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MAXIMUM LIKELIHOOD ESTIMATION FROM RENUWAL TESTING

ABSTRACT

This repcrt considers the maximum likelihood estimates of life-time
distributions over an interval [0,T) from the following time truncated
experiment. At time zero, the beginning of the teating n{(l < n < o)™~

items are put on test. When an item fails it is replaced and at time T
all testing is stopped.

Assumptions about tne fcrm of the life-time distribution on [0,T)
are required. Distributions considered are:

(1) A single parameter class which includes the Weibull family;

(2) A multiple parameter class with increasing failure rate on
[0,T); and

(3) A nonparametric class which includes the increasing failure
rate family.

Uscful and desirable properties of the maximum likelihood estimates
are $.own.
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1. INTRODUCTION AND SUMMARY

Based on a number of practical reascns it is often necessary and

o ol o -

even desirable in life testing (reliability) studies to fix the total
testing time, say, at T (P < =), before testing begins.‘ For example,
an experimenter would rarely use & testing plan that did not limit the
total testing time when the items being tested can be assumed very
reliable, since the testing time would usually be very long. The
total testing time must, also, be limited if project deadlines must be
met, or if equipment or personnel used in the testing can only be
spared for some specified length of time.

Limiting the total testing time need not, however, be contrary
to the goals of the experimenter. For example, if the experimenter
can assume that the general form of the life-time distribution belongs
to some parametric class defined on the nonnegative real axis, then

limiting the testing time to T, he can still estimate the unknown

parameters of the distribution on [0, =).

If the experimenter cannot assume that the life-time distribution
has & particular form on [0, =) but only on [0, T), then he must limit
his inferences to the latter interval. However, if {0, T) includes
the mission time of the items tested then, for all practical purposes,

he need not infer anything about the distribution outside this interval.

Nep < 8
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One of the most popular time truncated testing plans is the subject
of this report. This plan stipulates that n items are initially put on
test at time zero. When an item fails it is replaced by a new item and
at time T all testing is stopped. (For convenience this plan is called
"Testing Plan A.") Renewing a failed item is a method to further save
experimental time and generally results in a better utilization of
equipment and personnel.

Practically all of the statistical procedures developed in the
literature for Testing Plan A are based on the assumption that the under-

lying life-time distribution of the items tested is the exponential law
G(x) = 1 - exp(=ix), (1.1)

A >0, x>0. (See Epstein [1959] for & review of these procedures.)
In practice, however, the exponential assumption is often not wvalid
since it implies a no wear-out (or no aging) property of the items.
Moreover, if the times to failure of the items do not follow the law
(1.1) these exponential procedures could possibly be sensitive to this
departure. (See Zelen and Dannemiller [1961].)

For Testing Plan A this report investigates the maximum likelihood
estimates of life-time distributions from three general classes. Life-
time distributions describing wear-out are contained in each of these
classes and, also, each class contains the exponential distribution.

Specifically, in Section 3 the maximum likelihood estimate (MLE) of
the parameter X will be considered when the life-time distribution has the

form

F(x) = 1 - exp(-rg(x)),

8
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A>0,0< x <T, g(*) is a known, strictly increasing, differentiable

tunction on {0, T) with g(0) = 0. Observe that nothing is assumed about

Fon [Ty » ). This parametric class is obviously relevant to life testing
since, for example, it includes the exponential (when g(x) = x, x > 0), the
Weibull (when g(x) = xe, B> 0, x> 0) and the extreme-value distributions
(when g(x) = & - 1, x > 0). Asymptotic distribution theory, which

will allow one to test hypothesis on the true value of A, shall be given along
with a number of pleasant properties of the MLE. These results do not depend
on the fact that F is not restricted on [T, = ). Also, a major drawback to

another method of estimating A shall be discussed.

As such, the class of distributions introduced in Section 4 has not been

considered in the literature, Practical applications of this class shall be
discussed and the MLE's of parameters determining the life-time distributions

over [0, T) are shown to be asymptocially normal and consistent.

Often an experimenter does not know a priori that the law governing the
times to failure of the items tested belongs to a certain parametric class,

He may, however, know that the underlying distribtution is a member of & non-
parametric class of distribution, e.g., the Increusing (Decreasing) Failure
Rate (IFR (DFR)) family.

Marshall and Proschan (1965) considered the MLE of a life-time distribution,
assuming only that it was a member of the IFR (DFR) family and that data arise
from a testing plan which does not allow censoring, time-truncation or replace-
ment. Bray, Crawford and Proschan (1967), also, considered the MLE of a
life~time distribution from a nonparametric class which includes both the
IFR and DFR families. The testing plan they introduced allowed for the
consideration of various types of incomplete data.

Since nonparametric estimation has not been considered in the literature

for Testing Plan A, we will study this type of estimation in Section 5. The
class of distributions considered includes the IFR family and the main result

of that section is the consistency of the MLE over [0, T).
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2. PRELIMINARIES

In this section preliminary definitions and notations needed in later

sections shall be collected. For completeness we give

Definition 2.1 (Testing Plan A)

At time zero, the beginning of the testing, n new items from a
population are put on test. When an item fails it is instantaneously
replaced with a new item from the original population and at time T the
testing is stopped.

Estimation from Testing Plan A has been considered by several asuthors,
including Epstein (1959, page 3.17) and Gnedenko, Belyayev and Solovyev
(1969, page 169), when the life-time distribution of the items is
exponential. These authors derived the likelihood function by standard
methods which cculd, also, be used for other classes of distributions
with densities. 1In the present approach, however, the derivation of
the likelihood function utilizes the theory of stopping variables. The
benefits of this approach are two-foid. Firstly, a straightforward
method of obtaining the likelihood function is developed for the
parametric classes of distributions considered in Sections 3 and 4.
Finally, this approach motivates a generalized likelihood function
needed in Section 5 for the nonparametric class.

To develop this preliminary theory observe that Testing Plan A mey
be considered as n independent experiments, each beginning at time zero
end ending at time T. Throughout this report Kr will denote the random
number of items put on test in the r-th experiment and Xir will denote
the time to failure of the i-th item put on test in this experiment,
i=1,2,...,r=1,...,n, From this notation we have that Kr is the first

integer such that

r=1ly440 0

For the moment consider only the l-st experiment and let Xi = xil’
i=l,2,...,K=Kl. Also, let F be the cumulative distribution
10
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function (c.d.f.) of X,. It is straightforvard to skow that if F(0) < 1

then K is exponentially bounded; i.e.,

Prob(K=k) < cp¥,c > 0, 0 < p < 1, k = 1,2,000s
This implies that K is finite with probability one (w.pr,1) and all moments

of K exist, Now, let

o an e

kel
Ak = X,k gt ) X < T}
i=1l
and
kil %
B, = {X,500:4% x, <T, x, > T}
RO g =1
0
k=1,2,.... (The convention that sums of the form Z are equal to O and
0 i=l
products of the form T are equal to 1 is adopted in this report.) Since
i=l
¥ < » w,pr.l, one may show that
w k
1= 73 J' . f m ar(x,). (2.1)
k=1 i=1
Bk

Let Y. be the time on test of the i-th item put on test in the r«th

ir
experiment, i=1,2,...,0%1,...,0, and let Y1=Yil,i=1,2,.... Observe, now,
that
Yir = xir’
i=l,...,Kr-l, and
Krgl
Y 2T - X,
Kr,r i= ir

11
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r=l,...,n. Since the testing is truncated at time T, experiment 1 is

characterized by the time on test statistics (Yl,....YK). ‘By (2.2) and

(2.3) one sees that the experiment is equivalently characterized by the times

to failure (xl""’xK-l)°

Now, in almost all cases where the c.d.f. has a probatility density

function (p.d.f) one can show that the likelihood function is derived from

the integrand of an expression equated to 1 and where the integration is

over the sample space of the random veriables of interest. For (Xl,...,XK)

the sample space is

o
g, = U B
1 Kkl k’

and for (xl""’xK-l) the sample space is

a8, = U A.
2 k=l k

We, therefore, integrate out x, in (2.1) obtaining

kel

o . k-l - -
1 = z fo ¢ I ll-F({T- z xi} )] H dF(xi),
k=l Ak i=1 J=1
where
F(x") = 1im F(x-e),
g==>0
€>0,x>0, and it is observed that
K-l k=1
Bk = {xl’o-o’xk: i.l Xi < T, xk lT -~ izl xi}

k=1,2,.4.0

Hence, if F is absolutely continuous on [0, T) with p.d.f, f, then

12
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» k=1 k-1
1= j . f [-F((T - T %)) 0 £x,) ax,. (2.5)
k=1 A i=1 1=l

This motivates the following.

