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ABSTRACT

This repcrt considers the maximum likelihood estimates of life-time

distributions over an interval [0,T) from the following time truncated

experiment. At time zero, the beginning of the testing n(l < n <

items are put on test. When an item fails it is replaced and at time T

all testing is stopped.

Assumptions about tne form of the life-time distribution on [0,T)

are required. Distributions considered are:

(1) A single parameter class which inciludes the Weibull family;

(2) A multiple parameter class with increasing failure rate on

[0,T); and

(3) A nonparametric class which includes the increasing failure

rate family.

Use•iul and desirable properties of the maximum likelihood estimates

are ,..own,
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MAXIMUM LIKELIHOOD ESTIMATION FROM RENEWAL TESTING

1. INTRODUCTION AND SUMMARY

Based on a number of practical reasons it is often necessary and

even desirable in life testing (reliability) studies to fix the total

testing time, say, at T 1T < -), before testing begins. For example,

an experimenter would rarely use a testing p) an that did not limit the

total testing time when the items being tested can be assumed very

reliable, since the testing time would usually be very long. The

total testing time must, also, be limited if project deadlines must be

met, or if equipment or personnel used in the testing can only be

spared for some specified length of time.

Limiting the total testing time need not, however, be contrary

to the goals of the experimenter. For example, if the experimenter

can assume that the general form of the life-time distribution belongs

to some parametric class defined on the nonnegative real axis, then

limiting the testing time to T, he can still estimate the unknown

parameters of the distribution on [0, -).

If the experimenter cannot assume that the life-time distribution

has a particular form on [0, -) but only on [0, T), then he must limit

his inferences to the latter interval. However, if (0, T) includes

the mission time of the items tested then, for all practical purposes,

he need not infer anything about the distribution outside this interval.



One of the most popular time truncated testing plans is the subject

of this report. This plan stipulates that n items are initially put on

test at time zero. When an item fails it is replaced by a new item and

at time T all testing is stopped. (For convenience this plan is called

"Testing Plan A.") Renewing a failed item is a method to further save

experimental time and generally results in a better utilization of

equipment and personnel.

Practically all of the statistical procedures developed in the

literature for Testing Plan A are based on the assumption that the under-

lying life-time distribution of the items tested is the exponential law

G(x) = 1 - exp(-Ax), (i.i)

A > 0, x > 0. (See Epstein [1959] for a review of these procedures.)

In practice, however, the exponential assumption is often not valid

since it implies a no wear-out (or no aging) property of the items.

Moreover, if the times to failure of the items do not follow the law

(1.1) these exponential procedures could possibly be sensitive to this

departure. (See Zelen and Dannemiller [1961].)

For Testing Plan A this report investigates the maximum likelihood

estimates of life-time distributions from three general classes. Life-

time distributions describing wear-out are contained in each of these

classes and, also, each class contains the exponential distribution.

Specifically, in Section 3 the maximum likelihood estimate (MLE) of

the parameter A will be considered when the life-time distribution has the

form

F(x) = 1 - exp(-Ag(x)),

8



X > 0, 0 < x < T, g(.) is a known, strictly increasing, differentiable

function on [0, T) with g(O) = 0. Observe that nothing is assumed about

F on [T, ). This parametric class is obviously relevant to life testing

since, for example, it includes the exponential (when g(x) = x, x > 0), the

Weibull (when g(x) = x8, 0 > 0, x > 0) and the extreme-value distributions

(when g(x) a ex - 1, x > 0). Asymptotic distribution theory, which

will allow one to test hypothesis on the true value of A, shall be given along

with a number of pleasant properties of the ME. These results do not depend

on the fact that F is not restricted on IT, * ). Also, a major drawback to

another method of estimating A shall be discussed.

As such, the class of distributions introduced in Section 4 has not been

considered in the literature. Practical applications of this class shall be

discussed and the MLE's of parAmeters determining the life-time distributions

over (0, T) are shown to be asymptocially normal and consistent.

Often an experimenter does not know a priori that the law governing the

times to failure of the items tested belongs to a certain parametric class.

He may, however, know that the underlying distribution is a member of a non-

parametric class of distribution, e.g., the Increasing (Decreasing) Failure

Rate (IFR (DFR)) family.

Marshall and Proschan (1965) considered the MLE of a life-time distribution,

assuming only that it was a member of the IFR (DFR) family and that data arise

from a testing plan which does not allow censoring, time-truncation or replace-

ment. Bray, Crawford and Proschan (1967), also, considered the MLE of a

life-time distribution from a nonparametric class which includes both the

IFR and DFR families. The testing plan they introduced allowed for the

consideration of various types of incomplete data.

Since nonparametric estimation has not been considered in the literature

for Testing Plan A, we will study this type of estimation in Section 5. The

class of distributions considered includes the IFR family and the main result

of that section is the consistency of the MLE over [0, T).

9
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2. PRELIMINARIES

In this section preliminary definitions and notations needed in later

sections shall be collected. For completeness we give

Definition 2.1 (Testing Plan A)

At time zero, the beginning of the testing, n new items from a

population are put on test. When an item fails it is instantaneously

replaced with a new item from the original population and at time T the

testing is stopped.

Estimation from Testing Plan A has been considered by several authors,

including Epstein (1959, page 3.17) and Gnedenko, Belyayev and Solovyev

(1969, page 169), when the life-time distribution of the items is

exponential. These authors derived the likelihood function by standard

methods which could, also, be used for other classes of distributions

with densities. In the present approach, however, the derivation of

the likelihood function utilizes the theory of stopping variables. The

benefits of this approach are two-fold. Firstly, a straightforward

method of obtaining the likelihood function is developed for the

parametric classes of distributions considered in Sections 3 and 4.

Finally, this approach motivates a generalized likelihood function

needed in Section 5 for the nonparametric class.

To develop this preliminary theory observe that Testing Plan A may

be considered as n independent experiments, each beginning at time zero

and ending at time T. Throughout this report Kr will denote the random

number of items put on test in the r-th experiment and Xir will denote

the time to failure of the i-th item put on test in this experiment,

i1,2,...,r=l,...,n. From this notation we have that K is the firstr

integer such that

K

i Xir T,

r1 . . . ,n.

For the moment consider only the 1-st experiment and let X= X

i=l,2,...,K=KI. Also, let F be the cumulative distribution

10
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function (c.d.f.) of XI. It is straightforvard to show that if F(O) < 1

then K is exponentially bounded; i.e.,
k4

Prob(K-k) < cp ,c 0 O, 0 < p 1 i, k

This implies that K is finite with probability one (w.pr.l) and all moments

of K exist. Now, let

k-iA k- fxl,..., xk-l: - xi < T)
i=l

and

k-i k8k- = Xls"".Xk:i- x, < T, xl >T

0
k=l,2,.... (The convention that sums of the form • are equal to 0 and

0 1=1
products of the form n are equal to 1 is adopted in this report.) Since

i=l

K < - w.pr.l, one may show that

S f k

i r. . . f U dF(xi). (2.1)
kJ J i1l

Bk

Let Yir be the time on test of the i-th item put on test in the r-th

experiment, i=1,2,...,r1,...,n, and let Yi=Yil,i-l,2,.... Observe, now,

that

i X (2.2)Yir Xr '

. SK 1and

K -1r
YKr T " irl (2.3)

Kr,

11_*



r1l,...,n. Since the testing is truncated at time T, experiment 1 is
characterized by the time on test statistics (Yl,... YK). By (2.2) and

(2.3) one sees that the experiment is equivalently characterized by the times

to failure (Xl,... ,X.).

