AD-757 181

DATACOMPUTER PROJECT SEMI-ANNUAL
TECHNICAL REPORT, FEBRUARY 1, 1972 TO
JULY 31, 1972

Computer Corporation of America

Prepared for:
Army Research Office-Durham
Advanced Research Projects Agency

1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Sprirzfield Va. 22151

COMPUTER CORPORATION

OF

AMERICA

ADY57181

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

February 1, 1972 to July 2i, 1972

Contract No. DAHCO4-71-C-0011
ARPA Order 1731

STSTRIBUTION STATEMENT &

—prmved for public release;
Distribution Unlimited

Reproduced by

NATIONAL TECHNICA:L
Submitted to: ' e
Springfield VA 22151
Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

Computer Cotporation of America 575 Technolngy Square

Cambridge
Massachusetts 02139

617-491-3679

DATACOMPUTER PROJECT
SEMI-ANNUAL TECHNICAL REPORT

F IV T 1972 to July 31, 1972

Contract No. DAHCOU4-71-C-0011
ARPA Order 1731

Submitted to:
Advanced Research Projects Agency
1400 wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

7

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

DATACOMPUTER PROJECT
SEMI-ANNUAL Tc&CHNICAL REPORT

February 1, 1972 to July 31, 1672

This rzsearch was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the U.S. Army Research Office-Durham under
Contract No. DAHCO4-71-C-0011. The views and cor.-
clusions contalined in this document are those of tha
authors and should not be lnterpreted as nec=ssarily
representing the official policies, either expressed

or implied, of the Advanced Research Projects Agency

or the U.S. Government.

Table of Contents

1. Overview......cioooiiiinvenecncssonnas 500000000000OC
2. Hardware Installation.......ceeiiiietninecnnennnnnas
3. Scoftware Design and Implementation........ccecvvuuan.
4, Coordination Actrivites...... R T Ry

4,1 Meetings and Conferences...c.ceeeieeenesenennnns

4.2 Weather Database Working Group......eeeeeeeenn.
Appendix A: Workilng Paper No. 5, "Datacomputer
Software Architecture--Revision 1",

February 29, 1972..¢iiii ittt iinennnnnanens
Filgure
i. CCA Computer Installation: Elock Diagram...........

1. Overview

The goal of tne project 1is the developm=2n’ of a shared, large-
scale data system for the ARPA community.

The system may be viewed as a box that performs the functions
of data storage and data management on behalf of multiple com-
puters simultaneously connected to the box.

The box contains a large-scale tertiary storage device, seccondary
storage (disks) for staging, and a medium-scale computer for
performing data management functions.

Access to the box 1s through a device-independent notation,
datalanguage. This language is bcing designed for use in the
Arpanet as a standard means of access to remotely located data.
It contains features specifically designed for sharing data

among programs that operate on different machines, for describirn

a broad class of data structures, and for allowing arbitrary
subsets of large files to be selected efficiently at run-time.

2. Hardware Installatlon

A PDP-10 system was dellivered to CCA late 1n the last reporting
pericd. Thils system was checked out, and regular DEC mainten-
ance was hegun in March. Aiso in March a BBN Model 701 Pager
was dellivered and Integrated into the system. We are expect-

ing delivery of a TIP early 1n the next reporting period.
With the addition of the TIP, the installation will be as
shown 1in Fig. 1.

System performance during most of (his period was poor. Prob-
lems arose in various areas, but were centered on the ME10
core memories (these were new DEC products, replacing the
better-debugged older MA1l0s) and the disk controller.

Towards the end of this perlod, DEC cooperated by providing
on-site personnel dally and 24-hour-a-day on-call maintenance.
Furthermore all outstanding ECOs were 1installed, and a major
re-cabling effort took place.

A new policy of keeping power on for all units 24-hours=-
cer-day was Instituted. Subsequently, starting in July,
performance began to improve markedly, and became satlsfactory
at the end of this perilod.

In regard to overall hardware system architecture, Working
Paper No. 6, "Dataccmputer Hardware Architecture", was com-
pletel and distrituted. An activity aimed at evaluating
exlisting tertlary storage devices was initiated; resul.s
wlll be given 1n the report for the next perilod.

CCA Computer Installation:

block Dilagram

ME10 ME10 ME10 ME10 ME10
MEMORY MEMORY MEMORY MEMORY MEMORY
(16K) {16K) 16K) (16K) (16K)
DF10DATA TENEX
CHANNEL |—" PAGER
0 BUS —
AP10 DISK e
PACK CONTROL EnTA KSR35
PROCESSOR CONSOLY
RPO2 DISK
RPO2 DISK SO oE TUSE DUAL TUS6 DUAL
paihngt DECTAPE DECTAPE
RPO2 DISK
RPO2 DISK
RP02 DISK ’_l B8A10 LP10 LINE
CONTROL PRINTER
DC10A DATA
b LINE SCANNER L_{
CONTROL
DC108
E:J'E“ VT06
RMINA
GROUP TERMINALS
TrI10A TAPE UNIT
—1 CONTROL
KSR35
LOGGING
TU308
MAG. TAPE
—
303 ARPA
I L F ACE MODEMS NETWORK
TP
LEASED
103 LINE
~
t
I VADIC SiX
! 103 b—— DIAL .UP
MODEMS LINES
Figure 1

3. Scftwere Design and Implementation

During this period, the software system design reached a
fairly stable state as documented in Workinrg Paper No. 5,
"Datacomputer Software Architecture--Revision 1", dated

February 29, 1972, which is included here as Appendix A.

Regarding softwere implementation, there is as yet little
progress to repori. The immediate goal 1c the generation c¢f
a complete, though primitive, system in time to give a
demonstration at the ICCC Conference in COctober. The resuits
of thils endeavor will be discussed in the report for the next
period.

o et

[) N Ak

i - kil Bt arasd

4, Coordination Activities
4.1 Meetings and Conferences
A substantial activity has develcped durlng this period

deallng with technlcal coordinaticon with potential users of
the datacomputer system, providing information to lnterested
members of the computer s:lence community, government, and
industry. In addition uo tne work related to the Weathor
Database Working Group (see tclow), intewraction took place
with U. of Illinois (Center “or Advanced Computaticnq),
NASA/Ames (Institute for Advanced Computation), RAND
Corporation, NIH, National Litrary of Medicine, U. of
Michigan, and DOT. A technical presentation on the project
was given to the IEEE, Boston Sectici. on May 23.

