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1. INTRODUCTION AND SUMMARY

Given observations from k populations whose distributions are the same

except for the value of a location parameter, it is desired to estimate the

value of the largest of the k location parameters. A natural estimator for
this problem is the largest of the k sample means. Measuring thé perfor-
mance of the estimator by its mean squared error (M.S.E.), it is possible to
choose a sample size so that the M.S.E. is bounded by a given constant regard-
less of the values of the location parameters. If the common distribution
function involves an unknown scale parameter, however, then no such choice of

sample size is possible, but a sequential rule of the type studied by Chow

and Robbins [4] can be constructed. Its limiting properties will be studied
here.

Point estimation of the largest parameter for known variances has been
studied before by Blumenthal and Cohen [2], [3]) and Dudewicz [5], and interval
estimation by Saxena and Tong [7], and Dudewicz and Tong [6]. Interval esti-
mation with unknown variance has been examined by Tong [9], [10]. The use

of the largest observed mean has no optimality properties and in fact for

nu —— loning i —— PR - o g ] L] L]

k = 2 is known to be inadmissible [2] for M.S.E. However, since the analytic

form of the competing estimators is rather involved, it is suspected that this

natural estimator would be widely used and its properties would therefore be

of interest. In the next section, the sample size for the sequential stopping
rule is shown to behave well under mild restrictions on the distributions.
The behavior of the M.S.E. of the estimator formed from the sequential stopping

rule is studied only for normal distributions.




L o 3

The risk function depends on the differences between the largest parame-
ter and the other parameters. In Section 2 we derive a conservative procedure
based on the maximum risk as a function of these differences. In (1], a
sequential procedure has been studied which attempts to capitalize on the
information in the sample about these differences, when the variance is known.
In Section 3, this procedure is extended to the case of unknown variance, and

a few of its properties are outlined.

2. CONSERVATIVE PROCEDURES

Let xi (1 - i < k) be an observation from the ith population having

c.d.f. F(x'ei) (ei a real number). We assume that the family of c.d.f.'s

F(x,0) satisfy

(2.1) (i) F(x,0) = F(x-0), where F(x) is a c.d.f.
(ii) F(x) =1 - F(x) or f(x) = £(-x) for all Xx,

(iii) The family of density functions (f(x-6)} has monotone
likelihood ratio.

(iv) [ xf(x)dx = 0 .

Define

(2.2) X* = max(Xl,...,Xk); 6% = max(el,...,ek) .

The ordered 6's will be denoted 6 < rer < B The M.S.E. or

(1]

risk function of X* is easily seen to be

(]’
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(2.3) R(K 68,...,0,) = E(x*-0%)% = [ (x-0%)% T FGesy)

To choose an appropriate sample size, this risk must be studied in further

detail which is done below.

Lemma 1. Let F(x,8) satisfy condition (2.1). Then

(2.4) sup R(X*; 6),.0.,8,) = R(X*; 0%,0%,...,0%) = [ xzdFk(x)
(eli"'lek) -0
and i
i
!
. # 2
(2.5) lim R(X*; 8,,...,6,) = [ x“ar(x) .

k1 (k-11"
Proof: Write

e*

ROX*; 6,,...,8) = | (x-e')zan(x-ei) . é* (x-e*)zan(x-ei)

1!

(2.6)

xzd[HF(Ai+x) - TF(8;-1)]

oO~— 8

where Ai = 6% - ei > 0. Since x2 is monotone increasing over (0,«), the

expectation will be dominated by

[ x%dH(x)
0

if H(x) ;:[HF(Ai+x) - HF(Ai-x)] (see, for example, Lemma 4.1.2 of Dudewicz

[S], or integrate by parts)., That H(x) can be taken as [Fk(x) - Fk(-x)]
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is a consequence of Theorem 1 of Saxena and Tong [7]. Equation (2.5) follows
by letting all Ai + = (except one which is fiaed at zero).
Note that for k > 2, the risk when all the #8's are equal, (2.4),

exceeds the risk when the difference between 6* and the others becomes

infinite, (2.5). (See Lemma 4.2.3 of [S5]}.) Regardless of k, the latter
risk is just the variance of a single Xi as would be expected. In the case
k = 2, the two risks (2.4) and (2.5) are equal as was shown by Blumenthal and
Cohen [2] without the assumption of monotone likelihood ratio.