Now, in almost all cases where the c.d.f. has a probability density

function (p.d.f) one can show that the likelihood function is derived from

the integrand of an expression equated to 1 and where the integration is

over the sample space of the random variables of interest. For (X,...,XK)

the sample space is

n U U k,
kul

and for (XI,...,XKI) the sample space is

n 2 A Ak.

ku2.

We, therefore, integrate out xk in (2.1) obtaining

f (l~({T - l i)Jk-lx0 (2.4)k 1 fA; iml J=l

where

F(x-) lim F(x-e), i

c>O,x>O, and it is observed that KkIi

r k-1
S x...Ix Xi < T,Xk>T- • XI}

ik I k i i=l

k=l,2, ....

Hence, if F is absolutely continuous on [0, T) with p.d.f. f, then

12



Sfk-1 k-i
1 " j . . .J [-F(T- [ x-)] ( dx (2.5)k-il A i=l juldj.,

kl Ak

This motivates the following.

Definition 2.2.

If the times to failure of the items are independent and identically

distributed (iid) with c.d.f. F, F(O) a 0, and F is absolutely continuous on

(0, T) with p.d.f. f, then the likelihood function L for Testing Plan A is

n
L H L , (2.6)

ral

where

Lr r L(Xir .XKrl,r)

is the random variable,

K -i K -i
r r

Lr -*[l-F((T- I X}r)-A n f(xjr). (2.7)
iftl Jul

Equation (2.6) is a result of the independence of the n experiments and

Equation (2.7) is obtained from the integrand of Equation (2.5) when the

random variables replace their corresponding sample points. Definition 2.2

will be used in Section 3 and 4 to derive the MLE's for the parmaetric classes

of distributions. A generalized definition of ME, based on Equation (2.4),

will be defined in Section 5 for the nonparametric class.

13



3. SINGLE PARAMETER ESTIMATION

3.1 Introdu'tion.

Throughout this section it will be assumed that the underlying c.d.f.

of the times to failure is

F(x) a 1 - exp(-Xg(x)) (3.1)

for 0 < x < T, X > 0, g(.) is known and strictly increasing with g(O) = 0

and derivative g'(x) 0 < x < T. We shall derive the MLE X of A and show
A n

that: (a) Xn is strongly consistent, as n -o *; (b) Xn is asymptotically

normally distributed as n -, -; (c) Xn is asymptotically efficient, as n -- •.
Also, a major drawback to some previously published work dealing with the

estimation of X shall be discussed.

3.2 Previous Work.

Gnedenko, Belyayev and Solovyev (1969), devoted an entire section of

their book, beginning on page 168, to the MLE of the parameter X when the

underlying distribution is the exponential law

GCx) - 1 - exp(-Xx) (3.2)

x > 0, X > 0, for six life testing plans, one of which was Testing Plan A.

Observe, now, that if X is a random variable with c.d.f. given by (3.1)

for x > 0 then g(X) is a random variable with c.d.f. given by (3.2). Noting

this, Gnedenko, et al mentioned that if the life-time distribution is given by

(3.1) for x > 0 then one may make the transformation Y a g(X) on the data and

use their exponential procedures to estimate X. However, it was not pointed

out that if the exponential procedures are used for Testing Plan A then the

total testing time will not necessarily be T, which violates the purpose of

this testing plan.

To see this difficulty, observe that the suggested test plan implies that

one make the transformation

Wir = g(Xir)

14
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i > 1, r-l, ... , n, choose a constant C > 0, and continue testing in the r-th

experiment (r=l, ... , n) until time C on the g(o) time axis. If one does thic

then the random number of items, Kr put on test in the r-th experiment is the

first integer such that
K

r

rul, ... , n. Ther'efore, the actual (untransformed) total testing time In

the r-th experiment is

Kr-I Kr-i

ru (C r;

r-l, ... , n. If C is to be chosen such that the total testing time is T,
1then for K = 1, the total testing tira is g' (C) - T. Thus, g(T) is theronly candidate for C. Now, if

i + g-I X) T
Xir •()- (Xir) -T

for K > 1, this would imply thatr

Kr-i Kr-1

g(T) - F. (Xr) = g(T - F-i X r)'

which is, in general, not true for non-linear g. Thus, when one makes such

a transformation the total testing times for the n experiments will generally

be random variables. This violates the purpose of Testing Plan A which is to

fix the total testing time at T. The work presented in this section allows

one to estimate X without using such a transformation and, hence, avoiding

this difficulty.

15
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3.3 The MLE of X.

The MLE Xn smay, of X shall now be derived. In what follows let

g(T) Jim g(T-e), c > 0.

Lemma 3.1

The MLEA of X isn

n n r

F F(r,) g(Y~) (3.3)
r~.ral isl

Proof:

By Definition 2.2 the likelihood function is

n
L• f L

r1 l

where

Kr-l
Lr a exp(-Xg(YK r)) H Xg'(Yir)exp(-Xg(Yir)),

r i=l '

r=l,...,n. Maximizing L with respect to X yields Xn given by (3.3).

The reader should note that if F is continuous at T, then

n
E (Kr-l)
ral

is the number of failures in the n experiments. Also, if the times to failure

are exponentially distributed (i.e., g(x) W x, x > 0), then

16



Kn r
• £(yir) . nT.

ral i-l

Hence, Xn is the usual estimator in the exponential case.

Observe, now, that identity (2.4) implies that the probability of any

event associated with the outcome of an experiment based on Testing Plan A

only depends on F(x) for 0 < x < T. Since these probabilities do not depend
on F(x) for T< x • m, it follows that the statistical properties of any

random variable obtained from Testing Plan A are independent of F(x) for

T < x < a. We, therefore, have

Theorem 3.2

The statistical properties of An and all other random variables obtained

from Testing Plan A do not depend on the values of F on [T, o).

3.4 Strong Consistency of n"

We will now show that X converges to A almost surely*(a.s.) as n --.n

To show this we will need the following results.

Lemma 3.3

If F1 is any c.d.f. such that F(x) = Fl(x), 0 <_x < T, then

P[K1 = k1F] = P[K1 = kIF1l, for all k = 1, 2,

Proof:

The proof follows from Theorem 3.2.

*The term "almost surely" means that a certain event holds with probability
one.

17



The following result is needed to show consistency and is, also,

liseful throughout the remainder of this section.

Theorem 3.4

.(•-l) E( g(Y)). (3.4)S~i-I

Proof:

Let X= Xl, i = 1,2,..., K U K1 . By Lemma 3.3 E(K) does not depend

on F(x) for x > T. Hence, if g(T) c - then we may extend g(x) for x > T

in any manner we wish to keep F a c.d.f. and E(K) will remain unchanged.

We therefore assume that g(x) = g(T) + (x-T) for x > T, when g(T) <

Hence, whether or not F(T) 1 1 or F(T) = 1, g(Xi) has an exponential

distribution with mean i/A. By Wald's Lemma (1944)

K

SE(K) - E(Eg(X1 )). (3.5)
i-1

K-iNow, EIg(XK)) * E'(E(g(X() I• Xi) )

K-1E-'(E(g(x) IX >_T- xi
i-l

K-1
- E(E(g(X)lg(X) >_g(T - F Xi)))

where g(X) is a random variable with c.d.f. 1-exp(-Ay), y 0 0. Thus,
I•I

K-1 1.?

E(g(XK)) Z E(!X + g(T - X i))
Jul

K-1
_+• E(g(T- X X1) (3.6)

i=l

Equations (3.5) and (3.6) imply (3.4).

184



We may now prove

i
Theorem 3.5

The MLE, A , given by Equation (3.3), is a strongly consistent

estimator of A as n - •.

