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13. ABSTRACT

Given n observations from each of k normal populations with common known

variance 02, the value of the largest of the k means (whose values are not known)

is to be estimated using the largest value of the k sample mcans. It is desired to
design a sampling rule which guarantees that the Mean Squared Error (M.S.E.) of the
estimate does not exceed a given bound regardless of the configuration of values of

L the k means.

o

A-J1405

The M.S.E. is a function of 4 = (A,,...,A, ) where A, = max 6, - 6,
} 1 k-1 . i
. | 1<jzk
(Ak is zero by convention). If the A's are known a smaller sample size (fixed
sample size procedures) can be used than the sample size n* needed to guarantee the
M.S.E. requirement for all A. Sequential and multi-sample procedures are considered
which attempt to use sample information about A to reduce sample sizes. Somé“ﬁrop-
erties of the sample size function and M.S.E. of these procedures are developed.
Generally it is found that sample information about the value of A is difficult
to usc efficiently,
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1. INTRODUCTION AND SUMMARY

Given k normal populations with means el,....ek and common variance
oz. Based on n observations from each population, a point estimate of
f* = max(el,...,ek) is desired. A natural estimator to use would be
X* = max(ii,...,xk), where Yi (1 <i < k) is the average of the n observa-

tions from the ith population. The risk or mean squared error function

R(X*; el,...,ek) is easily seen to be

(1.1) RO 8),...,8,) = E[(x*-0%)%[6

1’

2 o
. Loty = i [y lanery « (bte))

where Ai = g% - ei' It is to be noted that even if 02 is known, the risk
depends on the unknown nuisance parameters (Al""’Ak) (one of which is zero).
If a single-stage experiment is to be designed (n-chosen) so that

R(X*; © ..,ek) < r (where r is given), then an upper bound, say A*,

1"
must be used for the integral in (1.1), and a conservative n must be chosen
by equating r to (ozA'/n). On the other hand, if multiple stage or sequen-
tial procedures can be used, then it might be hoped to reduce the total sample
size by using information contained in the earlier stage samples regarding the
values of the L It is procedures of this type which will be investigated
in this paper.

Since it is easy to see that (X*-Y}) (1 <i<k) is a collection of
strongly consistent estimates of the Ai (see Dudewicz [2]), it would be
hoped that when the desired sample size (obtained by equating (1.1) to r)
is large, almost the same sample size would be obtained by replacing each 8,

in (1.1) by its estimate. Certainly one would hope that the ratio of the two

sample sizes would converge almost surely to unity. As will be seen, this
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turns out to be the case if the desired sample size is made larg. by allowing

2 is allowed to become infinite while r |is

r to go to zero, but not if o
fixed. It will be seen in the latter case that the ratio mentioned has no
almost sure limit. It does have a limiting distribution, and this will be
examined. Most of the results on limiting distributions for the randem sample
size, and for the resulting risk of the estimator X* based on random sample
size have been obtained only for the case of two populations. Numerical evalu-
ations of the limiting expected sample size and mean square error functions
indicate that they dn take some advantage of the savings possible when the
A's are known, and may be of practical interest. Some simplified two sample
procedures are examined and found not to be very good.

Estimation procedures for unknown 02 are considered in [1] in which a

more extensive bibliography is given.

2. Kk POPULATIONS, CONVERGENCE RESULTS

It is easily seen that the supremum of (1.1) over (Al""’Ak) is

(oz/n)A' where

(2.1) At = Ax = | yae* iy)

(see Blumenthal [1]), for example). The conservative approach to choosing n

so that (1.1) is at most r (given), would be to take n = n* where
2
(2.2) n* = A% /r .

Clearly, if the Ai were known, a smaller sample size could be used by equating

(1.1) to r. In this section we consider how much could be saved if the Ai




were known, and we examine multi-sample and sequential sampling procedures

which try to accomplish these savings by using estimates of the 4, in their

i
stead. Define for a given set (Al,...,Ak)

(2.3) n2 = (rn/A'oz)

so that (l/nz) represents the '"efficiency' possible if the 4's are known,
i.e., the ratio of the maximum sample size to the actual size needed for a

given set of A's. Also, define (assuming that the one Ai having value zero

is Ak)
(2.4) x; = 4,0A%/r  1<i<kl, x =0
and
b >, k
(2.5) H(Xy,e000% 1) = (1/A%) [ y°d T o(y+x.) .
1 k-1 g i=1 i
ﬁ Then the result of equating (1.1) to r can be expressed as
} 2
> (2.6) " w HOX X )
Some of the properties of H(xl,...,xk) are examined in the Appendix.
From Theorem 4.2.5 of Dudewicz [2], it follows that

(def.) 0 2 k
(2.7) R* = inf  H(xp,..x ) 2 (/AN (/2 + [ yodet (v)) 2 (1/2 A%).

e STRRETE
| From (2.6) and (2.7), it is seen that inf n2 = R*, or inf n = R*n*. Thus
while it is clear that savings are possible when the 8, are known, the per-

centage saving is limited by the fact that R* is bounded from below.




A reasonable approach to taking advantage of the (limited) savings avail-
able would be after taking n observations to compute estimates ai,n of the
Ai' then use these in (2.4), (2.5) and (2.6) to determine nz, call this esti-
mate ﬁi, compute f as [n'ﬁ:] where [x] is the smallest integer not less
than x and take additional observations if n > n, and stop sampling other-
wise. A purely sequential procedure would repeat this operation after each
stage of sampling, a multiple stage procedure having taken nj observations
from each population up to stage j and computing ﬁj based on these would
observe at the next stage: max(O,ﬁ-nj) additional values from each population.

In either case, it can be seen that it is always true that n>n where

0)
) 2 2
(2.8) n, = (R*A* /1) > (6“/2r) .

Thus for a sequential procedure, an initial sample size of n, must be taken

before applying the stopping rule. For a multi-stage procedure it would be

inefficient to use an initial sample less than n_ thereby wasting the informa-

0

tion available in the n, observations which must be taken. Therefore we

assume a first sample of n_, for any multi-stage rule. Define the sample

0
size at stopping as N.

Let pﬁ be defined as
2 .
(2.9) Pp © (n/n*)

so that p: represents the ratio of the sample size at <topping to the maximum
sample size (ignoring the possibility that n* is not an juteger). For two
stage sampling where N = [h'ﬁ:'], it is clear that

0

(2.10) Of_p: - ﬁ:

< (1/n*) .
0

>t
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For sequential and nulti-stage procedures, it is possible to stop with N >> ﬁN,
so that o; >> ﬁ: (the last computed value of ﬁ:). For multi-stage procedures,

it is clear that

(2.11)

because of the method of choosing the sample sizes.

Note that an alternative way to define a sequential procedure is to com-
pute an estimate ﬁn of the risk at stage n based on substituting Bi,n for
6, in (1.1), and to stop sampling the first time that ﬁn <r., If R is a
decreasing function of n for fixed (Al”"'Ak)' then the two approaches
are equivalent. It would be surprising if R were not decreasing in n, but
a proof exists only for k = 2 (see the Appendix). The alternative approach
to multi-stage procedures is to compute ai,n. based on the observations
obtained through the jth stage, use this A in plzce of 4 in (1.1), and
solve for the n, say n which makes (1.1) eqral r. At stage (j+l),

(ﬁ-nj) additional observations are taken if n > “j' otherwise sampling stops.

The definition of N wused in this paper assures that if Bi,n z Ai for

all n, then the resulting n will identically equal the result of equating

(1.1) to r with the correct A, in (1.1). This will be true regardless of

i
whether R is a monotone decreasing function of n.

It is reasonable to ask whether p: has a stochastic limit if the sample
size is forced to be large by making the desired risk r small. The answer

is given by the following

Theorem 1. Given a sampling procedure with an initial sampie size of n,.

