. V. Zamyshlyayev, and B. I.
Zaslavskiy, who devised a nonlinear theory for the interaction of
an underwater shock-wave with a free fluid surface, and suggested
approximate formulas for evaluating pressure fields.

Let us first examine regular reflection of a plane wave having

one-valued amplitude on a free surface (Fig. 14).
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expansion wave .

Fig. 14. Diagram of the Reflection of a
Shock-Wave on a Free Fluid Surface.

I - maximum amplitude characteristics;
II - zero amplitude characteristics.

A direct wave travels along a free surface at a velocity of

N /cos 6np. Elementary pressure-reduction waves, whose sum comprises

an expansion wave, are traveling at the same velocity.

Consequently,

COB (7.9)

where 6 - the angle of reflection of the characteristic, traveling
xap

at a velocity Nxap"

The rate of travel of the characteristic, N , is composed of

the local speed of sound a and momentum v. The latter is roughly

equivalent to a rojection of the rate of speed of particles behind

a direct-wave front in the direction of travel of the characteristic

Scos (6np + 6xap), and to the increment in momentum induced by

the drop in pressure

Therefore,

V .= a .+ - .- i , o s ( 0 .1 + , ,, p ) -- a . "
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or, considering that angles 6 and 6 are similar and rejecting

numerically-small second-order values,

N .zp -a + v#cos24,,-a, Pa.P
nB

Substituting the values of the speed of sound and the velocity
of particles according to (1.38) and (1.39) in this expression, we
find that:

' _ =a 11 i+ + .' J-(p, -P - c)(I-os 24,)
,2Bn an (7.10)

Solving (7.10) and (7.9) simultaneously, we will derive:

COS'•i' OXc=OS [+ I-(Pp,- p. ,)-
S)" V

4-n, (7.11)

f For small angles of incidence (cos 6- 2-Inp), equation

(7.11) becomes the relationship

"i. aiCos 2n +•(P-P.,
A1 R+ I_! •.-

4 2II +2 (7.12)

which was first established by Khristianovich [3].

Equation (7.11) permits us to plot the pressure curve at a
given point. Let the depth of this point be equal to h. As a direct
wave front approaches this point (t = 0), pressure abruptly increases
to p and remai.ns constant until a zero amplitude characteristic ap-

proaches (p = 0).

On the basis of simple geometric plots (Fig. 14), this time
interval is

24 _'(7.13)
COS
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Convergence time of a characteristic having arbitrary amplitude

at this point is

No .€ a, (7.14)

Substituting the value of 6xar according to (7.11) in (7.14)

and parforming transformations, we find that

, 21a ~ 21n5.cos n, '08= s.•. nB" ,% n~n 4t7 -
Os *4nA sen&,~,1k I,,(7.15)

X!. (41 1-Pa P)2nH 4nB (P4

This same result can be derived on the basis of the Fermat
principle, according to which any disturbance in space propagates

along the path having the minimum mean-free-path time.

Our initial time reading will be the moment the wave-front

•" arrives at a point x = 0, z = 0 (Fig. 15). Then, the travel time

of a point common to the direct-wave front and the expansion wave,

at distance x, is
X CO'; Zfp

Ni (7.16)

The mean free path of the characteristic from point K to point

U will equal ý¶2 + (L -x)2--.

The slope of the characteristic, with respect to the free sur-
face, is

,., arct '-' arccos-- .. X..k,

L-a-,(7.17)

and consequently, the arrival time of a given characteristic at
point U is

tap h o ,, .-- (L.. . .)
N* -- - ,,, (7.18)
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Fig. 15. Diagram of the Reflection of I
a Plane Shock-Wave on a Free Surface.

Using the Fermat principle, let us find the position of point K

from the condition that

dx

We have

Nxp cos anp

~/I {(Np cos--np)' (7.19)

The quantity (N xapCos 6 np)/(N•) = cos 6 xap' which enters into

equation (7.19) is easily calculated using (7.11), if we are given
the pressure of the expansion wave pp.p"

Therefore, according to (7.18) and (7.19), the arrival time of

the characteristic of given amplitude at point U is

-_h-_

. * = - &""-1COS A -, _A_ (7.20)
.N, NAp I -_cost,,p

The shock-wave front arrives at this point at the point in time

(cf. Fig. 15)

N* (7.21)

Starting the time-count as a shock-wave front converges with
a point, and taking (7.11) into account, after several simple trans-
formations instead of (7.20) we derive

II n
t -- sin•.p -; +ai" 4a8
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4-4

s~n i~p 4 Lis 4nB '

which totally coincides with (7.15). Specifically, the zero amp-
litude characteristic (p = 0) converges with a given point some

time after the shock-wave front arrives:

"Piwn 6 4 no(7.22)

For the maximum amplitude characteristic, we will derive

E"s i' ."--•- _, t, 1 (7.23)

These equations permit us to refine our earlier conclusion

concerning the use of linear approximation formulas to calculate
the effect of free surface. Indeed, let us assume that we may re-

place the gradual drop in pressure over time t < 0.2t+ by an instant-
aneous drop in pressure, i.e., t+ - t 0/t+ < 0.2. Then, after sub-
stituting the corresponding values of t+ and to, we will derive

> arcsi n8 p. (7.2-4 )

These considerations are not valid for the entire possible

range of direct-wave slope change. Starting from an angle, which
will henceforth be called the critical angle (6P), expansion waves
will cvertake the direct-wave front, distort its shape, and alter
its amplitude. irregular reflection will occur.

Let us find the quantity of the critical angle P* by comparing
the rates of travel of the expansion-wave front (zero amplitude char-

jacteristic) and the direct-wave front.
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The zero amplitude characteristic travels toward the free sur-

face at a velocity of

a+vcose,p=a-a.14 2!P., + P ." . (7.25)

The rate of travel of the wave front in the same direction is

""+3pMSh n (7.26)

The critical angle is defined by the equation

I+,41P# +oC,, + !B P4 (7.27)
"2D n o op UB

Considering that angle 6* is small, and therefore assuming that2
6* = 1 - (1/2) 6*P, we derive

whence

PI (7.28)

If the slope is 6 , > 6*, pressure-reduction waves do not over-
npptake the shock-wave front. Regular reflection occurs. Where 6np <

< 6*, reflection becomes irregular. The point of intersection of

the expansion-wave front and the shock-wave front is displaced down-

ward away from the free surface. The portion of the shock-wave front

adjoining the free surface curves. Pressure in this portion of the

front are less than in an infinite fluid.

Let us examine irregular reflecticn for a case which is most

important with respect to practical applications: spherical-wave pro-

pagation.

For the sake of simplicity, we will consider the slope of the

wave to be small (cos 6 & - 1). Then, according to (7.10), the rate
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of travel of a characteristic if given amplitude is

NPa,"I r--- (P,- P.. a. + • .-j) (7.29)

free surface

Fig. 16. Diagram of Propagation of
the Direct and Reflected Wave.

where

•= P o- .P
p# (7.30) f

A diagram of reflection in shown in Fig. 16. The underwater

shock-wave front arrives at an arbitrary point in the fluid U from

the center of explosion 0 at some point in time. Elementary pres-

sure-reduction waves (the characteristics) arrive at the same point

from various points on the free surface at different times.

Depending on the relative juxtaposition of the explosion center

0 and the measurement point U, the following primary cases can occur:

1. The zero amplitude characteristic will arrive at point U

after the shock-wave front. Pressure at this point will be the same

as in an infinite fluid.

2. The zero amplitude characteristic wiUl arrive at point U at

the same time as the direct-wave front. Pressure on the front will

be the same as i& an infinite fluid. The nonlinear influence of free

surface will be revealed in distortion of the shape of the shock-wave.

3. Some elementary pressure-reduction waves will arrive at

point 0 at the same time as the front arrives. Pressure on the front
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will be less than in an inginite fluid.

Let us explain the circumstances where a direct shock-wave front
and the zero amplitude characteristic will arrive at a given point

simultaneously.

For the zero amplitude characteristic, p 0, n= 1, and con-
sequently, according to (7.29)

No  = U(!-I- .!-L p (7.31)
,OP 2, ' P+) ( . l

Using the Fermat principle, let us find the position of point K

on the free surface, from which the zero amplitude characteristic
first arrives at point U. According to this principle, the time re-
quired for the wave to travel along dotted line OKU must be the min-

imum.

(i The simultaneous arrival and the direct wave and the zero amp-

litude characteristic at point U can be written in the form (Fig. 16)

Is = ta, (7.32)

where t 2 - travel time of the zero amplitude characteristic from
point K to point U; t 4 - travel time of the direct-wave front from
point B to point U.

To evaluate the time interval t 2 , we have (Fig. 16)

W R_ 4- 1 1__" _, R.
R .) 28n (7.33)

28 t
0 to

since pressure on the front p• can be represented as a function
of dimensionless distance, the integral of (7.33) is easily calcul-
ated. However, simpler relationships can be derived, if we utilize
the mean rate of travel in the appropriate portions for evaluating
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the time intervals t 2 and t 4.

Inthis case,

R' -rso. (P a, asPM 2NlQJ*P (7.34)

where pM - pressure on the front of a shock-wave at point M or A

1474KI
' . 7 , 

I

or a wave-front

RI.& I4 nR,.* (7.35)

~, 4BA

Let us designate that

x

LT (7.36)

where x - horizontal distance between points K and U; L -horizontal

distance between points 0 and U.

Then, for distances entering into expressions (7.34) and (7.35),

we find that (Fig. 16)

X [I +i)'

+1H•,=)'t -/) [ (']
•, u ,•[|"t (I-i) (If-A,'- H']

R= -- M =L's(I -- ) (7.37)

k4 "Vh= -,-( ' + )'I)

7.21 US'( 0 -)
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According to (7.32), (7.34), and (7.35)

28n _(7.38)

Moreover,

nLI 1.,4= 14700 1.375

" O n = ' NIS 1, 15 E .3•L-e ).1( i. 13." O.'g- .(o, )" "39 )

Substituting the expressions for R2' 14' and (n + 1)/( 4Bn)pM

into (7.38), according to (7.37) and (7.39) we will find that

L• (1 + VJ) (I L'•' )Q-D ,5lO). I

S. - (/--h)--s (it 1,375

I 2f(I.e0 IL L 13 (1 -0.50.17

or, performing a transformation and rejecting numerically-small
(• values of higher order,

( )' (I -TIP (I'.') - Ws P0 1.375

whence
L

S 2,75:v (7.40)

The relative distance • defined by (7.40) will be called the

critical distance (L Kp). When U > f-Kp, the shock-wave front over-
takes the expansion wave. According to the Fermat principle, the
parameter ý must be chosen so that the quantity U is the minimum.*

After calculating 3L/D, equating the derived expression to zero,
and performing simple transformations, we find that

*We can easily verify that this requirement is tantamount to satis-
t fying the wave brachistochrone conditions along dotted line OKU

(Fig. 16).
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.- .-I L - , 5(7.41)

Equation (7.41) can be solved easily in two particular cases:

where h 0

=0,

where h = H

= 0.72*

Substituting this result into (7.40), we can derive

where h 0

L = 0.310 ., (7.42)

where h

S= 1.61H 2. (7.43)

On the basis of (7.42) and (7.43, formula (7.40) may be estimated

by the approximate expression

[.,,,-- f't" (O,31 I.,A). (7.44)

An inference on the precision of the approximation can be made on the

basis of Fig. 17 which shows the results of the corresponding cal-
culations.

Similar arguments enable us not only to evaluate the distance

To be more precise, when h = H, this equation becomes a quadratic
equation, whose root is within the range 0-1 and is equal to 0.72.
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L Kp, but also the plot the pressure contour in the zone where
L < L. Indeed, the arrival time of a characteristic wave ofS= a wav
arbitrary amplitude n at some point, counted from the moment of

arrival at the same point by the shock-wave front, is (Fig. 16)

t 0 " ,) .• ,) - .( 7 . 3 2 a )

where

and t 4 is subtracted according to formula (7.35).

Performirg transformations with the aid of (7.37) and (7.39),

equation (7.32a) will be written in the form

i (.} = =_ ( t,) = I' i -[0 )- 2 __' 1.375 (2, - 1) . (7.45)
R,, 2LE(I -- ) TO.13 (I -- 0.5.), .13

(. Based on (7.45) specifically, the time interval between the
arrival of the wave-front and the zero amplitude characteristic(n = 1)

wave at some point constitutes

2L'.(I - 1) ZO'13 (1 - o, )L' (7.46)

Ice 1 !50 3 00 L

-II , . -. . . '

34

Fig. 17. Zone Boundaries of the Effect
of a Free Surface on a Direct-Wave Front
at Different Charge Depths.

- theoretically calculated;
- ---------- by approximation.
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Fig. 18. for t 0 as a function of H/h and g2 0.87.

•o For a maximum amplitude characteristic wave,

a E 0s -s0'1 + 1i .37 ' (7 .4 7 )

a 2 LE (I j - 1J 3- 1 1ii f\~ ~ I ,,I7."

on the basis of the Fermat principle, the parameter ý in form-

ulas (7.45)-(7.47) is defined from the equality Dt/Dý = 0.

Fig. 18. shows a combination of the numerical solution of this

equation and (7.46). The theoretical results of 4 for t can be

approximated by the relation

-- II - L I
II f\I

Formulas (7.46) and (7.47) permit us to define the limit of

possible application of the acoustic solution. Assuming, as prev-

iously, [cf. (7.24)] that the pressure-drop time interval comprises

no more than 20% of the total duration, we get
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Fig. 19. Zones of Nonlinear Effect of Free
Surface on Shock-Wave Parameters.

Using this inequality in conjunction with (7.46) and (7.47),

and approximating the theoretical results by an expression similar

in structure to (7.44), we find that

l', • ' ' I+ ' -) (7.48)

Therefore, equations (7.44) and (7.48) delimit the entire

obse vation area into three zones (Fig. 19).

In zone I, where L < L aR , acoustic approximation formulas

may be accurately used to evaluate the parameters of an underwater

shock-wave. In zone II, there is substantial distortion in the

tail section of the pressure contour and the parameters of the front

are not a function of the free surface. In zone III, the effect of

the free surface embraces the entire pressure contour, including

the parameters at the front.

In zone II, when given the parameters ý and n, the wave contour

is graphed directly with the aid of relation (7.45).

Despite its simplicity, this method is rather unwieldy and

t erefore, for practical purposes it is convenient to use a simpler

approximation, which can be realized if we impose the following

premises:

- at the moment of convergence of a zero amplitude characteristic
wave t = 0, pressure in the wave is the same as in an infinite fluid

L (p = p);
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-the characteristic wave n~ = 0.5 has the same rate of travel as
1 the shock-wave front and consequently, t = tOK, corresponding to a

pressure p = 0.5 p.;

- the maximum amplitude characteristic wave n = 0 arrives at

a point in time t = t+; the resultant pressure at this time is equal

'-o zero.

Thus, for a constant amplitude wave, using the parabolic law of

pressure variation in the interval t 0 -t+, we find that

P =P. [o ( I - t°'- o)] A-,
OR-- ." ' - . ] (7.49) "

If we calculate approximately that in an infinite medium, pres-

sure changes with respect to the exponential law

( p:.:p--- 7e

then, instead of (7.49) we can write

P, -P. le-• [06(t)-o.(0 -IAN +.

' (t- 1)]] (7.50)

In equations (7.49) and (7.50), the exponent n is found from

the apparent relation

1 ,-1 (7.51)

The moment t* is found as the point of intersection of the ex-

ponent and an : th degree paralbla

- , (7.52)

Fi'. 20 shows a pressure conwar which exemplifies the cited

arguments.
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Fig. 20. Graph of Pressure Contour
of Underwater Shock'-Wive in Zone II.

Calculations indicate that when L < L , considerable distort-

ions in the pressure contour resulting from the free surface effect

do not cause noticeable changes in the inteSgral characteristics o!

the shock-wave: the total pressure momentum and energy flux density.

For this reason, the quantities shown in the second zone (Fig. 19)

t can be defined in terms of the acoustic approximation formulas. Th.s

permits us to simplify even more the approximation of the pressure

contour in this zone. Considering that the profile of the wave is

parabolic, we can assume that

where

I('.54)

p=--•J-N 6 (7.55)ft j.I+ 1!4+ e

Let us examine reflection zone III (Fig. 19). Here, the shock

wave is overtaken by some expansion characteristic waves. We could

also solve this problem by analogy with the method stated. However,

in order to derive simple theoretical relations, it is convenient

I from the very start to introduce a dimensionless parameter k which
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• - is the ratio of critical distance to distance from the point of ob-

servation [cf. (7.44)]:

Lk,=. ! 0tP = o 3 1.1- 4,2jh
k -L " (7.56)

We naturally assume that maximum pressure in the wave is mainly

defined by the parameter k:

p. =r p.f(k). (7.57)

The form of function f can be derived by analyzing magnitudes

of pressure at points situated in the free surface of the fluid.

We previously wrote for the critical angle

a "(7.28)

( or, taking (5.48) into account

* .'W (7.58)

The slope of an undistorted direct-wave is

a8

According to the solution for a plane wave [3], pressure at a

point in a free surface in a region of irregular reflection is de-

fined by the relation

p,. _- p. , + +

AP. •(I+ ,.0*. (7.59)