A significant conference was hcld a' NASA/.mes on May 25 with
representation from the Illiac IV proilect (M. Pirtle), ARPA
(L.G. Roberts) and CCA (T. Marill). It was decided that the

datacomputer software would run at NASA/Ames on a non-dedicated

PDP-10/TENEX, using the installed UNICON 620 for tertiary
storage. At CCA the system would continue tc run on a dedi-
cated machine, to offer backup for the Ames system througn the
network, and to offer a high-speed direct-connection option
to Boston-area users.

4.2 Weather Database Working Group
The Weathzr Databcse Working Group (WDEWG) had been set up
during 1971 with the mission of coordinating plans for the
loading of the ETAC weather data base into the datacomputer
svstem, for keeping the information up-to-date, ard for
providing access to Ilnterested groups.

By e —

The second meeting of WDBWG took place 1n Washington, D.C.
on February 10 wlth participation from CCA as well as ARPA,
RAND, ETAC, AWS, NCAR and NOAA. It was decided that the
analysls and upper air flles wlll be kapt on-line. The
mandatory surface data will te broken up linto a set of
chronological station flles, each one of which will be one
datacomputer file. Date, time, block and sctation numbers
should be inverted.

[rgne———

[Y e, atieh

§ o & i

Appendix A

Working Paper No. 5, "Da*tacomputer Software, Architecture--
Revision 1", February 29, 1972.

—_—— e e |

10

Datacomputer Software
Architecture

Revision 1

Datacompu er Project
Working Paper No. 5
February 29, 1972

Contr:ct No. DAH- 4-71-C-0011
ARPA Orcer 1731

Computer Corporation of America
575 Technology Square
Cambridge, Massachusetts 02139

o

et GG —_— —— = — CIRME ——— [rov— [PEe———

b o, | et e~ i

Preface

This paper discusses the concepts and the functional design
cf the datacomputer software. It is a revision of Working
Paper 1 of -uis series, and presents a revised architecture.
The most ir portant change to the architecture is the defini-
tion of 2 fifth major system component: the directory
svstem. A large number of minor changes have also been made,
and the content of the paper has been reorganized.

Other papers in the seiries discuss the access lancuage, the
fil? structures, the bardware of the system, and related
toplcs. Furi~- pin2rs will be issued from time to time.

A1l papers are subjecu tc revision without notice.

11

Preface

Chapter

Chapter

Chapter

Chapter

Chapter

Table of Contents

1 IMEretMELRA@M o 0 00 000000 000000000000000000C
1.1 The Datacompute=.....ciiiierrtnrneses
1.2 Dataccmputer for the ARPAIET........
1.3 Architectural Overview........cvvun
2. Ther Requesith Handlemiriie e e eelelelcielel el el el el o) o) s
2.1 Request Handler Function............
2.2 Request Handler Point of View.......
2.3 Datalanfuage..coeenesesnsersreonanen
2.4 Data Storage and Access Techniques..
3 The Storage Manager .. v vveertttnosonsoonnss
3.1 Storage Manager Function............
3.2 Storage Manager ConceptS........ e
3.3 Storage Manager Interface...........
3.4 Mass Stcrage Device..veveeneereeenns
4 The 1/0 Manafer..v.eece ettt entoetonoans
ol Function......civiieeiinneeneennnanns
4.2 Inside Interface.....viiieeneenseens
4.3 Outside Interface......eieeueennnenns
Loh Tnternals. ..o eeeeronnneeans
Jo 0 SUEPEPVILBERs 00000 0000000006000000600000C
Dod, BUMBEAER0 0 0000000000000000000000500 ¢
Do DEBILEMN00000000000000000000000000000 ¢
5.3 Implementation Strategy.......ovuv.u..
6. Directory SySheMe..eeeeeeneeeeneonneennns
6.1 FUNCEION. .ttt itiiieeeeeonneonnonsnns
£.2 The File Directory..eveeieeeeeeeeenn.
6.3 File HUMDErS . ue et virnneieneennnnnn.
6.4 Calls from the Storaze Manager......
6.5 Calls from the Request Handler......
6.6 Datalanguage-Directory Ir‘-racticn=.
6.7 Restrictions......iieenereneienennnn
12
-{1-

u3

S) [S S S

Chapter 1

Introduction

1.1 The Datzccomputer

The datacormputer is a system which performs data cstorage and

data management functions.

One may consider the datacomputer as a black box with multiple

physical vorts tc which processcors can ve interfaced.

DATACOMPUTER
w
IT)
I
=)
o)
2
<
-
<
[y
<
o
PROCESSOR PROCESSOR PROCESSOR
i 2 N

- -

Fijur2 1.1 - The Datacomputer

PRy

- | e wansuite

Fach of the processors can itself have multiple users, which

can avail themselves of the services that the datacomputer

offers.
Specifically, these sorvices are:

1. On-line storage of uata and data descriptions. A
data file can be unusually large, up to one triilion bits

(rourhly the equivalent of 10,000 reels cof magnetic tape.)

2. Retrieval of data (whole files, subsets of files,
individual data elements).

3. File maintenance functions, that is, addition of

new data, deletion of cld data, changes to existing data.

4. Data reformatting.

5. Backup and recovery mechanisms, for use in c

o8}

se

of failure in the datacomputer or in one of the user syctems.

6. Accourting, for allocating charges to ucers.

7. Data sharing, allowing the same data bas=s to be
2BE

D

ssed by differenrt users.

8. Data orivacy, preventin;: unauthorized a

Q
o
@
(%]
(%%
ot
O

9. Sinultaneous multi-uzer access, allowing more than

cne request to be serviced simultaneously.

pamsndi jmih el 0 ROl 0 Gmees besild e Semm JER NI SGEE S 2SS a0 -

A user program in an exfternal computer interacts with the
dotucomputer only through datalanguage, a scystem of nota-
tion developed for this purpose. This increases the degree
of intesrity and privacy that zan be achieved for the
stored data, and improves the reliability of the system.