Given strongly consistent estimates 81 n of the Ai‘ Let all Ai (1 <i<k-1)

be > 0. Then

.__A—_.——-——_ﬂﬂ

—— ena
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(2.12) 1im p:, = lim ﬁﬁ = (1/A*) a.s.
r+0 ™0
2 -2
(2.13) lim E(p}) = lim E(R3) = (1/A*) .
0 r~0

Proof: By the strong consistency of the Ai n’ for given ¢ > 0, there is
H

an M such that
(2.14) P(A, ~ > (8;/2), 1 <ic<k, all n>M>1l-c.

From (2.8), it is seen that for r < Ty (say), n, > M and thus defining
xi,n 1
T (recalling that n > VR¥)

can be chosen so that for any arbitrarily large

as (Zi,nn/577l;) r

(2.15) P(x;, ' >T, 1<ick, all nzn}>1l-e, if r<r

i,n 1°

Since lim H(xl"“’xk-l) exists as all the x5 increase, and is (1/A*),
from (2.15) and the fact that T is arbitrary, we conclude that for arbitrary

§ >0,

(2.16) P{(1/A%)-6 < A2 < (/A%), all nzng) > l-e, if re<r .

This completes the proof for ﬁ:.

2
For two stage procedures, (2.10) suffices to complete the proof for Ve
For multi-stage and sequential procedures, (ﬁi 2 (1/A*)-6, n ;=n0} implies

(with (2.)1) and the precading discussion) that {p: > (1/A*)-6}. For multi-

stage procedures, if stopping occurs at stage j, then N = ﬁj-l' and
o; = n*ﬁi 1/n* < (1/A*) + (1/n*) if {ﬁ: < (1/A*), n 3‘no}. This suffices
j-1

—r—




to give the result for the multi-stage case. For the sequential case, since
| stopping occurs at the first n 2 fh'ﬁz] so that {ﬁi S /A%, n2ng}, it

follows that p; < (1/A*) + 2/n*. This completes the proof of (2.12).

The proof of (2.13) follows from the dominated convergence theorem.

If the 81 are taken as (X'-Y}) as mentioned in Section 1, it can be
seen that (2.12) holds as o + = provided that Ai = Ai(o) and iiﬂ Ai(o) z o,

Further, note that Theorem 1 gives a very strong limitation on the use-
fulness of the proposed sequential procedure. When the 84 (> 0) are fixed,
this procedure takes the same (order of magnitude) number of observations as
would be the case if the Ai were ail infinite, It should be noted, however,
that even if the Ai were known, as r + 0, n2 goes to (1/A*). Thus the
| sequential (or multiple sample) rule docs as well as can be done knowing the
A's. If k=2, A* =1, and this is no better than the conservative proce-
dure. For k > 3, some savings are possible relative to the conservative

procedure since A* > 1. The situation when 4, = ... = A = 0 is somewhat

1 k-1

different as is shown below, in Theorem 2.

An additional point to remark here is that N for the procedures being
considered can never exceed the ccnservative sample size (A'ozlr) (i.e.,
n; < 1). Thus, N has both lower and upper limits.

In examining (2.4), (2.5) and (2.6) it is seen that although a sizeable
savings in sample size can be achieved for any value of r, the particuiar
a; values at which these savings are achievable depend on r. In particular,

suppose (xl,...,xk_l) = x is fixed. Then n; can be computed from (2.6)

and the 84 values at which this relative sample size will occur are given by

(2.17) 8, = /?xi//FH(xl,...,xk) .




If one fixes the value of x and allows the Ai to be given by (2.17), the
question is whether the potential savings now available regardless of r can
be achieved in any sense by the procedures which determine the sample size by
using the estimates Bi,n in place of the Ai. The following theorem: gives a
negative answer in the sense that p: does not converge with probability one
to ﬁ;. In fact p: does not have an almost sure limit.

Consider the natural estimates of Ai' namely (i‘-i}). Note that
(/570)(i‘-23) is distributed as (Y*-Y,) where the Y, 's are normal with
means (-/ﬁhi/o), and unit variance. If n = c(A'ozlr) (for any c¢ > 0) and
Ai is given by (2.17), these means are (/Eki/nx), independently of r. For
n of this form, the distribution of (/ﬁ?o)ai.n (given that ai,n >0, i.e.,
that we are not looking at the one value of ai,n which by definition is zero)
will assign positive weight to all intervals on the positive axis, and the
weight will be independent of r. Further, the conditional joint distribution
of the (k-1) positive values of (/ﬁ]o)ai'n (given that they are positive)
assigns positive weight to all measurable (k-1) dimensional sets having posi-
tive Lebesgue measure, and the weight is independent of r. Below we restrict

attention to estimates Ai n having this property, which we refer to as
1

property P,

Theorem 2. Let x be fixed and the Ai be given by (2.17). Let the esti-

i have property P defined in the preceding paragraph. Let n;

mates Bi
»
be given by (2.6) and ﬁ; be as in Theorem 1, and p: be given by (2.9).

Then for any x such that R* < n§.< 1, there is an ¢ > 0 such that

. 2,2
(2.18) lim P{|(p )-1| 2 €} >0.
([CVALS




e

Proof: Let § < 1 be sufficiently large so that H(xl""'xk-l) is a

decreasing function of each of its arguments on the set
Ss = {(xl,...,xk_l): ) 1H(x1,....xk_l) <1l; 0< x4 :xi(é), i=1,..,k-1}

where x;(é) is the smaller of the two solutions to

{xj,xg;gi-x,jmﬂ(x"'"'x“") "
(if there are two solutions, i.e., if & < (1/A*)). Letting 4, (8) = (x;(G)//G_),
it can be seen from the monotonicity of x (§)//8 (see Remark 2, Appendix) that
the set of (Al""’Ak-l) such that {§ < n2 < 1} contains the set
TG = (/x'-/TSGIfG_) (i.e., each point in 36 is multiplied by the given factor).
Let n = (cA*s>/r) (c > 0) and the A's be given by (2.17). Let

An = (al,n""’Ak-l,n) (assume Ak,n = 0 for notational convenience)

(72 2. 6) D {(A/0)T ¢ (A/O)T,} = ((/a/0)E € /e S,/ /B .

From property P and the fact that /c Sg/ /8§ 1is measurable with positive

Lebesgue measure, it follows that

2

(2.19) P(n 26} >0.

If n is taken to be Ny then ¢ = R* and using (2.11) along with

(2.19) we see that for multi-stage procedures (two or more stages),

(2.20) |>{pfq > 8} > P72 26} >0,
"o

2l
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If x is given, & can be taken as (l*e)ng, where ¢ 1is sufficiently large
to satisfy the restriction on 6. This proves (2.18) for multi-stage procedures.
Consider now the sequential procedure. At stage n, it stops if n 2 ﬁn’

and since it can stop prior to reaching stage n,
(2.21) P(N < n] > P[n _>_ﬁn] .

Let n = [n*s]. Now i rn'ﬁi]. Noting that {ﬁﬁ <8 = (n>i}, and that

{N < [n*s]) = {p; < 6+(1/n*)}, we can conclude using (2.21) that

(2.22) P{p: < §+(1/n%)} > P{ﬁf‘ <6}, when n = [n*§] .

In this case let § > R* and sufficiently small so that we can choose

the set S6 such that it is connected, and on S R* < H(xl""'xk-l) <6

6.

and H(xl""’xk-l) is decreasing in all of its arguments. Clearly SG has

positive Lebesgue measure and because of its definition, the set (Al,...,Ak_l)

such that (R* :.nz < §} contains TG = (/r?A'Ué) and U6 is obtained from
2

S6 by taking each (xl""'xk-l) on the contour H(xl""’xk-l) = n°,

(R* :.nz < 8) and transforming it to (xl/"""’xk-l/")’ The monotonicity

of this transform on SG follows from Remark 2 in the Appendix. As before,

with ¢ = §, it follows that

(2.23) P(R2 ¢ 6) 2 P((/i/0)E e /EU)> 0, when n = n* .