Definition 2.2.

If the times to failure of the items are independent and identically
distributed (iid) with c.d.f., F, F(0) = 0, and F is absolutely continuous on
(0, T) with p.d.f. £, then the likelihood function L for Testing Plan A is

n
L= nlLr, (2.6)
s

where

Lr = Lr(xir""’xKr-l,r)

is the random variable,

K -1 K -1
L, = [1-F({T - 121 X, 3] 321 r(xar). (2.7)

Equation (2.6) is a result of the independence of the n experiments and
Equation (2.7) is obtained from the integrand of Equation (2.5) when the
random variables replace their corresponding sample points. Definition 2,2
will be used in Section 3 and 4 to derive the MLE's for the parametric classes

of distributions. A generalized definition of MLE, based on Equation (2.h4),

will be defined in Section 5 for the nonparametric class.

13
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3. SINGLE PARAMETER ESTIMATION

3.1 Introdurtion.

Throughout this section it will be assumed that the underlying c.d.f.
of the times to failure is

F(x) = 1 - exp(=Ag(x)) (3.1)

for 0 <x <T, A >0, gl*) is known and strictly increasing with g(0) =

" and derivative g'(x) 0 < x < T, We shall derive the MLE x of A and show

that: (a) A is strongly consistent. as n > »; (D) A is asymptotically
normally distributed es n —> w3 (c¢) A is asymptotically efficient, as n => o,
Also, a major drawback to some previously published work dealing with the
estimation of X shall be discussed.

3.2 Previous Work.

Gnedenko, Belyayev and Solovyev (1969), devoted an entire section of
their book, beginning on page 168, to the MLE of the parameter A when the
underlying distribution is the exponential law

G(x) = 1 = exp(=Ax) (3.2)

x>0, A >0, for 8ix life testing plans, one of which was Testing Plan A,
Observe, now, that if X is a random variable with c¢.d.f. given by (3.1)

for x > O then g(X) is a random variable with c.d.f. given by (3.2). Noting
this, Gnedenko, et al mentioned that if the life-time distribution is given by
(3.1) for x > 0 then one may make the transformation Y = g(X) on the data and
use their expcnential procedures to estimate A, However, it was not pointed
out that if the exponential procedures are used for Testing Plan A then the
total testing time will not necessarily be T, which violates the purpose of
this testing plan.

To see this difficulty, observe that the suggested test plan implies that
one make the transformation

kir = 8(xir)

1k




1158

i>1l, rsl, ..., n, choose a constant C > 0, and continue testing in the r-th
experiment (r=l, ..., n) until time C on the g(°*) time axis. If one does thic
then the random number of items, Kr’ put on test in the r-th experiment is the

first integer such that

K
r
W, >C
E;& ir =

r=l, ..., n. Therefore, the actual (untransformed) total testing time in
the r-th experiment is

Kr-l 1 Kr-l
xir + g C- ; S(xir) »
is

r=l, ..sy N. If C is to be chosen such that the total testing time is T,
then for K, = 1, the total testing tire is g"l(c) = T, Thus, g(T) is the
only candidete for C, Now, if

Kr-l K -1

: 2 X+ s‘l( g() - Y alx,) ) -

r
i=1 i=l

for Kr > 1, this would imply that

K -1 K -1
g(T) - El g(x,,.) = g(T - . Xy )s

which is, in general, not true for non-linear g. Thus, when one makes such
a transformation the total testing times for the n experiments will generally
be random veriables, This violates the purpose of Testing Plan A which is to
fix the total testing time at T, The work presented in this section allows
one to estimate A without using such a transformation and, hence, avoiding

this difficulty.

15
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3.3 The MLE of ).
The MLE xn. say, of ) shall now be derived. 1In what follows let

g(?) = 1im g(T=¢), € > 0.
e=»0

Lemma 3,1
Theminorxis

n ( ) an %
= K =1 .
A, Igl . ,x§l ?;:1 8(y,,.)

Proof:
By Definition 2.2 the likelihood function is

n
L= 1 L
r=l r

where
K -1

r
L.= exp(-xg(YKrr)) igl Ag‘(Yir)exp(-Ag(Yir)).

r=l,...,0, Meximizing L with respect to A yields An given by (3.3).

The reader should note that if F is continuous at T, then

n
2 (x.-1)

rs]

is the number of failures in the n experiments,
are exponentially distributed (i.e., g(x) = x, x > 0), then

16

(3.3)

Also, if the times to failure




K

fi Zf (Y, ) = aT
g = T,

ol dm T

Hence, An is the usual estimator in the exponential case.

Observe, now, that identity (2.4) implies that the probabdbility of any
event associaved with the outcome of an experiment based on Testing Plan A
only depends on F(x) for 0 < x < T, Since these probabilities do not depend
on F(x) for T < x < =, it follows that the statistical properties of any
random variable obtained from Testing Plan A are independent of F(x) for
T < x <®» We, therefore, have

Theorem 3.2

The statistical properties of An and all other random variables obtained
from Testing Plan A do not depend on the values of F on [T, =),

3.4 Strong Consistency of Ay

We will now show that A converges to A almost surely*(a.s,) as n = =,
To show this we will need the following results.,

Lemma 3.3

If F, is any c.d.f, such thet F(x) = Fl(x), 0<x<T, then

P(K, = k|F] = Pk, = k|F,], for all k = 1, 2, ...
Proof:

The proof follows fram Theorem 3.2.

#The term "almost surely" means that a certain event holds with probability
one,

17
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The following result is needed to show consistency and is, also,
nseful throughout the remainder of this section.

Theorem 3.l
Lo - 5B
3 E(Kl'l) E(igl g(Yn)). (3.4)
Proof:
Let xi = xﬂ, 1=1,2,..., K=K, By Lemma 3.3 E(K) does not depend

on F(x) for x > T. Hence, if g(T) < = then ve may extend g(x) for x > T
in any manner we wish to keep F a c¢.d.f. and E(K) will remain unchanged.
We therefore assume that g(x) = g(T) + (x-T) for x > T, when g(T) < «.
Hence, whether or not F(T) <1 or F(T) = 1, g(xi) has an exponential
distribution with mean 1/A. By Wald's Lemma (194k)

K
L E(x) = B( 2 g(x,)). (3.5)
1=1

K-1
Now, E(a(X,)) = E(E(““K)IR X;))

K-1
= E(E(g(X) [x 27 - ¥ X))
i=1

K-l
= E(E(g(X)|g(x) > &(T - 12: X))
=]
where g(X) is a random variable with c.d.f. l-exp(-Ay), y > 0. Thus,
. K
E(g(X,)) = E(5 + &(T - 1}: X,))

=)
K=1

=3+ B(g(T - ;21 X,)). (3.6)

Equations (3.5) and (3.6) imply (3.4).
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We may now prove

Theorem 3.5
The MLE, A_, given by Equation (3.3), is a strongly consistent

estimator of A as n + =,

Proof':

By the strong law of large numbers, as n + »

2 (K ~1)/n — E(K 1) a.s.,

r=l
and
n Kr K
El 1231 gy, Vo — E(iz-:l 8(Y,,)) a8, .
Hence, as n + ~
n Kr
. f‘:l 2, (Ke-2)n E(K,-1)
Xn = . Kr —_— K 8.8.
r;l igl gly, )/n F(El g(¥;,))

The result follows from Equation (3.4).

3.7 Asymptotic Normality of An.

We will now show the asymptotically normality of the MLE An for
two different, but asymptctically equivalent, normalizing sequences.

