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13.   ABSTRACT 

Given    n    observations from each of    k    normal populations with common known 
2 

variance    o ,     the value of the largest of the    k   means  (whose values are not known) 

is to be estimated using the largest value of the    k    sample means.    It  is desired to 

design a sampling rule which guarantees that the Mean Squared Error  (M.S.E.) of the 

estimate does not exceed a given bound regardless of the configuration of values of 

the    k    means. 

The M.S.E. is a function of A = (A.,...,A. .) where A. = max 6. - e. 
1 k"1 1      l<j<k    3        1 

(A.     is zero by convention).    If the    A's    are known a smaller sample size  (fixed 

sample size procedures) can be used than the sample size    n*    needed to guarantee the 

M.S.E. requirement for all    A.    Sequential and multi-sample procedures are considered 

which attempt  to use sample information about    Ä^   to reduce sample sires.    Some prop- 

erties of the  sample size function and M.S.E. of these procedures are developed. 

Generally it  is found that sample information about the value of   Ä"   is difficult 

to use efficiently. 
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•W   V 

1.  INTRODUCTION AND SU^flARY 

Ci ven k normal populations with means 6.,..,,6.  and common variance 

o . Based on n observations from each population, a point estimate of 

6* « inax(e ,...,e.) is desired. A natural estimator to use would be 

X* ■ max(X . ...X.), where X.  (1 <^ i <^ k) is the average of the n observa- 

tions from the ith population. The risk or mean squared error function 

R(X*; 9.,...,8.) is easily seen to be 

2 « 
(i.i)  R(x*; e1 ek) . E[(x*-e«)2|e1 ek] - 2_ / y2dn*{y * O^.A^ 

where A. = 6* - e.. It is to be noted that even if o  is known, the risk 

depends on the unknown nuisance parameters (A.,...,^.) (one of which is zero) 

If a single-stage experiment is to be designed (n-chosen) so that 

R(X*; e.,...,e.) ^r (where r is given), then an upper bound, say A*, 

must be used for the integral in (1.1), and a conservative n must be chosen 

2 
by equating r to (o A*/n). On the other hand, if multiple stage or sequen- 

tial procedures can be used, then it might be hoped to reduce the total sample 

size by using information contained in the earlier stage samples regarding the 

values of the A. . It is procedures of this type which will be investigated 

in this paper. 

Since it is easy to see that (X*-X.)  (1 <^ i <^ k) is a collection of 

strongly consistent estimates of the A.  (see Dudewicz [2]), it would be 

hoped that when the desired sample size (obtained by equating (1.1) to r) 

is large, almost the same sample size would be obtained by replacing each A. 

in (1.1) by its estimate. Certainly one would hope that the ratio of the two 

sample sizes would converge almost surely to unity. As will be seen, this 



turns out to be the case if the desired sample size is made large by allowing 

r to go to zero, but not if o  is allowed to become infinite while r is 

fixed. It will be seen in the latter case that the ratio mentioned has no 

almost sure limit. It does have a limiting distribution, and this will be 

examined. Most of the results on limiting distributions for the random sample 

size, and for the resulting risk of the estimator X* based on random sample 

size have been obtained only for the case of two populations. Numerical evalu- 

ations of the limiting expected sample size and mean square error functions 

indicate that they do take some advantage of the savings possible when the 

A's are known, and may be of practical interest. Some simplified two sample 

procedures are examined and found no*-, to be very good. 

2 
Estimation procedures for unknown o  are considered in [1] in which a 

more extensive bibliography is given. 

2.  k POPULATIONS, CONVERGENCE RESULTS 

It is easily seen that the supremum of (1.1) over (A.,...,A.) is 

2 
(o /n)A* where 

(2.1) A* » A* » / y2d#k(y) 

(see Blumenthal  [1], for example).    The conservative approach to choosing    n 

so that  (1.1) is at most    r    (given),    would be to take   n « n*    where 

(2.2) n* ■ A*o /r 

Clearly, if the A. were known, a smaller sample size could be used by equating 

(1.1) to r.  In this section we consider how much could be saved if the A. 

— • 



were known, and we examine multi-sample and sequential sampling procedures 

which try to accomplish these savings by using estimates of the A. in their 

stead. Define for a given set (A.,...,A.) 

(2.3) 
2        2 

n ■ (m/A*o ) 

so that (1/n ) represents the "efficiency" possible if the A's are known, 

i.e., the ratio of the maximum sample size to the actual size needed for a 

given set of A's. Also, define (assuming that the one A. having value zero 

is Ak) 

(2-4) 

and 

(2.5) 

tj » L^/fJ/Sr       1 < i < k-1,  x
k 

B 0 

HCx.....^.,) » (1/A*) / yZd n «(y+x.) . 

Then the result of equating (1.1) to r can be expressed as 

(2.6) n ■ H(Xj,... »Xj(_j) 

Some of the properties of H(j. ,...,x.) are examined in the Appendix. 

From Theorem 4.2.5 of Dudewicz [2], it follows that 

(2.7) R* 
(def.) 

2.^, 
inf  HCXj....^^) > (l/A*)((l/2) ♦ / yWfr)) > (1/2 A*) 

xr',,,xk-l 

From (2.6) and (2.7), it is seen that inf n ■ R*. or inf n ■ R*n*. Thus 

while it is clear that savings are possible when the A. are known, the per- 

centage saving is limited by the fact that R* is bounded from below. 