Proof:

By the strong law of large numbers, as n ÷

n
n (K -1)/n -> E(K1 -l) a.s.,

r=l r

and

K K1n r
F, F, g(ir )/n --" E( , g(Y jl)) a.s..
ral iml i-1

Hence, as n -

n Kr

K - ;> a.s.nn Kr KI

r=l =, g(Yir)/n VE( g(Yi)

rl il ii=li

The result follows from Equation (3.4).

3., Asymptotic Normality of ý .

We will now show the asymptotically normality of the MLE n forn
two different, but asymptotically equivalent, normalizing sequences.

We begin with

Theorem 3.6

The asymptotic distribution of (Xn-X)/1•-/ is Normal (0,1), as

n -+ • where

K1

E Fg(y l))

Var((K1-1) -ul Jgl1

J1(

19



I i I ' - ' q • , . .. ! • . .. ..-. -.- -1-V

Proof:

Kr n M n V

Le M F g (Y )V - (K -1), M(n) E -Z2, V(n) E r
Le r Jul Jr' r r r1l rul7`

and let Zr be the tio dimensional random vector, Zr = (M r, V r), r = l,...,n.

Also, let H(a,b) be the function of the two variables a, b, H(a,b) = a/b.

Now, (M(n), V(n)) is the first moment vector corresponding to the sample

ZIZ2,...,Z n. By Cram&r (1946, pages 353, 367), H(V(n), M(n)) = An is

asymptotically normal with asymptotic mean E(V(n)) by Equation (3.4))
E(M(n))and asymptotic variance

Var(V(n)) - 2 Cov(V(n), M(n)) E(V(n)) + Var(M(n)) E2(V(n

E2(M(n)) E3 (M(n)) E 4(M(n))

Using Equation (3.4) again the asymptotic variance equals

K K11 ar(Ki.l) - 2ACov(K 1-l' F, g(y3 l))

K, K1

Sg(Y 1)) I V J)(

1ul J1 Kl

J-1 1

This completes the proof.

The next theorem will be useful in what follows.,

Theorem 3.7,

K1

E(K l-1) "Var(Kl-1-X E g(Yjl)) (3.8)
Jul

Proo___:

Let K a KI, Xi = Xil, i = , .,K-1, and Yi a YiI' i 1 ,...,K.

Also, let f(x) = Xg'(x)exp(-Xg(x)), and

k-l k-lP(Xl, ... ,lXk_l[,X)-[1-F({•r- I xi)-] H f(x ).
i=l J=l

It is easy to verify that

20



2 d2

E(• log p¢I..X~I) =-E(d- _o I¢•..,~ l) M • (3.9)

The left-hand side of (3.9) is equal to
K

,K- l 2_ r (Y9)2

But using Equation (3.4) 'we have

K K 2
,,g(• - . g( 3)).E(. .. - F g(Y ) . (3.10)'

JlJul

The right-hand side of (3.9) is equal to E(K-i)/A2. Hence, (3.8) follows.

Using Equations (3.4) and (3.8) it follows, also, that

D = X2 /E(K -1). (3.11)

From this we have

Corollary 3.8

The asymptotic distribution of (A -X)/ fX2i/(n.E(K-l)) is Normal (ol)

as n-• .

By the strong law of large numbers Corollary 3.8 gives

Corollary 3.9

The asymptotic distribution of (X n-O)/,•1 (Kr-l) is Normal (0,1)

as nr

3.6 Asymptotic Efficiency of A .n

Let h(XI,...,, .) be an estimate of A, where X a Xi 1,..., K-i,

K = KI. Then

Theorem 3.10

D(1 + d B( X552 < Var(h(Xl,...,XKl5
dA 2K-

21 I



where BMA) = E(h(XI,...,XK.1 )1l) -X, and D is given by Equation (3.7).

Proof:

It is straightforward to show that

[1 + ýL B(A)]2• Var(h(X,. ... ,XKl•) E(Li log P(Xl,..x.l)e

(Note that in the sequential form of the Cramdr-Rao bound that 4

k
fl f(xi) corresponds to p(x,...,xk_ulA).) Ucing Equations (3.8), (3.10),

and (3.11) yields the result.

This implies that if h1 is an unbiased estimator of A based on the

outcome of n experiments, then

n< Var(h )' (3.12)

From this we have the following

Theorem 3.11

X is an asymptotically efficient estimator of X.

Proof:

Our concept of efficiency is the same as the concept given by BAN

estimators for fixed sample size. (See Rao (1968), p. 28 4 .) The result

then follows from Theorem 3.6 and inequality (3.12).

3.7 Comments.

Note that if the times to failure of the items put on test actually

have the c.d.f. F(x) = 1 -exp(-Xg(x)) for 0 < x < T + b, 0 < b <-, then,

of couise, the assumptions required for F(.) are satisfied. In this case

22



Fwaw
the estimate )n allows one to estimate F(x) for 0 < x < T + b from data

restricted to [O,T]. Suppose, nowever, that the c.d.f. has the form

F(x) = 1 -exp(-Ag(x)), 0 c a < x < T + a. Then items of age a have the.

c.d.f. G(x) = 1 -exp(-Xq(x)) a , x < T + a, where q(x) - g(x) - g(a).

Thus, one may put items of age a on test at time 0 and use the theory

presented in this section to estimate F(x) for a < x < T + a.

It is to be remarked, also, that 'numerous computer simulation runs

substantiate the conjecture that the MLE of X is generally not unbiased;

i.e., in general E6 ) A ). However, the bias approaches zero as n or Tn

gets large.

23 1'



w -i

. MULTIPLE PARAMETER ESTIMATION

4.1 Introduction.

In this section it is assumed that the c.d.f. F governing the
4

times to failure of the items put on test is absolutely continuous

on (O,T) with p.d.f. f and F(O) u 0. Also, it is assumed that the

failure rate f(x)/[l-F(x)] - Xq, for xc[SqSq+l), q 0,$ .... t-l,

where 0 a S < S1 < ... < St = T, and 0 < X X ... . < ý .

Thus, assuming that the Sq1 q = 0,1,...,t are known, and data are

collected from Testing Plan A, the MLE's of Xq, q = 0,1,..., t-l,

are determined and shown to be strongly consistent estimators

as n - a* The asymptotic normality of these estimators, as n -)

is, also, established.

Consider now a situation when Testing Plan A and this class of

distributions may be applicable. The guidance system or some other

system or component in a rocket may have a failure rate which is

constant when the booster of the first stage of the rocket is in

operation. However, when the first stage falls away and the second

stage booster is fired the failure rate of the system may change and

in fact iozrease instantly to a constant value during this stage. If

this is true for all stages of the rocket, then, (since the exact length

of each stage and the exact time of the staginr is known), laboratory
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testing may be used to estimate the failure rate of the system for

the duration of its mission.

Another possible application may arise when one is interested

in estimating the failure rate of an electronic apparatus as a

function of the amount of voltage. It is not unusual for electronic

tubes and the like to have a constant failure rate when the voltage

is constant. If the failure rate is a nondecreasing function of the

voltage then one may estimate the failure rate for specific values

of the voltage in the following way. Let the testing time T be

fixed and let v 0 < v < ... < v t. be voltages which are of interest

to the experimenter. Let X i = 0,..., t-l be the failure rate

of the items when they are receiving voltage v,. Also, let

[Si, Si+1 ), i = 0,..., t-l be a partition of (O,T). When an item

is put on test it receives voltage vo. If it operates without

failure for time S1 then the voltage is increased instantly to

vI. Similarly, if the item operates for time Si, i < t, then the

voltage is increased to vi. When an item fails it is replaced

instantly by another new item and the voltage is reduced to vO. If

this item operates for time S without failure then the voltage

is increased to vl, and so on. This process is continued until

time T. The theory presented in this section will allow one to

estimate the Xi. i = 0,..., t-l.

