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1.  INTRODUCTION AND SUMMARY 

Given observations from k populations whose distributions are the same 

except for the value of a location parameter, it is desired to estimate the 

value of the largest of the k location parameters. A natural estimator for 

this problem is the largest of the k sample means. Measuring the perfor- 

mance of the estimator by its mean squared error (M.S.E.), it is possible to 

choose a sample size so that the M.S.E. is bounded by a given constant regard- 

less of the values of the location parameters. If the common distribution 

function involves an unknown scale parameter, however, then no such choice of 

sample size is possible, but a sequential rule of the type studied by Chow 

and Robb ins [4] can be constructed. Its limiting properties will be studied 

here. 

Point estimation of the largest parameter for known variances has been 

studied before by Blumenthal and Cohen [2], [3] and Dudewicz [5], and interval 

estimation by Saxena and Tong [7], and Dudewicz and Tong [6]. Interval esti- 

mation with unknown variance has been examined by Tong [9], [10]. The use 

of the largest observed mean has no optimal ity properties and in fact for 

k s 2 is known to be inadmissible [2] for M.S.E. However, since the analytic 

form of the competing estimators is rather involved, it is suspected that this 

natural (.stimator would be widely used and its properties would therefore be 

of interest. In the next section, the sample size for the sequential stopping 

rule is shown to behave well under mild restrictions on the distributions. 

The behavior of the M.S.E. of the estimator formed from the sequential stopping 

rule is studied only for normal distributions. 
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The risk function depends on the differences between the largest parame- 

ter and the other parameters. In Section 2 we derive a conservative procedure 

based on the maximum risk as a function of these differences. In [1], a 

sequential procedure has been studied which attempts to capitalize on the 

information in the sample about these differences, when the variance is known. 

In Section 3, this procedure is extended to the case of unknown variance, and 

a few of its properties are outlined. 

2. CONSERVATIVE PROCEDURES 

Let X.  (1 1 i 1 k) be an observation from the ith population having 

c.d.f. F(x,9.) (6. a real number). We assume that the family of c.d.f.'s 

F(x,9) satisfy 

(2.1)    (i) F(x,e) = F(x-e), where F(x) is a c.d.f. 

(ii) F(x) = 1 - F{x) or f(x) = f(-x) for all x, 

(iii) The family of density functions {f(x-e)} has monotone 

likelihood ratio. 

00 

(iv)  / xf(x)dx = 0 . 

Define 

(2.2) X* ■ max (Xj X^;  6* = max(ei,...,ek) 

The ordered B's will be denoted 8, . <^ ••• l6rkl. The M.S.E. or 

risk function of X* is easily seen to be 

M^MM 
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(2.3) R(X*;  6  ,...,0k) = E(X*-e*)2 «    /   (x-9*)2d    n    F(x-0i)   . 
-a» i=i 

To choose an appropriate sample size, this risk must be studied in further 

detail which is done below. 

Lemma 1.      Let    F(x,e)    satisfy condition (2.1).    Then 

00 

(2.4) sup R(X*; ei,...,ek) » R(X*i;  e*,e*... ,,6*) »    / x2dFk(x) 
(9.,... »Qj.) -0D 

and 

(2.5) Urn R(X*;  6    ...,6.) =    / x2dF(x)   . 

Proof:      Write 

6* , 00 

R(X*; ej,...^^ «   / (x-e*) dnF(x-ei) ♦ /   (x-e*)^dnF(x-ei) 

(2.6) « 
= / x d(nF(a.+x) - nF(A.-x)] 

0 x 1 

2 
where   A.  e e* - 0.  >_ 0.    Since   x     is monotone increasing over    (0,»),    the 

expectation will be dominated by 

x2dH(x) 

if H(x) <, [IIF(a.*x) - nF(A.-x)] (see, for example. Lemma 4.1.2 of Dudewicz 

k     k 
[5], or integrate by parts). That H(x) can be taken as [F (x) - F (-x)] 

-a  i    ■     -     am t^^^m* 
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is a consequence of Theorem 1 of Saxena and Tong [7].    Equation (2.5) follows 

I by letting all    A. -► «    (except one which is fixed at zero). 

Note that for   k > 2,    the risk when all the    e's   are equal,   (2.4), 

exceeds the risk when the difference between    9*    and the others becomes 

infinite,   (2.5).     (See Lemma 4.2.3 of [5].)    Regardless of   k,    the latter 

risk is just the variance of a single   X.    as would be expected.    Ir the case 

J k s» 2,    the two risks  (2.4) and (2.5) are equal as was shown by Blumenthal and 

Cohen [2] without the assumption of monotone likelihood ratio. 