A reasonable approach to taking advantage of the (limited) savings avail- 

able would be after taking n observations to compute estimates A.   of the 

2 
A., then use these in (2.4), (2.5) and (2.6) to determine n , call this esti- 

mate n , compute n ar- fn*n ] where fx] is the smallest integer not less 

than x and take additional observations if n > n, and stop sampling other- 

wise. A purely sequential procedure would repeat this operation after each 

stage of sampling, a multiple stage procedure having taken n. observations 

from each population up to stage j and computing n. based on these would 

observe at the next stage: max(0,n-n.) additional values from each population. 

In either case, it can be seen that it is always true that n > nft, where 

(2.8) n0 « (R*A*o
2/r) > (o2/2r) . 

Thus for a sequential procedure, an initial sample aize of n. must be taken 

before applying the stopping rule. For a multi-stage procedure it would be 

inefficient to use an initial sample less than n  thereby wasting the informa- 

tion available in the n. observations which must be taken. Therefore we 

assume a first sample of n. for any multi-stage rule. Define the sample 

size at stopping as N. 

2 
Let A  be defined as Kn 

(2.9) Pn » (n/n*) 

so that   p      represents the ratio of the sample size at «topping to the maximum 

sample size (ignoring the possibility that   n*    is not an integer).    For two 

stage sampling where    N =  fn*ri   "j,    it is clear that 
n0 

(2.10) 
-   IN        n0 

■ JMi      ■ ^mk 



For sequential and multi-stage procedures,  it is possible to stop with   N >> nN, 

2-2 «2 so that    PN » nN    (the last computed value of    n ).    For multi-stage procedures, 

it is clear that 

(2.11) 'N i V 

because of the method of choosing the sample sizes. 

Note that an alternative way to define a sequential procedure is to com- 

pute an estimate R  of the risk at stage n based on substituting &.   for 
n i,n 

A. in (1.1), and to stop sampling the first time that A ^ r. If R is a 

decreasing function of n for fixed (A.,...,A.), then the two approaches 

are equivalent. It would be surprising if R were not decreasing in n, but 

a proof exists only for k » 2 (see the Appendix). The alternative approach 

to multi-stage procedures is to compute A.   based on the observations i ,n. 

obtained through the jth stage, use this    A   in place of   A   in (1.1), and 

solve for the   n,    say   n   which makes  (1.1) eqial    r.    At stage    (j+l), 

(n-n.)    additional observations are taken if   n > n.,    otherwise sampling stops. 

The definition of   N   used in this paper assures that if   A.      i A.    for r i,n       i 

all   n,    then the resulting   n   will identically equal the result of equating 

(1.1) to   r   with the correct    A.    in (1.1).    This will b© true regardless of 

whether   R   is a monotone decreasing function of   n. 
2 

It is reasonable to ask whether   pN   has a stochastic limit if the sample 

size is forced to be large by making the desired risk   r    small.    The answer 

is given by the following 

Theorem 1.      Given a sampling procedure with an initial sampie size of   n  . 

Given strongly consistent estimates   A.        of the    A..    Let all    A.    (1 1 i 1 k-1) 

be    > 0.    Then 



(2.12) 2 -2 lim pN ■ lim ru, ■ (1/A*)    a.s, 
r-*0 r*0 

(2.13) lim Eiph - lim Einh »   (l/A*) 

Proof:      By the strong consistency of the   A.    ,    for given    e > 0,    there is i ,n 

an   M   such that 

(2.14) P{^i n >  (V2)'      1 i1 lk'      a11    n * M> > 1-e  . 

From (2.8),  it is seen that for   r ^ r. (say),    n0 i M   and thus defining 

x.        as    (A.    T\/K*//T)    r.    can be chosen so that for any arbitrarily large 

T    (recalling that    n > JÜ* ) 

(2.15)     P{x.      > T,      1 1 i 1 k,     all   n > nn} > 1-e,      if     r < r.   . 

Since   lim FKx.,... ,x.   .)    exists as all the   x.    increase, and is    (1/A*), 

from (2.15) and the fact that    T   is arbitrary, we conclude that for arbitrary 

6 >  0, 

(2.16)     P{(l/A*)-(5 < nj| <  (1/A*),     all     n >. n0} > 1-e,      if     r < rj  . 

This completes the proof for   fu.. 

2 
For two stage procedures,   (2.10) suffices to complete the proof for   p... 

«2 For multi-stage and sequential procedures,    (fi   >, (l/A*)-6,   n i n0}    implies 
2 

(with (2.11) and the preceding discussion) that    {pN >, (l/A*)-6}.    For multi- 
A 

stage procedures, if stopping occurs at stage j, then N * n. ,, and 

PN ' ^n*%  ^/n* < Wk*} * Mn*)    if {\ - ^/A*)» n ino}- This suffice5 

V 

^^ 



to give the result for the multi-stage case. For the sequential case, since 

stopping occurs at the first n > fn^n ] so that (n i (1/A*), n i n0}, it 

2 
follows that p' < (1/A*) ♦ 2/n*. This completes the proof of (2.12). 

The proof of (2.13) follows from the dominated convergence theorem. 

If the A. are taken as (X*-X.) as mentioned in Section 1, it can be 

seen that (2.12) holds as a -*■ <*   provided that A. ■ A. (o) and lim A. (o) ■ " 

Further, note that Theorem 1 gives a very strong limitation on the use- 

fulness of the proposed sequential procedure. When the A, (> 0) are fixed, 

this procedure takes the same (order of magnitude) number of observations as 

would be the case if the A. were ail infinite. It should be noted, however, 

2 
that ever, if the A. were known, as r -»■ 0, n  goes to (1/A*). Thus the 

sequential (or multiple sample) rule docs as well as can be done knowing the 

A's. If k » 2, A* ■ 1, and this is no better than the conservative proce- 

dure. For k ^ 3, some savings are possible relative to the conservative 

procedure since A* > 1. The situation when A. « ••• ■ A. . » 0 is somewhat 

different as is shown below, in Theorem 2. 