Applications of this model may also be possible in the

fields of drug testing and toxicology. For example, suppose one
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is interested in the effect of a toxic agent such as DDT or

the effect of radiation, which decompose at a very slow rate.

The failure rate depends on the dosage level and may

be taken as constant for reasonably short periods of time and

nondecreasing as the dosage level increases. The dosage is

sequentially increased at the end of these successive periods

and the model presented in this section may be used to estimate

the failure rates corresponding to the different dosage levels

for the time period of interest.

4.2 The Naive MLE of the X

We begin this section by finding the values of

q = 0,..., t-l, which will maximize L, given by

Definition 2.2, without the restriction that X0 - )1 < ''- <
0- X1- t-l'

From Definition 2.2 the likelihood L for the r-th
r

experiment is
Kr-1 Kr-1
r K~

Lr = [I-F({T - •: X~r)-)] N f(Xir), r o l,,,,, n,i1l

and,

tne lixelinood L for the n independent experiments is

I n
Lu a L•

ral

Let 1(.tR) be the indicator function of 1R. Furthermore,

define the function Gq by
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Gq(, .. ,Zp) . .S I(ZiI •qSq~l))

and 0 otherwise, and define the function Aq~l..,p by

+ (z 's q) I(zhl[S qSql))}"
Kr'l

Let Y t r " X r 1 ,... ,n , i 1 ,... ,Kr-1 , an d Y T- I X tr

r ,..,.Denote by Grq, q-O,... t-1, the function 0qYr "" Y -~
' .'r

which is the number of failures in the r-th experiment which lie

in [ So, S e, Also denote by Ar, q = 0,..., t-1, the functionAy

q 1,... p

qA(¥r'"" '"•r ), which is the total time on test for the r-th •

'Ir i

experiment over [ u , S+ (

Observe, too, that if r(x) = f(x)/(l-F(x)), x)[O,T)), then

F(x) = 1-expi-I O(y)dyl an :x r(x) exp{- I r(y)dy) for x[,)

The next lemma ill allov us to easily find the values

of the A q, q on 0,..., t-l, say A nq* q a 0,..., t-1, which

maximize L D e , o ithout the restriction that

r-
AnOhi the n umbe of"-A We call the the "naive" nLE of hihl

in(S t "u sdenoted by As q us Q t the funt ion '

A(Thitrmi*Y "urestwhiche" is thoals tised on thes forther-thr.

r2



Lemmaa 4. 1

The likelihood Lr for the r-th experiment may be

written as

t-l G r
Lr U H A exp(-A, ,, r ( 4,.,.,n..)

30•.Ur

Proof:

First note that

t-1r(x) - ° A I(xI[s 3 ,sj+,)),

for xc(O,T). Thus, Lr may be written as

Kril t-0 i

Kr t-i

On exp(- A ((S -S I(YI[s÷,TI)
i-i 0 l j irjO

+ (Y r-8)1 (YirlI(Sj M~l)).

lov observe that

t0l ir Kr 30 i

JEO J Jl J=O J I ~

Equation (4i.1) follows.

The following corollary gives the naive m A of A q,
q 0.,

28



Corollary 4.2

n

The maximum ofL= L I L is obtained if X qrlr q nq'r-l

q- 0,..., t-l, where

n

iGrq n

nq n Arq

E: Arq ri
rul

and

n
Xnq = 0 if F, Arq a 0.

Proof:

n
If , Arq 0 0, the result follows directly from (Q41).

rul

n n
Also, Arq 0 implies that Grq 0. Since q >we

ral rqr;

n
define 0 to equal 1 and thus take Xnq = 0 if E Arq - 0.

This will maximize L.

4.3 Strong ConsiGtency of Xn

The next theorem will be used to show strong consistency of

Xnq' q = 0,..., t-l, given in Corollary 4.2.
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Theorem 4.3

Let H be a c.d.f. sucn that H(O) = 0, and for u and v where

0 < u < v, H(v-) - H(u-) > 0. Let X1, X2 ,.,., be i.i.d. random variables

with c.d.f. H, and let K be the stopping variable defined as the

first integer such that

K
F i > T.
iul

In addition suppose that H is absolutely continuous on [u, v) with

p.d.f. h and

h(x)/[l-H(x)] = A,

xc(u, v). Then

E(l I(Xil[u, v)))
, , \ir1 ,= • (4.2)

E(A1 {(v-u) I(Yil[v, -)) + (Yi-u) I(YiI[u, v))}

Proof

See Crow and Shimi (1971).

Theorem 4.4

The naive MLE X is a strongly consistent estimator ofnq

,q = 0,•., t-l, as n -°

Proof:
n

If Xq = 0, then F(Sq+I) = 0 and, hence, E G = 0 a.s. Thus,
r=l rq
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S~q=O0 a.s.. If X > 0, thennq q :

n E(G 47
FGrG Ar) _> E = A a.s. as n .,
''G, A EAlq)

by the strong law of large numbers and (4.2).

4.4 The MLE of the A

In the next theorem we will find the values of the X

q = 0,..., t-l, say ý nq' which will maximize L under the

restriction that XnO -< 'nl 'n(t-l)' It will, also, be

shown that X nq is a strongly consistent estimator of Xq.

Theorem 4.5
The •JLE Xnq of Xq, q = 0,..., t-l, which maximizes

n

L H f L under the restriction that X < ' - n't-i)
r = l r -- - --

is given by

n v,E EGrd

X = min max r=l dau (4.3)nq v>qu< n v
v>-q u<-q r= •Ard

r1l d~u

Proof:

From Lemma (4.1)

nEr__G rj

t-l n_ An

L - Xj exp Xj r1 rJ=O 31



Applying the resalts of Brunk (1958) yields (4.3).

Remark 4.6

Brunk (1958), page 447, explains a method for determining

Anq. Let Anq be the naive ZE of Aq given in Corollary 4.2. If

XnO <nl <"' (t_), then X Anq . If for some i,

Xni A n(i+l)' then replace Ani and An(i+l) by

n n

E (Gri + Gr(i+l)]/[l (Ari + A r(i+l)

If a reversal still exists, replace by appropriate averages.

That is, if

n n

[, (Gri + 0r(i+l))]/[E (Ari + Ar(i+l))]] >n(i+2),
r-l rul

then replace Ani, An(i+l)' and Xn(i+2 )' by

n n

E G + ))/[ ( (Ar + Ar(iAl) + A ]
r=l lr(i+l) r(i+2) r_1l) r(i+2)

Continue averaging whenevar there is a reversal. This will

yield a monotone increasing sequence, XnO I Xnl 1 Xnl < Xn(t.1),

which are the MLE's of the A 's subject to A A _ ... A
q 0-1

We now have
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Theorem 4.7

The estimates Xnq of X q,q 0,..., t-1, given in Theorem

3.5 are strongly consistent as n -.

Proof:

This is immediate from Remark 4.6 and the fact that

the A 's are strongly consistent estimators.th nq

4.4 Asymptotic Normality of the Estimators.

Without any loss of generality denote by xis i =1,2... At

the set of all Ai, i = 0,1,..., t-1 such that A 0. In the fol-

lowing the asymptotic normality of the vector (A A

suitably normalized, is established. The normalýzing sequence

i6 determined from the experimental outcomes and Xi. i M 1,... ,m.

Furthermore, it is shown that the dispersion matrix of the

limiting distribution is the mxm identity matrix I.