Suppose that each Xi is in fact xi’n and is the average of n inde-
pendent identically distributed observations say Yij 1c<i < n), so that
F(x) 1is really Fn(x). A conservative procedure which will guarantee that

the risk of estimating 6* by X*, is no greater than r (given) for any

parameter configuration is to choose n as the smallest integer such that
x
/ xzdFﬁ(x) <r.
-®

Suppose in addition that for each n, F (x) is of the fomm Gn(x/ﬁyo)
where 02 is the variance of a single observation. Assume that in addition

to (2.1),

2.7) [ gx)dx = 1 .

Then the risk function is

@8 ROt 8,00 = Pmyac o+ oo < Gmyiasio) = adn.

The conservative choice of n will then be the smallest n > (Anozlr).
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If e val. 2 of o° 1is rot krown, a reasonahle way to proceed ic to form

an estimate of 02 by defining

- 2 v 2 :
(2.9a) S; = (1/n-1)j§l (Y35 = %50 1 <ic<k
and

2 k 2
(2.9b) S = (1/1()121 Sii -

Clearly Si is a consistent estimator of oz, and a sequential stcpping

rule can be formulated as follows: Let N be the first n such that
(2.10) n > (AS3/r)
e = nn &

(If desired, n may be restricted to exceed a given value m, and (%—+ Sﬁ)
should be substituted for Sﬁ if Gn(x) is discrete.) Then 6* will be

estimated by X& = max X. .
. i,n
l<i<k ™

The following theorem giving the behavior of N is a restatement of
the main Theorem of Chow and Robbins [4] which applies here directly. (In
(4], Sﬁ is defined by (2.9b) with k = 1. It is easy to check that their

proofs are not affected by having k > 1.)

Theorem 1. Suppose 1lim An =A<ao, Let A= (oZ/r).

el

(2.11a) [N<=»] =1 for every u and 02

P
u,02

{2.11b) lim N , a.s.

L]
8
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(2.11¢) 1im (N/AA\) =1 a.s.
Are
(2.11d) lim (E(N)/AN) = 1.
A+

Note: Since lim Gn(x) = ¢(x), generally (though not necessarily always),
) 1 acd

(2.11¢) A= ? x2dek (x) = A* .

For general distributions, it is not possible to obtain much information
about the risk function, E(Xﬁ - 9*)2. Since it is not true that X; forms
a martingale, theorems relating to the moments of randomly stopped martingales
cannot be applied. A lemma of Tong [10] shows that Xﬁ converges stochas-
tically to 6* as T -+ 0, but little else can be said in the general case.

Hereafter, assume that all distributions are normal. In this case the

distributior of VN(X% - 6*)/0 is independent of N. In particular

B (X - 0%)%|N} = {(ale)Jyzdno(y + (8;,//0)))

(2.12) 2
< {1/NJA*et .

The risk of X¥ is thus related to E(N'l). From (2.12), we see that

(I/r)E{(Xﬁ - e*)ZIN} < {1/N}JA*A, Thus from (2.11c) we can conclude that

(2.13) lin (/D)EC(KS - 692N 21 aus.

A0

This limit is conservative as can be seen by the following argument. Consider




J y do(y + (8;v/0))

Applying the bounded convergence theorem to this integral we see that

(recalling that Ai = 0 for exactly one i if e[k] is unique)

[}
—
.