Letting 4 = (l°°)"§ where ¢ > 0 is chosen to satisfy the above requirements,
(2.22) and (2.23) suffice to demonstrate (2.17) for the sequential case, com-

pleting the proof of thc theorem.
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Remarks:
1) The proof of Theorem 2 suggests that although N and oN do not

have a probability limit, they should have a distribution which may have a

limit as r + 0. For sequential and multi-stage procedures, the distribution
would be very difficult to obtain analytically, but for two stage procedures
it should be relatively simple. In view of {2.10) the limiting distribution

of og (as n* + ) will be the same as the distribution of ﬁi which is

0
independent of n*. Some aspects of this distribution will be studied for

k = 2 in the next section.

2) Setting x = (0,...,0) shows that the result of Theorem 1 does not
hold when all Ai's are zero, and by remark (1) above, it can be expected that
p: has a limiting distribution in this case. In fact, when any subset of p
of the 4A's are zero while the remainder are fixed, the resulting pﬁ will

have a 1imit distribution found by studying the distribution of

H(xl,...,xp,w,...,w).

3) Large sample sizes are needed either if r is small as above or if
02 is large. The behavior of N and p: in the latter case can be studied
by taking limits as c2 + w (02 known). In this case for fixed
A= (Al,...,Ak_l), and fixed r it is clear that n2 (= "2) is given as
the solution of (2.4) and (2.5) and n is obtainable using (2.3). The value

of (n/o”) is thus independent of o. For given &, (1 <1 <k), it is

also clear that (ﬁ/oz) has a value which is independent of o2 and which

{ depends truly on the value of 81 n' In this case it is very reasonable to
l 2
A

ask whether pg converges to n% when the & converge almost surely to

i,n

| the Ai (for fixed 02, as n increases).
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For the rules under consideration, sample sizes are of tne form
e (c > 0) so that the nonzero values of {(/ﬁ?a)&i.n, 1 <ic<k
have a conditional joint distribution independent of o2 which puts positive
mass on any measurable set having positive Lebesgue measure. The method of

proof of Theorem 2 gives as an immediate corollary, the following

Corollary 1. Let 4 = (Al....,Ak_l) be fixed. Let the distributional prop-
erty P hold when n = coz. Then for any 4, such that R* < nz < 1, there

is an € > 0 such that

(2.24) %im P{I(pﬁ/ni)-ll >e}>0.

gérm

2

A will have a distribution which does not

It is clear in fact that n
depend on oz, and for the two sagple case the limiting process is needed
only to assure sufficiently large n so that the discrete variable ps will
be close to the continuous ﬁ:.

It should be noted that the problem considered in this section differs
in an important way from the case in which 02 is unknown, and the a; are
eliminated from consideration by some means (e.g., see Blumenthal [1]), and
from the usual situations in which sequential or multi-stage estimation proce-
dures are used. In these other cases, the desired sample size is an unbounded
function of the unknown nuisance parameter, and consequently two-stage proce-
dures tend to be inefficient relative to sequential procedures due to the
possibility that the initial sample size may be far too small. In the problem
considered here, the desired sample size is a bounded function of the nuisance

parameter (4 'Ak-l)’ and in fact is bounded below as well as above,

1
Thus it is possible to choose an initial sample size for a two stage procedure
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such that no sequential procedure could stop with fewer observations, and such
that this initial sample represents a sizeable fraction of the ultimate saxple
size (with a value of about 0.80 when k = 2 and a limit of (1/2) as k
increases to infinity). Thus the information available to determine the value
of N is almost as great for the two sample procedure as for a sequential one,
and little would appear to be gained by using a complex sequential stopping
rule in place of the simple two sample one. This conclusion is supported by

Theorems 1 and 2 which show both procedures to behave similarly in the limit.

3. TWO POPULATIONS; DISTRIBUTIONAL RESULTS FOR TWO STAGE SA!PLING

In this section, the distribution of the sample size and risk function
will be studied for the two stage sampling procedure when either 02 is large
and the Ai are fixed, or r is small and the Ai are proportional to /r.
The discussion at the end of section 2 is taken as the rationale for not
attempting the extremely difficult task of studying these for sequential or
multi-stage procedures. Theorem 2 and Corollary 1 provide the incentive to
discover just what the sample size and risk behavior is in these cases for
which we do not have stochastic convergence of any sort.

Although it should be possible to characterize the risk and sample size
distribution for any k, the analysis is greatly simplified when k = 2
(especially for the risk function) and we shall now specialize to the two

population case. Some specialized notation will help in this study.

Let

= |z, ol

(3.1) zO,n = (Xl'ntxz.n)IZ; Z = (xl.n-xz'n)/z; Zn

1,n 1,n

(3.2) as (91062)/2; v e (61-62)/2; ws Ivl .
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: Then
]
(3.3) X; = zO,n + Zn, 6" = qa +
‘ and 20 n is normal, mean a, variance (02/2n) while Zl - is normal mean
» »

) v, variance (02/2n) and 2 is independent of 2 hence of Zn' Note

/2).

0,n 1,n’

E that w corresponds to (AI/Z) in the general notation and Zn to (51 .

The risk (1.1) specializes to

: (3.4) /M) + 2F(x)
where
(3.5) F(x) = x20(-x) - x¢(x)
and
(3.6) x = w2n/o = nw/(27T)
with
(3.7) n? = rn/o?  (since A* = 1) .

The function F(x) is zero at x = 0, decreases to (-0.1012) at «x* > 0.6120,

l where x* is the unique solution of ¢(x) = 2x¢(-x), then rises again to zero,

| so that

\
(3.8) R* = inf(1 + 2F(x)) = 1 - x*¢(x*) = 0.7976 . 1

Corresponding to (2.6), we have

| z

(3.9) n = (1 « 2F(x)) .
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Based on an initial sample of ny = R*n* observations (with n* = oz/r), ﬁz
is found from
(3.10) A% = 1+ 2R (A2 /Z7T)

0 >

Then, N = [h'ﬁz], and an additional (N-n.) observations are taken. The

o)
distribution of ﬁz is easily found. Re-write (2.6) as

{ (3.11) x = nw'2n o/o/R_-
and
(3.12) x = nZ_ ¥2n_/oR* .
n0 0

Further, for R* < § < ]

(3.13) (i < 6} <o (" (OW/EWRF < 2 /anfo < (x"(6)//E)/RF)
0

where x (§) < x’(é) are the two solutions of 6 = 1 + 2F(x). Note that
z /2no/o is |W| where W is Normal, mean (Y2ny/0)w, and variance 1.
0

Henceforth, assume that
(3.14) (¢2no/o)w =8,

A convenient parametrization is obtained by letting

(3.15) g = x/R*/(1 + 2F(x)) .

This choice of B gives w such that the solution of Dkl 's ZF(anZnO/o/ﬁT)
is simply, nz = 1 + 2F(x). Note that this choice makes w proportional to

/r, so that if limits are taken as r - 0, then w is varying with r as
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in Theorem 2, and if r is fixed and 02 + o, then o 1is fixed as in Corollary

1. Combining the above, when (3.14) holds,

P(n% < 6) = o[ (x* R%//E)-8) - o[ (x YR*//5)-8)

(3.16) .
+ o[- (x"RY/V8)-8]) - o[-(x /R*//8)-8] .