Let
n

Tnj = (Gij - E(Gi ))/n, 3 1,2,...,m, (4.4)
Jul

and
n

Uj 1 (Aj - E(Alj))/n, j = 1,2,.,.,m. (4.5)
i=1li

Define

T n = 1,2,.,.,mY Ynj (46
n U(j-m) j m + 1,...,2m
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and E = (ajj) is a 2m x 2m matrix, where

aij= Cov(Yli, Yj), i, j 1,2,...,2m.

By the multivariate central limit theorem, it follows that _V

rn (Ynls Yn2""'Yn,2m) is.AN (02,).

We shall use the following theorem given in Rao (1968,

page 322), and we state it here for easy reference. "Let T

be a k-dimensional statistic (Tin ,...Tkn) with the asymptotic

distribution of rn ((Tin-el),.. (T kn-ek)) being k-variate

normal with mean zero and dispersion matrix E a (ai). Let

fl"",f q be q functions of k variables and each fi be totally

differentiable. Then the asymptotic distribution of

rn (fi(tln,..Tkn)- fi(el,...,Ok)), i = 1,2,...,q, is

q-variate normal with mean zero and dispersion matrix r E r',

where r = (afi/aj)."a

Let fi(YlY 2 ,... ,Y() be the real-valued function of 2m

variables defined by

f i(yls''''y~n= yi- Aiyi+ml i = l,2,...,m. (4.7)

Then

1 if j i

afi/ays - i if j i + m (4.8)

0 otherwise
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Therefore, one can show that r z r" (Tij), where

Tij -Var(G i-XiA1 i), if i -

and

Tij -Cov(G 1 i Glj) - i Cov(A 1 jiGlj) - x Cov(G liA 1 j)

+ xiAx Cov(Ali,A1 j), if i 0 J.

Hence, by the theorem mentioned above,

n G-iA n G XA

v~(l ~ nA ril

is AN ( r z rm).

Let Ai = E(Ali), i = 1,2,...,m. Note that Xi 1 0 implies

Ai 0O. One can see then that the asymptotic distribution of

G lr Grm-XArmNX n Grl- Er
-nl rul nAn)

is N(O,E 1 ), where E= (Tij/AiAj).
in

Since F, Ai * Ai a.s., one can, also, show that

•nr__ GrlX Al n G -X A
Y rn( l- 1-r rm, m rm\

-n= n n"
___A A__Arl mi rm
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.T

is AN (OEi). But since

n n

,= • /Gri/FiAr i =12

it follows that ri (AnlAi, ... ,nm-xm is AN (O,E).

Let Di = 2i/A, i = 1,2,...,m. -Then

Fn{ ( n1-1 ,...,
IF m

is AN (j 2) where

2 6) = (Tij/AiA j(DDI)1/2 (4.9)

Note that 6ij - if i =J, and

Di- Wai-Xi~i), i --1,2,...,m. (4.10)
Ai

Observe, also, that E(G A) = E(A I i), i-l,2,...,m, by Equation (4.2).

Now, assuming that Ai 0 and Xs # 0, this implies

k-i - G k-i

Ai(Xl,...,Xkl, T - x) x J exp(-Ajj H dx.
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Thus, if i s,

0O 1E(G )2 1E(G)-2 E(G -~A3 ) + E(A~)
2 ii 2 i

Using (4.2) again gives

E(G~i Var(Gii + A~ 2Var(Ai~) -2X~ Cov(Gli±,i)

=Var(G i±4±Ali) .(4.11)

If i s. then

t-1 G k-1
11 x J exp(-X A) T1 dx1,

and this gives

0 =E(G liG )- x- ( iAl ( 3

+i A x SE(A 1 iA ls)

Hence,,

x sE( l )(Als+ x ±E(A 1±)E(G15  - E(G1±)E(Gls)

x Cov( A1iqG18) + )X 5 Cov(Alii Als) .(4.12)
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Since E(G) A eE(A) it follows that the left-hand

side of (4.12) is equal to zero and, hence, ) = 1. Thus,

"F n •nmm)

1 m

is AN (2,1). Note that if Ai ...< Am then i

for n - n0, say. Thus,

1 m

is AN (2,j). By (4.11)

E(Gli
D = l Var(Gl-AA = ------2 2 "11 1

ii Ai

Using (4.2), this gives

2

D i = Ai
ii

1 Ai2
Note that since - G E( ) a.s., then D a.s.

r=1 F

n rl

The next result is immediate.

Theorem 4.8

The asymptotic distribution of

"X V (_-A) m is N(O,I) as n

lOrl jt Grm

Gr
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As before, if X1 < *.. m, then the same result holds

if the X ni are replaced by X ni"

Remark 4.9

Tf one assuLes that XO >- X, >-Xt-i then the likelihood

n
L = R L is the same and hence the naive MLEn of X is the

r1l r nq q

same and is consistent. The MLE X may be easily found bynq

applying again the results of Brunk (1958). Of course ) is
nq

also consistent in this case.

The reader is probably aware, at this point, that if t1l then

this class of distribution reduces to the class considered in the

last section when g(x) * x. The MLE is equivalent in both situations.
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5. NONPARAMETRIC ESTIMATION

5.1 Introduction.

The concept of "failure rate" is a very important practical concept

in reliability and has motivated several very useful classes of distri-

butions, e.g., Increasing Failure Rate (IFR) class, Decreasing Failure

Rate (DFR) class, U-Shaped Failure Rate class. The failure rate r(.)

of a distribution function F having derivative f is defined by

r(x) - f(x)/[l - F(x)] for F(x) < 1

and

r(x)u'. for F(x) 1.

The estimation problem that we shall be concerned with in this

section can be summarized in the following way. The life-time

distribution of the items to be tested is assumed to have an increasing

failure rate over the interval [0,T), i.e., IFR on [O,T). No other

assumptions about the distribution or its failure rate is given outside

that Interval. The assumption of increasing failure rate can be

changed to decreasing failure rate and the same results will follow

with the obvious modifications. Data are assumed to arise from Testing

Plan A.

Let [aF,8F] be the support of the c.d.f. F. The notion of IFR

on (0,T) is made more precise by the following definition.
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Definition 5.1

Let T be a fixed positive real number. A c.d.f. F, F(O) = 0, is

said to be IPH (Increasing Failure Rate) on [0,T) iff it satisfies one

of the following conditions: (i) -log[l-F(x)] is convex on

(aF' BF] 0  F < O F f.T and F(BF) = 1 if OF < T; or (ii) the part

of the support of F in [0,T] is empty.

Let F = (F: F is IFR on [0,T)).

The following theorem is similar to a theorem concerning IFR distri-

bution given by Marshall and Proschan (1965), and we shall omit its

proof because of this similarity.

Theorem 5.2

Suppose F c F, 0 < Z < BF. Then F is absolutely continuous on [O,Z).

Note that F may take a Jump at OF if BF < T.

Using the definition of failure rate and the above theorem one can

very easily prove the following.

Theorem 5.3

(i) F e F iff r(.) is nondecreasing on (0,0F), 0 - <-- BF fT,

and F(OF) =-1 if BF < T.

(ii) The part of the support of F in [0,T] is empty iff r(x) = 0

on [0,T].

(iii) If F c F, then for xc[O, F)

F(x) = 1 - exp(-R(x)), and

f(x) = r(x) exp(-R(x)), where

RWx = f r(y)dy.
0 .

hi11
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The class F includes the usual class of IFR distributions. It is

easy to show that there exists no sigma-finite measure relative to

which all the distributions in F are absolutely continuous.

