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1.  Overview 

The goal of the project Is the developmen; of a shared, large- 

scale data system for the ARPA community. 

The system may be viewed as a box that performs the functions 

of data storage and data management on behalf of multiple com- 

puters simultaneously connected to the box. 

The box contains a large-scale tertiary storage device, secondary 

storage (disks) for staging, and a medium-scale computer for 

performing data management functions. 

Access to the box Is through a device-Independent notation, 

datalanguage.  This language is bctng designed for use in the 

Arpanet as a standard means of access to remotely located data. 

It contains features specifically designed for sharing data 

among programs that operate on different machines, for describing 

a broad class of data structures, and for allowing arbitrary 

subsets of large files to be selected efficiently at run-time. 

-1- 



2_. Hardware Installation 

A PDP-10 system was delivered to CCA late In the last reporting 

period.  This system was checked out, and regular DEC mainten- 

ance was begun in March.  Also in March a BBN Model 701 Pager 

was delivered and integrated into the system.  V/e are expect- 

ing delivery of a TIP early in the next reporting period. 

with the addition of the TIP, the installation will be as 

shown in Fig. 1. 

System performance during most of this period was poor.  Prob- 

lems arose in various areas, but were centered on the ME10 

core memories (these were new DEC products, replacing the 

better-debugged older MAlOs) and the disk controller. 

Towards the end of this period, DEC cooperated by providing 

on-site personnel daily and 2^-hour-a-day on-call maintenance. 

Furthermore all outstanding ECOs were installed, and a major 

re-cabling effort took place. 

A new policy of keeping power on for all units 24~hours~ 

per-day was instituted.  Subsequently, starting in July, 

performance began to improve markedly, and became satisfactory 

at the end of this period. 

In regard to overall hardware system architecture. Working 

Paper No. 6, "Dataccmputer Hardware Architecture", was com- 

pleted and distributed.  An activity aimed at evaluating 

existing tertiary storage devices was initiated; result 

will be given in the report for the next period. 

4 
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3«  Software Design and Implementation 

During this period, the software system design reached a 

fairly stable state as documented In Working Paper No. 5, 

"Datacomputer Software Architecture—Revision 1", dated 

February 29, 1972, which Is Included here as Appendix A. 

Regarding software Implementation, there is as yet little 

progress to reporu.  The Immediate goal is the generation of 

a complete,though primitive, system in time to give a 

demonstration at the ICCC Conference in October.  The results 

of this endeavor will be discussed in the report for the next 

period. 
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* JL:  Coordination Activities 

j ^.1 Meetings and Conferences 

A substantial activity has developed during this period 

dealing with technical coordination with potential users of 

the datacornputer system, providing information to Interested 

members of the computer science community, government, and 

Industry.  In addition to the work related to the Weather 

| Database Working Group (see below), interaction took place 

• with U. of Illinois (Center for Advanced Computation), 

i NASA/Ames (Institute for Advanced Computation), RAND 

Corporation, NIH, National Library of Medicine, U. of 

Michigan, and DOT.  A technical presentation on the project 

was given to the IEEE, Boston Section, on May 23. 

A significant conference was held aA NASA/V.mes on May 25 with 

representation from the Illiac IV project (M. Plrtle), ARPA 

I (L.G. Roberts) and CCA (T. Mai'lll).  It was decided that the 

datacomputer software would run at NASA/Ames on a non-dedicated 

I PDP-10/TENEX, using the Installed UNICON 690 for tertiary 

storage.  At CCA the system would continue to run on a dedi- 

cated machine, to offer backup for the Ames system through the 

network, and to offer a high-speed direct-connection option 

to Boston-area users. 

4,2 Weather Database Working Group 

The Weather Database Working Group (WDBWG) had been set up 

during 1971 with the mission of coordinating plans for the 

loading of the ETAC weather data base into the datacomputer 

I system, for keeping the Information up-to-date, and for 

providing access to interested groups. 

-s- 
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The second meeting of WDBWG took place In Washington, D.C. 

on February 10 with participation from CCA as well as ARPA5 

RAND, ETAC, AWS, NCAR and NOAA.  It was decided that the 

analysis and upper air files will be kept on-line.  The 

mandatory surface data will be broken up Into a set of 

chronological station files, each one of which will be one 

datacomputer file.  Date, time, block and station numbers 

should be Inverted. 

8 

-6- 



Appendix A 

Working Paper No. 5, "Datacomputer Software, Architecture- 

Revision 1", February 29, 19^2. 
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Freface 

This paper discusses the concepts aru' the functional design 

of the datacomputer software.  It is a revision of Working 

Paper 1 of -.ills oorie:;, and presents a revised architecture. 

The most irportant change to the architecture is the defini- 

tion of d   f:'fth major system component:  the directory 

system.  A large number of minor changes have also been made, 

and the content of the paper has been reorganized. 

other papers in the series discuss the access language, the 

file structures, the hardware of the system, and related 

topics.  Fur'. ' rv pipers will be ^.ssued from time to time. 

A]] papers are bubjeci; to revision without notice. 

11 
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Chapter 1 

Introduction 

1.1 The Datacomputer 

The datacomputer is a system which performs data storage and 

data management functions. 

One may consider the datacomputer as a black box with multiple 

physical oorts to which processors can be interfaced. 

Firure 1.1 - The Datacomputer 

13 
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Each of the processors can itself have multiple users, which 

can avail themselves of the services that the datacomputer 

offers. 