(2.14) 1im J y2dne(y + (8,/n/0)) = J y2de (y)

} ¢ e

By (2.11b), it is seen that (2.14) implies that

(7]

(2.15) lim J yzdno(y + (Ai/ﬁ}o)) = ], a.s.
0

Thus, using (2.15) and (2.11c), we conclude from (2.12) that

(2.16)  lin A/D)EC(XY - 00)°[N} = (1/A%) a.s. (when o) 1S uniaue) .
0
When e[k] is not unique, the above can be modified, as follows. Suppose

8% = Bk} = O[ke1] = 7" ® O[kose1]” Then {

(2.17) lim (1/r)E{ (x5 - e*)2|N} = (1/A*)Jy2d°s(y). a.s.
r+0
By Corollary 4.2.4 [S], the right sides of (2.16) and (2.17) are strictly
less than one when k > 2, s < k, and are equal to one for k=2, or s =k.
Note that (2.17) depends only on the multiplicity of 6* and otherwise is true
for any parameter configuration.
If on the other hand, we regard r as fixed and examine large o values,

from (2.11c), it is seen that




(2.18) 1lim J yzdno(y + (AiJNVo)) = J yzdn¢(y + (Ai/A*7r)), a'3s% ;

o

and therefore using (2.11c) again in (2.12)

(2.19) (1:: (M/r)EC(XY - e-)zlm = (IIA*)jydeo(y + (Ai/A—*/v’!_')) <1, a.s.

Note that different limits are obtained for the conditional risk in (2.16)

and (2.19) as X + » depending on whether o + » for fixed r or r+ 0

for fixed o.

Next, the unconditional risk will be investigated, namely

(/T)EE( (X - 6*)?|N}). From (2.12) it is seen that this risk .s related to
Eqv?
Starr (8]).

). The following represents a slight generalization of Theorem 3, of

Theorem 2. Let the minimum sample size in (2.10) be denoted as m. Let

An in (2.10) be given by A* (see (2.1le)) for each n. Let w> 0 be

given.
lim (A*A)YE(N™Y) = 1 for m>1 + (2wk)
A»o
(2.20) 21+ @ Yrw) for m=1+ (2u/k)
t ® for m< 1 + (2w/k)

The proof is outlined in the Appendix.
The following lemma is needed to obtain the limit of the unconditional

risk from (2.20) and either (2.15) or (2.18).

SRS T SRR
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Lemma 2. Let M be a positive random variable depending on a parameter t

with the properties

(2.21a) limM=1 a.s.
t o
(2.21b) limBM =1
toe

Let G(x) be a bounded function satisfying either

(2.22a) 1lim G(x) = G*
x+1

or

(2.22b) lim G(x) = G* .
X+

Then in case (2.22a)
(2.23a) lim E(MG(M)) = G*
)

or in case (2.22b)

(2.23b) lim EMG(t/M)) = G* ,

t >

Proof: Consider (2.23a). We shall show that

(2.24) lim E[M(G(M) - G*)] =0 .

t

By (2.22a), given € > 0, there isa 6 = §(t)[6(t) - 0 as

€+ 0] s.t.
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i IGM) - G*] < ¢ for 1-6 <M < 146, )
r ' and
1+6
(2.25) [ M(GM) - G*)| < (1+68)e .
L 1-6
P
[ By the boundedness of G(x), |G(x) - G*| < B (say) and we obtain
1-68
| (2.26) ' [ M@GEN - G*)| < BP[M < 1-8)
| 0
1 as well as
o o
_ (2.27) f MemM) -6%| <B [ M,
V | 1+6 146
3 By (2.21a), for ¢ (and &) fixed there is a tl(e) s.t.
(2.28a) PM < 1-6) <c¢ for t > tl(e)
(2.28b) P[M > 1+48] <¢ for t> tl(e) .
By (2.21b), for ¢ fixed there is a tz(e) s.t,
(2.29) ‘]) M<lee for t>t,le) . ;
]
Thus for t > ts(e) = max(t, (c),t, (¢)), /
© 1+6 1-6
(2.30) [ M<lee - [ M- [ M<leg - (1-6)(1-2¢) = 3¢ + & -2e8.
f 1+4 1-68 0
\
s
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Combining (2.25), (2.26), (2.28a), (2.27) and (2.30)

(2.31) J M(GM) - G*)| < B[4c+ 8- 28] + ¢(1+6) whenever t > ts(c).
0

thus proving (2.23a).

To prove (2.23b), note from (2.22b) that there is a t4(e) such that

(for e given)

|G(t/M) -G*| <€ if M< 146 and t> t, (),

so that

144

(2.32) | M(G(t/M) - G*)
0

< g(l+§) for t > t4(e) .

Also, as before

(2.33) [ M@G@M) -G6)| <B [ M.