Since we are dealing with a nonparametric family of distributions

for which there exists no sigma-finite measure relative to which all

the measures induced by F are absolutely continuous, the usual concept

of maximum likelihood estimation cannot be applied. The general

definition of MLE due to Kiefer and Wolfowitz (1956) is used in this

section to determine the MLE of the life-time distribution F over

(O,T), where F E F and data arise from Testing Plan A. It is also

shown that this MLE is strongly consistent as n, the number of

o1riginal items, tends to infinity.

In this section let d(n) denote the total number of distinct

failures in [O,T) in the combined n experiments. Recalling the.'

notation given in Section 2, observe that

n
0 <d(n) C • (Kr-1).

r-u

Also, let 0 = 0 < Z I <. d(n) be the ordered, distinct, failure

times Xjr, 1 u 1, ... , Kr-1, r - 1, ... , n. Finally, let p(n) be the

number of Yrr s, r n 1, ... , n, strictly greater than (n)"

5.2 Maximum Likelihood Estimate.

In this section we shall find the MLE of that part of a life-time

distribution F e F over the interval [O,T) when data arise from
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Testing Plan A. The following general definition of a maximum likeli-

hood estimate is due to Kiefer and Wolfovitz (1956) and is needed to

determine the MLE of F c F for the two reasons mentioned earlier.

I
Definiticn 5.4

Let 3 be a sample space, B a a-field on fl, P a family of probability

measures on 8 and 0 a set indexing the elements of P by P(.I1),

o t 0. Let X be a random vector defined on (A with distribution function

determined by P(" O ), 8 0 C . If h1a X2,.. 1n denotes a random

sample from P(1 o0) then the MLE of 00 is if 0 and

n aP(rje)
r-l d(P(Xrje) + P(YI)

sup a 1

ece n 11 dP(XrIe)

r-1 d(P(XrIe) + P(X~rl))

where

dP( 161)

d(P(" 1e) + P(" 182))

denotesthe Radon-Nikodym derivative of P(. 181) with respect to

PN" I1) + P" Is2)"

The Kiefer and Wolfowitz concept of MLE will now be considered within

the framework of Testing Plan A and for life-time distributions F e F.

LIt A * {Q, and all finite sequences of non-negative numbers whose sam

is loess than T), where # is the empty set. Also, let X (x C a

which have exactly i elements), i a 0, 1,... . Then (A * U )t. .we

43 

o



define a set A to be measurable in 0 if and only if A - I Ai and Ai
i=O

is Borel measurable in Xi. Let B the a-field of measurable sets in 0.

For each F e F we will define a probability measure P(.IF) on B and

will denote the collection of all such measures by P. These probability

measures will be defined first on the Borel measura.ble sets of each X..

Some preliminary notation is needed. Denote by X(.Ii, F) the product

measure on Ri (Eucidean i-th space) induced by F, where X(.10, F) is

defined to be one. Also, recall that P(xi) lim F(x-c), e > O, and
0 0 -->0

products of the form 9 and sums of the form E are 1 and 0,
J=l J=l

respectively. For each Borel measurable set A-CX and F e F define

the measure P(.IF) to be

iP(AiIF) = f {l - F(fT-•x3 I-)II d)X(xji,F).

For any A £ B we define P(AIF) to be

P(AIF) = E P(AiIF)
i=0

where Ai = AnXi.

This definition is motivated by the integrand of equation (2.7).

Note that for each F e F

P(OIF) =P( , XijF) = E P(XiIF)
inO isO

= E Prob(K = i + lF) = 1.

Thus, for each F E F, P(.IF) is a probability measure on B

The Kiefer and Wolfowitz concept of maximum likelihood estimate

together with our definition of the measures P(.IF) £ P, F c F, yields

the rE Fn of F on [O,T) described in the next theorem.
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Let I(.IS) be the indicator function of S. Also, let n (Y)

denote
kk

Theorem 5.5

The ?4LE i of F has failure rate rwhere in is constant over

EZq, Zq.1), q - O,...,dln), end

n K -1

!ral Jul jrl[Zn' zv))ruijl J- r

a mn max z (5.3)
d(n)+Iw>q+l Ocucq n v

I I nr(y)dy
r ul. Zu

Proof:

The proof of this theorem follows in a straightforvard manner

fro& the Kiefer-Wolfowitz definition of MLE using the probability measures

we introduced above and Brunk's (1958) results.

Remark 5.6

We will now give a useful method for determining rn" Let Tqn be
Tm n Z1

the time on test over [Zq Zq~1 ) (ie. qn nr(y)dy)q q u s

ru q
d(n). If (T•)" S (7 1n)l - " . -- (. (n )n ' then rn(q) " (Tqn)' 1 ,

q u O,...,d(n). If for some 1, (T in)1 > (T (i+l)n)- then replace

(CTn)'l and (• Alln1• by + T
inl~ 'in (¶l~

If a reversal still exists, replace by appropriate averages. That is,

-1if 2(Tin + T(il)n} > (Ti2)n then replace (T (T )n and( rl~ (2), in * (iel)n45i
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(T (i÷2)n)' by 3(Tin + T(i+l)n + T(i+2 )n).

Continue averaging whenever there is a reversal. This wili yield the

monotone increasing sequence r(Z0) rn(Z1) . rn(Zd(n)) given by (5.3).

5.3 Strong Consistency of Fn.

The main result of this section is that the MLE of F on [O,T)

converges uniformly a.s. to P as the number of items put on test at

time zero increases. To accomplish this we will prove a convergence

theorem for i (x), xc[O,T), in(X) defined in Theorem 5.5. This
n n~x

result will allow us to easily prove the main result plus several

corollaries. Furthermore, since the failure rate of a life-time distribution

is an important practical concept, the convergence theorem for r (x)

is also a significant practical result.

We will need several theorems before we can prove the convergence

theorem for ;n(x). The next theorem involves rewriting n(X), given in

Theorem 5.5, in a form we need to show consistency.

K-1
n r

Let R(uv) denote r I I(XJrI[UV)) and S(u,v) denote
rul Jul

n v
I f nr (y)dy.

ral n

Theorem 5.7

Let xc(O,T) and

Z( W max (ZI1Z <x).

Then
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I

in(x) " inf sup (5.4)
xcvcT urZn(x)

Proof:

Follows directly from Theorem 5.5.

To show consistency of rn we need the next two theorems. Let

nK r-1I I IX jx rltu~v))

mr(UV) r Jul u< v < T,

nf nr(Y)dy
rml uand let I F be the intersection of the support of F with (O,T].

Theorem 5.8

Let 0 < u0  _v0 O IT be fixed where, Ou 0 < T if 1F

0u 0 < v0 8<Y if 'F =(tp, OF.] Then, as n

i) Mn(u 0 ,v) converges uniformly, a.s., in v0 Iv < TI

ii) Mn (uv ) converges uniformly, a.s. in 0 < u < u0.

Proof:

Let X1 , X2,..., be a sequence of independent, identically

distributed (i.i.d.) random variables with c.d.f. F, F(0) a 0. Let N1

be the first integer such that X XI !T, N2 the first integer

N2  lN

such that Xi ! T, N3 the first integer such that Xi.T,
iUN 1 +l iUNI+N2 +l

and so on. Then N1 ,N2 ,..., is a sequence of i.i.d. random variables.

Using the Glivenko-Cantolli theorem one may show that as n

Bn(Uv) -U F(v') - F(u'), a.s., -. ( u < v < -, (5.5)
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where

NT()N I(Xi[[u,v))

N(n) ,N(n)= I Nr
r=1

Also, using thu strong law of large numbers and the Glivenko-

Cantelli theorem it is easy to show that as n ÷

C n(uv) !__ E( (PF(v.) - F1 (u_)] a.s. (5.6)

for- < u < v <, where

n
I I(x.K rlu,v))n

Cn(,V .ral •rr
C (uv) r, A(n) Kn A(n) r r

and F, is the c.d.f. of X ,. We may conclude from (5.5) and (5.6)

that as n - t

Dn(uv) B n(uv) - Cn(u,v) (5.7)

converges uniformly, a.s. for- < u < v < .