It also 2allows users the convenience of working with a tool

specifically designed for the job they are doing.

The datacomputer csystem is dedicated to data manacement

and implemented on a large scale. Thus it offers more
ccut-effective and more extensive data management services
than systems designed primarily for other purposes. Its
hardware and software are specialired for the problems they
most frequently encounter. On-line storage is orders of
marnitude cheaper than in conventional cyotems. Data
formats are {lexible, anc the variety in data structure

is larwve.

[WA ——— il | -y il A t -] PR N -

——

N I " - TR - B |

1.2 Datacomputer for the ARPANET
The datacomputer for the ARPANET has two physical ports, as

shown below:

DATACOMPUTER

\

Firure 1.2 - the ARPANET Datacomputer

ki [e— e

™

s

llere, the IMP is connected to the network and consequently
allows a larpe number of processors tco access the data-
cormputer through a low-speed (50,000 bits/second) port.
Users of vhe ILLIAC IV have access a4t data rates several
orders of magnitude higher than those available through the
IMP.

Inside the datecomputer box are a modified PDP-10 procecsor,
a B8N pager, several core memories, disks, interfaces to

the IMP and ILLIAC, and a Precision Instruments UNICON ©69C
laser mass memory systein. The UNICON contains three pro-
cessors, two of which were built specifically for the storage
system. The software for these processors is an integral
part of the datacomputcr software, and is outlined in Section
3.4. Thne UNICON has an on-1line storage capacity of nearly
one trillion bits. It also has the ability to mount and
daisnount storage packs of 25 billion bits, pgiving it
urtllimited off-1line capacity on a low-cost mediumn.

mis hardware confijuration has been carefully designed and
may be speciallzed further as the implementation continuec.
ttowever, there is a level of design that ic completely
Independent of the confisuration. This includes the accecs
Ilanpuape, most of the data storage, retrieval, and or.-aniza-
tion techniques, the interfaces of tne five major modules,
aria their functional design. In addition, almost all of

the coftware is independent of tuhe mass memory systen used.
Inic point 1s particularly important, because mass memories

ire cexpocted to improve considerably over the next few

vears. Tnus additional mass storage devices can be accommc-

s

dated with a minimum of reprogramming, and the entire

confijureation can be chanied without loss of most of the

iecirn worlk.

1.5 Architectural Overview

REQUEST (HANDLER

P e . C— C—— — — — — —— S C— — — S CE— —— O— —— o

IMP ox somed e DISKS
1/0 DIRECTORY STORAGE MASS
ILLIAC = === == STORAGE
h MANA Y M MANAGER
GER SYSTE DEVICES
TAPE awmeed

"1 ey i [e R | gy Ry a— . F =

SUPERVISOR

e —

EAXTENDED OPcRATING SYSTEM

Firure 1.3 - Architectural Overvieu

The scoftware of the datacomputer has five components: the
rejuast handler, the storage managser, the supervisor, the

tireztory system, and the input-output manncer (I/0) manaror.

18

[Frm——————— T A T . TR R R R R

The storage manager, directory system, I/0 manager, and
supervisor comprise an extended operating system that
supports one process (i.e., one job) for each user con-
nected to the datacomputer. All of these processes
execute the same program: the request handler. Each
process acts independently, contending with the others
for the rescurces of the system, and is concerned only
with servicing its own user. The processes are started
and stopped by the overating system and behave somewhat

like user jobs in an crdinary multi-programmed computer.

While the request handler is concerned only with the user
it is currently servicing, other datacomputer software
modules are normally concerned with the entire system.

The storage manager schedules for efficient use of the
storage devices, at times degrading the service to one user
while improving the service to others. The supervisor

and I/0 manager have scheduling functions which they carry
out with a similar philosophy.

The functions of each of the five modules are described
briefly below.

Request Handler

The reauest handler prccesses all datalanfuage, including
datva descriptions; it cstructures data for storage and for
output to users, determines and executes strateries for
the accessing of stored data, and performs all data con-

versions.

Storage Manager

The otoragce managrer controls the alincation of datacompute=
storaje and the cscheduling of all storace device oreration:.
It converts loytical storage addresses to physical aadrecces,

and converts data to and from physical storage formats.

Irnput-Output Manarer

The input-output manager provides an interface between the
request handler and the outside worid. To the recquest
handler, its servicec are: standard formats for all input
and output data, standard error control, and standard con-
trol of connections with users. It accepts output from
the request handler whenever it is generated, and accepts

input from users when presented with it.

Supervisor

The supervisor cschedulez the use of the central processor,
creates and ue° et2s processes, and offers a variety of
services normally associated with a multl-prorrammed

orerating cystem.

Directory System
The directory system catalogs data descriptions, file names
and locations, file security information, and some account-

ing information.

Chapter 2
The Request Handler

o

2.1 Request Handler Function

All of the services offered by the datacomputer are imple-
nented in the request handler. The user's datalanguage 1is
rrocessed and acted upon. Data is organized for storage,
retrieved on demand, and formatted for output.

<1

~

2.2 Request Handler Point of View

The request handler acts as though it were servicing a

single user at a single, constant data rate, and working
with a very simply and uniformly organized storage system.
It is thus independent of system loading, buffering,
scheduling, data rate, and device-peculiar data access
ccnsiderations. It conceives data access strategies based

only on the logical organization of data.

The request handler aids the other modules in their
scheduling tasks by generating certain information for
them. For example, 1t gives advance notice to the storage
manager, when possible, of its requirements to accecss
particular data. It also indicates convenient points for
interruption, so that the system can efficiently switch

to other tasks.