Specifically, these services are: 

1. On-line storage of uata and data descriptions.  A 

data file can be unusually large, up to one trillion bits 

(roughly the equivalent of 10,000 reels of magnetic tape.) 

2. Retrieval of data (whole files, subsets of files, 

individual data elements). 

3. File maintenance functions, that is, addition of 

new data, deletion of old data, changes to existing data. 

h.     Data reformatting. 

5. Backup and recovery mechanisms, for use in case 

of failure in the datacomputer or in one of the user systems, 

6. Accounting, for allocating charge.- to users. 

7. Data sharing, allowing the same -data bases to be 

accessed by d i f ferent users. 

B.  Data privacy, preventing unauthorized access to 

data. 

9.  Simultaneous multi-user access, allowing more than 

one request to be serviced simultaneously. 

14 



1 
A user program in an external computer interacts with the 

dotacomputer only through datalanguage, a system of nota- 

tion developed for this purpose.  Thin increases the degree 

of integrity and privacy that ':an be achieved for the 

stored data, and improves the reliability of the system. 

It also allows users the convenience of working with a tool 

specifically desinned for the job they are doing. 

The datacomputer system is dedicated to data management 

and implemented on a large scale.  Thus it offers more 

cost-effective and more extensive data management services 

than systems designed primarily for other purposes.  Its 

hardware and software are specialised for the problems they 

most frequently encounter.  On-line storage is orders of 

magnitude cheaper than in conventional systems.  Data 

formats are flexible, and the variety in data structure 

is lar^e. 

15 
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1.2  Datacomputer for the ARPANET 

The datacomputer for the ARPANET has two physical ports, as 

shown below: 

FiF.ure   1.2  -  the   ARPANET  Datacomputer 

16 
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Here, the IMP IG connected to the network and consequently 

allows a large number of processors to access the data- 

computer through a low-speed (50,000 bits/second) port. 

Users of the   ILLIAC IV have access at data rates several 

orders of magnitude higher than those available through the 

IMP. 

Inside the datacomputer box are a modified PDP-10 processor, 

a BBN pager, several core memories, disks, interfaces to 

the IMP and ILLIAC, and a Precision Instruments UNICON 690 

laser mass memory system.  The UNICOM contains three pro- 

cessors, two of which were built specifically for the storage 

system.  The software for these processors is an internal 

part of the datacomputer software, and is outlined in Section 

3.4.  The UNICON has an on-line storage capacity of nearly 

one trillion bits.  It also has the ability to mount and 

dismount storage packs of 25 billion bits, giving it 

unlimited off-line capacity on a low-cost medium. 

This. Hardware configuration has been carefully designed and 

may be specialised further as the implementation continues, 

however, there is a level of design that is completely 

independent of the configuration.  This includes the access 

language, most of the data storage, retrieval, and organiza- 

tion techniques, the interfaces of tne five major modules, 

and their functional design.  In addition, almost all of 

the software is independent of the mass memory system used. 

This point is particularly important, because mass memories 

ire   expected to improve considerably over the next few 

years.  Thus additional mass storage devices can be accommc- 

iated with a minimum of reprogramm^ng, and the entire 

configuration can be changed without loss of most of the 

iesirn work. 

17 
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1.3 Architectural Overview 
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Figure 1.3 - Architectural Overview 

The scftware of the datacomputer hao fi,re components:  the 

request handler, the storage manager, the supervisor, the 

directory nystem, and the input-output manager (I/O) manarer 

is 



The storage manager, directory system, I/O manager, and 

supervisor comprise an extended operating system that 

supports one process (i.e., one Job) for each user con- 

nected to the datacomputer.  All of these processes 

execute the same program:  the request handler.  Each 

process acts independently, contending with the others 

for the resources of the system, and is concerned only 

with servicing its own user.  The processes are started 

and stopped by the operating system and behave somewhat 

like user jobs in an ordinary multi-programmed computer. 

While the request handler is concerned only with the user 

it is currently servicing, other datacomputer software 

modules are normally concerned with the entire system. 

The storage manager schedules for efficient use of the 

storage devices, at times degrading the service to one user 

while improving the service to others.  The supervisor 

and I/O manager have scheduling functions which they carry 

out with a similar philosophy. 

The functions of each of the five modules are described 

briefly below. 

Request Handler 

The reouest handler processes all datalanguage, including 

data descriptions; it structures data for storage and for 

output to users, determines and executes strategies for 

the accessing of stored data, and performs all data con- 

versions . 

19 
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Storage Manager 

The :-.zorar,e  manarer controls the allocation of datacomputer 

storage and the scheduling of all storage device operatlonr. 

It converts logical storage addresses to physical acrdressos, 

and converts data to and from physical storage formats. 

Input-Output Manager 

The input-output manager provides an Interface between the 

request handler and the outside world.  To the request 

handler, its services are:  standard formats for all input 

and output data, standard error control, and standard con- 

trol of connections with users.  It accepts output from 

the request handler whenever it is generated, and accepts 

input from users when presented with it. 

Supervisor 

The supervisor schedules the use of the central processor, 

creates and u0~e^es processes, and offers a variety of 

services normally associated with a multi-prorrammed 

operating system. 

Directory System 

The directory system catalogs data descriptions, file names 

and locations, file security information, and some account- 

ing information. 