144§ 14§

Using (2.33) and (2.32) with (2.30) gives the desired result and completes';he

proof. As a consequence of the above we have

Corcllary 1: Let m in (2.10) exceed 1 + (2/k). Then

(2.30)  lin (I/DEQY - 007 = (1/A%) [ xFdno(x + 8, /AF/T) < 1
g ® -
and

(2.35) lin (/B - 092 « (/A% <1 .
0

-
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Proof: Let M= (A*o2/rN) and apply (2.llc), (2.11d), and (2.20). For
(2.34), let t = o® and use (2.12), writing (Ai/ﬁ/o) as (Aim) and
use (2.18), with (2.23a). For (2.35), let t = (1/r) and use (2.12), writing
(8;/N/0) as (8,/A"t/M), and use (2.14) with (2.23b).

3. ELIMINATING ALL NUISANCE PARAMETERS

For normal distributions, a natural sequential procedure which attempts
to use all of the sample information regarding nuisance parameters would be
a combinavion of the rule studied in Section 2 with the rule considered in
Blumenthal [1]) for the case of known 02. In particular, such a procedure

would use the stopping rule: stop for the first n such that
2, o 2 -
(3.1) r> (sn/n)_£ y dne(y + (Ai’n/rT/Sn)]

where Srzl is given by (2.9) and 2 is a consistent estimate of Ai’ such

i,n
as (X* - xi,n)' When 02 is not known, it is not possible to construct a
two sample procedure whose sample size will be very nearly the same as that
of the sequential procedure, as was done in [1]. Only the sequential proce-
dure will be studied here.

As in [1], an alternative stopping rule will be defined in order to

avoid difficulties which may be caused by the behavior of the function

k

AN oy +x), (g 20) .
i=1

(3.2) HOx ey ) = [ 8

Namely, 1let ?1' be the solution of

LR
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(3.3) " = (R, T, b YRR

piette 0 k1,

(where we label so that Bk a5 0), and let

1

(3.4) R = [n2s2as/r]

where [x] is tie smallest integer not less than x. Sampling is stopped
at the first n such that n ;{3. For a discussion of the -ciation of this
stopping rule to that of (3.1), see [1]}.

Since Sﬁ is independent of the xi,n’ hence of the Ei n’ the limit-

»

ing processes of Theorems 1 of this paper and [1] can be combined to give:

Theorem 3: If all Ai >0, 1 <i < k-1, then for the stopping rule described

after (3.4), under the assumptions of Theorem 1 of this paper, and Theorenm 1

ﬁ of [1],

(3.5) 1im (N/X) = 1im E(N/2) = 1 ,
P ™0 0

Proof: The stopping rule is of the form (2.10), with

Ay = HG) /s .8, /S

At stopping, (MN/S\) > /AT » R*/r, so that P(A, WA/ > T, 1<i <kl {

& can be made arbitrarily close to unity for fixed T by choosing r sufficiently

e L sl s 2R

small. Thus AN converges with probability one to unity as r decreases,
* and (3.5) can be derived as though An converged deterministically to unity.

This completes the proof.

.}
T

4
{
{
\
i




If some b = 0, or if the b, are proportional to /r, or if the b,

are fixed and positive, but the limit is taken as o -+ » then as in Theorem 2

.

of [1], there will be no probabi‘ity one limit for (N/A) as X + », but it

can be seen that (N/A) will have some limiting distribution whose mass is

concentrated on (R*,A*) (in the limit, it will behave as though o were

known), where R* = inf H(xl,...,xk_l).
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APPENDIX

Proof of Theorem 2:

form only.

Define

(A.1) = A, V= k(n-l)Slz\/oz,

The stopping rule is:
(A.2)

stop for the smallest n > m

i $Geess $ueas $ GIGG MED BEEEM D D -

Let € > 0 be given and define
(A.3) a= (1-e)1/“’n°,
n = n “P(N = m)
M, = 8"°P(m < N ¢ 8)
a -
n3 = z n wP(N = n)
=m+]
My = o °P(N 2 a)

Noting that
PV < 2(m))) = {r("('“'l )zk(m-l)/z}

> Gem-1r <L)y,

» a3

a8 ] L] o = aeg — yamna ey g

Since the proof given by Starr [8] of his Theorem 3 can

be used with only trivial modification, ocur proof will be given

k(m-1

in outline

2(n,2) = kn(n-1)/A*) .

v
n

s.t. < 2(n,r),

where Vn has a chi square distribution with k(n-1) degrees of freedom.