Tne request handler may conceive a sub-optimal stratergy
for a particular request, because it is relatively ignorant
of the physical organization of the data. 1In this case,
however, the system does not necessarily execute a sub-
optimal strategy, since the storage manager has sufficient
information to re-order the access operationc. While the
end result is not infallibly optimal for any particular
request, it is globally more efficient than schemes that
fully optimize each request with consequent loss of con-
trol at the system level. The present scheme also has the
advantage of isolating the request handler from the con-

slderations mentioned above.

s

-10-

2.3 Datalanguuge

The activities of the request handler are best defined by
datalanguage, its interface tc the datacomputer user. In

datalanguage, data is described and referenced:

A. co that the datacomputer can determine access paths
and optimize the access process. Normally the user specifies
the name or content of the data items desired, leaving the
datacomputer to decide how to retrieve them. This 1is a
convenilence for ths user who 1s not interested in the details
of datni structures. It is also an optimization for the usual
care where the user is unaware of the actual location and
storage format (for example, network users may frequently

be unaware that their data is even on the datacomputer).

b. so that data sharing is facilitated. This is
accomplished because data can be so thoroughly described
that the datacomputer is aware of the format of the data
in machine-independent terms. Thus the user can specify
the format desired and leave the datacomputer to convert

the data to this format if conversion is required.
C. 1in a concise, natural and convenient manner. This
is acccmplished primarily because the language need handle

only data management problems, and is specialized for them

(see Working Paper No. 3).

<3

-11-

e o deee A e

P, paa el Gaueua - el

2.4 Data Storage and Access Technigues

While datalanguage allows users to program thelr own access
techriques, most will prefer to use the ones built 1into the
system.

Consider the problem of storing a lerge number of weather
obserrations, say 500 million. Such a database might re-
uire 10 to 100 billion bits of storage. Ever 7 Chie data
is sorted on location and time, the z.oblem of efficiently
finding the data of interest iii a particular problem is
not simple. A typical datalanguage request for this file
might ask for all the observations from a particular area
showing nigh winds and warm temperatures. Withouvt special
data organizati. 'echniques, even if the area were small,
one might expect to examine 1 million observations to
extract the relevant ones.

There are only two ways to process such requests ef . iciently.
One is to duplicate the data, sorting 1t different ways.
This is impractical because of storage requirements. The
second 1s to maintain an auxiliary body of information, that

aids in answering the questions.

The crganization of 3uch a body, the application of it to
retrieval, and the maintenance of it across changes to the
aata 1s the subject of a working paper "File Struct res And
Access Techniques". The basic technique employed is the
usc of inverted files, with extensions to accomuodate files
ordered by content. range retrievals, Boolean expressions,

and tree-structured files. The techniques are relatively

<4

-12-

i [y i [, — N, i, S -

o, N MR GG PR P e g e e

)

insensitive to file size, and are expected to produce good
results in the trillion bit range. Other common techniques,
such as exhaustive sequential search, are used by the system

wh=2n the more complex ones do not apply.

When the user requests the observations with high winds and
warm temperatures, he need not be aware of the size of the
database, the organization, or even the presence or absence
of an inverted file. He defines in datalanguage the con-
tent and format of the desired data, and leaves the data
computer to locate it the best possible way. Thus he is
independent of all structure in the database except that

" which is basic to the use of the data, or that which affects

performance so radically that it determines the user's
behaviour in turn. This independence gives the datacomputer

maximum freedom in organizing data.

Large, shared databases 1like the weather file described
here will be reorganized from time to time as usage pat-
terns and requirements alter. These reorganizations will
be invisible, except for their effect on performance, to
users th+t have been letting the datacomputer determine
access strategies for them. Thus there are opportunities
with the dataccmputer to engineer global optimizations in

the use of databases.

il

P

Chapter 3
The Storage Manager

3.1 Storage Manager Function

The datacomputer storage system includes core memory, con-
ventional direct access devices, and a mass storage device.
This system 1s complex, and its behaviour and configuration
are subject to change during the 1life of the software. The
storage manager has the function of using this system
optimally, while presenting a stable and relatively simple
interface to che request handler, directory system, and I/0

manager-.

<6

-14-

R TR T SR R W R |

— Pt JE— :

]

3.2 Storage Manager Concepts

Storage manager users can operate on data only when it is
in a buffer, a block of core locations of fixed size. Each
user has a buifer table, containing a pointer to eezh of
his buffers. All references to data in a buffer are
indirect, through the bulfer pointer. Users freely access
buffers as though they were always in core. In practice,
to optimize core usage, the contents of the buffers are
continually being moved out to disk and back to core again.
This movement of data, and the corresponding relocation of
the buffer pointer, is i visible to the user.

All data are stored as updatable pages, which are blocks

of data large enough to fill one buffer. Each page has a
unique identifier, called the logical page address (LPA),
and used to reference it in commands.

Via commands to the storage manager, users can create,
delete, and a:zcess scratch pages and data pages. Scratch
pages are used for storage of te.porary and intermediate
results that cannot conveniently bpe bept in the available

buffers. Data pages are used for p.rmanent storage of data.

Wwhen a scratch page or data page 1s read into a user's
buffer, the original of the rage in storace ceases to exist
for most purposes. When the user modifiles the contents of
the buffer, he is now modifying the oripginal and permanent
copy of the page. 1In general, nther requests for the page
are satisfied by returning a rpolnter to the same copy. This
scheme uses buffer space economically and eliminates
unnecessary accesses to secondary storage. It also neces-
sitates careful treatment of the data in the user's buffer,
since 1t 1s logically the original of the page.

<7

-15-

. ‘ : . 4 — N : a — . ., AN -_—

y—— LR [N il

i ok ol

Consider the operation of extractin~ half of the data from

a page, rrefixing a count to it, ...l passing it to an out-
put routine. This is mcst easily done by reading the page
into a buffer, inserting the count at the proper positicn,
and calling the routine with a pointer into the buffer.
However, inserting the count into the buffer permanently
aiters the page, because the data in the buffer is the only
end original copy of it. The relevant data could be copied
into a second buffer, and there prefixed with a count. This
undesiratbtle solution creates two physical copies of the data
in core, when typically only one is needed, and a third copy

exists somewhere in storage.

This problem is solved by definling the <COPY> operation,
which makes a private copy of the contents of a buffer. The
copy of the data in the users buffer loses its identity as

a scratch or data page. It now has the same status as
random data placed by a user into a newly allocated buffer.
If the buffer contains the only physical copy in the system
of the data, then the <COPY> does the in-core copy-over

required.