AE; calculations 9how, in the range 0.05 < k < 1

~~~3 3 -,,k. ' {
+4 , o _ k/.
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fig. 21. Diagram of Regular Reflection of Direct-Wave
on Free Surface.

Thus, in the third reflection zone, maximum pressure in the

underwater shock-wave is defined by the approximate relation

3'--
P" =pý ) k. (7.60)

( The effect-time of the positive phase can be found in terms of

the previous scheme as the difference in arrival times of the max-

imum amplitude characteristic wave (n = 0) and a wave-front, weakened

by an expansion wave, at some point. The derived relations are

rather unwieldy. Moreover, calculations show that -.hey are similar

to those which were derived earlier. The greatest discrepancies are

revealed at points situated near the free surface. However, the

effect-time for these points can be defined rather easily by exam-

i'iing the slopes ol Lhe direct wave and the angle of reflection of

che maximum amplitude characteristic wave.

In the range of relatively shallow charge depths (h << L), the

effect-time of the compression phase can be found using the apparent

relation (Fig. 21)

t 09....1+ t 9 "(41111 + Ar (7.61)

where 6 np - the slope of the direct wave; 6 OTp- the angle of re-

flection of the maximum amplitude characteristic wave.
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Fig. 22. Diagram of Irregular Reflection
of Direct Wave on Free Surface.

The slope of the direct wave and the angle of reflection of the

given characteristic wave are associated by the common nature of point

E:

Co 4. N$COaO ~,•, ¢0- ;,:

In view of relation (1.44) for NV, as well as the fact that

for small angles cos 6 = 1 - (1/2)62, we will find:

809 = I, 14 n. (7.62)

Considering that in an area of regular reflection the free

surface has no effect on the parameters of the front, and that the

relationship

=147To

I,-'3  (5.48)

occurs, according to e.rpression (7.61)

,L_ 
(7.63)

where

( II (7.64)

100



"" -- - - -- -- U -- - ' "'-

Avý In an area of irregular reflection, pressure on the front de-
creases and the front curves. Moreover, as the point approaches the
free surface from critical depth hKp, pressure will drop even more;
consequently, there will be a reduction in the rate of propagation of

the front and its curvature will increase (Fig. 22).

If pressure on the shock-wave front is equal to pm' taking into
account weakening by the characteristics of the expansion wave, the
rate of propagation of the characteristic wave (which by then has

overtaken the front) according to (7.10) will be

2nD

Then, the slope of the shock-wave front with the free surface

can be defined from the condition of equality of the horizontal

components of travel of the front and the characteristic wave

Cob --,III,

i.e.,
I .. I fl*n,

4, 8 P'' +

Hence, considering that cos 6 1 - (1/2)62np we can derive
np nP

~;n% = l" . ph'P" (7.65)

and according to expression (7.62),

fi 2 - .- (7.66)

Consequently, according to (7.61) and (7.66), the effect-time

of the positive pressure phase near the free surface in an area of

irregular reflection is

I A2.4 / ,- P,ol (7.67)
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Considering that pm is defined according to formula (7.59)

for points situated near the free surface, we finally derive

t ,(7.68)

where

- . . (7.69)

Since the theoretical calculations of the coefficient 8, acc-

ording to formulas (7.64) and (7.69) do not differ from each other

by more than 17% during the variation of kh = 0 from 1 to 0.001,

equation (7.47) can be utilized for practical evaluations. It can

be approximated more simply by the expression

1 i-. (7.70)

where

2Hh
04L ' (7.4)

H -(7.71)

The pressure contour is close to parabolic

P,) p, (-), } i,,(,)_Oa(,_, . (7.72)

The average value of the exponent n is roughly equal to 1.15,
which corresponds to the coefficient of completeness

0.6.
ni

The quantity of total momentum, according to (7.72), is

I . , (7.73)
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t According to (5.55) and (7.72), energy flux density is defined
by the expression

( it: 1) ( Fn, F ) " 0 ,(7 .7 4 )

§8. Formation and Development of Cavitation in the Reflection
of an Underwater Shock-Wave on a Free Surface.

As is well known, cavitation is the process of forming discon-
tinuities in a fluid due to local pressure reduction. Cavitation
effects are closely associated with the strength characteristics of
a fluid in the formation of tensile stresses. In the studies of
Ya. I. Frenkel' [20], Ya. B. Zel'dovich [6], J. C. Fischer [31], it
is asserted that the upper limit of volumetric strength of water is
defined by a quantity of the nrder 1500-3000 atm. Briggs proved
experimentally [28] that distilled water which is free of mechan-
ical impurities and air bubbles can withstand stresses of about
280 atm., its strength being chiefly a function of temperature. It
has also been proven that the presence of solid particles, gas bub-
bles, and other similar deposits in a fluid sharply reduces its cap-
acity to withstand tensile stresses. In view of this, cavitation
discontinuities usually form when pressure is slightly less
than the pressure of saturated steam.

In examining cavitation under actual basin conditions, we will
refer to this last assertion. For the cavitation effect to occur,
tensile forces must overcome the forces of hydrostatic pressure and
induce underpressure equal to the quantity pK.

Consequently,

P•,e= (P. + Po).
(8.1)

where p pe3 - net excess pressure, inducing cavitation of a fluid;
P0 - hydrostatic pressure at a given depth h:
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Poa P4.1M + , (8.2)

Let us examine the gradient of an exponential plane wave along

the normal toward the free surface in the acoustic approximation

S (8.3)

If water could withstand great tensile stresses, the net pres-

sure at point z = -h could be defined by the relation

-4 A I A .1

ppC., (1,h) =p, e, +.• -- e 6 ot- • (8.4)

where t - time, counted from the moment of convergence of the wave

front with the free surface.

( At the moment of convergence of a reflected-wave front with a

point (t = h/a 0 ), pressure will be, according to (8.4),

Pill(e~' i

If this quantity is equated to the pressure inducing cavitation

in the fluid, we will derive a relation which easily yields the

thickness of the cavitation layer hI (Fig. 23)

1 2h.

Pm (C" 1 - -- (ps P J., I 1, (8.5)

A layer of water h1 thick, moving upward at a fixed velocity,

separates from the main fluid mass, forming a region where pressure
will be on the order of the pressure of saturated steam, i.e., it

will be close to zero.

For the tail section of a direct wave, the first cavitation
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4 discontinuity functions like a new free surface, except that press-

ure on the free surface is equal to atmospheric pressure, while it

is close to zero at the cavitation discontinuity boundary. Conseq-

uently, there will be a reflection of the tail section of the wave

on the first cavitation discontinuity surface. A new cavitation

discontinuity may occur during the propagation process of the nascent

expansion wave.

The depth h 2 of the second cavitation discontinuity surface can

be found from the equation (Fig. 23)

2h, ( 21wPmn- - P,,,e ' -I"P,-i- g0J. J - (P. 4+ gP , A1 ); (8.7)

according to (8.5), however,

(. Therefore,

Pm

or

--In I' - ,. R h

"pill ,, (8.8)

The process of cavitation layer formation will continue as long

as negative stresses in excess of pK are formed in the water.

The depth of the i-th cavitation discontinuity is

al p (8.9)

while the thickness of the i-th cavitation layer is

1h, ,h . (8.10)
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Fig. 23. Diagram of Cavitation Dkcontinuity
Formation.

Similar arguments permit us to find the depth and thickness of

the i-th cavitation layer for the oblique gradient of a plane wave

onto a free surface. The difference is that pressure on the direct

wave, if axes x and z are situated in the mean free path of the wave,

will not be a function of t - z/c, but of t - (z/a 0 )cos0 - (z/a 0 )

sinO, i.e., in place of (8.3)-we will have

ajap =pe , %(e -- -cs- - .,-n •)(.1

The net pressure at the moment of convergence of a reflected

wave is

P., - (8.12)

The depth of the i-th cavitation discontinuity will be found

by solving the transcendental equation

h, = - -2-1-2 1,,gaI-
2 si n '. pill (8.13)

The derived relations permit us to form the following conclus-
ions :

the thickness of separated cavitation layers increases with

depth;
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an increase in pressure on the front pm' or a decrease in pres-

sure of cavitation p induces a reduction in the thickness of cavit-

at-:n layers and an increase in their number.

The change in hydrostatic pressure with depth has a consider-

able effect on the thickness of cavitation layers and the propagat-

ion depth of cavitation only for high values of 0, corresponding to

the explosion of very large charges.

The concept of formation and development of cavitation during

reflection of a shock-wave on a free surface provides only an out-

line of this phenomenon. Actually, cavitation discontinuity does

not occur instantaneously and along the entire plane, but gradually

and in the form of individual bubbles. The concentration of bubbles

is at its maximum in the region of theoretical depths of cavitation

discontinuity formation. As the experiments of Yu. Popov have shown,

discontinuity surfaces are sometimes observed very clearly (Fig. 24).
/

Experiments attest that cavitation effects are absent where
2 2pres3ure on the wave-front is pm < 2.5 kG/cm2. Where pm > 5 kG/cm2,

a continuous layer of cavitation bubbles is formed in the water. In

this case, after the reflected-wave front arrives net pressure is

close to total vacuum, subsequently rising to a magnitude which

slightly exceeds initial hydrostatic pressure. This was first noted

by I. B. Sinani in 1953. We can assume that the motion of the cav-

itation layers induces the secondary rise in pressure. Traveling

at various speeds, incipient cavitation layers collide with each

other. New shock-wave systems are formed as a result of collision;

their propagation in the fluid brings about repeated rises in pres-

sure.

An approximate idea of the nature of cavitation layer motion can

be obtained on the basis of the law of conservation of momentum and

the law of conservation of energy.

Since the initial momentum of a system of i layers is acquired
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Fig. 24. Formation of Cavitation Layers in
Reflection of a Shock-Wave on a Free Surface.

under the influence of direct and reflected-wave pressure which does
not extend beyond the scope of these layers, it is equal to the mo-
mentum translated by the direct wave through the i-th cavitation dis-
continuity surface prior to the time of its formation, i.e.,

( = p(t+ L sin )dt =fp(t)di=1(2t,).(. " ! =.. =(8.14)

From the moment of formation of the i-th cavitation discontin-
uity, only the forces of atmospheric counterpressure and gravity

act upon the system of i layers.

A change in momentum is equal to the momentum of these forces:

Q,.. •- Q, (t) - (p. , + gpoh,) (t - ti); (8.15)

the mean speed of layer motion is

-,h .LPJ •h.! . ' (8.16)

the kinetic energy of their motion is

T,(t) = eA (u. ()'. (8.17)2
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From the law of conservation of energy it follows that this
quantity must be equal to the energy of the shock-wave, the forces

of counterpressure and gravity excluded. Since a wave propagates

at an angle 8 to the free surface, the initial value of energy will

be E(2ti)sina. The energy of the forces of counterpressure and

gravity is

A • (p,,.+g:Ioa,)1W.(t).-- .w(,)1 (3. 18 )

where

W/, () 2___ sin %.)mj (8.19)

Thus,

E (21d) sin • - (P.,. + g"o/1 1) I W1, (M) - Wi, (I,)J 7, (1). (8.2 0)

( On the basis of (8.17)-(8.20), the following assocation has been

established between the net travel of layers on one hand, and the
momentum and shock-wave energy on the other:

E (2,;) sin)i --L ,Is
W , (1'))= ,+ 2 (8.21)

P3rTH vOa

Let us mention that the magnitudes of pressure momentum and

energy in the shock-wave are defined using its parameters in the

following manner:

(21) (I - (8.23)

E (2 1,) -2 --( - ( 8 2 3

Formulas (8.16) and (8.21) are valid for the time interval
beginning with the moment of adjunction of the i-th layer to the

Sfirst layer and ending with the moment of overtake of these layers

by the i-th + 1 layer.
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The moment in time t* when the i-th t 1 layer overtakes the

I upper layers can be defined from the condition of eqrality of perm-

utations

W,(,) U ,, (8.24)

where W,, Wei = V,,(, ,) 1-,,1 , 1(,o- ,,, ,) - t -t ,,
"o•; , ,I~e~__7 p•p~e ... %-+ Pee + PIT"goh+,

Condition (8.24) is transformed to a quadratic equation with

respect to t*, which can be solved without difficulty.
1s

Using the established equalities, let us find the greatest

displacement of points in the free surface of a fluid. Given that

upon acquiring maximum permutation Wmax, k upper layers combine.
SThen, in view of the fact that with Wax the velocity is u1 (t) = 0,

we will find from (8.16) that

J (2tk)
N s 1p- VohN (8.25)

According to (8.19) and (8.20), maximum displacement is

tin,: =- in.[ [ 1210 (8.26)

For quantitative evaluations, we must evaluate time t . This

can be done with the aid of the preceding relationships, if we use

the condition of equality of permutations toward moment tm of free

surface points and of cavitation layer points.

Omitting the operations, let us cite only the final equation,

with whose aid the quantity t is def.iied*
*Equation (B.27" has been establishea under the assumption that

SPm >> P1K

110



42-

-. I lu . :00 A ,
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Calculated values of t /e for the case of a normal gradient

(= r/2)are shown in Fig. 25. The coefficients a W and at are shown

in the same graph as functions of X = a0c. For a normal wave grad-

( ient where Pm >> PK' these coefficients permit us to represent the

solution of equations (8.25) and (8.26) in the form

aQ.. ) (8.28)

t,. =P,,.O:., (0) =- J ... ,. , :t ;). (8.29)

The magnitude of the greatest displacement of points of the,

free surface, neglecting cavitation effects, is

W, =ý ýý_-sinp.
, , , x p l a t) ( 8 . 3 0 )

We can see by comparing (8.26), (8.28), and (8.30), that con-

siderable changes in the final relat.ionships can introduce consid-

eration of cavitation effects.

In conclusion, let us note that after the upper layers acquire

. maximum travel , they begin to move downward. This motion is

described by the sam.e formulas that describe upward motion; and it
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Fig. 26. Pressure Oscillogram for Reflection
of Shock-Wave on Free Surface with the Absence
of Cavitation.

experiment;
- - - - calculated, neglecting cavitation

calculated, allowing for cavitation.

continues until the upper layers encounter the surface of a grea'

bulk of water.

The moment of collision (t coyA) can be defined from the cn-

' dition of equality of free surface and bulk-water-boundary per.mutat-

ion. With this collision, secondary compression waves are formed,

propagating in opposite directions from the collision surface. The

amplitude of these waves can be easily found from the condition of

equality o- normal components of velocities

"t (tod + -', sin = u11- (t 01 OVA) _,y. sin.

whence
p'0YA Iu.(w,oiA) -L=i (h 0o 3flo

SMoip (8.31)

The calculations performed show that when pm >> P , the highest

amplitudes of compression waves formed during collision of cavitation
layers with the great bulk of fluid are roughly equal to half the

pressure on the wave-front

2 (8.32)
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- Fig. 27. Cavitation Zone Pressure Oscillogram.
(designations as in Fig. 26).

The moment of collision is

I,8p,46-- L . (8.33)

In spite of the considerable schematization of actual processes,

calculations nerformed with respect to the formulas cited are in

satisfactory agreement with test data. This is attested by the oscil-

lograms shown in figs. 26, 2;.

A similar problem was considered by A. N. Patrashev in a -±ightly

different formulation.
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§9. Reflection of a Shock-Wave on the Bottom of a Basin

[Linear Theory].

The study of the effect of a basin bottom on pressure fields in

underwater explosion is associated with theoretical difficulties.
To begin with, a knowledge of the mechanical properties of the ground

is required. Information of this sort is extremely limited, but it

attests to the extremely wide range of acoustic resistance of ground
(from 0.1 to 4.8 of water's acoustic resistance).This predetermines

the varied nature of reflection.* In srme cases, we must take the
non-uniformity of the ground and its layered structure into consid-

eration. The topography of the basic bottom is important, especial-
ly if it does not yield to mathematical evaluation.

Consequently, it is now more feasible to consider the quali-

tative than the quantitative aspect of the phenomenon.

(• For approximate analysis, let us make the following assumptions.

The surface of the bottom will be considered a plane interface of two

media. The ground will be considered an isotropic elastic half-space.

As is well known, two types of elastic waves can propagate in

unbounded isotropic solid bodies: longitudinal waves formed as a

result of volumetric deformation, and transverse waves determined by
shear deformations. These waves are sometimes called expansion waves

and distortion waves, respectively.The rate of propagation of long-

itudinal c and transverse c waves is expressed by the relations

C= •(9.1)

b- = (9.2)

where A and P - elastic constants, often called I.am4 constants, which

* This range of acoustic ground resistances is satisfied by values of
the reflection factor for the straight wave gradient from -0.8 to
+0.7.
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fully define the properties of an isotropic body.*

"In addition to these two wave systems, another type of wave can
be formed as a result of their interaction with the interface of two

media - the so-called Rayleigh surface wave. The amplitude of Ray-
leigh waves attenuates with depth with respect to an exponential law.

Consequently, Rayleigh waves seem to propagate in sizes and therefore,

attenuate more slowly with distance. The buildup of compression in

seismic waves does not occur abruptly, but gradually, in contrast to
shock-waves. This is attributed to the fact that compressibility

increases as pressure increases over a wide range of pressures in

elastic-plastic me'i4a.

The following qualitative description may be given for the

wave picture in a fluid during single reflection on the bottom of

a basin. Given that an explosion occurs at some point 0 (z = -H1 )

in the system of coordinates given in Fig. 28. At some moment in

( time, a direct wave reaches the bottom of the basin.

Its gradient is

-rccos -L !' (9.3)

The rate of wave travel along the bottom surface is

Cos " (9.4)

At large 8, the rate N at first exceeds the propagation rate of

longitudinal c and transverse b waves on the ground. Disturbances in

the fluid will be characterized by direct and reflected waves. Re-

flection will be regular. At some value of the angle 0 = %0, the

speed of N and c will be identical, i.e., the following relation
* The Lamd constant p is equal to the shear modulus G. The assoc-

iation between the modulus of longitudinal elasticity E, the constant
X, and the Poisson bracket v is expressed by the relation

(1 + V) (1- 2V)
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Fig. 28. Diagram of Shock-Wave Reflection on
the bottom of a Basin.

Cos P (9.5)

arcos-.
C (9.6)

Angle $, is called the angle of total internal reflection of

longitudinal waves. When 8 < 8$, the so-called first irregular re-

(i flection occurs. Longitudinal disturbances on the ground overtake

the direct shock-wave and create an additional wave disturbance in

the fluid. This disturbance is customarily called a head wave. With

further propagation of the shock-wave, its speed N decreases, and

at some 8 = is equal to the speed of transverse waves on the ground

Mi.0 =.. b (9 .7 )

arccos.•-•L.. (9.8)
b

Angle 81 is called the angle of total internal reflection of

transverse waves. Where 8 < ei transverse waves on the ground over-

take the direct shock-wave and inducr; another wave system in the

fluid (lateral wave). The so-callee second irregular reflection occurs.

The diagram of mirror reflection can be used to plot the fronts

of lateral and head waves. It is not difficult to verify that the

tangents to the circumference, at points where it intersects rays

emanating from the center 01 at angles 00 and 81 to the bottom surface,
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a are the spherical surface envelopes of elementary disturbances which

accordingly determine the head and lateral waves (Fig. 28).

A Rayleigh wave propagates along the ground-water interface.

The disturbance it generates is customarily called a ground wave.

Moreover, in irregular reflection zones near the bottom, a region

of raised pressure is formed ahead of the shock-wave front. This

region is formed as a result of superposition of wave disturbances

induced by forward-emergent longitudinal and transverse waves. This

region is usually called the "forewave".

Thus, another head, lateral, ground, and forewave is formed

(in addition to the reflected wave)when the shock-wave drops to the

bottom of a basin. Since these systems are induced by the propagat-

ion of wave disturbances on the ground, they are often called waves

of seismic origin.

SA model oscillogram of seismic-origin waves is shown in Fig.

29. The head, lateral, direct, and forewaves are clearly visible.

Depending on the distance to the explosion epicenter, the head and

lateral waves are either separated from each other by a fixed time

interval, or they arrive at some point as some net wave disturbance.

A comparison of direct and reflected-wave amplitudes with

seismic-origin wave amplitudes permits us to conclude that waves

cf seismic origin cannot be considered in practical calculations.

The only ex:ception is the forewave - a region of smooth pressure

change ahead if the front. The highest pressures are formed in

-s-ewave in the case of a mean-velocity bottom (c > a > b):

the primary energy of wave disturbances on the ground is concentrated

at the direct-wave front. In other cases, forewave amplitudes are

small and can be disregarded.

From the standpoint of practical application, the reflected

I wave offers the greatest interest. In some cases, solving the prob-

lem in a linear formulation is sufficient to describe it. Let us
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Fig. 29. Typical Oscillogram of Wave of
Seismic Origin.

state the problem in brief.

In the upper half-space (ideal fluid) on a spherical surface

having a radius R0, we are given a change in pressure

p = p,.,e .(9.9)

The association between pressure and the velocity of particles

in this half-space is expressed with the aid of the potential function

= 8e
09.10)

v= grad e. (9.11)

The field of deformations and stresses in the lower half-space

(elastic medium) is defined by the system of equations of the theory

of elasticity

.=grad ? + rot, (9.12)

P =(9.13)

(9.14)

where u - the velocity vector of elastic medium deformation;

- scalar and vectorial displacement potentials.
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On the plane interface of an ideal fluid and an elastic medium

the condition of rigid contact is satisfied (the equality of normal 4

components of particle velocities and pressure magnitades).

An analysis of this system of equations was performed by Ye.

I. Shemyakin [24] using the method of incomplete separation of vari-

ables. Without stopping to state Shemyakin's solution, let us cite

only the final results which he obtained.

If we represent pressure in the direct wave in the form

14700 - *
P=,ia1 e , (9.15)

np

where

,= L L' + (H, - h,)'. (9.16)

mn=/'±llh) (9.17)

H1 and h1 - distance from the bottom to the charge center and

measurement point, respectively, then for pressure in the reflected

wave we will derive

PO~r) krp @T
= k°• ()-, "(9.18)

Here

r0,p = • [' + (HI, + h1)2, (9.19)

I |/TLai:(ll,-- ,)", (9.20)

arctg H, • ,
L (9.21)

The coefficient kOTp () is only a function of the acoustic pro-

• perties of the ground and the gradient. For the most typical grounds,

this permits us to once and for all plot angle diagrams of koTP (8)
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Fig. 30. Angle Diagram for Rocky Ground.
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Fig. 31. Angle Diagram for Sandy Ground.

120



which are suited to practical calculations. Angle diagrams for

rocky and sandy bottoms are shown in Figs. 30 and 31.

Formulas (9.15)-(9.21) rather accurately describe the pressure

field only at large gradients. At small angles, deviations in the

velocities of the direct and reflected waves from the speed of sound

become substantial. In some cases, a confluence of wave fronts

is possible as the Mach wave is formed.

On the basis of linear theory (cf. Figs. 30, 31), starting at

fixed gradients $ < aKp the coefficient of reflection becomes neg-

ative, and with reflection on the bottom expansion waves are formed.

This is attributed to the fact that in this range of gradients (0 <

< 8 < aKp), excess pressure in the direct wave induces motion in the
ground downward away from the inte':face, at velocities exceeding

the normal (for this boundary) components of particle velocity in

the direct wave. Experimental study of the negative reflection reg-

( ion has shown that expansion waves formed during reflection on the

bottom have lower amplitude and duration in comparison to expansion

waves during reflection on a free surface. A secondary rise in pres-

sure occurs following them. Because of this effect, the effect-time

of the positive phase and the integral characteristics of an under-

water shock-wave barely change under the influence of an expansion

wave from the basin bottom (in the absence of free surface effect).
The expansion wave only must be taken into account when evaluating

pressure on a wave-front and in its close proximity. This problem,

of course, cannot be considered within the framework of linear the-

ory.

§10. The Influence of Nonlinear Effects on the Parameters of
A Wave Reflected on a Basin Bottom. Pressure Fields during
Underwater Explosion in Low Water.

From the standpoint of practical application, of all the non-

. linear effects accompanying the reflection of an underwater shock-wave

on the bottom of a basin, the evaluation of expansion wave influence
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is of the greatest interest. The study of expansion waves during

I explosions in low water is particularly essential: because of the

proximity of the charge to the bottom, the zone of positive re-

flections will only occupy a small vicinity around the epicenter.

The influence of the free surface substantially limits positive pres-

sure phase effect-time through the entire depth of the fluid layer.

Therefore, in a shallow water area at some distance from the epi-

center, there will be no secondary pressure rises associated with

the effect of the basin bottom. In these cases, we only have to

consider the weakening effect of both boundary surfaces.

The problem of interaction between the direct wave and an ex-

pansion wave reflected on the basin bottom has much in common with

the previously considered problems of wave reflection on a free sur-

face (see §7). The differences is that during the reflection of an

elementary pressure-reduction wave on the bottom (expansion wave char-

acteristics), interfaces are not formed at every point during the

( convergence of a direct-wave front, but only at a fixed distance

which is a function of the angle of incidence. Moreover, the maxi-

mum amplitude of the expansion wave in this case is a function of

the coef-icient of reflection -Ad consequently, it cannot amount to

the amplitude in the direct-wave front.

The time of arrival of the characteristic of given amplitude

at a point, with respect to the set of conditions mentioned above,

increases in comparison with the case of reflection on a free sur-

face. Let us find the boundary of the region where the direct-wave

front and zero amplitude characteristic wave simultaneously arrive.

By analogy with (7.40), this boundary apparently will be defined

by the equation

* I 1, ;, (11,i~! -- h,h'I -- 05,'l}lI
h,= 121 0 ' 13O 1 IS

Swhere

(10.2)
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x - horizontal distance from the point of observation to a

point on the bottom whence the zero amplitude characterLstic wave

first arrives.

If expansion waves are formed with the drop of a direct wave

at any angle, the quantity ýi would be defined by an equation which

is identical to "1.41)(based on the Fermat principle)

4' - , -565= 2-- 3:,. (10.3)

However, expansion waves are formed during the reflection of

the direct wave on the bottom only at angles of incidence of 0 < $ Kp.

Consequently, the parameter 1 cannot exceed the quantity ý0:

.- rTh,
. , tR I, 1)'01. (10.4)

If the inequality 1i < is satisfied, formulas (10.1) and

(10.3) will he valid. If however, •I > E0' we ought to assume that

El = E0 in formula (10.1), since the zero amplitude characteristic
will reach the direct-wave front namely from point E00 According

to (10.1) and (10.4),

I Lt ].:IK 5 I
Sk [tp.i•,p L tg illp

or solving for

"k'I Z: I 6 ' (10.6)

where

L tWIMp (10.7)
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For measurement points situated on the bottom of a basin,

the influence of expansion wave characteristicos only occurs for dis-

tances

IR imp'

On the other hand, this distance cannot be less than critical

distance

but as has been shown [cf. (7.42)], where 0 = o

L. - o,31 (10.8)

Thus, if

19 PX <no03.3 K

or

/3.23 0.""Tit xp (10.9)

then the critical distance for points situated on the bottom is
defined by formulas derived for the free surface.

If

' > 0,<•3H / •- (10.10)
tg •P1 " tg•P

then the critical distance is defined by the position of the point of
zero reflection. In the first case, we can use a formula analogous
to (7.44) in place of (10.1)

SP (,',• (o.31R, + 1,3M, (12.31)
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but in the second case [when il< 3t.2 0 , we use the relation

Ip -tR -lsp .. 06( Ill o.435 i (10.12)

==- ~t- 1.+
I. . j

which is a rough approximation of (10.5)

Moving now to an evaluation of pressure on the front of the

direct wave, let us use the method developed in §7.

If characteristic waves of any amplitude are formed in a region

of negative reflection, ma'.imum pressure is determined by relation

(7.,0). Since the amplitude of an expansion wave cannot be greater
tlian Pmkorp(8)*, pressure on the front cannot be less than pm (1 +

oTp

SThus, for points situated near the basin bottom (h1 = 0), the

degree of weakening in maximum pressure on the front is defined by
the larger of the equations [cf. (7.59)]

2 4 -(- .435., (10.13)

I k.,p

where n - angle of incidence of direct wave.
_ _p

For the range 0 < < < ~, the approximate relation can be used

•,=•I /1+ ( 1 -- (10.14)a/ lkp

which satisfies both the conditions at the basin bottom (where hI = 0,

a =a) and at the boundary of the zone of influence (where hi

hlp i 1 and the previously-formulated relation of pm as a
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49 function of h [cf. formula (7.60)].

Thus, in the zone where the basin bottom weakens the parameters

of the front, maximum pressure can be defined by the formula

Nq = 2,P. (10.15)

where the coefficient a is calculated according to (10.14) and (10.13).

Let us now consider the combined effect of a free fluid

surface and the basin bottom on the pressure fields during under-

water explosion. This problem is of particular importance in eval-

uating the explosive effect in low water. Let us note, above all,

that in the presence of two boundary surfaces the repeated reflection

of wave systems occurs; consequently, the quantity of wave disturbances

of different physical nature increases in geometric progression. The

nonlinear interaction of these systems, in a general statement of the

(_ problem, causeb insurmountable difficulties. However, as experience

shows, it is sufficient for practical applications if we limit our-

selves to the study of the first reflections.

If we neglect waves of seismic origin, we can point out five

typical zones during the reflection of a shock-wave on a high-velocity
S< ( 3 .23 )0 .77

bottom (c > b > a0 ) and on a free surface where R1  (tg3.23).7

(Fig. 32). The boundaries of these zones can be roughly diined by

relations (7.48), (7.44), and (10.11) or (10.12). Zones I and II

correspond to the region of positive reflection on the bottcm. Zones

IV and V - correspond to regions of negative reflection. In zone I,

the influence of reflected waves can be evaluated in the acoustic

(linear) approximation. In zone II, the influence of nonlinear

reflection effects on both boundary surfaces is revealed in distort-

ion of the tail section of the pressure contour. In zones III, IV,

and V, the weakening effect of the free surface, basin bottom, and

both boundary surfaces, respectively, encompasses the entire pressure

S contour, including the shock-wave front. Pressure on the direct-wave

front in zones I and II is evaluated as in an infinite medium [acc-
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Fig. 32. Zones of Nonlinear Influence of Free
Surface and High-Velocity Bottom on the Parameters
of a Shock-wave.

ording to formula (5.48)]. In zones III and IV, pressure is defined

by relations (7.60) and (10.15), respectively. In zone V, the wave

front is weakened by the expansion waves of both boundary surfaces.

Considering (7.60) and (10.15), pressure on the front is

Pm,': P. 's, (10.16)

where k is found according to (7.56) and a1 - with the aid of (10.14).

It is somewhat more complicated to plot pressure contours and

define the effect-time of the positive phase. Evaluacions at this

point become even more approximate in nature. We can, nevertheless,

formulate several recommendations.

In zones I, II, and III, the free surface effect predominates.

Consequently, we can use the corresponding relations [formulas (7.61)-

(7.64)] for approximate evaluations of the positive phase effect-time.

In zones IV and V, effect-time is defined by the influence of the

expansion wave not only on the free surface, but also on the basin

bottom. However, the absence of high amplitudes in the expansion

wave formed during reflection on the bottom renders them incapable

of totally reducing the pressure in the direct wave. Therefore,

the positive phase effect-time in these zones will be mainly defined

by the free surface effect. A reduction in pressure due to basin

bottom influence naturally reduces the positive pressure phase

effect-time of the shock-wave in comparison to the magnitude which
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would be assumed if the influence of only free surface was taken into

account.

This effect may be partially defined if we consider that the

positive phase effect-time is reduced roughly in proportion to Vi:*

(10.17)

where t is defined according to formula (7.4), 8 - according toaK

formula (7.64), and a, - according to formula (10.14).

The shape of the pressure-time contour, in the event of combined

influence of a free surface and the basin bottom, differs slightly

from the similar curve derived as a result of only the free surface

effect. Therefore, pressure as a function of time can be calculated

with the aid of a relation similar to (7.72):

P ) (0 I ;: P•' -'t (10.18)

where the exponent n can be approximately assumed to be equal to

n - 1.5.

The integral characteristics of a wave are evaluated according

to formulas which are similar to (7.73) and (7.74).

This scheme did not take cavitation regions in a fluid into

account and, as calculations have shown, is valid if the depth of

the water area is not too small (no less than 4 charge radii). With

shallow depths, the quasi-linear evaluation method used for hydro-

dynamic fields becomes unacceptable. The rather intense head wave

near the epicenter, reflecting on the free surface, creates a cavi-

tation region over the entire fluid layer. This region is imperme-

able to the remaining wave systems. At the same time, as the depth

of the water area increases, the effect-time at the basin bottom
*• will increase. It becomes necessary to take secondary pressure rise,

which follows from the bottom after the expansion phase, into consid-
*cf. footnote p. 128
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.• eration.

HI 3.230"77

Where H > 3., the negative reflection zone does not1 g

coincide with zones IV and V and will encompass part of zone II and

III. Consequently, other additional typical zones will be formed.

Thus, the considered case of underwater explosion in low water
is a widespread, but partial case, even with a high-velocity bottom.

A medium-velocity ground-surface (c > a0 > b) has several spe-

cific distinctive features. A substantial rise in pressure is ob-
served in a fixed range of distances because of forewave of consid-
erable amplitude. At present, it is difficult to produce any kind
of quantitative evaluations.

The physical picture of reflection changes if we change our
reference to low-velocity ground-surfaces. We can consider the

( bottom as the second free fluid surface. In this case, the problem
of exploding a charge at half-depth of the water area is equivalent
to exploding a charge of half the weight on an absolutely rigid

bottom in a basin which is half as deep.

A solution of this problem, in a rather rigorous formulation,

was obtained by A. G. Ryabinin and B. A. Lugovtsev using short-wave
theory methods [12]. The utilization of their findings for practical
purposes, however, is difficult. The approximate solution of the
same problem obtained by Ryabinin produces more suitable results.

Following the previously-assumed scheme, let us note that we

*Change in duration of the positive pressure phase in proportion to
V/•i can be clearly demonstrated for point lying only on the free

surface. More precise calculation leads to considerable decreases
in effect-time at points of observation situated near the basin bot-
tom.
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Fig. 33. Zones of Nonlinear Influence of Free
Surface and Low-Velocity Bottom on the Parameters
of a Shock-wave.

can point out five typical zones of reflection for the case of a

low-velocity bottom (Fig. 33). The boundaries of these zones can

be roughly defined by the relations (7.48) and (7.44):

o, II/.3(I +- 0.5 )(10.19)

'C ,311P 4,2 f~-)(10.20)
0.31 R12 . 4.2

Regular reflection of the shock-wave on the free surface and

basin bottom occurs in zones I and II. In zones III, IV, and V, the

reflection is irregular. Pressure on the front in zones I and II

is the same as in an infinite medium. In zones III and IV, pressure

is defined with allowance for weakening by one of the boundary sur-

faces.

l,.-. I' kip.. (10. 21)

where k is found according to formula (7.56), kI likewise accord-

ing to (7.56), but replacing W and ff by Ei and

SIn zone V, maximum pressure is defined by the relation

p,,,= k kip,. (10.22)
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The positive pressure phase effect-time is equal to the small-

t est value calculated according to the formulas

t II t, (10.23)
. ..110'

where

t.l where L ,

S!,where

ell" (10.24)l • "<t,, where L ""LKp,,
k where

t, ~where £ •[JK,

. = .where < I.P(0.25)

kij k kt., where

,L (i.t + he 'Ll -r (H -h? (10.26)

+ i 'Ll + P1, + Ls + (I - hi)'I, (10.27)

- defined according to formula (7.64); 81 - likewise accord-

ing to (7.64), but substituting F1 and H1 for a and H.

The calculation of effect-time according to formulas (10.24) and

(10.25) in zones II, III, IV, and V produces scme exaggeration of

this quantity for observation points situated ".n the middle of the

basin, since it does not take into full consider-ation the nonlinear

nature of the reciprocal influence of the characceristics of both
expansion waves. The remaining evaluations can be given approximate-

ly with the aid of the corresponding relations in §7, allowing for

the cited relationships.
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CHAPTER II

DIFFRACTION PROBLEMS OF THE THEORY OF UNDERWATER EXPLOSION

§11. The Concept of Diffraction Problems. General Research
Methods.

The simple boundary problems of the theory of underwater explos-

ion which were considered in the preceding chapter assumed the in-

finity of interfaces of two media. This assumption cannot, of course,

be considered valid when a shock-wave encounters an obstacle of fin-

ite dimensions. In this case, an obstacle is enveloped by a shock-wave

in addition to the reflection and refraction of waves. This process

is called diffraction.

The study of diffraction phenomena is of great practical value,

since we cannot discuss the load formed on the obstacle upon the

( impact of a shock wave, the pressure fields in the fluid near ob-

stacles, the dynamic calculation of structural strength, etc., with-

out evaluating the effect of diffraction.

The diffraction field is a function of both the direct wave

parameters and the dimensions and shape of the obstacle. The dif-

fraction field is nonstationary, even when the wave is stationary.

The wave at first encompasses only a part of the body surface. In

proportion to the flow of the wave, the disturbance propagates into

greater and greater volumes, int racting with the direct and reflect-

ed waves.

If this interaction is nonlinear and the direct wave is nonstat-

ionary, incipient mathematical problems become insurmountable. As

a rule, however, a practical necessity for evaluating external forces

during underwater explosion arises at distances which are typified

by a range of pressures on the order of hundreds of atmospheres or

less. We can utilize the acoustic approximation in this connection.

Moreover, in many cases the curvature of a wave-front surface can

131



likewise be disregarded. The solution of the problem of external

forces amounts to the study of the linear interaction of a plane

wave with obstacles of various shapes. But the problem remains

extremely complicated, even in this simplified formulation; especial-

ly for diffraction around elastic bodies. In this last case, a

system of refracted longitudinal and transverse waves is formed, in

addition to the reflected and diffracted waves. When each of these

wave systems reaches the boundary surfaces, it creates new reflected

and refracted waves whose number increases in a geometric progression.

Thus, the only means accessible to research is the evaluation of

diffraction fields, neglecting the wave nature of disturbance pro-

pagatioa in the obstacle material. The loads derived under this

assumption are customarily called first-class hydrodynamic forces.

The effect of obstacle compliance, as well as several additional

considerations on the admissibility of formulated hypotheses will

be examined subsequently.

Turning now to a qualitative description of the diffraction pro-

cess, let us employ the Huygens principle: every point on a wave or

surface with which a wave interacts can be considered an elementary

source of wave disturbances. By using this concept we can easily

:raph the fronts of reflected and diffracted waves, and sometimes,

even contemplate general means for solving the problem.

Given that a spherical wave is propagating from a point source

0 (Fig. 34), encountering some obstacle D in its path which is as-

sumed to be absolutely rigid. If the directwave front has.already

traveled some distance from the initial surface of encounter with

the obstacle, the position of reflected and diffracted wave fronts

(line CC) can be found easily with the aid of the Huygens principle.

It follows from the law of conservation of matter that the change

in fluid density in a space limited by a spherical front BB, in the

absence of an obstacle, will be equal to the change in density in

the same space, minus the portion occupied by the obstacle (dotted

line in the figure). In the acoustic approximation, the change in

density is prcportional to the change in pressure. Hence it follows

that with the introduction of an obstacle, the decrease in the
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Fig. 34. Diffraction of a Spherical Wave
Around a Solid Body.

volume of the field is neutralized by a rise in pressure in the

same portion of the field where the reflected and diffracted waves

are formed.

On this basis we can generally assert that if a zone having

heightened pressure (as compared to pressure in a freely propagating

wave) is formed in a field, the formation of a reduced-pressure zone

is certain.

This fact can be expressed mathematically by the relation

I .%pjdV:. %.P'dt/(1.1

where Apl and Ap2 - pressure increments in regions V, and V2 in com-

parison to pressure in a freely propagating wave.

In some cases, the regions V1 and V2 and the distribution of

pressure within them are symmetrical. Equation (11.1) may then be

applied to any pair of symmetrically-arranged volume parameters, for

which

1P, = 4p1. (11.2)

It is often convenient to interpret symmetrical cases as the

result of the isochronous presence of a source and an equally-intense

runoff. Let us illustrate. Given a plane wave, propagating parallel

to a plane rigid screen having a small opening at point 0 (Fig. 35).
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Fig. 35. Diffraction of Plane
Wave Near Opening in Rigid Wall. Fig. 36. Diffraction of

Plane Wave Near Opening
of Arbitrary Shape in
Rigid Wall.

Then, a diffraction wave having its center at point 0 and front CC

is formed on the other side of the screen. Pressure drops according-

ly on this side of the screen, which can be viewed as the result of

a negative source of the same intensity forming at point 0. Thus,

t the opening 0 is a source for the lower half-space and a runoff for

the upper half-space. The dist. ±bution of pressure in regions DDO

and CCO will be symmetrical at some arbitrary moment in time.

This is valid for the more general case. Given a plane wave

propagating from left to right which encounters a plane rigid screen

having an opening of arbitrary shape and arbitrary dimensions (Fig.

36). To the right of the screen is formed a "transient" diffraction

wave, while to the left, a plane front of a reflected wave and a

reflected diffraction wave are formed, which are symmetrical to the

"transient" wave. It is easily verified that the symmetry of the

transient, reflected, and diffraction waves is maintained with the

limiting passage to right up to total elimination of the screen.

The usefulness of utilizing the Huygens principle can be illus-

trated as well by an example of a plane wave dropping at an angle 0

onto an infinite immobile rigid wedge having an apex angle of 2a (Fig.

( 37). As soon as the direct wave touches the rib (point 0), it appears

to be sliced by it. One portion of the wave moves ahead (direct wave
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Fig. 37. Diffraction of Plane Wave
Around Rigid Wedge.

AB) and the other portion of the wave is reflected on the edge (re-

flected wave EF). A region of diffraction is formed. Point 0 be-
comes a source of new disturbances associated with the flow of the
direct wave into the shadow zone of the obstacle. The front of these

disturbances is easily plotted according to the Huygens principle,

and is a circle with its center at point 0. This picture, while
not changing in quality over the course of time, increases the scale.
The diffraction wave propagating through the region of the direct and

(. reflected waves alters the hydrodynamic .•

The chief method of quantitative evaluations of diffraction

phenomena under the assumptions formulato.d above is the method of
linear superposition of wave fields. This method, naturally, assumes
the reverse effect, too - the expansion of any wave disturbance

into its basic components, the choice of which is defined only by
research convenience. The most widespread expansion is that where

sine curves and cosine curves, or one-valued discontinuity functions

form the basic components (Heaviside function,Dirac 6-function).

In the first case, expansion is realized with the aiu of the
Fourier integral. For a direct wave, for example, the time rate of
pressure change can be represented in the form

P f)M' sl e(w)e dw, (11.3)

-(11.4)
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tThe Fourier integxal is given here in complex form and is a

nonperiodic function in the form of the sum of an infinite number of

variations which are sim.'.lar in frequency and infinitely-small in

amplitude [the interval between components is dw and the amplitude of

each component is s(w) dw].

Expansion into unit functions is realized with the aid of
the Duhamel integral.* Let us note that the unit function 0 (t -TK) 4

is, by definition, characterized by the equation

0 where t
40 where 

(11.5)

This definition yields a method for expanding the given func-

tion into unit functions ; this expansion is shown in Fig. 38.

The analytic expression for the broken line which corresponds

( to the given curve has the form

I (I) - /(0)'7,o(I) + I] -t - (0)1 -,o(t - •.11)

%V j(k(_.%t-- l(k _ I).Atll •o~t--y x

(11.6)

Expression (11.6) assumes a limiting process where At + 0.

Then, an increment in function f will be replaced by its different-

ial, the summation goes over into the integral, the summation vari-

able kAt can be replaced by the integration variable T, and the brok-
en line f (kAt) will coincide with the given function f(t). Conseq-

uently we find that

f (t) .- (t - d
(11.7)

*This material, and all the basic ideas and concepts of this section
are taken from A. A. Kharkevich [211.
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aid of the Duhamel Integral.

Integral (11.7) m-7t be understood in the Stieltjes sense, i.e.,

it is applicable where function f(t) has discontinuities. If f(t)

is continuous, then (11.7) takes the form

) =(11.8)

If finite discontinuities exist, we must add the sum of the
Sproducts of jump-discontinuity magnitudes times a 0 (t - TK ), where

"T - the abscissas of discontinuity points. Thus, if function f(t)

is equal to zero where t < 0, and where t = 0 jumps to the value f(O)

(Fig. 38), using a derivative.to express the generalized differential

in (11.7) we can write
I|

I'l) --- f (0) 70 Mt +1 .2 (t --"1'1)d-. (1i
0

Employing (11.7)-(11.9), we can reduce any diffraction problem

to a problem of diffraction of a single wave. Given, for example,

some hydrodynamic characteristic of the process F a (t), found by

solving the single wave diffraction problem a 0 (t). Then, this char-

acteristic for the same problem, but with a wave of arbitrary profile

p(t) can be derived according to the formula
I

F () = "F, (I - -) dp ) (11. 10 )

This happens to be the Duhamel integral in a Stieltjes form.
The function F a(t) is called a transient function. Substitution
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1
of variables and integration by parts yields several equivalent forms

from (11.10), one of which will be the most suitable:

F(t)= pl(0)Fo() + i F, lt--.lP'lt)d=
S0

-- (0) F.,(t) + F." (t) p(t -- -.) dt = F.,(0)p (t) +

+ F',.(I -- ) ".p(Td-. - F.(0) P(M)+ tF.(-) p(t -- t)d-.

(11.11)

Consequently, we can see that the Fourier integral and the Du-

hamel integral are equivalent from a methodolog-irial standpoint. In

problems dealing with the physical processes of propagation and dif-

fraction of shock-waves, the Duhamel integral reduces to a consid-

erably smaller nurmber of calculations.

Alongside the zero-order unit discontinuity function a0 (t),

there has been wide use in mathematical physics of a first-order unit

discontinuity function a (t) in recent years. This function is

often called a Dirac 6-function. The Dirac delta-function 6(t) is

equal to zero for all values of t ý 0; where t = 0, it jumps to the

value +-. At the same time, however, the integral of this function

which is taken with respect to the interval including the point of

discontinuity, retains a finite value equal to one:

where

t where TO.

• (t--:)dr= I.(11.13)

where b>> a
.- )dt = 1 (11.14)" where T> or

138



it Based on the definition of the delta-function, it follows that

it can aid in representing any function as an integral of itself

and where t > 0,

J (t)e~t)= •! 1")•, - )d:"(11.16) k

If the problem is solved for a delta-function-type wave, we

can effect a change to a wave having the profile p(t) with the aid

of the Duhamel integral

Fi) 41 l -- ) ()t (11.17)

where F6 (t) - solution of the problem for a delta-function-type wave.

( Because the delta-function can be graphed with the aid of the

the most diverse auxiliary functions, satisfying conditions (11.12)-