We begin with

Theorem 3.6

The asymptotic distribution of (An—A)/¢57n is Normal (0,1), as

n + « where
7
Var((K 1) =A g(Y

F?(}f (Y,.))
R

D=

19
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Proof:
n Mr n Vr
Let M_ 2 8lty,)s ¥, = (K1), M(n} = 3, 25 vin) = 3 7F,
J=1 = -}

and let gr be the tvo dimensional random vector, 2, = (Mr, Vr)’ r=1,...,0.
AMso, let H(a,b) be the function of the two variables a, b, H(a,b) = a/b.
Now, (M(n), V(n)) is the first moment vector corresponding to the _sanmple

%4200 +050,+ By Cramér (1946, peges 353, 367), H(V(n), M(n)) = An is
E(V(n

asymptotically normal with asymptotic mean ﬁ%ﬁ%_%%— = A by Equation (3.4),
and asymptotic variance

Var(V(n)) _, Cov(V(n), M(n)) -121311— + Var(M(n)) E (i(n

E°(M(n)) E3(M(n)) E'(M(n))

Using Equation (3.4) again the asymptotic variance equals

K

1
L Var(K -1} - 2ACov(K, -1, 2 &(¥,,))
A i
w5 ary) 5
2
+ A Va.r(;:l G(YJ]_))] .

This completes the proof.

The next theorem will be useful in what follows.

Theorem 3.7
K,
E(K,-1) = Var(K -1-A Z 8(¥,, (3.8)
J=1
Proof:

Letl(tl(l,x i ’i l,oon’ K"’l, and YiSYil’iSI’...’K'

Also, let f(x) = A\g“(x)exp(-Ag(x)), and
( ) = (eR(iz- T }lk'l (x,).
veensXe 1 [A) = [1-F({T- mof
L Ry G 1= *3

It is easy to verify that

20
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2
E(%x’los p(xl,.-.,XK_llk))2 = -E(§;5 log p(xl,...,gK_llx)) . (3.9)

The left-~hand side of (3.9) is equal to

K
2R - 3 aly)))? 4
5! ?

But using Equation (3.l4) we have :
K-l o K-l o 2 ;

Var(5= - 2 g(¥y)) = B(5= - > g(¥y))". (3.10) - 5

=1 J=1 ¥

The right-hand side of (3.9) is equal to E(k-1)/2%. Hence, (3.8) follows. ;

Using Equations (3.4) and (3.8) it follows, also, that

D= A2/E(K1-l). (3.11)

From this we have

Corollary 3.8
The asymptotic distribution of (An-x)/l&e/(nz(xl-l)) is Normal (0,1)

as n + o,

LT R R

By the strong law of large numbers Corollary 3.8 gives

Corollary 3.9
- n
The asymptotic distribution of (Xn-k)//(zl(): (Kr-l) is Normal (0,1)
r=]
as n -+ ®,

. 3.6 Asymptotic Efficiency of AL

Let h(xl,...,xx_l) be an estimate of A, where xi = xil, i=1,..., K-1,
K= Kl' Then \

Theorem 3.10

p(1 + -g:—;‘- B(X))a L Val‘(h(xla“nﬁ(_l))» i

21
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where B()\) = E(h(xl....,xx_l)h) -\, and D is given by Equation (3.7).

Proof':

It is straightforward to show that

[+ S B()IZ < Var(h(XpyevnyXe ) [A) E(Sr 20g (X 5eensX 1 102,

(Note that in the sequential form of the Cramér-Rao bound that
K .
in f(xi) corresponds to p(x,...,xk_llk).) Using Equations (3.8), (3.10),
=1
and (3.11) yields the result.

This implies that if hl is an unbiased estimator of A bused on the

outcome of n experiments, then

2 < var(n)). (3.12)

From this we have the following

Theorem 3.1l

;n is an asymptotically efficient estimator of A.
Proof:

Cur concept of efficiency is the same as the concept given by BAN
estimators for fixed sample size. (See Rao (1968), p. 284,) The result

then follows from Theorem 3.6 and inequality (3.12).

3.7 Comments.
Note that if the times to failure of the items put on test actually
have the c.d.f, F(x) = 1 -exp(-Ag(x)) for 0 < x < T + b, 0 < b < », then,

of course, the assumptions required for F(+) are satisfied. In this case

22
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the estimate in allows one to estimate F(x) for 0 < x < T + b from data
restricted to [0,T]. Suppose, nowever, that the c.d.f. has the form
F(x) = 1 -exp(-Ag(x)), 0 < & <x <T + a. Then items of age a have the
c.d.f. G(x) = 1 -exp(~-Aq(x)) a < x < T + a, where q(x) = g(x) ~ gla).
Thus, one may put items of age a on test at time O and use the theory

presented in this section to estimate F(x) for a < x < T + a.

It is to be remarked, also, that numerous computer simulation runs
substantiate the conjecture that the MLE of A is generally not unbiased;

i.e., in general E(in) # A\. However, the bias approaches zero as n or T

gets large.

23
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L. MULTIPLE PARAMETER ESTIMATION

4.1 Introduction.
In this section it is assumed that the c.d.f. F governing the

times to failure of the items put on test is absclutely continuous

on (0,T) with p.d.f. £ and F(0) = 0. Also, it is assumed that the

failure rate f£(x)/[1-F(x)] = Aq, for xe[Sq,Sq+l), @ =0,1,000, t=1,

where0=So<Sl<...<St='1‘,and0_<_)\oi)\l_<_..._<_)\t-l<eo.
Thus, assuming that the Sq, q = 0,1,...,t are known, and data are
collected from Testing Plan A, the MLE's of Aq, Q= 0,100, t-1,
are determined and shown to be strongly consistent estimators

as n + o, The asymptotic normality of these estimators, as n » »
is, also, established.

Consider now a situation when Testing Plan A and this class of

distributions may be applicable. The guidance system or some other

system or component in a rocket may have a failure rate which is

constant when the booster of the first stage of the rocket is in

operation. However, when the first stage falls away and the second

stage booster is fired the failure rate of the system may change and

in fact increase instantly to a constant value during this stage. If

this is true for all stages of the rocket, then, (since the exact length

of each stage and the exact time of the staging 1s known), laboratory
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testing may be used to estimate the failure rate of the system for
the duretion of its mission.

Another possible application mey arise when one is interested
in estimating the failure rate of an electronic apparatus az a
function of the amount of voltage; It is not unusual for electronic
tubes and the like to have & constant failure rate when the voltage
is constant. If the failure rate is a nondecreasing function of the
voltage then one may estimate the failure rate for specific values
of the voltage in the following way. Let tha testing time T be
fixed and let Vo SV < < vt-l be voltages which are of interest
to the experimenter. Let Ai’ i =0,e00y tel be the failure rate

of the items when they are receiving voltage v Also, let

T
[Si’ Si+l)’ i=054es, t=1 be a partition of [0,T). When an item
is put on test it receives voltage Vo If it operates without
failure for time Sl thea the voltage is increased instantly to
vy Similarly, if the item operates for time Si' i < t, then the
voltage is increased to vy When an item fails it is replaced

instantly by another new item and the voltage is reduced to v If

o.
this item operates for time S1 without failure then the voltage
is increased to vy and so on. This process is continued until
time T, The theory presented in this gection will allow one to

estimate the A\,, i = O,.00, t=1,

i’
Applications of this model may also be possible in the

fields of drug testing and toxicology. For examplc, suppose one

25

(s

L fotton Lo

93

ek e

Se T e e e et w L

N T A M an S et ot

it Syer A RRRBI S e 2




is interested in the effect of a toxic agent such as DDT or
the effect of radiation, vhich decompose at a very slow rate.
The failure rate depends on the dosage level and may

be taken as constant for reasonably short pericds of time and
nondecreasing as the dosage level increases. The dosage is
sequentially increased at the end of these successive periods
and the model presented in this section may be used to estimate
the failure rates corresponding to the different dosage levels

for the time period of interest.

4,2 The Naive MLE of the kq.