An additional point to remark here is that N for the procedures being 

2 
considered can never exceed the conservative sample size (A*o /r) (i.e., 

2 
\ i !)• Thus, N has both lower and upper limits. 

In examining (2.4), (2.5) and (2.6) it is seen that although a sizeable 

savings in sample size can be achieved for any value of r, the particular 

A- values at which these savings are achievable depend on r.  In particular, 

_ 2 
suppose (x., ...,x. _.) » x is fixed. Then nl can be computed from (2.6) 

and the A. values at which this relative sample size will occur are given by 

(2.17) Ai " ,^rxi/^A*H(xi»"«»xj() 



If one fixes the value of x and allows the A. to be given by (2.17), the 

question is whether the potential savings now available regardless of r can 

be achieved in any sense by the procedures which determine the sample size by 

using the estimates A.   in place of the A.. The following theorem gives a 

2 
negative answer in the sense that PN does not converge with probability one 

to fL, In fact PN does not have an almost sure limit. 

Consider the natural estimates of A., namely (X*-X.). Note that 

(.''n/o)(Xw-Xi) is distributed as (¥*-¥.) where the Y.'s are normal with 

means (-»^nA./a), and unit variance. If n » c(A*o /r) (for any c > 0) and 

A. is given by (2.17), these means are (»^cx./n ), independently of r. For 

n of this form, the distribution of («^T/cOA.   (given that A4 n * 0» *•«•» 

that we are not looking at the one value of A.   which by definition is zero) 

will assign positive weight to all intervals on the positive axis, and the 

weight will be independent of r. Further, the conditional joint distribution 

of the (k-1) positive values of (/n/a)A.   (given that they are positive) 
i,n 

assigns positive weight to all measurable (k-1) dimensional sets having posi- 

tive Lebesgue measure, and the weight is independent of r.  Below we restrict 

attention to estimates A.   having this property, which we refer to as 
i,n 

property P. 

Theorem 2.  Let x be fixed and the A. be given by (2.17). Let the esti- 

2 
mates L   have property P defined in the preceding paragraph. Let n- 

2 2 
be given by (2.6) and fL be as in Theorem 1, and pN be given by (2.9). 

_ 2 
Then for any x such that R* < n- < 1, there is an e > 0 such that 

(2.18) lim P{|(pJ/ni)-l| > £} > 0 
r-K) 



1 
I 
1 

Proof:      Let   6 < 1    be sufficiently large so that    H(x.,... ,x.   .)    is a 

decreasing function of each of its arguments on the set 

S6 " {(Xj,...,^):    ö iHCXj,...,^) ^ 1;    O^x.^xJCÖ),    i-l,..,k-l} 

where x7(6) is the smaller of the two solutions to 

inf     H(x , ...,x. J » <5 
{xjtl<J)lk-l,j^i)  

1    k-1 

(if there are two solutions, i.e., if 6 < (1/A*)). Letting ^.(6) ■ (x'(6)//6"), 

it can be seen from the monotonicity of x'(6)//5 (see Remark 2, Appendix) that 

2 
the set of (A.,...,^. .) such that {6 ^ n ^1) contains the set 

T ■ (/r/A* S //&)    (i.e., each point in Sfi is multiplied by the given factor). 

2 
Let n ■ (cA*a /r)  (c > 0) and the A's be given by (2.17). Let 

A„ ■ (^i -»•••i^i. i ») (assume A.  ■ 0 for notational convenience) n    l»n    K-l,n k,n 

Crl  > 6}  D{(^/o)A e (^i/o)T.} - {(/n/o)A e /cSJ /&) 
n "• o o 

From property   P   and the fact that    </c S&//6   is measurable with positive 

Lebesgue measure, it follows that 

(2.19) P{n^ >. 6) > 0 . n " 

If n is taken to be n«, then c ■ R* and using (2.11) along with 

(2.19) we see that for multi-stage procedures (two or more stages). 

(2.20) Piol  > «) > Pin? > 6} > 0 . N        no 

^»__^fcj.^^ 
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If    x    is given,    6    can be taken as    (l*e)n-,    where    e    is sufficiently large 

to satisfy the restriction on    6.    This proves (2.18) for multi-stage procedures, 

Consider now the sequential procedure.   At stage   n,    it stops if   n ^ n , 

and since it can stop prior to reaching stage   n, 

(2.21) P[N <. nl > P[n >. n ]  . 

"2 Let    n ■ IVel.    Now   n   ■  fn*^ 1.    Noting that (n    < Ä) -» (n > n },    and that n 

(N 4 fn*6]} -* {pjj <, 6*(l/n*)},    we can conclude using (2.21) that 

(2.22) P{pJ i «♦(1/n*)} > P{n2 < 6},      when     n •  fn*6]   . n 

In this case let j > R* and sufficiently small so that we can choose 

the set S, such that it is connected, and on S., R* < H(x.,... ,x. ,) < 6 
6 Ö — i K-i      — 

and    H(x.,.. .,x.   ,)    it» decreasing in all of its arguments.    Clearly   S     has 

positive Lebesgue measure and because of its definition, the set    (A.,...,^ .) 

such that    (R* < n   < «)   contains    T, ■  (/r/A* U.)     and   U,    is obtained from 
— — 0 0 0 

2 
S6 by taking each (x.,...,x. .) on the contour H(x1,...,x. _.) ■ n . 

2 
(R* <^ n <_ 6) and transforming it to (x-/n,...,x, ,/n). The monotonicity 

of this transform on S. follows from Remark 2 in the Appendix. As before, 
0 

with c > 6, it follows that 

(2.23)     P{njj <. «) > P{(»^n/o)Ä e ^l^) > 0,  when  n «n* 

Letting    6 >  (l-e)n7   where    c > 0    is chosen to satisfy the above requirements. 