From (2.10), we see that 1im P{p: < 8§} 1is given by (3.16). It is easily seen
from the bounded converge:czwtheorem and (2.10) that all moments (positive and
negative) of p: converge to tie corresponding moments of ﬁz, as n* + =,

It is not especially convenient to use the distribution (3.16) to find

2

the moments of n° since it involves inverting (1 + 2F(x)) to obtain x~

and x’. Let Yl be a standard normal variable, We can write (/2no Zn /o)
0

as |Yl + gl (8 given in (3.14)), and then ﬁz = n2(|Yl + 8|) where

nz(x) is the solution of
(3.17) n? = 1+ 2F(nx/vR¥) .
Then

@ -B oo
ECRD)PY = [ (2 lys8 1P o)y = | (n2(C-y-8NPoty)dy + [ (n°(y+8))Peiy)dy
-8

(3.18)
= [ (nz(u))p[¢(u*8) + ¢(u-8)Jdu .
0

This integral still involves the implicitly defined function nz(u). Now, let
(3.19) v =n/MR*, or us= Rfv/n
so that

(3.20) nz = 1 + 2F(v)

r—
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and

e (R0 - ) o (R0 A e 2F) - VW)
(3.21)
= R/ A - ve))

Using this change of variables, (3.18) becomes

EGDTY = & [ n PP D) - vem)) [0 (R (v/n(v))+8)
0

(3.22)
+ $(R¥(v/n(v))-8))dv
where n(v) is now given explicitly by (3.20). For notational convenience,

define

(3.23) y(v) = +R*/(1 + 2F(v)) .

Then, (3.22) becomes
P 1> J
(3.24) EGY )= a0 "‘l) v> 2P (v) (1 - ve(v)) [6(vy (v)*+B) + ¢ (vy (v)-8) ]dv .

Next the moments of (x&-e') will be studied, from which the risk can

be derived. Using (3.3),
P P g P i p-i
(3.25) 0§00 = [ ) ¢ Gl e ) D ) Bl

Also, cornlitioning on N = n, and noting that the stopping rule is based

on Zno and that Zo’n

it seen that

is independent of Zn , hence independent of N, it
0 0

(3.26)  E([(Zy -0  2,-0)P " ) INen) = o/ /ER) B OMIEL(2, -0, [Nem]
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hence

1,-1/2

(3.27) E( (2, N-a)i(ZN-w)p-i} . E(wi)(o//z')iﬁl(zn-w)p' L

where W is a standard normal variable. Next, note that Z1 N can be

rewritten as

where R = N-n0 and 32 & is the sum of 3 normal random variables, with

1,
mean w and variance 02/2, which are independent of Zl T and of one
'm0
another. Hence, we shall write
(3.28) 2y = NG o/VDIY, (."?f—a/./z')\r2 + Noj

where Y1 and Y2

(3.14), we obtain

are independent standard normal variables. Using (2.9) and

1/2

(3.29) 2, = @RIV RIQY, ¢ (R0 A - ®RINYPvy0 )

Note that n’ is given in (3.17) as a function of Y,. Using (3.29), (2.10)

and the fact that R* :_(P'/o:) <1, the dominated convergence theorem yields

for any j,
(3.30)  lin E((2/vF))} = (ZR')'j/ZE{I(R'/ﬁZ)Yl o [R5 Q - Re7%Y2 v, + 8’
n¥+w

Let v(Y,) = Y(IYl + B8|) be given by (3.23), (i.e., yz = (R'/ﬁz)), and con-

sider
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ey, « apa - Yoty s

- el 2 o)y + Poa - Yoy, sl =y
(3.31) -(A/B) w
= E{ [ (-A-Bu)é(u)du + [  (A+Bu)¢(u)du}
= - (A/B)

= E{(A(1 - 2¢(-A/B)) + 2B¢(A/B)}

where
(3.32) Aevie) s, B Ropa - Yoapnt?.
Also,

ey 2oy, « Papa - 2oy, . elh
(3.33)

2

- EE(A% + 208, + B3V} = E(A% + 8%) .

2

Combining (2.8), (2.9), (3.14), (3.25), (3.27), (3.30), (3.31), (3.32), and
(3.33) we obtain

1im(1/r)EXE-00)7 = /2RI ) « Popa - o))

n%+o

(3.34) 2
+ 48[A¢(-A/B) - Bo(A/B)] + v (Y]} .

Note that the last yz(Yl) term in (3.34) represents the contribution of
ZO,N to the risk, while the rest represents the contribution of ZN. To
evaluate the expectations in (3.34), it is necessary first to break the
integrals into the two components Yl +B<(>) 0 as in (3.18). Some

simplification is then possible by partial integrations, e.g.,
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é -8y (v)o (y-8)dy = -8y (0)0(8) + g v (y) + 4(y-e)y3(y)§;-v(y)lo(y-e)dy :

In this way, the 74(Yl) term can be eliminated. Lastly, the change of vari-
ables (3.19) can be used to get all functions defined explicitly (when this is
done, the (dy(y)/dy) factor is absorbed into the differential for the new
variable),

Using (3.30) and (3.31) it is also possible to evaluate the bias of the
estimator Xﬁ which by (3.17) and (3.27) is just E(ZN-w). We summarize the

results as follows:

(3.35a) lim'\/-}; E(X3-6*) = (/f/R'S/z)[14 - L]
n*s»
~ 2 2
(3.35b) Lin ZEQZg-a)” = (/R )1,
n¥+w

(3.35¢) im 1z -w)? = (I/2R*%)[41, + I + 481

: n¥uw T N < 1 2 3
(3.35d) lim Lexe-00)% = a/R*3)(21, + 1, + 281.]

: o TOON 1% %2 3
(3.35¢) 1im(1/n*)E(N) = I

n*+=

where

@.368) 1y = [ (60 - 2v0 (- Y (W) [CWIOCV)) + DWIO(D(V))]dv
(3.36b) L= [ YW - veWIEM) + 6@V)I]dv
0

I, = [ (O WICO)*8)0 (- (P (VIC(V)+B)/B(v))6 (C ()
0

(3.36¢) - (2 V)D(V)-B)e ((v2 (VD (V) -8)/B(v)) e (D(V))

e by

-2B(v) o (vy’ (V)/B(V))¢(B/Y(V))}v3(v) (1 - vé(v)]dv
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(3. 364) 1, = [ [ov) - 2v6(-MN WCM) - 6@V ]ev
0
(3. 36€) I = [ YOI - WI[6EM) + 401y
and

Bv) = v - y2v))
(3.37) Cv) = vy(v) - 8
D(v) = vy(v) + 8,

with vy(v) given by (3.23).

One question left umanswered is the following. Theorem 1 gives the
almost sure limit of p: as r + 0 when the Ai are fixed and positive. How
does E(Xﬁ-e')z behave in that case? The preceding development can be used to
answer the question for k = 2 and the two sample procedure. The development

of (3.34) can be used to write the exact expression

2 2.4 2 2

(1/r)E(XR-6*)" = (1/2R)E{Y vy (Y;) + [y (¥,) A - vy(Y;))]
3.38
(3-38) + 48[A0(-A/B) - Bo(A/B)] + v2(Y)))

2 . 2 . 2

where yN(Yl) = R /pN, and where vy is used for vy in A and B. The
pointwise limit of Yﬁ(yl) as B+ o (recall B = /Y2R*/r w, w fixed) is
R* and dominated convergence allows immediately taking limits under the
expectation for all terms except 48[A®(-A/B) - B¢(A/B)]}. This term has a
pointwise limit of zero as B8 increases, as is easily seen from the standard
tail approximation to the normal distribution, and it is easy to verify that

the expectation has a limit of zero. Thus,

—

t
'
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(3.39) lim E(Xﬁ-e')z = lim (3.35d) = 1 .
r+0 g
In general (k populations, sequential or multiple sampling), it is conjectured

that the risk when the A, are fixed and r -+ 0 will be the same as if a non-

i
random number n = (n*/A*) of observations were taken. This would give

lim EQ1/7) (k2-0*)° = lin ? ylaney + (8,//A%1)) = 1 .
0 40 -o
Since the integrals in (3.36) are quite complex, it is very difficult to
tell from looking at them how the expected sample size and risk behave, except
in the limiting case, where B8 + =, In that case, n2(|Y + 8|) approaches
unity for all Y and dominated convergence allows the conclusion that

lim E(n2(]Y + 8[)} = 1im E{(n"2(|Y + 8)} = 1 so that (3.35b) approaches (1/2)

B B+

and (3.35e) approaches unity as g increases. We have seen already that
(3.35d) approaches unity and the same argument shows that (3.35a) approaches
zero and (3.35c) approaches (1/2). For finite B8, since n2(|Y +8]) <1,

it can be concluded that (3.35b) will exceed (1/2) and that (3.35e) will be
less than unity. Otherwise, the behavior is not ascertainable from examination
of the formulas. Therefore numerical integrations have been performed, and the

results are given in the following section.