We begin this gection by finding the values of

Xq, 2 = 05000, t=1, which will maximize L, given by

Definition 2.2, without the restriction that A A £ 000 A

0™ A

From Definition 2.2 the likelihood Lr for the r-th
experiment is
. Kr-l l%-l

L. = [1-F({T - El X ] 121 2(X, )y T = Liesey n,

and,

tne likelinood L for the n independent experiments is
n

L= 0T L.
=} T

Let I(:|R) be the indicator function of R. Furthermore,

define the function Gq by

26
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Gq(zl,...,zp) = E I(z |[S 8 1))

= q+l

and 0 otherwise, and define the function Aq(zl.... ,zp) vy

Aq'(zl....,zp) = f ((8,49-8y) 1(z I[Sqﬂ.'l'l)

+ (z -8 ) I(Zi“s Nk

Tqnl
l( -1

r=1l,...0, 4% 2,...,K1,and Y -'r—z Xip
ir’ * t Lok | ] ’& 9 Kr’ 1.1

Let Yir

r=1,...,n. Denote by Grq’ q=0,...,t-1, the function Gq(ylr"" ’YKr-l ,r”

vhich is the number of failures in the r-th experiment which lie

in [sq, 8 ..). Also denote by Arq' q=0,..., t=-1, the function

q+l

Y, .), vhich is the total time on test for the r-th

Aq(xir’.oo 9 K ’r
).

r

experiment over [Sq, s(1 "y

Observe, too, that if r(x) = £{x)/(1-F(x)), xe[0,T)), then

F(x) = l-exp{-f r(y)dy} and £(x) = r(x) exp{-}r(y)dy} for xe{0,T).
0 0

The next lemma will allow us to easily find the values
Of the lq, q = 0,..., t"l’ ’w inQ. q = 0,..., t’l. \'hiCh

n
paximize L = 11 I’r’ without the restriction that
rsl

A i Y We call A__ the "naive" MLE of A .
Ano Sy S S An(t-l)' e¢ nq q

(The term "unrestricted" MLE is also used in the literature.)
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Lemma 1,1

The likelihood I‘r for the r-th experiment may de

written as
t-1 Gr.j )
Lr = Jgo lJ exp(-XJArJ). rs= 1.-00.”0
Proof':

Firat note that

r(x) = Jzo AJ I(xl[SJ:SJ,l))-

for xc(0,T). Thus, L, may be vritten as
K -1

r t-1
Kr t-1
131 exp(-JZo AJ{(SJ wS8y) I“u“sm"'”

+ (13,-8,) 1Y, [5,,8,,, D).

Now observe that

el xi.l (T e, )
= A XY, _[8..8 R
J=0 3 im] J=0 J ir"y J+1

Equation (h.1) follows,
The following corollary gives the naive MLE inq of xq,

q = 0...., t-lo

28
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Corollary 4,2

n
The maximum of L = I Lr is
r=l
q= 090.., t-l, where
n
Zlcr
Y Sk
ng En
A
r=]l rq
and
)‘nq = 0
Proof:

o e ager

~

obtained if A = A,
q ng

sy NI AT e,

I 2 A__ # 0, the result follows directly from (4.1),

rq

n

n
Also, ) Apqy = O implies that 2.:1 Cpq = 0. Since N 2 0 we

r=]

0 ~
define 0° to equal 1 and thus take an = 0 if E Ar

This will maximize L.

n

r=l Q

L.3 Strong Consistency of A .

nq

= o.

The next theorem will be used to show strong consistency of

a

A, @ = 0000y t=1, given in Corollary 4,2,

nq
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Theorem 4.3

Let H be & c.d.f. sucn thet H(0) = 0, and for u and v where
0 <u<v, Hv") « H(u") > 0. Let X5 X5s4.., be i.i.d. random variables
with c.d.f. H, and let K be the stopping variable defined as the

first integer such that

In addition suppose that H is absolutely continuous on [u, v) with

p.d.f. h and

h(x)/{1-H(x)] = 1,

xelu, v). Then

K-1
E(z 1(x, | [u, v)))

irel

% =X. (b,2)
E(iz {(veu) (¥, |[v, @) + (¥,<u) I(y,|[u, V))})
=1

Eroof
See Crow and Shimi (19T1).

Theorem 4,U

The naive MLE Anq is a strongly consistent estimator of

Aq’ q = 0.0.., t-l’ as n -+ o,

Proof':

n
If A, = 0, then F(Sq+l) = 0 and, hence, EE& Gpq = O s Thus ,

30




~

A =0a.s,., If A >0, then
nq q

A

G A —_— =) a.8. a5 N >«
r=1 T r=1 T E Alq) 4 ’
by the strong lavw of large numbers and (4.2).

4.4 The MLE of the Aq.

In the next theorem we will find the values of the Aq,

q= 040,04 t=1, say ;‘nq’ which will maximize L under the

i ) A ver <2 . b
restriction that Ao £ 21 2 < An(t-l) It will, also, be

shown that ;‘n q is a strongly consistent estimator of xq.

Theorem L.5

The MLE an of Aq, q=0,..., t-1, which maximizes

n - ~ -
L= rgl L. under the restriction that Ao 21 £ 00 & )‘n(t-l)
is given by
2>
G
rd
A= min max x4 (4.3)
nq v>q u<q n v
E 2Ard
r=1 d=u
Proof':

From Lemma (k.1)
n

G
t-1 re1 Y
L= 1 2 exp(—k

j0 3 3

£1).

r=1
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Applying the results of Brunk (1958) yields (L.3).

Remark 4.6

Brunk (1958), page 447, explains a method for determining

~ a

Anq’ Let Anq be the naive MLE of Aq given in Corollary 4.2, 1If

A a

J\nO b3 xnl

< ese €A then A =2 ., If for some i,
- - ng nq

n(t-1)"*

"~

Mng > An(ie1) then replace A, and Ay, bY

n n
[rEL (Gri + Gr(i+l)]/[r§ (Ari +A r(i+l))]°

If a reversal still exists, replace by approuriate averages.

That is, if

n n .
[‘El (G, + ar(m))]/[rgl (A * Augien) ] Pa(ie2)s

a

then replace Ani, xn(1+l)’ and An(i+2)’ by

n n
(El (Gri * Gr(1+1) + G, i+2))]/[ El (Ari + Ar(i+1) * Ar(i+2)]‘

Continue averaging whenever there is a reversal. This will

~

yield a monotone increasing sequence, A , < App S Ay Seee 2 An( t-1)?
t \J
vwhich are the MLE's of the Aq s subject to Ay < M e 2 Aoy

We novw have

32
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Theorem 4.7

3.5 are strongly consistent as n + o,

Proof:

This is immediate from Remark 4.6 and the fact that

the )‘nq 's are strongly consistent estimators.

k.4 Asymptotic Normality of the Estirators,

Without any loss of generality denote by ) 4 i=1,2,...,m,
the set of all )‘i’ i=0,1,..., t-1 such that }‘i # 0. In the fol-

lowing the asymptotic normality of the vector (knl"" ,J\nm) s

suitably normulized, is established. The normal.zing sequence

is determined from the experimental outcomes and J\i, i=1],...,n.
Furthermore, it is shown that the dispersion matrix of the

limiting distribution is the mxm identity matrix I.

Let
n
Tnd = 12‘; (GiJ - E(Gij))/n’ J=1,2,...,m, (4.b)
and
n
Upg = ;21 (AiJ - E(Ala))/“’ J=1,2,.0.,m. (4.5)
Define
‘l‘nJ J=1,2,..04m
Yoy (4.6)

Un(J-m) J=2n+ 1,.00.2111

33
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and I = (ciJ) is a 2m x 2m matrix, where
054 = Cov(Yli, YlJ)’ i, J = 1,2,.0.52m,
By the multivariate central limit theorem, it follows that

/(Y ) is AN (0,F).

nl’ Yna,o oe ’Yn’m

We shall use the following theorem given in Rao (1968,
page 322), and we state it here for easy reference. "Let I
be a k-dimensional statistic (Tln""’Tkn) with the asymptotic
distribution of vh (('I‘ln-al),..., (Tkn-ek)) being k-variate
normal with mean zero and dispersion matrix I = (oiJ)° Let
fl,...,fq be q functions of k variables and each fi be totally
differentiable. Then the asymptotic distribution of
/n (ri(tln,...,'rkn) - fi(el,...,ek)), 1=1,2,...,q, i8
gq-variate normal with mean zero and dispersion matrix ' £ I'”,
where I' = (afi/aed)."