-(11.14) to the limit, its use in solving problems in some cases is

simpler than in any other presentations.

The mathematical analysis of diffraction problems was first

carried out by Kirchhoff. For a homogeneous wave equation in three-

-dimensional space he derived a very general relation, defining the

potential at any point in space in terms of values of this potential;
and in terms of its derivatives on an arbitrary closed surface, en-

compassing the region in which the chosen point is situated.

The Kirchhoff formula has the form

__ _ _ +• 1 '• , C , I ) = . - , . , , ,
f in

+ O ,.,I dS. (1 .8)
al 'Iini di
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where 4 (•, n, •, t) - the potential at point A ( 4, n, •), encomp-

assed by an arbitrary surface S; n - exterior normal to the surface;

r - distance from element dS to point A(ý, n, 1).

Despite the completene:1 s of the mathematical solution, analysis

of diffraction problems with the aid of the Kirchhoff formula encount-

ers theoretical difficulties. Indeed, although the surface on which
we must be given the values of potential and its normal derivative

can be arbitrarily selected, in most physical problems there are no

realiable data on these quantities on the selected surface until the

problem is solved. Hence, there is a need for additional assumptions

on the distribution of the potential and its derivatives on the bound-
ary surface. At best, this leads to the method of successive

approximations. it should be added that even for the simplest cases,

surface iitegrals entering into (11.18) cannot be taken in finite

form.

Consequently, for approximate analysis the Kirchhoff formula

is not as a rule applied, but the so-called integral of emission

which is a mathematical form of writing the Huygens principle:

2 -- dS. (11.19)

where vn - the normal component of velocity of the surface element

dS; r - distance from dS to point A.

The application of (11.19), as with the Kirchhoff formula (11.18),

can only made when the point where the potential is evaluated is in

"direct view" with respect to the arbitrary surface element. Let us

indicate the sequence of operations associated with the application

of the emission integral in diffraction problems. Given that we must

find the pressure field in a fluid, allowing for the effect of an

absolutely rigid plane obstacle of given configuration. In this case,

we first calculate the normal components of particle velocity at

points in the fluid directly in contact with the obstacle surface.
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t This is done based on the assumption that the obstacle itself is not
present. After changing the sign, the derived quantities are sub-

stituted into the integral Qf radiation.

The sum of the direct wave potential and the potential found in

this manner defines the unknown pressure field. The boundary con-

dition

14~ 0.

is apparently satisfied on the obstacle surface.

At all remaining points on the surface of closure, the potential

is considered to be the same as in a free fluid. This introduces a

certain error irto hydrodynamic field evaluation.

The number of problems which can be precisely solved using the

integral of radiation is quite limited. In spite of the apparent

simplicity of the mathematical formulation, the solutions are found

to be, as a rule, complicated and unwieldy. The need arises to seek

other mathematical methods for analyzing diffraction problems.

Among these methods, we should note the method of functional-

invariant solutions of the wave equation, developed by V. I. Smirnov

and S. L. Sobolyov [18], [19]. The method of incomplete separation

of variables, developed by G. I. Petrashen and his group [14],[15]

has become very popular. V. V. Novozhilov first considered the

problem of interaction of an underwater shock-wave with an elastic

round cylinder using the Laplace transform.

A. A. Kharkevich pointed out extremely general principles for

solving diffraction problems [21]. Specifically, he developed the

method of using the Laplace equation in place of the wave equation.

Kharkevich's ideas are in wide use in this chapter of the book. ;JG

• • can obtain new findings on the basis of his ideas which, though not

claiming completeness, nonetheless give us a clear picture of
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t diffraction of an underwater shock-wave by an obstacle.

§12. Diffraction of a Plane Wave By an Absolutely Rigid Wedge.

Let us consider the interaction of a unit-amplitude plane wave

with an absolutely rigid and immobile wedge. The apex angle of
the wedge is arbitrary. The angle of incidence of the wave is also
arbitrary. The amplitude of the wave admits the possibility of util-
izing the acoustic approximation.

S. L. Sobolyov and V. I. Smirnov (1934) first obtained a precise

solution of this problem using the method of functional-invariant

wave equation solutions [19]. This same problem was considered

abroad by Keller and Blank in 1951 [35]. Irvin Kay [34] derived a

solution for the case of a wave of arbitrary shape. A review of

foreign studies in this field of research may be found in Lu Ting's

j article [38].

We will show that the problem can be solved most simply by

using the method developed by Kharkevich in his study of wave dif-

fraction at the edge of a semi-infinite plate. Let us begin with

two particular cases: gliding of a wave along one of the edges of

a wedge, and normal incidence of a wave onto the wedge.

Gliding of a Wave Parallel to One Edge of a Wedge

A diagram of this process is shown in Fig. 39. The wave front

CD propagates from left to right. The diffraction field evolves in

a cylinder r = a 0 t having a directrix OKDBO. The system of coordinates

is cylindrical. The z axis coincides with the edge of the wedge;

the angle a is measured from the plane of the upper edge of the wedge

clockwise. Time count begins when the wave front arrives at point 0.

According to the definition of a unit-wave, pressure behind its

front is equal to one, and ahead of the front - to zero. Thus, to
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Fig. 39. Diffraction of a Plane Wave
in the presence of Gliding along the
Edge of a Wedge.

the right, of CD in the upper half-space and outside of diffraction

circle DK in the lower half-space, pressure is equal to zero.
Behind the front CD outside the diffrar*4-on circle DLB, pressure is

equal to one. The problem consists in evaluating pressure in the
diffraction region. By virtue of the assumption of absolute obstacle

( rigidity, the boundary condition

0. (12.1)
on

must be satisfied on the obstacle surface; where v1 - normal compon-

ent of particle velocity; * - potential of velocity.

It is convenient. to utilize conditions (12.1) in a different

form. Since

(12.2)

then

Op
p&- -. (12.3)

It follows from a comparison of (12.1) and (12.3) that on the

Ssurface of an absolutely rigid obstacle we must find that

On • .(12.4)
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Pressure in the fluid satisfies an axially-symmetric wave

equation
4J~I I up i Op i O 0

0 ~ ~ 7 s -i* (12.5)

Thus, the problem is reduced to solving wave equation (12.5) for

the magnitude of pressure P(aE r a) in the diffraction circle hav-
a t

ing a radius a 0 t, with boundary conditions on the obstacle surface

being

and on the diffraction circle surface

p~l.•)=0 =•.•.(12.6) '

Conditions (12.6) are based on the fact that a diffraction wave

does not have a pressure jump on the front. This can easily be veri-

fied by using geometric acoustics methods and examining the energy

balance transmitted by the direct wave front.*

Following Kharkevich, let us substitute the variables in equat-

ion (12.5)**

z = Arch r

= ch Z. (12.7)

The partial derivatives entering intn (12.5) will take the form

* Cf., for example, G. F. Ludloff, Aerodynamics of Explosive Waves,
Collection of articles, "Problems in Mechanics", IL: 1955.
"**This same procedures was used by I. G. Novoselov in his study of
a diffraction wave at a right angle.
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2)7 Z -; -a + 7, "

Substituting these quantities into (12.5) and keeping (12.7),

we perform some simple transformations and find that

o-Pp + fT.--• (I"..

Equation (12.8) is a Laplace equation in canonical form.

Using new variables, the boundary conditions (12.4) and (12.6)

will be written: on the obstacle surface

(z, 0) 0(12.9a)
ap P.(,0 =

O S p.(z. 0)=0.
(12.9b)

IIon the diffraction circle surface

1 (12.i0a)

10 .
(12.30b)

The solution of equation (12.8) will be sought using the Fourier

method.

Let us assume

p (z, 2)= Z (z) A (4 ) (12,11)

Then, substituting (12.11) into (12.8), we will find that
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Z( A (2) (12.12)

Equation (12.2) can occur only when the right and left sides

are equal to the same constant, i.e.,

Z" (z --iFZ (z) =0,

A" (2) + i).A (2) = 0. (12.13)

The general solutions of the first and second equations in (12.13)

have the form

Z z) = C,e" + C2e",

A (2) = C3cos: "'+ C4 sin). (12.14)

Because function p(z,c) is limited, C1  0. From condition

(12.9a) it follows that C4  0, and from condition (12.9b) that
= (rm)/($), where m = 0; 1; 2

Thus,

p(z. 2)=V cos "-
(12.15)

Where z = 0, (12.15) yields

IAO a) C.Cos-a.- • (12.16)

On the other hand, function p (0, a) is given by boundary con-

dition (12.10).
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Fig. 40. Surface of Equal Pressures During
Diffraction of Wave At Edge of a Plate.

After writing the function in the form of a Fourier series, we

will find that

I'k

Swhere a -{.p (0, at) cos da - 0Cos dot

sin -. , .

After comparing (12.16) and (12.17), we can replace (12.15)

with
2 N1 I r.k ,k 7-z

Ed w (12.18)

Returning to our initial argument for evaluating pressure in

a diffraction region, we find that

I rl - -- ,,¢

+ -L N -L Tsin Cos-, .. (12.19)

In the particular case of a rigid plate n re2p), we have

r t Arc h -- M

a)= . L (I + sin -n- Cos t'k '

pz . S(12.20)

a difratiocon r2i -w f1 T

SI + "S 1- -)-c (2.- (1219

2 1
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Expression (12.20) totally coincides with Kharkevich's solution

and, as he showed, may be written in finite form

2 24- CO%I -arcig
2 -(12.21)

where the signs + and - relate, respectively, to the upper and lower

semicircle. The lines of equal pressure, plotted on the basis of

calculations according to (12.21), are shown in Fig. 40 [21].

In the range of angles 0 < a < w, a solution of (12.19) can

easily be found in finite form. Let us rewrite it in the following

manner:

wkP(Z. +

Let us employ the identity [11(2.2

sn A .arctg ' --q cs x wh r1# / . 0 < x 2.- .I -9COX where (12.23)

Then the first summation of (12.22) can be written in the form

1 + )ke- - _ arctg

0 -cos - (r. - 2)

and the second - in the form

.sin- (w )ke-" arctg
s , T (r
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Consequently, in the interval 0 < a < ff

Cos-( (it + )

Sin "7 (it- +)
+ - arctg .L-rh-/It Arc It!

t-cos "7-.) (12.24)

Pressure p -0t- , a), where ', < r (in the upper half-space)
a0

may be considered as the result of applying two waves - the direct
and the diffraction. Consequently, when we must evaluate pressure
only in a diffraction wave pA, it suffices to deduct pressure in the
direct wave (equal to one) from p (a-,c)[the latter is defined by

expression (12.24)].

For example, on the upper edge of the wedge (a = 0), we will
find

PA arctg
,. tOA,:,, , (12.25)

From (12.25), specifically, it follows that: for diffraction of
a wave by a right angle ( 8 = 70)

-•A arctg

3 It

(12.26)

For diffraction of a wave by a semi-infinite plate (8= 2w)
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aic" , ,(12.27)

Diffraction of a Wave raJling Along the Normal to One Corner of I

A general picture of this effect is shown in Fig. 41. A unit-a

unit-amplitude direct-wave front has attained position EN; the fronts

of the reflected waves are indicated by straight lines CD and EF.

Diffraction develops in th6e cylinder having the directrix OBDFKO.
3

Ahead of the front EN and 'outside the arc EK (where 8 > -- r, Fig.

41b), pressure is equal to zero. Behind the front EN and outside

(- of line EFDC, pressure is equal to one.In the region EKF and ABDC,

behind the reflected-wave 'fronts and outside the diffraction circle,

pressure is equal to two.

The problem consists in evaluating pressure p(-{•0, a) in a
a0 t

diffraction circle having a radius aot. In other words, we must find

a solution for wave equation (12.5) with the following boundary con-

ditions:

on the surface of a rigid wedge

": . j." • . 0" . (12.28)

on the boundary of a diffraction circle where 8 < -i-- .

2 2

2 0 0--.i

(12.29)
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(a) Ij

Fig. 41. Diagram of Diffraction of a Plane Wave During
Normal Incidence onto One Wedge Edge: (a) 8 < 3

3

where > >

2 2

2 2

2 "(12.30)

Using (12.7) to substitute the variables as before, we arrive at

the Laplace equation (12.8) with a boundary condition on the surface

of a wedge (12.9). The only difference between this and the preceding

problem is in the writing of conditions on the diffraction circle.

By analogy with (12.15), a solution can be sought in the form

M-- U

Where z = 0

p(O.(12.32)

The coefficients Cm are found by expanding the function p (0, ca)

given by equations (12.29) and (12.30) into a Fourier series.
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We have

_,3 (12.33)

where

2 '°,. :

o (12.34)

According to (12.29)

a,, 2cos -d+ + cos--d2+

0 hxa 2 hit' x 2 3

The very same result occurs for boundary conditions (12.30).

Thus, in place of (12.32) we can write:

-(' -A+ - V_ , lsinX-n k + $In •3' )

X Cos CR
) / (12.35)

or, returning to our previous variables,

2n 2 -1

ý'si ko k)•- Xk)e

XCos( mk e (12.36)

In the particular case of an absolutely rigid plate (0 = 2n)

t1 4
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Arch .1± ,,

Xe

where

", |; I; - -1;--|:... (12.37)

This expression coincides with Kharkevich's solution [21]. In

finite form it is written thus:

2 co. 7--

" - 1 -- -a rc tg 2

adj , I -.Cosa (12.38)
r

where the signs + and - relate to the upper and lower semicirc l.es,

respectively.

We will use relation (12.23) to derive expression (12.36) in

finite form.

Where 0 < a < ., we have:

2.-:

P (z. - + il r ,~e +

2'2

--- +- sin- k 2  •'

-. , , + +
• t-? .+ s~n--•-(.~-+2k ,1±r 2

k A _ li
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I -[ _____r,Ida-
s~n -- ti n 4)(--- ' -4

2n-!;i"/.-i3- , I

-4-arctg- + arctg +

-- ;,e ".' _( ' (12.39)
o r

+ artt +arctg +

'C (12.40)

% 2

or
4 =

ieu t d i a rc t , r e f l c t e d , aio

-eo "M; 7 (12.40)

4-

Z1. -2 73.

Net pressure p g• a. ) over the upper wedge edge (a < 2)"I
is composed of pressurR from the direct, reflected, and diffraction

waves.

Thus, in order to determine the pressure of the diffraction wave

only p we must subtract 2 from the quantity p a ). Conseq-

uently, on the upper wedge edge (a = 0), we will find that

p=--2+•-2 +-! arctg " ,
1.Atch.

3g9

+ rctg (12.41)
- Arch'- - -
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4
tl Diffraction of a Unit Wave During Arbitrary Incidence ont.o Rigid Wedge

In relation to the angle at which a wave encounters an obstacle,

two types of wave reflection are possible: on one wedge corner (Fig.

42a) or by both corners (Fig. 42b).

We can easily find the position of the fronts using the Huygens

principle. In the first case (where the angle of incidence of the

wave is y < w - i, Fig. 42a), the angle characterizing the point of

tangency of the direct-wave front to the diffraction circle is

aE = w + y. The angle characterizing the point of tangency of the

reflected wave to the diffraction circle differs from angle aE by

2y and is equal to aD = i - y. In the second case, the wave pic-

ture becomes complicated. After convergence of the direct wave with

the edge of the wedge, where y > - ir, two reflected waves are

formed. The points of tangency of these waves to the diffraction

circle are characte-.ized by the angles (Fig. 52b)

(a

and

As we can see, this problem differs from those considered earli-

er only by the boundary conditions on the diffraction circle.

In this case, on the boundary of the diffraction region where
y< B-it

2 0 r--

pNO, ,
0 -. (12.42)

-- I while where y> ->
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2 0..-:' r-- T
P p(O, ct) I r.- , .- 21 -r -_j

2 2.1- *-- ..'r•° "p ,(12.43)

Expanding the function p (O,a) into a Fourier series, we yield

an expression common to (12.42) and (12.43)

P -0 +
k si'(!-1

+ ;)k cos- k.

(12.44)

Consequently, pressure in the region of diffraction is

p ,t [•: 2_ .. 2sin r ---)k. -

aAit

+ sin - (7 - T)k cos -L2k.e " .

(12.45)

In the particular case y = •, we will derive an earlier-fixed

formula (12.36) for normal wave incidence. However, for y = 0 the

solution of (12.45) exceeds the result of (12.18) by an even factor

of 2, which is the result of a well-known acoustic paradox that does

not admit a limiting process.*

*Under actual conditions, all obstacles have finite dimensions. In
this case, the zone of doubled amplitude begins with the latter angle
and is reduced when the angle of incidence y is reduced. At the
same time, the life of doubled pressure is reduced (cf. Fig. 48, 48).
When y -) 0, the zone of the acoustic paradox will formally exist only
on the wall, and the "paradox" life tends toward zero (at the moment
that the front arrives). Moreover, at angles of incidence which are
close to a shear angle, r-gular reflection of finite-amplitude waves
cannot occur. It is replaced by irregular reflection having the
formation of Mach waves.
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(a) I
AA NI

Fig. 42. Diagram of Diffraction of Plane Wave
at Arbitrary Angle of Encounter with Rigid Wedge:
(a) y < 8 - r (b) y > 8 - r.

For 0 < a < i -y and r-s < 1, using (12.23) as before,
atequation (12.45) can be written in finite form

• r '- I In - - "Lyj
P (-., ./ -- " " £ arctg . - - .

artg(12.46)

where
'j =e =" It

I I•
X,,: -( --:) ± 2,

7'3.4 ( + ;)-2.

Into (12.46), we take the values of arctg in the first quadrant

having the sign of the argument.

Sobolyov [191 was the first to consider solving this problem in
another way. For the entire range of change in angle a (0 < a < 8),
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his results can be written in the form:

for the case where a shady area exists (y < 0 - W)

4

21 -(12.47)

where

-3 (i" + t) ± =

for the case where no shady area exists (y > n - i)4 71
.a,,j 'c 2 . (12.48)

where

y;,= • + y - 2ý)_+ .

In formulas (12.47) and (12.48), we tace the values of arctg

having the same sign and in the same quadrant (first or second) where
7r

the argument (angle U x*) is found. These formulas define net pres-

sure at the point and can be utilized for the time interval following

convergence of the diffraction wave.

Evaluation of pressure on the obstacle surface is of the greatest

interest from a practical standpoint. Using (12.46) and (12.47), we

have:

on the "exposed" side of the wedge (a 0)
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+ arclg ,,,-- ... •. ,!

5, - Cos • . (12.49)

on the "lee" side of the wedge (a •

rr

p G~ 2 - 1 a tg 7t

+ arct g rft

(12.50)

Pressure on the "exposed" side of the wedge, where a < 7 - y,

can be considered the result of applying three waves: direct, reflect-
ed, and diffraction. To determine pressure in the diffraction wave,

it suffice-s to subtract the pressure of the direct and reflected waves

(equal to 2) from p. If y < ff - 0, then where a > ',f + Y, pressure

in the "lee" region is defined only by the diffraction wave. There-

fore, p A = p.

Diffraction of a Wave of Triangular Profile by a Rigid Wedge

i~i

The problems considered above assumed the unlimited duration of
a wave and the infinity of diffraction effects associated with it.!
Actually, the pressue on a shock-wave changes with respect to a fixed

law. The positive pressure phase and thee wavlength are finite. The

region of formation of diffraction processes, which is a function of

wave length, is likewise finite.

Let us illustrate these facts with the simple example of diffract-
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Fig. 43. The coefficients A and B as Functions of 8
MI normal incidence; (II)shear incidence.

ion of a wave of triangular profile by a rigid wedge. This problem
is of considerable interest, in terms of practical application,

(• because the time raeof pesrchneis almost linear in the

proximity of a free surface (cf. §7).

Therefore,

)

P nr) =l pinien (12.51)

where

(12.52)

p- pressure on the front; t - time, counted after the wave

arrives at a given point; t1 - duration of positive pressure phase.

For a wave of arbitrary profile, the solution of the diffraction

problem can be derived using the Duhamel integral, if it is given

for a unit wave. Therefore, there is no need to begin our study from

Sthe very beginning. We can utilize previously-derived re3ults and

calculated only the appropriate integrals. However, in spite of the

Reproduced from
160 best available copy.



simplicity of the derived solutions and the selection of function

f(t), the calculation of the Duhamel integral is of considerable

difficulty.

Consequently, it is extremely important to simplify the relat-

ions which characterize the diffraction field of pressure. This

problem was considered by K. V. Lopukhov, who suggested the follow-

ing approximation

.. S1, ) A - arcgB
(12.53)

where A - the greatest magnitude of pressure in a diffraction wave;

B - the diffraction coefficient.

The coefficients A and B are functions of the angles a, •, and
y. The numerical value of these coefficients for points situated on

the "face" side of the wedge (a = 0) are shown in Fig. 43 for the

normal & shear incidence of a unit wave. Error of approximation can

be seen from Fig. 44, where the corresponding comparisons are given.

Let us write a wave of triangular profile (12.52) as the sum of -

three waves 4

P~~~- (1) (t); + ±L (t- t - 17 (12.54)

We can see from the structure of (12.54) that with a given wave

profile (in addition to solving the problem of unit-amplitude wave

diffraction*) we must also derive a solution of the same problem for

a wave of the form

o_, a It = t %1) d-t = too (1). ( 12.5 5)

This last equation can easily be derived by utilizing the Du-

•hamel integral in its initial form (11.11), assuming that [o10(t)]' =

*The transient function appropriate to this solution is designated as
in §11, using P (t).
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Fig. 44. Comparison of Approximation and
Precise Calculation for Pressure in Diffraction

Waves.
(I) normal incidence; (II) shear incidence.

.......- precise calculation;
- ------- approximation.

a 0 (t).

The unknown solution will be designated using H(t):

t tjF,,• (t .'l - ) o;,- =.o ), ; -) 30-: (12.56,

By complete analogy for a wave of the form

, I -(12.57)

Because where T < t+ a 0(T - t+) = 0, then

t-+

H,•t =,ot -t •" •,(,a-=~ t - _I.(12.58)
0

Thus, the solution for a wave of triangular profile has the form

5. 1-- ) (2 9
F (1) PF, l) -- H t1 ) + 6 2 - " ( .
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In the given case, the transient function F a (t) is the approx-

it" imation of (12.53) 4

F,1)=A -•arctg, B (t7 -- , " 1

and consequently, according to (12.56)

I/th M F, (i- z): 3(c) d-: a= a() F1d:.-

1.1

= •o t-- -•- A • arctg B "-- 'a.

K_) )ar

-. -,-,fi. i/-=7- (t-, ., (12.60)

Let us note that the simplicity of defining function H(t) for

some transient function F (t) permits us to derive a solution for a

wave of arbitrary profile, if we write it in the form

R

PMt V (,,ot •- •It -- 1,),3o(t W-t). (12.61)

where tk - moment of appearance of k-th wave; pm - maximum pressure

on wave front; Tk - typical time interval whose meaning is illustrated

in Fig. 45.

The solution of the diffraction problem for wave (12.61) will be

R• P #/(-t•)(12.62)F(f)= p,,,F.(t) + ,,•-L•l(-,h.(1.2

Let us introduce dimensional quantities

I _•; t= '__- (12.63)

where X - the wave length.
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Fig. 45. Diagram of Approximation of Arbitrary Contour
by Linear Relations.

Then, according to (12.59)-(12.60), the diffraction field of a

wave of triangular profile will be derived in the form

I" '%~~P (t' No•p•, arctg B I'

- [-- !"--I •(--I--(.-.: -j-W... arctg BJ

+ t-- +.i ' -B'arctgB

(12.64)

Let us explain the physical picture of diffraction in somewhat

greater detail, using as our example the normal incidence of a wave
3

on a wedge~ 0=V. A diagram of this effect is shown in Fig. 46.

Because pressure in a direct wave acts for a limited time t+, at some

points in space the diffraction wave will arrive after direct-wave pres-

sure at these points has dropped to zero. Consequently, the diffraction

wave distorts the field of the direct wave only in a certain region

whose boundary can be defined by the equation

1 6
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Fig. 46. Diagram of Situation Fig. 48. Diagram of Situ-
of Points in Region of Diffract- ation of Points in Region of
ion of Wave By Right Angle. Diffraction.
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Fig. 47. Pressure Contours at Various Points in
Diffraction Region by Right Angle.
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or, likewise,

(12.65)

where I• .

From (12.65) specifically, it follows that in the plane of

the leading edge of a wedge (x = 0), distortion of the direct-wave

contour by a diffraction wave is possible at distances equal to the

wave length A = a 0 t+, and to the right of the edge - at distances

not exceeding X/2.

The nature of pressure change, allowing for diffraction, is

given in Fig. 47 for several points (solid lines). Pressure is

plotted with a dotted line, without allowance for diffraction effects.
We can see that at distances C > 0.2 (greater than 0.2k), the effect

of diffraction is negligible.

The picture changes slightly if the angle of incidence of a

wave onto a rectangular wedge is greater than > -.-- , or if32 >2
the wedge angle is 0 < -2-7 (Fig. 48). In this case, reflection will
occur on both wedge corners. A second pressure peak will be formed

and the pulse will increase (dotted-hatched line in Fig. 47).

The case of shear propagation of a triangular-profile wave along

one side of a right angle is also of interest. The nature of pres-

sure change for several points is given in Fig. 49. As before, for

the corner of a wedge along which the wave propagates, the diffraction

effect is considerable where C < 0.2(r< 0.2X). The diffraction wave

of the "lee" region is characterized by low amplitude in comparison

to the amplitude of the direct wave, the smooth increment in pres-

sure, and the increased duration of the positive phase.

We can consequently conclude that when a wave hits an obstacle,

twhose dimensions considerably exceed the wave length, diffraction

processes at angle points may be considered independently of each

other.
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Fig. 49. Pressure Contours at Various Points in the
( Diffraction Region.

§13. Diffraction rE a Unit Wave By a Rigid Plate.

In this section we will consider diffraction of a unit wave by

a plate which is partially submerged in water and by a plate of finite

width.

Diffraction of a Unit Wave of Limited Duration By a Rigid Plate
Partially Submerged in Water*

Given that in a fluid T deep an absolutely rigid infinitely-long

plate is submerged. The lower edge is this plate is parallel to the

free surface (Fig. 50). At an angle 0, a unit-amplitude plane wave

of duration T hits this plate. We must find the pressure field by

*The results stated in this section are from K. V. Lopukhov.
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-~ -. ~~*~-r -4W -1.'~

free surface ,,
II

Shock-Wave By the Edge of a Plate Submerged in

Water.

this plate.

In order to solve this problem, let us employ an earlier-derived
expression for pressure in the region of diffraction during incidence

of a unit-amplitude wave on a rigid wedge surface.

(" Assuming that 8 = 2w in (12.45), we will find tha.*

-~ '- Nin !

k .. AJ
+ ' sin r.+ ki Cos -L- ke Arch ,

4 €0~C% Co.. ";tO, , I -"" Arc'h--
+ 2( C !(13.1)

*The result (13.1) coincides with Kharkevich's solution. In his
study [21], he likewise indicates using an expression in finite formt in place of (13.1).
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Using Euler's formula and assuming that 0 = - y, we will write
this result in the form

2 •P(Z, 7) = -1 q Re 2-! +
j I 2n-

2- Re i e_ (13.2)
'I -I

where

z - Arch-d - r

Let us designate that

--z -- (0 - =)=:2y.

x 1 x

=onsidering that arcth ex arctg iex, expression (13.2)

can be rewritten in the form

p(z, 2)-= I-;-- Re (arctgieW-+-arctgie'). (13.3)

After dividing the real part into (13.3) and performing simple

transformations, we derive

21 2 a sit -, cov(-ao'- 2-I ±-__ r 2C 2  (13.4)•'1-;-' 1 4. " -L _ arctg,
V 00___ I "- cos -cos,'

where V' - the angle measured for points ahead of the obstacle in a
counter-clockwise direction (a' = a) and for points behind the obsta-

cle in a clockwise direction (W' 2v - a); the minus corresponds to
points beyond the obstacle; the plus - to points ahead of the obstacle.
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Let us designate that

21 2 -- In i co0

Z i'ci) -- -- 2 2
- -I C0 €o0 - Cos ,,'(1

Then, pressure at points behind the obstacle, according to Fig.

50, will be

P 0

+ I - .(rj. 2'. ,t~~ -- - 301,( )--%(200'--,01.
(13.6)

where the first term defines pressure at a point prior to the arrival

of the diffraction wave, and the second term - afte; its arrival.

Pressure at points ahead of the obstacle plane can be found

from the equation

"CO (2' + 0)] ) j.)

i pr -0,, 0 -t.--(' O - t-- (-- +
± 4. [ Oo 2', SO -L .- C)•)IS (,A') - ('t.

(13.7)

The first term of this formula defines the action of the direct

wave; the second - the reflected wave; the third - pressure after

convergence of the diffraction wave at the point.

Combining the expressions for p, and p11 ' we can derive the

formula for an arbitrary point by a screen during propagation • a

unit-amplitude wave having unlimited effect-time

p i 1 *-J1(0. :, r, +)21 -- - Co' (I

- r)~12(2) - :0( 2: (j)
'o I) : '
1 7 0OS (2 - 0 17. t - .. 8()
170 (13.8)



Let us designate this expression using F (0, a, r, t):

pt lt) = F (9., r ) (13.9)

We apparently can calculate wave effect-time by adding the sol-

ution of the unit-expansion-wave diffraction problem to (13.8). This

solution can be written in the form

pt) -- F(O, 1, r. - (13.10)

Thus, for a unit-wave T in duration,

p(y)=p,(t)+p,(t)'F(O. =, r, )--F(O9 a. r. t--= (13.11)

The effect of the free surface can easily be evaluated by using

the method of mirror reflection of sources and runoffs. Situating

an imaginary source at point 0 (Fig. 50), for a wave reflected on

a free surface we will find that

P3 ) -F(O. a, r,. 1)-I F0(, a, rl. 1-- (1 (13.12)

Thus, we will aerive a solution of the problem formulated in

the form

p ()= flO, F , r. t)-F(O, ', I. I- :)-- (O, ,,, r, I),
"7 r(. = .' . t- ) (13.13)

An analysis of these relationships permits us to conclude that:

1. The diffraction field reduces pressure at points behind an

obstacle in the "exposed" region in comparison to pressure on the

direct wave. This pressure decreases becomes more significant as the

angle a' is reduced.

2. At points in the "lee" region defined by the angles a' < 0,

the pressure jump vanishes and is replaced by a gradual increment in
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pressure. With an increase in the angle a' from zero to 0, the in-

crement in pressure becomes steeper and where c' = 0 a pressure jump

appears which remains during further increase in angle a'.

3. Pressure effect-time at points behind the obstacle may be -

greater than on the direct wave. This is attributed to screening by

the obstacle of the direct effect of the free surface.

Diffraction of a Unit-Wave By a Rigid Plate of Finite Width

Diffraction of a unit-wave by a plate 2a wide was first consid-

ered by Fox [32]. He derived a precise solution in the form of an

infinite series using the Kirchhoff integral and the Laplace trans-

form. Pressure on the back side of the plate as a function of dimen-

sionless time • = (a 0 t)/(2a) and the dimensionless coordinate • =

- x/(2a) (measured from the upper edge) Fox expressed with the equat-

ion

1(13.14)

where

p., 1•, 7. = -• arctg (

In

Based on the ideas of V. I. Smirnov, S. L. Sobolyov, and A. A.

Kharkevich, this same problem was later studied by K. V. Lopukhov and

V. I. Kirsanov. We will state it, following Lopukhov and Kirsanov.

Given a plane unit wave falling along the normal onto a rigid
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Fig. 51. Diagram of Fig. 52. Diagram of Formation
Beginning Diffraction of Second Pair of Diffraction
of Shock-Wave By Plate Waves at Edges of Plate of Fin-
of Finite Width. ite Width.

plate 2a in width. By virtue of symmetry, this is equivalent to a

wave falling onto an obstacle a in height, which is fixed in a hor-

:..zontal plane. At the start of this process, we will observe the

wave pictur'. shown in Fig. 5i. In region Dl, the medium is at rest.

f in region D two waves propagate: the direct and the reflected wave.D2,

Diffraction effects evolve in circles K 1 and K2 (which have a radius

a 0 t). The diffraction waves in the "lee" quadrants of circles K1 and

K are compression waves; in quadrants which are symmetrical with
2
r spect to the plate's plane, they are expansion waves. The wave

picture henceforth becomes complicated. The diffraction waves K1 and

K 2 upon reaching the opposite edges of the plate are diffracted,

forming waves K3 and K4 , etc. (Fig. 52). The left semicircles of

waves K, and K4 are diffracted expansion waves, and the right semi-

circles are compression waves; the signs of subsequent diffraction

waves be alternate in pairs.

Let us consider point M, which is situated near the plate in a

leeward zone and point N which is symmetrical to it (Fig. 51). Let

us charactezize the position of point M by the coordinates r, a and

rl, a 1  The association between these coordinates can be expressed

by the apparent relations

, (2a)l + r- 4 arccos 2, (135.16)

173



U, arcsin (-s- •itr). (13.17)NO<

The first two diffraction waves arri-ing at point M are also

compression waves, and precisely coincide with the diffraction waves

formed during normal incidence of a unit-wave onto a half-plane (onto

a wedge having an angle 8 = 27 , cf. 12).

They can be evaluated with the aid of (12.38):

P.(, 0,A. 1
r-

-- arctg -- 2 r| r.oa~t I-C osa=
I-- (13.18)

aot
or introducing dimensionless coordinates suggested by Fox, 2 =

-r , with the aid of the expression

2 co, .t -TPI( .:.t) -q arctlg ----2 c s

Apparently, pressure in a diffracted compression wave arriving

at point M from the edge of plate A1 will be defined by the same

formula, replacing r and a by rI and a1.

At point N we will observe diffracted expansion waves of the

same magnitude as at M, but of opposite sign. Pressure in the next

pair of diffracted waves can be defined without difficulty if we con-

sider that the wave fronts K1 and K2 at points A1 and A2 are plane.

rhe wave contours at these points, apparently, can be derived from

(13.19) if we assume that • = •i = 1 (r = r = 2a) and a =a 1 = 0,
i.e.,

pl', I, t -= I - _ arctg 30 (T- ) o --

2= arctg I/ ii0 (I),
(13.20)
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where

i, =j- Ij = f 0-i _
2a (13.21)

The diffraction processes evolving at both edges of the plate

are identical and therefore, it suffices to consider one of them.

Because waves which are identical in amplitude but opposite in sign

pass on both sides of each edge of the plate, it suffices to consider

diffraction by the edge of a wave having an amplitude 2pl.

For diffraction of a unit-wave we formerly had [cf. (12.21)]:

P3  arctg 1 ); . (o -

-/ (13.22)

or if we use the variables t and ,

-I aCosa

arcctg 4-_ 0o

- arctg 13. J.(i.

where

BO (13.23)

Expression (13.23) is a transient function for deriving the

diffraction field caused by the propagation of a wave 2p, (with the

aid of the Duhamel integral). According to (11.11),

p-t 1 ' 2p; (1. 0, 1,,1),75
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S--larctg _ + ' --

+ arct o B [. (0 + I)-L ,,i -(

.4-artgB~ -j-1± ~(13.24)

The signs of diffracted waves alternate in pairs. Following
the third and fourth expansion waves, the fifth and sixth diffracted
compression waves arrive at point M from edges A and A1 (the third
pair of diffracted waves). Pressure calculation of these waves is
carried out by analogy to that already completed.

Integrating the diffraction fields for a point situated behind
the plate, it is possible to write (the indexes "n" and "T" will
henceforth designate the face and lee sides of the plate):

+P~4~. ~ -(13.25)(
Net pressure at points ahead of the plate is composed of pres-

sure on the direct and reflected waves, and likewise on the diffract-
ed wave pT but taken with the opposite sign from that used in (13.25):

P.a ,it -` slioi Sl - ( Z-- sin 2) -- p , ( . , ). (13.26)

The difference in pressure at symmetrical points on the plate

surface will be

Fig. 53 shows the change in pressure for several points on the
lee surface of the plate. We can easily see that the effect of the
third pair of diffracted waves is small. Consequently, Lopukhov and
Kirsanov suggested a limitation on consideration of pressure change

in the time interval T < 2.5.
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Fig. 53. Net Pressure at Various Points
on Lee Side of Plate.

In problems of a practical nature, the mean load on the plate,

adjusted to a unit of surface, is often of the greatest interest.

We can derive its value for E < 2.5 by integrating (13.25) with re-

spect to ý from 0 to 1 and subsequent utilization of relations (13.26)

and (13.27).

Calculated findings may be approximated by the relationship

( F1~,=i�,_1(ii-1,271(0,914t-1)arctgJ t--1..

4-0.0861 I:13U-I). (13.28)

Calculated thus, the mean specific pulse of the net load can be

defined by the approximation

JPI [pI U 2 0()+1 7(0,4157i' 2 i) arctgI i-"'

-(0,095i-o0,638)l ;-- Joi- ).
(13.29)

Where . > 2.5, these quantities are close to their limiting

values

F, c, 0 = F... CP 1,
Fliv, elP = 0,

Jpej CP = 4. 0, * I JU)
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Fig. 54. Net Specific Load Fig. 55. Pulse of Net
on Plate. Specific Load on Plate.

The mean specific net load F and the mean net specificps3. cp
pulse are plotted in Figs. 54-55.

Consequently, we can conclude that as a wave flows past a rigid

obstacle, pressure at points along its surface equalizes over time,

tending toward zero in a direct wave. This process occurs very in-

tensively in the time interval 0 < t < 1 (t < 2a). In other words,a 0

if the wave length considerably exceeds the dimensions of the obstacle,

the wave only "observes" the obstacle at first. Subsequently, the

flow-by process acquires a stationary nature.

Fig. 56. Diagram of Diffraction of Shock-Wave During
Normal Incidence onto the Rigid End-Face of Finite
Width.

The derived results may be expanded to the case of diffraction
of a plane wave by a rigid end-face of trapezoidal __ form. The digram

t of this process is shown in Fig. 56. At points A and A1 , cylindrical

diffraction waves are formed (radius a0 t). During the time interval
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2a
f t < 2a, the picture is no different t.han in diffraction of a wave

by a we ge [cf. (12.40)].

Pressure on a diffraction wave is
!r

g',(r, t t)=--2-r - + • arctg
.Z. Arch " (3.31)• "- cI,s

i-I

where

3v.

2 -

The wave picture henceforth becomes complicated. Waves K and

K', upon reaching angles A and A1 , are diffracted and form a new

pair of waves; in turn, these waves will generate new diffraction

disturbances after time interval At = (2a)/(a 0 ).

As before, we can derive a solution by considering the diffract-

ion picture during shearing of a plane wave by one of the wedge cor-

ners ( §12). However, because the use of the Duhamel integral for
expressions of the type (12.24) is associated with considerable

mathematical difficulties, a simpler approximation is of greater

advantage. The expression (12.53) which was given before can be

such an approximation

- 'art 8 1 " 30

--- A +
= -A - arctg B -t. ! o __ ,

(13.32)

aot r
where = 20 a

A = A(a) - the limiting value of pressure on a diffracted wave;
B = B(0, a) - the diffraction coefficient.

For the particular case of a shearing and normal incidence of
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API a wave, the quantities A and B are cited in Fig. 43. If we designate

these coefficients AN, B1 (for normal incidence) and AT, B0 (for

shearing incidence), then pressure on the opposite edge of the end-face I

= l,a = 0) for the n-th diffraction wave can be approximated by

the relation
'2,'

P( , = , = -) O(- i).A ,A-' -_ arctglB. - t,,() (13.33)

where

g =1--1?n.

By analogy with (13.14), for pressure on the (n-th + 1) diffract-

ion wave with the aid of the Duhamel integral, we will find that

PA•(• k .t(' J(- )" '' A4 2 arvigH /I i ' _ +

(13.34)

The value of coefficient Bn is found successively from the

best approximation of pressure on the n-th diffraction wave by

relationship (13.33) (where 9 = 1, a = 0).

Summing waves from both edges and likewise, taking the direct

and reflected waves into account, we will yield an expression for

the net pressure at points situated in front of the end-face.

-.( -P.t)=~ 2•,, t a-:i,) t-u,(tnI-- sn I-

(13.35)
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f where

a.(i± sin2l - pressure un the direct wave;

0(l--|sln2) - pressure on the reflected wave.

Fig. 57 shows the pressure curves at the center of the end-face
= 0.5, a = 0) for the three slope angles of the lateral walls.*

If we know the limiting values of pressure on each diffraction
wave, we can easily find the limiting value of net pressure. Actual-
ly, if t + -, the first pair of diffraction waves will reduce the
pressure by 2 AN, the second will increase it by 2 ANAT, the third
will reduce it by 2 ANA2, and so forth, i.e.,

liirip. -. 2-2A.± t-2A.•A--2A.\A +
. lira2 I -- AN' ( -- X ) =2(1 _ -A , "

. % [I ! % I ( 1 3 . 3 6 )

Hence, for some given values of the slope of the lateral walls,

we have

where

= , (A.V = A, -f 0) lim p, =. 2;

7.-. (A.. = 2A. = 0.29) limp, = 1,50;

(-'2 • A V = - ." A, - Pý -8. 0.85; B ,. M!.3.5; B8 0.40;.

Bs --- 0,14; 8, " 0.05);
8
8= r. (A , 0.50; A, = 0,25. /o U 0.95; , .- 1.60;

83 = 0,23; B - 0.09);

" (A.. -. 0.29; A1 = l, 1,10; 01 , 2,25; 8 , 0.65.

83 0,25; DI6 .- 0,1u).
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Fig. 57. Net Pressure on Mean Point on
Surface of End-Face.

- ---------- solution with aid of the
integral of radiation.

•= - (As. = 2A, = 0,50) lirm p t ,20;

These findings attest that diffraction effects reduce initial

pressure to a greater degree as the slope of the lateral walls incr-

eases. However, in contrast to an obstacle of finite dimensions,

pressure is reduced to a magnitude which exceeds the pressure on a

direct wave; only where 8 = (3/2)w does it tend toward this value.

We can see from (13.36) what, for practical purposes, the calculation

of the first two-four pairs of diffraction waves is sufficient. It

is sometimes important to evaluate the mean specific net load on the

end-face. This can be done by integrating net pressures from = 0

to • = i.

The specific load variation curves for several values of angle

8are shown in Fig. 58. We can easily see that the nature of variation

in the specific load on the end-face of trapezoidal shape differs con-

siderably from that for a plate of the same width. This distinction

is of qualitative nature and is chiefly defined by the fact that at

the end-face, the specific load does not drop to zero during a finite

interval of time.
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Fig. 58. Net Specific Load on End-Face.
- ---------solution with the aid of the

integral of radiation.

§14. Hydrodynamic Forces Induced by the Progressive Motion of
a Rectangular-Shaped Piston Having Rigid Walls.

The diffraction problems considered above assumed a moving

C wave and an immobile obstacle. The physical essence of this effect
is theoretically no difference if we study a moving obstacle and

the wave disturbances generated in a medium as the result of this

motion. Actually, in both the first and second case we must solve

a wave equation for similar boundary conditions; this is done by the

same mathematical methods. This comprises the common nature between

diffraction problems and problems of radiation.

The simplest case of radiation - the motion at a given velocity

v(t) of a plane infinite screen.

In this case, the solution of the wave equation for pressure

on a plane wave will take the form:

F 1'I.. I).(14.1)

w hree z - motion of ob•ervation poin' awcqy from th. screen and tixe•

t is counted at the moment motion begins.
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If the obstacle dimensions are finite, diffraction processes are

formed. Where a screen is moving at a velocity which varies with

respect to the unit function law, a solution of the problem of radi-

ation totally coincides with the evaluation of the diffraction field

by that same immobile obstacle with the incidence of a unit wave. This

fact was clearly formulated in the works of Kharkevich and was util-

ized by him in his study of the radiation of a rigid screen of semi-

infinite dimensions having a rectilinear edge [21].

We will begin with an examination of the problem of motion with

respect to the unit function law of an infinitely-long piston (2a

wide), having a plane immobile infinite wall. In this case, the use

of the integral of radiation is the simplest method. The solution

derived will be precise to the extent that we may consider the emerg-

ence of the piston from the wall plane to be negligible.

Because the velocity of the piston is defined by the unit

function law

v= W.(),
(14.2)

the intensity of primary sources, uniformly distributed along its

surface, must conform to this law.

Thus, according to (11.19), the potential at an arbitrary point
._n the fluid is

- ds.
A -(14.3)

The magnitude of pressure is associated with the function of

the potential by the equation

P -- P •(14.4)

and consequently, in our case

P4 = dS.
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Fig. 59. Diagram of Radiation During
Motion of Plane Piston.

The surface element dS can be written in the form (Fig. 59)

dS = kdR(d1. (14.6)

The quantities R and T are asscciated by the •elationship

(14.7)

Thus,

it,

/(l4o8)

where b the least distance from point A to the piston (as a funct-

ion of the arrangement of point b = z or b = r);

a0 (t) - the sectoral angle of arrangement of primary sources

in circle having the radius R = a 0 t;

z - distance ",-int 4 is removed from the piston plane;

r - shortest distance between point A and the piston edge.

We can see from (14.8) that the problem reduces to an evaluation
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of 80 (t) or likewise, %(R). Let us first discuss the case where
the observation point A is situated in front of the piston (Fig. 59).

It is apparent that where z_ < t ( _.r (y < rI), disturbances will
a a

arrive at the point of obser~ation simultaneously from all sources

situated in a circle having the radius t'a;t 2 -- 2 . The angle is

= 2n. Consequently, where t < r
a

0

p - f,,a0,o j - -. L •(14.9)

This finding corresponds to the case of motion of an infinite

piston. Point A still "has not sensed" the finite dimensions of the

piston.
r1

Where t > r (but t < -- ), the sector of distribution ofa 0
radiation points v:211 be less than 2w by the angle y (Fig. 59) and

will be equal to
T = 2 a rccos

• I' ~(f0) -- ,sin 1)2 (14.1i0)

i.e.,

= 21 - 2 arccos CO; 2 -

we - 2r (14.11)

where

a= arcsin 2-.
(14.12)

Thus, where -- > t >
a 0  a 0

r ad (14.13)

Where t > -, the sector is further reduced by the angle y1a0'

S(Fig. 59 )
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Ti = 2 arccos __cos_

arcsin . (14.14)
rs

Combining the derived evaluations for pressure at a point sit-

uated in front of a moving piston, we will find that

!
-p(r, ,. t).

1" -) - -o,7
o-- a,•. Co( O

• --$into#

( (14.15)

The first term of (14.15) is the pressure of radiation for mot-

ion of an infinite plane screen; the second and third terms charact-
erize the diffraction waves formed at its edges.

On the piston surface ( z = 0, a = a1 = 0)

-p(r. 0. )- ar o .()-J- - (14.16)

d[CCOS2a2 
r

With the aid cf (14.16), we can easily calculate the net spec-

ific load acting on the piston:

F =p0oa,,Dl) = .L plr, 0, i)dr.
2a
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2ax (14.17)0

The value of the integral

., $arccos.LQ ... Ldr
0

is

easy to find if bear in mind the properties of the unit function

a(t - E-); and namely, whera t <
0a 0  a 0

a,.J
J,= arcos-dr=;(14.18)

00

where t > 2a
a 0

(J, arcc - =aJ + 2 arcos • -/): 4a%. (14.19)
b ad ad

If we utilize the previous designation for dimensionless time

= a 0 t then combining the results of (14.17)-(14.19) will yield
2a

where t <1

U '(14.20)

-+ arccos- where t > 1.

The result of (14.20) coincides with solutions derived by other

methods by Kh. A. Rakhmatulin, D. A. Aleksandrin, I. L. Mironov, I.

G. Novoselov, and D. V. Zamyshlyayev. In the given case, the t se of

the integral of radiation more rapidly and more simply leads to the

goal.

Let us now study the more complex case of motion of a rectangular

piston of finite dimensions. In order to explain the basic physical

features of this process, let us first consider a semi-infinite screen
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Fig. 60. Diagram of Radiation in
Region of Angle during Motion of
a Plane Piston.

having two mutually-perpendicular rigid side walls (Fig. 60). As

before, let us consider that the screen moves according +-o the unit

discontinuity function law

'-- oust). (14.21)

For points situated on the surface of the screen, according to

(14.8), we will have
P ' - !,t 0(t) a.o(I).

P 2 .-. '(14 .22 )

While r = a 0 t is less than the distances between point A and

the wall edge (r < x, r < y, Fig. 60), the angle %0 = 2w. When

x < r < y, the angle a0 is reduced by the quantity

I 2arccos A- =2 arcco,.-,

and where y < r < /-xl•+ y-further reduced by the quantity

S2 arccos 2- = 2 arccos-J-.
r Q,

Pressure at point A, where r < IE2  + y2 is

---. "----arccos o- - - arccos - 0 Y

0 _ I( )(14.23)
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3As soon as the quantity r becomes greater than the distance

between the point of observation and the angle (r > V-P-T-y2-),

the angle %0 becomes equal to

•, = -.. .. =ac acos-- _-arccos2 r r

For this range,

p,3 I x I 'IO

arccos 2 (14.24)

The solution of (14.23) and (14.24) can be written as the sum

of the unit-amplitude direct wave and the diffraction waves formed

at the edges; therefore, to determine pressure on diffraction waves,

we only have to subtract one from (14.23) and (14.24). Then,

where t < S ...

{° U.'

S. arccos it . (t + +

dICCS 4,j (14.25)

where t > .-..

L pj, arco -÷
+ arrccos -LF+aad

+ a j( 2 a.(14.26)

It is convenient to separate the pressure component from the

last equation: this component takes the effect of screen-edge finite-

ness into account. We only have to subtract (14.25) from (14.26) for

I this purpose.
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I Thus,

p2  arccos +

.(,. )(14.27)

The derived relationships permit us to evaluate the pressure

fields during the motion of a rectangular piston of finite dimensions

having sides 2a and 2b. In this case, the net pressure can be writ-

ten as the sum of the waves generated by the motion of an infinite

plate; and the diffraction waves formed at each edge and at each

angle:

.--p (x. y. t)-' p, - (x. 1)--p, (2a -- x. t) -- Pt(y, t)--

p2 p.(2b-- y. t) + p3x (1. )4 p. f2a -- x. y. 0)+

+ p3 (x. 2b-- y. t) + p, (2a-- x. 2b-- y. t).
(14.28)

where

r a \ a.$ (14.29)

44 ((14.30)

p,(,. y.,1=•x rc

PS V..( ,1

ad 2) (14.31)

It follows from (14.28)-(14.31) that as soon as all the diV-

fraction ,"ves arrive at a point, the pressure on the point vanishes.

Let us find the net load acting upon the piston. For this pur-

pose, let us integrate (14.28) with l.espect to the piston surface.
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In view of the problem's synmetry, we can write

Fit) =Sa,•*(I) = f• y).
00t)= -- ' 1 -2P, (,. t)--2Pt (y. 1) +4p., (x. M. t)i dxdy=

2 Ij, 2 1 J+ 2 1 •
:" r •r.2,72b 3 26'J",

(14.32)

where

2a

is=- a -- dx. (14.33)

0
2b it "dy .

J = arccos - (14.34)

0
to 2b

13 arccos .-L +~ a~ sL 3 ( "INCO 3)dxdy, 1 .5

Calculation of integrals (14.33)-(14.36) is not difficult. Let

us perform a replacement of the variables a- A-=-

Where t < - (i<l)

1,1I= arccos-ldr=2al arccoszdz = 2ati; (14.37)

•(14.37)

Where t >

Ii

J' - arc =L2 x- •t •arco°szdz',

2a. + Vcc-S+- g--2). (14.3P>)
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By total analogy,

where t A ", -- *

I= 2ai. (14.39)

where t t> 2 I-

2, d.+ arcos (14.40)