(Note: In practice, the association between private pare
and original copy 1s maintained until the private page is
modified. This further optimizes the use of storage space
an” devices in certain cases, and is possible because of
the implementation, which uses special paging hardware.

In the general design, no such hardware is assumed, and the

ctorage manager behaves as described here.)

<8

-16-

S, haesh eed Gmsh baaat e e ey (otiiind —— G GEN 2 Sy el D)., am el

-

The storage manager 1c expected to perform so that:

L. buffers declared by the user to be <IN-USE> are

normally 1n core when the user 1s running.

B. other buffers are available after (at worst) short
delay.

C. retrieval of scratch pages vsually requires a
short dclay.

D. retrieval of data pages can usually be achieved
with only short or medium delays, especially when intention
to access them has been stated in advance, with a <PRE-
READ> operation. (Sec below)

However, not all data pages are equally accessible. They
are organized into files, and the initial access to a file
may occasion a longer access time.

For the planned configuration, short delays are 10-200

milliseccads, medium delays are 200 milliseconds to 1
second, and long delays are 1-100 seconds.

<9

-17-

_ A e A e a——

P

3.3 Storage Manager Interface
The stcrage manager accepts the following commands from 1ts

users:

ALLOC <buffer number>

A buffer containing all zeroes 1s created and can be
referenced by its buffer number in subsequent commands.
Data in the buffer is effectivel; in core and can be
operated upon directly by 1ts owner.

REL <buffer number>

The buffer is disasscciated from its contents, and the
buffer number becomes avallable for re-use. Until the
buffer is re-allocated, references to locations in it are
in error. If the buffer contains a data or scratch page
when released, that page must not have been modified while
in the buffer.

DPR <buffer number, data page LPA, ROB>

SPR <buffer »umber, scratch page LPA, ROB>
A buffer containing the specified page 1s created, and can
be referenced by the buffer number in subsequent commands.
Data in the butfer is effectively in core nand can be

operated upon directly by its owner. The data can be modi-
fied if the read-only bit (ROB) is zero.

30

-18-

e, R BEaas | G s

DPW <buffer numpoer, data page LPA, ROB>
SPW <buffer number, scratch page LPA, ROB>

If the buffer contains the specifi>d page, the buffer is
disassoucizted from the page and released (see REL, above).
Tf the buffer does not contain the specified page, then
the buffer's contents replace the page. The buffer is

then disassociated from its contents and released.

The read-only bit provides a means to request error-
checking services from the storage manager. It can be set
to one only in the first of the two cases explained above.
When so set, it requests that an error condition be raised
if the page has been modified. This is identical to releas-
ing the buffer, except that it also irsures that the page

in the buffer has the LPA supplied in the command.
COPY <buffer number>

The contents cf the buffer are disassociated from any
scratch page, data page, or other buffer. The buffer’s
status is identlIcal to that of a rewly-allocated buffer,
except that it contains the same data as it did before
the COPY. Data in the buffer is effectively in core and
can be operated upon directlv by its owner. Subsequent
changes to the buffer's contents will not affect the

original source of the data.

ASSIGN/DEASSIGN <scratch page LPA or LPAs>

31

-1G-

— — A — A A——

pe=s—— r— [m— — e, QAR S

[]

ey

BLOCK

It is a convenient time fcr the user to be blocked. Thus,
if the storage manager intends to block this user, the
block should occur now. Before restarting the user (if
indeed it was blocked), the storage manager would probably

insure that the user's in-use buffers were in core.
These commands assign and deassignh scratch pages. When a

page has been assigned it may be used in a SPR or SPW
command.

The following five commands are for the purpose of inform-
ing the storage manager of a user's intentions. They are
not required, and are given only to aid the storage manager

in making schedulins decisions.

PRE-READ <LPA>

The user intends %o read the page sometime in the future
and the storage manager should be prepared.

POST-READ <LPA>

The effact of a previous pre-read command for the page is
negated. The user does not intend to access the page in
the future.

32

-20-

IN-USE <buffer #>

The process intends to reference the indicated buffer.
storape manager will attempt to keep the page in core.

NOT-IN-USE <buffer #>

The effect of previous in-use corimands is negated.

33

-21-

e oA amae A m———

The

3.4 Mass Storage Device

The storage manager's main function is to manage the data-
computer storage system so that 1t 1s efficiently used,
while the rest of the datacomputer system remains largely
independent of storage hardware considerations. In this
section a short discussion o how this is accomplished with
the UNICON 690 is presented.

Recall that the storage manager users--the request handler
and directory system--act as though data were stored on
updatable pages of fixed size. The UNICON stores data in
fixed-size units, clockwords, containing 64 data bits, which
cannot be changed, once they have been written. The stor-
age manager simulates updatable pages with the SOUPS scheme.
With SOUPS, all pages are regarded as inicially containing
all zeroes. When a page is updated, a modification record
is written. The modification recoré indicates the new
contents and the locaticn of any words changed. When a
page is read from storage, all modifications are read in
sequence, into ar initially zeroed buffer. When all
modifications have been processed, the buffer contains

the latest copy of the page.

SOUPS requires that space be aliocated for modification
records, that too-freguently modified pages be rewritten
in a new location, and that an entire clochkword be
written to change an isolated bit. 1In spite of these
drawbacks, it is appropriate for a wide range of applica-
tions, and admirably hides the write-once property of the
storage medium.

34

-22-

L ————

N r“ SR
by

e [

The response properties of the device (access times, rota-
tion times, etc.) are more complex than those ot a disk or
drum. The volume of data storage is a strip, contalning
1.7 billion bits. Strips can be mounted on elther of two
rotating drums, in which case they can be read ~r written,
or they can be in the carousel, from which they can be
mounted without human intervention. Worst case access time
for data cn a mounted strip i. ~J({ milliseconds, wh''e
strip-changing time is as high as 10 seconds. Thus it is

vital tc minimize strip changes.

Recall now how the storage manager is to present the access
properties of the stcrage system to its users. The set of
all data pages is partitioned into logical units called
files. Pages within a file are considered equally access-
ible. Since the request handler recognizes that crossing
file boundaries should be minimized, i1t can help to
minimize strip changes, without being cied to the concept

of a strip or a strip mount.