4. NUMERICAL RESULTS

The performance of the two sample procedure as given by (3.35) was
evaluated numerically for a range of values of w. If w were known then
n could be chosen so that (3.4) equals r (given) and the value n, defined

in this way can be considered as an ideal value under perfect information. To

AJ______.#
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evaluate the effectiveness of the two sample procedure, E(N) should be com-

2

pared to n, and -::E(Xi-e") should be compared to unity which is the value

of Lexe o0,
rn
can be compared. A convenient reparametrization is the following. Let x be

Similarly the biases of the ideal and two sample procedures

a running parameter and define

(4.1) m = 0?1 + 2F(x)), and w = x/V2n_ .

Clearly n, is n, - The operating characteristics of the two sample procedure
x

have been computed for w = w, @S Xx traverses a suitable range.
Table 1 gives for each x, Ax where hx = ux/n_" and n* = ozlr. This
is followed by n: = nx/n' and ﬁx = 1im(E(N)/n*) (as given by (3.35)). Next
n*s»

5 N |
is Mx s lim ;E(Xﬁ-e')z, and its two constituent components ﬁo =
n'+o X

lim I;E(ZON-a)z and M

1 2 s 1
= lim =—E(Z,-w)". After this is B, = ~/:E(X' -6%),
n* 1x T N I T nx

n%*so

the normalized bias of the ideal or perfect information procedure (BI =

-ZAXF(x)/xz), and ix = lim -\/:,:E(Xﬁ-e'). Finally for reference, the norma-

n*+o

lized mean squared error (Mc) and bias (Bc) of the conservative single
sample procedure whose sample size is n* are given (evaluated at o = wes SO
that M_ =1+ 2F(/Z 1), and B_ = -F(2 2 )/2).

Comparison of E(N) with n shows that E(N) tends to be flatter as
a function of x, 1lying below n, at extreme values and above in the central
region. The M.S.E. of Xﬁ is not quite as flat as might have been hoped. ’
Note however that it is below unity at x = 0.20 and at x = 1.50 even though
E(N) < n indicating that the two sample procedure may be somewhat more effec-
tive in using the observations taken than is the one sample procedure. Consider

the M.S.E. of a single sample procedure whose sample size n equals E(N) of
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Table 1

Comparative Mean Squared Errors and Biases

A A 0’ N H ! M B B M B

X X X X Ox 1x 1 X ¢ C

.00 .0000 1.0000 .8662 1.1028 ,5801 .5227 .5642 ,5327 1.0000 .5642

l .05 .0360 9626  .8662 1.0667 .5801 .4866 .5397  .4950 .9619  .5289
.10 .0733°  .9298 .8664 1.0337 ,S800 .4538 .5148 .4573 9276  .4939

.15 1117 .9015  ,8667 1.0044 ,5798 ,4245 .4892  .4201 .8973  .4595
.20 .1510 8772 .8671 .9786  .5795 .3991 .4634  .3836 .8714  ,4260
.25 .1910 .8568  .8676 .9567  .5792 ,3775 ,4375  .3481 .8496  .3937
.30 .2315 .8399  .8683 .9383  .5788 .3596 .411¢ ,3139 .8321  .3627
.35 .2723 .8263  .8692 .9236  .5782 .3453 ,36G0 ,2813 .8185  .3332
.40 .3132 .8156  .8702 9121 5776 .3345 .3608 .2503 .8087  .3055
.45 .3541 .8077  .8713 .9037  .57€¢9 ,3267 .3362 .2212 8021  .2794
.50 .3947 .8022  .8725 .8980 .5762 .3218 .3123 .1940 .7986  .2551
.55 .4351 .7989  .8738 .8947 5753 .3194 .2892 .1687 7975 L2326
.60 .4751 .7976  .8753 .8936  .5744 3191 .2671 .1454 .7987  .2119
.65 .5145 .7980  .8768 .8942 5735 .3207 .2460 ,1239 .8016 .1928
.70 .5534 .8000 .8785 .8963  .S725  .3239 ,2259 .1043 .8060 .1753
.75 .5917 .8032  .8802 .8997 .5714 ,3283 .2070 .0865 .8115  .1592
.80 .6294 .8077  .8820 .9041 .5703 ,3338 .1892 .0703 .8180 .1446
.85 .6666 .8130  .8838 .9092  .5691 .3401 .1725  .0S57 .8250 .1313
.90 .7031 .8192  .8858 .9150 .5679 ,3471 .1569  .0425 .8325 .1191
.95 .7391 .8260 .8877 .9213  .5667 .3546 .1425 .0306 .8403 .1080
1.00 . 7746 .8334  .8897 .9279  .5655 .3624 .1291  .0200 .8483  .0979
1.05 .8096 .8411  .8918 .9347 .5642 .3705 .1167 .0105 .8563  .0887
1.10 .8441 .8490  .8939 .9417  .5629 ,3788 .1053 .0021 .8643  .0804
1.15 .8783 8572  .8960 .9488 ,5616 .3872 ,0949 -.0054 .8722 .0727
1.20 .9122 .8654  .8982 .9559  .5603 .3956 .0853 -.0120 .8800 .0658
1.25 .9457 .8735  .9004 .9629  .5589 .4040 .0765 -.0177 .8876  .0594
1.30 .9790 .8816  .9026 .9699  ,5576 .4123 .0686 -.0228 .8950 .0536
1.35 1.0121 .8896  .9049 .9768  .5562 .4206 .0613 -.0271 9021  .0484
1.40 1.0451 .8973  .9072 .9835  .5548 .4287 .0547 -.0308 .9089  .0436
1.45 1.0779 .9048  .9095 .9900 .5534 .4366 .0488 -.0339 .91585  .0392
1.50 1.1106 9121 9118 .9963  .5520 .4444 0434 -.0365 .9218 .0352
1.55 1.1433 .9190 .9141 11,0025 .5505 .4519 .0385 -.0386 .9278  .0316
1.60 1.1759 .9256 .9165 1.0084 ,5491 .4592 .0342 -.0402 .9335 .0283
1.65 1.2086 9319 ,9189 1.0140 .5477 .4663 .0302 -.0415 .9389 .0253
1
1
1
1
1
1
2
2
3
3
4

i SRs——

.70 1.2413 .9378  ,9213 11,0194 ,5462 .4731 .0267 -.0423 .9440 .0226
75 1.2740 9434  ,9237 11,0245 .5448 .4797 .0235 -.0428 .9488  .0201
.80 1.3068 .9486 ,9261 11,0293  .5433 .4860 .0207 -.0430 .9533 .017S
.85 1.3397 9535 .9285 1.0338 .5419 4919 .0182 -.0429 .9575  .0159
.90 1.3726 .9580 .9309 1.0380 .5404 .4976 .0160 -.0425 .9615  .0140
.95 1.4057 .9622  .9333 1.0419 .5390 5029 .0140 -.0419 .9651 .0124
.00 1.4389 .9660 .9357 1.0455 .5375 .5080 .0122 -.0411 .9685 .0109
.50 1.7767 .9900 .9583 1.0643 .5240 .5403 .0028 -.0269 .9903  .0027
.00 2,1238 .9977 .9764 1.0570 .5134 .5436 .0005 -.0120 9977  .0005
.50 2.4754 9996 .9883 1.0398 .S065 5332 .0001 -.0037 .9996 .0001
.00 2.8285 9999  .9949 11,0224 .5028 .5196 .0000 -.0005 .9999  .0000
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the two sample procedure. Table 2 gives a few selected values.