I 
I 

] 

1 
1 
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Suppose that each    X.    is in fact    X.        and is the average of   n    inde- 

pendent identically distributed observations say   Y..    (1 ^ j ^n),    so that 

F(x)   is really   F
n(x).   A conservative procedure which will guarantee that 

the risk of estimating   6*   by   X*,    is no greater than   r   (given) for any 

parameter configuration is to choose   n   as the smallest integer such that 

/ x2dFj;(x) 4 r . 

2 
where o  is the variance of a single observation. Assume that in addition 

{Suppose in addition that for each n, F (x) is of the fo^m G (x/n/o) 
n n 

I to  (2.1), 

! 

1 
I 
• (2.8)       R(X*;  el,...,ek) - (o2/n)fy2dnGn(y ♦  (A^o)) <. (o2/n)Jy2dG]j(y) = Ano2/T 

(2.7) / x2g(x)dx = 1 . 

Then the risk function is 

2 
The conservative choice of n will then b« the smallest n >: (A o /r), 

«■i 
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2 
If t' e yn!'..3 of a  is not Irov.'n, a reasonable way to proceed iz  to form 

2 
an estimate of o     by defining 

(2.9a) 

and 

S2. = (1/n-l) y (Y.. - X.  )2    1 < i < 

(2.9b) 

2 2 Clearly    S      is a consistent estimator of   a ,    and a sequential stepping 

rule can be formulated as follows:    Let   N   be the first   n   such that 

(2.10) n > (Ans;/r) 

1   2 (If desired, n may be restricted to exceed a given value ra, and (— + S ) 
2 

should be substituted for S  if G (x) is discrete.) Then 9* will be n     n 

estimated by X* = max X. 
^  l<i<k 1'n 

The following theorem giving the behavior of N is a restatement of 

the main Theorem of Chow and Robbins [4] which applies here directly.  (In 

[41, S2 is defined by (2.9b) with k = ] 

proofs are not affected by having k > 1.) 

2 
[4], S  is defined by (2.9b) with k = 1. It is easy to check that their 

Theorem 1.  Suppose lim A = A < «. Let X  » (o /r). 

(2.11a)        P _2[N < "I e 1  for every v    and a* 

(2.11b) lim N = »,  a.s, 
A-x» 

-J 



i 
(2.11c) 

(2.lid) 

lim (N/AX) =1  a.s, 

lim (E(N)/AA) = 1. 

Note; Since lim G (x) "  *(x), generally (though not necessarily always), 
n-K* 

(2.He) An/ x2d»k(x) = A* . 

For general distributions, it is not possible to obtain much information 

2 
about the risk function, E(X* - 9*) . Since it is not true that X* forms 

a martingale, theorems relating to the moments of randomly stopped martingales 

cannot be applied. A lemma of Tong [10] shows that X* converges stochas- 

tically to 0* as r -♦■ 0, but little else can be said in the general case. 

Hereafter, assume that all distributions are normal. In this case the 

distribution of »^(X* - e*)/o is independent of N. In particular 

E{(X* - 9*)2|N} = {(a2/N)|y2dn*(y + (A.^T/o))) 

(2.12) 

< {l/N}A*o . 

The risk of X* is thus related to E(N ). From (2.12), we see that 

(l/r)E{(X* - e*)2|N} 4 {1/N}A*X. Thus from (2.11c) we can conclude that 

(2.13) lim (l/r)E{(X* - e*r|N} 4 1  a.s. 
A-*« 

This limit is conservative as can be seen by the following argument. Consider 

■  ii ^i i tflMM^a 
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y2dn*(y + (Aj./n/o))  . 

Applying the bounded convergence theorem to this integral we see that 

(recalling that Ä. «= 0 for exactly one i if 6,. , is unique) 

U.14) lim I y2dn«(y * (A./n/o)) =  y2d*(y) = 1 . 

By (2.11b], it is seen that (2.14) implies that 

(2.15) lim [ y2dn*(y ♦ i&.S/o))  « 1, a.s. 
r-^O J 1 

Thus, using (2.15) and (2.11c), we conclude from (2.12) that 

(2.16)   lim (l/r)E((XJ - 9*)2|N} = (1/A*)  a.s.  (when 6rifl is unique) 
r>0       N lKJ 

When ef., is not unique, the above can be modified, as follows. Suppose 

8*3etkr Vu = ••• '«Wir 11,en 

i 
i 
I (2.17)      lim (l/r)E{()tt - 8*)2|N} = (l/A*)fy2d»S(y),  a.s. 