is II J

For the integral J 3 where E < 1

A,• 462. , 01.. 0 Met -
J3 arccos -!dx- dy +" farccos dy, d

0

= 2 (2a7Y)' I I-2, avccoszdz = +(•D "s'".

"(14.41)

where 1 < < 1
n

2a Va~-n
J8 =•arccos-dx j dg+ t arccos--dy dx"

oo dyd

00

+ arccos dy dx

*For the convenience of transcription, here and henceforth the ratio
of sideE a/b will be designated using n.

j Vt--us ,rC,,, (a - I ac--all + -- ,.arcsin &)arccos s +

+ I T-Z + $resin Id Ta'+1 rmzmi

5 + ±n'+ arcslndarcsn, m'

+ arcsn z arccos + 2 (an z)' + +,.
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-(201) y -4 a' rCcos zdz + (2a)' j arccos zdz +

~(2oY4 1-/*I...+i+ -Li-iarcsin4 ]l; (14.42)

2 4

where -. 1

qirccos dx Cdy + 3 arccos -Ldx dy +

+ jarccos ayJ dx + a Žco - dy dx=

(27 arccos zda +(2a)3il 1' I-aarccos zdz +

+ i rtn + j+ .4.-.a+ +~ it + i~.~).(14.43)
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For the integral of J where t < 1

4

J: "dx dy= x- Ia--)'-x'dxd
0 0

-- (a. arcsin I = (2air t; (14.44)
2 4(1.4

where 1 < t -< nn

" dg=(2a)2 (1 -- i+ jarc~in'); (14.45)0 0

where + < t <

J = 2bdx + I F(,, -. rl dx-

( W(2a- T1 + i2 arcsin._
* I"

4 -~-I ~n• 1 -- i2arcsin l- .

(14.46)

Collecting the derived evaluations and performing transformat-

ions, we will find that:*

2l--¢(I+n)i+ Pt~ wheret<l
. 2- 2 I 2

S' . - arcco- + r

where l<i<•- (14.47)

I--.- (n + I--/ arccos- + arccos +

++ C2 _ .i
[l -_ + I,,*(n}: , / i Z - r

I - .----
where R < i< +/I-

Ii

*I. L. Mironov obtained a similar result using a Fourier-Bessel inte-
gral.
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-t The varied form of transcribing the function 0 (t) on a piston

of finite dimensions for diverse time intervals is easily attributed

to physical concepts. Where E < 1, diffraction waves do not yet
1

encompass the entire piston surface. In the interval 1 < < 1

diffraction waves succeeded in running along the short side of the

piston, but did not succeed in running the entire length. At moment

t = V 1 + (1/n2-, diffraction processes terminate. Pressure at an

arbitrary point on the piston vanishes. In the particular case n =

= 0 (b ÷ -),from (14.47) we find the previously fixed relationship

(14.20) for an infinitely-long piston.

There is, however, a theoretical difference between (14.20) and

(14.47). In the motion of an infinitely-long piston, the net load

approaches zero only where E ÷ -, whereas for a piston of finite di-

mensions *(T) H 0 where E > V I + (i/T.

We can easily expand the derived solution to motion of a piston

( according to an arbitrary law. In this case, using the Duhamel in-

tegral, we find that:

I

P( () U (0) + f W (t V - t) p() d-.. (14.48)

F )= F. (MW (0) + j W (t -- c) F, (t) dv,

"11 (14.49)

where pa (t), F a (t) - transient functions [solution of problem for

motion according to the law aO I

W(t), W(t), and IR(t) - piston motion, velocity, and acceleration.

Let us study expression (14.49) in greater detail. Assuming

W(0) = W(0) = 0, we derive

F€ (t) . - F e -Y - (,t) d %. (1 4 .5 0 )
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or, integrating by parts twice,

F(t)= Fo WP (t), (0) + FO IF'I) t/01 + FO Wlt-) (t)d-t. (14.51) -

Expression (1i.51) can be calculated quite simply for the time
interval in which function i (t) is linear. Thus, for an infinitely
long piston, according to (14.20), where t < 1, () = 1 - E.

In this case

,101= I,

ý2.A.= a
, 2a

=0,

and for the net load we will find that

F(1) -- 2, _. 2 W(j). (14.52)

As we mentioned earlier, for a piston of finite dimensions, the

function • (t) - 0 if t > t*, where

TO -T4t;= .0 = • 1+-?.

Consequently,

F. I(t-, (zdt t< t

(14.53)

If in some interval of time At acceleration of the piston

undergoes little change, then for it

F,() (1) F.e d..)d. (14.54)
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Fig. 61. The Coefficient of Apparent Mass,
for Motion of a Rectangular Piston, As A
Function of the Relationship of the Sides n = a/b.

The same expression can be derived for an arbitrary moment in
time if we consider the liquid to be incompressible. Actually, where
a 0 -÷ o, t* -) 0; as a result of a limiting pro-ess in (14.53), we

again get (14.54).

The coefficient, where the magnitude of acceleration is Q(t),

8.FS f 'q dt fl

0

is known in hydrodynamics as apparent mass.

Thus, for the present a result has been derived for the partic-
ular example. It is of interest from three points of view. Most of

all, it becomes clear that the wave nature of diffraction processes
accompanying the motion of bodies in a compressible fluid must be tak-
en into account for only a fixed time interval; after that interval

elapses, it suffices to consider the non-steady state with the aid
of apparent mass. Hence, it turns out that if we solve the problem
of evaluating net load acting upon a body during its motion in a fluid
according to the unit function law, we likewise solve the problem of
determining apparent mass. This method sometLes is simpler than the
classical method. For the considered problem, the relation of the

"--coefficient of apparent mass as a function of the ratio of sides of
a rectangle is shown in Fig. 61. If, on the other hand, we 'mow
the apparent inass of a body, we can make some judgment on its initial

. period of motion where the diffraction processes are considerable.

All these ideas will be developed subsequently.
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§15. Pressure Field During Progressive Motion of Circular-Shaped
Piston. General Concepts on Solving Diffraction Problems
with the Aid of the Integral of Radiation.

The problem of motion of a circular-shaped piston was first

studied by Kharkevich. It was later studied in various formulations

by I. L. Mironov, D. A. Aleksandrin, as well as by the authors of

this book.

Let us first consider a piston having absolutely rigid walls,

moving at a velocity

. (15.1)

Using the integral of radiation and reiterating the arguments

of the preceding section, we derive pressure at an arbitrary point

in the form

PA (15.2)

where b - the shortest distance between point A and the piston.

If the projection of point A falls on the piston (Fig. 62),

then during the time interval z/a 0  < t < R1 /a 0 , the angle %0 = 27

and consequently, p = p0 a 0 . At the moment in time t = R2 /a 0 , dis-

turbances from the most distant elementary sources will reach the

point of observation and pressure will vanish.

Thus,

I all R O

(15.3)

In order to determine 0 (t)*, let us consider a triangle whose
*Since R = a 0t, a determination of a(t) is equivalent to determining
O(R).
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Fig. 62. On Evaluat- Fig. 63. On Evaluating Pressure
ing Pressure at a Point at a Point Not Projected onto a
Projected onto a Moving Piston.
Round Piston.

angles are the center of a piston, the projection of point A, and

the point of intersection of the circle having a radius ¶rR2--- z2-

with the edge of the piston (Fig. 63).

We have

to, + (If ý--_22)v- 2r /'R2-- cos-

where r and z - coordinates of the point of observation, whence

0 -_as : RlI-24

(R) = 2arccos, R_(15.4)
2, J' R3 - z

or, taking into consideration that R = a 0 t, and using dimensionless

coordinates,

- , - - . ,

o() = 2arccos " (15.5)

2f 

-

We can easily prove that relationship (15.5) remains valid for

the case where point A is not projected onto the piston surface. In

this case, pressure can be found according to the formula

-1-- (15.6)

PA 2. - 30(0 A2)
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"I (15.7)

'0

top

a

Fig. 64. Net Pressure at Various Points
on Surface of Round Piston.

(
At points on a piston (z = 0, r < 1), according to (15.3), (15.5),

and (15.6), pressure is

P (r, P04 so W l(- 00 (i + r-1) +

Jr .-- tc$ 2Hi15 8

Pressure variation for several points is shown in Fig. 64,

taken from [21].

Let us find the net load acting upon the piston. For this pur-

pose, let us integrate (15.8) with respect to the piston area

W(• f f P (r, t) ds. (15.9)

Because dS = 27rdr, then

F (h - 2x r (,(15.1.0)o
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Let us introduction the function * (t), which is associated with
function F(E)by the equation

F~i) (15.11)

We then derive

0O (15.12)

Using the dimensionless variable r = r/a, and in view of (15.8),

the integral of (15.12) will be rewritten in the form

,)2 a*WI) i~dr- Zo01i 4.- 1 )d +

o' +
arccos iL4iL r + i- i- )dr.

-- %-arccos 2; i (15.13)

Taking the properties of the discontinuity function of zero

order into account, we have

-2_ I)]- ; + 1o 10 - t) ,o i m x

x o •T (15.14)

The indefinite integral

it=$arccosi---- ! s

is taken by parts:
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_. arccos cos i, __-__-_-

2 2,:92
a 2;sis ; + -- arcsln is

(i - ,- Y• + 2-,c"+ ,-4 ,, --. (15.15)

Hence,

I arccos+ arcsin --

arco

-- 2 - alccos 2 4 2 -2

"L 0,-i)2- It
2

4

- Combining the derived results, we will find that

S('-- -- [arccos [is to - *-- Q t-- '],.D - - 2)].
2. 2 (15.16)

The nature of variation of function ip(T) is shown in Fig. 65. As
in the previously considered problem on a rectangular piston, the
greatest net load is observed at the initial moment of time. It
subsequently falls abruptly and is equal to zero after the run time

of a wave having the same diameter as the piston. After this period

of time has elapsed, the motion of a piston having constant velocity

encounters no resistance from the medium.

The result obtained with the aid of the Duhamel integral can
be expanded to motion of a piston according to an arbitrary law. By

analogy with (14.50) for zero initial data [W(0) = W(O) = 0], we can

write

F (t) = FO W(t -- ),(c)d, (15.17)
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Fig.65. Change in Net Load Acting on a
Round Piston During Motion According to
the Unit Function Law.

or integrating twice by parts,

F(t) =FO W(t) + Fo 10) W (t) + Fo0 W (t - d- (15.18)

However,

o 2 (15.19)

Thus, for the net load we will have:

where t '<
a*

F() = na2p0a&W (t)- 2p&a2W (1) (15.21) I

O "a

where t> a
ao

F(I) = :a2p~a0W(I)-2pd$OqW (1) + I -EOOOL (15.22)
2a

2 2
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In study 1261, function F(t) was derived in the form

F= 2aa -L .[ )- a W(t) +

_ ja

+ sif) 0. (1 5iflYsinldj (15.23)

We can easily show that the replacement of the variables T =

= (2a)/(a0 )sin ý reduces formula (15.23) to (15.22) and the results

coincide.

We mentioned earlier that the integral of the function F0i(t),

within limits from zero to t* = (2a)/(a 0 ), produces the value of

apoarent mass. In view of (15.11) and (15.16), we find that:

(2)
0 3e

As we well know, apparent mass during progressive motion of a

disc is equal to precisely this quantity. However, in the case of

motion of a thin disc, this quantity characterizes the total load on

both sides of the disc; while in the case of motion of a round pis-

ton, only the load on its front side.

The problems considered permit us to make some general remarks

on the possibility of utilizing the integral of radiation in the study

of diffraction effects. The chief requirement is for "direct visib-

ility" from the point of observation to the elementary source of rad-

iation. Consequently, the plane must be the radiating surface. We

must have defined premises on the distribution of sources on the sur-

face of closure. These premises are always hypothetical because

boundary conditions permit us to establish tne intensity of sources

only on the surface of the body. With the aid of the integral of
radiation we can derive a preaise solution only for the half-space

in front of a plane moving piston or screen havin~g a rigid inuiiobile
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wall of finite dimensions. iaot one of the actually encountered

diffraction problems can be reduced to this formulation.

As we mentioned earlier, when utilizing the integral of radiation,

the intensity of sources distributed on the surface of a body is sel-

ected so that the normal velocity component of the net field on this

surface is equal tozero. The surface of closure has special features:

it is "transparent" for the direct wave, but at the same time does

not pass disturbance propagation radiated by the sources situated on

the facial surface of the obstacle.

Inasmuch as no actual surfaces have these features, a fixed

error occurs. Moreover, the use of the integral of radiation often

permits us to most simply derive a final result. For this reason,

the evaluation of diffraction problem solution error with the aid of

the integral of radiation becomes important.

Let us make an evaluation for several particular cases. In

§12 we considered the incidence of a unit-amplitude wave along the

normal to one corner of a wedge. The solution of a basically similar

problem was derived in §14 with the aid of the integral of radiation

[of. (14.13)].

The pressure diffraction-component was equal to

P j .7 ..... !. arccos ..... - •0t-- . (15.24)

For points situated on the surface of the obstacle (a = 0),

'rco . (15.25)

Fig. 66. shows the results of comparing this solution with the

precise solution for various wedge angles. We can see that a satis-

factory convergence of findings only occurs where • = (4/3)w. An
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Fig. 66. Pressure Change in Diffraction Waves
Formed on the Edge of an Angle During Normal
Incidence of a Unit-Wave on One of the Edges of
that AnglA.

precise solution,
------------- solution with the aid of the integral

of radiation.

assumption on the motion of a piston having a semi-infinite wall was

equivalent to normal incidence of a wave onto a wedge having an in-

ternal angle of (4/3)ff. V

As our ,econd example, let us take the case of incidence of a

unit-wave along the normal onto a rigid end-face of trapezoidal shape
(§13). The analog to this is mnotion of an infinit3ly-long piston

having a rigid wall (§14).

The calculated results of specific load and pressure on the

central point of a piston [cf. formulas (14.15) and (14.20)] as com-

pared with the corresponding data of §13 are cited in Fig. 67. As

can be seen from the drawing, for the initial period of motion(t <

< 1.5), a solution with the aid of the integral of radiation almost

coincides with the calculation for • (4/3)7r, and subsequently

tends toward a = (3/2)n.

4 Thus, we can conclude that in analyzing diffraction problems, the
use of the integral of radiation leads to correct qualitative conclus-

ions. Quantiative evaluations, however, can be very approximate.
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4 The best convergence of results occurs in the study of diffraction

by the flat end-faces of elongated bodies having lateral walls which

are perpendicular to the end-faces. The greatest error occuzs in

calculations for plates.

§16. Diffraction of a Spherical Wave by the End-Face of a
Semi-Infinite Rigid Round Cylinder.

The conversion from diffraction of plane waves by an obstacle

tc diffraction of a spherical .ale i8 a-sociated with mathematical

difficulties. Therefore, the primary features of this process will

be explained using the simplest example of the flow-around of the

end-face of a semi-infinite rigid round cylinder by a spherical wave.

To evaluate the hydrodynamic fields, let us employ the integral of

radiation. As we mentioned, this method is the simplest method, be-

cause it eliminates repeated diffraction waves from consideration.

( Moreover, in view of the assertions of the preceding section, this

method should not produce appreciable error in quantitative evaluat-

ions.

As we know, the potential characterizing the propagation of a

direct wave during spherically-symmetric motion can be written in the

form

RV- k)( 
(16.1)

where, for convenience, we introduce the dimensionless coordinates

R/a, = at (a - the radius of the end-face).
a

The magnitude of the normal component in the plane of the

obstacle is

,, an oR CM

- = 1- - (16.2)
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The boundary value condition will be satisfied if hydrcdynamic

sources are arranged at points on the surface of the end-face so that
the additional velocity of fluid particles induced by these sources
is equal in magnitude, but opposite in the sign of velocity; velocity
is defined by the relationship (16.2). We can achieve similar re-

sults with the aid of the integral of radiation, which in this case
is conveniently written in the form

A 2-t . (16.3)

where R - the distance between an arbitrary point on the surface of

the end-face and point A.

Considering a case of axial symmetry, we find on the basis of

(16.2) that

TA--Zo !(i-k-ke) 3o" O•o;t +
j! R'R"

4 26'(~ rdr.
0 (16.4)

Let us introduce the substitution

R + R =,

i/i'=1I;'+z2, R[,=1 I •?'

Then,

R I RRO

I
. •-L"20

•_ x.'
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ir-'+ =2x @,"-?"+xa)'=4ix
If

0 40

Al- A- -A*

X) ld-s)(-e).• (1 (I X)d

jjOI- i'" + X2)1

By complete analogy,

I' -

• ,()Re. t ) - - ),-)

J ~ ~ Rik r(":R dr=

= 2 .? , 11( - )* .( - )
No00

* dx

=2 dx. (16.6)

Thus, the potential at point A is

ko -k.0+ -4o Z- L(/- " --e -x) xdx "F_ ___;,w, )
i(j- I_ 2)

i•o -"+i

+2, dx dx.

, (16.7)

IntegratioD by parts yields

0 ++ k

210• .,+
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or, using previous designations,

I/T

x o1- 1/ji7•- ¢f•47;)] ,

(16.8)

If we add direct-wave potential to the potential of (16.8) and

use a certain relationship p = -p 0;lt, we derive the magnitude of

pressure at points lying on the axis of symmetry:

. p(o, z', i) " [f ( 0 2--Ze 2'",( -iFz)'-
+(~ i "i" ,-a, a

-> 0 ( r - I It , I ) -1 ( .

×X3o(-I +ZI s•-J 1± T :)h. (16.9)

The first two terms of equation (16.9) correspond to the case

of an infinite obstacle. They define the direct anti reflected waves.

The third term describes the expansion wave formad 1,," the edqe of

the obstacle. The diffraction wave picture is shown in Fig. 67.

The solution of this same problem under the assumption of the

incompressibility of a medium is of interest. Final formulas can be

derived in this case both as a result of the limiting process in

relations (16.8), (16.9) toward an infinitely-great speed of sound,

and by means of direct consideration of the potential
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according to the notion of

acc. to notion an "ncompressib'.e fluid

Fig. 67. Nature of Variation in Pressure During Explosion,
Allowing for a Rigid End-Face, According to the Notions of
an Incompressible and Compressible Fluid.

=fU)
R (16.10)

The integral of radiation (16.3) is consequently written in

the form

2r

. R'" "(16.11)

This integral is taken in finite form if point A lies on the

z axis. After simple transformations we will find that

TO- , (16.12)

Because p = -p0  t' we come to the conclusion that the presence

of an obstacle of finite dimensions in a fluid causes a proportional
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: change in the magnitude uf picssure at a given point, The coefficient

of proportionality is a function only of the geometric characteristics

of the problem.

Fig. 67 shows the results of comparing pressure according to the

notion of fluid incompressibility and compressibility. We can easily

see that the net pulse is identical in both cases. The assumption of

incompressibility of a medium is in full agreement with the physical

essence of the hypothesis, and produces only a slight redistribution

in pressures. This fact permits us to apply, in individual cases

(where the net pulse is a deciding f-ctor), a simpler notion of

fluid incompressibility for approximate calculations.

The evaluation of pressure magnitudes at an arbitrary point in

space runs into deeper problems. This problem can be solved, for

the present, only for a plane wave (cf. §15).

For direct comparison, it suffices to multiply the solution of

(15.3) by the constant quantity 1/(p0 a 0) and add direct-wave pressure.

Then we will find that

pOr, z,) + ) + +- 0o - R)t

4- g r11 ( i - 'J

(16.13)

where, as before,

2 arccos (15.5)

+- distance to nearest edge of end-face;

S• + ;+ 1Y - distance to most distant edge of the
end-face.

Because (16.8) and (16.9) are valid for a wave of arbitrary
shape, and we are most interested in an exponential wave, le.t us
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write the pressure in the case of incidence of a wave along the norm-

al (an exponentially-profiled wave), transforming (16.13) with the

aid of the Duhamel integral: where r < 1 i
-- --- i P V' +" I + '-- 0 ---')

wherp maxmu pressure on• the) d .- °• o irc-wv fr -ont; - the2 r b R

(16.14)

m a

dimensionless exponential damping constant.

As in formula (16.9), the first term of (16.14) expresses a

Sj direct wave and the second - a reflected wave. The three latter

terms define an expansion wave propagating from the edge of the end-

face. This wave arrives at point A at time T = R1 (point E in Fig.

68). In the interval R < t < R elementary expansion waves con-

verge upon point A first with greater, then with lesser, and then

with greater intensity (section of contour EF in Fig. 68). Where

T > R2 ' the unsteady flow continues a while longer, being nonuniform-

ly determined by damping disturbances proceeding from the edges of

the obstacles. In proportion to the approach of point r to the center,

slope BF approaches the vertical. Ultimately, where r = 0 CR= R2)

formula (16.14) acquires the form

p(o, ) p,,e ? U,+ .)+,- - Z-0)_
F_ ]; (16.15)
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4.0

Fig. 68. Net Pressure at Points Situated

Symetrically In Front of and Behind a Disc
z = 0.08, r = 0.92, during Normal Incidence
of an Exponentially-Shaped Wave 0 = 0.02 onto
Said Disc.

in front of disc;
-- ------ behind disc.

Also important is the case of a wave falling at an arbitrary

angle. However, the study of this problem is considerably more com-

plex than for normal incidence, because the disturbance arrival-time

at a given point will be a function of the formation time of element-

ary sources on the surface of the obstacle (in addition to geometric

parameters).

This problem was first considered by Lopukhov. Omitting the

operations and reasoning, let us cite several of his findings.

Fig. 69 shows a comparison of pressure contours at a given

point for normal and oblique incidence of a plane wave. We can easi-

ly see that the nature of the contour is retained. The reflected

wave front arrives from a point which is displaced with respect to

the geometric center. Pressure variation resulting from diffraction

occurs more smoothly.

In the case of diffraction of a wave by a disc, as we said

earlier, the precision of theoretical evaluations is reduced. How-

ever, it would be iseful to give some data for a qualitative descrip-

tion. Thus, with the aid of the integral of radiation we can easily

calculate pressure at points behind the disc. According to the prin-
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it"

Fig. 69. Net Pressure at Points Situated
in Front of a Disc zi = 0.17, F = 0, during
Incidence of Exponential-shaped Wave e=0.2.,

... 450 gradient;
---- normal incidence.

ciple of symmetry, pressure will be determined by the three last

terms in (16.14), taken with opposite signs

j kA

PnW[* V '7 ki)
2rI

+ ,,,,, - ,- e e-T ,(: t -j .
-2- 1

Ri

(16.16)

The pressure curve shows a sharp increment at its inception

( 1) and in the proximity of a = 2 (Fig. 70). If point A is

located on the axis of symmetry, pressure on it will change as

on a direct wave.

Consequently, we can make the following conclusions:

1. When a shock-wave flows past an obstacle, an expansion wave

.• is formed which propagates from the edges and distorts the direct wave

contour.
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Fig. 70. Net Pressure at Points Situated
Behind a Disc During Normal Incidence Onto
Said Disc of an Exponential-Shaped Wave 8=0.2,
z = 0.08.

r= 0;
S. .. r = 0.75;

r=0.92.

2. At points situated in front of the disc (end-face) and pro-

jected onto 'llt, the section of the pressure contour containing the

direct and reflected-wave fronts remains the same as in the case of

an infinite obstacle.

3. When a direct wave flows behind a disc, the increment in

pressure on the front becomes gradual, and maximum pressure at points

behind the disc are abruptly reduced, except for points lying on the

axis of symmetry.

4. Pressure at points which are not projected onto the disc,

are distorted by positive and negative waves emerging from the sur-

face of the disc and its edge.

5. Similar phenomena should occur in diffraction of a direct
shock-wave by plane obstaclesý of other shapes.

S~§17. Diffraction of a Plane Wave By a Rigid Sphere

ri The diffraction of a plane wave by a rigid sphere was first

Sexamined by Kharkevich 1211 and later, applying other methods, by

M. N. Lefonova and 0. K. Fyodorov.
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We will state this problem slightly differently, using the find-

ings of study 121]. Let us use a spherical system of coordinates

having its inception at the center of a sphere. The angle 0 will be

measured from the half-line emanating from the center of the spheren

laterally in opposite direction to the propagation of the wave. The

wave processes in this system of coordinates have axial symmetry and

are not a function of the angle P. They are characterized by the

wave equation

dr 2 o'r r2 ii M dsn af at -

(17.1)

where 4 - the potential of the additional pressure field induced

by the presence of a sphere.

The association of pressure and the potential function is defined

by the equation

PA - (17.2)

The field of radial velocities is expressed by the relation

VIA -• J, (i17.3 )

The boundary conditions when integrating (17.1) are:

equality of the normal velocity components to zero on the sur-

face of the sphere

r a , 'Ir i-( (17.4)

where vr - the radial velocity component of particles in the direct

wave;

equality to zero of potential function of disturbed fluid motion

at an infinitely-great distance from the sphere
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where w e-.0. (17.5)

We know from general courses on mathematical physics that the
solution of (17.1) can be written in the form of a Legendre poly-

nomial series*

? = (r.t) P. (cos 0),
(17.61

where Pn (cos 8) - the Legendne polynomial to the nth power.

Upon substituting (17.6) into (17.1), we derive an equation

for defining the functions qn (r,t)

Sm,, + + I - cosI2o)P. - 2co•SP•I•.-

(
or, because the functions of Pn satisfy the Legendre differential

equation,

(1--z')d•--~ •+n(n+ Ilu=0.
M di_a,?, + di f; 1(• ) MT __. 0"ar• ' , ? - a OI

(17.7)

To solve (17.7), let us employ the Laplace transform

T,,= ?'p~,e-'dt, (17.8)

where v - some complex integer having a positive real part,

*Cf., for example, 14, S. KosLiyakov, E. B. Gliner, M. M. Smirnov,
SBasic Differential !'quations of Mathematical Physics, GIFML, Moscow,

(1962).
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After multiplying (17.7) by e and integrating with respect to

t from 0 to infinity with zero initial data, we get an ordinary dif-

ferential equation to depict •-(r, e, v):
n

S-t, 0. (17.9)

d y

Substituting the variables - = , x = a---vr this equation
Tn /_a0

reduces to a Bessel equation

.+

X'y + xy -X2 + 2 (17.10)

The general solution of (17.10) is*

y C ( ,x) + C2K ,(x), (17.11)

where In + 1 /2 (x) and Kn + 1 /2 (x) - first and second-series modified

Bessel functions** of the n + 1/2 order:

OX)

J ,(ix) - a first-series Bessel function;

2si n+L91R

Because where x ÷ •, I + x) W o (considering the second
n + 1/2

bo'4ndary condition of the problem), we should assume that C1 = 0.

•Cf., for example, E. T. Whittaker, J. N. Watson, Course on Modern
Analysis, T. I. GIFML, (1963).

i **Modified second-series Bessel functions are often called Macdonald
..unctions. A
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Thus,

+I

or using our previous variables,

a.) (17.12)

In mathematical physics, the so-called Stokes function* is often
employed fn (X), Fn (x). The association of these functions with
first-series Bessel functions can be expressed by the relation

Foix) =ix(2, + ' [nJ. (ix) 4 (n -) IV),(ix). (17.14)

Employing the Stokes function, Kharkevich derived a solution of

(17.9) in the form**

9LI-)- / .(17.15)

*The Stokes function is often called the Bessel Spherical function.

"*For the first items, the functions fn (z) and F (z) have the form
n

(we will henceforth require the function F (Z)):
f (z) - I Fo5() -+ It _2
A s. s+2+ -

A(i) + +f$:_+I 1 +L5" F,(O) 7 + +u •z Z

S15 105 I9

+ A - s + 42'-, ... . .26
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In eq(uations (17.12) and (17.15), the coefficients C and Bn

I are taken from the boundary value conditions of the problem.

Using a transform on the left side of (17.4) instead of the

original, let us designate that

Jr (17.16)

n - a tra.sform of the nth expansion coefficient with respect to the

Legendre functions of the normal velocity component of particles behind

the front of a unit wave

= "P b,P,,(cos 0). (17.17)

b.= f b~e~'"dt.

0 (17.18)

In view of the fact that (1 + z.f (Z) - Zf(z) = F (z) and
integrating (17.15), we find that

-- BF'-- "(17.19)

*~ ~ al~

o7 7- (17.20)

After substituting the calculated coefficient values into (17.15),

we find the solution in transforms of the basic equation (17.1)

. .. ,(17.21)

The quantities b entering into (17.21) are expansion coefficients

with respect to the Legendre functions of the normal velocity compon-

ent of particles behind the front of a unit wave.
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Let us calculate these coefficients. In the selected system of

coordinates, the position of the unit-wave front will be defined by

the equation

I ICUbO
a "0 (17.22)

the velocity of particles behind the front is
I ' a ,cos 06--"

;allo(
1  , -,,j (17.23)

the maximum component of this velocity toward the surface of the

sphere is
,(I a , a(Is J ,

-0,ri'", - -- -- . /," " "-• --l (17.24)

that same velocity component in transforms is

'I ,

UCos 0 (1i,. 25)

Let us write V as a Legendre polynomial series
np

V' iW (cos O).

To define the coefficients of b-n let us employ a familiar

equation

- a -e cos OP. (cos O) sin OdO=
2 ',Aa,,

, 0

2n --I2n- I . ep. P.(x)xdx.

(17.26)
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The integral (f (17.26) for any P n(x) can be easily calculated.*

For the first two coefficients specifically,

- I a e-; _______

0 a _=( = -; - (17.27)

where

= -9a
a,

3 a

"C ; P ( 7 2 ) -e -7; 4- T + 2
-- li -- + 2 - ----- • v(17.28)3polo ; " '•

(For an arbitrary value of n, with the aid of the Stokes poly-

nomials the formula for F can be written in the form:

n
b,= LF V04 F . (z)07( 7.29)

After the coefficients of b have been calculated, it is easy to
I define the pressure fields. For this purpose let us employ the re-

lation

P (17.30)

*Let us note that

P, () -I.. P, (X) r

2 2
P, (x) - - (3xs --l), P=()= •(3=- 1

Ps (x) = (350$- 3 0,X L 3). Pr (, 3As -70W F 15x).

Here and until the end of this section, x = cos 0.
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which in transforms may be written in the form

P= -rO'. (17.31)

According to (17.6) and (17.15), we have

P - : e P., (Cos 6). (17.32)

A-0l

For points situated on the surface of the sphere (r = a),

• -0 (17.33)

where

S• a P (17.34)

The conversion in (17.33) from transform to original can be

effected with the aid of the Mellin integral

P.- t [ E ()V) e"' d P.(cos), (17.35)
a- ID

where the contour (L) passes from point X0 - i. to point X0 + i.

in the right half-plane of the complex variable v = X + in in such a
way that all the characteristics of the subintegral function lie to

the left cf this contour.

We can simplify calculations considerably by using the general-

ized Borel theorem.

According to this theorem

* ',1,) L.(.) Ij ,V -- ih,1da (17.36)
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where

Mv-(v e"'v (17.37) ,

29~i (11
Or j,7(v)e"dv. •

f,(e) i".IjaQ) x -ts•, e'(17.38)

Consequently,
_ . I a ,

PA SAd b, -- !- a- , o(Cos 0)

A-0 10 dt (\a a ra
-:,RF0fbn(I-" 1-)d P0(cos'. (17.39)

Integrating by parts and considering that

.,(0) = 1 , a Vb.(1)P.(cosO) v,sip.

we derive

~- kPb;1 - d 1 p'(COSrj)=.p, = .,,0OV,. .- •,aoa dt' - i ? - :-)d ,c ,)

-dt- =coSO~io(i--!--j-cosOJ)--',,ao ~Fbn(,)•,, (:--)d]'.P4cosr).(1.0

10.- (17.40)

where

' x -ns F, . ) e'd.(17.41)

In this form, we can easily find the originals of functions

•n(t). Actually, using the theorem on residues, and in view of the
n

fact that the function 'n(C) is meromorphic**,

*From (17.34) we can see that where v ÷, W-(v) M
n.

**A meromorphic function is a one-valued analytic function f(z) in a
complex plane which has only a pole as its special points differing

k• from z =
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_ N Res-(.) '-• L(17.42)

where Res- - residues of functions at points Vk;Vk -roots of the equation Fn() =00.

Vk n

The roots of the Stokes polynomials F (v)are given in Kharkev-n
ich's study [21]. Also given there is an expression for the originals
of function •n(t) in the form

n'|I

A 4 (17.43)

where

Sd;

Because wheren=. = - 1.00 and where n =, • 1 =- 1.0 +
+ i and V2 = -1.0, then

Id• ., -,) e-i ,-•
Do (-- =) (17.44)

I - (-1 -1 _+ +

+ (--i ) f =e COSt. (17.45)

The originals of the coefficients of b can be found directly
n

from formula

bn. 2S V,'PP (cos 0) sin OdO =

= t" v,pP,(x)dx,
V (17.46)
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where, accdrding to (17.24)

%P = ix- X30 U - I + X). (17.47)

Considering that 0(t -1 + x) - 0 where x < 1-t, fort < 2

we find that

b . xP2-I I I-i'2 e• P(xd,(17.48)

where F > 2

bnI -2• ., . XP. X) d'T.
(17.49)

The integrals of (17.48) and (17.49) are taken in finite form

for any n. Specifically, where " < 2

-4

b( =- 3i +

b, =--T t ( +

(17.50)

while where t > 2

b*=b: .... = b,=.=0

b,=- 1 (17.51)
Ka.

Thus, the solution of this problem is derived using infinite

series. Employing this solution, we can calculate the pressure at

any point in a fluid. Calculated pressure results in terms of the

first four terms of the series, for three points on the surface of

a sphere, are shown in Fig. 71(calculation performed by 0. K. Fyodor-

ov).
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(a) (b)

•; to

2.01

0.5

Fig.~~~~~~~~ 71 etPrsueaPonsoaSpreDig

soltio aloigfrfortrso
the series

'.0-

(c)

Fig. 71. Net Pressure at Points on a Sphere DuringIncidence onto it of a Unit Shock Wave: a - 0=0;
b - 0 900; c - 0 = 71.

r l esolution allowing for four terms of
the series;

This----b-em------ -approximate solution according to nformulas (17.81) and (17.82)

We can see from the figure that the pressure on the surface of the

sphere rather quickly becomes equal to the pressure on a direct wave.
At points situated on the facial side, pressure changes in jumps; on

the lee side, it changes gradually. Pressure equalization time is '
roughly equal to the running time of a wave along the radius of the
sphere.

This problem is similar to the problem on progressive motion of4
a sphere. The difference is that in the latter case, the normal
component of particle velocity on the surface of the sphere is

V, = o(t)CosI, (17.52)

i.e., it is not determined by summation from zero to n - ', but only

by one of the Legendre polynomials [P 1 (x)]. Moreover,
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" - (17.53)

A

Thus, this solution is a particular case of the solution prev-

iously derived. According to (17.33), on the surface of a sphere

pH,.. pa,,,, csO, (17.54)

where, according to (17.34)

(17.55)

Using the original and considering (17.45), we will get

p 0(a. O.(I ,,o.. )cosO = ,ia _-'cosicos0. (17.56)

It follows from this expression that at the initial moment in

time, pressure on the surface of the sphere jumps from zero to

pOao cosO; pressure subsequently has the common nature of a time rate

of variation independent of the point coordinates.

Let us find the net load acting upon a sphere both in the case

of progressive motion and in the case of its diffraction of a unit

amplitude plane wave. For this purpose we must integrate the quan-

tities of the elementary loads with respect to the sphere surface.

The projection of of these loads on the z axis is equal to:

dF, j'dScosrf - p2nal sin 0cosOdO -p"1r-axdx. (17.57)

In view of (17.56), the projection of Lhe net force onto the z

axis during progressive motion of a sphere will be derived in the

form
J" a 'IN , (17.58) .
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Fig. 72. The Function 11)for Progressive J

Motion of a Sphere according to the Unit 1
Function Law.

where :

We can easily see that the law of variation in net load is
exactly the same as for an arbitrary point on a sphere (Fig. 72).
If there were no diffraction (the hypothesis of plane reflection), if

Sthen function Ml(• would be identically equal to its greatest value

1(0) H 1.

In diffraction of a plane unit wave by a sphere, pressure at
an arbitrary point will be composed of pressure on the direct wave

• .1

and pressure caused by flow-around of the sphere

P . = p ol,, , - P . ( 1 7 . 5 9 )

Let us calculate separately the net pressure of these components.
According to (17.23) and (17.57)

2 3

-, (17 .60)

However, where x < 1 a •,a(t 1 + x E 0 and consequently,

0

for 72< 2

l,-' 2 (17.61)
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where t> 2

(17.62)

For the second load component, let us first find the transform.

According to (17.33)

F,,,.1.. a v b. €;) ,, (;) , P. ()xdx. (17.63)

Because of the orthogonality of the Legendre polynomials, all

the terms of (17.63) except the first-order term are equal to zero

[x = P1 (x). Consequently,

R (4. (17.64)

Employing, as we did before, the generalized Borel theorem and

changing from transform to original, we will find that:

(- -- (17.65)

Differentiation with respect to F of the second equation in

(17.50) (where E < 2) yields

_L (I _i')2 (17.66)
2 Wea

where t > 2

b; (i) = 0.

Substituting these expressions into (17,65) and considering

(17.45), we find that:

where F < 2

2 =2 a2C7 sin! - +'
(17.67)
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where 2 >2 7?
FAcs,_c4dl- i (17.68) 4~

1-2

Combining the results of (17.61), (17.62), (17.67), and (17.68) 3

the summary load from the action of the direct and diffraction wave

will be written in the form (Fig. 73)

F(:)= 4i-C- sin!. (17.69)

Expression (17.69) was derived by Kharkevich [21] in a slightly

different manner.

It is easy to notice that the force acting on the sphere rather

quickly vanishes, which is associated with the equalization of pres-

sure at all points on the sphere surface.

With the aid of the Duhamel integral, we can easily expand the

Sformulas established to a wave of arbitrary profile. Specifically,

the net force during diffraction of an exponential-shaped wave by a

sphere is defined by the relation

{ ,
F,, (i e • e

(17.70)

Integrating (17.70) with respect to time from zero to infinity,
we can see that the total pulse of load FZ will be equal to zero. We

will derive the same result during incidence of a finite-duration

arbitrary-shaped wave onto a sphere.

The extreme simplicity of formulas (17.67)-(17.69) attracts our

attention. At first glance it even seems somewhat unexpected, since

the solution would seem less complicated than the problem - determin-
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Fig. 73. Net Force Acting On Immobile
Sphere During Incidence on It of Unit
Shock-Wave.

ation of pressure on an arbitrary point on the surface of a sphere -

and was derived using an infinite series. Moreover, similar effects
of'.en occur and can be attributed to the properties of orthagonal

polynomials. This often makes integral evaluations very simple.

This fact causes us to consider the question of whether we can

employ the method of determining net load -F for the approximate ev-
aluation of pressure on a given point.

To illustrate this, let us return to expression (17.65), which we

will write in the form* I

FA Q)J (17.71)dii

where

3V) -(17.72)

-,•' T (3 - 3i + P,). 1.S)

The function Q(t) corresponds to F (E) where \ 1 and is thus

the second component of net load, obtained under the assumption of the

hypothesis of plane reflection. In this connection, 1,1(c) character-
gizes the change in load owing to diffraction, while Q(E)- owing to

*Expression (17.71) corresponds to the Duhamel integral for Q(0) = 0.
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the sphere being drawn into the wave. If Q(E) were a unit function,

the load would be defined by the function •I (E) as occurred in the

motion of a sphere according to the law of unit function (cf. 17.58)].

The symmetry of functions Q(t) and *I(PE) formulated in this sense

permits us to consider the problem of determining pressure on an arbi-

trary point on a sphere according to the following patternr:

pressure is determined under the assumption of the hypothesis

of plane reflection p* (a, e, T1)4

employing the structure of the Duhamel integral, we introduce a

function which takes diffraction •l(tl) into consideration:

diP~ .i,t 6, Z,p p'Aa. 6, 0i1,1i,) + p., - V

0

-:pI,.,. ,)-- dt1• • ,(, (17.-13)

For a sphere

,,I.ai. . ,t p,OP(i,)Coso. (17.74)

where t. - dimensionless time, counted from the moment the wave front

converges with the point of observation.

In the case of unit wave incidence

,, C, i. Co s (17.75)

and (17.73) acquires a simple form

P, a, 6. i 0)= COS(t,)C OO. t1 ), (17.76)

where 4

g~:g-j ~COS&.
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Formula (17.76) coincides with the precise expression (17.40),

Sif we consider that n . in the latter. We can easily be con-

vinced of this fact in view of the fact that

'rIOP , (17.77)

4 A
b', lI P,(Cos 6) v,,,p -poa . (17.78) Aý

Substituting (17.77) and t17.78) into (17.40), we derive (17.76). t

The equality between all the functions n is accurately realised
n

for the initial moment in time. This is easily shown by employing

asymptotic representations of the Stokes polynomials in the range of

transforms
U0 u I

(17.79)

whence

;-0 (17.80)

Based on the preceding arguments, according to (17.76), we can

write the approximate expression- for net pressure on an arbitrary point

on a sphere in the following form

Pý (a, 0. , = fI + . I D 01 icos0I 30' ( ). (17.81)

where

e Cos. (17.82)

Calculated results according to (17.81) are shown in comparison

to the "precise" solution in Fig. 71. "Precise" solution implies, in

this case, calculations according to formula (17.40) having four series

V terms.
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The good agreement between these solutions attests to the feasi-

bility of using the substantially simpler approximate relationships of

(17.73) to describe the pressure diffraction field.

§18. Diffraction of -i Plane Wave By a Rigid Round Cylinder

A number of researchers have studied the diffraction of a plane

wave by a round cylinder. The most important results were obtained

by V. V. Novozhilov, R. Skalak and M. Freedman, V. L. Prisekin, Yu.

A. Fyodorovich, Yu. V. Goryainov, A. K. Pertsev, and others.

The formulation of this problem has much in common with the

problem considered earlier. Onto an infinitely-long rigid round cyl-

inder falls a plane wave of unit amplitude, whose front is parallel

to the cylinder axis. We must find the pressure diffraction field and

calculate the net force acting on the cylinder.

The additional pressure field induced by the presence of a cyl-

inder in the fluid is characterized by the potential function, which

is defined by the wave equation

5a,1 r r- - 0.(18.1)

The association of pressure and particle velocity with the pot-

ential function is expressed by the relations

V, (18.2)

While considering a similar problem in the preceding section,

we established a close association between unit wave diffraction pro-

blems and the problem of radiation in the motion of a body at a velo-

city which changes according to the unit function law. Thus, let us

first consider the progressive motion of a cylinder at a velocity

which can be described by the unit function lao. Then, the limiting
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SI

conditions can be written thus:

on the surface of a cylinder

'- =cosO ,( (18.3)

where e - the angle measured from a half-line perpendicular to the

cylinder axis and coinciding with the direction of its motion.

At great distances from the cylinder, where r +

-0. (18.4)

The solution of equation (18.1) will be sought in the form

0(r, , t)= ` ( t1cos nA. (18.5)n. 0

To define functions •n(r,t) from (18.1)1 we find that

. a' O. (18.6)
U

Let us apply the Laplace transform to equation (18.6)

-= J C,.e-"di, (18.7)
0

where V - a complex number having a positive real part.

Consequently, we find

I d; + (=0."* r (18.8)

Equation (18.8) is the Bessel equation. Its general solution is

, ? = B( ±c"K"(- UO) (18.9)

where In(X) - modified Bessel funtions of the first type; K n(x) -
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modified Bessel functions of the second type (Macdonald functions).

On the basis of the second limiting condition, we should assume

that B E 0 (where r + , In + o•). Therefore,
nn

•,=C.Kl\ , (18.10)

To define the coefficients of Cn, let us employ the first limit-

ing condition of the problem. We can see from its form that in this

case there will only be one series term in the expansion of the funct-

ion D/Dr with respect to cosines. Because the transform of the unit

function a 0 (t) is 1/v, according to (18.3)

Or 4.. 
1

, Ian)~

whence

"I • _ (18.11)1au
Consequently, according to (18.10) and (18.5)

K•'/°- 1(18.12)

Using the original instead of the transform, and employing the

generalized Borel theorem, we will find that

T-: = ieo1'-L v d " cos 0. (18.13)

o a,

Differentiating with respect to t, and in view of the properties

of the Dirac delta function, we find that the magnitude of pressure on

the cylinder surface is

Sp(a, COS (18.14)

S~239



IMP-

where A' A -- --e; 7'd-

00 (18.15)

The values of the denominator roots of the subintegral function

of (18.15) are

0,644 + 10,501.

Goryainov suggested the approximation of the function P in the

form 
1

(:r .• 1,216 cos 0,51 +O,189 sinl 0,5i ) e-. ,216e-°'. (18.•16)

The net load per unit length of the cylinder is determined by

the expression
24 2t

.F f p cosO = ',,qaoa.. (y).( cos OdO (t).0 0 (18.17)

This finding is totally similar to the one derived earlier in
the study of sphere motion. The nature of variation in net force and
motion at an arbitrary point on a surface is defined by a general
function of time. A graph of Ml() is shown in Fig. 74. The appear-
ance of the curve is similar to one for the motion of a sphere (cf.
Fig. 72). It differs only by its slower drop in pressure which is
easily attributed to the geometry of the process (plane flow-around

instead of spatial).

Difiraction of a unit wave by a cylinder is similar in formulat-
ion to the problem already considered. The difference is in the form-
ulation of the first boundary condition. As before [cf. formulas
(17.22)-(17.25)], the normal component of particle velocity behind the

front is

Sao' (18.18)
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where it is customary to begin counting time from the moment the wave

front arrives at the surface of the cylinder.

To determine the coefficients of Cn, we should expand expression
(18.18) into a series in terms of cosines

Elf I %C.Co n.0if C- , c - (18.19)

'1-0

According to the law3 for defining the coefficients of the Four-

ier series

0 nP

2,
C,. -E, - , cosnOdO, (18.20)

lip

whence, after substituting (18.19) into (18.20) and performing simple

calculations,

where t < 2

CO sinn,

C,• p4.• sin 2j)'

.. . .. .. .... . .... . (18.21)
C - L.--(.- ----.- + -Li

i n-I

where

where arccos (I -t . (18.22)

Where t > 2

C -Cu.= . ... 0.
C, = i. •(18.23)

Using the same arguments as in the preceding section [cf. (17.39),

(17.40)], we will find the addition pressure at points situated on the

surface of the cylinder in the form
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Fig. 74. Function I(E) for Progressive
Motion of a Round Cylinder according to
the Unit Function Law.

calculated;
---------- approximated.

An (a, 0, t-aOj1 Cos rI CS

+ C.( b ',(i- d- cosn0,
i 0 (18.24)

t where

2-.i (18.25)

Calculation of the function •n(E) is associated with mathematic-
n

al difficulties. Its precise value was first derived by Goryainov
in conjunction with I. L. Mironov, A. K. Pertsev, and A. Ya. Rukolaine.

It is defined by the expression

xK,,. 1 (z. i 1, ( X)) .•t " nK,() -rK._, (x) ;, 01-

-- ; 2 e * (18.26)

where In (x), Kn(X) - modified Bessel functions of the n-th order of

the first and second type; V. - complex conjugate roots of the equat-
4 ion* 1

*•The number of roots is determined by the closest even number to the
expression n + 1/2.
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a b

PM Fig. 75. Pressure at Points
S 1.0-- during Diffraction of a Unitc- Wave with Respect to a Round

Cylinder: a - 0 = 00;
O,[ /• b - 0 = w/2; c - 0 = T.

i //

calculated, allowing for eight
terms of the series

- ------------ approximated, using the rough
approximation f (t)

(. ;~K'. (=-nK,• Cv)-._ fv) = 0.
(18.27)

For n = 1, 2, 3, Skalak and Freeman cite the values of the roots

in their study.

The calculated pressure in terms of the first eight terms of the

series for several points on the surface of a cylinder is shown in

Fig. 75 (calculated by Goryainov). Comparing these data with Fig. 71

we can conclude that the nature of variation in pressure on the sur-

face of a cylinder is the same as on the surface of a sphere, except

for a somewhat retarded drop in amplitude.

As before, pressure may be approximated roughly in the form

ia(a, ') z T- cos ,,( -- | + Cos 0),(t - I -I' cosO). (18.28)

The net pressure (allowing for the direct wave) is

p(a 0, 1. ) -- II r- c- ( . I +- cosO)I (t - I + cosO), (18.29)
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or, by counting time from the moment the direct-wave front converges

with the point of observation

, =(a- 1 + cosO 0

plc, 0, :l)= II + ?3lt,)cosO3(t,). (18.30)

A

The function ýi(Flcan be approximated with roughly the same

precision by a linear or exponential relation (the linear approximat-

ion is shown in Fig. 74). Thus,

(18.31)2 ""

Allowing for (18.31), formulas (18.29) and (18.30) may be re-

written in a form which is quite suitable for practical calculations

( P(a. 0, t 0)-(I ecos).o(t0,) *(18.32)

p(a. O. fit) + (- - cos0 jo(i,)- 3•o(l,-2)l. (18.33)

Let us now calculate the cumulative load acting on a unit length

of the cylinder when a plane wave falls onto it. Let us individually

evaluate the two components of this load. For the direct wave P np

= o0 (E - 1 + cose ), we find that

+ cosO)a cosO d6. (1834)

Considering that o0 (E - 1 + cos0 ) = 0 where cosO < i - t

(i.e., where E > arc cos (1 - E) and 21T 0 arc cos (1 - E)), for

t < 2 we will find that

Fli J) = 2e 'cos OdO = 2a I'2 - . (18.35)
0

*Formula (18.32) was suggested by Yu. A. Fyodorovich.
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Where t > 2

The second component of the cumulative load will be calculated
by employing the previously derived expression (18.24) for the quan-

tity of additional pressure:
2e 2M

F 1Q) =a~ p. (a, 0, 1) cosOdO a~ a.f -I + cos0) cosOd6 +
0

C() .C' - 0) Ocoq nOdO.
A- F0 0 d o (18.36)

Due to the orthogonality of the function cos no , all the terms
of the series in (18.36), except one (n = 1) vanish. Consequently,

+ co8) cos' OdO +

+ ait .! C d• • ,( -7

( (18.37)

In view of the property of the unit function, and likewise

(18.21) and (18.22), we will find that:

where < 2

F; V) - 2a cos'OdO 4~ a [arc cos (I -')+d -

+1'2- -;1- (1 (- )- -,-i )• I
=a arc cos (I-- t')÷ I 7t- P (I--j) + arccos(I-- +

•, +I"2: i'•-)] -• hl-di (18.38)
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Fig. 76. Net Force Acting on immobile
Round Cylinder Where Unit Shock-Wave
Falls onto It.

I-'

where •> 2

F, (1) -. a+ a• arc Cos 0 + -- x

"y -t -t1d +

x 0 + I2:

(18.39)

The calculated cumulative loads according to the formulas cited

by Goryainov are shown in Fig. 76.

§19. Hydrodynamic' Forces in the Progressive Motion of an
Absolutely Rigid Body of Arbitrary Shape

The general method for solving the problem, developed in the

Spreceding section can be also used in evaluating hydrodynamic forces

formed in progressive motion of arbitrarily-shaped bodies.* In this
case, the net load is defined by the relation

&*Strictly spýe~aking, this is valid for free bodies if the shape is
symmetric with respect to the direction of motion.
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F~ y,2, s(19.1)

where p(x, y, z, t) - pressure on the surface of a body;

n - the direction of the external normal at point

x, y, z.

The motion of a body occurs :n.r. the direction of the z axis at

a velocity of z = aO0 (t).

The velocity potential of the disturbed fluid motion is charact-

erized by the wave equation

+z' d -+' = at, (19.2)

under the following boundary conditions:

( on the surface of the body

A
z= ZCosnz. (19.3)

at a distance from it

f-,O npH r=Ii'+y+z-co. (19.4)

As before, let us apply a unilateral Laplace transform to equat-

ion (19.2)

i = 5(x. y. z, t)e"dI (19.5)