Also, the storage manager can most effectively minimize
strip mounts for the system by making use of PRE-READ
information, which it gets from all its users, and by

using its enormous disk buffer. For example, a process
requesting input can run until it needs a page that is not
available on di-k or on the mounted strip, and can then
block. When it is again started up, most of its pages will
have already migrated to disk from the UNICON.

35

-23-

o Aecatincd une Sl .

The PRE-READ system 1s least effective for processes that
cannot determine the addresses of th» pages they want without
first looking at some other pages on the same strip. For
this case, the strip-changing algorithm can compensate some-
what by not dismounting a strip until the process that
requested 1t gets some opportunity to generate more requests.
Anoth 'r approach is to reflect in the PRE-READ information
the intent to read more pages from the same file after the
first request is satisfied.

To summarize, the UNICON, which is unusual in ics response
characteristics and storage medium, is accommodated in the
storage manager with a special implementation of the idea

of page, and 2 standard interpretation of the idea of file.
The PRE-READ information and large buffer space further
reduce the difficulties of hiding the device characteristics.

36

-2l

T —

oGy

Chapter 4
The I/0 Manager

4,1 Function

The I/0 manager i1s the datacomputer's interface with the
outside world. All data, and all requests for service,
initially enter the datacomputer through the I/0 manager.
Thus on the outside, the I/0 manager has the problem of
interfacing with a variety of hardware devices, data
formats, and software systems. On the inside, it services
the datacomputer system by providing a standaraud protocol
for connection control. It also buffers data when neces-
sary, to make the rate of data flow ccnvenient to data-

computer users and to the request handler.

37

-25-

e W o, SN [

s

4,2 Inside Interface

A caller can give four commands to the 1/0 manager: GET,
PUT, OPEN and CLOSE. The cal.er is usually the request
handler.

OPEN establishes a connection between the call.r and a
sour.: of data in the outside world. The source can be a
program in another computer, a file of cata on tape, etc.
The caller's end of the connection is a logical port. OPEN
returns a port number, which the caller can use toc reference
the pcrt established.

CLOSE terminates such a connection, and makes further
references to the logical port invalid.

GET causes the I/0 manager to pass one block of data »r one
item of control information to th caller.

PUT passes one block of data or one item of control

information to the I/0 manager from the caller.

The control informacion passed in GETS and PUTS is data
stream punctuation. An example is the inter-record gap,
wher the physical tape record btoundary has logical signi-
ficance. Here the inter-record rap acts as punctuation,
yet'it is not data in the same sense a~- the dJdata in the
record. If the I/0 manager reads an inter-record gap on
a tape fiie, an item of control information is passed to
.~ caller. If the caller wishes an inter-record gap to
be v ritten on a tape file, he must pass an item of control
" rmation to the I/0 manager. (Note. This is true, of
course, only when the inter-record gap has logical

significance.)

38

—26-

e control information passing between I/0 manager and
caller is communicated by means of GETs and PUTs, and must
oe synchronized with the data stream itself. A GEY or PUT
passes either a block of data or a control information
item. Thus a block of data can contain no control informa-
tion. Aside from this, there are no restrictions on the
size of the block, except implementation-dependent ones.
For design purposes, a block can be dr "ined as a convenient

chunk of data containing no control items.

39

-27-

w4 g

P

4,3 OQOutside Interface

The outside interface of the I/0 manager is defined in terms

of the datacomputer implementation. Initially, the data-
computer system will be interfaced to the ARPA network and
the ILLIAC IV. In addition, the I/0 manager will support
magnetic tape as a means of data input/output, and local

teletype-compatibie terminals for debugglng.

The software interface to the ILLIAC IV is under study at
the time of this publication.

The software interface to the APPA network, at the I/0
manager level, is defined by the oi:rficial network proto-
cols, NJC 7104. Below, some especially relevant features
of these protocols are discussed.

On the network, a user becomes connected to the datacomputer
by executing the Initial Connection Protocol. A4s a result
of this he has two half-duplex connecticns. 0Cn one he can
ser 4 messages to the datacomputer, and on the other, the
dat=computer can send messages to him. The messages are
formatted, and message flow is controlled, according to
HOST-HOST Protocol. Each message 1ras a header and text.

The header identifies the connection, states the length of
the text, and supplies other miscellaneous information. The
text contains an integral number of bytes of data, where
byvte size 1s a parameter determined during the initial
connection procedure.

The boundaries of messages have no logical significance,
50 the concatenation of the texts of all the messages sent

over a cingle connection constitutes a single stri.;y ot

bytes.

10

-28~

The Data Transfer Protocol is used to partition the byte
stream intc logical units. A byte stream formatted
according to Data Transfer Protocol becomes a strecam of
transactions. There are several types of transactions,

of which three are of interest here:

A. The data transaction, which is used to senu all
data.

B. The control transaction, which is used to send
all datalanguage and diagnostics.

C. The informatior. separator transactior, which is
used tc make logical unit boundaries.

To transmit a group of data records to the datacomputer,
each record might be formatted as one or more data trans-
actiors. Following each record there would be an informa-
tion separator, marking th2 end of the record. The end

of the group would be indicated with a higher level
separator.

Data Transfer Protocol allows the I/0 manager to distinguish
between datalanguage and data on the same connection, and

to identify logical units and groups of logizal units. The
former ability is signiflicant for detection or user errcrs
.nd synchronization of user program and datacomputer

recovery. The latter 1s useful for scheduling within the

iztacomputer.

Magnetic tape 1s viewed as a data I/0 device. That is,
controlling datalanguage is ascumed to be coming from
another source.

41

-29-

The tape medium has two kinds of information separators:
inter-record gap and end-of-file marker. In addition, tape
contents can have structure in the form of labels, record-
ing formats, and even directories. Any such structures that
are not tc be described explicitly in datalanguage and prc-
cessed by the request handler, must be "understood" by the
I/0 manager. To make the problem simpler at the outset,
the 1/0 manager will handle a relatively small number of
tape formats. Since most data is being transferred in or
out over the network or over the ILLIAC IV interface, this
restriction is deemed unimportant.