Let fi(yl,ye,... ,yam) be the real-valued function of 2m

variables defined by

fi(yl,loo,yam) = yi - Aiyim’ i = 1’2,000’mo (ho?)

Then
1l it)=1
at‘i/ayJ = -\ ify=i+m (L4.8)
0 otherwise
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Therefore, one can show that I' Z I* = (1-i J)’ where

T

13 = Ver(G=hyhy), i0 1 = g,

and

13 = Cov(Gli,GlJ) -\ Cov(An,GlJ) x Cov(Gn AIJ
+ }‘i)‘J Cov(Au,Ald), ir i # 3.

Hence, by the theorem mentioned above,

n G n G -\ A
- rl" 1 rl $§$m morm
"(E o X “T—)
r=1 r=l
is AN (0, T Z TI*).
Let A, = E(Ali), i=1,2,...,m. Note that Ay # 0 implies

Ai # 0. One can see then that the asymptotic distribution of

rl J\lArl Z rm AmArm
AE 252, 5 e
r=1 1, rs}l n

:!N

is N(Q,I,), vhere I, = (1'1‘1 A ).

Since * 2 A, + A, a.s., one can, also, show that
r=1
Y =/ f: Cy=MyAy B G -Aph
-n - n e % n
r=) A r= Z
r;. rl r=l
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is AN {(0,Z.). But since f
(_’ 1) i’ﬁg
A = 26 /EA , 1=1,2,...,m,
i r=1 ri r=] ri

it follows that VA (A j=A;seeesh=dy) is AN (0,1,).

2
Let Di = 113/Ai, i=1,2,...,m. "Then

s e A

a ~

A=A A=)
S )
Dl m

essedaii

is AN (9_,):2), where

= (8;,) = (1;,/aA,(D;D yL/2y, (4.9)

Lo 3103

B fﬂ‘”&’ﬁ‘iﬁi Ty

Note that GiJ =11ifi=), and

Di=

1 =
A2 Val‘(Gli-XiAli), i - 1,2,.“,1![- (u.lO)
i

N O e S ot

Observe, also, that E(Gli) = AiE(An), 1%1,2,...,m, by Equation (L.2).

R b e gt

Now, assuming that A, # 0 and Ag # 0, this implies

3 ¥ 1
0= see —’G (x 9oy ) £
By k=lj I{Ai AL R | 5
( k-1 )}t-l GJ ( k-1
- A x,...,_,T-Z;x n A exp(=r,A,)) 1 ax,.
A R T T I 73 T
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Thus, if i = 8,

R S 2 __1. - - 2
0 = =5 E(6,)" - 5 B(Gyy) E(Gg-Ay ) * E(A)” -
A A M

v . L
S fne s 43 A, w..-ﬂ,“_,g‘.‘mi\_; ».z‘.xi,éi.‘: 'iﬁh‘%ﬂﬂ‘%

Using (4.2) again gives

E(G,,) = Var(Gy,) + Af Var(Ay,) = 24, Cov(Gyyohy,)

Fey

Var(G, =M ,A),) - (4.11)

If i # s, then
?

0 --k% f_[{i—- 6,-A,} {i— G-,

t-1 GJ k-1
exp(-XJAJ) I dx,

m oA
=0 3 1=1

and this gives

0 = E(0),6).) = AE(Gy ) = A;E(AG ) 3

+ AiAsE(AliAls) *

Hence,

ASE(G]_i)E(AlB) + AiE(An)E(Gls) - E(Gli)E(GlB)
- AiAsE(Ali)E(Als) = COV(Gli’Gls) - A Cov(Gli,Als)

-\ Cov(Au,Gls) AN Cov(An,Als) . (4412)
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Since E(G“) = AQE(A it follows that the left-hand

lg)’

side of (L4.12) is equal to zero and, hence, Ly = I. Thus,

~

A=\ A=)
nl 1 m
/a( ..., mm )

D A
1 m

a

is AN (0,I). Note that if M oS e s A then Mg = Mg 808

for n > "0’ say. Thus,

e (Anl-xl . xnm-)‘m)
% e
m

is AN (0,I). By (k.11)

E(G.,)
S - AR &
i i
Using (4.2), this gives
i
Di i E Gli: .
2
Note that since = Y G, - E(G..) then —t—— 4 p
n & ri li a.S., en 1 % d i 8.S.
= G
n & ri

The next result is immediate.

Theorem 4.8

The asymptotic distribution of

(A =2,/ S (A =)/ is N(0,I) as n -+ =.

38
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As before, if kl < 4ee < Am, then the same result holds

if the Ani are replaced by Ani'

Remark 4,9

If one assw.es that Ay > Ay > ... 2 A, , then the likelihood

n IS
L= 1 Lr is the same and hence the naive MLE Anq of Aq is the

) r=l
same and is consistent. The MLE inq may be easily found by

applying again the results of Brunk (1958). Of course an is

also consistent in this case,
The reader is probably aware, at this point, that if t=1 then
this class of distribution reduces to the class considered in the

The MLE is equivalent in both situations,

& —M&t%::.ﬁ;ﬁ@;a:?éf;;i%; . ‘% i’%

Ry

g R s B b

last section when g(x) = x.
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5. NONPARAMETRIC ESTIMATION
5.1 Introduction.

The concept of "failure rate" is a very important practical concept
in reliability and has motivated several very useful classes of distri-
butions, e.g., Increasing Failure Rate (IFR) class, Decreasing Failure
Rate (DfR) class, U-Shaped Failure Rate class. The failure rate r(-)

of a distribution function F having derivative f is defined by

r(x) = £(x)/[1 - F(x)] for F(x) <1

and

r(x) = » for F(x) = 1.

The estimation problem that we shall be concerned with in this
gsection can be summarized in the following way. The life-time
distribution of the items to be tested is assumed to have an increasing
failure rate over the interval [0,7), i.e., IFR on [0,T). No other
agssumptions about the distribution or its failure rate is given outside
that intervel, The asssumption of increasing failure rate can be
changed to decreasing failure rate and the same results will follow
vith the obvious modificetions. Data are assumed to arise from Testing
Plan A,

Let [aF,BF] be the support of the c.d.f. F. The notion of IFR

on [0,T) is made more precise by the following definition.

ko

A
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Definition 5.1

Let T be a fixed positive resl number. A c.d.f. F, F(0) =0, is

gaid to be IFR (Increasing Failure Rate) on [0,T) iff it satisfies one

of the following conditions: (i) -log[1-F(x)] is convex on
[ags Bpls 0 < ap < Bp < T and F(Bp) = 1 if By < T or (11) the part
of the support of F in [0,T] is empty.
Let F = {F: F is IFR on [0,T)}.
The following theorem is similar to a theorem concerning IFR distri-
bution given by Marshall and Proschan (1965), and we shall omit its

proof because of this similarity.

Theorem 5.2

Suppose F € F, 0 < Z < Bo. Then F is absolutely continuous on [0,2).
Note that F may take a jump at BF if BF <T,

Using the definition of failure rate and the above theorem one can

very eagily prove the following.

Theorem 5.3
(i) F e F iff r(+) is nondecreasing on [O,BF), O<ap BTy

and F(BF) =1 if BF < T,
(ii) The part of the support of F in [0,T) is empty iff r(x) = 0
on (0,T7].