20 
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Chapter 2 

The Request Handler 

2.1 Request Handler Function 

All of the services offered by the datacomputer are imple- 

mented in the request handler.  The user's datalanguage is 

processed and acted upon.  Data is organized for storage, 

retrieved on demand, and formatted for output. 

i 21 
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2.2  Request Handler Point of View 

The request handler acts as though it were servlcinp; a 

single user at a single, constant data rate, and working 

with a very simply and uniformly organized storage systom. 

It is thus independent of system loading, buffering, 

scheduling, data rate, and device-peculiar data access 

considerations.  It conceives data access strategies based 

only on the logical organization of data. 

The request handler aids the other modules in their 

scheduling tasks by generating certain Information for 

them.  For example, it gives advance notice to the storage 

manager, when possible, of its requirements to access 

particular data.  It also indicates convenient points for 

Interruption, so that the system can efficiently switch 

to other tasks. 

The request handler may conceive a sub-optimal strategy 

for a particular request, because it is relatively ignorant 

of the physical organization of the data.  In this case, 

however, the system does not necessarily execute a sub- 

optimal strategy, since the storage manager has sufficient 

information to re-order the access operations.  While the 

end result is not infallibly optimal for any particular 

request, it is globally more efficient than schemes that 

fully optimize each request with consequent loss of con- 

trol at the system level.  The present scheme also has the 

advantage of isolating the request handler from the con- 

siderations mentioned above. 

22 
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2.3 Datalanguage 

The activities of the request handler are best defined by 

datalanguage, its interface tc the datacomputer user.  In 

datalanguage, data is described and referenced: 

A. so that the datacomputer can determine access paths 

and optimize the access process.  Normally the user specifies 

the name or content of the data items desired, leaving the 

datacomputer to decide how to retrieve them.  This is a 

convenience for the user who is not interested in the details 

of data structures.  It is also an optimization for the usual 

case where the user is unaware of the actual location and 

storage format (for example, network users may frequently 

be unaware that their data is even on the datacomputer). 

B. so that data sharing is facilitated. This is 

accomplished because data can be so thoroughly described 

that the datacomputer is aware of the formt of zhe data 

in machine-independent te^ms. Thus the user can specify 

the format desired and leave the datacomputer to convert 

the data to this format if conversion is required. 

C. in a concise, natural and convenient manner.  This 

is accrmnlished primarily because the language need handle 

only data management problems, and is specialized for them 

(see Working Paper No. 3). 

23 
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2.4 Data Storage and Access Techniques 

While datalanguage allows users to program their own access 

techniques, most will prefer to use the ones built into the 

system. 

Consider the problem of storing a l£rge number of weather 

observations, say 500 million.  Such a database might re- 

quire 10 to 100 billion bits of storage.  Even \r  ^he data 

is sorted on location and time, the pi-oblem of efficiently 

finding the data of interest In a particular problem is 

not simple.  A typical ciatalanguage request for this file 

might ask for all the observations from a particular area 

showing high winds and warm temperatures.  Without special 

data organizati^  'achniques, even if the area were small, 

one might expect to examine 1 million observations to 

extract the reltvant ones. 

There are only two ways to process such requests ef.'iciently, 

One is to duplicate the data, sorting it different ways. 

This is impractical because of storage requirements.  The 

second is to maintain an auxiliary body of information, that 

aids in answering the questions. 

The organization of such a body, the application of it to 

retrieval, and the maintenance of it across changes to the 

aata is the subject of a working paper "File Structures And 

Access Techniques".  The basic technique employed is the 

use of invertea files, with extensions to accommodate files 

ordered by content, range retrievals. Boolean expressions, 

and tree-structured files.  The techniques are relatively 

Stt 
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Insensitive to file size, and are expected to produce good 

results in the trillion bit range.  Other common techniques, 

such as exhaustive sequential search, are used by the system 

when the more complex ones do not apply. 

When the user requests the observations with high winds and 

warm temperatures, he need not be aware of the size of the 

database, the organization, or even the presence or absence 

of an inverted file.  He defines in datalanguage the con- 

tent and format of the desired data, and leaves the data 

computer to locate it the best possible way.  Thus he is 

independent of all structure in the database except that 

wh±ch is basic to the use of the data, or that which affects 

performance so radically that it determines the user's 

behaviour in turn.  This independence gives the datacomputer 

maximum freedom in organizing data. 

Large, shared databases like the weather file described 

here will be reorganized from time to time as usage pat- 

terns and requirements alter.  These reorganizations will 

be invisible, except for their effect on performance, to 

users th'-it have been letting the datacomputer determine 

access strategies for them.  Thus there are opportunities 

with the dataccmputer to engineer global optimizations in 

the use of databases. 

25 
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Chapter 3 

The Storage Manager 

3,1 Storage Manager Function 

The datacomputer storage system Includes core memory, con- 

ventional direct access devices, and a mass storage device. 

This system is complex, and its behaviour and configuration 

are subject to change during the life of the software.  The 

storage manager has the function of using this system 

optimally, while presenting a stable and relatively simple 

interface to ehe request handler, directory system, and I/O 

manager-. 

? 

26 
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3.2 Storage Manager Concepts 

Storage manager users can operate on data only when it is 

in a buffer, a block of core locations of fixed size.  Each 

user has a buffer table, containing a pointer to ea^h of 

his buffers.  All references to data in a buffer are 

indirect, through the buffer pointer.  Users freely access 

buffers as though they were always in core.  In practice, 

to optimize core usage, the contents of the buffers are 

continually being moved out to disk and back to core again. 