42

S0

L, 4 Internals

In terms of the system architecture, the I/0 manager's most
interesting probliem is buffering. Except when the amount
of buffered data for a certain connection becomes excessive,
or when the system is dedicating too much space to I/0
buffering, the I/C manager will accept all the input with

which it is presented. This means:

A. to most users, the datacomputer appears to accept
data as fast as they can send it

B. to the request handler, most users appear to
accept data as fast as it (vhe request handle>) can gene-
rate it.

C. to the request handler, some users appear to
produce ~“2ta at the rate of the datacomputer scorage
system.

These three effects are extremely desirable. For the user
interfacing with the datacomputer at a data rate below that
of the datac »mputer storage system, the first is helpful
because it enables him to transfer a given amount of data to
the datacomputer in the minimum possible time. For moderate
amounts of data, “his will be indeperdent of the amount of
processing the datacomputer must do prior to storage of the
data. Likewise, it will be independent of the loading of
the datacomputer. (This effect is not achiesved for the
ILLIAC IV system, which can sustain data rates of one
billion bits per second for up to one second. However, the
I1/0 manager will accept input from the ILLIAC IV up to the

13

-31-

o L

L

Vi, sy ey

data rate of the datacomputer storage devices. Currently
this 1s limited to 3.3 million bits per second, but studies
have shown that there is a feasible way to raise this to

40 million bits per second for bursts up to several billion
bits.)

The second and third effects are useful because of the way
in which the datacomputer operates, and the conditions it
will encounter. To service a parcicular user a certain set
of buffers belonging to that user, the working set, must
normally be in core. If any of these buffers, which Aare
all frequently referenced, are not in core, then very 1little
service will be given before the request handler will
reference one that must be read in from 4disk. The working
set is established dynamically, and migrates from disk to
core when the user 1s getting some service. Optimal core
usage 1s achieved when the request handler process gets its
working set in core and then interfaces with the user at
Storage system rates. These rates are cf course achieved
wnen the I/0 manager has queued some input or when the I/C
manager is accepting and queueing all output at the rate
the request handler generates it.

The buffering is implemented by queueing the data, by
destination, 1initially in core and, when required, on
scratch pages. Queneing on scratch pages involves an in-
core copy operation to pack the data onto the pages, except
when the unit being added to the gqueue is a full vage of
data. Ia this case the storage manager 1is asked to copy
the page, which it can usually accomplish without the
physical copy operation.

-32-

Fcr some devices, reformatting of the data stream is re-
quired between useful request handler processing and the
device I/0 operation. An example 1is a tape drive trans-
mitting 36-bit words (this 1s a problem because all request
handler data 1s in 32-bit words). Here the I/0 manager
must do a shift-gnd-copy operation, which it will combine
with formatting the data on a queue page, when that ojera-
tion takes place, Whenno queue is forming, a copy is
forced in this case. In the more normal cases, however,
there are one or 2ero ctwpy-overs in the I/0 manager if the
data gets queued, and none 1: it doesn't.

The actual responsSe cf the core management system in any
real situation 1s determined dynamically accordinc~ to the
scheduling heuristics 1n the storage manager. The previous
discussion is presented only to suggest the advantages that
can be obtained by appropriate cuffering in tne I/0 manager.
Since both the size cf queues and the management of all

core is the function cf the storage manager, th2 I/0 manager
is o01ly concerneq with formatting, building and maintaining
the cueues.

-33-

ey GENE GRS e s e i s el MG M bl e Cee aecdRE BT

Chapter 5
The Supervisor

5.1 Functilion

The supervisor schedules the central processor, creates and
deletes processes and performs some miscellaneous operating
system functions. Awmong these are system bootstrap loading,
operator communication, and management of the clock and

priority interrupt system.
In scheduling the CPU, the suvervisor determines:

A. When to interrupt a running process for the pur-
pose of giving another process the chance to use the CPU.
Many processes are designed to interrupt themselves at

convenient times, but this is not always adequate.

B. Which waiting process should run next, when the
last running process has stopped.

C. When there are too many or too few processes con-
tending for the CPU and core. When such a determination
has been made, the storagc manager is informed and tries to

rectify the situation by swapping processes in or out.

16

e

A, —— [LT frva,

5.2 Design

Because the functions of the supervisor are so basic to any
level of datacomputer system operation, the supervisor is
more rigorously engineered, with respect to crash/recovery,
than the other four modules. When any of the other modules
crash, the supervisor obtains control and initiates recovery
procedures. While occasionally a non-supervisor crash can
have severe short-term consequences, such crashes are not
generally as serious as supervisor ¢rashes, in which reload-
ing the entire system, human intervertion, and (conceivably)
loss of most or all temporary information is implied.

Thus extreme care is taken in allotting functions to the
supervisor. It 1s constrained to be simple in design, to
retain control under all conditions 1ts designers can
conceive of, and to delegate to other modules any func-
tions not absolutely basic tc its function.

47

-35_

5.3 Tmplementation Strategy

The supervisor will evolve during the impiementation of the
datacomputer. Initially it will consist of appropriate
modules from "n exlsting operating system. In this stage,
scheduling algorithms may not be optimal for the data-
computer. When a primltive datacomputer has been established,
design and implementation of the real supervisor will be
undertzken. The design effort will then bte based on some
useful experlence and on a better understanding of the data-

computer system than 1s possible presently.

18

-36-

‘ - A J— . vz e i : —— — o ps—

Chapter 6
Directory System

6.1 Function

The directory system maintains data descriptions, file

names and locations, file security information and some

accounting information.

In some respects the directory svstem's functions are
similar to the request handler's, and the directory system
could probably ke implemented in datalanguage. However,
the directcry system's database is of such crucial importancz
to the operation of the datacomputer, that it 1s separated
from the request handler or the sake of reliability. The
directory system can be expecied to stabilize and undergo
little change during the second half of the implementation
of the request handler. During this period, it will be
important to isolate the file directory from any bugs that
occur in the request handler.