(141) If F ¢ F, then for xe[0, BF)

F(x) = 1 -~ exp(=-R(x)), and

£(x) = r(x) exp(=R(x)), vhere
x

R(x) = é r(y)dy.
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The class F includes the usuasl class of IFR distributions. It is

Viznili t

easy to show that there exists no sigma-finite measure relative to

i, 5

vhich all the distributions in F are absolutely continuous,

i

Since we are dealing with a nonparametric family of distributions
for which there exists no sigma-finite measure relative to which all

the measures induced by F are absolutely continuous, the usual concept

;Mmsﬁriﬁ ;7,3;\!5‘“‘»‘ 3

of maximum likelihood estimation cannot be applied. The general

definition of MLE due to Kiefer and Wolfowitz (1956) is usei in this E
gsection to determine the MLE of the life~time distribution F over ?
(0,7), where F ¢ F and data arise from Testing Plan A. It is also §
shown that this MLE is strongly consistent as n, the number of %
original items, tends to infinity. %

In this section let d(n) denote the total number of distinct ;;
failures in [0,T) in the combined n experiments. Recalling the " ‘i
notation given in Section 2, observe that 3

0 cal) £ 3 (K D).

r=l

) .
St N RS A AN

Also, let 0 = Z° < Zl < 4ee ¢ Zd(n) be the ordered, distinct, failure
times er' J=1, «eepy K=1, r =1, ..., n. Finally, let p{n) be the

\J
number of YKrr 8, r =1, ..., n, strictly greater than zd(n)'

5.2 Maximum Likelihood Estimate.
In this section we shall find the MIE of that part of a life-time

distribution F ¢ F over the interval {0,T) when data arise from

k2
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Testing Plan A. The following general definition of a maximum likeli-

hood estimate is due to Kiefer and Wolfowitz (1956) and is needed to

N AL N . ; N "
WL&%‘»«MM%‘ 8 v

determine the MLE of F ¢ F for the two reasons mentioned earlier.

Sng i

Definiticn 5.4
Let 7 be a sample space, B & o-field on 2, P a family of probability

measures on B and 0 a set indexing the elements of P by P(-le).

6 ¢ 6. Let X be a random vector defined on & with distribution function

[P S

determined by P( |e°). 8y € 0. If X;5 Xy5eees ¥, denctes & random

sample from P(-|6,) then the MLE of o, is 8 if 6 ¢ 0 and

n dp(X |e)
m
r=1 a(P(X je) + P(X _|8))
sup =]
b0 B ( ap(x_|e) }
r=l { a(pix o) + P(x_|8))
vhere
dP('IOl)

a(p(- o)) + p(-|02))

denotesthe Radon-Nikodym derivative of P(- Iel) with respect to
P(- 8,) + P(-|8,).
The Kiefer and Wolfowitz concept of MLE will now be considered within
the Irasmework of Testing Plan A and for life-time distributions F ¢ F.
Let @ = {4, and all finite sequences of non-negative numbers whose sum
is less than T}, vhere ¢ is the empty set. Also, let )(:l = {xef

]
which have exactly i elements}, i = 0, 1,... . Then 0= {J Xi. .We
is0
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define a set A to be measurable in R if and only if A = i Ai and Ai

is Borel measurable in X g Let B the o-field of measura‘zi.g sets in Q.
For each F ¢ F we will define a probability measure P(+|F) on B and

will denote the collection of all such measures by P, These probability

measures will be defined first on the Borel measurable sets of each Xi.

Some preliminary notetion is negded. Denote by A{e Ii, F) the product

measure on R' (Bucidean i-th space) induced by F, where A(+|0, F) is

defined to be one. Also, recall thet F(x~) = 1lim F(x=c), € > 0, and

0 0 e=0
products of the form NI and sume of the form 2 are 1 and 0,
J=1 J=1

respectively. For each Borel measureble set Aig( i and F ¢ F define
the measure P(+|F) to be
i
PAR) = J {1 - F(IT-20%,17)} arlx|4,F).
A =1 -
1 J
For any A ¢ B we define P(A|F) to be
PAIF) = 2 (A |F)
i=0
where A:l = AﬂXi.

This definition is motivated by the integrand of equation (2.7).

Note that for each F ¢ F

P(R|F) =P 3 X, |F) = X P(X,|F)
i=0 i=0
= i Prob(K = i + 1|F) = 1.
i=0

Thus, for each F ¢ F, P(¢|F) is a probability measure on B
The Kiefer and Wolfowitz concept of maximum likelihood estimate
together with our definition of the measures P(+|F) ¢ P, F ¢ F, yields

the MLE F_ of F on [0,7) described in the next theorenm.

Ly
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Let I(|S) be the indicator function of S. Also, let n (y)

denote
kr
z I(Yir'[y"'))'

i=1

Theorem 5.5

The MLE f‘n of F has failure rate ;n vhere f'n is constant over

[zq. zqﬂ)’ qa® 0,...,4(n), and
n Kr-l 1
. & .1-2-1 Wyl 22 2)
r (2,) = min max T o (5.3)
1 a(n)4l>vagl O<ucg n v
I [ oy
=l 2
u
f:

The proof of this theorem follows in a straightforward manner
frols the Kiefer-Wolfowitz definition of MLE using the probability measures

we introduced above and Brunk's (1958) results.

Remark 506
We vill now give & useful method for determining ;n‘ Let T, be

n 2
q+l
the time on test over [zq. zm) (i.e. o " rzl £ n.(y)dy), q = 0,.00,
q

a(n). 1t ‘Toé)‘l < ('rln)’1 € e & (Td(n)n)-l then i-n(zq) - ('rqn)"l.
g = 0,...,4(n), If for some i, (Tm)'l > (T(ii-l)n).l then replace

)1 )2,

-1
(T:I.n) and (T(iﬂ.)n by 2(T:ln * T(i#l)n

If a reversal still exists, replace by appropriate averages. That is,
-1 =1 -1
it 2(T1n + T(1+1)n) > (T(“‘?)n)’ then “pl.ce (Tin) s (T(i’l)ﬂ) and
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(T(ga2)n) O 3Ty + Tia1)n * T(ae2)n

Continue averaging whenever there is a reversal. This will yield the

monotone increasing sequence r(Z,) < r(2) < oo irn(zd(n)) given by (5.3).

5.3 Strong Consistency of ﬁn'

The main result of this section is that the MLE of F on [0,T)
converges uniformly a.s. to F as the number of items put on test at
time zero increases. To accomplish this we will prove a convergence
theorem for i'n(x). x¢[0,T), i'n(x) defined in Theorem 5.5. This
result will allow us to easily prove the main result plus several
corollaries. Furthermore, since the failure rate of a life-time distribution
is an important practical concept, the convergence theorem for in(x)
is also a significant practical result.

We will need several theorems before we can prove the convergence
theorem for ;-n(x). The next theorem involves rewriting f'n(x), given in

Theorem 5.5, in a form we need to show consistency.

K <1
n r
Let R(u,v) denote § } I(Xdrl[u,v)) and S(u,v) denote
r=l =1
n v
i J n.(y)dy.
r=l n

Theoren 5.7

Let xc(0,T) and
Z (x)= max {2,12.<x}).
n Ocicd(n) o °

Then
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f’n(x) = inf sup g;z . (5.4)
x<v<T n<Zn(x) ’

Proof:

Follows directly from Theorem 5.5.

To show consistency of r n Ve need the next two theorems. Let

K -1

n r
111l
=] §=1
l“ln(u,v)~'=ru‘$i » D<cuc<cvceT,

I [ o (y)y
r=l u

and lct Ip be the intersection of the support of F with {o,T].

Theorem 5.8

Let Oiuoivof_'rbefixedwhere, Oiu°<TifIF=¢,

0_<_u°<v°< Bpit Ip = [aF, BF]' Then, a8 n + ®
i) Mn(uo,v) converges uniformly, a.s., in Vo LV < T

1i) Mn(u,vo) converges uniformly, a.s. in 0 < u < u,.

Proof:
1
Let xl, x?_,..., be a sequence of independent, identically

distributed (i.i.d.) random variables with c.d.f. F, F(0) = 0, Let N,

N
be the first integer such that }° X, > T, N, the first integer

2
N, i=1 N
such that |} X, 2 T, N, the first integer such that ) X,>T,
i'Nl*l i'Nl"'Na*l

and so on. Then Nl ,Na,... » 18 a sequence of 1.i.d. random variables.

Using the Glivenko-Cantelli theorem one may show that as n + «
Bn(u,v) L piv) - F(u'), a.8., -® <cucvc<ae (5.5)

b7
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vhere

Rgn)
(X, | [u,v))

B (u,v) = i=1 ey s HN(n) = rglur.