This movement of data, and the corresponding relocation of 

the buffer pointer, is i" visible to the user. 

All data are stored as updatable pages, which are blocks 

of data large enough to fill one buffer.  Each page has a 

unique identifier, called the logical page address (LPA), 

and used to reference it in commands. 

Via commands to the storage manager, users can create, 

delete, and access scratch pages and data pages.  Scratch 

pages are used for storage of temporary and intermediate 

results that cannot conveniently be k^pt In the available 

buffers.  Data pages are used for p^^manent storage of data. 

When a scratch page or data page is read into a user's 

buffer, the original of the page in storage ceases to exist 

for most purposes.  When tne user modifies the contents of 

the baffer, he is now modifying the original and permanent 

copy of the page.  In general, other requests for the page 

are satisfied by returning a pointer to the same copy.  This 

scheme uses buffer space economically and eliminates 

unnecessary accesses to secondary storage.  It also neces- 

sitates careful treatment of the data in the aser's buffer, 

since it is logically the original of the page. 

27 
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Consider the operation of extracting half of the data from 

a page, prefixing a count to it, t  .. passing it to an out- 

put routine.  This is most easily done by reading tne page 

into a buffer, inserting the count at the proper position, 

and calling the routine with a pointer into the buffer. 

However, inserting the count into the buffer permanently 

alters the page, because the data in the buffer is the only 

and original copy of it.  The relevant data could be copied 

into a second buffer, and there prefixed with a count.  This 

undesirable solution creates two physical copies of the data 

in core, when typically only one is needed, and a third copy 

exists somewhere in storage. 

This problem is solved by defining the <COPY> operation, 

which makes a private copy of the contents of a buffer.  The 

copy of the data in the users buffer loses its identity as 

a scratch or data page.  It now has the same status as 

random data placed by a user into a newly allocated buffer. 

If the buffer contains the only physical copy in the system 

of the data, then the <COPY> does the in-core copy-over 

required. 

(Mote:  In practice, the association between private page 

and original copy is maintained until the private page is 

modified.  This further optimizes the use of storage space 

an^1 devices in certain cases, and is possible because of 

the implementation, which uses special paging hardware. 

In the general design, no such hardware is assumed, and the 

storage manager behaves as described here.) 

ZH 
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The storage manager ic expected to perform so that: 

A. buffers declared by the user to be <IN-USE> are 

normally In core when the user is running. 

B. other buffers are available after (at worst) short 

delay. 

C. retrieval of scratch pages usually requires a 

short delay. 

D. retrieval of data pages can usually be achieved 

with only short or medium delays, especially when intention 

to access them has been stated in advance, with a <PRE- 

READ> operation.  (See below) 

However, not all data pages are equally accessible.  They 

are organized into files, and the initial access to a file 

may occasion a longer access time. 

For the planned configuration, short delays are 10-200 

milliseconds, medium delays are 200 milliseconds to 1 

second, and long delays are 1-100 seconds. 

29 
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3.3 Storage Manager Interface 

The storage manager accepts the following commands from its 

users; 

ALLOC <buffer number> 

A buffer containing all zeroes is created and can be 

referenced by its buffer number in subsequent commands. 

Data in the buffer is effectively in core and can be 

operated upon directly by its owner. 

REL <buffer number> 

The buffer is disassociated from its contents, and the 

buffer number becomes available for re-use.  Until the 

buffer is re-allocated, references to locations in it are 

in error.  If the buffer contains a data or scratch page 

when released, that page must not have been modified while 

in the buffer. 

DPR <buffer number, data page LPA, ROB> 

SPR <buffer number, scratch page LPA, ROB> 

A buffer containing the specified page is created, and can 

be referenced by the buffer number in subsequent commands. 

Data in the buffer is effectively in core and can be 

operated upon directly by its owner.  The data can be modi- 

fied if the read-only bit (ROB) is zero. 

30 

-18- 

- - -  —*-—h -mt^am 



DPW <buffer nur.iDer, data page LPA, ROB> 

SPW <buffer number, scratch page LPA, ROB> 

If the buffer contains the specified page, the buffer is 

disassucia^ed from the page and released (see REL, above). 

If the buffer does not contain the specified page, then 

the buffer's contents replace the page.  The buffer is 

then disassociated from its contents and released. 

The read-only bit provides a means to request error- 

checking services from the storage manager.  It can be set 

to one only in the first of the two cases explained above. 

When so set, it requests that an error condition be raised 

if the page has been modified.  This is identical to releas- 

ing the buffer, except that it also insures that the page 

in the buffer has the LPA supplied in the command. 

COPY <buffer nurnber> 

The contents of the buffer are disassociated from any 

scratch page, data page, or other buffer.  The buffer's 

status is identical to that of a newly-allocated buffer, 

except that it contains the same data as it did before 

the COPY.  Data in the buffer is effectively in core and 

can be operated upon directly by its owner.  Subsequent 

cnanges to the buffer's contents will not affect the 

original source of the data. 

A3SIGN/DEASSIGN <scratch page LPA or LPAs> 
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BLOCK 

It is a convenient time for the user to be blocked.  Thus, 

if the storage manager Intends to block this user, the 

block should occur now.  Before restarting the user (if 

indeed it was blocked), the storage manager would probably 

insure that the user's in-use buffers were in core. 