} n/n*® *E(X* . B* 4 vl
: X (n/n*) n E(X" 6*) Mx
.00 .867 1.151 1.103
.15 .867 1.040 1.004
1.00 .890 0.942 0.928
1.55 .914 1.005 1.002
2.00 .936 1.025 1.046
; 2.50 .958 1.030 1.064
‘ 4,00 .995 1.00S 1.022

It is clear that for small x, the two sample procedure uses its observations
1 more effectively than does a comparable single sample one, but for larger x
values the M.S.E. of Xﬁ decreases more slowly toward its asymptote of unity
b and gives slightly higher M.S.E. values than the comparable single sample

estimate.

A similar behavior in the bias of the two sample procedure relative to

BI is also noted.

} It was demonstrated that (N/nx) does not converge stochastically to

unity as n* increases, and the numerical results show that (E(N)/nx) is
not too close to unity either. Table 1 also shows that MSE(X&) fails to

achieve the goal of being constant at unity. In spite of these facts, it is

seen that the two sample procedure does take some advantage of the possible
savings available when w is known, and the M.S.E. curve does not rise very
far above unity. Compared to the conservative procedure, about a 10% saving

in sample size is achievable for noderate values of x, and the two sample

| procedure may very well be acceptable in practice.
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A simplified two sample procedure can be constructed in the following

way. Take n observations and compute Zn ., Divide (0,=) into m regions,
|
4"
Rl,....Rm. If an € Rj’ let Ns= "j (1 <j<m), and take n = N-nl addi-
tional observations. (It may be desirable to take n; >, for small m).

We assume that the nj are chosen as fnl/yj] where " l,...,ym = (nl/n')(>0)

are fixed constants. This makes n_ = [n*]. The regions R, will be chosen as

]

follows: R. 1is the interval [oCi/-/an. oc;/ﬁﬁI]. R: (2 <j<m) is the

1
pair of intervals [oCi/-’Zn , of

j
_1//2n_, oC}//Z_rq] where

+

j

j_l//EE;) U (oC

(4.2) C; = x"(6

: AJS €= X GPATE i<

1)

- + .
S b <8 =1l (M) =0, x ()= =) are given.

This choice of R, is such that if n is the solution of

j
r= (02/R)(1 + 2F (2, /20/0)), then
1

and the values R* <8

=

= +
< Gin" for (oCi/v’an) 1Zn1 < (oCi/v'an).

A conservative choice of sample sizes n, would be given by "j >A or

)
(rg/v;) > & (1 <§ <m). When m= [n*] - [ng] and n, = [ng] + (i-1),
6, = (n i./n"), then this is equivalent to the previous two sample procedure.

Define

(4.3) Y: = nl/N o

As n* » = (and n e since Yo > 0), the range of possible values for
yﬁ converges to (yl,...,ym). Clearly, as n* increases, erl converges in
law to a random variable y: whose distribution is

(4.4) P(vi =

v} = [0(x+8) + &(x-8)]| 1<j<m
j Ij

W

X

1
|
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where F(x)ll denotes

J
L 3 -
F(Cl) - F(Cl) j=1
(4.5)
+ + - -
F(Cj) o F(Cj-l) + F(cj-l) = F(cj j - 20 oM
and where
(4.6) B = /an wlo .
Using (4.4), it is easy to see that
4.7) 1im(1/n*)E(N) = Yo lim E(l/Y:) = YmE(I/Y:).

n%+e N%+»

and using (4.4) and (3.27) that

(4.8)  1im LEp-0)® = (/2) lim E@e/N) = (/2 v) lim B(rQ) = (1/2 v EGD) .

n*+o n¥*+o n¥*+e

The other expressions corresponding to (3.35) and ‘3.36) simplify in a

similar way to give

4.9) nlﬂ.\/; E(Xy-6*) = (ll/y—m)[18 = /2‘17]
(4.10) lin 2 E(Z-w)? = (1/2 v )[E(2) + I, + 481.]
ntew T N m L 6 7
(4.11) lin 2EXe-0%)% « (172 v )[2E(y2) + I, + 481.]
n*+o r N m L 6 7
where

m
Io = - [ vpl(z-8)0(z-8) + (z+8)0(z+8)] |,
k=1 k
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m
kgl(vk[¢(z«8)o((z-exk)/fizd - °(2-8)°(-(='8*k)/“7[1|lk 1

-2/—0(8//_)0[ ]
Vl- Yk

k

+ 8 { [6(y+B)O((y-81)//A,) + ¢(y-8)0(-(y+8),)/¥A, ) ]dy)
k

m
P Y, [¢(z+8) - ¢(z-8)
. kzl k Iy

- — T e ——— —— ——

k
and
|
¢}
[ fxydx = [! fx)dx  if k=1
Iy 1
k-1 Cx
= f(x)dx+£ f(x)dx if k=2,...,m.
Cx Cx-1

In the particularly simple case in which m = 2, we denote . by A,

and C_ by C and C.

1 1 by d, the formulas (4.7) through (4.11) reduce to

(4.12a) lim(1/n*)E(N) = 1 - I,/
n*+e
! Erxwoney = -3
(4.12b) n*l'-i:: -\/;:-:(x"-e ) (1/.4{)[112 2 1“]
(4.12¢) lim -—E(ZON-a) = (1/2A)[A + 1, ]
n*-so
(4.12d) n}ﬂ —E(Z -w) = (1/20)[A + I, + 215 + 481]

A A -:J..-.--u--l-lllllIllIllllIIIlIIIlIIlIllIlll|IllIlIll'llllllIIlllllllllllllllllllllll'lll'
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ltoxe. a0l o
(4.12¢) niif SE(KR-00)" = (1/A)[A + 1)+ 1o+ 281 ]

where,

Ig = ((l-AZ)/Z)[(C*B)o(C*B) - (d+B)¢(d+B) + (c-B)¢(c-B) - (d-B)¢(d-8)]
o= (1-A)(0(d-B) - ¢(c-B) + 0(-c-B) - ¢(-d-B)

- d
1, = Blo(-8//K) - [( [ + /)o['—‘l”—‘“l]o(y-e)dyll
-d ¢ 7y

-/R $(8/YA) {1 - 2[¢ -—Q—J s o[ < ]]}
/1-A /1-A:

-A{¢(d+B)0((d-BA)/Y2) + ¢(c-B)&(-(c+BA)//N)
-6 (c+B)0((c-81)//A) - $(d-8)0 (- (d+81)/VA)}

+ [0(d+8) - ¢(c+B)] + B[0(d+B) - 0(c+B)]
L, = ((1-A)/Y2)[4(d+*B) + ¢(c-B) - ¢(d-B) - ¢(c+8)]
A = (1-A)/A .

Numerical evaluations of (4.12) were made for a few combinations of A

and § (= 61) (on which C, is based through (4.2)), namely:

1

8

0.85 | 0.85

0.90 | 0.85 0.90
0.95 | 0.85 0.90 0.95
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The values of x (6) and x’(6) needed for constructing the procedures are

6 x™(6) x* (8)
0.85 | .26903  1.10597

0.90 | .15282 1.41758
0.95 |_.06836 1.81395

Tables 3 and 4 show the values of N (given (4.128)) and M (given by
(4.12e)) respectively for the various combinations of A and §&§ shown above.
For reference, N and M for the "regular'" two sample procedure have been
transferred from Table 1. These computations suggest that the simplified two
sample procedures sacrifice too much of the information in the first sample
resulting in very poor M.S.E. characteristics with little compensating saving
in sample size. Generally, they seem inferior even to the conservative proce-
dure, and do not pick up any of the good features of the regular two sample

estimator.