where Re(v) > 0.

Then, in transforms (19.2) will be written as

+,- + -' (19.6)
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The first limiting condition where z = 0 (t) will be

C---O nz. (19.7)

Drag force in transforms is

-. A

f ( ee = ,, •cos nzdS. (19.8)
SI'

Because we have been interested in integral evaluations from the

very start, let us stipulate that the function of the potential

be measured at points in the medium which are situated on some suriaces

S* which are equidistart to the surface of the body. The physical

meaning of S* surface is that wave disturbances propagating at the

same time from all points on the body will have envelope curves lying

on these surfaces. The generalized coordinate r for these surfaces

will be understood as the shortest distance from the origin of the

coordinates to points on these equidistant surfaces along the normal

( to the surface of the body. We are furthermore given that the cor-

responding distance from the origin of the coordinates to the surface

of the body is equal to a. Then, apparently, the relative coordinate

r= r/a = .will be satisfied by the surface of the body S.

Accordingly, it is convenient to additionally designate that

, (r. v)= j cosnzdS,

COS A (19.9)
p, (r, t) f jcosnzdS.

Employing the previously-developed general method, the function

T,(r, v) will be written in the form

S, ( '4)= C(') •(r, ').

According to (19.7) and (19.9)

L S,.c.s_ ,_ds_,
J.OCrO ;.A S nz (19.10)
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where i

(19.11)

Hence, to define C(v), we have

05__.. ,= C1 - ,- -(V.)

and consequently,

0:(, •1! ,.1•|(19.12)

where

According to (19.8) and (19.12), drag is

IU = A ) . (19.13)

or, using the original,

F. (t) = -.- (4') d. (19.14)
I-i

If we are given function F, (t), then with an arbitrary law of

variation in velocity . = .(t), drag can be derived with the aid of

the Duhamel integral

F(Y) = F. M Z (0) + S z'lt -- F, - •
o (19.15)

or with zero initial data [1(0) = 0]

F(t) = ,cz(1-) F.(•d-. (19.16)

Let us designate that

F0 l1)=--Fo' ) (19..7)
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where

g .1
*.= .(o) e V~ A= S dv (19.19)i

iti

Then

t) Fo (I--t)'(v) d-. (19.20)

Here, F 0 corresponds to drag when calculating in terms of the

hypothesis of plane reflection ( 1 1), while function ý(t) charact-

erizes variation in this force owing to diffraction. The main prob-

lem is namely in evaluating the function 'P(t). At the present time,

this evaluation can only be done for the simplest cases (an infinite

cylinder, sphere, piston, plate). The question arises as to how we

should proceed in other, less important cases (with respect to prac-

tical applications).

Let us try to plan a means for approximation of a solution. We

have noted many times before that the function (E) depends on one

dimensionless parameter, differs greatly from zero only at the initial

period in time, and is equal to the running time of the wave between

the most distant points on the surface of the body. In this interval,

the nature of variation in the function is close to linear. Moreover,

as was shown in §14 and 15, the total integral with respect to time

from function f(t) is proportional to the quantity of apparent mass.

Actually, where a 0 approaches infinity, we have from (19.20)

F" = (1) Fo." (t) dt. (19.21)

Because F 0 is proportional to a 0 and *P(T) is a function only of

one dimensionless parameter a = a0 T/a, where 2(t) the coefficient

known as appar:ent mass is not a function o:L the speed of sound and is

Sfequal to ,,,.,, Fu!'()= FO t C

0 0 (19.22)
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We can arrive at formula (19.22) directly from general physical

Sconcepts [17]. Actually, the integral with respect to time of drag

of a body in a fluid is equal to the momentum translated to the med-

ium. When the rate of travel changes according to the unit function

law, this quantity is different, like apparent mass.

Consequently, the following rough approximation can be suggested

for the function •(F)

30- ~~(1)- o (t --. i (19.23)

Time t* is defined from the condition of equality of the areas

bounded by the curves 1,(t)and *(E):

F, -* a..

whence

F a (19.24)
a,,

or I F, .

Thus, the problem of evaluating hydrodynamic force during pro-

gressive motion of a body obtains an approximate solution if we are

given the quantity of apparent mass.

As an example, let us consider the motion of a prolate ellipsoid

of revolution in the direction of the axis of symmetry.

Let us first find the value of F0 . After expanding the coord-

inates at the center of the ellipsoid, let us write the equation of

its surface

72 + 75 a' =I (19.25)

where a and b are the dimensions of the semiaxes of the ellipsoid
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(b > a).

According to (19.18)

$4
F =:'6a" cos' ni\dS.

or, using a contour integral instead of the surface integral,

Fe= 2,,,a2. ycos' nzdl=l 4rn I + (!|-)'C&cs mdz. (19.26)
j dz

0 9

but

dya

dz bi b'--z' i

A I

COS nz=

Substituting these quantities and performing simple transform-

ations, we find that

F. e 4t,.a. a ,'

11 kfkt- -

where k =- =-z• b"

Integration yields

F, z kJ2-..k#-, I r-si' V i1• (19.27)

As we know, the quantity of apparent mass, for the motion of an

Sellipsoid of revolution in the direction of the larger axis [16], is

3 2B (19.28)
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Fig. 77. The Coefficient F~ig. 78. The Relation of
of Apparent Mass for a Pro- t, as a function of a/b for
late Ellipsoid of Revolution. a prolate ellipsoid of re-

volution.

where

A.4n ý I' +- k)- k2, k - I

k2 - I

BIn-- I k)

Therefore,

._•f'.= o- -L^" '3 ", k l V i AT 3a 2B--

SkV L- (19.30)
a 3

where

ArFB I(19.31)

C arc sin
1/ (19.32)

a 3a

The relationships of e 2B and E, as functions of

are shown in Figs. 77-78. For large k, we have

Ai

In 2k-- I
ks

Sand consequently,

(n2 - 1).
253 (19.33)
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Fig. 79. Coefficient X Fig. 80. Coefficient x
for an Infinitely-Long for an Infinitely-Long
Small Arc of a Circle. Elliptical Cylinder.

'Fl
,0 I...f,"! t .l l•

i _. . . . i _ I I a! !

- -l,-,- - - ij

,,,- -iiiiriiii

D 20 0. o S0o $ .U

Fig. 81. Coefficient Fig. 82. Relationship of t,
of apparent mass for as a function of a/b for an
an infinitely-long infinitely-long cylinder having
cylinder having a a lune-shaped cross section.
lune-shaped cross sect-
ion.

/1.0

------------------------------------------------------ ,-----------------

0 I 3 J 5 7 8 9 ,0 ,
b0 1 2 jI v

Fig. 83. Coefficient of Fig. 84. Relatiolship of t,
apparent mass for an in- as a furction of b/a for an
finitely-long rhombic infinitely-long rhombic
cylinder, cylinder.
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L I i

'to 2 3 14 7

Fig. 85. Coefficient of apparent mass for
an infinitely-long rectangular cylinder.

44 -

06 7 b 0

Fig. 06. Coefficient of Fig. 87. Coefficient of
apparent mass for a apparent mass for an.elliptical
parallelepiped. plate.

The quantities F0 and E, are calculated by analogy for

bodies of different shape. Calculated findings for plates of diverse

configurations and several geometric bodies are shown in Tables 3 & 4

L",I in Figs. 79-87.

255



X >

44~ 3 ON~ 44

0 0v4 t- 0r4

to CO4 $

C4 .rz r4l~

4Jrz

0

I_______H_____H 4________ - I ri. r. .

'a. (q- 0 :uur.U 40 ro0r

04 H

256



VINI

OU~w-4:I 4. .

44.0 > H ~P >)~ ~ H

M i 0 a) 4) 0 0) 3:CO 4.) 4
S0)j4.).W - ) ( wo0 (

0) cfl :3 t~ 0) U )0 :1 0M L *04-

> (d P.40 p (d~ d) 1H 461$4 0 X4-A .4
> 14J W 14~-

0)

'I.Z

7.

4 r- Ala

C~4

0 Ia

40) r. -~ rd -r IU 4) r

I ri- 
91 .. 

> 4)~ 0 00 
r i

I . l > . r-i 4, .

Rerouc fo

25 Ebsra~,.ial cp.



rnr

0l Or-

0 -4~ co 0 t 0z

0 0>4r00

0 >k

V CO)

'4 04 m

$4 c

0

w r4 o - W

44 r- >>1 P-1 U) i
p U

'd 258



4.4

4.) dt O

z

r-44

0-p

CaL 4.~

ooV t

$4.

0)

(a ~ I 4J IQ)
Hn -H0 4w4

04 H 4~0
HO4
H4

259



0 o r.r-
*dz.

I-..

4-i

$-4

----- ----- - -r- - -

0260



I v
t §20. Hydrodynamic Forces Formed When Plane Wave Falls onto an

Immobile Absolutely-Rigid Obstacle of Finite Dimensions and
Arbitrary Shape

As we showed earlier, the problem of evaluating net load for 4
the incidence of a plane wave onto an absolutely-rigid body can be

reduced to determining drag for motion at a velocity which changes

according to the unit function law. The unit function, in turn, re-

duces to the calculation of the function ýW(t), which can always be

calculated approximately if we are given the body's apparent mass.

Based on these ideas, let us show the way to practical evaluat-

ion of the net hydrodynamic force for the incidence of a plane wave

onto a body of arbitrary shape.

After having selected the same system of coordinates as in the

preceding section, and expanding the z axis ini the direction of wave
( run, pressure on the direct wave and the rate of particle motion will

be written in the form

S,~j,
P1 )1 - )j- (20.1)

Sao (20.2)

The net load will be written as the sum of two components

F () = F.,(tM + F, (t). (20.3)

where F (t) - the load from the effect of direct-wave pressure on thenp
surface of the body;

F (t) - the load from the effect of additional pressure of the

reflected and diffraction waves on the surface of the

body.

By definition, ,the first component of load is
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, -a, -o nzd -p' , 1 f(t ) X
x .()c,- -oszds -C,,, ,-doS,,.,

s$ is 'a,#) (20.4)

where S 1 - the portion of the body surface situated in region z < a 0 t.

The second component is defined by the relation

Fa). Vx ye Z$ t)Cos nzds -, le Cos lzdS, (05S(20.5)

where * - velocity potential satisfying the wave equation

+=_r- + + =
~ ~, (20.6)

The boundary conditions of the problem are:

t!
on the surface of the body

AA, + COSnz (20.7)

or

- PO - 0 O (20.8)

at a distance from the body

y--.0 np,, r +,

After applying, as before, the unilateral Laplace transform

I? , T (X. 26 z. t)2e-"d (Rev> 0). (20.9)2

262



in transforms we find

- -•o70 (20.10)

Let us designate that*

y(R )=)Cos nzdS. (20.12)_ A

~~q~Co. )=conlzdS.
(20.13)

As in §19, let us write the function W*(r, v)in the form

.(;. v)=c(•, = C (20.14)

The bourndary condition of (20.11) for , v) can be written

( thus:

; , (20.15)

where Q(V) - the transform of the function:

Q(f) = ='JG.,fl UnCOs ndS~ •--- '(' --- ) x
S c= $

X a*( -- 6 cos'nzdS. (20.16)

We can easily illustrate the physical meaning of the function

Q(t). The form of its writing shows it to be nothing else than the

load formed on the surface of a body under the influence of reflected

wave pressure according to the hypothesis of plane reflection.

* As in §19, r = r/a, where a is the distance from the origin of
the coordinates to the surface of the body.
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Consequently, according to (20.14) and (20.15) 4
C (vC(p) .. (20.17)

and consequently,

.a.-- Q , (v (20.18)

where I •

Let us write the second component of net load in transforms.

According to (20.5), (20.12), and (20.18), we have

,= 0ve jcosnzdS= -*(r,

(20.19)

but [cf., for example, (19.19)]
4

(7. 1(20.20)
a,, 1, -

consequently,

v' Q , ) , , (,. (20.21)

Based on the Borel theorem for the original, we find that i

F Qi() Q (0)'•(t) + JQ - )d (20.22)

0

or, likewise,

I., Q (1) Q (I -- , : dv. (20.23)
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The derived solution is approximate, because it satisfies bound-

ary condition (20.17) in the integral sense of (20.15) and not at

each and every point. It will be precise only for bodies having a

surface motion which is orthogonal cos nz in form, causing pressure

which is distributed along the surface likewise according to the or-

thogonal law cos n' (e.g., for a sphere and a round cylinder).

For arbitrarily-shaped bodies, precise relationships which est-

a1lish the association between the diffraction load and drag were

derived by L. I. Slepyan [17] by expanding body surface point dis-

placements into a series in terms of a total system of vector funct-

ions.

Although relations (20.22) and (20.23) are generally approximate,

by satisfying the boundary condition in the integral sense of (20.15),

they permit us to precisely reduce the determination of diffraction

load for an arbitrary rigid body of finite dimensions to the eval-

uation of drag of this same body in an ideal fluid. Moreover, the

derived solution can easily be expanded to include the case of a

shock-wave having a curvilinear front (e.g., spherical). Instead of

the boundary condition (20.7), we will have:

dn +i v,, cos nv,,, = 0. (20.7a)

where nO - the angle between the direction of the external normalnp
to the surface of a body and the direction of the vector of particle

velocity in the direct wave.

A corollary of (20.7a) will only be a change in expression (20.16)

for Q(t):
A P

Q (t) = , )a ,, c ostinv ,cos nz dS
s (20.16a)

while retaining the final relations (20.22)-(20.23).

We earlier showed the feasibility of the linear approximation of
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the function p(t) [cf., for example, (19.23)]. In this case, where
St < t,

F( (t) a Q(t) Qtod (20.24)
U

where t > t,

t Q(--)l,.Q(1)- - (-.)d,. (20.25)

Let us designate the function Q(t) for the effect of a unit

amplitude wave using Q,(t). The function Q,(t) is variable until
the wave encompasses the entire body. Henceforth, it becomes constant

Q=O 'F. Q09 (20.26)

Lwhet'e t- a 0

L - the length of the body in the direction of front propagat--- ion,

It follows that F (t) is identically equal to zero where t >A
t + t,. Methods of evaluating the functions ' (t) and Q,(t) have
been illustrated many times above. Therefore, the theoretical port-

ion of the oblem can be considered as having been explained.

Let us illustrate these ideas with several examples.

Let us find the hydrodynamic force formed during the incidence

of a plane wave onto a sphere. The value of the first load component

was previously derived (cf. (17.61) and (17.62)]

=a2 (2-- ti2 ) where i < 2 (20.27)
1, 0 2.

Accciding to (20.16), the quantity Q, is

Q"(/t)=. "cs"2o(i+1-cosO)dS*
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3 -ell[ + (t-- |l where < 2

whe4e(20.28)

According to Table 3,

2Mfnp p , (20.29)
Fs as

Substituting (20.29) and (20.28) into (20.24) and (20.25), we

find that

7" + (j__ x?-• -_ I)' where ti<t.=
4 4

(-)-(..1)4 j(-2)' where I < i< 2

1 (i- 2)4 where

( 1 where 1>53.

(20.30)

A comparison of (17.67) and (17.68) with (20.30) shows that in

the given (but perhaps the only) case, the approximate solution is

somewhat more complicated than the precise solution. The convergence

of results is satisfactory, as attested in Fig. 88a.

The advantage of the approximate method, from the point of view

of simplicity in deriving a solution, becomes apparent when determin-

ing the load formed on a round cylinder. In this case [cf. (18.35)],

2a1/2i--t where t*"2
Fl0p 02 = (20.31)

J( a Jarccos(I--)+(1_D|/2i-i where <2 (20. 32)

where t > 2.
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Ft

(a) 1o (b)

C.5 0.3

Fig. 88. Net Force Acting Upon an Immobile Rigid
Sphere (a) and Round Cylinder (b) During Incidence of
a Unit Shock Wave.

precise solution; approximated.

while according to Table 3,

2Mp to =2,F. 0

I -(3 -- Darc cos (1--b)+ 1-• (3--87t+P)V')t$•
6n

where t < 2

( 2 2 2n

XV'6i-8--' where 2 < < 4
0 where : > 4 (20.33)

Results calculated according to the precise (§18) and aprroximate

solutions are shown in Fig. 88b. As we can see from the figure, the

convergence is rather good here. The bulk of precise solution cal-

culations cannot be compared with that shown above.

As one example, let us consider the net load acting on an ellip-

soid of revolution during incidence of a plane wave. In this case,

ra' (2i--i') where <2
F,, 0) = o where 1)2,

(20.34)

where i = --
b

b - the large semiaxis of the ellipsoid in whose direction the

wave propagates.
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The quantity Q, is calculated exactly as was shown in §19 when

evaluating F0 [cf. (19.26), (19.27)].

We have

[k2 arc sin[ k Ik

t r , "ks- I ( -)

k

Qks-0

+ )V !--(It where 7<2

2tav " (ktarc inl/ .. where 1>2./lis '- \T - ii .. I/ - -- (20.35

where , = b

According to data of §19 and Table, 3,

I.. .... I - .1• (20.36)

where p and C are defined by formulas (19.31) and (19.32).

Employing the relations (20.24) and (20.25) and integrating,

we find that

A, I A: + B + C + D where ej.

=-A,+A,+C- where t.< < 2

AI +A.-E--M where 2<t-'2 2i*

t0 where t>2+i,' (20.37)

269



where

IIh arc sin 1-T)
At=- *

kt- Ii t'

A k'-

F I, ,,I 1

L k2 - I

B= (A,- f_)(I* 4 )

C V (I'
40'

3i,(ks-)- 1)

D 3k2 + I

E=( I I + Vi'' 3. (k'-l)

' -.I I 3ik.-- )

The results of calculating hydrodynamic forces Fnp and F for

the values of k = b/a = 1, 2, 5, 10, and 20 are shown in Fig. 89. This

graph permits the visual picture of the diffraction component of load

for different relative elongations of the ellipsoid. As k increases,

the effect of diffracti.on is reduced and when k = b/a > 10 it may

be ignored. This fact is very important in practical evaluations.

The net load F = F + F formed on an ellipsoid as a function

of o 1 = (aot)/a (a small semiaxis) is shown in Fig. 90. Aside

from the conclusions already made, the graph permits us to consider

the change in hydrodynamic force as a function of the relative elon-

gation of the ellipsoid where the transverse cross section is the same.

In conclusion, let us find the load formed during incidence of

a plane unit wave onto a parallelepiped having the dimensions 2a X
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2,0 2, .

i!!

b¢

Fig. 89. Net Load Diffraction Component
And Component from Direct Wave for Influence
of Unit Shock Wave on a Prolate Ellipsoid of
Revolution.

diffraction component F ,
--------- component from direct wave F

np

-0 8 7-6-5 -3 -- 2'-1 b 2 3 J

Fig. 90. Net Load for Influence of Unit Shock Wave
on Prolate Ellipsoid of Revolution (time count begins
when shock-wave front arrives at middle secticn).
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X 2b X 2c. The wave propagates in the direction of edge 2c. In

this case,

F,1r S y q) -- o0 ...-- t,. (20.39)

Q. - SPO,( I 300lt-- 1t). (20.40) o

where*

S -- 4ab,

"Cj

= . 2 I (20.41)

2a*

t.- I-,- -(0

I (20.42)

The net load is

P() M F F --
S S (20.43)

where

PT = 7-;~t-) - ---- ,o(I -,.

(20.44)

In a limiting case c ÷ 0, we derive the force formed on a rect-

angular plate
F (-- - !) _ F ~ a -- , - . ){I ~) _ % ( )

S S % (20.45)

The values of the parameter t * - 2a y are given in Fig. 86.a 0

kCf. Tables 3, 4, and Fig. 86.
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Let us find the pulse quantity of the net load. Integrating

(20.43) for a parallepiped, we find that

J = ,,p-; J = ~tt+ t. '..•c Ai,,p
, -So-- + ,1- + (20.46)

for a plate

.-- j..- SI, .. .
PA" (20.47)

The need often arises to define not the overall load acting on

a body, but its individual components formed on sections of the sur-

face; these components are in one way or another oriented with respect

to the direction of wave propagation. Let us consider this problem

using the example of a parallelepiped. Let us start with some general

remarks.

We earlier showed that the second load component is defined by

(a relation similar to the Duhamel integral [cf. (20.22), (20.23)]. The

function f(t) characterizes change in force due to diffraction, while

the function Q(t) characterizes change in force due to the body being

drawn into the wave's sphere of effect. Where f(t) H 1 (the ypothesis

of plane reflection), load is defined by the function Q(t). If Q(t) is

a unit function, load would be defined by the function fP(t). Conseq-

uently, as we said in §17, there is total analogy between the functions

Q(t), f(t), and the possible formalization of the solution of this

problem. Specifically, the integral evaluations (20.22) and (20.23),

at first approximation, can be expanded to an arbitrary portion of the

body surface S

FA1) =Qs, (0) "1 (1) + .IQ5, (V - )5(): (20.48)

or

F ) , Q, ( -- ) d-. (20.49)
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Equations (20.48) and (20.49) would be precise if the additional

4 pressure on an arbitrary point on the body were defined by a general

function of time

pi(1) -osf ZM1(i0 0(), (20.50)

where t1 - time, counted from the moment of the wave front's arrival

at a given point.

We earlier noted that in the motion of a sphere and an infin-

itely-long round cylinder according to the unit function law, the

relation (20.50) is satisfied. This generally does not occur, however.

Therefore, formulas (20.48) and (20.49) can only be used to perform

approximate practical evaluations.

Let us employ these ideas for a separate definition of loads

acting on the frontal and lee surfaces of a plate and a parallele-

piped. In the first case, in the incidence of a unit wave

Qý S 711 11 )$ (20.51)

Q "" S0(W. (20.52)

and consequently, according to (20.48)

P,,)- G. 5• ( I)a ). (20.53)

Adding the load from the direct wave pressure to this, we find

F, =S(1 -- *(M)) •(1). (20.54)

F, 0 -- M-- ())=(. (20.55)

or likewise,

± =_ 2 + 2 Pt
S - (20.56)
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.- -2(I - -T) = 2., (t ) ,o(1), (20.57)

where P - the average load acting on the lee side of a plate.
5T

Formulas (20.54)-(20.57) coincide with the relations established
previously in section §13, attesting to the effectiveness of this

method.

If we assume the linear approximation for P(T), taking (20.44)

into account, then

F,•- = (2 -!-.),%()--o(t--t.), + (t--t -. ) (20.58)

Let us employ formula (20.40) to evaluate load .t the edges of

a parallelepiped

SQ = S I20(t) + *0(t -- t,)l.

whence

Q't = S20 (t), (20.60)

Q, - S=0(t-- t,) (20.61)

and consequently, according to (20.48)

FAO= S M(t) oA(1), (20.62)

(20.63)

Adding the load from direct-wave pressure, we find that

Ft---- S I I - ;( 0)I'•(t). (20.64)
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F,=--SI -- •(t-- t'] '.(t -- 1,).(2 .5F1_1I I 0 0 (20.65)

This finding physically satisfies the assuzmption that at any

point on the frontal surface, the diffraction pressure is exactly

the same as at a symmetrically situated point on the lee side, differ-

ing only by a shift in time by the quantity t£= L'. Strictly speak-

ing, however, this is no so. 0

In the incidence of a direct wave onto a parallelepiped, dif-

fraction waves are formed on the lee side after the time interval t =
2c and reach the edges of the facial surface after At = 2t., and nota 0

At = t as occurs in the progressive motion; this effect can be de-

scribed by the function *(t). Consequently, formulas (20.48) and
(20.49) somewhat reduce the load on the frontal side of the parallele-

piped. Diffraction disturb aces on the lee side appear at the edges

in conjunction with the direct wave, inducing an additional rise in

( pressure. The error, in evaluating net load vanish and we arrive anew
at precise quantities.

By analogy with (20.58) and (20.59), in the case of the linear

approximation of the function p(t) for loads at the edges of a para-
llelepiped, we have

.(2 .... () -- 0 -- A + 100o(t--t,). (20.66)

Ft _ 3-- -- - (20.67)
S

or

S (20.68)

F, -p,(t-t,)(-S = ' - O (20.69)

where average pressure pT is defined by (20.44)
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The results derived can easily be expanded, with the aid of the

Duhamel integral, to an arbitrarily-shaped wave

P = P/(I).

This problem is extremely simple, because the function pT is a

linear function of time and consequently, as was shown in §12, the

Dirac delta function will act as the subintegral expression.

Therefore, it comes down to calculating the expression

D(t) ( -(20.70)

Thus for an exponential-shaped wave

p,, t) Pt)n
e 'Pm d-. e)

D3.).. ( -, • 1 -1 (20.71)

for an exponent of limited duration

I

p p,,)e IA.

-_ t) ot- ')CI.
-e 0*0 (1

(20.72)

for a triangular-profile wave

pPm (= Pon) [1u~) 0(t ).

Day=
W-- ( -I,);

(20.73)
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1,5 ii3p0 IL

0.,

"-0.5

Fig. 91. Net Load on an Infinitely-Long
Immobile Rigid Plate 2a in Width During
Incidence onto it of a Triangular Shock-Wave
of the T =6A type.

+ a0

( for a parabolic-profile wave

,. p+["(11 - °( - + +

4 + n - , 1 ( 1
+ 'I Prijl

",-i I I,

(20.74)

The load quantities at the edges of a parallelepiped will be 4

- 2p,,f()--D(t) +-D(t--t.), (20.75)
S

F--- = -IDYt - ti) -- DO -- t, -- t,). (20 76)

The net load is

F4• ' F, =2pf(1)- D-()--D (t--t) D(t--t,)t D)t t4+,) (20.77)
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Apparently, relations (20.75)-(20.77) may also be used for plates.
f For this purpose, it suffices to assume that tz E 0.

To illustrate, plotted in Fig. 91 is the variation curve of the

net load acting on an infinitely-long rigid plate 2a in width during
the normal incidence onto said plate of a triangular-profile plane
wave having a duration of t. = 6i-. The solid line indicates cal-÷ aN
culation according to precise relRtions in section §13; the dotted
line indicates calculation according to the formulas of this section.
A totally satisfactory convergence of results occurs. This allows us

to recommend the use of the simple relations derived here for prac-

tical evaluations.

Summing up, we may note that the methods evolved above permit us

to reduce the solution of complex diffraction problems for bodies of
arbitrary shape to the simplest calculations. It is only necessary

to know the quantity of apparent mass of the body under consideration

of of a body which is similar to it in contour.

279



.

1, CHAPTER III

THE EVALUATION OF EXTERNAL FORCES

§21. Generalized Hydrodynamic Forces of the First and
Second Category

In the study of the interaction of a shock-wave with an obstacle,

we ordinarily distinguish between hydrodynamic forces of the first and

second category. Hydrodynamic forces of the first category includes

forces formed on an obstacle under the assumption of its absolute

rigiditl, Hydrodynamic forces of the second category account for

the effect of structural displacement and deformation.

In the most general case, displacements of a body are character-

ized by six generalized coordinates: three projections of displacement

of center of gravity onto the coordinate axes and three angles of

( rotation about these axes. The coordinates can be described by the

equations of solid body mechanics. We most often employ the Lagrange

equation in its second form which, for holonomic systems, has the form

dt (- ) , (21.1)

where T - kinetic energy of tLe system; qi - generalized coordinate;

F. - generalized force.

Structural deformations, as we know, can be described by the

corresponding differential equations of the theory of elasticity and

plasticity.

The subject of research into the general problem of external

forces during underwater explosion consists of the following: analysis

of these systems in conjunction with the wave equation, satisfying

the condition of equality in the normal velocity components on the

surface of a body. The mathenatibal problems of such a task are
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Sapparent. For purposes of simplification, we are often given the

form of elastic-plastic deformation. The motion of several typical

points enables us to deduce structural deformation as a whole (the
"adduction" method).* In both the strict and simplified formulation,

the recrirocal effect of deformation and load are specific for the

problem of external forces during underwater explosion. The magni-

tude and nature of the external load absorbed by the structure is

not only a function of the pressure fields during explosion in a

free fluid, but also depends to a considerable extent on the
characteristics of the structure itself. Structural displacements

and deformations induced by the effect of a shockwave in turn lead
to a change in the pressure fields. The considerable acoustic re-

sistance of water makes this reciprocal effect extremely substantial.

The reciprocal effect of displacement and load can be illustrated
using the simplest of examples. Let us consider the motion of an

absolutely rigid body, which is symmetrical with respect to two
mutually-perpendicular planes, under the effect of a plane shock-wave

propagating along the main axis of symmetry. The motion of the body

will be defined by one coordinate:

MW = F. (21.2)

F =-S pcosnWdS, (21.3)

where M - mass of the body; S - its surface; W - displacement; NW -

- the angle between the direction of motion and the external normal;

PZ - net pressure on the surfaces of the oody formed as a result of

interaction with a shock-wave.

The association between net pressure and the potential function

can be expressed by the relation

P•=--•0• "(21.4)

f * The method of "adduction", as applied to dynamic calculation of
marine structures, was developed by Yu. A. Shimanskiy [25].
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The velocity potential can be defined by the wave equation

Oil (21.5)
JXS 0)2  0:- a. 0

The boundary conditions are: on the surface of the body

, it Cos nW. (21.6)

at a rather great distance from it

•'i, .1. " ", ?lip' (21.7)

where np - the velocity potential of particles in the direct wave.

Even at its simplest, the solution of this problem led to the

need for combined analysis of the wave and integro-differential equat-

ion

dt*-

01 2h(f.* 0 :f: I 0"h•

(21.8)ax7 alit ap' a2 012

with an extremely "unsuitable" boundary condition (21.6)

The notion of two categories of hydrodynamic forces, in conjunct-

ion with the use of the superposition principle, permits us to somewhat

simplify the problem. Indeed, if we assume that the external load can

be defined by two components F 1 and F2 , one of which is not a function

of structural displacements and deformations, then it is possible to

evaluate, in an a priori simple way, the quantity of this component

allowing for diffraction phenomena; this was the subject of the pre-

ceding chapter. The separate consideration of hydrodynamic forces

of the second category permits us, on one hand, to indicate several

general approaches with different assumptions on the nature of deform-

Sations; and on the other hand, to note in a number of cases relatively

simple methods for obtaining final results with a given degree of pre-
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cision. This comprises the advantage of the adopted classification

I of generalized hydrodynamic forces.

In this chapter, primary attention will be focused on the study

of hydrodynamic forces of the second category and net loads during

the interaction of an underwater shock wave with various types of

pliant obstacles.

§22. The Interaction of a Shock-Wave with a Free Rigid Plate

The simplest case of interaction of an underwater shock-wave with

a movable obstacle is the normal incidence of a plane wave onto an

infinite free rigid plate. There are no diffraction effects present.

The field of pressure and particle velocity in the fluid is only a

function of one coordinate z. The study of this problem is of both

methodological and practical interest, because this method can be used

to evaluate the action of a shock wave on a plate where the period

of the positive pressure phase is much shorter than the wave running

time from the attached contour to the center.

Given that a plate divides two fluid media, each of which is

homogeneous, but has its ovm density and speed of sound. For the

positive direction of the z axis, let us use the direction of direct

wave run; the origin of time counting - from the moment of arrival of

the wave front at the surface of the plate; and the origin of the z

aixs - on the frontal surface of the plate. Then the pressure field

on a direct wave propagating in the first medium will be characterized

by the equation

- m) (22.1)

where pm - pressure on the front; f(t) - the function describing the

change in pressure at the point of observation; a1 - the speed of sound

in the first medium.
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The reflected wave can be written as two components: the wave

reflected from the immobile obstacle and the wave induced by the motion

of the obstacle under the influence of the net load.

The first component is

OT aNt( ±-)at(+~) (22.2)

To define the second component, let us employ a wave equation

for plane-symmetrical motion

Z I 2 all (22.3)

where 4 - the velocity potential of the additional field induced by

plate motion.

Solving this equation with zero initial data and boundary con-

Sditions

a•:0 (22.4)
I? +0 iZ -lv0

y-0 npH z*o• (22.5)

and using the potential 4 to take into account relationships for

particle velocity and pressure, for the second component of the pres-

sure field on the reflected wave we will find that

"~ ~ V-,ol'( +--ot +-)
PUP,, 0 10 (22.6)

where W(t) - displacement of the obstacle; p1 - density of the first

medium.

Therefore, the net pressure field in the fluid in front of the

obstacle is

S,., . Pi,,.. + ,.. m-,, ,,-o,, (t ,-( -L)

-(22.7)
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Because the direction of particle motion in the direct wave co-

incides with the positive direction of the z axis and in the reflected

wave runs counter to it, the net particle velocity in front of the

plate is

Vlee.(Z. I) gp- Vthp - t (22.8)

We can easily see that for final evaluation of the pressure and

velocity fields, we must know the still unknown function W(t). Let

us use Newton's law to define it

mW (t) = F,(t) + F2(), (22.9)

where m = P2 6 - the mass of the plate, adjusted to a unit of area

(p2 - the density of the plate material; 6 - its

thickness);

F1 (t), F2 (t) - generalized hydrodynamic forces of the first

and second category, likewise adjusted to a unit of

plate area.

By definition, F1 (t) is equal to the net pressure on the immobile

obstacle according to (22.7):

F, () . 2p,,p(0, t) - 2pm f(t) o(t). (22.10)

The generalized force of the second category F2 is defined by

the pressure induced by the motion of the plate. One of the compon-

ents of this force was previously derived and can be described by

formula (22.6).

If the fluid behind the obstacle has a density P3 and a speed of

sound a 3 , the radiation pressure in the second medium is

Pm~ 3:0 t .- Z o - •,)Z t ) (22.11)

Considering that plate displacement occurs due to the difference

in pressure on both of its sides, for the generalized force of the
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second category we find that

P1  P 1PM3 -Pn (1)j (22.12)

As follows from (22.12), the net load F = F1 + F2 is a function

of the parameters of obstacle motion; these in turn are defined by the

effect of this load. The evaluation of external forces in underwater

explosion is impossible in isolation from the study of the structural

deformations (displacements) induced by them. This circumstance de-

fines the primary difficulties in the external force problem.

At its simplest, the load F2 is a linear function of the plate's

rate of motion and the derivation of final results offers no problem.

Combining (22.9), (22.10), and (22.12) yields

fiW -+(plat + WS,)W 2pm,/(t) . (22.13)

The general integral of an ordinary differential equation of

second order (22.13) is

W 7 ) W'. + .(I - e) + d, .:.()d -

- ~OIU

P4a 3 •,0 (22.14)

where

Plat rnW

As a rule, from the practical standpoint "he solution of (22.14)

with zero initial data (where t = 0, W = V = 0) is of primary interest.

Let us consider it in greater detail under that assumption. Above all,

let us note that, as follows from (22.9), the plate accelerates only

where F = F1 + F2 > 0. Consequently, the maximum velocity W is at-

tained at time t = tH, where F(t ) = 0.
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Because pressure behind the obstacle is directly proportional to it

rate of motion, the maximum pressure value behind the obstacle cor-

responds to time tH

Because

F- F,,1 *F = 2p, (0)- ( +,,a p•')P 3)W(I) (22.15)

the magnitude of maximum plate motion can be derived from the equation

plat Pva ( 22.16 )

According to (22.11), the pressure behind the plate which cor-

responds to this magnitude is

PS,, ='x P14 1 (t,,) = 2p,,., Poo), (t.)
Psam t ,a.,(, (22.17)

The time tH of acquisition of maximum velocity is inversely

proportion to acceleration and consequently, proportional to the mass

of the plate.

The greatest momentum acquired by the plate due to the shock wave

can be easily derived by integrating (22.9) from zero to tH*

We have
'N

,,.• t,,•:,: ,•. r.:=• F(1) d;, J,,
"mW (22.18)

where J+ - the pulse of the positive phase of net load. Comparing

(22.18) and (22.16), we conclude that

I =.= 2,, - Pill) (1:, 1) (22.19)
plat -, pa

Time t like the nature of variation in parameters of motion,tH

is a function of the direct-wave pressure contour.
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Let us evaluate the most often encountered cases in practical

* applications.

1. Pressure on the direct shock-wave changes according to the

unit discontinuity function law

p.,,(t) = P,0o(t).

The solution of the differe•ntial equation (22.14) with zero in-

itial data has the form

W (1) = :'P'" I - (J-- -""20

plat, [ (22.21)

where

wher 
Ll " 30 (22.22)

The rate of plate motion at fi:rst increases abruptly, and then

asymptotically approaches its limiting value

W(II:..,max (22.23)
hat1

The maximum velocity is not a function of plate mass and can

only be defined by pressure on the front and the acoustic properties

of the media.

Pressure in front of the obstacle is reduced from the doubled
pressure on the direct-wave front to the quantity

A P min =" Pin 2 - 2."I'l ] - -." .- - .. 2 24)
plat= :,u. PASI ill - u p 'a

Pressure behind the obstacle increases froy. zero to this sawe

quantity min 2p

S288 (22.25)
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These limiting pressure values coincide with thhe amplitude of a

I refracted wave at tne interface of two media having acoustic resist-

ances plal and p3 a. The presence of a rigid obstacle only induces

inertial retardation of the process of refraction. As the afoustic

resistance of the medium behind the obstacle increases, pressure in

this medium increases; when acoustic resistance is reduced, the pr:

sure drops. When the acoustic resistances of the media are equal,

pressure in front of and behind the obstacle tends to equalize itself

with the pressure on the direct wave; the rate of plate motion tends

to be equalized with the velocity of particles behind the direct wave

front. Where p3 a 3  << plal, pressure behind the obstacle becomes

negligibly small. Net pressure in the medium in front of the obstacle

also approaches this same quantity.

2. Pressure on the direct shock-wave changes according to an

exponential law

~P,,,It) = p,,,e C O(M.

The solution of the differential equation (22.14) has the form

+ m+)C e (22.26)

2p-- (22.27)

where

-_, (22.28)

According to (22.27) and (22.7), net pressure on the frontal

Ssurface of the obstacle is
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21, , . -M e (22.29)

According to (22.27) and (22.11), pressure on the lee surface of

the plate is

- . - (22.30)

The time of acq.isition t H 1of maximum pressure behind the obstac-

le (greatest rate of plate motion) can be found by solving the trans-,

cetdental equation

., -( 1.k t* * 2 -

e • +%)e (22.31)

whence

~0 (22.32)

Considering that

pnpQ.)prne T-+T = Pm( 01 ,1, (22.33)

and in view of (22.17), we will derive maximum pressure behind the

obstacle in the form

Pm3x .3 P,,e(? ±I + (22.34)

From the applied popi t of view, two cases are of the greatest

interest: when water is foltnd in front of and behind the obstacle

(the problem of plate protective properties) and when water is in

front of the plate and air is behind it (dynamic calculation of plates
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and covers forming the body of a ship or other hydrotechnic structures).

In the first case, which was first studied by Novozhilov, Lefon-

ova, and Aleksandrin,

According to (22.29) and (22.30), pressure in front of and behind

the plate will be

2p,) , ( -- I)e - :- . (22.35)
P, (t) C e-

P3l) l-eP-• -e 1.
21- 1 (22.36/

The time that the plate acquires the greatest rate of motion

will constitute

In 21

T * - (22.37)

The maximum pressure behind the plate corresponding to this time

is

p*,j m = p.,e 1,- ,, (2:1) I-(22.38PS fj% zp.,e(22.38)

Figs. 9 -93 show graphs of the functions p ,(t) p3(t) for differ-PM PM

ent values of 0. The graph indicates that pressure in front of and

behind the plate remains positive; pressure behind the plate rapidly

increases to maximum magnitude, then changing roughly in accordance

with the same law as pressure on the direct wave; where 8 > 5, the

protective properties of obstacles are small. Maximum pressure in

this case is reduced by no more than 20%.

There is likewise some interest in evaluating the pulse of pres-

sure and energy flux density translated across the obstacle.
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According to (5.52), (5.56), and (22.36), for the indicated
quantities we get:

J= P• - "e di - dt .O

o0 0 e (22.39)

E = •--- i dt = kE.,P,
, (22,40)

where k = (20)/(20 + 1) - the coefficient describing the loss of

wave energy as the obstacle passes;
1 Pme

E = 17m - direct-wave energy flux density.

Therefore, the pressure pulse in a passing wave is equal to the

pressure pulse of the direct wave.* Pulse maintenance occurs with

some drop in amplitude due to the increase in activity duration.

Energy flux density behind the plate is proportional to the coef-

( ficient 0, i.e., the shorter the wave is, the less energy flux dens-
ity is. Where 0 > 5, the decrease in wave energy behind the obstacle

is not in excess of 10% of the initial energy.

The maximum travel of the obstacle, according to (22.26) where

t * attains the value

m ..a ,a (22.41)

which is equal to the displacement of fluid particles after the direct

wave has passed.

Let us now consider the second case ( a1 = 0, 03 = 0)**, whose

primary features were described by Cowle [10]. These data are quite

important from the practical standpoint, since they describe the
initial phase of interaction of an underwater shock wave with pliant

*As Slepyan showed, this conclusion is valid under considerably more
general assumptions.
"**Because the acoustic resistance of air is almost 3500 times less than
the acoustic resistance of water:8 3 /0 1 = 0.3 • 1/103, we can assume
that a3 = 0. 292
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Fig. 92. Net Pressure in Front of a Plate Which is
Completely Subme ed in Water, for Various Values of

8 = 00 as a function of Time During the Incidence on
m

Said Plate of an Exponential-shaped Underwater Shock Wave.

P3

0.5/ 0 2..
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Fig. 93. Pressure on a Passing Wave G

Behind a Plate which is Completely Submerged in Water,
for Various Values of $ as a function of Time During
the Incidence onto Said Plate of an Exponential-Shaped
Underwater Shock Wave.C 29
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Fig. 94. Net Pressure in front of Plate
Separating Two Media (Water and Air) as a
Function of Time during Incidence onto said
plate of exponential-shaped underwater shock
wave.

structures. Employing previously derived results, we get the

following re'.ations:

plate travel

PoI (22.42)

rate of plate motion

oOo S-_1 (22.43)

pressure on the reflected wave

po.( ,- _ 1 p• _ L -. I-t\
p -) --- 2(.) = P. ke-C

12:e -(I + C (22.44)

net pressure

""__ -e (22.45)
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Fig. 94. shows net pressure on a plate plotted against time for

I various values of the coefficient 8. The magnitude B = 0 is satisfied

by an infinitely-large mass (the plate is immobile). In this case,

pressure remains positive. For all other values of the coefficient 0,

there is a rapid drop in e~essure as negative stresses are formed in

the fluid.

The effect-time of the positive phase of excess net pressure,

according to (22.32), is

p--! (22.46)

We can use relation (22.19) to define the pulse of the positive

pressure phase. We get

2m"
J+=p--• P~(I.J= 2" e (22.47)

SBecause the total pulse of net pressure is

J•='fPp ..dt. 4"" -- =0.
p-i(1)di e e (22.48)

0

the absolute value of the pulse o:" the negative pressure phase is

equal to J+.

The net pressure curves have a minimum whose position is defined

from the equation

-- ', --1. e -0. (22.49)

The occurrence time of the minimum is

_! ý2 .(22.50)

After substituting (22.50) into (22.45), the quantity of minimum

net pressure will be derived in the form
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Pmin -- -
2P-'- (22.51)

For the most frequently encountered interval of values • > 5,

the absolute quantity pmin does not exceed 0 . 1 8 pm. At some distance

from the obstacle, however, net pressure in the fluid may attain

substantially greater negative amplitudes, because at these points
the expansion phase of the reflected wave is superimposed on the

tail section of the direct wave. According to (22.7) and (22.44),

for an arbitrary point in a medium in front of an obstacle

1-

I
+ 2e + - )e + (22.52)

(Calculations according to (22.52) are shown in Fig. 95, which is

taken from Cowle (10]. We can see from the figure that zero net pres-

sure is formed to begin with on the plate. Negative stresses of a

given amplitude are formed earlier at the corresponding points in the

fluid. These stresses propagate in the medium, which is disturbed by

the passage of the direct wave of diminishing amplitude. Consequent-
ly, in an absolute system of coordinates their rate of travel is

slightly greater than the speed of sound. In a fixed range of quan-

tities pm and 8, net negative pressure can be greater than the sum of

hydrostatic pressure and the yield stress of the-fluid. Cavitation

occurs*.

The primary qualitative results during interaction of a plate

with a plane wave of other shape remain the same as in this case. Thus,

for a direct wave of parabolic and triangular profile, we are restrict-

ed only by the writing of the appropriate theoretical relations.

6* On the interaction of a shock-wave with a plate. allowing for
cavitation, see §32-34.
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where

m ,, (22.56)

With the aid of (22.7), (22.11), and (22.55), we can easily

find pressure both at an arbitrary point in the fluid and on the plate.

In the interval t > t+, the rate of plate motion steadily de-
crcases. Its greatest value lies in the interval 0 < t < t+

and can be defined by the transcendental equation

0.

(I + ,• I,,e -- 0.O

whence

"- +(22.57)

According to (22.17) and (22.57), maximum pressure behind the

obstacle is

_.2pa•, _h __, =
p_ Pm '

(22.58)

In the event that wave is found in front of and behind the ob-

stacle ( 1 = 3 = 0; a1 = a, = a0 ), pressure on the frontal surface

is

p, (1) ='2p... ( 1 '~-)3,~-~~ t'~-P(l 22.59)

pressure on the lee surface is

J -.L .) ( .- L - (-. +- -- .+ ,-•-+ .L --•- % ( -- t ) ,(22 .60)
' 298



SIN.

9 0.

0,5 1,0

Fig. 96. Relationship of P3max as a Function of 0.

pnt

I - along the lower scale of the abscissa axis;
II - along the upper scale of the abscissa axis.

where

POCOI+
m

{According to (22.57), the quantity tH is

-LL I-I,(I + 2,0). (22.61)

Pressure behind the obstacle which corresponds to this quantity

is

A, A's IX In (I -+ :1

2. ~(22.62)

The results of calculating P3max/Pm, describing the degree of

"transparency" of the plate for the direct wave, are shown in Fig. 96.

The total pressure pulse on a wave behiind the obstacle is equal

to the pressure pulse on a direct wave

J = p3 (t) p- '. --e ' d

S4 .. e - I J e d.,I -•-t 'U
t P(22.63)
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If the plate divides water and air (P1 = P0 ' P3 - 0; p0 a0 t4+
m

then in the interval* t < t+ the plate travels
I4

2p.__, I tS +.
W (t) .aT.W _ 2f (22.64)

the rate of motion is

(22.65)

pressure on the reflected wave is

[OT (1 (2p,
=P,[I + + ±)-2 ( -+-L)]

(22.66)

net pressure on the plate is

pp..(/-) , -( -- - • , , •
2P e .(22.67)

the effect-time of the positive phase of net pressure is

tW C7 1T In (1+ ).(22.68)

the positive phase pulse of net pressure is

= 2 Pfftl /(22.69)

A graph of net pressure at different values of 8 is shown in Fig.
97. Their qualitative correspondence can be seen by comparing Figs.

94 and 97.
7*In this case, cavitation usually7s formed before the effect of pres-

sure in the direct-wave positive phase ends and thus writing a formula
for t > t+ makes no sense. 300
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Fig. 97. Relation of - as a function of t for
Pm

Various Values of a = p0 a0 t+ During Incidence of
m

A Direct Wave of Triangular Profile.

4. Pressure on the direct shock wave changes according to a

parabolic law:

(22.70)

The solution of differential equation (22.14) for an arbitrary

value of the exponent n in finite form cannot be derived. For whole

n's, these relations may be written; the greater n is, the mure un-

wieldy the theoretical relationships become.

These circumstances make us seek irom the very start an approx-
imate solution of the problem. The simplest method is the approxim-
ation of the parabola with a linear relation, which permits us to sub-
sequently utilize results which were derived earlier. An equality of
pressures on the front and an equality of pulses in the positive phase

can serve as the natural conditions of approximation.
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Fig. 98. Net Pressure in Front of a
Plate Dividing Two Media: water and Air,
During Interaction with Said Plate and 1
Parabolic-shaped Shock Wave (n = 2,
t+ =600 ps)

precise solution,
------------- approximate solution.

Because for a parabola

a r

and for a triangular-shaped wave

J.. -P~r+.

the association between the true effect-time t+ and the conditional

t. can be expressed by the relation

2nto+ - - t+. (22.71)
-4-1

A parabolic-shaped shock wave car be approximated by the relation

P (t) =- A. - 00() -00V-(22.72)

The use of this approximation, which is completely admissible for

considering the overall interaction picture, leads, however, to con-

Ssiderable error in the initial and most important time period [0, tH].

H0
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Consequently, for ths interval [0, t ] we should use the indic-

• ated method to approximate only the initial section of the parabola.
Based on this condition, ve get

- ,(22.73)

where
+r

'HEX

(22.74)

m

In

We can judge the error of approximation by considering Fig. 98,

Swhich gives the theoretical results for a parabolic-shaped direct

wave (n = 2) according to precise and approximate relations.

Let us note that for n = 2, the solution of the differential

equation (22.14) has the form

W M - ý•J• + i,, ,4 , _2_s•

(22.75)

I
211ol 2 + -

Pagia) P A., . (.P, g + Ps)' P

+ - 2,- t÷ ' (22.76)
Q1 + PS) T+-
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923. Integro-Differential Equation of Piston Motion Under
t' the Influence of an Underwater ShocK Wave

Simple solutions of problems involving the interaction of an

underwater sho';k wave with pliant obstacles (similar to those con-

sidered in the preceding section) can be derived for infinite obstac-

les.

For bodies of finite dimensions, the effects of diffraction lead

to rather complex relationships of the generalized hydrodynamic force

of the second category as a function of parameters of motion. Let us

illustrate the basic aspects of this problem, using as our example

progresslve motion of a piston with the incidence onto ,aid piston of

a plane shock wave.

As was shown earlier, in the motion of a piston according to the

unit function law, the magnitude of hydrodynamic lead can be defined

by the relation [cf. (14.49), (14.47)]:(.'
F . F,.•lt), 23.1)

F,= : 0a0S,

where P(t) - the function describing the diffraction field, changing

from one to zero;

S - the area of the piston.

For an arbitrary law of motion, drag can be calculated with the

aid of the Duham,"-. integral

-- F.It) (10) -- '0 .ý W (t - -c). (-)d. (23.2)
0

or with zero initial data [W(O) = W(O) = 0]

-s F9SW(1 -- ) (,)d,. (23.3)

Integrating by parts twice, equation (23.3) can be rewritten as
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FFWI
Ft-- FW M -- fi'1W ()-- . -(23.4)

To calculate the force F 2 , we must know the parameters of motion

which are formed as a result of this force and the first category

hydrodynamic force acting on this piston. Because the considered

system has one degree of freedom,

MW F, (f) + F,(). (23.5)

where M - the mass of the piston, or substituting (23.3) or (23.4),

MW'+Foj •W(t--F)O(Wd: -F,(I). (23.6)

MW F•W(t) + F,,!'(O)W(t) I F, Wl--!"(1d=F,lt) (23.7)

Therefore, the interaction of a shock wave with the piston can

be described by an integro-differential equation of the type (23.6)
( or (23.7). To avoid complicating analysis of these equations with

secondary details, let us select the simplest form of function Fl(t).

The simplest functional relationship of Fl(t) occurs in the study of
generalized forces formed on a plane piston having absolutely--rigid

walls along its edges [cf. §14]*. In this case,
F, = 2SPm (t). (23.8)

where S - the area of the piston; pmf(t) - pressure change on the