These commands assign and deassign scratch pages.  When a 

I page has been assigned it may be used in a SPR or SPW 

command. 

The following five commands are for the purpose of inform- 

ing the storage manager of a user's intentions.  They are 

not required, and are given only to aid the storage manager 

in maKing scheduling decisions. 

PRE-READ <LPA> 

The user intends to read the page sometime in the future 

and the storage manager should be prepared. 

POST-READ <LPA> 

The effect of a previous pre-read command for the page if 

negated.  The user does not intend to access the page in 

the future. 
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IN-USE <buffer #> 

The process Intends to reference the indicated buffer.  The 

storage manager will attempt to keep the page in core. 

NOT-IN-USE <buffer #> 

The effect of previous in-use commands is negated. 
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3.^ Mass Storage Device 

The storage manager's main function is to manage the data- 

computer storage system so that it is efficiently used, 

while the rest of the datacomputer system remains largely 

independent of storage hardware considerations.  In this 

section a short discussion of how this is accomplished with 

the UNICON 690 is presented. 

Recall that the storage manager users—the request handler 

and directory system—act as though data were stored on 

updatable pages of fixed size.  The UNICON stores data in 

fixed-size units, clockwords, containing 6^ data bits, which 

cannot be changed, once they have been written.  The stor- 

age manager simulates updatable pages with the SOUPS scheme. 

With SOUPS, all pages are regarded as initially containing 

all zeroes.  When a page is updated, a modification record 

is written.  The modification record indicates the new 

contents and the location of any words changed.  When a 

page is read from storage, all modifications are read in 

sequence, into an initially zeroed buffer.  When all 

modifications have been processed, the buffer contains 

the latest copy of the page. 

SOUPS requires that space be allocated for modification 

records, that too-frequently modified pages be rewritten 

in a new location, and that an entire clockword be 

written to change an Isolated bit.  In spite of these 

drawbacks, it is appropriate for a wide range of applica- 

tions, and admirably hides the write-once property of the 

storage medium. 
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The response properties of the device (access times, rota- 

tion times, etc.) are more complex than those of a disk or 

drum.  The volume of data storage Is a strip, containing 

1.7 billion bits.  Strips can be mounted on either of two 

rotating drums, in which case they can be read ^r written, 

or they can be in the carousel, from which they can be 

mounted without human intervention.  Worst case access time 

for data on a mounted strip 1.. ::-uC jnl 111 seconds, wh"'''e 

strip-changing time is as high as 10 seconds.  Thus it is 

vital to minimize strip changes. 

Recall now how the storage manager is to present the access 

properties of the storage system to its users.  The set of 

all data pages Is partitioned into logical units called 

files-  Pages within a file are considered equally access- 

ible.  Since the request handler recognizes that crossing 

file boundaries should be minimized, it can help to 

minimize strip changes, without being i;ied to the concept 

of a strip or a strip mount. 

Also, the storage manager can most effectively minimize 

strip mounts for the system by making use of PRE-READ 

Information, which it gets from all its users, and by 

using its enormous disk buffer.  For example, a process 

requesting input can run until it needs a page that is not 

available on disk or on the mounted strip, and can then 

block.  When it is again started up, most of its pages will 

have already migrated to disk from the UNICOM. 
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The PRE-READ system is least effective for processes that 

cannot determine the addresses of th:? pages they want without 

first looking at some other pages on the same strip.  For 

this case, the strip-changing algorithm can compensate some- 

what by not dismounting a strip until the process that 

requested It gets some opportunity to generate more requests. 

Anoth sr approach Is to reflect In the PRE-READ Information 

the Intent to read more pages from the same file after the 

first request is satisfied. 

To summarize, the UNICON, which is unusual in its response 

characteristics and storage medium, is accommodated in the 

storage manager with a special implementation of the idea 

of page, and a standard Interpretation of the idea of file. 

The PRE-READ Information and large buffer space further 

reduce the difficulties of hiding the device characteristics. 
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Chapter 4 

The I/O Manager 

^.1  Function 

The I/O manager is the datacomputer's interface with the 

outside world.  All data, and all requests for service, 

initially enter the datacomputer through the I/O manager. 

Thus on the outside, the I/O manager has the problem of 

interfacing with a variety of hardware devices, data 

formats, and software systems.  On the inside, it services 

the datacomputer system by providing a standard protocol 

for connection control.  It also buffers data when neces- 

sary, to make the rate of data flow convenient to data- 

computer users and to the request handler. 
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^.2  Inside Interface 

A caller can give four commands to the I/O manager:  GET, 

PUT, OPEN an^ CLOSE.  The cal.er is usually the request 

handler. 

OPEN establishes a connection between the call' r and a 

sour..:.- of data in the outside world.  The source can be a 

program in another computer, a file of data on tape, etc. 

The caller's end of the connection is a logical port.  OPEN 

returns a port number, which the caller can use to reference 

the port established. 

CL03E terminates such a connection, and makes further 

references to the logical port invalid. 

GET causes the I/O manager to pass one block of data ir  one 

item of control information to th  caller. 

PUT passes one block of data or one item of control 

information to the I/O manager from the caller. 