S. ALTERNATE LOSS FUNCTION

Another possible approach to constructing a sequential procedure for the
problem of Section 2, is to let the loss function for an estimate based on n

observations be cn + (X*-e')z where ¢ represents a relative cost per observa-

tion. The risk is then cn + (A'ozln)H(xl,...,xk-l) (xi = Ai/EYO, 1 <1i<k-l).

The optimal sample size is obtained by differentiating the risk with respect to

n and is the solution of

5.1) e = (A*%/20)6(xy, .00, )

where G(xl”'°’xk-1) is given by (A.11). Define

X

-




Table 3 1

} | Comparison of N for Alternative 2-sample Procedures 1

A: .85 .90 .90 .95 .95 .95
| X Regular 6: .85 .85 .90 .85 .90 .95
0 .8662 .9221 .9481 L9278 .9740 L9639 L9562
.05 .8662 .9222 .9481 .9278 .9741 .9639 .9562
l .10 .8664 .9223 .9482 .9279 .9741 .9640 .9563
.20 .8671 .9229 .9486 .9284 .9743 .9642 .9565
.30 .8683 .9240 .9494 .9292 .9747 . 9646 .9568
I .40 .8702 .9255 .9504 .9304 .9753 .9653 .9573
.50 .8725 .9274 .9518 .9319 .9760 .9660 .9579
.75 .8802 .9337 .9562 .9369 .9783 .9687 .9601
1.00 .8897 .9412 .9615 .9431 .9811 9719 .9630
1.25 .9004 .9492 .9670 .9499 .9839 . 9755 .9665
1.50 .9118 .9573 .9726 .9571 .9868 .9792 .9703
1.75 .9237 .9653 .9780 . 9644 .9896 .9830 .9744
2.00 .9357 .9728 .9831 .9715 .9921 .9866 .9787
3.00 .9764 .9935 .9963 .9926 .9984 .9968 .9934
4.00 .9949 .9993 .9997 .9991 .9999 .9997 .9991
Table 4
Comparison of M for Alternative 2-sample Procedures
A: .85 .90 .90 .95 .95 .95 {
X Regular &6: .85 .85 .90 .85 .90 .95

0 1.1028 1.0473  1.0290 1.0493 1,013~ 1.0220 1.0346
.05 1.0667 1.0353  1,0140 1.0275 .9921 .9965 1.0041
.10 1.0337 1.0305  1.0062 1.0138 .9779 .9780 .9822 ﬂ
.20 .9786 1.0427 1.0129 1.0114 .9721 .9666 .9¢54
.30 .9383 1.0829  1,0484 1.0424 .9964 .9899 .0846
.40 .9121 1.1466  1,1087 1.1031 1.0476  1,0449 1.0364
.50 .8980 1.2274  1.1878 1.1875 1.1200 1.1260 1.1150
.75 .8997 1.4613  1,4235 1.4572 1.3506  1.397S 1.3848
1.00 .9279 1.6818  1,6507 1.7416 1.5837  1.6928 1.6939
1.25 .9629 1.8539  1.8290 1.9923 1.7714  1.9554 1.9956
1.50 .9963 1.9671  1,9447 2.1870 1.8945  2,1578 2.2664
1.75 1.0245 2.0178  1,9927 2.3119 1.9456  2.2832 2.4867
2.00 1.045S 2.0058  1.9733  2.3566 1.9248  2.3204 2.6345
3.00 1.0570 1.5255  1.4674 1.8266 1.4125  1.7461 2.2809
4,00 1.0224 1.1047  1.0802 1.1843 1.0611 1.1447 1.3598
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(5.2) v a (nlc/o?),
so that
(5.3) x, = 8,/5//a by

A sequential stopping rule which is natural to use when the 4, are not known,

is stop the first time that
(5.4) c > (A'02/2n2)6(i X, 4)
: - 1°°°°* k-1

where

Py

i =

i.n/l;/a 1 <i<kl,

If one studies the behavior of such a rule for fixed 02 as ¢+ 0, it is
seen from comparing (5.1), (5.2) and (5.3) with (2.3), (2.4) and (2.6) that the
behavior is almost identical, with /c replacing r and G in place of H.
It might have been suspected that the difficulties pointed up by Theorems 1 and
2 were due to the choice of loss function and criterion for choosing the sample
size. It might then have been hoped that using this loss function would lead
to probability one convergence to unity (as c¢ decreases) of the ratio of the
random sample size N to the optimal sample size (computed from (5.1) with
fixed Ai)’ Instead, the analogues of Theorems 1 and 2 hold as ¢ + 0 (in

the analogue of Theorem 1, the sample size behaves as though all Ai = 4w,

which from (A.12) implies that 1lim(N/c/o) = ' a.s.). Suppose ¢ is fixed
c+0

and 0 + =, and it is assumed that {(/570)3i ne 1 <1<k} have the joint
’

distribution of {(Y'-Yi), 1 <1<k} where the Y's are normal, variance 1

and means {-lﬁ?o)Ai}. For the present sampling rule it is seen that (v/n/o)

-
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is proportional to (1//0) so that the means of the Y, are in the limit

i

(0 + =) zero, regardless of the original 4 Thus as o + » for fixed

i'
Ai' N has a limiting distribution (not an almost sure limit) which is inde-

pendent of the Ai' A result like Theorem 2 will obtain if the 4, are

i
proportional to o.

If the global maximum of G 1is at the origin (see (A.15) and the dis-
cussion following it), then the conservative sampling procedure takes
n = (o/A%//c) (see (A.13)).

In the case k = 2, the shape of G 1is very similar to that of H and

all of the results of section 3 could be transcribed easily for this loss func-

tion.

6. A RELATED PROBLEM

Let xl,...,xn be normal, mean , variance 12, and suppose that it
is desired to estimate |,| by means of the estimator Zn = |Y;|. The risk

of this estimator is
(6.1) R(Z,w) = (s2/n)[1 + 4F (w/A/1)]

where F(x) is given by (3.5). The behavior of this risk function is the same
as of (3.4) so that sequential and multiple sample procedures based on substi-
tuting Zn for w in (6.1) will have the same properties as described in
Sections 2 and 3. The bias, expected Sample size, and risk functions for the
two sample procedure will be very similar to those tabulated for the case

k = 2, but not identical since for (6.1), R* = 0.596, and from equations

(3.36), it is seen that R* enters these expressions in a non-linear way.

o — i e e i
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I APPENDIX

PROPERTIES OF THE RISK FUNCTION 1

| The risk function R(X*; el,...,ek) can be expressed as

k
me(/n (x-8,)/0)

i=]

(A.1)  E(x*-8%)2

[ (x-e%)2d

w k
[ ¥4 1 et Geay)/e)
- i=
k k
1 o(/nly+s;)/0) - N o(/n (-y+8;)/0)]
i=l i=1
o k k
2 [y[1- 1 o(h (y+0,)/0) + T
0 i=]1 i=l
k k

N o(ysx,) + N ¢&(-y+x.)]dy
i . i
i=1 i=1

- T T — e T
n

[ ya(
0

o(/n (-y+s,)/0))dy

(6%/n)2 g yi1 -

L — iy —
"

OA*cz/n)H(xl,...,xk_l)

where. ‘

| |
(A.2) A, = 6% - @ x; = (a a,/0) . . '

Lerma A.1. For fixed values of (xl”"’xi-l'xi+1"'"xk-l) H(xl,...,xk_l)

taken as a function of xi decreases for 0 :_xi < x* then increases for

i |
x; < xp < {
Proof: |Writing j
| |
2
aH(x,,...,x,) -X;/2 =» X.y -X,Y )
(A.3) (%:) lax aze U [yele b 1 $(-yex;)-e Yonotyex)ldy
i 0 jHi jAi ] 1
(
36 :
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it is seen that at X, " 0, the bracketed term in the integral is negative for 1

all y > 0 so that the derivative is also, Further, a lower bound on the
bracketed term is [(1 ¢ xiy)ok'l(-y)-ll so that the integral in (A.3) becomes
infinite as X increases. Taking the derivagive of the integral in (A.3) with
respect to x, gives
1 2 1 x:/z 3H(xl,...,xk) ™ xiy -X.Y
e

2 i
(33) == ( ) = [ yTe(y)le N o(-y+x.) + ¢ N ¢(y+x,)]dy>0
A*Y axy 2 ax (I) j#i j i j

so that the derivative has only one sign change, completing the proof.