By Corollary 4.2.4 [5], the right sides of (2.16) and (2.17) are strictly 

I less than one when k > 2, s < k, and are equal to one for k = 2, or s = k. 

Note that (2.17) depends only on the multiplicity of e* and otherwise is true 

I        for any parameter configuration. 

| If on the other hand, we regard r as fixed and examine large o values, 

from (2.11c), it is seen that 

I 

— -- ^^^^^B^fmrn 



I 
I 
i 

(2.18) lim ( y2dn*(y ♦ (A^/o)) =  y2dn*(y ♦ (Ai/A*/r))f   a.s., 

and therefore using (2.11c) again in (2.12) 

(2.19) lim (l/r)E{(X* - e*)2|N} = (1/A*)jy2dn*(y + (A./RV^r)) < 1, a.s. 

Note that different limits are obtained for the conditional risk in (2.16) 

and (2.19) as A -»■ » depending on whether o ■♦• » for fixed r or r -► 0 

for fixed   o. 

Next, the unconditional risk will be investigated, namely 

(l/r)EE{(X* - e*)2|N}.    From (2.12) it is seen that this risk Is related to 

E(N   ).   The following represents a slight generalization of Theorem 3* of 

Starr [8]. 

Theorem 2. Let the minimum sample size in (2.10) be denoted as m. Let 

A in (2.10) be given by A* (see (2.lie)) for each n. Let u > 0 be 

given. 

lim (A*X)Ü)E(N'U) = 1 for      m > 1 ♦ (2ai/k) 

(2.20) • 1 + (ai"1' /r(w))      for      m » 1 + (2u/k) 

« » for     m < 1 ♦ (2u)/k) 

The proof is outlined in the Appendix. 

The following lemma is needed to obtain the limit of the unconditional 

risk from (2.20) and either (2.15) or (2.18). 

^.^M^Mü 
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Lemma 2.      Let   M   be a positive random variable depending on a parameter   t 

with the properties 

(2.21a) lim M « 1     a.s. 

(2.21b) lim EM = 1    . 
t-H» 

Let G(x) be a bounded function satisfying either 

(2.22a) lim G(x) « G* 
x-^l 

or 

(2.22b) lim G(x) « G* . 
X-x» 

Then in case (2.22a) 

(2.23a) lim E(MG(M)) = G* 
t-x» 

or in case (2.22b) 

(2.23b) lim E(MG(t/M)) » G* . 
t-H» 

Proof:  Consider (2.23a). We shall show that 

(2.24) lim E[M(G(M) - G*)] » 0 . 

By (2.22a), given e > 0, there is a 6 ■ 6(t)t6(t) ■♦ 0 as e -► 0] s.t. 

^m^t 
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(2.25) 

|G(M)  - G*|  < e     for     1-6 < M < 1+6, 

11*6 
/   M(G(M) - G*) 

ll-6 
(l*6)e 

10 

By the boundedness of   G(x),    (G(x) - G*| < B    (say) and we obtain 

(2.26) 
1-6 
/    M(G(M)  - G*) 
0 

< BP(M < 1-6] 

as well as 

(2.27) /   M(G(M) - G»)    < B    /   M 
1+6 ! 1+6 

By (2.21a), for   e    (and    6)    fixed there is a   t1(e)    s.t. 

(2.28a) 

(2.28b) 

P(M < 1-6]  < e     for     t > t1(€) 

P[M > 1*6]  < c     for     t > t1(e) 

By (2.21b), for e fixed there is a t-fe) s.t. 

(2.29) / M < l*e   for  t > t0ic)  . 
0 £ 

Thus  for t > t-(e) ■ max(t1(e),t2(e)), 

1*6    1-6 
(2.30)   / M < l*e - / M - / M < !♦£ - (l-6)(l-2c:) » 3e + 6 -2e6, 

1+6        1-6    0 

mm* 
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Combining (2.25), (2.26), (2.28a), (2.27) and (2.30) 

I f 

(2.31) / M(G(M1  - G*) 
0 

< B[4E*6-2e6l ♦ e(l*6)     whenever   t > t-(e)1 

thus proving (2.23a). 