The control information passed in GETS and PUTS is data 

stream punctuation.  An example is the inter-record gap, 

when the physical tape record boundary has logical signi- 

ficance.  Here the inter-record rap acts as punctuation, 

yet it is not data in the same sense a~ the data in the 

record.  If the I/O manager reads an inter-record gap on 

a tape file, an item of control information is passed to 

'."■ caller.  If the caller wishes an inter-record gap to 
be \ -itten on a tape file, he must pass an item of control 

.*v:■ 'rmation to the I/O manager.  (Note.  This is true, of 
course, only when the inter-record gap has logical 

significance.} 
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e control Information passing between I/O manager and 

oaller is communicated by means of GETs and PUTs, and must 

i oe synchronized with the data stream itself.  A GET or PUT 

i passes either a block of data or a control information 

item.  Thus a block of data can contain no control informa- 

|(        tion.  Aside from this, there are no restrictions on the 

size of the block, except implementation-dependent ones. 

For design purposes, a block can be d' ined as a convenient 

chunk of data containing no control items. 
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^.3 Outside Interface 

The outside Interface of the I/O manager Is defined In terms 

of the datacomputer implementation.  Initially, the data- 

computer system will be interfaced to the ARPA network and 

the ILLIAC IV.  In addition, the I/O manager will support 

magnetic tape as a means of data input/output, and local 

teletype-compatible terminals for debugging. 

The software interface to the ILLIAC IV is under study at 

the time of this publication. 

The software interface to the ARPA network, at the I/O 

manager level. Is defined by the oificial network proto- 

cols, NIC 710^.  Below, some especially relevant features 

of these protocols are discussed. 

On the network, a user becomes connected to the datacomputer 

by executing the Initial Connection Protocol.  As a result 

of this he has two half-duplex connections.  On one he can 

sei d messages to the datacomputer, and on the other, the 

dat-.computer can send messages to him.  The messages are 

formatted, and message flow is controlled, according to 

HOST-HOST Protocol.  Each message nas a header and text. 

The header identifies the connection, states the length of 

the text, and supplies other miscellaneous information.  The 

text contains an integral number of bytes of data, where 

byte size is a parameter determined during the Initial 

connection procedure. 

The boundaries of messages have no logical significance, 

so the concatenation of the texts of all the messages sent 

over a single connection constitutes a single stri^ of 

bytes. 
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The Data Transfer Protocol is used to partition the byte 

stream into logical units.  A byte stream formatted 

f according to Data Transfer Protocol becomes a stream of 

\ transactions.  There are several types of transactions, 

of which three are of interest here: 
I 
1 

A.  The data transaction, which is used to sena all 

I data. 

| B.  The control transaction, which is used to send 

all datalanguage and diagnostics. 

C.  The information separator transaction, whicn is 

used to make logical unit boundaries. 

To transmit a group of data records to the datacomputer, 

each record might be formatted as one or more data trans- 

actions.  Following each record there would be an informa- 

tion separator, marking the end of the record.  The end 

of the group would be Indicated with a higher level 

separator. 

Data Transfer Protocol allows the I/O manager to distinguish 

between datalanguage and data on the same connection, and 

to identify logical units and groups of logical units.  The 

former ability is significant for detection of user errors 

:.nd synchronization of user program and datacomputer 

recovery.  Tne latter is useful for scheduling within the 

datacomputer. 

Magnetic tape is viewed as a data I/O device.  That is, 

controlling datalanguage is assumed to be coming from 

another source. 
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The tape mediun has two kinds of information separators: 

inter-record gap and end-of-file marker.  In addition, tape 

contents can have structure in the form of labels^ record- 

ing formats, and even directories.  Any such structure? t-.hat 

are not to be described explicitly in datalanguage and pro- 

cessed by the request handler, must.be "understood" by the 

I/O manager.  To make the problem simpler at the outset, 

the I/O manager will handle a relatively small number of 

tape formats.  Since most data is being transferred in or 

out over the network or over the ILLIAC IV interface, this 

restriction is deemed unimportant. 
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^.4  Internals 

In terms of the system architecture, the I/O manager's most 

interesting problem is buffering.  Except when the amount 

of buffered data for a certain connection becomes excessive, 

or when the system is dedicating too much space to I/O 

buffering, the I/O manager will accept all the input with 

which it is presented.  This means: 

A. to most users, the datacomputer appears to accept 

data as fast as they can send it 

B. to the request handler, most users appear to 

accept data as fast as ic (rhe request handle.1) can gene- 

rate it. 

C. to the request handler, some users appear to 

produce ~:ita at the rate of the dacacomputer scorage 

system. 

These three effects are extremely desirable.  For the user 

interfacing with the datacomputer at a data rate below that 

of the datac )mputer storage system, the first is helpful 

because it enables him to transfer a given amount of data to 

the datacomputer in the minimum possible time.  For moderate 

amounts of data, this will be independent of the amount of 

processing the datacomputer must do prior to storage of the 

data.  Likewise, it will be independent of the loading of 

the datacomputer.  (This effect is not achieved for the 

ILLIAC IV system, which can sustain data rates of one 

billion bits per second for up to one second.  However, the 

I/O manager will accept input from the ILLIAC IV up to the 
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data rate of the datacomputer storage devices.  Currently 

this is limited to 3-3 million bits per second, but studies 

have shown that there Is a feasible way to raise this to 

^0 million bits per second for bursts up to several billion 

bits. ) 

The second and third effects are useful because of the way 

in which the datacomputer operates, and the conditions it 

will encounter.  To service a particular user a certain set 

of buffers belonging to that user, the working set, must 

normally be in core.  If any of these buffers, which are 

all frequently referenced, are not in core, then very little 

service will be given before the request handler will 

reference one that must be read in from disk.  The working 

set is established dynamically, and migrates from disk to 

core when the user is getting some service.  Optimal core 

usage is achieved when the request handler process gets its 

working set in core and then interfaces with the user at 

storage system rates.  These rates are of course achieved 

when the I/O manager has queued some input or when the I/O 

manager is accepting and queuelng all output at the rate 

the request handler generates it. 