(2.22) and (2.23) suffice to demonstrate (2.17) for the sequential case, com- 

pleting the proof of the theorem. 

.A^. 
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Remarks: 

1) The proof of Theorem 2 suggests that although N and pN do not 

have a probability limit, they should have a distribution which may have a 

limit as r * 0. For sequential and multi-stage procedures, the distribution 

would be very difficult to obtain analytically, but for two stage procedures 

it should be relatively simple. In view of (2.10) the limiting distribution 

2 «2 
of PN (as n* -» •) will be the same as the distribution of n   which is 

independent of n*. Some aspects of this distribution will be studied for 

k ■ 2 in the next section. 

2) Setting x ■ (0,...,0) shows that the result of Theorem 1 does not 

hold when all A.'s are zero, and by remark (1) above, it can be expected that 

2 
PN has a limiting distribution in this case. In fact, when any subset of p 

2 
of the A's are zero while the remainder are fixed, the resulting pN will 

have a limit distribution found by studying the distribution of 

nlX. , . . ., X ,00, ..,,•), 

3)    Large sample sizes are needed either if   r    is small as above or if 

2 2 a     is large.    The behavior of   N   and   pN    in the latter case can be studied 

2 2 by taking limits as   a   -»• »    (a     known).    In this case for fixed 

2 2 A ■  (A.,...,A.   .),    and fixed    r    it is clear that    n      (s nA)    is given as 

the solution of  (2.4) and (2.5) and    n    is obtainable using (2.3).    The value 
2 2 « 

of    (n/o )    is thus independent of   o  .    For given    A. (1 ^ i ^ k),    it is 
i,n 

2 2 
also clear that (n/o ) has a value which is independent of o  and which 

depends truly on the value of A.  .  In this case it is very reasonable to 

ask whether pN converges to n. when the A.   converge almost surely to 

2 
the A.  (for fixed o , as n increases). 



m*mi 

12 

For the rules under consideration, sample sizes arc of the form 

n ■ co  (c > 0) so that the nonzero values of {(^T/o)^ , ! 1 ^ 1 k) 

2 
have a conditional joint distribution independent of a     which puts positive 

mass on any measurable set having positive Lebesgue measure. The method of 

proof of Theorem 2 gives as an immediate corollary, the following 

Corollary 1.  Let A ■ (A.,...,A. .) be fixed. Let the distributional prop- 

2 2 
erty P hold when n ■ co . Then for any A, such that R* < n < 1, there 

is an c > 0 such that 

(2.24) Um P(|(pJ/nJ)-l| >. e} > 0 . 

It is clear in fact that n   will have a distribution which does not 

2 ° 
depend on o , and for the two sample case the limiting process is needed 

2 
only to assure sufficiently large n so that the discrete variable PN will 

-2 
be close to the continuous n... 

N 

It should be noted that the problem considered in this section differs 

2 
in an important way from the case in which o  is unknown, and the A. are 

eliminated from consideration by some means (e.g., see Blumenthal [1]), and 

from the usual situations in which sequential or multi-stage estimation proce- 

dures are used. In these other cases, the desired sample size is an unbounded 

function of the unknown nuisance parameter, and consequently two-stage proce- 

dures tend to be inefficient relative to sequential procedures due to the 

possibility that the initial sample size may be far too small. In the problem 

considered here, the desired sample size is a bounded function of the nuisance 

parameter (A.,...,A. .), and in fact is bounded below as well as above. 

Thus it is possible to choose an initial sample size for a two stage procedure 

.▲~_ 
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such that no sequential procedure could stop with fewer observations, and such 

that this initial sample represents a sizeable fraction of the ultimate saaple 

size (with a value of about 0.80 when k ■ 2 and a limit of (1/2) as k 

increases to infinity). Thus the information available to determine the value 

of N is almost as great for the two sample procedure as for a sequential one, 

and little would appear to be gained by using a complex sequential stopping 

rule in place of the simple two sample one. This conclusion is supported by 

Theorems 1 and 2 which show both procedures to behave similarly in the limit. 

3. TWO POPULATIONS; DISTRIBUTIONAL RESULTS FOR TO STAGE SKMPLINC 

In this section, the distribution of the sample size and risk function 

2 
will be studied for the two stage sampling procedure when either a      is large 

and the A. are fixed, or r is small and the A. are proportional to /r. 

The discussion at the end of section 2 is taken as the rationale for not 

attempting the extremely difficult task of studying these for sequential or 

multi-stage procedures. Theorem 2 and Corollary 1 provide the incentive to 

discover just what the sample size and risk behavior is in these cases for 

which we do not have stochastic convergence of any sort. 

Although it should be possible to characterize the risk and sample size 

distribution for any k, the analysis is greatly simplified when k ■ 2 

(especially for the risk function) and we shall now specialize to the two 

population case. Some specialized notation will help in this study. 

Let 

W        Z0,n ' (XiyX2.nJ/2' Zl,n " ^.n-^2' Zn " lZl,nl 

(3.2) a ■ (e1*e2)/2; v ■ (e1-e2)/2; a) - |v| 
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Then 

(3.3) x* ■ Z- ♦ z , e* - o ♦ w 
n   0,n   n 

and Z-   is normal, mean a, variance (o /2n) while Z.   is normal mean 

2 
v, variance (o /2n) and Z_   is independent of Z, , hence of Z . Note 

u(n i,n n 

that ID corresponds to (A./2) in the general notation and Z  to (2  /2). 