To prove (2.23b), note from (2.22b) that there is a    t4(e)    such that 

(for    e   given) 

|G(t/M)  - G*|  < e      if     M < 1+6     and     t > t4(e). 

so that 

(2.32) 
1+6 
/    M(G(t/M)  - G*) 
0 

< e(l+6)      for     t > t4(c) 

Also, as before 

(2.33) /   MCG(t/M)  - G*)| < B    /   M 
'l+fi 1+6 

Using (2.33) and (2.32) with (2.30) gives the desired result and completes the 

proof.    As a consequence of the above we have 

Corollary 1:     Let   m   in (2.10) exceed   1 + (2/k).   Then 

00 

(2.34) lim (l/r)E(X* - e*)2 » (1/A*) / x2dIW(x + bJKF/r) < 1 
O-Ho 

and 

(2.35) lim (l/r)E(X*  - 9*)' » (1/A*) <, 1 
r+O 

- -  -  j-—*- mmmtimjm^mä 
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Proof:      Let   M =  (A*a /rN)    and apply (2.11c),  (2.lid), and (2.20).    For 

(2.34),  let   t » o     and use  (2.12), writing    (A^/o)    as    (AVAVrM)   and 

use  (2.18), with (2.23a).    For (2.35), let   t = (1/r)    and use (2.12), writing 

i^/Ü/a)   as    (Aj/ÄnTM),    and use (2.14) with (2.23b). 

3.    ELIMINATING ALL NUISANCE PARAMETERS 

For normal distributions, a natural sequential procedure which attempts 

to use all of the sample information regarding nuisance parameters would be 

a combination of the rule studied in Section 2 with the rule considered in 

Blumenthal [1] for the case of known   o .    In particular, such a procedure 

would use the stopping rule:    stop for the first   n   such that 

(3.1) r L (sn/n) / y2dn*[y + (AM^n/Sn)] 

where    S     is given by (2.9) and   A.        is a consistent estimate of   A.,    such 
2 

as    (X* - X.    ).    When   o     is not known, it is not possible to construct a i,n 

two sample procedure whose sample size will be very nearly the same as that 

of the sequential procedure, as was done in [1].   Only the sequential proce- 

dure will be studied here. 

As in [1], an alternative stopping rule will be defined in order to 

avoid difficulties which may be caused by the behavior of the function 

(3.2) H(x1,...,xk_1) =   / y d n   «(y ♦ x.),       C^ i 0) 
-»       i=l 

Namely, let n be the solution of 



I 
I 

(3.3) ^2 r/ . HC&j nnÄV^,...,ak-1 nnSv/S¥) 
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(where we label so that A.  =0), and let 

(3.4) £ = r^S^AVrl 

where   fx"!   is tue smallest integer not less than   x.    Sampling is stopped 

at the first   n   such that   n ^ n.    For a discussion of the legation of this 

stopping rule to that of (3.1), see [1]. 

2 Since    S     is independent of the    X.    ,    hence of the    &.     ,    the limit- n r x,n i»n 

ing processes of Theorems 1 of this paper and [1] can be combined to give: 

Theorem 3:      If all    &.  > 0,  1 1 i f_ k-1, then for the stopping rule described 

after (3.4), under the assumptions of Theorem 1 of this paper, and Theorem 1 

of [1], 

(3.5) lim (N/A) « lim E(N/A) « 1 
r+0 r*0 

Proof:  The stopping rule is of the form (2.10), with 

An-H^l.n^Sn'-A.l.n^V 

At stopping,    (^J/SN) > /AN/r > /R*/r,    so that   P{Äi ^/S^ > T,    1 <^ i < k-1} 

can be made arbitrarily close to unity for fixed   T   by choosing   r   sufficiently 

small.    Thus   A.^   converges with probability one to unity as   r   decreases, 

and (3.5) can be derived as though   A     converged deterministically to unity. 

This completes the proof. 

^tmäa 



rr ■Si« 

I 
! 

I 

14 

If some A. « 0, or if the A. are proportional to i/r, or if the A. 

are fixed and positive, but the limit is taken as a ■*■ <*>   then as in Theorem 2 

of [1], there will be no probability one limit for (N/X) as \ -*■ <*>,    but it 

can be seen that (N/A) will have some limiting distribution whose mass is 

concentrated on (R'.A*) (in the limit, it will behave as though o were 

known), where R* = inf HCx.,...^. ,). 

I 
1 
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APPENDIX 

Proof of Theorem 2:  Since ; he proof given by Starr [8] of his Theorem 3 can 

be used with only trivial modification, our proof will be given in outline 

form only. 

Define 

(A.l)     n0 » A*Ä,  Vn = k(n-l)S^/a
2,  Ä(n,A) » kn(n-l)/A*A . 

The stopping rule is: 

(A.2)       stop for the smallest n ^ m s.t. V 4 Ä(n,A), 

where V  has a chi square distribution with k(n-l) degrees of freedom. 