Two of the more important properties of the risk function for k = 2 will

now be demonstrated.

Lemma A.2.
3R ...
(A.4) n (X*; 91’02) < 0.

Proof: From (3.4), (3.5), and (3.6) it is seen that

(A.5) B o @¥md + ) - e (W2n))
4

where f(x) = dF(x)/dx, and it is easily checked that (A.5) becomes

JR
—_— -
an

©3)/mHa - xe(x))

completing the proof since x¢(x) < ¢(1) <1 for x 2 0.

_A__‘_L___.‘L‘_-—A

e aae _.____d
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In obtaining the distributions in section 3, use was made of the equivalence

between the statements

{nz < 8§} where n2 satisfies: n2 = {1 + 2F(nw/27r)]

and {w; <w< w;), where w, = xG//Z} and x. is one of the two solutions of

(A.6) § =1 + 2F(x) .

| This equivalence depends on the fact that w;(w;) is a monotone increasing
(decreasing) function of 6 (0 < 6 < R*), The fact that x;(x;) is a monotone

increasing (decreasing) function of § follows immediately from the fact that

{
(1 + 2F(x)) decreases monotonely for x < x* and increases monotonely for
x > x* (see Lemma A.1). We now show that we behaves in the same way.
Lemma A.3. Let w; and w; be the two solutions of
(A.7) 5§ =1 + 2F(w26/T) .
5 _(,,,) ax‘(‘)
Then —gg——- has the same sign as Y and is zero only when the latter is
l zero.
{
Proof: Writing w, as c(xéllﬁ), it is seen that {
(A.8) i (-x, + 26 d’(6) 1
FY3 26372 6 s’
|
’
From (A.6) it is seen that
dx6 (
(A.9) ls= Zf(xs)HE— :

I A e A ——
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Thus using (A.9) in (A.8) along with (A.6) it is seen that

ax

o C {x.f(x,) + 142F a LS A s
[-x £ (x,) ()] = —g75(1 - 4 (D) )

(A.10) -
L 5372(2f(x6))

and since (1 - x¢(x)) > 0, this completes the proof.

It is difficult to characterize H(xl""’xk-l) in great detail, but the

following remarks indicate some of the known properties.

Remarks:

1) By direct application of the proof of Theorem 1 of Saxena and Tong [3], it

is easy to see that for fixed (xl,...,xp) (say)

s max H(xl""’xk-l) = H(xl,...,xp,O,...,O) .
p’l, l.l’ﬁ-l

2) The unimodal shape of ﬁ{xi) = H(x;,...x) din x (fixed values of (k-2)
other x's) implies monotonicity of the solutions x;(c), x;(G) to the equa-
tion 6 = ﬁtxi) (for & > 1/A*, there will be only one solution, x;(s)]. As
in the case k = 2, it would be desirable to be able to show monotonicity of
(x;(*)(é)lfg), or alternatively to show that xi//ﬁf;;T is monotone increasing
in x,, i.e., to show that [2ﬁ1xi) - xi(dﬁlxi)/dxi)] > 0. This is trivial

when ﬁ(xi) is decreasing, but illusive in general. As x, becomes very

i
large, ﬁ(xi) has a positive limit, while xi(dﬁtxi)/dxi) goes to zero. Thus

> x¥*

the difficulty encountered is for x i

i but not too large.

3) Similarly, it would be desirable to show that for general k, (dR(X*;

91,...,ek)/dn) < 0. This is equivalent to showing that G(xl,...,xk_l) >0

AA.___....___._—-_

]
|
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for all (xl""'xk-l) where

k-1
(A.11)  Gxp,.enexy y) = [2H(X), .0 00x)) - 121 N CLICHARIE VR 39 I

i The difficulties are of the same nature as mentioned above.

[ 4) It is not clear whether the function H(xl,...,xk_l) has a unique minimum,
The system of equations aH(xl,...,xk)/axi =0 (1 <1ic<k-1) has a solution

on the diagonal Xy = Xy ® ccemXx, . =X, given by

xyok-l

([) yo (y)[e (-y+x)-e Vo* L yex)1dy = 0 .

Whether this solution is unique and whether there are solutions off the diagonal

is not clear. If a solution off the diagonal exists, then from the symmetry of

the function, any permutation of that solution is also a solution. If one con-

siders a ray x; ® tri (ri 20, fixed, 0<t<e 1<ic<k-1)

3H(tl‘l,...,trk-l,0) k-l QH(XI,....Xk)|

= r
at i 9x. *
i=] 1 lxi-tri

It is clear that this derivative is initially negative since each term is, and
that there is a t* (depending on the r's) such that for t > t*, it is
positive but since the individual terms change signs at different values of t

and since the terms are not necessarily monotone increasing (because of the

w (tri)zlz
e factor) it is not clear whether there is only one sign change.

There is a possibility of the function oscillating in a limited t range.

. A
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5) One property which can be established is that R* is a decreasing function
of k, with a lower bound which approaches (1/2A*) as k increases. To see
this, let xi,...,xi_l be such that

H(x*,...,xi_l) = ) min H(xl""’xk-l) = R;
l,ooopxk_l

Then

» » *
Rk+1 = min H(xl,...,xk) < min H(xl""’xk—l’xk)

Xl,...,xk xk

< H(x}seoenxp 15®) = HIx{,.o0xp 1) = RE

From Theorem 4.2.5 of Dudewicz [2], it is easily seen that

0
/A% [a/2) « [ x

2a0% (x)] < R < (1/A%)

and the lower bound decreases to (1/2A*) as k increases. A somewhat sharper

upper bound for Ri is

/A% inf [ y2de(n)eX 1y .

0<x<® -
. {
|
The function G(xl,...,xk_l) of (A.11) is of interest in section S,
and a few of its properties will be described here. Clearly, since 1

(aH(xl""'xk-l)/axi) goes exponentially fast to zero as x5 increases,

(A.12) lim G(xl,...,xk_l) = 2H(=,...,») = (2/A*) q
min(x;, .., x )+ )
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I and

’ (A.13) G(,...,0) = 2H(0,...,0) = 2 > (2/A*) .
f
‘ Also
P , 2
E e aG(xl,...,xk_l) ] aH(xl,...,xk_l) ) k-1 s 9 H(xl""'xk-l)
axj 3xj jo1 1} axiaxj
so that
b
r aG(xl,...,xk_l)l aH(xl""’xk-l)l |
| (A.ls) = < S e
3xj | axj l
,...,0) 055 :.50)
]
Thus G(xl""’xk-l) decreases from its value at the origin which in turn is
b higher than the value at infinity. Whether the value at the origin is a uni-

versal maximum, and details on the shape of the function are not known. When

k =2, G(x) = 2(1 - x¢(x)) decreases monotonely for 0 < x < 1, then {

increases for x > 1 with a minimum value of 2(1 - ¢(1)) ¥ 2(0.76).