Also, using the strong law of large numbers and the Glivenko-

Cantelli theorem it is easy to show that as n + «

. (u,v) R Ehl'qi [F,(v") = P (w)] s

for -» ¢ u < v ¢ o, vhere
n

Cluv)= ZL X , Aln)= Tk,
n A(n) ? rzlr

(5.6)

and F) is the c.d.f. of xK.l 1+ Ve may conclude from (5.5) ana (5.6)
9

that as n + =

D (u,v) = B (uv) - C (u,v)

converges uniformly, 2.8, for == < 4 < v < =,

Similarly one may show that as n + =
S,(u,v) converges uniformly a.s. on 0 cu<ve?®
vhere
n v
I [ n.(y)ay

8 rs]l u
Juv) = B

L8

(5.7)

(5.8)
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Also, observe that for n, sufficiently large,
(Sn(uo,v))'l is uniformly bounded, a.s., (5.9)

onvoiv<'.l’,n_>_no.

Dn(uo,v)) is uniformly bounded, a.s. (5.10)

< < >
onvy<v<T n2n,

(Sn(u,vc))':l is uniformly bounded, a.s. (5.11)
onoiuiuo,nlno,and

Dn(u,vo) is uniformly bounded, a.s. (5.12)
°“°i“i“o’nl“o'

The proof is completed since (5.7) - (5.10) imply (i) ana (5.7),
(5.8), (5.11) and (5.12) imply (11).

Theorem 3,9

Let F be IFR on [0,T) with failure rate r on [0,T). Then, for

0_<_u<v<'rf1xed,where0_<_u<BifIl'..'[a,B].

K-l

B § 1xJlu,v))
sl

r(u) < < r(v) (5.13)

v
E(f n(y)ay)
u

where K = Kl’ n(e) = n1(~) and xi = xn. i=1,2,....,

Lo
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Proof:

If Ip = ¢ then F has failure rate O on [0,T) and, thus, (5.13)
follows. If IF = (g} then F(g8) = 1. Consequently, r(x) = =, x > 8, and
r(x) = 0, x < g. Also,

K-1
1) I(Xilfu.v))) 20 foru<ves
i=l

and
K-1
1) I(xil[u,v))) >1 for u< g < V.
i=1
Further,

v
E([ n(y)dy) > 0 for u < 8.
u

Thus, (5.13) easily follows when Ip = {8},

Now, assume IF = [a,8], 0 < <B < T. Also, recall that by Theorem

4,3, we know that if H is a ¢,d.f. with failure rate constant, say, A, on
(ayb), then
K-l
Bl I 1(x,|le,p)))
isl

oY = ). (5.14)
([ n(y)ay)
a

Case 1.
0O<uc<vc<aB,

If F has a nondecreasing step-function failure rate on {u,v)

then (5.13) holds by a simple application of (5.14). To prove that
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(5.13) holds in general for this case, let r(x), n=1,2,...,

\’hﬁ.“‘; S _’%&,‘?‘

xc{0,8) be a sequence of real valued functions such that rn(x) = r(x),

A
SOSAT LS

~ xelo,u), rn(x) is a nondecreasing step-function on [u,v) and
r (x) ¢ r(x) on [u,v). Note that r (x) < r(x) < r(v) < =. .Thus,

by the Lebesgue Dominated Convergence theorem, as n + »

y Yy
([’rn(x)dx - (I) r(x)ax, y ¢ [0,v).

PR Pl T S

et

Therefore,

y y
1 - exp(-[ r (x)ax} + 1 - exp{-] r(x)ax)
0

F,(y) !

Fly), y ¢ (0,v), as n + =,

Let Fn(y) = F(y), y > v. Then Foon=1,2,000, is absolutely
continuous on [0,v), continuous from the right on [v,»), since

F is, and Fn(o) = 0, Fn(-) = 1, Thus, F_ is & sequence of distribution

functions, Fn(y) +Fy), yc (-w»), as n + =, Let

k-z-l lf
S ={ x, <T, x, > T}, k =1,2,... .
ko Tyt s 1 '

e Rttt

By the Helly-Bray theorem (Loeve (1963))

K X

‘a s [oosf M QF (x,) =+ [eeof W aF(x,)
PLEek|F, ] Isk 'ri=1 n i 8, 1=l i

i

= P{ksk|F}, n » =, k = 1,2,... . (5.15)
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Let p (k) = P[K=k|Fn], n=1,2,..., k =1,2,..., and %
p(k) = P(k=k|F], k = 1,2,... . By Rao ((1968), page 106) and 5‘2
(5.15) ]
I Ip(k) ~ p(k)] +0, n+a, (5.16)
k=0 _

Now, note that

N N Y s oo

K-1
] I(x I[u,v)\ < [—], 8.8., u >0 (5.17)
i=1
and ;
n(y) < [;11], 8.8.,y >0 (5.18) ﬁ

Pt

B

vhere [x] denotes the largest integer less than or equsl to x.

Thus, since u > 0 and (5.16) holds

£ (T 20k luw)) = (T 1, fuw))]
I(X ’ - I(X, |{u,v
EFn i L E"m i

WU IR A PO SIUTHC SEer s S N

k
= I( [ ’ )) n ar (
|k21‘{k Z xil u,v R X,

z I 2 I(xil[uov)) n dF(x )| ;
k=1 Ak i=1 J= ;

3

3

z
¥

A%

%
AY
I
;
<
i

%
3.
et

< [2] Z |P (k) - p(k)| +0, a8 n + =,
k=1

Also,

H T
f nly)ay < (v-u) n(u) < (v-u)[;]

u
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vy (5.16), Hence,
(T 2 {Tav)) » 20T 1%, | [use))
I, {{u, -+ I(X R
F’:‘niﬁl gty EF1=1 gt

end

v v
Ep (f n(y)ay) + Eg(f nly)ay).
nu u

However, from (5,14) it follows that

(T 1, fuon)))
Ep 1(X, | [u,v
r.(y) f_—&i.l g r (v).

(f o(y)ay)
e

Taking limits, and using (5,19) and (5.20) gives (5.13).

Casgse 2.

O=uc<vcesg,

Inequalities (5.13) follows easily using the results of Case 1,
Also it is straightforward to use the results of Case 1 to

prove (5,13) for
Case 3.

BeT,BeveT,

(5.19)

(5.20)

We now give the convergence theorem for the estimate ;n(x) of

r{x), 0 ¢ x < T,
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Theorem 5.10
Let F be IFR on [0,T) with failure rate » on [0,T).

Then,

- » ~ +
r(x;) < lim inf rn(xo) < limsup r (xg) < r(xo) a.s.
for each x, ¢ (o,1).

Proof:

Case 1.

T

In this case I, (x) = 0 a.s. for 0 < x < T. Since r(x) = 0,

0<x<T, the result follows.

Case 2.
IF = [“oB]'

Let 2 (x,) = max {212, < x,}. We will show the right-hand
inequality first.

If 8 <Tand B <xy<T, then r(x;) = », since F(8) = 1,
Hence, assume 0 < X; < B < T. Choose v,, Xy € Vo < 8. Then

;n(xo) = inf  sup Mn(u,V)
X<V u<zn(x°)

< su Mn(u,vo).

u<zn xo)
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Let
Kl-l
B( ] I(xdl'[a’b))
M(a,b) = J'% .

E(f n, (y)ay)
a

Since 0 < Xy < Vgs We may apply Theorem 5,8 (4i) and conclude
that as n + « M (u,v,) converges tnifornly a.s, for 0 < u € x,.

Thus, for ervitrary ¢ > 0 and n > N(c), say,

T (x)) < sw  (Mu,vy) +e).
B u<2n(xo)

Since u < 8 we may apply Theorem 5.9 and conclude that
- - ’
lim sup r,(x,) < r(v,) + c. This gives lim sup rp(x) < r(xy)
a.s. since Xy < Y and the right-hand limits exist.
We will now show the left-hand inequality.

Cage 2a.

0O<a andx,e (0,a).
Since r(xa) = 0 the left-hand inequality holds.

Case 2b.

B<Tand B <x,<T.
If F takes a Jump at 8 then with probability one zn(xo) =8
for n > N, N sufficiently large. But this implies that

r(x) =% (B) =@ rorn >N, 8¢x<T Thus, lin inf P (xy) = =

and, hence, lim inf rn(xo) lr(xo).
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If F does not take a jump at B then r(g~) = « and therefore
as n + o Zn(xo) + B a.8.. Choose Uy 0 < Uy < Then for N

sufficiently large, u, < Zn(xo) < B, for n > N, and, thus,

0

fn(xo) = inf sup Mn(u,v)

X<V u<zn(x0)

> inf M (uy,v)

X, <V
0—

. > inf Mn(uo.v) for uy < v_ < 8.