Similarly one may show that as n 4

Sn(uv) converges uniformly a.s. on 0•< u V T (5.8)

where
n v

I f n (y)dY

S (uv) l (n)
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Also, observe that for n0 sufficiently large,

(Sn(uo,V))'- is uniformly bounded, a.s., (5.9)

on v0 Iv < T, n : no,

D n(uov)) is uniformly bounded, a.s. (5.10)

onv0Iv < T, n> n0

(S (U,Vo))' 1 is uniformly bounded, a.s. (5.11)

on 0 < u < uo, n > no, and

Dn(UV 0 ) is uniformly bounded, a.s. (5.12)

on0u <uuO,n> no.

The proof is completed since (5.7) - (5.10) imply (i) and (5.7),

(5.8), (5.11) and (5.12) imply (ii).

Theorem 5.9

Let F be IFR on (O,T) with failure rate r on (O,T). Then, for

0 < u < v < T fixed, where 0 < u < B if IF

K-1

r(u) < il : r(v) (5.13)V
S( f n(y)dy)
u

where K a K, n(.) * nl(.) and Xi = Xil, i 1,2,,....
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Proof:

If I, a * then F has failure rate 0 on [0,T) and, thus, (5.13)'

follows. If IF = (B) then F(O) - 1. Consequently, r(x) - ®, x > 0, and

r(x) O, xc < . Also,

K-1
E( I(X1I(u,v))) 0 0 for u < v < B

ini

and

K-1
E( E I(Xi1 (u,v))) >_1 for u <B .< V

±=1

Further,

v

E(f n(y)dy) > 0 for u < B.
U

Thus, (5.13) easily follows when IF W.

Now, assume IF a [a,B], 0 < a B< T. Also, recall that by Theorem

4.3o we know that if H is a c.d,f. with failure rate constant, say, X, on

[ab), then

K-1
EHi1[I(Xil[a'b)))

b
%(f n(y)dy)

a

Case 1.

0 < ua < V c

If F has a nondecreasing step-function failure rate on [u,v)

then (5.13) holds by a simple application of (5.14). To prove that
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(5.13) holds in general for this case, let rn(x), n 1,2,...,

xE[O,0) be a sequence of real valued functions such that rn(x) * r(x),

xe(o,u), r (x) is a nondecreasing step-function on [u,v) and

rn(x) + r(x) on [u,v). Note that rn(X) < r(x) <_r(v) < Thus,

by the Lebesgue Dominated Convergence theorem, as n 4 a

yr n(x)dx f r(x)dx, y c [O,v).

0 0

Therefore,

Fn(y) E 1 exp(-f rn(x)dx) -1 exp{-f r(x)dx)
0 0

(y), y ([O,v), as n .

Let Fn(Y) - F(y), y !_v. Then Fn, n o 1,2,..., is absolutely

continuous on (O,v), continuous from the right on [v,-), since

F is, and F n(O) - 0, Fn(-) - 1. Thus, Fn is a sequence of distribution

functions, Fn(y) + F(y), y c (-,a), as n + -. Let

k-i k
Sk { • xi < T, I xi I T}, k 11.,2,...

k u ii

By the Helly-Bray theorem (Loeve (1963))

k k
p(K,.kiF j . f***f HI dF n(Xi) 4f.f Hl dF(xi)

Sk ju il

- P(K-klF], n + ,og k a 1,2,... (5.15)
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Let pn(k) P[K=klTn), n 192,..., k 1,2... and

p(k) = PCK-kIFJ, k = 1,2,... By Rao ((1968), page 106) and

(5.15)

I Ipn(k) - p(k)I 1 0, n - a. (5.16)
k0O

Now, note that

K-1 T
I(Xiu'v) <_[. a8s., u > 0 (5.17)

1=1

and

n(y) j.[1, a.s., y > 0 (5.18)
-y

where (x] denotes the largest integer less than or equal to x.

Thus, since u > 0 and (5.16) holds

K-1 K-I1.
IF I( [Xil~u,',))) - Ep( I I(x.l[u,,,)))l

n i~gl i-I ,

so k-i k
,I f I I(xiilu'v)) Hn C. (x)
kul Ak il Jul n

* k-i k

k- I(xul[uv)) ln dp(x)dI

k

-u kul n

Also,

v4
n(y)dy ! (v-u) n(u) < (v-u)(•]

u U
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by (5.16). Hence,

K-1 K-1

EF I(XI(uil v)A ) Z* I I(X11Cu~v))) (5.19)

sad imlandl

V v(f n(y)dy) * EJ(S n(y)dy). (5.20)

n u u

However, from (5. 1 4) it follows that

K-i1ý¢iv. xillu'vl))
rn(y) n vrv).

E•,(f n(y)dy)

Taking limits, and using (5.19) and (5.20) gives (5.13).

Case 2.

0 u v tB.

Inequalities (5.13) follows easily using the results of Case 1.

Also it is straightforward to use the results of Case 1 to

prove (5.13) for

Case 3.

B < T, B <V < T.

We now give the convergence theorem for the estimate rn(z) of

r(x), 0 < x < T.
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Theorem 5.10

Let F be IFR on [0,T) with failure rate • on [O,T).

Then,

r(xO) < rnmtn rn (Xo) < lim sup rn(xo) < r(x) a.s.

for each x0 c (O,T).

Proof:

Case 1.

73ý

In this case in(x) * 0 a.s. for 0 < x < T. Since r(x) * 0,

0 < x < T, the result follows.

Case 2.

Let Zn(xO) a max {Z i1zi !Xo). We will show the right-handO<i!.d(n)

Inequality first.

If 0 < T and B x0 < T, then r(x) as, since F(+1)

Hence, assume 0 < x0 < i <_T. Choose v., x 0 4 v 0o < . Then

;n (x) inf sup (uOv)
X 5V ucz a (xO)

< sup M IU'Vl)
-u<Z (x ) n'0 (5.21)
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Let Ic -

E( I j(Xjlj[a~b))

M(a,b) 41b
E(f n1 (y)dy)
a

Since 0 xO x vO, we may apply Theorem 5.8 (ii) and conclude

that as n ee- Mn(UVO) converges uniformly a.a, for 0 < u - xO.

Thus, for arbitrary c > 0 and n > N(e), soy,

;n(xo) < sup (M(u,vo) + 0.

Since u < 0 we maey apply Theorem 5.9 and conclude that

lim sup i'(xo) Ir(vo) + c. This give. lim sup .n(xd !r()

a.s. since x0 < vO and the right-hand limits exist.

We vi.l nov show the left-hand inequality.

Case 2a.

0 < a and x0 C (O,a].

Since r(xO) - 0 the left-hand inequality holds.

Case 2b.

0 < T and 0 < x0 < T.

If F takes a jump at 0 then with probability one Z n(xO) 0

for n ) N, N sufficiently large. But this implies that

;n(x) -•()a -*or n > N, 0 < x T Thus.. lim inf n(xo) -

and, hence, liz inf ; n(Xo) ! r(xO).
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If F does not take a Jump at 8 then r(8-) = • and therefore

as n Z Z n(x 0 a.s.. Choose uO, 0 < uO <. Then for N

sufficiently large, u0 < Zn(xO) < 8, for n >_ N, and, thus, I
n(x) inf sup Mn(u,v)XoV U<Zn(xO) n

nO> inf M n(NOMV

> inf M(u0,V) for u 0 < V .
voyv

Apply Theorem 5.8 (i) and conclude that for arbitrary

E > 0, N(e) sufficiently large,
rn (xO) _ inf (M(uoV)-e) a.s., n _> N(c).