The buffering is implemented by queueing the data, by 

destination, initially in core and, when required, on 

scratch pages.  Queueing on scratch pages involves an in- 

core copy operation to pack the data onto the pages, except 

when the unit being added to the queue is a full page of 

data.  In this case the storage manager is asked to copy 

the page, which it can usually accomplish without the 

physical copy operation. 

44 

-32- 



I 

i 

I 
I 
1 
I 
I 
j 

Fcr some  devices,   reformatting of  the data stream  is  re- 
quired between useful  request  handler processing  and  the 
device  I/O operation.    An   example   is   a tape  drive   trans- 
mitting  36-bit wc^ds    (this   is   a problem because all  request 
handler data   Is m 32-bit   words).     Here  the  I/O manager 
must  do  a -shift-^nd-copy operation,   which it   will   combine 
with  formatting the  data on a queue page,  when that  opera- 
tion  takes  place.     When no queue  Is   forming,   a copy is 
forced  in  this  case.      In the  more  normal   cases,  however, 
there  are  one   or   Zero   copy-overs   in  the I/O manager if the 
data gets  queueö^   and   none   i:   it  doesn't. 

The  actual response of the   core management system  in  any 
real situation Is   determined  dynamically  according to  the 
scheduling heuristics   in the  storage   manager.     The  previous 
discussion is   presented, only   to suggest the  advantages   that 
can be  obtained by appropriate cuffering  in  the I/O manager. 
Since  both  the  size cf queues   and   the  management  of all 
core  is  the function   of tine storage manager,   the 1/0 manager 
is   oily   concerned   with formatting,   building and maintaining 
the  cueues. 
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Chapter 5 

The Supervisor 

5.1 Function 

The supervisor schedules the central processor, creates and 

deletes processes and performs some miscellaneous operating 

system functions.  Among these are system bootstrap loading, 

operator communication, and management of the clock and 

priority interrupt system. 

In scheduling the CPU, the supervisor determines: 

A. When to interrupt a running process for the pur- 

pose of giving another process the chance to use the CPU. 

Many processes are designed to interrupt themselves at 

convenient times, bur this is not always adequate. 

B. Which waiting process should run next, when the 

last running process has stopped. 

C. When there are too many or too few processes con- 

tending for the CPU and core.  When such a determination 

has been made, the storage manager is informed and tries to 

rectify the situation by swapping processes in or out. 
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5.2  Design 

Because the functions of the supervisor are so basic to any 

level of datacomputer system operation, the supervisor Is 

more rigorously engineered, with respect to crash/recovery, 

than the other four modules.  When any of the other modules 

crash, the supervisor obtains control and initiates recovery 

procedures.  While occasionally a non-supervisor crash can 

have severe short-term consequences, such crashes are not 

generally as serious as supervisor crashes, in which reload- 

ing the entire system, human Intervention, and (conceivably) 

loss of most or all temporary Information is implied. 

Thus extreme care is taken In allotting functions to the 

supervisor.  It is constrained to be simple in design, to 

retain control under all conditions its designers can 

conceive of, and to delegate to other modules any func- 

tions not absolutely basic tc its function. 
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5.3 Jmplementatloii Strategy 

The supervisor will evolve during the implementation of the 

datacomputer.  Initially it will consist of appropriate 

modules from RU  existing operating system.  In this stage, 

scheduling algorithms may not be optimal for the data- 

computer.  When a primitive datacomputer has been established, 

design and implementation of the real supervisor will be 

undertaken.  The design effort will then be based on some 

useful experience and on a better understanding of the data- 

computer system than is possible presently. 
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Chapter 6 

Directory System 

6.1 Function 

The directory system maintains data descriptions, file 

names and locations, file security Information and some 

accounting information. 

In some respects the directory system's functions are 

similar to the request handler's, and the directory system 

could probably be implemented in datalanguage.  However, 

the directory system's database is of such crucial importance 

to the operablen of the datccomputer, that it is separated 

from the request handler J.'or  the sake of reliability.  The 

directory system can be expected to stabilize and undergo 

little change during the second half of the implementation 

of the request handler.  During this period, it will be 

important to isolate the file directory from any bu^s that 

occur in the request handler. 

When the full datalanguage has been implemented, the request 

handler could indeed become as stable as the directory system. 

At this point, integration is undesirable for other reasons. 

For one thing, further development of the data^cmputer con- 

cept may at this stage have impllcc .Ions for the directory 

system.  With multiple datacomputers in the same system, data 

disposition among the datacomputers is something that should 

probably be settled by the datacomputers in a fashion 

invisible to their users.  Under these circumstances, the 

directory systems of the several datacomputers must either 

cooperate or be combined into a single directory system. 

Inter-system problems should probably be handled by the 
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directory systems and storage managers and hidden from the 

request handlers. 

Thus the directory system has different reliability re- 

quirements and will probably eventually have decidely 

different functions than the request handler. 
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6.2  The File Directory 

Most of the directory system's data Is stored in the file 

directory, and a major part of Its job Is the maintenance 

and use of this directory. 