The risk (1.1) specializes to 

(3.4) (a Mil  ♦ 2F(x)) 

where 

(3.5) 

and 

(3.6) 

with 

(3.7) 

F(x) ■ x «(-x) - X(Kx) 

x ■ (ü/5n/o ■ n<i)/(2/r) 

2     2 
n ■ m/o   (since A* ■ 1) . 

The function F(x) is zero at x ■ 0, decreases to (-0.1012) at x* ■ 0.6120, 

where x* is the unique solution of t(x) ■ 2x«(-x), then rises again to zero, 

so that 

(3.8) R* - inf(l ♦ 2F(x)) ■ 1 - x**(x*) ■ 0.7976 

Corresponding to (2.6), we have 

(3.9) n - (1 ♦ 2F(x)) . 
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2     -2 
Based on an initial sample of n. ■ R*n* observations (with n* ■ o /r), n 

is found from 

(3.10) 
-2 
n - 1 ♦ 2F(nZ„ npc}    . 

2 
Then, N » [n*f\ ],    and an additional (N-n0) observations are taken. 

-2 
distribution of n  is easily found. Re-write (3.6) as 

The 

(3.11) 

and 

x ■ nu)/2n0/o/fF 

(3.12) x ■ nZ    /Tnl/a/R*  . n0     0 

Further,  for    R* <  6 <  1 

(3.13) (n2 <  6} <"> iix'tfy/t)/**' <_ Z    SüQa <_ (x*^)//?)^7} 
n0 

where    x"(6) < x  (6)    are the two solution.- of    6 ■ 1 ♦ 2F(x).    Note that 

Z   JlxiJo    is    |w|    where   W   is Normal, mean    (/2nn/o)ü),    and variance    1 
n0 ü 

henceforth, assume that 

(3.14) (/2n^/o)ü) ■ 8 

A convenient parametriiation is obtained by letting 

(3.15) 6 » x^fcVCl ♦ 2F(x)) 

This choice of ß gives u such that the solution of n ■ 1 ♦ 2F(nui/2n0/o/RT) 

2 
is simply, n • 1 ♦ 2F(x). Note that this choice makes a» proportional to 

i/r, so that if limits are taken as r -* 0, then u is varying with r as 
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in Theorem 2, and if    r    is fixed and    o    -► «,    then    w   is fixed as in Corollary 

1.    Combining the above, when (3.14) holds. 

(3.16) 

Pin2 < «) - ♦[(x*^*//6")-ß]  - ♦[(x'^V/6')-ß] 

♦ ♦(-(x"i^T//«)-ßl  - ♦[-(x*/RV/6)-6]   . 

From (2.10), we see that lim P(pN < 6) is given by (3.16). It is easily seen 

from the bounded convergence theorem and (2.10) that all moments (positive and 

2 2 negative) of PN converge to the corresponding moments of n , as n* -► ». 

It is not especially convenient to use the distribution (3.16) to find 

2 
the moments of n  since it involves inverting (1 ♦ 2F(x)) to obtain x 

I 
I 
I 

and    x .    Let    Y.    be a standard normal variable.    We can write    (/2nrt Z   /o) 
0 

as    JYj * Bl    (ß   given In (3.14)),    and then   n   ■ n (lYj ♦ ß|)    where 

n'(x)    is the solution of 

(3.17) n   ■ 1 ♦ 2F(nx/^*')  . 

I Then 

E((n2)p} !    (nz|yß|)p«(y)dy -   / (n^(-y-P))pMy)dy ♦   / (n^yß))p*(y)dy 
-ß 

(3.18) 

/  (n2(u))PI*(u*ß) ♦ ♦(u-ß)ldu . 
0 

This integral still involves the implicitly defined function    n (u).    Now,  let 

(3.19) ■ r\u/A[*,      or     u ■ ^v/n 

so that 

(3.20) n   ■ I ♦ 2F(v) 



and 

(3.21) 

Using this change of variables, (3.18) beco.es 

(3.22) 

where n(v) 

define 

(3.23) 

E{(n2)P} • ~ j n(2p-3)(v)(l - v•(v))£•C~Cv/n(v))+8) 
0 

is now given explicitly by (3.20). For notational convenience, 

y(v) • •IR•/(1 + 2F(v)) • 

Then, (3.22) beco.es 

(3.24) E{(n2)P} • (:t•) (p-l)j y3-2p(v)(l- v•(v))[t(vy(v)+8) • +(vy(v)-B)]dv • 
0 

Next the .u.ents of CXN-8*) will be studied, froa which the risk can 

be derived. Using (3.3), 

(3.25) 

17 

Also, co~Jitionina on N • n, and noting that the stopping rule is based 

on Zn and that Z is independent of o o,no hence independent of N, it 

it seen that 

(3.26) 



T 
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hence 

(3.27)     E{(Z0>N-a)
i(ZN-a,)

P"1} - ECW1) (o/^)^! (Zn-u.)P"i M" i/2] 

where W is a standard normal variable. Next, note that Z. N can be 

rewritten as 

iln-Z,   ♦ nZ. x] 
Nl 0 lfn0   l,nJ 

where n - N-n. and nZ, -v is the sum of n normal random variables, with 
0       l,n 

2 
mean u and variance a 12,    which are independent of Z.    and of one 

1'n0 
another.    Hence, we shall write 

(3.28) Z1(N -   (l/N)[(/n^o//2)Y1 ♦   (/S~o//2)Y2 ♦ Nw] 

where   Y     and   Y      are independent standard normal variables.    Using (2.9) and 

(3.14), we obtain 

(3.29) ZliN -   (r/2R*)1/2{(RVpJ)Y1 ♦ [(RVpJ)(l  -   (RVpJ))l1/2 Y2 ♦ 8)  . 