V. <V
o—

Apply Theorem 5.8 (i) and conclude that for arbitrary

€ > 0, N(e) sufficiently large,

r (%g) 2 inf (M(uj,v)-€) a.8., n > N(e).

V.<Vv
0—

By Theorem 5.9, ;n(xo) 3_r(uo) - ¢, n > N(ec). This gives
1lim inf rn(xo).i r(uo) a.8. for all u, < B. Letting uy + 8
gives lim inf §n(xo) = » g,8,, Since fn(xa) = © for x, > B,

we have the desired result for Case 2b.

Case 2¢.

a<x, <B<T,

0

Choose uo, a < uo < xo. Then for N large enough so that

< &n(xo) < x

Yo

0,
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rn(xo) = inf sup Mn(u,v)

Xo<V u<Zn(x0)

> inf Mn(xo,v).

v
X<

Applying Theorems 5.8 and 5.9 in the usual manner gives
lim inf r (x,) 1'r(uo) a.s. for all & < uy < x,. The
result follows.

This completes the proof.

The main result of this section is

Theorem 5.11

Let F be IFR on [0,T) with failure rate r on [0,T). Then

Fn(t) »> F(t) uniformly a.s. in te[0,T), where

f‘n(t) =1 - exp(-gt i-n(y)dy).

Proof:
Let IF be the support of F on [0,T]. 1If Ip=¢ the conclusion
is clearly true. Note, aiso, that ﬁn(o) = 0 a.8.,. Suppose then that
Ip = [a,8]. By Theorem 5.10 ;n(t) +r(t), t € [0,8) except possibly
on a set of Lebesque measure zero. Let t ¢ [0,8) and let t 5_t° < B
be & continuity point of r. For arbitrary ¢ > 0 and N = N(to,e)
sufficiently large, §n(x) 5_;n(to) :_r(to) + € for x € [0,t], n > N.

Thus, by the Lebesque Dominated Convergence theorem

t +
{ rn(z)dz*{ r(z) dz a.s. (5.22)
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Since
t
F(t) =1 - exp(-f r(z)az), t ¢ [0,8),
0

(5.22) implies that
i‘n(t) + F(t) e.s. t e [0,8). (5.23)

Case 1.
F is continuwous on [0,T).

Since Testing Plan A and all related random varicbles are
uneffected by the behavior of F on [T,»), we may assume without

any loss of generality that F is continvous on [0,T].

Case la.

F(T) =1, 8= T.

Extend F to (-=,») by defining Fn(x) = 0, x <0, Fn(x) =],

x> T, Then, by (5.23) as n + =
F_(t) » F(t) 8.5, t € (-=,0)., (5.24)

Note that Fn is a distribution function. Since F is continuous on
(=0 @), l"n(t) + F(t) uniformly a.s. t ¢ (-=,»), as n + » by Polya's
theorem (Eisen, 1969).

Case 1b.
P(T) < l' B = T'

Since 1-F(T") > 0, there exists a.s, some m = 1,2,..., such that

K, = 1. This implies that either d(n) = 0, or p(n) > 1 and d(n) > 1,
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for n > m. In any case, ;n(x) <wa,s., x¢ [0,T), for n > m.

Therefore, i‘n(x) <1, x ¢ [0,T), and hence, i;n may be extended to

(0,7} in a continuous manner, for n > m. Since F is continuous,

F (T) + F(T). Let
F (x) ‘ :
2 e {o,T] ]
F (1)
G ( ) = ' (5025) y
" ) 11 X € (To“) {
j
0 X e (““’0) H
\ f

for n > m, and let

P_P_‘ch x ¢ {0,T] ;

F(T) ;
G(x) = ¢ (5.26) ‘

1 x ¢ (T,»)

LO X € (-',0) .

Then Gn’ n=m,m+1l,...y G are distribution functions, G is
continuous and Gn(x) + G(x) a.s. x ¢ (-»,»), By Polya's theorem
the convergence is uniform. Since l;n('l‘) is bounded for
n=m,m+1,..., this implies that i;n(t) + F(t) uniformly a.s.

t ¢ [0,T), a8 n + =,

Case lc.

8 <T.
Let B < x < T and € > O be given. By the continuity of F there
exists & 0 < z < B such that 1-F(z) < ¢, and by (5.24) there
exists a N = N(z,e) such that F(z) - ¢ 111(:), n > N, Hence,

fora>N,1-2 <F(z) -¢ il':n(z) f_g‘n(x) < 1. Therefore,

Boea wreim -
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lim ﬁn(x) + F(x) =1 a.s. for x > B. Using (5.24) we have

n-»o

in(x) + F(x) a.s. for xe[0,T). Using Polya's theorem again we may

conclude that in(x) +> P(x) uniformly a.s. for xe[0,T), as n + =,
Casé 2,
F takes a jump on [0,T).

Since F takes a jump on [0,T) at B, it follows that with probability
one Km =1, for some m = 1,2,... . Thus, rn(t) =w, <t <T,n>mn,
which implies that ﬁn(t) =1, 8<t<T, n>m Since F(t) =1, t > 8,

we have

in(t) -+ F(t) uniformly a.s. t ¢ [B,T), as n + =, (5.27)

We will now show that the convergence is uniform on [0,T). For n > m,

ﬁn is a sequence of nondecreasing, bounded, continuous functions. Hence,
they may be extended to [0,8) in a fashion which will preserve continuity.
Similarly, we may extend F to [0,8] in a continuous manner. By (5.23),
F,(t) » F(t), tc[0,8), as n+=, Let F*(8), F*(8), be the extended

values of F and F for n > m. It is straightforward to show that

Fg(B) + F*(B) a.s. as n » =, Now, let

Fn(x)
0 <x <8
% - 9
Fnlﬂj
Hm(x) ) x > B,
0 x <0
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;%%) 0<x <8 g
H(X)' 1 X_?_B, E
0 x<0

for n > m, Note,then, for n > m, Hn, H are continuous distribution

functions, and Hn(x) + H(x) a.s. Applying Polya's theorem again we

may conclude that Bn(x) + H(x) uniformly a.s., xe{-»,»), as n + », Then

F“(x) + F(x) uniformly &.s. xe[0,8), 85 n + =, (5.28)
Thus, (5.27) and (5.28) give the desired result. This completes the
%
proof. !
We now give two useful corolleries of Theorems 5.10 and 5.11. i
Coroll $.12
let S = [u,v] be a closed interval of continuity of r,
0<u<v<T, Then, ;n(x) + r(x) uniformly a.s. on S as n » «,
Proof.,
By Theorem 5,10
(5.29)

;‘n(X) * r(x) e.,8, on S as n + «,

Case 1.

r(u) = r(v) >0
For N sufficiently large
61

lins b




T e g e

O T o S Lat e A

r(u) - ¢ <r(u) <r(u) +¢

and

r(v) - e <7 (v) < r(v) + ¢

£ (u) < ¥ (x) < £ (v).

- TP IR T

The result follows.

Case 2. i.
r(v) > r(u).
I
Let {
r (x) - r (u) x
(2" » <xev |
rn(v) -rn(u)
D (x) = é
n 0 X <u !
1 xX>v
n=1,2,..., and let ;
r(x) - r(u |
riv) - r(u utxzv |
i
D(x) = i
0 x<u :
b xX>v

Note that Dn' D are distribution functions and D is continuous.

Applying Polya's theorem {Eisen (1969)) and (5.29) gives
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Dn(x) + D(x) uniformly a.s. on (~»,») as n + =, For x € S, the

sequence {rn(x)}, n > 1 is ultimately uniformly bounded. This implies '

that fn(x) + r(x) uniformly a.s. on S as n + », The proof is completed.

Corollary 5,13

Let S = [u,v] be a closed interval of continuity of r, 0 cu<v < T.

Then,

fn(x) + f(x) uniformly a.s, on Sas n + «

) -~ x -
where £, (x) = r (x) exp(-(f) r (v)ay).

Proof:

The proof follows directly from Theorem 5.11 and Corollary (5.12).
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