direct wave.

To solve the integro-differential equations (23.6) and (23.7),

we must know the function f(t). We became familiarized with the meth-
ods of defining this function in §13-14. A typical feature of the 4
function f(t) is that it is distinct from zero in the initial period

of motion [0, to]. The duration of this period can be defined by

*We ought not thinkthat this schematization of the p oblem to ally
('eprives it of meaning. In addition to scientific and methodological
_nterest in the applied respect , it has value for planning and analyz-
ing the measurements of an entire series of instruments and data units
(membrane indicators, hydrostatic gauges, stress measurers, etc).

305



the disturbance propagation-time in the fluid between two most dist-

Sant points on the surface of the piston. Moreover, as was shown in

§10-20, the integral of this function between 0 to t 0 is proportional

to the quantity of apparent mass

.,°
Fo!.(t) dt =Mill).

"" (23.9)

Consequently, if in the interval [t, t - to] there is little
change in acceleration W(t), then the drag for this time interval

can be written as

Ft (1) Fl- -- ,, (1).f• ' d: - M. ()F ,W (23.10)

In view of the fact that • (t) H 0 where t > to, the integro-

differential equation '23.7) will be written in the following manner:

where t < t0

C MW + POW + Fro'(O) W +. F W (t-,) (•,,) da=2Sp.j(t);
0 (23.11)

where t > t0

M W + FV + Fj '/(0) W + Fs 0 W(t--¶)?" (,)d,2Spj(1). (23.12)

The complexity in precisely analyzing an expression of function

f(t), even for the simplest geometric shapes, causes considerable

problems in solving equations (23.11) and (23.12). We therefore

usually employ different approximate concepts. The simplest and most

popular of these is the previously mentioned "hypothesis of plane

reflection". According to this hypothesis, the association between

the normal component of fluid particle velocity and pressure on the

surface of a body, for the entire period of motion, is assumed to be

the same as for a plane acoustic wave. This also assumes that *(t)-

1 1. Then, according to (23.3)
F2 F () --F,, (1) = -- ,aOSW (1).

(23.13)
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However, we only have to glance at Fig. 65 to be convinced that

* a similar type assumption is far from the truth. For this reason, A

the hypothesis of "plane reflection" has a limited field of applicat-

ion and does not preclude the possibility of serious errors.

It is considerably more tempting to select an approximation of

the function ip(t) which on one hand rather well describes the features

of a real function and on the other hand, permits us to reduce the

integro-differential equation to an ordinary differential equation.

Let us show how this can be done. For this purpose, let us integrate

(23.6) with respect to t twice. Allowing for zero intial data, we

find that It S
MW (t) = 'F,d~d--.dc - P.-ll:l

on ,(23.14)

Integration by parts of (23.14) yields

Alt)= 3 Fd'- FWl(1)- PF9 Wl(--)lt'() d-c. (23.15)

Mt' (1) = F,-- F.ý (0-F'•t) Wltl--P. W' t(t--,)t~) dt.S(23.16)

If we multiply (23.14) by an arbitrary constant C2 and expression

(23.15) by C1 and combine it with (23.16), we find that:

MW (1) + (CIM + FO) 1P (1) + IC2M 4- C, F6 + F**•' (0)1 W (1)* Ut

=F, ()+C, .F,(c)d:+o C F, (E) dId: -- 4
-- F0 f i ll\ O c • - c

0

(23.17)

The integro-differential equation (23.17) goes over to a differ-

ential if the function • (t) will permit us to select values of C1 F,

SC 2 where the following identity will take place:

_-LC, it+ 0•; •O
d~l di (23.18)
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Because where t > to *(t) -- 0, the nrntrivial solution of (23.18)
will only be valid for t < t 0 . For t > to, we similarly find that

MIW (1) + (CM + Fe) W' (i) + IC2M + CF, + Fste' (0)1 W (t) -
I

- Fi.' (ti) W (y - is) - F, (1) + Cj" F, (,)d, 4.
ID

+M, +C, +C'

(23.1 -)

Equation (23.19) differs from (23.17) by only one term -

F0 *' (t 0 )W(t - t 0 ). Because W(t) 0 0"where t < 0, these equations cc-

incide in the interval 0 < t < to.

Therefore, when satisfying (23.18), the p.-oblem of integrating

the integro-differential equation describing the motion of a piston

under the influence of a shock wave can be reduced to the analysis of

an ordinary second-order differential equation havlii' constant :o-

efficients and a delayed argument

M'W (1) ÷(CM + Fs) W (1)+ IC, M + CF,- Fj,' '(O)I Wt(t)--

--F,,' yj~l W y -- #as - F,•i). . C," F, ,dg

(23.20)

Efficient methods for solving similar equations have now been

developed. We will not discuss these, however, because in the con-
sidered Iarticular problem there still exist further possible simpli-
fications.

Ai Let us return to condition (23.18). It will be satisfied if the
Lfunction f(t) can be approximated by one of the following simple
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The values of the derivative-t cf ý, (t) at points 0 and t0 are

L 1 .(23.23)

2 t,

If we approximate the function f (t) with a linear relation

where the quantity t, is found from the condition of equality of areas

delimited by the curves of *(t) and ,*(t) and the coordinate axes

I,.

t = 2 . ()dt = 2 "- .F, (23.25)
0

then according to the data of Table 5, we should assume that C1 = C2

( = 0. The values of the derivatives are equal to

'2M- - (23.26)

Differential equation (23.20) takes on the form:

where t < t,

F2 (227M•'(t)+,F.Wm(t 40 W (t)=F.~) (23.27)
2Af~p

where t > t,

MO (t) + .W (t) *I w(1) + -0 W (t- )F,(I).
2Mnp 2,n'p (23.28)

Ordinary differential equation (23.27) is solved by parts. There :i

is also no difficulty in integrating equation (23.28) with the delayed

at-ninment. Some remarks apropos of this will be given later on (§24).
Let us now indicate yet another method of approximate solution of the
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initial integro-differential equation 126].

The essence of this solution consists in expanding the function

W(t - T) in the neighborhood t into a Taylor series:

W W+)2- W(t)--W-(t) +

2! 3

+ din A -, ,•- .•

a-o (23.29)

According to (23.3) and (23.29) for a generalized second category
"hydrodynamic force F 2 , we find that:

where t < t

F2 =-FoIko(t)W(t)+k,(t)W'(t)+k, (I)P(t)1. ... I=

V- , k. (t) - (23.30)

(where
ko (t) =o()

k, (t)= ()-t'( .

' (23.31)
k,. 1) r lt"ý (,t dt )A! ot

t" ,,(,t) + ( c) 'd-"c()dl(n- Ia)' I

0

where t > t0

F" Fu. d-!- - F ft (t)•+kW (23.32)

where

(n-) a (23.33)
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Specifically, for the motion of a round piston, in view of

\ '15.16), we can easily derive A

a n~ 2a; I~ a
k,(1) 1-1- arcsin a, + 1 O

. . . . . . ..

(23.34)

k.Y-) 2 1 1•2 -- 'dx

U

II
•:, - )n • 2R , _ : ,

where a - the piston radius; a 0 - the speed of sound in water.

( The use of a finite number of expansion terms of (23.30) or
k23.32) permits us to use an ordinary differential equation instead

of an integro-differential equation. In most cases it suffices to
restrict ourselves to three series terms. In this case, piston
motion will be defined by the second-order differential equations:

where t < t

01j + Fok 2(t) W(0 ) -- Fk, (t) W) + Fok,(t)W(t) - F,( M. (23.35)

where t > t 0

(M±+ k;)W(1)F (23.36)

Graphs of the coefficients k0 (t), k (t) and k2 (t) for a round

and a rectangular piston are shown in Figs. 99 and 100. (The ratio of
sides of the rectangular piston b/a = 4). We can see from the figures

that at the initial period of motion, the coefficients k0 (t) and
k (t), which define the relationship of generalized hydrodynamic
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0.2-

0 K2

Fig. 99. Relation of Coefficients kfor a Round Piston.

force as a function of travel and velocity of the piston, are of

primary importance. Around time t = to, these coefficients vanish.

The coefficient k 2(t) reaches its maximum value and becomes a con-

stant proportional to apparent mass. The piston begins moving as in

a noncompressible fluid.

0.6 K

00.

0.44 " H6 CA

A2c

Fig. 100. The Relation of Coefficients k

for a Rectangular Piston.
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The second-order ordinary differential equation (23.35) in fin-

f ite form is not integrated, because the variable coefficients enter-

ing into it have a rather complex lattice. The use of constant co-

efficients in this equation is equivalent to approximation of the

function f(t) with linear relation (23.24).

Considering (23.24) and (23.31) together, we find for t < t,

that

ko=--•

-, (23.37)
k, -0.

On the basis of (23.24) and (23.33) for t > t,

k, -

(38Mn23

2 F, (23.38)

*

Therefore, for the first period of motion (t < t ), we get an

(• equation which is identically coincident with (23.27). For the sec-

ond period (t > t*), we get an equation of piston motion in an non-

compressible fluid

(Al M.P)W(t)=F,(). (23.29)

Evaluative precision may be somewhat raised if we adopt the

wave run time K as our initial period of motion, not in terms of

the greatest but in terms of the shortest distance between two oppo-

site points on the piston (for a rectangular piston, along its

smaller side). Then, instead of (23.27), we get

M W(t) FoW () W ()- F, (23.40)

where T - duration of the positive phase of the linear function

approximating 11(t' •n the interval 0 < t < t K

The quantity T calculated by Zamyshlyayev and Mironov for a

round piston,

314



T 0,85., (23.41)

for a rectangular piston

T= 3 2a
2(3;2n) a. (23.42)

where n - the ratio of sides of the piston (n = a/b).

In this case, (23.39) is considered valid for t > t .

WIV
t~OR

(~ ~~~o ý --- "._.

D I 2

j:le 1 4u,.

(a) (b)
Fig. 101. Rate of Motion of a Round Piston Having Rigid Walls
Under the Influence of an Exponential-shaped Shock Wave

(6/2a = 0.02, (2ap 0 )/m = 6.4): (a - F = 3; b - " = 0.3

precise solution;
approximate solution;
calculated acc. to hypothesis of incompress-

ible fluid;
calculated acc. to hypothesis of plane re-

reflection.

We can adjudge the degree of precision of the evolved approx-

imate method from Fig. 101, which shows the calculated findings for
motion of a round piston according to diverse notions under the in-
fluence of an exponential-shaped shock wave. We can see that the

precise and approximate solutions almost coincide. The hypothesis
of plane reflection is only suited for the very initial i.nerval
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and produces an unacceptable divergence in evaluating a finite rate

of speed. As time passes, the rate of speed of the piston obtained

according to the precise solution approaches the quantity calculated

according to the notion of a noncompressible fluid. The qualitative

nature of these conclusions is also retained for plane pistons of

arbitrary contour.

The possible evaluation of a finite value for the rate of speed

according to the notion of a noncompressible fluid can be rigorously

proven. Indeed, because we are considering the motion of a body in

an ideal medium, then where t approaches infinity,

M ( -.•A Bt. (23.43)

On the other hand, integration of (23.6) yields

MW(1)c= F,(d-d% -F.e W(t - (23..44

0 e
For an exponential-shaped wave F1 (t) = 2Sp e ana consequent-

m
ly,

' F, (•) dtd= 2SP, [Ot + 62 V
00

Therefore,

MW ), =-- 2Sp 1O' + 2Sp ,O - F. W d(t--:1d. (23.45)

Comparing (23.43) and (23.45) for the coefficient B, we find

B. ! 2 0 ()d-:. (23.46)

whence

2Sp,,/] 2Sp,,, ... 2SJ
(),... =B = _ . ,-

-,- 
(23.47)
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The last expression is something other than the velocity cal-

j. culated according to the notion of fluid noncompressibllity, which

also goes to prove the validity of the earlier formulated assertion.

If a precise value of the function f(t) was a priori unknown, the

approximation in the interval [0, t1] becomes impossible. In this

case, we can employ equations (23.27) and (23.39) with a slightly

greater error: For formulate these equations, it suffices to know

the quantity of apparent mass (cf. Tables 3 and 4).

The solutions of these equations with zero iutial data for a

shock wave of exponential shape are:

where t < t,

W ()2pS (T- w) +

(J 2.)~ - W[-YT- C' , - /

2W +

(23.48)

e

In(t) 0 2ps ( )

-- -- I ' ~( + (W )e)-'tF . .. . wa u°- .

2W +
(23.49)

where

FO0At' - p.:S - *; = " A4M
,M 2MWnp

where, t > t,

2P,,,,, )( --e

M LAfp (23.50)
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+ t -- (23.51)

rwhere W*adV* travel and veloc.-:ty iftZepso at time t :2:*)

For a. shock wave of triangular profile, when t+ > t,

where t < t

" e- + +( -. ).'7 e7~+•t
_._(__.... (Trw)- ,

2 wt , (2I .t, ( y.w t )'1 (2 3 .5 2 ) 1

r t,(,T-- ) . I #-t-4
_ po I _______

S r I

-- e- j

2W1, ( -) (23.53))

where t > t,

•(t =W , + W , (t -- At ,) n- psx

Zp,,,S [ I ) (S -. t,)'1

(14M At O 21+ (23.55)
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§24. The Motion of a Plate of Finite Dimensions Under the
Influence of a Shock Wave

The evaluation of generalized forces formed on a free plate

under the influence of an underwater shock wave is somewhat more

complicated than in the earlier considered case of piston motion.

Additional difficulties arise in view of the necessity of taking

diffraction effects into account when calculating first category

hydrodynamic force. Without the knowledge of this force, it is

impossible to define second category force. However, there exists

a close association between the diffraction of a wave on an immob-

ile obstacle and the pressure field formed in a fluid with the mot-

ion of a body (cf. Chapter II). Specifically, under the normal in-

cidence of a unit wave onto a plate, the hydrodynamic force F(t)

can be characterized by the same function of time f(t) which plays

an important role in evaluating second category hydrodynamic forces.

This fact lets us point out a rather simple method for solving the

problem.

Let us consider the case of the normal incidence of a unit J

shock wave onto a free plate.

The equation of motion will be

M WV(t)= F1 + F2. (24.1)

According to the results obtained in §20, the magnitude of

first category hydrodynamic force 4S

F, (I) p• (1), (24.2)

where

Fe

According to (23.3), second category hydrodynamic force can be

defined by the expression
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F2 O (24.3)

Therefore, the equation of motion of a free plate will be the

integro-differential equation

MW(1)= P. )-O W(t dc. (24.4)

Equation (24.4) will take on its simplest form if function

f(t) is possible to approximate with a linear relation. Moreover,
in §19 we showed that this approximation is possible with a rather

high degree of precision. Allowing for findings derived in the pre-
ceding section, these facts permit us to reduce the solution of the

integro-differential equation (24.4) to the solution of an ordinary

differential equation having a delayed argument:

where t < t,(
M •l) Fo~lpt) P20 Wl() :P,.. ,eoF -- . Xt

2M'V
x -o(t)- t-Wt (24.5)

where t > t,

F2
2

M(t)+FOW(t) w(t)+ W) -to) O, (24.6)
2M,,p 2M-2

where

FO

With zero initial data [W(O) = W(0) = 01, the solution of equat-

ion (24.5) has the form

(1 ) P [i + I e,•p~a. 2w,, (24.7)

- P 000 2w (24.8)
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where I p=a4S

4.
8''

+2-)•il' "~ --- 7/T'±+27.,

'ar-(T + 2'• .), (24.9)
-Io

Knowing the solution of (24.5) for the interval 0 < E < 1,

it is easy to derive a solution of (24.6) for the interval 1< E <2,

because for this interval expression (24.7) permits us to evaluate

the value of term having the displacement of the argument. After

calculating for 1 < < 2, we find that

S 2--" + e. C, +-+

(24.10)

+ ee" Clot + +
(2•,)2

+ e.,e -,C,. + l+ ,i ,]

(2g.,) ' J (24.11)

were we also designate

I at

Ct= +[ . +1
2u) 21

2_____ (24.12)
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Having a solution of (24.6) for the time interval 1 < < 2,

we can derive a solution of this equation for the interval 2 < t < 3,

etc. With such successive solution methods, the limiting values of

the functions are of interest where t approaches infinity. Inte-

grating (24.5) and (24.6) for a sufficiently large t, we find that:

M,' (t) + F.W'-- 12- 1'dt (24.13)
I--t.

Where t approaches infinity, W(t) ÷ Ww, W ÷ A + W~t. Conseq-

uently

FoSWdt -* -et -6' =Mpt/..Fr --t-2 (24.14)
I--t* I *

From a comparison of (24.13) and (24.14) it is clear that the

limiting value of the rate of speed of a free plate under the in-

fluence of a unit wave is

IF4  I.
= AI 2 M +-t.np (24.15)

However, PrFb 2 is something other than the total pulse

of first category hydrodynamic force FI. Consequently, the limiting

velocity of a free plate is as if it were moving in a noncompressible

fluid under the effect of F1 .0

This quantity differs from the rate of speed of particles behind

the wave front by a coefficient of
' . - - I -I

-'- -I+ - (24.16)pat'io Mnp D,,a.I.S

Therefore, even when t approaches infinity, a plate of finite dimen-

sions does not acquire the rate of speed equal to the velocity of

particles which oucurred during the motion of an infinite plate under

the influence of a unit wave. The less the width of the plate (a 0 t,)

and the greater its mass, the greater the difference in velocities.

Despite the possibility of writing a precise solution of (24.6)
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C.5 1 1.3 2 t

Fig. 102. Change in the Rate of Speed
of a Free Plate of Finite Dimensions
Under the Influence of a Unit Shock
Wave.

precise solution;
----------- simplified solution.

as stated above, the successive calculation of the parameters of
motion in proportion to an increase in time is rather tiring. The

derived expression for the limiting value of velocity indirectly

indicates that where t > t,, the hypothesis of a noncompressible

fluid should not produce serious error. Therefore, for approximate
evaluations where t > t,, instead of (24.6) we can write

(At + M 1,,), (1) =0. (24.17)

Then, where t > t,

W(t)= W. + W'(1-t.), (24.18)

W = IV%$ (24.19)

where W, and W, - travel and rate of speed of the plate at time

t = t,, as defined by formulas (24.7) and (24.8)

Fig. 102 shows the calculated results of the rate of speed of

a free plate according to formulas (24.8) and (24.19), affirming
j the feasibility of using the simplified arrangement.
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'1,
* 

-y

Fig. 103. Change in Net Force Acting
on a Free Rigid Plate of Finite Dimensions
During Incidence into Said Plate of a Unit
Shock Wave (y = M =

M PM

total net force;
- ------- generalized first category force

for immobile plate.

( The nature of change in the net generalized load is shown in

"Fig. 103. We can see from the figure the extent that the motion of

the plate affects the net load. This effect is in proportion to the

size of the plate, and is in inverse proportion to its mass.

To determine generalized forces during the incidence of a wave

of arbitrary profile onto a free plate, we can employ the Duhamel

integral or the solution of differential equations (24.5), (24.6),

or (24.17) where F 1 corresponds to a given wave profile. In this

last case, the approximation of the function *(t) by a linear re-

lationship and the use of the Duhamel integral and (24.2) yields

F (I) 2S Ip. () -D(t) + D (t--.)I. (24.20)

where

D ("t) ) -
2(24.21)
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For some of the forms of shock waves most frequently encountered

in practice, we established a relationship of D(t) in §20. Employ-

ing these relations, we can obtain final expressions for Fl(t). For

an exponential-shape shock-wave, the change in pressure is

e _ - 7) where t < t,,

F, ( 2) = 2S(2,.22•
-I+ e(+ e where t > t(.

If we know the function Fl(t), we can easily integrate (24.5).

For t < t , fI / '1
WI (2 -P'I;1' 1-

Pcis 21w' 4) u

CIO + _ e_ _l ,

e 4
I-2f4 +6 I2w (I +)

241 ." (I 2416) '(24.24)

where = . -/"

If we employ the simplified expression for F 2 where t > t,,
we must solve the following differential equation to define the para-

meters of motion:

(M + W 241 
(24.25).,I

(M -- ,))• =1. 2pe 1- - __, __

Swith the initial data: at time t =t,, W =W, and P W,ý.
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(b)

O.J

o -to, _4

Fig. 104. Travel of Free Plate During

Normal Incidence onto Said Plate of Underwater

Shock-Wave of Exponential Profile: (a) where

1= ; (b) where F = 10.

precise solution;

---------- approximate solution.
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Integration yields

, .2psi-

+ -e'- - + e _- '

,M(I •- ) t,

(24.26)

•=• •0 l+ '-___- e ' -,.
, = ! - ' ~ . (24.27)

If follows from (24.27) that where t approaches infinity

_ -Z .+ 2P' Qs 1+ , 9L 0.
At ,I .-I *•

This result does not correspond to the physical picture of the

effect and is the result of error in the approximate calculation

system used. Indeed, where t approaches infinity, W. - 0. This can

be shown both by using the solution of a precise equation having a

delayed argument, as well as by employing integral evaluations. We

established earlier [cf. (24.15)]that the limiting value of velocity

is proportional to the pulse of first category hydrodynamic force FI.

But according to (24.20) for any wave having a finite magnitude of

pressure, the first category pulse of hydrodynamic force J is equal

to zero (cf. §17). We must correct the solutions of (24.26) and

(24.27). Apparently, the simplest way is to assume that

+ .(24.28)

Then, the corrected solution which should be employed instead

of (24.26) and (24.27) takes the form

W (1)=Wl.e (24.29)

W W. - OW (e--(230
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(a)

I

(b)9834

0 10 1

Fig. 105.Rate of Motion of a Free Plate During

Normal Incidence onto Said Plate of Underwater
Shock Wave of Exponential Profile: (a) where 0
= 1; (b) where 0 = 10. (Designations the same as

in Fig. 104).
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Figs. 104-105 show the compared calculated findings of travel

and rate of speed of a free plate according to precise and approx-

imate solutions*. We can see that the convergence of data is sat-

isfactory for practical applications.

If we reiterate the arguments given in the derivation of (24.15),

we can easily show that under the effect of a wave of limited durat-

ion, the coefficient of (24.16) will not longer describe the ratio

of velocities, but the ratio of travels of the free plate and part-

icles of the medium during passage of the direct wave

-- '.

A'" t+ .tL (24.31)

§25. Evaluation of Generalized Forces During Incidence of a( Shock-Wave onto an Absolutely Rigid Body of Arbitrary Shape

For the sake of simplicity, let us restrict ourselves to a

discussion oi the motion of bodies whose form is symmetric with re-

spect to two mutually-perpendicular planes, during the incidence of

a plane wave in the direction of the main axis of symmetry.

The position of the system, in this case, will be character-

ized by one coordinate. The differential equation of motion will

have the form:

, F..(25.1)

The hydrodynamic force of the first category, as was shown in §20,

will be expressed using the functions f(t) and f(t) [cf. (20.4),

(20.23), (20.16)]:

F, = F.p + F,,
(25.2)

*Computed by N. I. Mordvinova.

329

___ d



-l

- p 1Cos ,uzdS, f

S, (Z ..aI (25.3)
,

F, Q (1)+ +Q(t -0)' (d,
0 (25.4)

S, (z..a, 1 (25.5)

where S1 - the portion of the body surface enveloped by the wave

(situated in area z < a 0 t).

The second category hydrodynamic force according to '23.3) is

F. =FO Y 0-) (25.6)

Therefore, the solution of the problem, as before, is reduced

to studying the integro-differential equation(
AA/ = Flip () + Q (j) + Q Q(t - )(c'() dd-

0
I

-F j• W(t -¶)'•(')dt,
0 (25.7)

Fo = p.6a. SoS cO dzd. (25.8)

This equation will be in its simplest form if f(t) is approx-

imated by a linear relaiion (cf. §19).

Reiterating the arguments of the preceding section, the integro-
differential equation (25.7) easily yields an ordinary differential

equation of the second order having constant coefficients and a de-

layed argument. For the time interval t < t,

.11 a FW/- .- W" Fl. (25.9)

330 2



Where t > t,, we will get
F!

AiU ýIW - if/ W' (t~ F (25.10)

2AI.= 2.iI ,
where t,

When we seek an approximate solutica, we may replace equation

(25.10) by the relation

( M F A4.l) I'=F,.

(25.11)

The problem of moticn of an arbitrarily-shaped body, therefore,

under the influence of a shock wave differs from the previously con-

sidered problem only by a more complex form of function F (t).
1

In view of the fact that -- -

according to (25.2)-(25.4), the function F1 (t) can be written in

the form

where t < t,7.- Q -
F, F=p(t)+ )

Q (d: (25.12)

where t > t,

The expanded expressions for F1 (t) during incidence of a unit
wave onto a sphere, round cylinder, parallelepiped, and ellipsoid of

revolution were given in §20. We can adjust these for a wave of

arbitrary shape with the aid of the Duhamel integral.

Lot us briefly touch upon the study of the motion of the simp-

lest geometric bodies. Let us begin with a rigid paralielepiped.

Because this problem differs from the previously considered problem

on the motion of a free plate only in the added consideration of the
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size of the parallelepiped in the direction of wave run 6 = 2c,
there is oo need to write the solution of equations (25.9)-(25.12):

we can limit ourselves to evaluating the limiting characteristics

of motion.

As we showed in §20, in the event of incidence onto the facial

side of a parallelepiped by a plane unit wave, the first category

generalized force can be defined by the equation [cf. (20.58),(20.59)]

F, (t) pS12-- ,( - _(25.13)

where
PX) -LP,{t ( -- t)l + Cot.-- ,

tt

(25.14)

(

6 - the size of the parallelepiped in the direction of wave run

(the thickness of the plate).

Because the pulse of this force is [cf. (20.46)]

"JI==p.SVt.+t)=P.St- =pSt. 1 A (25.15)

and exceeds the pulse for a thin plate by (1 + times, then the

rate of speed of the parallelepiped, where t appgoaches infinity,
will be higher than the rate of speed of the plate by the same numtber

of times. In other words, according to (25.15) and (24.16)

-T.) (25.16)
Al - Af "P

t •however,
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F. Sp~a,

while S6 = V, where V - the volume of the parallelepiped.

Therefore, we can rewrite (25.16) in the form

w-Mnp VP,

V AinpJ A (25,17)

Equation (25.17) shows that if the density of the parallelepip-

ed material is less than the density of water, the limiting value of

velocity which it acquires is greater than the rate of speed of par-

ticles in the direct wave. If we change the relationship of densities

the relationship of velocities also changes. In the event of "zero

buoyancy", the rate of speed is the same as the "'elocity of particles

behind the wave front. This deduction may be expanded to bodies of

arbitrary shape.*

If the magnitude of the total pressare pulse in the direct wave

is limited, the first category hydrodynamic force reduces to the

following form with the aid of the Duhamel integral [cf. (20.77)

F1  S 2p. (t)) -D(1) D -t- D (t - tj )

+ D(t t,(25.18)

where

(t . (25.19)

Because *I , Ir * ~
2p. d- dE 2 ; Jnp(r)dr 2/. DD(t)dt.

o 0 0 0

while where t approaches infinity

C * This, of course, is valid within the framework of the primary
problem hypotheses and does not take into account the effect of vis-
cosity of the fluid, the velocity head, etc.
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I I
.D(•)d,-. +(A -p (25.20)
'0 * .

then where t approaches infinity

2p., dic(E). d--2•2(A + ,-,.

J& DOME " d+ Ol')d; -2

& d3 D (t) dt- So dc ID (-,)dt

0 0 0

(A+ J~(*t,)- ' 2 p)

Substituting the derived expressions into (25.13) and integrat-

ing, we find that where t approaches infinity

F -) 0,

S Fid: -- 0,

Bedause the last quantity exceeds its analogous quantity for a

thin plate by (1 + t k) times, then considering (24.31) and (25.16)
,4

for the limiting travel of a parallelepiped, we get the relation

W - , , (25.23)
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In other words, under the influence of a wave having a limited
S'pressure pulse, the limiting values of displacement are in the same

relationship as the limiting relations of velocity during the in-

cidence of a unit wave.

Using (25.12) and reiterating arguments analogous to those

given, we can show that this conclusion is valid for bodies of any

shape.

The problem of travel of an absolutely solid body under the

influence of an acoustic wave was first considered under general

assumptions by Novozhilov [13]. He derived relation (25.23) as a

result of a limiting process in an integro-differential equation of

motion. Slepyan succeeded in showing that the fixed expression for

final motion is not just valid for absolutely rigid bodies, but also

for elastically-deformable bodies [17]. This conclusion was made by

Slepyan not on the basis of studying the corresponding boundary value
problems of the wave equation, but from purely physical concepts

which were based on his suggested model of a "virtual body".

Equation (25.23) shows that under the influence of a limited I

pressure pulse, a body having negative buoyancy travels in a fluid

at a rate which is less than the rate of displacement of media part-

icles; a body having positive buoyancy travels at a greater rate and
ultimately, a body having "zero buoyancy" travels the same distance

as do media particles.

Let us now consider the problem of motion of a rigid sphere.

It is of interest with respect to methodology, because we can derive

a precise solution, permitting the evaluation of error in the approx-

imate methods developed.

We previously had (cf. (17.58)]

35 (25.24)
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This function satisfies condition (23.18) for the coefficients

C1 and C2 , which are equal to [cf. (23.22)]

a ~

Cag (25.25)

On substituting these coefficients, the integro-differential

equation of motion (23.20) takes on the form

I as

(25.26)

Because the quantity F0 for a sphere, according to (17.58) is
S.,

3 a - (25.27)

and its apparent mass is

3 2

the ratio a/a 0 can be designated using t,(t, = 2M /F0) with good
0 np 0

basis. Moreover, it is convenient to introduce the dimensionless

parameter

X= '%'•-"(25.28)

In its new designations, equation (25.26) is written so:

M [/(I)+-(2+ )Id ) (2 Z)W(1)

F= ,(,)+ F; (-)• d -2 ,') -.
li lt (2 5 . 2 9 )

Let us first consider the case where a unit shock wave having the
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amplitude pm acting on a sphere. A precise expression for the first

category generalized hydrodynamic force for this case is derived in

the form [cf. (17.69)]

F, (t) 4• ap,,,e (25.30)

Because

2

easin a",- = ! sin -+ cos
a. a,)0

taoejaesin ~d,-d-c=e a Cosa a
0 0

the right side of equation (25.29) will be considerably simplified

and will be equal to

iap aJ 4ra2p,,

. Consequently, instead of (25.29) we can write

W(t) + -' (2 I.) W (1) 1 (2 F Z) W (1) ..... 5..31go (25u31)

The solution of this equation with zero initial data and where

X < 2 is

W~) m 3"j [e- ... ,/.' jtI cow ) ]I
U7()=-2" k' 2 + sinw -+. coswi ) cI-s-t, (25.32)

•(t)= X•, .- ••V 2---t.(5.3

where

2 .
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Fig. 106. Net Load on a Rigid Sphere of Zero Buoyancy
Under the Influence of a Unit Shock Wave.

precise solution,
------------ approximate solution,

.- hypothesis of plane reflection,
- ----------- notion of fluid noncompressibility.

1,0

M

a I
Fig. 107. Rate of Speed of Rigid Sphere of Zero
Buoyancy under the Influence of Unit Shock Wave
(designations same as in Fig. 106).
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Where t approaches infinity, (25.33) goes over into the prev-

iously established relation (25.17), common to all bodies
W (1 P.. 3,/.Mitp 4" PoV

Pa.- -1 =• 37 MP + pM (25.34)

Considering that the net load acting on the sphere is

F = P + F2 =

after differentiating (25.33), we find that

FF = 4•aP• wi . --- e-"t1 sin w,.t
V'4--, (25.35)

and according to (25.30),

F2=___F, 4 epm. e-w'hsinw,t -e 'n
IV 4 - (25.36)

In this case, approximate methods have no advantages over the

4 precise method and therefore, they are not cited. Findings calcul-

ated by these methods are given in Figs. 106 and 107. We car easily

see that there is a good convergence of data. However, this con-

vergence for findings calculated according to the hypothesis of

plane reflection is rather random, as shown by Fig' 108, where the

quantities of hydrodynamic forces of first and second category are

shown separately. As we can see, the "hypothesis of plane reflect-

ion" produces considerable errors in signs, which in summation leads

to a result which is close to the true result.

There are no theoretical difficulties associated with the use of

a wave of arbitrary profile in place of a unit wave in the precise

solution derived. Specifically, if we employ the Duhamel integral

for an exponential-shape shock wave, we find that

W2 ) 7 #'-(2'7 ,i

2--/+

y.."(',- 2 - 1)COS,,, }, (25.37)
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Fig. 108. Generalized Force Components Acting
on a Rigid Sphere of Zero Buoyancy during Incidence
on Said Sphere of a Unit Shock Wave.

precise solution,
.-. theoretical solution according to

hypothesis of plane reflection.

0.1

1'.0

21 1 3 1 t

Fig. 109. Travel of Rigid Fig. 110. Rate of Speed of Rigid
Sphere of Zero Buoyancy Sphere of Zero Buoyancy Under In-
Under Influence of Under- fluence of Underwater Shock Wave
water Shock Wave of Ex- of Exponential Shape, n = a/a 00.
poenntial Profile.
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W i) P= 2 J- ( IQ { + 2)e-T --

--' al (2+ z-2i)lsinw2t +(x+2)cosat]).

2 ~-j (25.38)

where r = a/a00.
0

Where t ÷ •, (25.37) goes over into relation (25.23), which is

valid for bodies of arbitrary shape
IV z,, 37 -- Wg Mn~p V $p.

"-.,. AV (25.39)

The nature of variation in velocity and travel of the sphere of
"zero buoyancy" under the influence of an exponential-shape shock

wave is shown in Figs. 109, 110.

The magnitude of net load is

F,- = P:_---3(,, --

X [1- (2 _ - , , j -;i 5,-t Cos ".,t]

2- ,o a 2aJ1 (25.40)

In conclusion, let us note that the problem of motion of a

sphere under the influence of a shock wave was solved by Lefonova

by solving integro-differential equation (25.7) using the operation

method.

For bodies of other geometric form, the derivation of precise

solutions in finite form is scarcely possible. At this point there

is considerable value in the approximate methods developed above.

Even they, however, are not always suitable due to the awkwardness

of expressions for Fl(t) [cf. §20]. in such cases, a preliminary

approximation of F1 (t) by simple functions is always useful.
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For well-streamlined bodies, in addition to the recommended sol-

Sution, we can utilized the simplest solution based on the "hypothesis

of plane reflection" with precision sufficient for practical appli-

cations. This conclusion follows from both the considered problem

of the sphere (Fig. 106, 107) and from analysis of motion of an

infinitely-long round cylinder under the influence of a shock wave

(Fig. 111).

A precise solution of this problem for a unit wave was numeric-
ally dervied by Goryainov and Yu. A. Fedorovich. For the net load,
FedoroVich suggested the following simple approximation of results

for the appropriate calculations:

F," =, 12,ýIe-"''+ 0,57 (e-1".-2i . (1 25.41•)

where t = a0 t/a.

Because

4F
Mf (25.42)

expression (25.41) permits us, using a simple integration, to derive
the values W(t) and W(t) for a wave of unit amplitude; and with the
aid of the Duhamel integral for a wave of arbitrary profile.

The approximate evaluation of motion of streamlined bodies can
also be made on the basis of the hypothesis of fluid noncompressib-
ility. The effect of second category hydrodynamic forces is taken
into account through apparent mass. The equation of motion takes
a particularly slmple form

W'(f)= F(,)
Al A.., (25.43)

If we are considering the case of wave incidence in the direct-
ion of the axis of symmetry of a body having a great relative length,
the role of diffraction processes becomes negligibly small and the
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Fig. 111. Net Load on an Infinitely-Long
Round Cylinder of Zero Buoyancy During Action
on Said Cylinder of Unit Shock Wave.

precise solution;
-.-.-.--.- calculated, hypothesis of plane re-

flection;
- - - -calculated, notion of fluid non-

compressibility.

equation of motion becomes even more simplified:

MW/ = F.,p() (25.44)

( Specifically, this solution produces good results for prolate

ellipsoids of revolution where b/a > 5.

Earlier, for a round ellipsoid of revolution during incidence

of a unit wave we had [cf. (20.34)]:

p,,,- - 2t -- where t'- <• ,

Flo, (t)- 2 b (25.45)
i ~~where ,•

I 0

The solution of equation (25.44) with the right side of (25.45)
is:

j ' •l-}Where7 Pom b, 4 I<2
-- (25.46)

P• t- I where I > 2,

AN __ 3__ where : 2

,7 p.,3

S= ",o•, 7.(25.47)Sowhere o >W2,
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Fig. 112. Net Load and Rate of Speed of Prolate
Ellipsoid of Revolution of Zero Buoyancy During
Action on Said Ellipsoid of Unit Shock Wave in
Direction of Axis.

precision solution, function sp
linearized;

---------- approximation solution.

where
b

4

p,,V__ 3
M =

In the case of an exponential-shape shock wave, employing the

Duhamel integral, we find that

F .' - where <2 (25.48)
e- + where t>2.

+ 4-(1 -+ 6)j
Pm 0  3

PO- 2 where I < 2.

3 ]e (25.49)

where i>2,
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0I + + 0 ) + ~ i
± M_ 3-i where i<2
Pa 2 r] (25.50)

where I > 2,

where

b

Results calculated according to formulas (25.48)-(25.50) and

the formulas of precise solution for the linearized function f(t) in

the event of a unit wave falling onto an ellipsoid of revolution hav-

ing b/a = 5 are shown in Fig. 112.*

§26. Interaction of a Shock Wave with an Elastic Plate of
Finite Thickness

The problems of shock waves interacting with a pliable obstacle

which were earlier considered did not take into account the wave nat-

ure of disturbance propagation in the material of the obstacle itself,

which are induced by its elastic properties. Let us illustrate the

effect of this circumstance, using the normal incidence of a plane

wave onto an ideally elastic plate of finite thickness as our example.

As before, let us use a linear formulation of the problem. The z

axis will be directed at right angles to the plane of the plate, to

the side of wave propagation. The origin of the coordinates will be

situated on the front surface of the plate. Time is counted when

the direct wave encounters the front surface. The parameters of the

medium will be assigned indexes: 1 - in front of the plate; 2 - the

plate; 3 - behind the plate (Fig. 113). The, pressure and the velo-

city of particles in the i-th medium will be associated with the

4 *The parameters of motion according to formulas of the precise sol-
ution were computed on the "Minsk-l" computer by N. Mordvinova.
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areas

direction of ,

propagation Aw 'I : 4

Fig. 113. Diagram of Reflection and Refraction
of Shock Wave during Normal Incidence onto Obstacle

of Finite Thickness.

potential function by the expressions

of (26.1)

, (, k .(26.2)
oz

( The velocity potentials are found from wave equations

O , O _t t ' (26.3)

The boundary and initial conditions are:

in area 1
p, "Z , O) = " p Z.( , 0).V, (z, 0) V-- (z, 0), (26.4)

in area 2 and 3 p, (z, 0) = p, lZ' O) = 0.1)
V2(z. O) = E-(Z, 0) = 0) (26.5)

on the interface of media 1-2 and 2-3

',,10, )= v.(O, 1); p,(O, A1) p.(O. A ). } (26.6)
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where p (z, 0), v (z, 0) - pressure and rate of speed of particles
rip rip in the direct wave at initial time;

6 - thickness of the plate.

G. Lindh solved the problem in its present formulation using

the operations method [37]. However, the final results are consid-

erably easier to derive if we immediately employ the known values of

the coefficients of reflection (from acoustics) and refraction on

an interface of two media [4]. Because we are considering the

incidence of a wave along the normal to the surface of the plate,

no transverse wave is formed in the obstacle material. The wave

processes can be characterized by the propagation of reflected and

refracted longitudinal waves. The amplitudes of these waves at the

interface of media 1-2 can be defined by the equations

Ea P rýta ,, (26.7)

2

P P•0" PIIJ (26.8)

Similar relationships occur at the interface of media 2 and 3.

Let us designate that: k - the coefficient of reflection from

the second to the first medium, k1 2 - the coefficient of refraction

from the first to the second medium. Then, instead of (26.7) and

(26.8), we can write

P'-2=. kP. (26.9)

P"•" (26.10)

Until the elastic wave reaches the lee surface of the plate,

reflection and refraction of waves will occur just as in the inter-

action of a wave with the interface of two infinite media.

At the moment the refracted wave propagating in medium 2 toward

interface of media 2-3 converges, a new reflected and refracted wave

is formed (Fig. 113).
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The amplitude of these waves is

P'!,p,-, k, ,pJ"a P-' -•a3_• =a kt~•p. (26.1i1)
PA3 i pa 12kLP

tA-I P:z (26.12)

where k2 2 -the coefficient of reflection of the wave into the sec-

ond medium from the third;

k23 - the coefficient of wave refraction from the second med-

ium into the third.

The wave reflected on the interace of the second and third med-

ia, after reaching the interface of the second and first media, in

turn creates a refracted wave; this wave propagates in the first med-

ium and its reflected wave propagates in the second medium.

Pressure on these waves will be

( p- o, k,,klk-,,p (26.13)

p l at , +plat(26.14)

where k2 1 - the refraction coefficient from the second medium into

the first;

k - the reflection coefficient into the second medium from

the first.

Subsequent development of the wave process occurs by analogy

to what has already been considered. Pressure on surfaces of the

plate will change abruptly over time intervals equalling the durat-

ion of wave run-time of a plate twice as thick.

The wave fields in each of the media will be characterized by

the equations = '

do at Ul' (( '
p,( . , - ,- - , ,, , . _ , , . .,, 4
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+ k. kkgtkj 'lp 2,--•, ).A (I- 2nt, + ," a j(26.15)

Ps (Z. tl k12 P t--n--l2t-- X

(26.16)

X )k (t -- 2nt, + -I, ).

'3a3

X o( -12n-- !I , z-,
-- "t-u•-')/ (26.17)

where tI = 6/a2 - the wave run-time of a plate whose thickness is

T - k22•

The geometric interpretation of the solution oZ (25.15)-(25.17)

is given in the form of a wave grid in Fig. 114.

The magnitudes of pressure on the front and lee surface of the

plate may be obtained from (26.15) and (26.17) if we assume that

z = 0 and z - 6 = 0, respectively. For a given shape of the direct

wave contour, as a rule, we can derive expressions in finite form

after summation of the corresponding series.

Because p = pe (t/a) " (T) in the case of an exponential

shape wave, pressure on the front surface of the plate can be found

from the equation :

p, (1) --- ,(I + k,,)'. 0 (•) +

+4 e
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Shape of contour Shape of contour
in front of obstacle areas of passing wave

2 I, 5 ... 0.5 0 '-, ,- a-, 'o 0.5 W~

Al-- -- -$t

_ t

Fig. 114. Wave Grid for Reflection and Refraction of a
Unit Shock Wave during Normal Incidence onto Obstacle of I

Finite Thickness. !

Swhere n -an integer satisfying the inequality

S- (2n 2)
2 - (26.19)

(26.20)

Pressure on the lee surface of the plate is

S- 2"' I -

P,() =Cp-I O -- (1 (26.21)

where n can be defined from the inequality

(2n(-wh n - n i(2ne+ 1)a, (26.22)

ki.k.., (26.23)

In the case of direct wave incidence having a linear contour

350 iperoduced from
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p(t) = p(1 - (t/t+)[a (t - t+)], similar expressions have the

form:*

+ P ( ) (Pi .. (I ,)+

+. p.,[( n7":-n,2
0 1),

XI I t

0 ; - 0A 1 .k1 30(1 - 21, - I )

(26.24)

where n and k can be defined from the inequalities

(26.25)
2kt,-i t <t<(2k +-2)t,- ,

(26.26)

(

It I - (2n-- ) ' --(2n), I " 7

P . pI Pm 1.- l -

t (2k-= )'h I_(.k 71 t _
-- -( ---- tj.-(26.27)

where n and k can be found from the inequalities

(2n--1)t,./ (2n -!- 1)t,, (26.28)

(2k-- l)t,-{-t, . .(ýFlt t

(26.29)

*Formulas (26.18)-(26.29) were first derived in this form by Zamysh-I lyayev and Lopukhov.
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The first term in (26.18) and (26.24) expresses the total pres-
sure of the direct and reflected waves. Wherever the acoustic re-
sistance of the plate material is greater than the acoustic resist-
ances of the first and third media (P 2 a 2 > plal; P2 a 2 > P3 a 3 ), the
second terms of (26.18) and (26.24) can describe the pressure of

the expansion waves successively passing from the second to the

first area.*

According to the solution derived, pressure both in front of
and behind the obstacle can be described by a broken line consisting
of "steps" which satisfy the emergence toward the surface of a re-
current refracted wave. This broken line is conveniently replaced
by a smooth curve. We can either consider the curve passing through

the crest of the "steps"(the curve of "peak" pressures) or through
the middle of the steps (the curve of "mean" iressures).

From (26.21) for these curves, we can easily derive

2 2%, e2-, _C-e0-3° (26.30)

pup m -1 2 t,,- ,+ - 2- 1 (0 -- a)" (26.31)

Similar formuias can be established for a triangular -shape

wave.

For practical purposes, it is important to establish i-he need
for considering wave disturbances in the obstacle material. Let
us compare the final relations cited in this section with those
established in §22 which only consider the material's inertial

*The coefficlent a has the sign of k2 2 ; a > 0 if P3 a 3 > P2 a 2 , a 0

if P3 a 3 < P2 a 2 . The coefficient y has the sign of the derivation
(P 3 a 3 - P2 a 2 ) (plal - P2 a 2 ).
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02 0

Fig. 115. The Relationship of Degree of
Attenuation of Maximum Pressure Behind An
Obstacle Having Different Acoustic Resistance.

characteristics. For the sake of simplicity, we will limit ourselves
to the question of waves of exponential shape. (Conclusions derived
will be of a rather general nature).

Let us compare two important cases, where the first and third
medium is water (evaluation of protective characteristics of an ob-

stacle) and where the first medium is water and the third is air
(dynamic load on plate which is part of a ship). In the first case,

we are interested in pressure behind the obstacle, in the second case,
in front of the obstacle.

Assuming that pa1  = P3 a 3 = p0 a 0 , for the coefficients a and

y entering into (26.21) we get

. k p123 2(po 0  4p, a,.a2 (26.32)
F'1 -r Fulau o -ga0 s O , p t )( •

(I-a. - p 2a ,

(26.33)

consequently,

2 -i TI. (26.34)

The magnitude of the pulse of the n-th part of the pressure con-

tour behind the obstacle, according to (26.21), is
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.a~a; - (26.35))

i, P,,|),0 i

,€- --- | •S

The total pulse may be derived by summation of expressions in

(26.35) from n = 1 to n =

: = 7e2' .= ' _ I (C' ' -" c .• +'
n-I n,

,,.- 1,I € ii;,'J

(26.36)

or, by abbreviating and bearing in mind that = 1 -y,

PmO. (26.37)

This is the same result which was established in examining the

protective characteristics of absolutely rigid plates [cf. (22.39)].

Therefore, any obstacle does not change the magnitude of the

total direct shock-wave pulse. If we consider the wave character-

istics of the obstacle material, we must replace the smooth pressure

increment curve with a stepped curve. The difference in amplitudes,

however, of pressure may be very considerable. Thus from the "wave"

equation (26.21) it follows that the lowest maximum pressure behind

the obstacle is

4/.min P3maXpp. (I PM (26 .38

where

F'g (26.39)%

f i'e relationship a a(X) is given in Fig. 115.
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Because the quantity y is positive for any X, the minimum thick-

ness of the obstacle 6 min at which pressure behind it reaches mini-

mum magnitude can be defined from the condition of equality of pres-

sures behind the obstacle when the first and second waves emerge.

From (26.21), performing simple transformations, we find that

M I "I I -u In (1 + *j'l
= 2 4 (26.40)

For a shock-wave having a triangular contour, the quantity is

fi4 I n I _ý2 -( i!.
2 Ii (26.41)

No such conclusions follow from the "inertial" solution, because

where 6 ÷ •, P3max 0. Consequently, the approximate solution for

a very thick obstacle may produxce considerable error in evaluating

pressure amplitudes.

Let us find the boundaries of feasible use of the approximate

( solution. For this purpose, let us illustrate the increment time of

the mean pressure (T = tH/ ) defined by the "wave" solution. It

can be found from the equation

,d-- . 0. (26.42)

Differentiating (26.31) after transformations, we find that

In 1 2% 2 (26.43)
2.1

According to (22.37), the time for this "inertial" solution is

- a.O (2.4
In 2 ..... In 2.1 .M

" '-s -I 2''u• - (26.44)

Results calculated according to formulas (26.43) and (26.44) are

shown in Fig. 116, where the quantities TH are plotted as a function

ofI
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Fig. 116. Relationship of Pressure Increment
Time up to Maximum Behind an Obstacle as a Function
of 0 and T,

- ------------- inertial solution;
wave equation.

We can see from the figure that in the area X > 1 and in some

neighborhood X = 1, the curves are similar. The approximate solution

is feasible in this range.

Because the values of pressure behind the obstacle are of prime

(i interest from the standpoint of practical application, let us give

a more precise evaluation for the utilization limits of the "inertia"

notion. Let us assume that the divergence between the maximum and
" mean" values of pressure with respect to a "wave" scheme must not

exceed 20%, and the difference in amplitudes of pressure at point T H

according to the "wave" and "inertia" schemes must not be more than

10%. Then, direct calculation according to formulas (26.30), (26.31),

(26.43), and (26.44) yields the structure shown in Fig. 117. The

nature of variation of pressure for different ranges of the parameter

X = (P 2 a 2 )/(P 0 a0 ) is illustrated in Fig. 118.

In practice, we most often must deal with steel plates. The theo-

retical findings for these plates clearly show the effect of thickness

6 on pressure change behind the obstacle(shown in Fig. 119).

Let us now define the limits of applicability of the "inertial"

solution for evaluating net pressure on a plate which divides aid and

Swater. Let us employ the formulas of the "wave" solution (26.18),
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'0

Fig. 117. Field of Application (Dashed Line)
of Inertial Solution for Pressure Behind an

Obstacle
limiting curve of the field where the
maximum mean pressure is less than the
maximum peak by no more than 20%;

------------- limiting curve of area whree inertial
soluiton yields maximum pressure behind
obstacle which differs by no more than 10%

i from max mean pressure from wave solution;
PM,
7,0• - the point for which pressure-time curves are

calculated acc. to the wave and inertial

'•l

(b) ,8equations.

• 0.4 -P
Pm

*• . ,

,~0 14 Z. r, I.

Fig. 118. Change in Pressure I
Behind an Obstacle where Ti = 0.1: 0

(a) for point 1 (Fig. 117) where
x = 0.04; (b) for point 2, where 0 05 IN ?..
X = 1.5; (c) for point 3, where
X = 4.0.

precise wave solution;
-"-'-0 curve of mean pressure acc.

to wave solution;
------inertial solution. pl

0.6

(c) 0
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(a) (b)

(a) a' , , , -- -- • b

0,1-,

Fig. 119. Pressure Behind a Steel Obstacle Where
x = 26.3;(a) where T1 = 0.1; (b) where T1 = 1.0.

(Designations the same as in Fig. 118).

(26.24) and the formulas of the "inertial" solution (22.35), (22.59)

where p la1 = P0 a 0 ; P3 a 3 -- 0. In this case

-i-__ =(26.45)

_ ~(7, ," )' J
Let us calculate the effect time T+ and the pulse J+ of the pos-

itive phase of net pressure. For an exponential-shape wave, employ-

ing (26.18), we find that

*
S,(2n +2) (26.46)

where

In h.-L 4.~(I .;-i) 7. (E = g -2n 1

E is the so-called "entier" function (the function denoting the

integral part of a number).
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0,6 •Fig. 120. Effect-Time of Positive Net
Pressure on an Obstacle Dividing

0,, Air and Water. wave solution;

- inertial solution.

2.T

(a)

p..

Fig. 121. Net Pressure on a Steel Obstacle (X =26.3) Dividing
Water and Air During incidence onto said Obstacle of ExponentialShape Shock Wave: (a) - T1 = 0.05; (b) - T1 = 0.1.

wave solution;
-- inertial solution;

--- - curve of net pressure on absolutely rigid
obstacle.

The pulse is

J, [,O (I d k,1) ( -e- '+) +

(26.47'
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Shown in Fig. 120 are the curves of += T+(),where = a -tii

1. As we can see from the figure, when evaluating the effect-time
XT1