.2 
Note that n  is given in (3.17) as a function of Y . Using (3.29), (2.10) 

2 
and the fact that R* ^ (P*/PN) < 1, the dominated convergence theorem yields 

for any j, 

(3.30) lim E{(Z //r)j} -  (2R*)':,/2E{ | (RVn2)Y    ♦ [(RVn2)(l - RVn2))]1/2 Y2 ♦ e|j 

n*-M«> 

Let    YO^J) - ydYj ♦ ß|)    be given by (3.23),     (i.e.,    y2 -  (RVn2)),    and con- 

sider 

^  
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1/2 Eilv^YjJYj  ♦   [Y^Y^d  - Y^Yj))]1^ Y2  ♦  0|} 

- EE{|Y2(y)y ♦ (Y2(y)(i - Y2(y))l1/2Y2* B\^1 - y} 

(3.31) -(A/B) - 
■ E{      /      (-A-Bu)(Ku)du ♦        /      (A*Bu)(Ku)du} 

-(A/B) 

where 

E{A(1   - 2»(-A/B)) * 2D^(A/B)} 

(3.32) A -  Y1Y2(Y1)  ♦  6, B -   [Y^HI   -  Y2(Y1))]
1/2 

Also, 

(3.33) 

E(|Y2(Y1)Y1  ♦  ^(YjXl  - Y2(Y1))]
1/2Y2  ♦  6|2) 

- EE{A2 ♦ 2ABY- ♦ B^lY.) - E{A2 ♦  B2}   . 2 2'   1 

Combining  (2.8),   (2.9),   (3.14),   (3.25),   (3.27),   (3.30),   (3.31),   (3.32), and 

(3.33) we obtain 

liin(l/r)E(X*-e*)2 -  (1/2R«)E{YJY4(Y1) ♦  [Y^YJHI  - YVJ))] 

(3.34) 
♦ 4ßlA»(-A/B)   -  B*(A/B)] ♦ Y   (Yj)} 

Note that the last Y (Y,) term in (3.34) represents the contribution of 

Z- N to the risk, while the rest represents the contribution of Z... To 

evaluate the expectations in (3.34), it is necessary first to break the 

integrals into the two components Y- ♦ ß ^ (>) 0 as in (3.18). Some 

simplification is then possible by partial integrations, e.g.. 

tfMHAMil 
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/ (y-ß)2Y4(y)*(y-ß)dy - -6Y4(O)*(0) ♦ / [Y4(y) ♦ 4(y-ß)Y3(y)t-Y{y)]4.(y-ß)dy 
o o y 

I 

In this way, the y  (Y.) term can be eliminated. Lastly, the change of vari- 

ables (3.19) can be used to get all functions defined explicitly (when this is 

done, the (dY(y)/dy) factor Is absorbed into the differential for the new 

variable). 

Using (3.30) and (3.31) it is also possible to evaluate the bias of the 

estimator X* which by (3.17) and (3.27) is just E(ZN-a)). We summarize the 

results as follows: 

(3.35a) 

(3.35b) 

(3.35c) 

(3.35d) 

limVp E(X*.e*) - (/2/R#3/2)[I4 - 13] 

lim fE(Z0N-a)
2 - (1/2R*2)I2 

lim iE(ZN-u,)
2 - (1/2R*2)(4I1 ♦ I2 *  4ßl3] 

lim iE(X*-e*)2 - (1/R*2)[2I1 ♦ I2 ♦ 2ßl ] 

(3.35e) lim(l/n*)E(N) » I. 

where 

(3.36a)    I - / [♦(v) - 2v«(.v)]Y6(v)[C(v)*(C(v)) ♦ D(v)*(D(v))Jdv 
1  0 

(3.36b) I, • / Y (v)[l - v*(v)][*(C(v)) ♦ ♦(D(v))ldv 

I, « / ((Y^(v)C(v)*0)*(-(Y^(v)C(v)*6)/B(v))*(C(v)) 
3  0 

(3.36c)       -(Y2(v)D(v)-6m(Y2(v)D(v).ß)/B(v)H(D(v)) 

.2B(V)^(VY
2
(V)/B(V))*(6/Y(V))}Y

3
(V)[1 - v*(v)]dv 

^  
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(3.36d) I    - / U(v)   - 2V«(-V)]Y4(V)[*(C(V)) - ((.(D(v))]dv 

(3.36e) 

and 

Ir ■ / Y(v)[l  - v«(v)][«(C(v)) * ♦(DCvDlldv 

B2(v)  - Y2(V)(1 - Y2(V)) 

(3.37) C(v)  » VY(V)  - ß 

D(v) - VY(V) + ß. 

with    Y(v)    given by (3.23). 

One question left unanswered is the following.    Theorem 1 gives the 

2 
almost sure limit of   pM    as    r -»■ 0   when the    A.    are fixed and positive.    How 'N 

r*.«*-»^ does    E(XJj-e*)      behave in that case?   The preceding development can be used to 

answer the question for   k = 2   and the two sample procedure.    The development 

of (3.34) can be used to write the exact expression 

(l/r)E(XjJ-e*)2 =   (I^RME^Y^YJ)  ♦  [YJ^Hl  " YN(Y1))] 

(3,38) 
♦ 4ß[A«(.A/B)  -  B*(A/B)1  + y^^) 