When the full datalanguage has been implemented, the request
handler could indeed become as stable as the directory sycstem.
At this point, interation is undesirabie fo:' other reasons.
For one thing, further development of the data-zcmputer con-
cept may av ithis stage have implicec .ions for the directory
system. With multiple datacomputers in the same system, data
disposition among the datacomputers is something that should
probably be settled by the datacomputers in a fashion
invisible to their users. Under these circumstances, the
directory systems of the seversl datacomputers must either
cooperate or be combined intc a single directory system.
Inter-system problems should probably be handled by the

49

37

e T R R - GEen.cJmE G

. ‘ . — s) - e —_——

directory systems and storage managers and hidden from the
request handlers.

Thus the directory system has different reliability re-

quirements and will probably eventually have decidely
different functions than the request handler.

20

-38-

[am——r L At st o A—

L

6.2 The File Directory
Most of the directory system's data is stored in the file

directory, and a major part of 1ts job is the maintenance

and use of this directory.

The datacomputer file directery 1s unusual in both size and
content. Just the on-line storage will give rise to an
extremely large file directory by conventional standards.
(To get a feel for this, consider the on-line storage as
the equivalent of 10,000 tapes.) The off-line storage is
uniimited, and must be kept in the directory also. In
content the directory is unusual because it contains not
only file names a..d pointers, but datalanguage descrip-
tions, which are used in the compilation process. The
distinction between files and other kinds of data con-
tainers (like records, trees, fields, groips of records,
etc.) is somewhat blurred in datalanguage, and this may
give rise to heavier usage of the file directory than in
other systems. This point is most easily understood in
terms of the structure of the directory, explained in the

remainder of this section.

The directory 1s a tree structured file in which each node
of the tree is a record. I the record points to other
records it is a directory (or sub-directory) node. The
~nds, or leaves, of the tree are descriptor nodes that con-
tain a data description. A record that describes a file
m~.y be referred to as a "file" node--a special case of a
descriptor node. Each descriptor node his a name--the name
of the hlighest-level data contalner described. Names below
this level are not known to the directory systen.

21

-39.

Each record has a "node name” that 1is a character string
without any blanks or other spezlal characters. Each re-
cord also has a "path name" that is the corcatenation of
all the node names (with periods in between) of the
directory records traversed in corder to arrive at the
selected node. Path names will be unique. Node names may
be repeated.

It is expected that the higher nodes will correspond to
organizations, projects ana/or people, but the directory
system will not assume this. The path name for a file's
descriptor rz2cord is that file's "formal name". Since
formal names, are unwieldy, files will be referenced

by "normal names". The request handler will prefix a path

name to the normal name in order to derive the formal name.

Nodes that describe lists of files or files composed of
subf.les will be specified at a later date.

-40-

ey Kbt i, AR

[

[P [rem— [e—

o, ot

G, (o—— e &

6.3 File Numbers

"iles may be referenced by any of three types of file num-
bers. First, a« permanent file number (PFN) is assoclated
with a physical file. It 1s assigned by the directory
system and never changes even 1f the fille i1s renamed. PFNs
are never reused, even 1f a file is deleted. Second, the
directory file number {(DFN) is a pointer to the file node
in the directory. It corresponds to a logical file. It is

used 1in calls to the directory system, and to the storage
manager when opening a flle. Thiru 1s the local file number
(LFN) assigned by the storage manager. It is meaningful

only for open files, and is used in calls to the storage
manager.

o3

-41-

1 ———— oY

6.4 Calls from the Storage Manager

When the storage manager calls the directory system, it
always supplies a DFN as a primary argun=nt, and a pointer
to an extent block (or partial block) as an opticnal argu-
ment. The directory system always returns a pointer to a
complete, up-to-date extent block corresponding to that
file. There are entries to get a .ap when opening a file,

allccate more space within a file, and free up unused/unneeded

space within a file.

o4

4o~

[r— —— - O BN A — Yus OEBB UG GED L] [] A i AN [l

6.5 Calls from the Request Handler
When the request handler calls the directory system it

always supplies a directory pointer to be used as the "top"
node. Zero is used to specify the real top. This is used
to speed up directory searches. The second argument is the
path name of the desired node. The directory system always
returns a pointer to the up-to-date node. There are calls

to search, create, delete, and modify directory records.

20

(NS]]

6.6 Datalanguage-Directory Interactions

Several datalanguage commands interact closely with the
directory system. They are outlined here.

LOGOUT causes the system to forget everything that gets
cet up by the following commands.

ACCOUNT specifies a user's account number to the data-
computer.

ATTACH specifies a prefix to be used when converting normal
names to full names. A user may be attached to several

nodes at one time. If so, they are searched in order.
LOGIN combines LOGOU ', ACCOUNT, and ATTACH, in that order.
OPEN specifies a normal file name that is to be used when
trying tc identify a datacomputer name. A user mav have
several files open at once. T¢ so, the optior.s supplied
by OPEN determine if the first match is accepted, if

ambiguities recult ir. an error, or if all matches will be
processed.

CLC3E un-opens a file or all the user's open files.

06

=44~

6.7 Rest-ictions

[T Y

Any node of the file directory may contailn a restriction
bleock. As directories are searched, the privilege bits
from an entry for the user are ANDed “ogether. Whenever a
privilege is revoked (by setting its corresponding Uit to
zero) it is also revoked for all nocdes below. If no re-
striction blozk 1s present, no restrictions are revoked.
If a block exists, but no entry corresponds to the user,

all privileges are revoked and the search is aborted.

Any entry in a privilege block may contain a pacsword.

If the user has supplied a password, entrlies with pass-

L] -t

words are checked first. There may be multiple entries
for a user with different passwords to allow a user to

have different privileges at different times. If the

Oy

password does not match, other entries are checked.

It is expected that mcst directories that correspond to
projects or users will have privilege blocks. Normally
these blocks will allow read only access to most data by
most users and read/write access to users of the same

group. Specific restrictions can be provided to

restricted users or groups by providing the appropriate
pascsword entries.

To the datacomputer, a user is identified by a path name

that corresponds tc the first directory he is attached to.

]

This will normally correspond to the group/person identifi-
cation used by most time-sharing systems. The "¥"

convention for any node rame will be necessary for convenient
use of the restriction mechanism. "*" will be used to

indicate 211 subordinate nodes.