By Theorem 5.9, rn(xO) L r(u 0 ) - c, n > N(O). This gives

limr inf rn(xO) !.r(u0 ) a.s. for all u0 < 8. Letting u0  -8-

gives lim inf rn(X O) = ( a.s.. Since rn(x -) = for x > 8,

we have the desired result for Case 2b.

Case 2c.

a < X< 8 <_T.

Choose uo, a < u0  < x0 . Then for N large enough so that

u0 < Zn (x0) < x0
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in(X) inf sup M(u,v)
flu x0  u'~(x)xO~v U4Zn(o 0

2_ inf Mn(x 0 ,v).
X0-

Applying Theorems 5.8 and 5.9 in the usual manner gives

lim inf rn(x) >r(uO) a.s. for all a < u0 < xO. The

result follows.

This completes the proof.

The main result of this section is

Theorem 5.11

Let F be IFR on [O,T) with failure rate r on [O,T). Then

F(t) - F(t) uniformly a.s. in tc[O,T), where

F n(t) = 1 - exp( nt (y)dy).

Proof:

Let I be the support of F on (0,T]. If I= the conclusion
FF

is clearly true. Note, a.so, that F (0) = 0 a.s.. Suppose then that
n

I= [ca,]. By Theorem 5.10 ; (t) - r(t), t c [0,0) except possibly
F n

on a set of Lebesque measure zero. Let t e [0,0) and let t < t0 < 8

be a continuity point of r. For arbitrary c > 0 and N = N(toc)

sufficiently large, rn(X)_< rn(t) r(t 0 ) + c for x c [O,t], n_> N.

Thus, by the Lebesque Dominated Convergence theorem

r(z)dz-* r(z) dz a.s. (5.22)
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Since
t

NO) 1 exp(-f r(z)dk), t c [0,B),
0

(5.22) implies that

Fn(t) + F(t) a.s. t e [0,8). (5.23)

Case 1.

F is continuous on [0,T).

Since Testing Plan A and all related random variables are

uneffected by the behavior of F on (T,w), we may assume without

any loss of generality that F is contintous on (0,T).

Case la.

F(T) = 1, B 0 T.

Extend Fn to (-',-) by defining F%(x) • 0, x < 0, Fn(x) * 1,

x >_T, Then, by (5.23) as n -

Fn(t) + F(t) a.s. t C (--,-). (5.24)

Note that F is a distribution function. Since F is continuous on
n

C-..), Fn(t) + F(t) uniformly a.s. t c (-.4), as n . . by Polya's

theorem (Risen, 1969).

Case lb.

F(T) < 1, 0 - T.

Since 1-F(Tf) > 0, there exists a.s. some m = 1,2,..., such that

Km 1. This implies that either d(n) = 0, or p(n) > 1 and d(n) > 1,
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for n ,m. In any case, rn(x) < - a.s. x c 1O,T), for n m.

Therefore, F n(x) < l, x e [OT), and hence, Fn may be extended to

(O,T) in a continuous manner, for n > m. Since F is continuous,

Fn(T) ÷ F(T). LE:t

Fn(x)
x e O,TJ]

F (T)
G n(X) = (5.25)

1 xc C T,..)

0 x C (-,o)

for n 3,m, and let

PW .x c [o,T]
F(CT)

G(x) u (5.26)
1 x c (T,-)

0 x C (--,0).

Then Gn, n = m, m + 1,..., G are distribution functions, 0 is

continuous and G n(x) - G(x) a.s. x e (.,e). By Polya's theorem

the convergence is uniform. Since F n(T) is bounded for

n M a, a + 1,..., this implies that FnCt) ÷ F(t) uniformly a.s.

t 0 (OT), as n-..

Case 1c.

8 < T.

Let 0 < x < T and c > 0 be given. By the continuity of F there

exists a 0 < z < B such that 1-F(z) < e, and by (5.24) there

exists a N • N(z,e) such that F(z) - t ( F (s), n ) N. Hence,

f3r n > N, 1 - 2c < F(z) - c F(z) < F(x) 1.. Therefore,
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lim Fn(x) 4 F(x) = 1 a.s. for x > 8. Using (5.24) we have

F(x) + F(x) a.s. for xe(0,T). Using Polya's theorem again we maynn
conclude that Fn(X) + F(x) uniformly a.s. for xc[OT), as n ÷=

Case 2.

F takes a Jump on [0,T).

Since F takes a Jump on [0,T) at 3, it follows that with probability

one K = 1, for some m = 1,2.,.... Thus, r (t) = =, 8 _ t < T, n > m,
m n

which implies that F = 1, 8 < t < T, n > m. Since F(t) = 1, t > 8,

we have

F (t) 4 F(t) uniformly a.s. t c (8,T), as n 4 =. (5.27)
n

We will now show that the convergence is uniform on (OT). For n > m,

F is a sequence of nondecreasing, bounded, continuous functions. Hence,n

they may be extended to [0,8] in a fashion which will preserve continuity.

Similarly, we may extend F to (0,81 in a continuous manner. By (5.23),

F (t) + F(t), to[0,8), as n+-. Let F*(O), F'(O), be the extended
n n

values of Fn and F for n > m. It is straightforward to show that

F*(8) F*(8) a.s. as n 4 ®. Now, letn

F n(x)

F!-57 0 <x < 8,n
H (x)=

n 1 x > 8,

0 x<0
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I
0 <xO < a.

x<O 1

H (x) 0x < 0

or n > m. Note,then, for n > m, Hn H are continuous distribution

functions, and Hn(x) -, H(x) a.s. Applying Polya's theorem again we

may conclude that Hn (x) - H(x) uniformly a.s., xc(-o,w), as n o w. Then

Fn(x) + F(x) uniformly a.s. xc[o,8), as n 0 a. (5.28)

Thus, (5.27) and (5.28) give the desired result. This completes the

proof.

We now give two useful corolleries of Theorems 5.10 and 5.11.

coroll2a 5.12

Let S a (u,v] be a closed interval of continuity of r,

0 lu < v < T. Then, r (z) - r(x) uniformly a.s. on S as n - .

Proof.

By Theorem 5.10

n(x) + r(x) a.s. on 8 as n es. (5.29)

case 1.

r(u) - r(v) > 0

For N suffieiently large
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flu) c < inlu) < flu) + c

and

r(v) - < _n(v) < r(v) + e.

But

The result follows.

Case 2.

r(v) ' r(u).

Let

'.Cx) - 'n u)
'nlv) - ;n(U) -- -

DnCx)"
0 x u

nu 1.2,..., and let

r(v) )-r(u)rl) u •x'!v

D(x)
0 xCu

1 x~v

Note that Dn, D are distribution functions and D is continuous.

Applying Polya's theorem (Eisen (1969)) and (5.29) gives
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D n(x) * D(x) uniformly a.s. on (-oc) as n- ÷. For x e S, the

sequence {rn(x)), n > I is ultimately uniformly bounded. This implies

that ;(x) -W r(x) uniformly .a.. on S as nu . The proof is completed.

Corollary 5.13

Let S = (u,v] be a closed interval of continuity of r, 0 < u < v < T.

Then,

flx) * f(x) uniformly &.a. on S as n +-
x

where inlx) - rnlx) exp(-f n(y)dy).

Proof:

The proof follows directly from Theorem 5.11 and Corollary (5.12).
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