2 2 2 2 
where YN(

Yi) ■ R*/PN. and where YN is used for Y  in A and B. The 

pointwise limit of YwOf.) as ß -* « (recall ß » /2R*/r u, u fixed) is 

R* and dominated convergence allows immediately taking limits under the 

expectation for all terms except 40[A*(-A/B) - B(t>(A/B)]. This term has a 

pointwise limit of zero as 8 increases, as is easily seen from the standard 

tail approximation to the normal distribution, and it is easy to verify that 

the expectation has a limit of zero. Thus, 

mM 
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(3.39) lim E(X*-9*)    ■  lim (3.35d)  ■ 1 
r-K) ß-H» 

In general    (k   populations,  sequential or multiple sampling),  it is conjectured 

that the risk when the    A.    are fixed and   r -+• 0   will be the same as if a non- 

random number   n >  (n*/A#)    of observations were taken.    This would give 

lim E(l/r)(X*-e*)2 - lim   / y2dIW(y ♦   (A.//Ä*?)) . 1 
r*0 n r-K) .» 1 

Since the integrals in  (3.36) are quite complex, it  is very difficult to 

tell from looking at them how the expected sample size and risk behave, except 

in the limiting case,  where    $ > ».    In that case,    n (|Y + ß|)   approaches 

unity for all   Y   and dominated convergence allows the conclusion that 

lim E{n2(|Y ♦ ß|)} »  lim E{n"2(|Y ♦ ß|)} - 1    so that  (3.35b) approaches    (1/2) 

and (3.3Se) approaches unity as   ß    increases.    We have seen already that 

(3.35d) approaches unity and the same argument shows that   (3.35a) approaches 

zero and (3.35c) approaches    (1/2).   For finite   ß,    since    n (|Y ♦ ß|) < 1, 

it can be concluded that  (3.35b) will exceed    (1/2)    and that (3.35e) will be 

less than unity.    Otherwise,  the behavior is not ascertainable from examination 

of the formulas.    Therefore numerical integrations have been performed, and the 

results arc given in the following section. 

4.    NUMERICAL RESULTS 

The f.jrformance of the two sample procedure as given by (3.35) was 

evaluated numerically for a range of values of   u.     If   u    were known then 

n   could be chosen so that  (3.4) equals    r    (given)    and the value   n     defined 

in this way can be considered as an ideal value under perfect information.    To 
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evaluate the effectiveness of the two sample procedure, E(N) should be com- 

1      2 
pared to n , and  -E(X*-0*)  should be compared to unity which is the value 

1       2 of -E(X* -6*) . Similarly the biases of the ideal and two sample procedures 
u 

can be compared.   A convenient reparametrization is the following.    Let   x   be 

a running parameter and define 

(4.1) m ■ a  (1 ♦ 2F(x)),  and u ■ x//2n 
x      x 

I 

Clearly n  is n . The operating characteristics of the two sample procedure 
x 

have been computed for u ■ u , as x traverses a suitable range. 

Table 1 gives for each x, A  where A ■ u /n*    and n* ■ o /r. This 
* '  x       x   x 

is followed by n° - nx/n* and Nx ■ lim(E(N)/n*) (as given by (3.35)). Next 
n*-K» 

— 1 2 
is    M   B    lim   -E(X*-e*)   ,    and its two constituent components   PL   • x     n**-   T     n r 
lim   i-E(ZnK1-o)2   and   Mw -    lim   ^(Z^u)2.    After this is    Bj » yj-E(X* -6*), r * ON Ix n*-*» r^^N 

the normalized bias of the ideal or perfect information procedure (B. ■ 

■2AxF(x)/x*),    and   Bx ■    li» Vr 
n*-H>o 

E(XjJ-e*).    Finally for reference, the norma- 

lized mean squared error    (M )    and bias    (B )    of the conservative single 

sample procedure whose sample size is   n*   are given (evaluated at   u > u ,    so 

that    M   » 1 ♦ 2F(/2 A ),    and    B   « -Ff^ X )/A ). c ^        x" c X"*    x7 

Comparison of   E(N)    with    n     shows that    E(N)    tends to be flatter as 

a function of   x,    lying below   n     p.t extreme values and above in the central 

region.    The M.S.E. of   X*    is not quite as flat as might have been hoped. 

Note however that it is below unity at   x » 0.20   and at    x » 1.50   even though 

E(N) < n ,    indicating that the two sample procedure may be somewhat more effec- 

tive in using the observations taken than is the one sample procedure.    Consider 

the M.S.E. of a single sample procedure whose sample size   n    equals   E(N)    of 
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Corparative Mean Squared Error« and Biases 
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H 
Ox R, lx B M 