Let e > 0 be given and define 

(A. 3) a = (l-e)1/a,nO,  0 = (Ue^V 

•(j), . = m "PCN = m) 

,-u n2 = ß "PCm < N 4 ß) 

a 
n = I     n'^PCN = n) 

n=m+l 

n4 = a'uPiN >. a) 

Noting that 

•0^ < ÄCn.x)) = friU^l^-wA 
-^ » „/■ ,^ k(m-l) , 

1)/2^-l £(mA) -V^'
1 .x/2, 

/  x       e    dx 

fcCm-1) {Yl 

(£(m,A)) k(m-l)/2 
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and using 

EN"W > Hj + n2. 

Starr's argument yields. 

k(in-lfl 

(A.4)    lira infCn0)^"^ > a(m,Gü)lim ^(n0)"^^^))    2      )   * 1-6    (C<6 ö(E)  <  1) 
A-*» 

where 

(A. 5) adn.a.) = /n,wk(m-l)r(M5liI)2    2 

M5>-_L)_p-i 

The next step uses 

(A. 6) .-Ü) 
EN    < n. * n, * n. . ""1 3        4 

First,  it is easily checked that 

(A. 7) 

Next, 

IIj < a(ra.(o)(Ä(m,X))k(n,"1)/2 

•1, 
a    f KCn-1)-»    Un.A)r k(n-l)*(p*l) n 

(A.8)     n3<I    [nwr(M-iI)2   
2    J       I      [x 2 "'e-^J^^D/a dx . 

Define 

(A. 9) h(n,A) »  (il(n,X)/k(n-l)) = n/A*X = n/n    . 

By the definition of   a,    (A.3), 

(A.10)      h(n,X) <   (l-e)1^ = 1-g      {0<e « C(e) < 1)      for all      n < o. 

so that. 

-       •    ^ 
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(A.11) £(n,A) < k(n-l)(l-U < k(n-l) ♦ (p-1)  for  n > 2, 0 < 1-4 < p < 1 . 

k(n-lW-l 

From the fact that  x   s   e'  |  achieves its maximum at k(n-l) + p-1, 

and (A. 11), the integral in (A.8) is bounded above by 

k(n-l)* p-1 

(A.12) (Un,A)) Ä(n,A)/2 
£(n,A) 

j   x-^+1 )/2 dx 

Furthermore, 1 
| (A.i3) r(^i) > [^11] 

k(n-l)-2/2 k(n-l)/2 

I 

so that the inequality (A.8) becomes 

I 
I 
I 

n3i d-p)"1   I   {n-"[k(n-l))2-ktn-"/2 ek("-1)/2)e-|l(n-i'/2(ll(n.x))kfn-1'/2 

m+1 
(A.14) 

kd-p)"1    l    {n-ü,(n.l)}[e(1-h(n'X»h(n.A)]k(n-ra-1^2[e(1-h(n'A))h(n.A)]km/2. 
m+1 

Denote 

(A.15) (n,A).h(n.A)e{1-hrn'A:))  . 

From (A.9) and (A. 10) 

(A.16) (Mn.A))kn,/2<ek,n/2(n/A*A)k,n/2 

and 

I 
(A.17) A(n,A) <   (l-C)e^ <1        n^a,    0<C<1 

^   _ tm 
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Thus, using  (A.16) and  (A.17) in (A.14), 

(A.18)    n,<  (Anr^e^kd-p)"1   I    [n-u(n.l)nkn,/2l(A(n.A))k^m-1^2 . 
^ m+1 

From (A. 17) and the ratio rule for series convergence, we obtain 

(A.19) n3 < GA ■km/2 

where G is a constant independent of X. Combining (A.6), (A.7), and (A.19), 

gives 

(A.20)    (nVEN-l,, 4 a(m.u.)(n0)ü)()l(m.X))kfm-1^2 ♦  (n0)Vkn,/2G *  (l-O^PCN >. a). 

I 

Definitions  (A.l)  imply that 

(A.21) lim(nV(Ä(m,o))k<m-1>/2 < - -> lim[(n0) Vkm/2G] = 0 . 

Using (A.20), (A.21) and (2.11c) gives 

(A.22)  lim supOiVEN^ < a^^lim^^U^X))11^"1^2] * 1+6», 
X-H» X-»» 

(0 <  6'  » 6'U) <  1) 

I 

Combining (A.22) and (A.4) gives 

(A.23) 

From (A.l), we have 

linKnVEN-"1 = 1 * a(m.u)li.n[(nOA*0n.X))k(m-1)/2]  . 
X-H» X-H» 

(A.24)      (nVdOM))1^-1)/2 - [km(m-l)]k(m-1^2(A*X)-(k^1)^2> 

I 
1 

Using (A.24) and  (A.5) in  (A.23) yields  (2.20), completing the proof. 