8 = (1+c)V/®no

-1 2(m, 1)
0

-1

=k - 2m,2)/2

k(m-1)/2

(2(m,2))
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and using

A o b e—— o a

Starr's argument yields,

k(m-1)
(A.4) 1lim inf(®)“EN"® > a(m,w)lim {(n°)“’(z(m,x)) . ? + 1.6 (C<6 = 6(e) < 1)
A0 Ao

where

k(m-1) -1
(A.5) a(m,q) = émk(m-l)r(l—(-(%';l—)lz 2 :

The next step uses

(A.6) EN <, + T, + 1

First, it is easily checked that

A.7) N, < a(n,u) 2@, N/2
Next,
-1

k(n-1)3 "2(n,A)[ k(n-1)+(p+1) _

.8 1 < ] |nr&@sly,” 2 ] x 2 le"‘/z]x'("’”/zdx
. 3 =='m+1 2 .
0

Define
(A.9) h(n,A) = (2(n,A)/k(n-1)) = n/A*x = n/n° .

By the definition of «, (A.3),
A.10) hm,A) < -)¥ =16 (0<t = £(e) <1) forall n <a,

so that,
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)
(A.11) 2(n,2) < k(n-1)(1-€) < k(n-1) + (p-1) for n2>22, 0<1-(£<p<1. )
J k(n-1) +p-1 _
From the fact that |x e'x/{! achieves its maximum at k(n-1) + p-1,
and (A.11), the integral in (A.8) is bounded above by

k(n-1)+p-1 £(n,\)
(A.12) @mr)) 2 tmA)/2 J IOV 2
0
{ Furthermore,
k(n-1)-2/2
(A.13) pli-l)y , k-1, o k(n-1)/2

so that the inequality (A.8) becomes

]
g < (l-p)-l Z {n-m[k(n_l)]Z-k(n-l)IZ ek(n-l)/Z}é-R(n,k)/z(z(n,l))k(n—l)/z

m+l
(A.14)
a
¢ k(l-p)-l Z {n-w(n-l)}[e(l'h(n’k))h(n,A)]k(n'm'l)/z[e(l'h("’A))h(n,x)]km/z.
m+]
Denote
(A.15) t(n,A) = hn,2)e{1TMA)

From (A.9) and (A.10)

b
3 £
4
(A.16) (@) V2 < V2 a0k 2 i
i
* and
(A.17) AmA) € (1-E)e* <1 n<a, O0O<E<1.
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Thus, using (A.16) and (A.17) in (A.14), ‘
a
a.18) 1, ¢ A2 V000 T @ m-n" V2 kD2

m+]
From (A.17) and the ratio rule for series convergence, we obtain

(A.19) My < g <0/2

where G 1is a constant independent of A. Combining (A.6), (A.7), and (A.19),

gives

(A.20) @BV £ am,w) @)@/ 2 L (000 4 e Ten 2 w). i H

Definitions (A.1) imply that

(A.21)  1ine®)em o)) ™2 (0w yin[e®)9 %) 2 0 . ’
Ao A+

Using (A.20), (%..21) and (2.1llc) gives

(A.22)  1lim sup(n®)“EN™ < a(m,u)lim[(,?)“’(z(m,x))k(‘“'”/z] + 148,
Ao A>o

(0<s'=8"(e) <1).

Combining (A.22) and (A.4) gives

k(m-l)/Z] :

A+ A-oo

.{ (A.23) 1im(m®)“EN"® = 1 + am,w)1im{ (n°)* (2 (m,2))

From (A.1), we have

a.24)  (0)°@m,1)) @2 | @) k12 (puy o (k(@-1)/2)

Using (A.24) and (A.S5) in (A.23) yields (2.20), completing the proof.

A pames passe  peenas