of the positive phase and consequently, the pulse I+, we can utilize

the approximate solution for T1 < 0.1. In the range of small values

of X, a considerable divergence between the magnitudes of pressure may2 <
take place. If we assume a possible error within 20% 1. 2)

then X must be greater than 5. The corresponding theoretical findings

according to the precise and approximate solutions for a steel plate I
are shown in Fig. 121.

The wide range of variation in the parameters X and T permits us,

in most cases involving practical application, to utilize a simpler

"inertial" calculation scheme which does not take into account the

wave nature of disturbance propagation in the obstacle material.

( §27. General Concepts on the Interaction of a Shock Wave
with an Elastic Plate Attached by Its Edges

In all the previously considered problems, we examined the motion

of a system having one degree of freedom. This assumption no longer

corresponds to reality when analyzing the interaction of a shock wave

with an elastic plate attached by its edges. In this case, we must

consider a system having an infinite number of degrees of freedom.*

Problems of this type are usually solved by writing travel in the

form of a series in terms of the main (normal) forms of

* In this and subsequent sections, the wave nature of disturbance pro-
pagation in the obstacle material is not taken into consideration. We
assume that the considered system satisfies the conditions formulated
in the precedinig section, which permit the use of the approximate "in-
ertial" scheme. This all the more justifies that dynamic calculations
belong to the number of problems which have been quite "coarsely" work-
ed out (too many factors remain unaccounted for).
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I(x, 1/ 2, t)= , w. (x, y, z)W. (M),nto (27. L)Sn-O

where n (x, y, z) - are functions defining the main forms of vibr-

ation;

W (t) -the main coordinates.n

The chief advantage of this presentation is the randomness of

one of the main forms of vibration from all the others. Thus, if

the main forms of vibration have been defined, motion in terms of

any of them can be considered as motion having one degree of freedom.

The difficulties associated with the dynamic calculation of elan,:-

tic systems include the search for normal functions, and especially

the complexity of defining the chief coordinates. The latter task is;

usuall-- solved with the aid of Lagrange equations of the second type.

For this purpose, we must define the kinetic and potential energy of

the system.

If we take into consideration only the normal displacement of

the plate surface, the kinetic energy of its elastic vibrations can be

calculated according to the formula

T _±jj'nW2dS=_L M (UnW =dS=

ý2
~m (02 V + 2 V V w ~WkW jdS.

2 .- k. 0 " 0

(27.2)

Due to the orthogonality of the functions of wn? however,n .

S'w=O~n 0 ,pH k-n. (27.3)

We finally find that:

V fif m(,-dS~ v 4f2 2 *- 1 2 (27.4)
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where m - mass per unit of surface;

M. =ff nmdS - reduced mass of the elastic system, corresponding
to the chief coordinate Wn.

By definition, the quantity of reduced mass is equal to the sumn

of the products of the mass of all points on the body multiplied by

the square of travel completed during motion according to the n-thl

main form of vibration with unit displacement of the main coordinate

(Wn = 1).

The potential energy of deformation in the elastic range, as we

know, is a quadratic form of travel along the main coordinates*

2 n. (27.5)

where K - the so-called reduced rigidity factor, corresponding to

deformation according to the n-th chief form of vibration.

It appears that the reduced rigidity factor is equal to twice

the magnitude of potential energy during motion in the n-th form of

vibration, which satisfies the displacement of the main coordinate

Wn= i.n

According to (27.4) and (27.5), Lagrange equations of the second.

type may be written in the form of an infinite system:

Al,0f dW,,, 0  K0Wo .=I•,

MO,- +KW, =rF.
0 0

dlnW P (27.6)
R

* In the elastic--plastic range this is no longer so. However, add-
itional problems which are associated with the study of plastic de-
formations introduce no theoretical changes in the physical substance
of interaction problems.
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where F - generalized force corresponding to the main ccordinate
n W•

n

In order tc define F Z we must write an expression for the work

of external forces duringn travel of the n-th main coordinate by the
quantity 6W n. Because the migration of points of the obstacle sur-

face in this case is equal to w n6W n, the work of the net forces of

pressure p. can be found according to the formula A

A =jfp, (x, i, z, I)wu,(x, y. z),W.(t)dS = W (27.7)

The magnitude:

If. Jp,,.)dS (27.8)

:us called the generalized force.

The net pressure p, can be found by using the function of the
wave equation potential which satisfies the boundary condition

(27.9)

Practical evaluations are convenient to conduct separately for
hydrodynamic forces of the first and second category*

p ro, F ,ll F2,, (2 7 .1 0 )

where
Fj l.= - o dS,•

(27.11)
F., of -- ,, dS.;

F, (27.12)

*In this case, hydrodynamic forces of the first category are defined
allowing for certain types of buckling; however, as before, they do
not depend on the results of obstacle motion and can be calculated
independently of the parameters of motion and deformation of the ob-
stacle.

363



The velocity potential 0 can be found under the assumption of 41

obstacle immobility with the boundary condition on the surface

an- on (27.13)

where 0np and cA - components of the potential function induced by

the direct and diffraction waves.

The potential *2 on the plate surface is subject to the condit-

ion
Oi2! = TW.

-" (27-14) 1

but

"U o (27.15)

and consequently, the potential of the radiated field *2 is a funct-

ion of the parameters of motion in all main forms of vibration. The

latter fact indicates the advisability of finding function *2 in the

form of a series

0. (27.16)

where Xn on the obstacle surface is a function only of time t.

If this can be achieved in terms of the problem's conditions,

then a comparison of (27.14)-(27.16) yields

Tn =: •%)'d (27.17)

which is a function only of one main coordinate Wn*

Employing (27.8), (27.10), (27.12), (27.16), and (27.17) and

the feature of orthogonality of the functions of w n we get
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I
F2 el .,,,,ndS P-. -- 40o h.,dS

t. k= -- Dj s - " 1 W -U) (•,[•27.18)

In this case, the n-th component of the second category hyd-

rodynamic forces is A function only of the n-th main coordinate.

The result obtained permits us to form conclusions on the

feasibility of defining any main coordinate from a total of two

differential equations

M,,W,,- K.Wn =-p., 1 ,,;dS + Fns, (27.19)

a (27.219

dx' dy' 0z' a,' &1 (27.20)

The limiting condition for (27.20) is

- s (27.21)

According to (27.16), the net potential of the wave radiation

field is

n-0 n-0 (27.22)

Strictly speaking, we can only write (27.16) for the simplest

cases of shock-wave interaction with an elastic obstacle (problem of

plane wave interaction with spherical and round cylindrical envelopes);

consequently, in general, any component of second category hydro-

dynamic forces F 2, becomes a function of all the main coordinates and

must solve an infinite system of mutually-related differential equat-

ions. However, as D. A. Aleksandrin first showed, using the study

of the motion of an infinite plate resting on rigid immobile equi-

distant unilateral supports, for most cases of practical application

we can ignore all terms in -)xpressing F2 n where k # n. Consequently,

we can roughly define any main coordinate from a total of two dif-

ferential equations (27.19) and (27.20), which are primarily used to
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precisely define W.

Later on we will show that the n-th component of sec•ond cate-
gory hydrodynamic force may be written in the form

-F F0o• W.(t -V. ),(t)d- where t < t,4 (27.23)

-IF0, O1 W.(t--!, .lTd- where t>to. (27.24)

where F On - a constant, equal to the second category hydrodynamic

force component at time t = 0 for the motion of the main coordinate

according to the unit function law Wn = a OW;

tOn - some typ~cal time for which ýpt) 0 where t > tOn;

n(t) - the kernel, depending on both the shape of the ob-
stacle and its type of deformation (where t = 0,

6 *n(0) = 1).

Therefore, the problem of a shock-wave interacting with an

elasLic obstacle reduces to a study of integro-differential equations

of the type already considered: where t,< tOn

IM,,Wn +- K.Wn:- Fi F -- Fon.l WV(j -- ).()d-., (27.25)

where t > tOn

M W. + %W = -- . W,(t -F-.),ir()d-.. (27.26)

The primary difficulties are first of all associated with defin-
ing -Pn (t) from the corresponding boundary value problem of the wave

potential and secondly, with deriving a precise solution of integro-
differential equations (27.25) and (27.26) themselves. These equa4 --

ion may be reduced to ordinaiy differential equations for several

forms of the function f(t).
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To prove this assertion, let us employ the method developed in

§23. Integrating (27.25) twice with respect to t and dropping out

the index n (for the sake of simplicity), allowing for zero initial

data we find that

Al '() + K If 'W (i) d- .1- F. ' (. - --
ob oo

0

(27.27)

Integration by parts and differentiation from (27.27) easily

yields

o d-

J'Fl(lt)d-, (27.28)

M ' (i) + FOW (i) +

+ K + F",(O)l U' (t) -- F. W' (I - ) d- = F, (t). (27.29)

Multiplying (27.27) by C2 and (27.28) C1, and combining these

with (27.29), we find that

SM 1 + (F. + c'M) iý 'I) +

+ IK + F/0,(o) + CF, + CM W Yt) + C1 K tW (i) d +

+cK W.(. W (t.) (1-d. = F, (1) + C, o[' (i) dc + Cs F, (•1 ) dt d-
00 0

F9 (' +4 + C.) (-)dt.
"d" d

(27.30)
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It follows from (27.30) that if 'F

dO - (27.31d)

then the initial integro-differential equation goes over into an

ordinary differential equation. Forms of the functions iP(t) which

satisfy condition (27.31) were produced earlier (cf. Table 5).

In contrast to an analogous problem of motion of an undeformable

obstacle, because of the term condaining the reduced rigidity factor,

in this case we get an equation of the fourth order having constant
coefficients, and not a second-order equation

A -+ (F0 -f CAI)--- K F (0)+ C,F + C(m0 ±L' +

dO d. dits

C1K all, + CK1KW = F (t) + C1F1 (t) + C,&F (t).
Lit (27.32)

( Integration of (27.32) should bB performed with the following

initial data:
W (0)= (0) =0,
W (0 ) P 1r (0__)

M
(27.33)F1() '(0) _ F 0

M M

The differential equation (27.32) is valid where t < tO. Where

tt > to, analogous transformations of (27.26) lead to an ordinary

differential equation of the fourth order having constant coefficients

and a delayed argument

dita dl' d -iM - F IA) - IF (O) CCK , i Cd.,1' "

dl' _dl

F .= -, (t) -! C ,j• (t) 1 .C .f , (t)( 2 . 4
(27.34)
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When approximating the function 41(t) by a linear relation

ol(--~(-tJ (27.35)

as we indicated in §23, the coefficients C and C2 must be assurmed
1 2

to be equal to zero. In this case, we derive a second-order ordin-

ary differential equation from (27.29)

MW-- F•W -(K--}W= F, where " (27.36)

For t > t,, motion is described by an equation having a delayed
argument

MW+FoW.IK- t. ! l(27.37)

These last equations and their methods of solution are practic-
ally the same as those examined in §§23-25. The difference consists
in considering not just one, but n equations of the type (27.36),

S' (27.37).

As we mentioned, the primary difficulty of the problem lies in
defining the functions n (t) from the corresponding boundary value
problem of the wave potential. The following section is devoted to
illustrating possible means of finding these functions.

§28. The Pressure Field and Generalized H drodynamic Force of
the Second Category Induced by Deformation of an Elastic
Plate Attached by its Edges to a Rigid Infinite Wall

Let us now consider the motion of an elastic plate attached by
its edges to a rigid infinite wall, under the influence of a plane
shock-wave. For the sake of determinacy, let us assume that the

plate divides water and air.

The presence of a rigid infinite wall greatly simplifies the
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evaluation of 2nd category generalized hydrodynamic force: it will
be twice the magnitude of pressure of a direct wave.

According to (27.8),

F1,,(t) , M I 2p (t) klndS 2p(t) at (2 8.1)

where

S (28.2)

Let us evaluate the possibility of two methods to define second
category hydrodynamic force: utilizing the radiation integral (§11,

14, 15) and solving the boundary value problem of the wave equation.

With the aid of the radiation integral for points situated on ¶

the surface of a round plate, according to (11.19) and (27.1), we

( find that

'?:(r, t)= - . ,-'r (28.3)

where r - the radius-vector of the point of observation; r1 - the

variable radius-vector.

Pressure cn any point r on the plate induced by its motion in

the form Wn (r) at a velocity Wn ,

p.2(r, 1)=-- L a0 dS. (28.4)

We can calculate the integral (28.4) for the center of a plate
r = 0 rather sim .y. In this case

7 , Id
i W." (0 t__ L- )" W 

°) 
7,0( , - En- -ld d , po Wt- w ( r, v -.( dr,,
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where a - the radius of the plate.

a /

Because G 0 (t - ;U) 0 where r > a t, then for t < a we get0 a

A0I

/'. O,,) P-•o W," € . .•,( dr,."° (28.5)

By replacing the variables T = t - (r 1 )/(a 0) and integrating by

parts, we can easily derive

I'

p.,,(0, 1) = pa ,, w, (ag - ao• ) d-

--rOa'W. (), (0) - (1),, (0) +

+ Poo J" 1,, (,W a,, • - dt.

(28.6)

If we consider, as if often done, the motion of a round plate

with its edges freely supported as a form of buckling

,1• 4 (28.7)

then w(0) = 1; w (0) = 0; w(r) = 2
a

Substituting these expressions into (28.6), we find that

2'Ps(. ) --- .,oao , (1) + ",,0o W. i (-:1dT. (28.8)

where W - migration of the central point on the plate (main coord-

inate);

t - a wave-run time of the plate radius.
Sa 0

Formula (28.8) was first derived by Kirkwood [10]. Ifs first

term conforms to the solution based on the hypothesis of "plane re-

flection", the second considering the effect of diffraction waves

7where t < t A
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L. V. Fremke derived a similar relationship for radiation pres-

* sure at the center of an infinitely-long plate being deformed into a
2 2cylindrical surface w = 1 - (x )/(a2)

p., (, t)=- rol, (t) + .J W, 0() d:. (28.9)
•1 Ii1

It differs from (28.8) by only the coefficient in the second

term, indicating the effect of diffraction waves for a round plate

is twice as great as for a plate buckling into a cylindrical surface.

However, for other points on the plate, we cannot derive such simple

results. Consequently, the definition of the second category gen-

eralized hydrodynamic force, with the aid of the integral of radiat-

ion, becomes very difficult. It is simpler to consider the appro-

priate boundary value problem of the wave equation.

At this point we will limit ourselves to the study of motion of

round and rectangular plates.

( For a round plate with the radius a, attached to a rigid infin-

ite wall and buckling in the shape w n (r), the problem of defining

the radiation field reduces to defining the potential function n

which satisfies the wave equation in cylindrical coordinates (hence-

forht we will cease using the index n):
o'P,, I_ ay J++ ,I-, -W d + o oil (28.10)

with zero initial data

dI' •i ,-0 (28.11)

and boundary conditions

d2I =1 {0 where (28.12)
where r<a

. 0 (28. 13)
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We will assume the origin of the coordinates to be at the cent-

f er of the plate. The z axis is directed toward the interior of the

fluid. The positive direction of motion of the plate opposes the

direction of the z axis (hence the minus sign in the boundary con-

dition (28.12)].

To solve the wave equation, let us employ the Laplace transform*.

Then, instead of (28.10)-(28.13), we get

dr.. - 2 -- 0z (28.14)

a; 0 where r>a (28.15)

(J i-0 -- I(v)(,() where r<a

(28.16)

where

S( e(28.17)

f0e"d1, (28.18)

V - a complex parameter haviug a positive real p .rt.

As before, the .olution of (28.14) will be sought by the Fourier

method. Let us assume that

•=X(,)Y(2. 4) (28.19)

Then, substituting (28.19) into (28.14), we find that:

(,) ) + (Z. U (28.20)

*This method was first used to solve the problem by Zamyshlyayev and
Mironov for the motion of a rigid plate in terms of the first type
of vibration.
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whence

(X'r) + X' (r) + )'X (r) 9.
(28.21)

Y"(z k)2( + N' Y (Z. 0.a) )z(28.22)

Considering conditions of infinity and integrating (28.22), we

find that

Slz, •) = C, 1Q.. v,)e (28.23)

The solution of equation (28.21), if we bear (28.16) in mind,

will be

X (r CgJ (Xr), (28.24)

where J 0 (Xr) - a Bessel function of the zero order.

According to (28.19), (28.23), and (28.24), the general form

of function * is

y'= Jo(Xr)C(kv)e'). (28.25)
U

To define C(X, v), let us employ the boundary condition (28.15),

which we will write in the form of a Fourier-Bessel integral expan-

sion I ° /

1-0 . (28.26)

however, according to (28.25)

~r C
S"# ,- -. f (). ~(28.27)
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whenceI:I X" (r) + -L X' 1,1 + O.X (r) =9,

(28.21)

Y'"(Z, v)-- V+ Ylz,)=O. (28.22)

Considering conditions of infinity and integrating (28.22), we

find that

Ylz. • = C,(.. •)e(28.23) .

The solution of equation (28.21), if we bear (28.16) in mind,

will be

X (r CJgQ(r), (28.24) :1

where J 0 (Xr) - a Bessel function of the zero order.

According to (28.19), (28.23), and (28.24), the general form

of function • is

1= J(Xr)C (kv)e e (28.25)

To define C(X, v), let us employ the boundary condition (28.15),

which we will write in the form of a Fourier-Bessel integral expan-

sion

--i° ,-W [U •)1 ,,, (V) jo(p).) d,.,dt,.
1 -0 0  4. (28.26)

however, according to (28.25)

F ~~A. f7"= 1.( )Cv 1/)2+2
i 0(Zr)C(. ),2 (28.27)

U
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consequently,

g' -(28.28)

Therefore,

a* (v)

t
. 0

(28.29)

To use the original instead of the transform, let us employ

the Mellin integral

W " 04J (IL) 01').'') X

( __

V") e"*' dv d).dp,

(28.30)

or on the basis of the generalized Borel theorem

2Ti,)/
)J O-r )I0'1w (I.) JA1A) X

OF (28.31)
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Because

e--J, Qao I(=(28.32)

(LI.

we will get*

a f ).J U l,Q lf.-r) '" ) J*(1&k) J" l •
a. t.

0  0 J' W ) a/

0 : , Veta/ (28.33)

where
a

W 01) pt J,• dl(, .~d
0 (28.34)

Using pressure according to (28.33) instead of the p.otential

function, we will find that

.(V a. (28.35)
0

Assuming that z = 0 in (28.35), let us derive an expression for

pressure at points on the plate surface. To define second category

hydrodynamic force, we must integrate this pressure with respect to

plate surface, multiplied by the form of buckling,

F.: = I fop,'(r, I)m (r) rdrdi = 2r I p.(r, 1)m(r)r:ir (28. 36)

0 b (2 . 6

*The same result was obtained by Aleksandrin with the aid of a double
integral transform (the Laplace transform with respect to t and the

SHankel transform with respect to r).
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We should bear in mind that (28.35) characterizes only the con.-

ponent of pressure forces conforming to the n-th main coordinate.

Net pressure is

n P (28.37)

The second category hydrodynamic force for the k-th form, in

turn, is defined by integrating series (28.37), multiplied by the

main type of vibration

F., 2, j'p•w,,rdr. (28.38)

However, we can disregard all the terms of the series where n
Sk. Consequently, combining (28.35)-(28.38) we find that

F:'k -- 2.,i,,Oao Wl l- ) . ) JO,, (i.a) 7 0o dc,,o) Wd(. (28.39)
0 0

It is convenient to write expression (28.39) in a somewhat dif-

fer nt form

(28.40)

where

Fok = poao2r, " rw=k (r) dr = p(aO22.S)0 (28.41)

73= . tojjwdS.

)= ( (28.42)COS, b

(ilkP) rw,, (r) J0 (4) dr. (28.43)

We can show that where T > 2-, p(T)-= 0 and consequently, f(T)

chang, s during time [0, a I from one to zero during the motion ofa0 = 2_a
a plate in any type of vibration. Therefore where t > a0

a0
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(28.44•

With the aid of (28.42) and (28.41), we can easily calculate
the quantity of apparent mass of the fluid during vibration of the
plate in a given form

ID. -R

• " 0 0

Calculation by this formula often leads to the goal more rai •d-
ly and in a simpler fashion than the classic, scheme.

Let us now examine motion of a rectangular plate.

For a rectangular plate fastened to a rigid wall and deforming
in a given main form of vibration, the problem of defining second
category hydrodynamic force is reduced to finding the potential
function 0 which satisfies the wave equation

+ +- (28.4(:)

with zero initial data

yj,.0 ,-0"0 =m(28.47)

and boundary conditions

----f BJ. 0 where IxI>a or I,,>b
dz (.o4 --Wtl) (w. x) where a x*< ,'a and -b<g b.

(28.4F)

J'" • '-"(28.49)

A system of coordinates is selected as in the preceding section;
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the origin of the coordinates is at the c-3nter of the plate.

After applytng the Laplace integral transform, we will find that

at, Out . (28.50)

0 where lxl>a

where a z'.x (28.51)--b<"y .'b.

(28.52)

where

W IV) I W(1)e-'dt. (28.53)

Employing the Fourier method, we will find the solution in the

( form

(x) (Y~) .(28.54)

Then, after substituting (28.54) into (28.50) we will find that

-- ,(28.55)

Equation (28.55) is equivalent to the system

'V' .I- , 0,
'" - n IY 0 . (28 .56)

"" )  I

Allowing for the boundary conditions
X =Co"',,

Sy • C.'e'"•,
ez W f:c_ 7/.,.• (28.57)
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The solution of the wave equation in transforms is written

,p in the following manner

V,; -+- -*d= C(j. r. .ev)eI"x+"e dmd(. (28.58)

To define the arbitrary function C(m, n, v), let us
employ the boundary condition (28.48), after first putting in the

form of a Fourier integral

07 -Wo(v) e (Oe.+my) w(m, n)ddmdn, (28.59)

where

a b

w(mi r =(T1-.. e(' " (28.60)

Differentiating both parts of (28.58) with respect to z and

( assuming that z = 0, we will find that

C (M -. V +, eŽe(mx+a-Y) dmdn.
LO=-~-S.+ alo (28.61)

A comparison of (28.61) and (28.59) yields

C~na, W(.)(m. n)

MI , .. (28.62)

Therefore, the solution of the initial wave equation in

transforms appears as

I ¶j OI I fly) n m - -) A

--- S f e(m n

-" •'+ + + d

Xe 0ddn. (28.63)
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Using the original instead of the transform, and employing

the Mellin integral, we find that

S = e'tnv*÷UY•(m, .n) X

'Jr.-- --. a
W ~ dvldmdn.X , "11 Im___, -- , ,

/.nit :=8.: (28.A4)

Because

-- us + aa +"

2 n' + -V+

a# .(28.65)

then on the basis of the generalized Borel theorem we will find

X JO (as MA dtdmdn.
(28.66)

Using pressure instead of the potential function, we get*

-- W W (, -- ") i e'( w1,. n) X

>0 Jo o i''i+"••d'dd.
so a(28.67)

Assuming that z 0 in (28.67), we derive an expression for

pressure at points on the plate surface.

• *A solution of the problem in this form was first derived by
Zamyshlyayev and Mironov and Novoselov.
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The appropriate component of second category generalized hydro-

I dynamic force will be

F.= _ ;, (x. y, z=o. ,)w(x, y)dxdy. (28.68)
-a-b

The result #.:f (28.67) relates only to the component of pressure

forces satisfying the n-th main coordinate. By reiterating arguments

from the first part of this section, which were developed for a round

plate for the k-th main coordinate, we can write

0

where
a b

'P'* =O S:kvo, = Pogo • {k (.,c y) ddy,
_44 w: , (28.70)

.. m, n-) =o !(, 1__, M2 A')d-

0 0

a-b

As before, where t > to I/ 0. Con-0 a 0 (a *, k (t)- 0. on

sequently, for t > tO0
.,i

Fk =-- FO Wk Wb(t -t)•, (,t) dt. (28.73)
I,

The expression derived for the function *(t) permits us to

rather simply define the quantity of apparent mass of a fluid for

a rectangular plate attached to a rigid wall with its motion in a

given form of buckling

M P -= F0, ' .(t)d" )6r2 ,,,p0  d-. S S ws (m. n) X
0 U 1) 0

x Jo (ait "--")dd,. (28.74)

ra As with round plates, calculations according to this formula are

simpler than those using the customary method.
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§29. The Practical Evaluation of the Parameters of Motion of an
Elastic Plate Having Edges Attached to a Rigid Wall Under
the Influence of an Underwater Shock-Wave

The methods of defining second category hydrodynamic forces

which were developed in the preceding sections for a given main form

of vibration, in conjunction with the approximate methcd for solving

the integro-differential equation of motion, permit us to indicate

a rather simple means for the dynamic calculation of a plate being

deformed under the influence of an underwater shock-wave. This cal-

culation is based oi. two assumptions:

1. the main forms of vibration are considered to be known a pri-

ori; as a rule, we are given a total of one form of vibration which

roughly corresponds to the lower tone (reduction method).

2. the second category generalized hydrodynamic force is approx-

imated by a linear relation; for this purpose we preliminarily cal-

culate the apparent mass which corresponds to the assumed vibration

S~type.

Upon fulfillment of these premises, the problem of motion of an

elastic plate under the influence of an underwater shock-wave is re-

duced to the iritegratio- of an ordinary differential equation of the

second order having constant coefficients. Let us consider a number

of concrete examples.

A Round Plate Rigidly Fastened by its Edges

The type of buckling in this case may be roughly assumed as

I a, (29.1)

According to (28.2) and (28.41), the values of the coefficients

aI and a2 are
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S--•" --- - -- -I - '"-I

NOWr

n dS

-S Ea'

$ r~at 3

a 2a 

29 2

$ r~at

According to (28.43)
a

= ',8 j, •.
a ~ a(0) (29.3)

where J3 (a) - a third-order Bessel function.

According to (28.42)

*'('")= ,•fjw°"l.'J~la.,"l. =- (' lo•.J, ;Yo)m-
al do kai

= • /3 41o. JO (AOo),dX.
60( (29.4)

(
The integral (29.4) may be taken in the following manner. Let

us employ the equation (cf., e.g., [1])

g

fJ,(zsinx)sin'xcos"xdx=2'-llvwr(v" ! "I (T)" (29.5)

Assuming that v = 3 and z = 2aX in it, let us calculate J 2 (aX)
3

and then, let us use the relationship

S0 where"~1-"J ,(tJ (lt-dt 62_ t~- q, " "•" (29.6)

"' h'(p -- 9 + I1) where "

assuming that p = 2, q = O;a = 2a sin x, T = ¶a0 , t =.
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We will then fi:xd that

0

0 0 where ¶..- Žsin xa,

14' (29.7)
60n sin' x (•0)j cOS Xd where • < sin x.

0

Substituting the values of the coefficients [Ir3 + -8 -- ,

r(2 + 1) = 2j and performing transformations, we get

( 2

32.16 , +j. t - I io 7

-L L0 + -L z IIs

2560 160 18 2( - -- 8 V .' 21- ( 29.8)

.. 25_+ .L..(I -)arcsinl-j+
48 256 48 H

121

32 6 6 8

+ + 8

where

The function f(T) may be approximated with sufficient precision

by the relation

and with a somewhat greater error by the formula
- r. , .-

e, () -, -''Co•s ".
2 38 (29.10)
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The quality of approximations is shown in Fig. 122. Knowing

the function i(T), we can easily find the quantity of apparent mass.
According to (28.45) and (28.41), we get

2t

F,, :• F , '• ( = - 1a*21S . 0,3 4 --a + =

=p4.0,2.O,34.2=' = 0,43pa. (29.11)

A Round Plate Freely Resting On its Edges

The type of buckling may be assumed to be [251

w(r)= i-(- )+ -L -+ (29.12)

V 1

0.5 = to

Fig. 122. The Function ' for a
Round Plate Rigidly Fastened by its
Edges to a Rigid Wall.

precise solution;
approximation,

= 2.2f-
e T2)..cos (n/2)7; x approximation of= (1. .r 2 ) 6.

This torm correspondv" to a1 = 0.47; a2 = 0A30.

Substituting (29.12) into (28.42) and performing calculations,

we find:*
* For a freely restin.y plate being deformed by buckling type (29.12),
the problem was solve:i by Mironov and Novoselov.
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'•1"1 -"Js + 2, +i J:...12 13

where

C (sin'x--')cos4xdx where 0<;<I (29.14)
225. t

0 where 1>

- arc, Iu (t--•)

""' , tc'x-4Rlsinxcos'xd* +

2

I' [(cOWx-4%') arccos , +

J2 -- 4t sn x

+;i /(.c -"(29.15)

where 2

2 ~(cos2 x- 4 arccos 4 os,nx +I rcs I 41• s- xl

4 4sinwx sin xcos'xdx

where .

0 -> !

It
o2120•8 1 (stnO x--;ý)' c os"xdx where 0 < '_C. 1 . (29 .16)

Js= 7.. 31 _

0 r i where -ý > L.

In spite of the fact that all three integrals are written in fin-

ite form, it is simpler to employ integral representations directly

in calculations.
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The function *(T1) may be approximated by the expression

' -(' =e-';° CO - "'C (29.17)

Error of approximation can be seen from Fig. 123.

The quantity of apparent mass, according to (28.45) and (28.41)
is

is f,, --- O .. 39,, . 2,.- G=0 3 97.:,o82nS - -- 0.72:,,,jj;'.129 
8)Af, O3 ft1 '-~.$ R. 0 n (29. 18)

Rectangular Plates

The buckling type of rectangular plates rigidly attached by
their edges is often described in dynamic problems by the relation

23, 2b (29.19)

( 1 9Corresponding to this type is a1 = ' 2=

The function -(m, n), according to (28.72) is

-sin ma sin Ab
w~l. 4a'bt Off~.'~)n~'-- (29.20)

Substituting this expression into (28.71) and bearing in mind

that

2 •

)0 (aOI T ) = n cos (ma0- sin ,.) cos (nao: cost.)d?. =

0

2 cos ml cos nLdk. (29.21)

0

where
I - ao sin ,

SL = aocos), (29.22)
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Fig. 123. Function P for aRound Plate Freely Resting on
its Edges on a Rigid Wall.

-- precise solution;
approximation

e-1.6y .cos -- T.

for the function i(T) we will find that

Si "IM4 COS M1 sins n cO% niL -

"ca',• 12 - 't, (29.23)

where

S sins m a Cos m l d en,,,,m - r., #,d1 n.•-](29.24)

S sill' nbco.nL dn.

After performing the transformation

sino macosmi =-./. sin nmasn(a--l)m .sin(a +I)m;,2

sin'nbcosnL "sin nblsin(b -- L) n + sin(b + L)jI.
2 38
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the integrals (29.24), (29.25) will be written in the form

2 2-2- mI - dm+

0

+ I" sin ma sin (14 a)m din, m(29.26)
+2 3 dr2 (29282 m m2 (m •. %

0 a2)

2 2 2 --!O

0 b21

+ si• slnnbsin (L + b) nd

Integration yields

640- (29.28)

where

S T2 - )(2 + cos -L

b \b \ bj
where 0 <'l < 2a (29.29)

0 < L < 2b,

0 where I > 2a
L > 2b.

Let us examine the restrictions imposed by the inequalities

0 < 1 < 2a and 0 < L < 2b in the time interval 0 < t < .2
(k~~~~~ =bab>a)Le0< <aa 0 1+ k

(k b/a, b > a). Let 0 < t < 2a. Then, for any X from the intervala 0

0 < X < 2, both inequalities are fulfilled at the same time. The2 2a If b < t < 2_a
first inequality produces 0 < A < arcsin 2<-- a a x

a0  a0  0
x Y/il + k2 (2 V-a2 + b 2 )/ao, then it follows that 0 < A < arcsin

l 2a 2b
Sfrom the first inequality (as before), and arccos 2 < X <
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from the second inequality.

Therefore, where t < 2/a 2 +0... ,we geta 0 a 0

arccos < i. < arcsin
all

Accordingly, and based on (29.23), (29.28) for the function

S(T) we will find that:

2
0_ 2a

I (~ ~where 0 tie
arcin 2a

fi.)d& where 2a < 2b
o a, (29.30)

0) where 2 2 Vall h b.
afccO' -

'a.

(3 where

Similar findings can be derived for a rectangular plate

freely supported by its edges.* In this case,

(XI Y) =cos rcos .-
2a 2b ' (29.31)

2

3 f(:, ).)•. where 0 -" .

"" 2 2b

f f(C ).)d,. where a* a..

0
2r 2aa).

f/( i)di. where a, . .

0 where 21> .
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[i.' - ('-
sin-- ,--iCos +-. -Cos(Jr~ 2a 2aj 2a

., in---L cL IL -Cos_ L (29.33)
r~i 2b kb 2b 2b

With the aid of the functions W(t), there are no theoretical

problems in evaluating quantities of apparent mass corresponding to

given types of buckling. As before, we get

M- (29.34)

where

F = .(29.35)

1
for a freely supported plate moving in type

2 (29.31);

9
6T for a rigidly fastened plate moving in type

(29.19);

The values of the coefficients y is a function of the ratio

of the sides k b/a are given in Fig. 124. It shows the findings

calculated by N. V. Mattes* according to the approximate method.

Our attention is drawn to the common nature of relationships
of y = y(k) both for plates and for a rectangular piston (upper curve),

which may be attributed to the' similar physical picture of the effect's

development in both cases. This is also illustrated by the nature of

variation of the function f(T) shown in Fig. 125 for plates having

a ratio of sides k = b/a = 3.

Thus, the rough method of approximation which we earlier de-

scribed earlier, using the linear relation 1 (T) may be expanded to

elastic plates with sufficient grounds. The best convergence of data

*N. V. Mattes, The Effect of General Buckling on Local Strength and
Vibration of River Vessels, Izd. MRF SSSR, 1950.
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/,-00

OI S 2 1 j 5 8

Fig. 3.24. Coefficient of Apparent Mass for Motion
of Rectangular Plates Fastened Along Edges to Rigid
Infinite Wall.
I - freely resting plate; II - rigidly fastened plate.

precise solution;
-------- calculated with Mattes' data;

-.-.- curve for rectangular rigid-walled piston.

(_l
!01'

101

Fig. 125. The Function • (F) for a Rectangular Plate
Resting Freely on Its Edges Against a Rigid Wall.

precise solution; -6ýcos
approximation = e Cos

where • = (a 0 T)/ 2 Va2 + b2.

of thre approximate and precise solutions will be achieved if we
approximate the initial portion of the function i (T) in the interval

o < T < 2a. In this connection, second category generalized force,,a 0
as before, can be expressed by the relation

-- Fo "+ -L--t W• where t .< 2a•

whrT O

Ft (1) (29.36)
It-- M,rw where (>

Reproduced from393 best available copy.



i.9dfII

0,50

Fig. 126. The Function t(•) for the Motion
of a Piston and Plates Fastened Along Edges
to Rigid Infinite Wall

(k = b/a = 8)

for piston;
for freely resting plate;

- --------------- for rigidly-attached plate.

SThe quantity 2a is the tangent to the slope of the dir-ct line

approximating the i itial portion of the curve of i (T); it can be

defined from the equality of corresponding areas (Fig. 126).and the

area of its initial portion. Therefore, for practical evaluations

we can recommend the relation

Tnp _• Tnop (29.37)

Hence it follows that equations of motion of elastic plates under

the influence of an underwater shock-wave are easy to write if we

know the solution of the problem of pistons and we have c~alculated

the apparent mass of the plate for a given type of vibration.

Equation (29.36) may be rewritten as

- kF,, W where j < 2a

75a..$ (29.38)

"a4
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where a

Fe --- , S,, (29.39)

"= )s j w'd(29.40)

"Tnop v (29.41)

2aM p = Fe all, I

(29.42)

Specifically, for round plates

S = ndl:

0,3 for freely-resting
0,2 for rigidly-fastened plates,

0,8 2a
a@ for freely-resting

0,76-'- for rigidly-fastened plates,

0,72" I 0 N38F° for freely-fastened

.0,F,,,a' 0,34Fu.2a. for rigidly-fastened plates.

For rectangular plates

S .. 4ab,

aa 4 for freely-resting
9_ for rigidly-fastened plates;

.-I 2a 3- for freely-resting
,,!5 CO 2 (3+2 7)

S2a 32) for rigidly-rastened plates,
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where y - the coefficient of apparent mass, whose magnitude is

I given in Fig. 124.

Wmaz z.
-*lns102
OPm0.9

0,6

0.5 .

Fig. 127. Relationship of Wmax as a Function of

t+ for a Round Plate:

(6/a = 0.0 2 5 ; 4a V(K)/(M + M ) = 0.16)ao0 7 np

( The equations of motion of elastic plates under the influence of

an underwater shock-wave, allowing for what we have stated, may be

written in the following manner:

where I < -

AlW +-F0W' +(K- W, _)F, (29.43)

where t> 2aa,

(M4 +} M,,) +'-I KW =Ft. (29.44)

The solution of these equations, while ensuring the precision

required for practical application, causes no difficulties.

Let us note in conclusion that if the time of acquisition of

• maximum buckling by the plate tmax is considerably greater than the

time of diffraction t = (2a)/(a0 ), %e can calculate accurately using
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the concept of fluid noncompressibility* (Fig. 127).

If the effect-time of the positive pressure phase t+ is consid-
erably less than tmax, the evaluation of the maximum buckling can be

made according to the pulst_ method

of -'11,,)K (29.45)

Fo
For very rigid plates, where K >> - , the time of acquisition

T
nn 2aof maximum buckling may be less than the diffraction time t aa0

In this connection, evaluation of maximum buckling may be close-

ly approximated on the basis of the hypothesis of plane reflection,

§30. Interaction of an Underwater Shock-Wave with a Rectangular
Plate Forming Part of a Cover

Let us consider the indicence of a plane wave along the normal
( onto an infinite cover, resting on immobile equidistant supports which

are mutually perpendicular. The cover divides water and air. Due to
the infinite dimensions of the obstacle, there are basic difficulties
involved in evaluating second category generalized force. As a re-
sult of symmetry, we only have to study the motion of a fluid in the
area limited by planes which are perpendicular to the plate surface

and passing through its rigidly-supported edges. The problem was

first studies in this formulation by Aleksandrin, and later by Za-
myshlyayev, Mironov, and Novoselov using other methods. In the math-
ematical sense, this reduces to a definition of the potential funct-

ion ý which satisfies the wave equation

"".0%?- = I- I o i)

with the following boundary and initial conditions
d!I W- (1),, . Y) wh r --u xan
do-i,.0 where . •.. and -b',y.b, (30.2)

*This condition can be satisfied by many measuring devices.
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ax I b1 - 0, (30.3)
4'y 0,;

2-o=°1 0.
,• (30•.5)

The system of coordinates is selected as in §28.

Applying the Laplace integral transform, we find that

2  (30. 6)

A-LI =-W(v)w(x, y) where -- a and -- b <yb, (30.7)

-i- J 0, (30.8)Ox x.o a .•

.-- (30.9)(
where

S= ( e-"d1, (30.10)

'= We"dt. (30.11)

We will seek the solution of equation (30.6) in a form which

satssfies the boundary condition (30.8):

• b

After substituting (30.12) into (30.6) for the function Zij, we

find that i
_____ Ie,) 1• •,

T - -- + + a- (30.13)
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S• whence, considering (30.9),

-, ''' I4")' --
Z1= C.4 a" (30.14)

The solution of a wave equation in transforms is written in the

following manner

: ~ ~~~~ -,V l ,i~j+ ,'2'

'. i CO -L C s-- - e 0(30.15)
'.j 0

The coefficients Ci. may be defined from the boundary condition13

(30.7) which, for this purpose, should be written as a Fourier series

-- -a (30.16)IZ 0= t -O ý' ./0

where A.. - coefficients of the Fourier function w(x, y).1J

( Differentiating (30.15) with respect to z and assuming the

z = 0, we will find that

,)•' IC' =-•• Cos -irx Cos ir-." X

I., 0

1, + +5 (30.17)

Comparison of (30.16) and (30.17) yields

C11=A, =4. (30.18)

a 0a

Therefore

. Af,- coo. --r- Cos 1- X
W-O a

C _ _.) oG (30.19)
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Because

bz 1
>a l---iPol-- (30, 20)

then based on the generalized Borel theorem

c,= a. A 'acos -..Lcos.y W(t-•C- X

a5.

""0 (30.21)

Using pressure instead of the potential function, we find

ps(x, y, z, 1) =--.vo Acos--d-- co a

j. (30.22)

a.

Assuming that z =0, we will derive an expression for pressure

at points situated on the surface of the plate.

if we are limited, as is often done in practical problems, to

the study of motion of a plate in the primary tone of vibration, the

magnitude of second category generalized force can be found from the

relationship*

F.,() - 3 p2(x, y, ),,(x, y))dAdy, (30.23)
-- a -6

or after substituting (30.22)

*Consideration of other harmonics does not cause any theoretical
problems. It is not examined at this point because it introduces
no new parameters into either the mathematical or physical essence of
the problem.
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F.. 1 -1 W'(t.)•a Ox, y) ,/cos ---- cos -

U -a-b

(30.24)

Because where T = 0, J 0 (0) = 1, and

Sb

(X.IY, A qcos - cos b dxdy
-a-b b.

a b

a- ' 1'-, x y) dxdy =-- .S.(3 .5

the expression for second category generalized force can be written

as

Ft ( ) F6 S W (I - ,) ,•9dv,,0 (30.26)

( where

FO =p,7%S' (30.27)

ass I, a b

-- ub b ) I

As our example, let us consider the motion of a plate in a type

of vibration often employed for practical evaluations,

-cos +Cos-•-) (30.29)
4a k

The Fourier coefficients Ai, for this type of buckling are

AD =Au, =A,. • A. j '
•- A,I = 0

where i > 1 and j > 1.

401



According to (30.22) and (30.28), for the magnitudes of pressure

I and the function ipCT) we find that

r + .:-) ]1,:* (30.30)

Ps (X, ... 1') -- T ,aof • - +Cos -L--JO- E ot a,,%-+

+ Cos-1 -i-) +-cos-2 -cos-L--

S +" J( + as--J

(30.31)

Where b + w, for an infinitely-long plate we get

(.~~I ()lb I + 2 J !9.)" (30.32)

As follows from (30.31) and (30.32), in this case for any T the

function ip(T) is not zero and where T -* w it does not approach zero,

but to some fixed limit. Consequently, the quantity of apparent mass

has no finite value. This illustrates that within the framework of

the noncompressibility hypothesis, no motion occurs.

The derived result differs in quality from previous results and

can be attributed to the changed physical conditions of the problem.

Indeed, symmetry of motion is equivalent to the absence of fluid

flowing across the planning passing along the edges of a plate.

Consequently, we cannot avoid an extreme deformation of the fluid

flow.

This case is closest in nature to the motion of an infinite

plate under the influence of a plane wave. Second category hydro-

dynamic force which satisfies the derived value of the function fl(T)

may be written as
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Q '1

,,()d Fo-9 W (1) -

0
U

2a
+ - i- • - tF----

(30.33)

The first term in (30.33) is a function of velocity during the

entire period of motion, reflecting the effect of fluid resistance

to extension and compression. The quantity of the second term can

be defined by the kernel of a subintegral expression.

For small < __ ....

aa

and consequently, second category generalized force is

F. =:-- FnW. (30.34)

For rather large T the zero-order Bessel functions decrease in

amplitude and fluctuate around zero. This fact permits us to derive

another limiting idea of the second category generalized hydrodynamic

force.

Let us employ linearization of the kernel of the subintegral

function suggested by Yu. I. Kadashevich. Integrating (30.33) by

parts, we find that:

2
F., --- FoII 0 .1' (1))j -(. ) d-:, ( 30. 35 )F--F-- -'d

93 9 9

where
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b 2 di

0

I + d- - Jra 0F 1

!b'

--b , J
d-. / -J ,

I.: J J" ____•

J d, -J a I-

(30.36)

Where a/b > 0.3 and t +

( fit) .-- -- ""-- (30.37)• a 21~/ .:-

The behavior of the function f(t) for a/b = 0.5 is given in Fig.
128. Starting from time t > a+b the curve of f(T) may be approx-
imately replaced by a constant qJantity. Consequently, according to
(30.35) and (A0.37), for second category hydrodynamic force where
t > a 0 + b and a > 0.3, we can write

F. (t) ,- oW -

9
""""I / I ,': "

b) ,(30.38)

aa
W ereU<03 the limiting value of the function f(t) will be

different. Thus, where a + 0 & t ÷ =, we can easily derive

f (1) i -- -"- (30.39)
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7l 3

Fig. 128. The Function f for a Rectangular
Plate Rigidly Fastened Along its Edges (a/b =0.5).

a 14. T

0?

Second category hydrodynamic force conforms to this limiting

value of f(t)*

3 6n all (30.40)

Let us employ the method stated in §23. Limiting ourselves to

three expansion terms of the function W(t - T) into a Taylor series

where a/b > 0.3, we can easily derive the change F 2 (t)'for the entire

time interval

t I- W where I~i
9 to

Ft) 99 a 2(30.41)

vFs

us where 11

where (30,42)

Similar relationships for a/b 0 (they may be used for approx-

imation where a/b < 0.3) appear as 2a

Equaion (30.40) is approximately valid where t > 2a

405

etu emly hemto sttdin§ . i tngorevso
theIxaso em o h ucinWt-,)it alrsre



w_ - --I.

where <*30.43
F.: (1) (3 . 3

- VFeq - where I> ',

I 2a (30.44)
where r* = --.

As we can see, the second equations in (30.41) and (30.43) co-

incide with the limiting expressions (30.38) and (30.40) for F2 (t).

Therefore, the considered problem amounts to the integration

of equations of the same type as were examined earlier. However,

there is one principal difference in the results. This amounts to
*

a considerable reduction in the initial interval t and the presence

in the second period of motion of a considerable velocity effect W.

This once again indicates the impossibility of interpreting this

problem from the viewpoint of flnid noncompressibility.C
Other types of buckling may be considered by analogy. Thus, if

flx " r.y

w(x y) = cos - cos (30.45)
2a 2b(345

then from (30.28) we can easily derive':

" " i ao• \ j.
64 a b8

(30.46)

or limited to only the first series terms,

Sj The function • (t) for this type of buckling was calculated by
Mironov and Novoselov. .
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-+ 2

a l/' (30.47)

The structure of (30.47) is exactly the same as in (30.31).

Consequently, omitting the argument and operations which are similar

to previous arguments and operations, let us show only the final re-

sults.

Second category hydrodynamic force, in deformation of type (30.45)

corresponds roughly to the primary tone of vibration of freely-resting

plates, and can be defined by the expYessions:

for a/b > 0.3

I--F0 W±+O,34--F"W where t ql"•
t"i

(_ FF.-t)-W= a 9 r(30.48)

a,, where

(30 49)

a4-

where * -3,5a,

for a/b < 0.3 i

-- o• 0.0 7. Wwhere t < t
FZ(t)=f 9 (30.50)

X F al t > t .wherer

(30.51)
where ta 4b.

Relations (30.48)-(30.50) indicate an even greater proximity than
in the, preceding case of the physical picture to the hypothesis of

plane reflection. The differential equations of motion of a plate
under the influence of an underwater shock-wave will b•
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where t <I *
• MIV + F,+ F,, (30.52)

where t>MF

(M + +oW + K+(W =F1, (30.53)

where M

F 0

F, = OS.-2p (t.(30.54)

The values of the coefficients and parameters entering into

formulas (30.52)-(30.54) are given in Table 6.

To illustrate the material which we have given, Fig. 129 and Fig.
130 show a comparison of the findings of the approximate and precise
solutions for an infinitely-long plate which is part of a cover, and

Sis being deformed under the influence of an exponential-shape shock

wave.* There is a completely satisfactory convergence of data in 4
both velocities and in plate travel. The hypothesis of plane reflect-
ion (dashed and hatched curve) describes the quality of the effect;
but for quantitative evaluations, it is only suitable for the initial
period of motion.** Therefore, the theoretical approximate schemes
may be recommended for practical applications.

To complete the statement of the problem, let us touch upon ano-
ther problem which is close in formulation to the one we have already
considered. Let us examine the hydrodynamic forces arising as a re-
sult of motion in various directions of contiguous plate sections

making up a cover.

The first solution of this problem, for a cover having unilateral
supports was derived by Dimaggio 130], and slightly later by Aleks; i-

drin; for a cover having bilateral supports, this problem was solved
*The calculation of plate motion and its analysis was accomplished
by D. A. Aleksandrin. **This is often enough, because cavitation oc-
curs later and these notions are no longer valid. See §32-34 for cal-
culations. 408
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Fig. 129. Rate of Motion of a Plate on an Infinite
Cover (2a/6 = 40, b/a = = ) Under the Influence on
Said Plate of Exponential-Shape Shock-wave.

precise solution;
- - - - approximate solution;

calculated according to hypothesis
of plane reflection.

0.3

0.2

? c 
I

Fig. 130. Travel of a Central Point on a Plate of
an Infinite Cover (2a/6 = 40, b/a = -) Under the
Influence on Said Plate of an Exponential Shock-wave.

precise solution;
approximate solution;

- - - - calculated according to hypothesis
of plane reflection.
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Table 6

VALUES O PLATE VALUES OF PLATE
COEFFIC- freely rig- COEFF- freely rigid-
IENTS supp- idly ICIENTS sup- ly

orted made torted made

r~t 4

-_1+

4 j R >0.3 + +4el

5> 0.3 00,34 4 9

I 0 I
- 0.3 3I a ,< 0 .3 0.'0 28 Tr

b u69 > 0,3 3, 4,

._V�I "7"7 n < 0,3 .. ..

by A. K. Pertsev and Yu. A. Kadashevich, as well as by Aleksandrin.

Let us state the solution at this point, generalizing the arguments
cited. We can do this easily if we consider the boundary conditions

of integrating the initial wave equation. In this case, they may be

written in the following manner

) .-- (W M Q Y) (30.55)

2n *. - K 2n + I
fln > 0 and

2 < -., X < 2m 2 "n - I.
2b

2n - 1 < ".- < 2nmn > 0 and 26

L,2m- I < 2 2m, (30.56)
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2n <-x < 2n + I

mn<O and 2m- I 2s,

2n - I < .. r2

, < 0 and

2m<-i <2m+ 1; (30.57)

-0

Mn<O and 2a

2n - I <-!- <,2nitinn> 0 and 24 (30.58)< 2
2m < - b < 2mn + 1,(0.8

I2n < -- 2
mn < 0 and 2a

'2m <.-y-• < 2m + 1.

2n -- !< x- < 2,
mn< 0 and 2a

2m -I- !'<-= < 2,n,
2b

where lw(x, y)l - the form of buckling of the section of plate between

the supports.

The origin of the coordinates is assumed to be at the point of

intersection of the supports.

Starting from those boundary conditions, we can specify the

areas of the cover can be considered, in the hydrodynamic sense, ;
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as independent of one another. At the same time, the basic condition
must be the absence of fluid overflowing the boundary of these areas.

The boundaries in the assumed coordinate axes will be

x = (2n + l)a,
y =(2n+ l)b. (30.59)

The boundary conditions, therefore, can be written in a

form which is close to (30.8), (30.7):

WwI ,-0 (30.60)

lyK 12i t L m+i~ 1) 0, (30.61)

IV - "-0. (30.62)

After performing the Laplace integral transform, we can write

( a transformational solution which satisfies condition (30.61)

-- _ sin L" sin i- Zj "z )

S2a ilZ z v). (30.63)

The function Z ij (z, v) can be defined by the equation

2: 2b) ,2,--

whence, considering (30.62),

)+ 0Z0j = Cjje (30.64)

Therefore, for the potential • we get

, 'x- sin C,,e sin 1 -1 (30.65)
2a12
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The arbitrary constants CiJ can be defined from boundary con-

4, dition (30.60) by comparing the appropriate coefficients in expand-

ing the function w(x, y) into a Fourier series

-q B, f77~~i~y(30.66)

where B.. the Fourier coefficients of the function w(x, y).1)

Using the original in place of the transform, we find that

to B, sin H in i n "

a+ o- I/ - (30.67)

The magnitude of pressure at an arbitrary point in the fluid is

/'-s d..
2a 2b, T (30.68)

Assuming that z = 0, we can derive pressure on the plate surface.

We can accomplish the change to second category hydrodynamic foice
with the aid of (30.23): after substituting (30.68) into this relat-

ion, we find that

F2:.'- -- FO ' W'y ( -- . (• d -.
0 (30.69)

where

,,2b

X, (i = ' x... B, an - >'d,

(30.70)
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As an illustration, let us consider the motion of a plate in a

# form of buckling

+=sin L'x-• smn•v

2t, 2b~l Sf

For this form, only one of the Fourier coefficients is equal to zero
- B = 1. Consequently, the expressions for p2 and *(t) acquire

11 P
a particularly simple form:

p, (x, Y. 0) j., -4- p-- sin -r sin r"' X
2a 2b

W -(30.71)

= V V (30.72)

As we can see, the nature of variation in the function P(T)
differs in quality from that considered in the preceding case, and

is similar to the motion of plates of finite dimensions. Here, the

Sfunction *(T) nhanges from one to zero. This permits us to calculate

the quantity of apparent mass for such motion

M1,,. F0,. +(%) = : oj'° -2
0 o

2a --o, (30.73)I/ °a1

. I -b-

or

IF 24 •S,,Al = ;F,- = -±S[.a
ad 4 (30.74)

-=

.a (30.75)

For approximate evaluations of second category hydrodynamic force,
(the function * (T) at the initial interval may be approximated by a
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linear relation. Using the previous scheme, we get

10 T - .-- (3 .76

where t,= Af__.£ =2;2a =_____ .
2M1-' 2_ _ 2 a

"F, a. PFV (30.77)

According to (30.69) and (30.76)

-F _, W where t <t

,F (1) = (30.78)I- FO111W + W ,_ F. W(t--t) where ( > t.

or (where acceleration of plate motion in the interval [t, t - t*)

undergoes little change)

SFowl + W where
(- t<t (30.79)

where t> t..

The derived expressions differ from similar expressions for
plates fastened along their edges to a rigid wall by only the values

of apparent mass (in this case, for plates in a rigid wall where a/b =
= 1, they are roughly 1.5 times less, while where b/a = 8, they are