The datacomputer file directory Is unusual In both size and 

content.  Just the on-line storage will give rise to an 

extremely large file directory by conventional standards. 

(To get a feel for this, consider the on-line storage as 

the equivalent of 10,000 tapes.)  The off-line storage Is 

unlimited, and must be kept In the directory also.  In 

content the directory Is unusual because It contains not 

only file names a^d pointers, but datalanguage descrip- 

tions, which are used In the compilation process.  The 

distinction between files and other kinds of data con- 

tainers (like records, trees, fields, grorps of records, 

etc.) Is somewhat blurred In datalanguage, and this may 

give rise to heavier usage of the file directory than In 

other systems.  This point Is most easily understood In 

terms of the structure of the directory, explained In the 

remainder of this section. 

The directory Is a tree structured file In which each node 

of the tree Is a record.  If tne record points to other 

records It Is a directory (or sub-directory) node.  The 

onds, or leaves, of the tree are descriptor nodes that con- 

tain a data description.  A record that describes a file 

•^.y be referred to as a "file" node—a special case of a 

descriptor node.  Each descriptor node has a name—the name 

of the highest-level data container described.  Names below 

this level are not known to the directory system. 
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Each record has a "node name*' that Is a character string 

without any blanks or other special characters.  Each re- 

cord also has a "path name" that is the concatenation of 

all the node names (with periods in between) of the 

directory records traversed in order to arrive at the 

selected node.  Path names will be unique.  Node names may 

be repeated. 

It is expected that the higher nodes will correspond to 

organizations, projects ana/or people, but the directory 

system will not assume this.  The path name for a file's 

descriptor record is that file's "formal name".  Since 

formal names are unwieldy, files will be referenced 

by "normal names".  The request handler will prefix a path 

name to the normal name in order to derive the formal name, 

Nodes that describe lists of files or files composed of 

subfiles will be specified at a later dale. 
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6.3 File Numbers 

^iles may be referenced by any of three types of file num- 

bers.  First, a permanent file number (PFN) Is associated 

with a physical file.  It is assigned by the directory 

system and never changes even if the file is renamed.  PFNs 

are never reused, ev^n if a file is deleted.  Second, the 

directory file number (DFN) is a pointer to the file node 

in the directory.  It corresponds to a logical file.  It is 

used in calls to the directory system, and to the storage 

manager when opening a file.  Thirc* is the local file number 

(LFN) assigned by the storage manager.  It is meaningful 

only for open files, and is used in calls to the storage 

manager. 
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6.^ Calls from the Storage Manager 

When the storage manager calls the directory system, it 

always supplies a DFN as a primary argument, and a pointer 

to an extent block (or partial block) as an optional argu- 

ment.  The directory system always returns a pointer to a 

complete, up-to-date extent block corresponding to that 

file.  There are entries to get a uiap when opening a file, 

allocate more space within a file, and free up unused/unneeded 

space within a file. 
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6.5 Calls from the Request Handler 

When the request handler calls the directory system it 

always supplies a directory pointer to be used as the "top" 

node.  Zero is used to specify the real top.  This is used 

to speed up directory searches.  The second argument is the 

path name of the desired node.  The directory system always 

returns a pointer to the up-to-date node.  There are calls 

to search, create, delete, and modify directory records. 
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6.6 Datalanguage-Directory Interactions 

Several datalanguage commands Interact closely witn the 

directory system.  They are outlined here. 

LOGOUT causes the system to forget everything that gets 

set up by the following commands. 

ACCOUNT specifies a user's account number to the data- 

computer. 

ATTACH specifies a prefix to be used when converting normal 

names to full names.  A user may be attached to several 

nodes at one time.  If so, they are searched in order. 

LOGIN combines LOGOU.', ACCOUNT, and ATTACH, in that order. 

OPEN specifies a normal file name that is to be used when 

trying to identify a datacomputer name.  A user may have 

several fijes open at once.  T^ SOJ the options supplied 

by OPEN determine if the first match is accepted, if 

ambiguities result in an error, or if all matches will be 

processed. 

CLC.1E un-opens a file or all the user's open files. 
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6.7 Restrictions 
Any node of the file directory may contain a restriction 

block.  As directories are searched,, the privilege bits 

from an entry for the user are ANDed '-.ogether.  Whenever a 

privilege Is revoked (by setting Its corresponding bit to 

zero) It is also revoked for all nodes below.  If no re- 

striction block is present, no restrictions are revoked. 

If a block exists, but no entry corresponds to the user, 

all privileges are revoked and the search is aborted. 

Any entry in a privilege block may contain a password. 

If the user has supplied a password, entries with pass- 

words are checked first.  There may be multiple entries 

for a user with different passwords to allow a user to 

have different privileges at different times.  If the 

password does nut match, other entries are checked. 

It is expected that mcst directories that correspond to 

projects or users will have privilege blocks.  Normally 

these blocks will allow read only access to most data by 

most users and read/write access to users of the same 

group.  Specific restrictions can be provided to 

restricted users or groups by providing the appropriate 

password entries. 

To the datacomputer, a usc^ is identified by a path name 

that corresponds to the first directory he is attached to. 

This will normally correspond to the group/person identifi- 

cation used by most time-sharing systems.  The ",f" 

convention for any node name will be necessary for convenient 

use of the restriction mechanism.  "*" will be used to 

indicate all subordinate nodes. 
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