2.3 times less). Consequently, the duration of the initial phase of
unstable plate motion noticeably diminishes; in the course of this
diminution fluid compressibility is of the greatest importance.

§31. The Interaction of an Underwater Shock-Wave with an
Elastic Isolated Plate of Finite Dimensions

In the problems considered in this chapter, difficulties lay
in defining second category hydrodynamic forces. The evaluation of

e first category hydrodynamic forces arising on an infinite obstacle
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was reduced to integration with respect to the surface of the product
of the type of buckling w(x, y) multiplied by pressure on the direct
wave p(t).

The quantity F1 (t) was defined by the relation

F, (1) - 2p (1) S 7,. (31.1)

where

IM W (X.. )dS.
, --. (31.2)

This simple method for calculating first category hydrodynamic
force cannot be used in studying the interaction of a shock-wave with
a plate of finite dimensions.

Let us illustrate the basic aspects of this problem using the
incidence of a wave along the normal to the surfaca of an isolated

Srectangular plate, rigidly supported on lateral vertical walls. Let
us assume that the plate divides water and air. As we mentioned in
515, the evaluation of diffraction and radiation on the end-faces of
bodies boundary by rigid vertical walls can be closely approximated

with the integral of radiation. The use of the integral of radiation
is equivalent to the assumption of a rigid wall beyond the plate, whose
plane coincides with the plate surface.

In this formulation, however, we established in 128 the relation-
ships characterizing generalized second category hydrodynamic force.
Accordingly, here we only have to consider first category force. This
can be done in two ways: we can either employ the results of 114, which
were derived for motion of a plate at a velocity which changes accord-

ing to the unit discontinuity function, effecting the subsequent
change to an arbitrarily-shaped wave using the Duhamel integrall or we
can consider the corresponding boundary problem of the wave equation,
employing the data in 128. Let us use the second method, because it

C.?roduces simpler final relationships.
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'Imp- .

For the incidence of a shock-wave of arbitrary profile

OP ) = P.J (t) a00lt) (31.3)

the boundary conditions will be satisfied if we assume that an addit-

ional field of velocities of the same magnitude arises on the plate

surface as on the direct wave, but having the opposite sign, i.e.,

P(M) where -a x <ua-o p,, =-- 1..yob. (31.4)

0 where -a>x>a

-b>y>b.

If we assume

-Y IYal-0 10 Y -- ) (31.5)

to (x, y)=I (31.6)

(.~ then the given boundary conditions coincide identically with (28.48).

Consequently, we can immediately employ the result of (28.67).

For the diffraction component of pressure at an arbitrary point

on a plate, we find that

P (x. . t)Y =p I" =""'w (ti., n) Jo (oatl/'f2 ++n2) dmdn +

+1 P,,, (f 1-) 3 3 IMX+RY) w(m, n) X

J i 0 tam "_+u') dmdnd;

(31.7)

where

(m. n) i lsinmasinnb. (31.8)
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If velocity changed according to the unit discontinuity function

law, then based on (31.7) ve would get

P., ly, 1)= ) , ms .
II I

X cos mn cos nyd.ndn.
(31.9)

To def .e the diffraction component of first category hydro-

dynamic for'ce, the magnitude of pressure must be integrated with re-

spect to the plate surface, considering the form of its buckling.

On the basis of (31.9), we will find that

(08j//7in !n! mL -'Inb X

U i)

X 5 *fw(x. y)cosimxcosnydxdydndn; (
- -31.0)

specifically, for buckling

W, V. Y) -i Coo" i-- CO (31.11)
2a 2b

which roughly corresponds to the basic tone of vibration of a rigidly

made plate,

J, (17j~ 1 '; -4b2 U2 iL-cos inx cos n X,fjit n
Cos' -"-- Cos" H. dxdydmdn.

2a 2b (31.12)

Let us integrate with respect to x and y

a ,, ,.-(I 1.n m3
Cos ,me CoS" ,dx = ;(31.13)

o o _ , = . s,nnb (31.14)
41b 2 -
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The zero-order Bessel function will be w5itten as a fixed in-

{ tegral

(:.- cos (lanzt sin it. cos (aonl cosL) tt-

0

2 r,1
tjcos nilcos nLdA.*

(31.15)

where

1 = at sin ).,

L = a.1 cos)..

Therefore, (31.12) is written as
It12 •

& (6 to. m cm" nLs'"'"b dmd"'"F ib-,•i, it -? n (31.16)

( Performing a transformation of the type

SW.siina Cos nil - sinnaI- sin - a) 4- sin (l + a),ml (31.17)

we can write (31.16) in the following manner

I. s r.,2
F;, ,,(31.18)

where
iI I I sinmasln(I-a)dmd +

2 ' 2 2
amt

I + sin na sin (I a) .
2 i- (31.19)0 a

. -- 2 2, n' "" _ . .. . _2 j ' in.,rn in L nb dn +I

I sin nbOn (L b) In

+1 21 - dn
n2 "(L-" n2) (31.20)
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Let us use the identity [I]

--- cos pq sin qr + r where p>rs sin -- dx- 2q2 "(31.21)
sin -- sn- q cos qr + Tot p where p < r.

Assuming that p = a. r = 1 - a , q = 7/a, we get

-- , + (--a) where
j,--j 7 2,2a >1I

U.It (31.22)

' where 2a < It

-- . sil •- + (+a) where 0>1

.1 2--. (31.23)

'1•. where O-.j.

consequently,

( i +2 where
SaL<2 (31.24)

where I > 2a.

By complete analogy
[+ .. L where OL2
ýt(Lsn-r- -- +2 whr 0 --ý L < 2b

_ = b -J (31.25)

0 where L > 2!).

Let us designate that

/min f) U. i); (31.26)16z'*

then sin L' - 2)x

inL L ) where <12a (31.27)
( -b b 0 < L <. 2b

0 where I > 2a
2 L> 2b.
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After analyzing the limitations imposed by the inequalities
S0< 1 < 2a and 0 < L < 2b (the analysis is completely analogous to

that given in §29), we will find that*

F- at4, (t) - ab, Mt). (31.28)

it,2 • where 9 -
'Iw e (t, k)T 

a
0

, arsin 24

where 77 t <2b

•/, (t = •.(31.29)

2b 0~) (1 weeab<
arcsl.t 2#(i 0

where , V I

The same method can be used to derive a solution for the form

of buckling

tU(X, 2)=coS-COS •' (31.30)

which roughly corresponds to the basic tone of vibration of a freely

resting plate.

The function M (t) can be defined by an expression in finite
form (for this type of buckling a 1 = 4/ir 2):

I)= " ± V " ) -

-!+ (ým I -- 21).
1j j (31.31)

* The primary findings of this problem were derived by I. Novoselov.
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2ta I
Fig. 131. The Function •A (E)for the Diffraction

Component of Generalized Force Arising at End-Face
Piston and Plates (a/b = 0.3) Under Influence of
Unit Shock-Wave.

- ------- for a rectangular piston;
- for a freely-resting plate;

for a rigidly made plate.

I...

Fig. 132. First Component of Generalized Force
During Interaction of Triangular Shock Wave with
Rigidly-made End-Face Plate

(t+ = 3; a/b = 0.3)

calculated, allowing for type of
buckling;

- ---------- calculated without allowance for type
of buckling;

.... .-. calculated for a plate(piston) in a
rigid infinite wall.
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We can see from Fig. 131, where the function A (t) for a freelyr• resting, a rigid-made elastic plate and a rectangular piston in a
rigid wall are compared, how similar the three curves are. A simil-

ar finding also occurs at different wall ratios. Therefore, we may

conclude that the form of buckling has little effect on the diffract-

ion component of first category generalized hydrodynamic force.

The total quantity of this force is

F, =-,aS[I + ',(t)I. (31.32)

The values of F1 (t) during the incidence of a triangular shock
wave onto a rigidly-made plate having a ratio of sides a/b = 0.3 is
shown in Fig. 132. Also plotted there is the curve of F1 (t) for a

piston. Comparison of Figs. 131 and 132 shows that calculation of
the type of buckling of a plate in evaluating first category hydro-
dynamic force amounts to introducing the coefficient a 1 into the

appropriate expression as a :omultiplier.

We can easily expand the solution to a wave of arbitrary profile

pmf(t). Employing the Duhamel integral, according to (31.28), we
get*

(31.33)

or in another form of transcription
I') f ) + if (t d .. (31.34)

OISpmn

The first term in (313.4) describes the reflected wave; the

second describes the purely-diffraction pressure component.

Because the function *A (t) can be adopted without considering

the form of plate buckling, it would be most convenient to employ

the result obtained in §14 for a rectangular piston. However, we
established in §23 that the function A(t) can be roughly approximated

*In (31.33) and (31.34), we bear in mind that where t 0, f(0) = 1
and P (0) = 1.
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by the linear approximation

whr) e (31.35)
0 where t >-

where

T 2a 3n

an (3+2.2-) (31.36)

Therefore,

01SP" r -r)d't(31.37)

and consequently, where t < 2a/a 0

F(2)tSPm 2f(0-- - () d- (31.38)

To define F (t) where t > 2a/a 0 , let us expand function f (t - T)

( in the neighborhood t into a Taylor series

1vt -- ) j1)-1 M(t)+ 2)--.. (31.39)

Retaining the two first terms of series (31.39) and bearing in

mind that A (t) = 0 where t > t = (2a/a 0 )Vl + be/a , substitution

of (31.39) into (313.4) yields:

(,1s., i) 1- fM (T) • ,d-- .f ( -)f% -=xd-
0

o(1i) + /10 .,, (1o) 1 --O,, 1o11--10 ",;:1) 1 v -d:..

Integrating by parts and bearing in mind that It( = 0, (0)=

=1, where t > t0 we finally find that

F-A) = f() f'?Alt)d: = ilt)'t, (31.40)
"21 Sp ., '"
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where y - the coefficient of apparent mass of a fluid during

progressive motion of an end-face piston.

A completely analogous result where t > t1 takes place for the

entire first category generalized hydrodynamic force.

Therefore,

F() 21Sp 2.R) - 'f .t-rId' where <IF, M =,Sp, I t I T h I t, (31.41)f f(1) +i(t)it, where

2(3 :2.!)'

(31.36a)

Formulas (31.41) permit us to simply derive the result for a

shock-wave of arbitrary profile. So, for an e3xponential wave

(t
f(t) = e

7,Spat 2e- b - l--e- I where I.
F, (1) =(31.42)

2,Sp,,,e - (I-- where I It

and for a triangular wave

where t+> t 1

• 1Sp. 2 - -+ V_ where 0<.-. t.t<
I U (31.43)

) aSp,, ( -- where
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where t + < tI

2I
MtSP. 2-- -I-it ± where 0".'"

1 T(31.44)

-- Mp1, where t,

10 where t > t,.

In spite of the fact that in the expansion f(t - T) into a Tay-

lor series a total of two terms are retained, relations (31.42)-(31.44)

rather well describe the process. Considerable error can only take

place in (31.44) where t > tI. However, as a rule, during this per-

iod of time cavitation arises near the place and the developed

scheme generally ceases being valid.

Employing results for first and second category hydrodynamic
forces, the equations of motion of an isolated elastic plate under
the influence of an underwater shock wave of arbitrary profile p(t) =

Pmf(t) ce'n be written in the form:

where t < tI

A1W+--FWl'+ (K---'W = atSp, 2] (t) - -jo (•d
W F+Ko. ' (31.45)

where t > t

(Ml +t F('111") 0 + KW = aSp,,lt + 7 ()',,,pt, . (31.46)

The quantities Tnn and ynn have been taken from §29 for a

plate in a rigid wall; the values Tnop and ynop - according to
formulas in §23 for a piston.

Some further specification of the values of T nn and ynn is pos-
sible. The essence of these values lies in a stricter accounting of
diffraction effects as was accomplished in §12. Omitting the argu-

ments and operations, we will cite only the final results derived by
B. V. Zamyshlyayev and I. G. Novoselov. Fig. 133 shows the curves of
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Fig. 133. Coefficient of Apparent Mass for
the Motion of end-face Pistons and Plates.

for the piston;
for a freely resting plate;

----------- for a rigidly made plate.

the coefficients of apparent mass for end-face elastic plates and

a rectangular piston. These data should be employed for integrating

(31.45) and (31.46).

The values of T and T can be defined according to theni flop

( formula

2a for a freely resting
1-15 0,77 a0. 46 0•- .

b plate (31.47)

I- 2a for a rigidly made
V ., • ' 7 7 ( 1, 4 6 - U ., ,

b plate

I 2a (31.48)
0.77 .. 0,46 a- U(.

b

§32. Formation and Development of Cavitation During Interaction
of a Shock-Wave with a Plate

In studying the interaction of a shock wave with a pliable ob-

stacle, we have more than once focused attention on the possible

formation of tensile stresses in a fluid. If the absolute magnitude

of these stresses exceeds hydrostatic pressure and cavitation pres-
sure, discontinuities may arise in the fluid. All the previously

stated theoretical schemes become invalid. Consequently, we must
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consider the formation and development of calritation during the

tinteraction of a shock wave with a plate and perform an appr.:oximate
evaluation of the generalized external forces involved in this pro-

cess.

The physical picture of this effect does not differ greatly
from the earlier considered situation of shock wave reflection on a
free surface (cf.§8). The approximate theoretical scheme can be
most simply illustrated with the example of motion of a free plate
separating water and air. This problem was stated in §22, without
consideration of cavitation effects. Specifically, we gave the re-
sults of calculating net pressure in a fluid during incidence onto
a plate of an exponential wave (Fig. 95). Employing this graph
and bearing in mind the conditions for formation of a cavitation
discontinuity

l)PC, Pp+Pop d -- (P( + Po),
(32.1)

(Pwhere pe3 - net pressure inducing fluid cavitation;

P0  - hydrostatic pressure at a given depth:

Po = Par. + g1/0;

PK - cavitation pressure,*

we can easily find the point of origin of this discontinuity in
spatio-temporal coordinates.

The formation and development of cavitation during the inter-
action of an underwater shock-wave with a plate was first studied
by Shauer [40] and Kirkwood [10]. Shauer's theory is based on the
assumption that at the moment that net pressure is equal to the sum
of hydrostatic pressure and cavitation pressure, the plate tears
away from the fluid and travels in the air mediumo We can easily

( *As was shown by specially conducted tests, under real conditions,
the quaintity pR lies within the range of 2-3.5 kG/cm2 .
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find this moment in time with the aid of the relations established

in §22. 3

For example, if we make a rough assumption that cavitation occurs

when net pressure on the plate is equal to zero, then according to

(22.46)

P- '1 (32.2)

,,;zre tK - the cavitation formation-time;

HM

The rate of speed of the plate "t time t = t , according to

(22.43) is

I' - • P110 P1a0  (32.3)

. The kinetic energy of a free plate is canceled by the work of

atmospheric counterpressuie forceE.

Aleksandrin developed Shauer'l. theory relative to problems of

interaction of an underwater shock wave with marine structures.

In contrast to Shauer, Kirkwood suggested that the maximum

travel of a plate can be defined not only by the quantity of kinet-

ic energy transmitted to it by the shock wave when cavitation areas

are formed, but likewise by the energy of the fluid layer in which

this cavitation occurred.

Kirxwood's studies were continued by Zamyshlyayev. The picture

of development of cavitation processes during the motion of a plate

under the influence of a shock wave is very close to the one described

above in §8. The difference lies in the fact that when studying the

reflection of a wave on a free surface, it was possible to consider

that the formation of a cavitation discontinuity coincides in time

with the time at which the reflected wave front converges. At this
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point, however, this point in time occurs later and more care is

. needed in studying the totality of wave interaction processes.

Let us consider the motion of a plate and cavitation layers of

water for an arbitrary value of cavitation pressure pK"

The time and place of origin of the first cavitation discon-

tinuity can be defined by the equation

Pp,,.. z) = - (p, + Po),

while according to the problem conditions, the function ppe3 (t, z)

at this point must have a minimum of

0. (32.4)

Equations (32.1) and (32.4) permit us to find the unknown quan-

tities: t - the moment of onset of cavitation and hR - the distance

'- of the first cavitation discontinuity from the plate.

Specifically, for an exponential wave we get [cf. (22.52)]:

K It , _______1____"

- -- I PK I P,,-- ' 2p, (32.5)

tK-2, -- t.

e _e - (32.6)S+ I 2p,"

For a triangular wave

hX = ado ÷ px. p,,
2 P,, (32.7)

[PK + In (I +nl+P)]"=t+ 2 +p (32.8'.

With high pressure on the direct wave, the distance h will beK

small, and the difference between the rates of speed of water particles
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and the plate at the moment of formation of the cavitation dis-
: continuity can be disregarded:

P,, p (tK,-hK) -- p,,p (1jg,-hk) = + " K= it K=0 h-- (32.9)

As time tR approaches, plate travel can easily be found from
the equations in §22. For an exponential wave

IK
W - p ea, i --t ; (32 .10)

fcr a triangular wave

$21+(• + e (32.11)

( The further propagation of net pressure exceeding water strength
into the center of the fluid causes the formation of new cavitation
layers. Each of these layers will move in a vacuum* at a constant
velocity equal to the velocity at the time of its separation

,(,): 2J',,* " t,. -_/,) P X P " (32.12)

The point in time ti, when cavitation occurs at a given point
z = -hi may be found from the equation

p,,,( tY , z =--i,) =--(P + P). (32.13)

In proportion to subsequent motion, the layers will gradually
catch up to the plate. Let us find the time of collision of the
i-th layer with the plate and its adjacent layers. It is apparently
defined by the equality in the travel of the plate and the i-th layer.
Prior to the time of separation, the surface of the i-th layer was

J , traveling at a rate equal to

*The pressure of saturated water vapor may be disregarded.
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II
. (32.14)

however,

= Pp (I. - h) -( Pw (1, -- hi)Vpe",- pua" '(32.15)

and consequently,

W, ,1plP (1 -)- dh = d

Poao (32.16)

where J (i) and J (i) - magnitudes of pressure pulses in the
np OTpdirect and reflected waves, counted from the time of convergence of

these waves with point z = -h. until the time of formation of the

(1~ cavitation discontinuity:

*8+ -a.,J..(i) = pnp (t) dt,(3 . 7

hI,

JoTp W Po,p (t) dt. (32.18)

Let us note that for an exponential shock wave

J1p1ilpYO) P eM 0 (32.19)

"- i ,(32.20)
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for a shock wave of triangular profile

l4
., "-a,,, -. l

.P (i) ,÷ 2 \ , ) / (32.21)

Jo~p~)=pt+ 2( 1+ t

/ + ](32.22)

As we mentioned, after separation of the i-th layer, this layer

moves at a constant velocity Wi(ti). According to (32.12) and (32.16),

therefore, its travel for t > t. is1

W , (1) = W , ( ,) + W , (t ,) (t - t,) = W,,_) (0 - I , P ( _)

+ 2p (.-pK-i"P,, (t- ,). (32.23)
Na.. (3 2. 230)

( where p (i) = p (t + hi/a0  - pressure on the direct wave at

time t = t i + hi/a 0 where z = 0.

For an approximate evaluation of the motion characteristics of

the cavitation layers and the plate, let us employ the law of con-

servation of energy and momentum. Let us consider a system consist-

ing of a plate and its adjacent cavitation layers (thickness hi).

Towards the separation time of the i-th layer*, this system

acquires a momentum which is equal to the pulse of pressure forces

acting on it as it converges with the plane z = -h. of the direct

wave front (t = - i):
a 0  , 0~()d

K, (t,) S pp (t) dl + J' 1, (t)dt=I. (i) + J,,().
hiI hi

s,-- 0. (32.24)

*We should once again stress that the formation time of the i-th
4V cavitation layer, generally speaking, does not coincide with the

time of convergence with plane hi of the reflected wave front.
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(pressure of saturated vapors on the part of the i-th layer can be

f disregarded). According to thi:u principle, momentum of the system

at some point in time t > ti will be

K,() = K, (1) -- PO y - t). (32.25)

On the other hand, after the i-th layer adjoins the plate, the
momentum of the system can be expressed using some average velocity

SW(t)

K, (1) = (mA + r.th) g7, (t).
(32.26)

Comparison of (32.25) and (32.26) yields

K _( ) = '(,) -p 0( -Y t) lap(Y) + Jop (i)-p -U - fl) (32.27)po. h.l M + Pokt(32 2

The kinetic energy of system motion is

(. T,(O - "+ PAI" W2(0
2 (32.28)

Apparently, this quantity must be equal to the energy of the

direct and reflected waves which is transmitted to the system, minus

the work of atmospheric pressure forces*.

The energy of the direct wave is

Sp ap ()dt__ ) d . (3 2 .2 9 )

The energy of the reflected wave which is lost by the system

toward the separation time of the i-th layer,

*We should bear in mind that if the direct wave introduces some ener-
gy to the system, the reflected wave removes it. Consequently, due
to wave propagation, toward time t. the system acquires energy
E (i)W E (i).

np OT4
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f(= d/ (32.30)
0

Specifically, for an exponential shock-wave

(32.31)

EoP= - 2e(',--.p

Ie (32.32)

for a triangular shock-wave

( ~~)-•• h I+' - ''

+ a+ ( a,, (32.33)

EO,,P W = _L' (" - O -ptao l+ 3-

2 (1 ppi'
_ _ _" l - t+ -) e • (32.34)

The work of atmospheric counterpressure forces is

A " -. P 1, 1 t (I) -- W , (IM)J. (32.35)

Gathering the derived evaluations, we arrive at the relationship

T () E.p (i) - Eo,0 (i) - A, (32.36)

or, likewise,
2 lo(l ) = E.r,(i) E-- . (i)-poIU,()- - (W,)l

(32.37)
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where W.(t.) can be found according to formula (32.16).

Therefore, to define the quantity of plate travel W (t), we get

.1,, (i) - J0 7p (i) I Flip 0(q- Eoyp (i) m*.- f.,hl u-2W1 (t)= .. ,T U'(t). (32.38)Poau Pal 2pu

The motion of a plate described by expressions (32.38) and (32.27)

will take place after the i-th layer adjoins the plate and before the

i + 1 layer adjoins it.

Let us define the point in time t* where the i-th layer adjoins1

the plate. We can easily write a quadratic equation relative to t*1
from the condition of equality in travel of the plate and the i-th

layer, according to (32.38). After solving this quadratic equation,

we find that

; = I, + b, + V/b, + q,, 3.9
(32.39)

( where

b, =--J'P (-) + J., (i) m _ Pohl 12Pnp i + P. + PollPn PozoP" (32.40)

= 2(m: , E~ p (i)-- EOp i) -- Ifp (i) 44- JoTP (i)J.
-2jn )- lpV (32.41)

The quantity ti for a given hi can be defined by (32.13).

The maximum plate travel is attained at the point in time tm

for which

W,(t1,) =0. (32.42)

From (32.27) and (32.42), we get

," N ,p (N)I,, IN+ (N (32.43)

where N- the number of layers adjoined to the plate toward time

t= t
m
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Employing (32.39) And (32.43) to evaluate hN and tNI after per-

Sforming some simple transformations we find the transcendental equat-

ion

E., (N) -- Eo,p 'Af)=
-I, 12p., (N) + p, + P01 jJp (N) + JIp (N)I.

(32.44)

Moreover, we previously had
'I

p•, = po (N) + pop (N)=- (p. + p). (32.45)

These two equations include two unknown quantities h and t
N N

After defining these quantities, we can easily calculate the quant-
ities of the pulses and energy in the direct and reflected waves,

and likewise define all the parameters of motion.

According to (32.38), maximum plate travel is

,,- J,,()(,v) - Joip (A') NE ) -,CV- EoTP(V) (32.46)
PO

The plate subsequently (where t > tm)in the reverse direction.

New cavitation layers adjoin it. At a certain moment, the entire
system collides with the main bulk of fluid: a shock wave is formed

which defines the secondary effect of cavitation.

Let us make an approximate evaluation of these effects. The

last cavitation layer will be formed at time t , where pressure on
nthe direct wave is close to zero. This assumption made be made with

conviction for a triangular or parabolic wave. Consequently,

pp (t = t, z = -- hn)=:O,

p ., t, 2 = - /in)= (P• "" Po). (32.47)

For the exponent, pressure becomes equal to zero in infinity.

We thus usually consider that where t = t Pnp = 0.2pro
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Consequently,

Pri, , ( tat, z -- ) O.2 p ,. 1 (32.48)
PoTP (1 = t., z = -- h.) -- (0,2p,, +. p -4 p). (32.48)

The cavitation layer will reach the plate where t = t', where the

value of t* can be found with the aid of (32.39): h = h and t = tn
n n

as calculated according to formulas (32.47) or (32.48). I
Where t > tn, the plate will move according to the law (32.38),

(32.27). The moment of collision, which defines the end of this
motion, is found as before from the condition of equality in travel

of the boundary of the main bulk of water (of the last cavitation
discontinuity) and the system of the plate-and-adjoining-cavitation

layers. Travel of the surface of the last cavitation discontinuity

at the time of its formation can be defined by (32.16). Subsequent-

ly, this motion is similar to the motion of a free surface where

P0 = 0, i.e.,

"W hO1 (1) ( V, ) + 2!Pi- (L. - P Z

. . [p, , (t I-- ) j-2J ,,., (t -- J ,• v ) -- J •.T (11)

(32.49)

Employing (32.39), (32.38), and (32.49), and performing some

simple calculations similar to those shown above, we find that

tI o 1.4t + '.,, p ., +

P11 (32.50)

The velocity of the plate at the moment of collision can be

defined according to formula (32.27).

438



,C2 SOO0 iJO0 2000
t. macee#

Fig. 134. Rate of Speed of Plate 3 mm Thick

Under Influence of Shock Wave pm = 37 kG/cm2 ;

e = 71 us.

calculated by proposed method;
v-• experimental data;

------------- Shauer theory, no atm. counterpres-
sure;

Shauer theory, allowing for atm.
-------------- calculated without cavitation.

The pressure of collision which corresponds to this velocity
(cf. §8)

ý :Zr "0,, j ' " -. (32.51)

The secondary shock wave formed as a result of the collision

will propagate in two directions from the collision plane. After

reaching the plate surface, it will induce the formation of a re-

flected wave. The parameters of this wave may be defined from the

equality of pressure and velocity on the plate.

Considering that the coefficient of reflection is equal to 1,

for t > tcoyA + hnO/a, we get

111W PCOyA + PoP. COyA - P0. (32.52)

w PCOYA -- PM.°COYA + WI(tOCOY). (32.53)

Combining (32.52) and (32.53) yields

,tif + p,,aoW 2P'oyA - PC + POa• I V(tCo'A). (32.54) ,
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Fig. 135. Net Pressure in front of a Plate 3 mm
Thick: (a) in front of the plate at a distance
of 1.1 cm from it, during underwater explosion
G = 0.6 g (pr = 7225 kG/cm , 0 = 26 ps); (b) in

front of the plate at a distance of 0.7 cm from it,
during underwater explosion G = 53 g (pm = 37 kG/cm ,

6 = 71 js).
experimental data;

- ---------- theoretical data.

At time t =t + h/a with initial data
cOY, nO0

W W1 (l'OYA)t

W .= , ( a)
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A

the solution of equation (32.54) appears ast$
PO 2PCQ-1 -- P,,

,;, (32.55)

whence

W~ ) = |llt,,• .- 21€oA -- 11 e- - 1'€• - ]-. (32.56)

PoTP. o) --P) e -- P0A + Po. (32 . 57)

Fig. 134 gives a comparison of the theoretical rates of speed of
a plate at the experimentally obtained velocity. We can see that
our proposed scheme is in good agreement with the experimental rpsult.
The Shauer theory produces much greater error.(_

An additional support for the validity of the ideas developed
in thes section can be found in oscillograms shown in Fig. 135. A
certain amount of discrepancy in the nature of variation of pressure
seems to be associated with the absence, under actual conditi.ons, of
clear-cut cavitation discontinuity surfaces.

In summary, we should note that consideration of cavitation
effects must be considered as an obligatory condition of dynamic
structure calculation. Serious errors which may tend to be danger-
ous are possible in evaluating the maximum velocities and travel of
plates. Analysis of foreign experimental data 129] leads to the same
conclusion.

The subject of the last two sections of this book are devoted
to the simple tasks of dynamic calculation of plates, allowing for

cavitation.
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§33. Dynamic Calculation of an Infinite Plate on a Solid
Elastic Foundation, Allowing ior Cavitation

The results derived in the preceding section may easily be

expanded to a plating lying on a solid elastic foundation.

The equation of motion of such a plate, not allowing for cav-

itation effects, will be

W i 0a1/ - KW 2pmf(t). (33.1)

Equation (33.1) differs from the equation of motion of a free

plate by only the term which takes into account the rigidity of the

elastic foundation K. In problems which are of the greatest import-

ance from a practical standpoint, this rigidity is not great and does

not exert any noticeable effect on the initial period of motion. Con-

sequently, the formation and development of cavitation in this case

will occur just as in the interaction of an underwater shock-wave

( with a free plate.

Limiting ourselves to the consideration of plates having low

rigidity of their elastic foundation, let us note that the forces of

rigidity in this case will only be revealed in the nature of subseq-

uent motion of the plate, and in the temporal picture of cavitation

layers of water adjoining it. The easiest way to consider the effect

of rigidity is to employ the law of conservation of energy and mom-

entum. We must calculate the pulse of rigidity and the potential

deformation energy of the elastic foundation.

The oulse of rigidity is

J. ="K WWI = K~f W1. (33.2)

Because we did not know the function W(t), let us use the

L approximate method to define the quantity J . Let us assume that
-1

in a rather small time interval tý - t*-, the quantity of rigidity
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I• is equal to K-("--

Then,

(J K Vt,_,,) .W 1;"
J• t •-- t -- l_.2 '(33.3)

where t* - the time that the j-th cavitation layer, formed at time t.) J
at a distance of h., adjoins the plate (where j = 0, tt =JJ

= tKI t_l = 0 W(t) = Wl(tK); w't _ K) = 0);

W(t*.) - plate travel at the time that a layer of water h. thick

adjoins to it;

t*. - the time that a layer of water h. thick adjoins the1 1

plate, for which we define travel and plate velocity.

(
The law of conservation of momentum, allowing for (33.3) and

(32.25), can be written as

J,,.(j; p, o(t'- , ) Ki -K (t) X (33.4)

whence, by total analogy with (32.27)

M t)= •..w ,{,,o .( - t -~ p - .,) (33.5)

Let us now evaluate the potential deformation energy of the

elastic foundation. Apparently,

it, KW: "V :. KIVdW 2.-. (33.6)
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Consequently, for the moment in time t =t*, by analogy with
(32.37), we can write the law of conservation of energy in the fol-

lowing manner

rneiW.(~) EOTP (i)

(33.7)

whence

i2Kr W (1/2+ __W ()+Ei)()1
S2 (33.8)

where W (ti) can be defined according to formula (32.16).

( The moment ti of adjunction of cavitation layers h. thick to1
the plate can be found from the condition of equality in travel of
the plate and the i-th layer. Reiterating the arguments from §32
[cf. (32.39)], we find that

+; t, b, + I"•- ,(33.9)

where

t y-% i) .,Jo'TP (i) - J. I(;)
PQ

_. ••,h___•(2p,,p Wi + p,. + Po) I KWl, (tj) + Pol, (3 3.10O)

PO 2 2K

-p, (i) + Jo( (1) J, (t;) (33.11)
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Maximum plate travel is attained at time t =tm. At the same

time W(tm) = 0. According to (33.5), we get

Jnp (N) + Jo0 p (I') - J* (Im) (33.12)
1'n -- t + A)3312

where N - the number of layers adjoined to the plate at time t = tm.

The thickness of the layer hN adjoined to the plate at time

t = t can easily be found from the condition t, = t* [cf. formula
mi N

(33.9), (33.12), and (32.13)]. After performing the given calcul-

ations, we can derive the quantity of maximum buckling with the aid

of (33.8), assuming that W(tm) = 0,

wM,, =-O I-I+

+ -/ + 2Ko --e J., (N, J~p(N) E (N- o, , (,N (N)I

(33.13)

( Upon subsequent motion of the plate in the opposite direction,

the remaining incipient layers will adjoin it. The last of these

layers will adjoin at time t*, which can be defined by formula (33.9).n'
Then, motion will occur at a constant mass under the influence of

the forces of rigidity and atmospheric counterpressure. Motion can

be described by the differential equation

(, F W + KW = - p. (33.14)

*

Integrating (33.14) at time t = tn with the initial data

W= w, (t),
IV W,(i.)

we will find that

W,= W, (tC)os). (t - ') -si). (I-• -

P1 II I -Cos,, ,)
M "r ph, X 4
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W X1 (t- .)-] s in ) (tI -

(33.16)

where

K
M f "'h

Equations (33.15) and (33.16) are valid up to the moment of

collision of the plate-layer system with the main bulk of water. As

before, this moment can be found from the condition of eq-ality in

travel of the plate and the boundary of the cavitation area [com-

paring (32.49) and (33.15)]. The velocity of the plate and its

adjoining layers can be defined both with the aid of (33.16) and

(33.7).

t Employing the law of the conservation of energy [in the form of

formula (33.7)], we find that

-Po IW( YOYA) - W, ()I; (33.17)

Where Pm >> P + p0 and small K, eliminating small second-power

terms, we find

W (40 A) M / 2 E ' (n) - E (n)!.V7(cy)=- m +2p•h. ( 33.18 )

The collision pressure which corresponds to this quantity is

PCOYA = Pa.It 2 (m -+- poh,) (33.19)

After collision, the motion of the pl4te occurs in almost the

I same way as the motion of a free plate, and can be defined by formulas
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(b)
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t. MofCID(

(c)

0 2 31 6 6
r, Celt

Fig. 1.36. Rate of Speed of a Plate 4 mm Thick,
Lying on a Solid Elastic Foundation, Under the
Influence of Pressure of an Underwat-r Shock-Wave

Pm= 37 kG/cm 2: (a) - k =6.85 kg/ct'.-; 0 =1109ts;

(b) K= 137.5 kG/cni eO 110 ps; (c) - K =6.85 kG/cm 2;

0 = 1000 Pis.

calculated acc. to stated method;
- - -- calculated according to Shauer,

without allowing for atmospheric counter-
pressure;
calculated according to Shauer,

allowing for the effect of atmospheric
counterpres sure;

------- --------------calculated without considering
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(32.52)-(32.57).

i In most cases, we are interested in the interval 10, tmax] and

in evaluating maximum plate travel Wmax* Fig. 136 shows the curves

for the rate of plate speed, calculated with the aid of different

methods. As we can see, at small values of K and 0, calculation of

the parameters of motion not allowing for cavitation produces the

greatest error.

The action of the adjoining cavitation layers is partially

neutralzd by the action of atmospheric counterpressure. Conseq-

uently, calculation of maximum plate travel according to Shauer's

theory, without allowing for atmospheric counterpressure, produces

a result which is crkose to the true value. If we employ the Shauer

theory allowing for atmospheric counterpressure, both the rate of

plate travel and the travel itself come oait to be too low.

An increase in the rigidity of che elastic foundation K (Fig.

( 136b) or in the time constant 8 (Fig. 136c) yields a much greater

error i- calculating the parameters of plate motion using the Shauer
theory. Under these conditions, the action of atmaspheric counter-

pressure is small in comparison with the effect of the motion of cav-

itation layers.

There is often no need to calculate all the parameters of mot-

ion in evaluating the effect of an underwater explosion. If suffices

to find the maximum buckling Wmax* In this case, since the difference

between times t* and t is small, it is possible to assume, without
n m

making serious errors, that at time tm all th3 cavitation layers have

succeeded in adjoining the plate.* Then, formula (33.13) acquires

the form 1+

P0 Poo#,,

(303.20)

S *Moreover, the energy of the last incipient cavitation layers is
also small.
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is Where Pm >> p 0 ' the role of the term Po- pWp 11)

is small in comparison with initial kinetic energy T0 = T n(tn)
E (n) - E (n) which is transmitted by the shock-wave to thenp OTp

plate and cavitation layers. We can therefore write

2K
• '" [E (n)--E0o

P -+ Kl

(33.21)

Let us consider the relationship of the quantity of initial

kinietic energy T0 as a function of inertial properties of the plate

for an exponential shock-wave having a limited effect-time of pos-

itive pressure phase (T aK). Because the cavitation discontinuity

in a fluid cannot arise after pressure on the diect wave becomes

equal to zero (in this case where tn + hn/a 0 > T'a), the parameters

( tn and hn, which define the quantity T0 , can be found from the re-

lationships

" + - (33.22)

P,,- O(P,. + P -+ PO), (33.23)

where

"• -b (33.24)*

Relation(32.24) is valid where T' < 1.80. For T > 1.80, the form

of the underwater shock-wave differs greatly from the exponential.
Where T > 1.80, we can roughly assume that a = -. 17.
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after transformations

a"_In= 2- (33.25)

ad Ini, (33.26)

2 ax

h"

where x=e * can be defined by the equation

Pin (33.27)23 "

Considering (32.31) and (32.32), and performing the appropriate

calculations, we will find that

r. = E'p (n) - Eo, (n)P * I I p(4- pE, •' _1

2?,a,, L Pin(33.28)

With the aid of these same relations, we can easily calculate

kinetic energy of the plate at the beginning of cavitation (with an

adjoining layer of water h thick):

T =, E E (p (k) -- E,., (k) = b - +
\ ? ,, O 1

+ (I-.)2 e 2e• +

-4,• (33.29)

Where Pm >> Pm + p0, we can roughly assume that p? = O

h = 0, tK = to = (0/a - 1)lnO . In this case, the expression of

kinetic energy of the plate becomes simplified
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T .2'p- 41 (33.30)

and coincides with the expression established in study [10].

We can achieve considerable simplifications for the expression

of TO is we assume that the quantities p + p/pm and a are small.

Then, according to (33.27)
2

ýT'T "(33.31)

Hence, on the basis of (33.28)

p~O 2i '1- 26 L2T. -!ýL A- O 4 (33.32)

or because

2p,a, (5.56)

- ,(33.30)

14-3

231-4 2E,,,--" "P2" .F- ! = T ""OA "-•• (33.33)

The ratios of T0/Tnn and T0/Enp for several values of the

parameter are given in Table 7.

Table 7

:1 10 15 - 20 J 251

To. 2-1 4.02 5.36 1 6.75 7.75
-___ ... I. ___ - ---__

7,, , j
.. " L96 0 6 0.98 0.9R 0.99
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We can easily see that kinetic energy acquired by the plate and
the cavitation layers is roughly equal to the energy of the direct
wave, and exceeds by several times the kinetic energy of the plate

alone.

We can arrive at the same. result on the basis of stricter
evaluations. Thus, Table 8 shows the calculated results of T0 /Enn
for p. = 30 kG/cm2 according to precise relations (33.27), (33.28),

and (33.29).

Table 8

5 1% 1 -i5 202.
L * I Id IS I

p(P,90 0.94 0.95 0.95 0.96

We can see that again T - E

Because the range = 5-25 encompasses almost all important

cases of the effect of an underwater explosion on a ship's plates,

we can conclude that the basic parameter which characterises the
deformation of structures in the formation of cavitation is the

energy flux density of the direct wave.

We will arrive at the same conclusion by considering a shock-wave

of arbitrary profile. Therefore, according to (33.21), the theoret-
ical relation for maximum buckling will be

+ +-

I's' -2 (33.34)

At small values of KEnp

w, ,._-n"P- P m pm (33.35)I Po PO 2;,u
0
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If KE is large (KE > 50 kg2 /cm 4), thenS~np

- __ll (33.36)

§34. Dynamic Calculation of Plates Attached by their Edges,
Allowing for Cavitation Effects

The conditions of deformation of the exterior clad sheets in

a ship's body are considerably different from those considered in

the preceding section. The distinction mainly amounts to the dis-

placement of all points on an infinite plate lying on a solid elas-

tic foundation being identical, whereas the presence of a set deter-

mines a non-uniform distribution of mass; consequently, there is

a heterogeneous field by the sheath covering. Pressure near the

support contour becomes greater than at the middle of span. There

is a fluid return flow and the diffraction processes associated with

it. The pliancy of supports exerts a considerable effect on the

( nature of the hydrodynamic field.

All these facts are also reflected in the development of cavi-

tation effects. We can no longer speak of plane surfaces of the

cavitation discontinuities. A mathematical description of the pro-

cess of interaction of the shock wave with the ship's body becomes

extremely unwieldy.* We must design a simplified model which is suit-

ed for practical evaluations. Let us consider such a model.

As the object of our study, let us select a rectangular plate

on a rigid support contour forming an infinite casing. We can in-

dicate the areas which are hydrodynamically independent of each other

(due to symmetry) for this type of plate (cf. §30).

*Because cavitation occurs rather rapidly when the plate travels
almost parallel to itself, and its form at this time is quite dif-
ferent from the form oC the main vibrations of the basic tone, we
can no longer limit ourselves to considering the motion of a body

( in form alone, as we did in preceding section.
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The analysis of numerous experimental materials has indicated

the extremely diverse nature of plate deformation in the initial

period of motion. The moment of incidence of the shock wave is

accompanied by the progressive motion of the plate along almost

its entire surface. Henceforth, a portion of the progressive

motion gradually decreases and ultimately, its area becomes equal

to zero. The mean rate of propagation of the portion boundary, as

a rule, is less than the rate of propagation of longitudinal and

transverse waves of the plate material.

These facts can be explained in view of the ideas stated in

§26. Indeed, during the incidence of a shock wave onto a plate, a

reflected and refracted wave is formed. In propagating through the

metal, the refracted wave reaches the lee surface (the steel-air
interface). All points on the plate are drawn into motion, acquir-

ing identical velocity. The process of multiple reflection and re-
fraction of waves induces an abrupt change in the rates of motion

of the plate sides. The nature of this change totally corresponds

(1 to the similar process in an infinite plate until the flexural wave
propagating from the support contour reaches the point in question.

After the flexural wave arrives, the presence of the supports will

retard the motion at the given point. Vibration begins which rough-

ly corresponds to the basic tone.

Therefore, in order to evaluate how the formation conditions of

cavitation by plates of finite dimensions differ from those for

infinite plates, we must know the distance x which is traveled by

the flexural wave from the edges to the point in the center of the
plate where negative net pressure is established. A semi-empirical

relation may be used for this purpose. This relation is established

as a result of analyzing materials of specially conducted tests*,

x fA (34.1)

*Tests conduct by Novoselov and Basov under guidance of Zamyshlyayev.
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where 6 - plate thickness, cm; t - propagation time of the flexural

wave, sec., A - dimensional coefficient (for rigidly fastened steel

plate A = 830 cm1/2/sec 1/2

For the plates which are most frequently encountered in prac-

tice, where a relatively rapid formation of negative net pressure in

the central portion is capable of inducing fluid cavitation, the

flexural wave propagates from the edges at a comiparatively small

distance. Cavitation encompasses almost the entire plate plane,

except for the immediate proximity of the support contour. The

ship's covering seems to tear away from the water along almost its

entire surface. It would seem that under these conditions, we can

fully employ the previously developed scheme for dynamic calculation

of a plate lying on a solid elastic foundation. However, this is
not completely so.

In the motion of a plate, three basic periods can be noted:

( 1. From the moment of incidence of the direct wave front to

the moment of formation of cavitation (0 < t < t ). During this
period, the central plane of the plate which is not subject to the

effect of the edges, travels progressively like a plate of infinite

dimensions. Where t = tK, a cavitation discontinuity arises along

almost the entire surface of the fluid, directed parallel to the

plane of the plate.

2. From the moment of the inception of cavitation tK until

the flexural waves arrive at the center (tK < t < tH). During this

period, the central portion continues its progre3sive motion. Its

motion is affected by air counterpressure as well as that resulting

from the cavitation layers adjoining the plate.

3. From the moment the flexural waves arrive at the central

point on the plate (t > t Motion occurs in roughly the main tone
H

of vibration. For our generalized coordinate, we can adopt the

buckling of the central point on the plate with respect to the
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immobile supports Wl(t). In addition to the adjoined cavitation

j layers and atmospheric counterpressure, the forces of ridigity exert

a considerable influence on plate motion.

In the first period (0 < t < t ), the motion of the central

point on the plate can be described by the differential equation

mW(1) +OaW(t) -2p(t) (34.2)

with initial conditions W(0) = W(0) = 0. The velocity and travel

of the central plate point at time t = tR have been defined accord-

ing to the formulas in §22. The formation time of the first cavi-

tation discontinuity in the fluid tK and its distance from the

plate hH can be found from relations (32.5)-(32.8).

Motion in the second period (t < t < t H) can be described by

the relations of §32 and are not very different from the motion of

a free infinite plate, allowing for the effect of atmospheric

counterpressure and the adjoining cavitation layers of water. The

evaluation of subsequent cavitation-layer formation during the mnotion

of a plate in a given form of buckling is not easy matter. It

generally requires the examination of nonlinear effects. However,

as our calculations have shown, this fact can be considered in

approximation, considering that at time t = t , only one layer has
adjoined the plate, whose thickness is equal to the total thickness

of all actually formed fluid cavitation layers.

Under this assumption, travel and velocity of the central plate

point can be found with the aid of the laws of the conservation of

energy and momentum for the plae-fluid system.

According to (32.38) and (32.27), we get

4pi(t)• ) - ,l)- Po p_() Enp(,)J- oP(,)
Phao ph

M W•(tWL ' (34.3)
2p4
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IV/. y_) -•• -J(n) -Jop (a) _.( -- ti)

m -t. Pohn (34.4)

where tn, h - the moment of formation and the distance from

the plate of the last cavitation discontinuity.

The quantiticq tn and hn can be defined by equations

(32.47) and (32.48);
J (n), E (n), J (n) and E (n) - the momentum and energy

rip rip OTp OTp

of the direct and reflected waves, calculated with

the aid of relations (32.19)-(32.22), (32.31)-(32.34);

t - the arrival time of the flexural waves at the center

of the plate [cf. (34.1)].

where t > t., the differential equation of motion of the central

point on the plate will be

(34.5)

( with initial conditions (at time t tH)
Hi

W - W ( y ') , l y( t )

where w - the frequency of vibration of the plate in the basic tone:

•= ' = Knp
I pAR t, (m + p0 lon) ' (34.6)

m

K - the reduced coefficient of rigidity, defined according to

formauls: for a plate rigidly fastened along its edges

Knp 3k21-,1 6• + + (34.7)
12 (1 - 0) 16 a' ( '

for a freely resting plate

F '-3 2 " I k / (I + (34 .8
"121(1 -:,1 &2) )' (34.8)

E - the Young modulus (for steel, E = 2.1106 kg/cm2 );
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S - Poisson factor (for steel P = 0.3);f k = b/a - the ratio of plate sides (2b - the long side);

Q - the generalized force of atmospheric counterpressure:

Q z= P021

(M 2(34.9)

a a2 - coefficients of evenly-distributed load and reduced

mass (for a rigidly fastened plate a = 0.25; a:2 2

= 0.141 and for a freely resting plate a1 = 0.405;

a2 =0.25);

S = 4ab - the. area of the plate surface.

The travel and the rate of speed where t > t H can be defined
by the relations

W It), 0-- + sin w (Y -to +.

+ 1V(f., + -•1cosr(I -- ,.);

(34.10)

W(t)- ~(to) COMuV (-I(.);+Q i .V-t) (34.11)

The quantity of maximum buckling Wmax and its time of a-quisit-

ion t. can be found from the formulas

+we (34.12)

ot . A m t o + -- r e tl . . ..

" %slow •-(34.13)

For the approximate e,'aluation of maximum buckling, we caozn

also employ relation (33.20)

K.,

x + E., , E ) - -, .(a),-. (a)
P.5 PO NOS -(34.14)
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Where pm> 30 kg/cm2 and 6 = 5-25 (which is most often encount-
tered in practice), with a precision of ap to 10%, it follows from

(34.14) that

= n "ý (34.15)

If

then Ecva KSE,,(n) > "

'W., -, -- L..-- jri(34.16)

This scheme is valid for plates making up casings and cover-
ings where the counterflow of fluid is encumbered, due to the symmet-
ry of the process. For plates which are fastened to a rigid wall,
or end plates, the diffraction phenomena become quite substantial.
Diffraction waves, propagating at the speed of sound, rapidly over-

- take the flexural waves, changing the hydrodynamic field and the

"form of plate buckling. It follows from (34.1) that the rate of
propagation of flexural waves even when x/6 - 2.3 is less than the
speed of sound in water. Until diffraction waves from the suppor4

contour reach the central point on the plate, a central portion w. Ii

exist whose motion is similar to the travel of an infinite plate.
Then, this portion ceases to exist, and conditions are created wh :e
cavitation is either not formed or if it forms, it exerts not sub-

stantial effect on the nature and magnitude of the external load.

There is much interest in comparing the diffraction time
A = a/a 0 and the cavitation occurrence time tK.

Kirkwood suggested the following condition [10] as a criterion

for the formation of cavitation:

t. < t'A

where ,. - diffraction time (short side of plate = 2a);
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t - the moment of formation of cavitation in the center

of the plate, if we consider it in our assumption

of infinity of dimensions.

The analysis of experimental materials confirmed the validity

of the Kirkwood criterion and permitted him to slightly refined it.
It was found that for individual plates fastened to a rigid wall
and for end plates, three typical cases of motion can be indicated:

t < 0.5t ; O.5t < t < t and t < t

Where tR < 00.5t when cavitation is formed much earlier than
the arrival time of the diffraction wave at the plate center,
it too defines the nature of motion. Diffraction effects do not
exert any substantial effect on the external load. In this case,
the end plate and the plate fastened to a rigid wall move just like

a casing plate. To evaluate the parameters of this motion, we
can employ the preceding formulas. If, however, the time of cavit-

ation is greater than the time of diffraction (t > t ), then cavi-

Sttation has little effect or has no effect on the net load during
interaction of a shock wave with a plate.

The hydrodynamic fields and the first and second category gen-
eralized forces can be calculated on the basis of the hypothesis

of continuity, as was done in the main sections of this book. Mot-

ion of the central portion of a plate prior to time t = tA = a/a 0

can be accurately described by the formulas in §22. After the

convergence of the diffraction wave with the center, vibrations

begin in the basic tone. First and second category generalized

forces F1 and F2 can be defined according to the formulas in §27
and §31. At the same time, in the time interval tA < t < 2a/a 0 =

= 2t A, the function F1 (t) can be written as the sum of the terms
which are linear functions of velocity and travel. Where t > 2t

A

second category generalized force is proportional to acceleration
(hypothesis of noncompressibility of a fluid).

it
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The case 0.5t < t < t represents the greatest difficulties.
A A

Both diffraction and cavitation processes are substantial at this

point. Based on our previously developed ideas, we could design a

theoretical plane for it. However, in practice, such temporal

relationships are not that frequently encountered. Consequently,

we can simply recommend the use of linear interpolation of the

two solutions we have given (t < 0.5t A; tK > t

In conclusion, let us note that the enormous amount of work.

which was recently been published in the field of envelope dynamics

compels us to consider the problem of underwater shock-wave inter-

action with an envelope as an independent, highly important, and

interesting problem. Even a brief statement of the primary aspects

of this problem would require a separate monograph.

4

(
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