.00 .0000 1.0000 .8662 1.1028 .5801 ,5227 .5642 .5327 1,0000 ,5642 

.05 .0360 .9626 .8662 1.0667 .5801 .4866 ,5397 .4950 ,9619 ,5289 

.10 .0733 .9298 .8664 1.0337 .5800 .4538 .5148 .4573 ,9276 .4939 

.15 .1117 .9015 .866T 1.0044 .5798 .4245 .4892 .4201 .8973 .4595 

.20 .1510 .8772 .8671 .9786 .5795 .3991 .4634 .3836 ,8714 ,4260 

.25 .1910 .8568 .8676 .9567 .5792 .3775 .4375 .3481 ,8496 .3937 

.30 .2315 .8399 .8683 .9383 .5788 .3596 .4116 .3139 ,8321 .3627 

.35 .2723 .8263 .8692 .9236 .5782 ,3453 .3860 .2813 .8185 .3332 
,40 .3132 .8156 .8702 .9121 .5776 .3345 .3608 .2503 .8087 ,3055 
.45 .3541 .8077 .8713 .9037 .5769 .3267 .3362 .2212 .8021 .2794 
.50 .3947 .8022 .8725 .8980 .5762 .3218 .3123 .1940 ,7986 .2551 
.55 .4351 .7989 .8738 .8947 .5753 .3194 .2892 .1687 .7975 ,2326 
.60 .4751 .7976 .8753 .8936 .5744 .3191 .2671 .1454 .7987 .2119 
.65 .5145 .7980 .8768 .8942 .5735 .3207 .2460 .1239 .8016 .19?8 
.70 .5534 .8000 .8785 .8963 .5725 .3239 .2259 .1043 .8060 .1753 
.75 .5917 .8032 .8802 .8997 .5714 .3283 .2070 .0865 .8115 .1592 
.80 .6294 .8077 .8820 .9041 .5703 .3338 .1892 .0703 ,8180 .1446 
.85 .6666 .8130 .8838 .9092 .5691 .3401 .1725 .0557 .8250 .1313 
.90 .7031 .8192 .8858 .9150 .5679 .3471 .1569 .0425 .8325 .1191 
.95 .7391 .8260 .8877 .9213 .5667 .3546 .1425 .0306 .8403 .1080 

1.00 .7746 .8334 .8897 .9279 .5655 .3624 .1291 .0200 .8483 .0979 
1.05 .8096 .8411 .8918 .9347 .5642 .3705 .1167 .0105 .8563 .0887 
1.10 .8441 .8490 8939 .9417 .5629 .3788 .1053 .0021 .8643 .0804 
1.15 .8783 .8572 .8960 .9488 .5616 .3872 .0949 -.0054 .8722 ,0727 
1.20 .9122 .8654 .8982 .9559 .5603 .3956 .0853 -.0120 .8800 .0658 

1.25 .9457 .8735 .9004 .9629 .5589 ,4040 .0765 -.0177 .8876 .0594 

1.30 .9790 .8816 .9026 .9699 .5576 .4123 .0686 -.0228 .8950 .0536 
1.35 1.0121 .8896 .9049 .9768 .5562 .4206 .0613 -.0271 .9021 .0484 

1.40 1.0451 .8973 .9072 .9835 .5548 .4287 .0547 -.0308 .9089 .0436 

1.45 1.0779 .9048 .9095 .9900 .5534 .4366 .0488 -.0339 .9155 .0392 

1.50 1.1106 .9121 .9118 .9963 .5520 .4444 .0434 -.0365 .9218 .0352 

1.55 1.1433 .9190 .9141 1.0025 .5505 .4519 .0385 -.0386 .9278 .0316 

1.60 1.1759 .9256 .9165 1.0084 .5491 .4592 .0342 -.0402 .9335 .0283 

1.65 1.2086 .9319 .9189 1.0140 .5477 .4663 .0302 -.0415 .9389 .0253 

1.70 1.2413 .9378 .9213 1.0194 .5462 .4731 .0267 -.0423 .9440 .0226 

1.75 1.2740 .9434 .9237 1.0245 .5448 .4797 .0235 -.0428 .9488 .0201 

1.80 1.3068 .9486 .9261 1.0293 .5433 .4860 .0207 -.0430 .9533 .0179 

1.8S 1.3397 .9535 .9285 1.0338 .5419 .4919 .0182 -.0429 .9575 .0159 

1.90 1.3726 .9580 .9309 1.0380 .5404 .4976 .0160 -.0425 .9615 .0140 

1.95 1.4057 .9622 .9333 1.0419 .5390 .5029 .0140 -.0419 .9651 .0124 

2.00 1.4389 .9660 .9357 1.0455 .5375 .5080 .0122 -.0411 .9685 .0109 

2.50 1.7767 .9900 .9583 1.0643 .5240 .5403 .0028 -.0269 .9903 .0027 

3.00 2.1238 .9977 .9764 1.0570 .5134 .5436 .0005 -.0120 .9977 .0005 

3.50 2.4754 .9996 .9883 1.0398 .5065 .5332 .0001 -.0037 .9996 .0001 

4.00 2.8285 .9999 .9949 1.0224 .5028 .5196 .0000 -.0005 .9999 .0000 



the two sample procedure.    Table 2 gives a few selected values. 

Table 2 

(n/n#)    n'ECX'-e*)' M 

.00 .867 1.151 1.103 

.15 .867 1.040 1.004 
1.00 .890 0.942 0.928 
1.55 .914 1.005 1.002 
2.00 .936 1.025 1.046 
2.50 .958 1.030 1.064 
4.00 .995 1.005 1.022 
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It is clear that for small x, the two sample procedure uses its observations 

more effectively than does a comparable single sample one, but for larger x 

values the M.S.E. of X* decreases more slowly toward its asymptote of unity 

and gives slightly higher M.S.E. values than the comparable single sample 

estimate. 

A similar behavior in the bias of the two sample procedure relative to 

B. is also noted. 

It was demonstrated that (N/n ) does not converge stochastically to 

unity as n* increases, and the numerical results show that (E(N)/n ) is 

not too close to unity either. Table 1 also shows that MSE(X^) fails to 

achieve the goal of being constant at unity. In spite of these facts, it is 

seen that the two sample procedure does take some advantage of the possible 

savings available when u is known, and the M.S.E. curve does not rise very 

far above unity. Compared to the conservative procedure, about a 10% saving 

in sample size is achievable for moderate values of x, and the two sample 

procedure may very well be acceptable in practice. 
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A simplified two sample procedure can be constructed In the following 

way. Take n. observations and compute Z   Divide (O,») Into m regions, 
"l % 

R, ,...,R  .    If   Z     E R.,    let    N ■ n.     (1 < J < m),    and take    n ■ N-n,    addl- I'^m n.j' j    *   _ ^ _   •" i 

tlonal observations.    (It may be desirable to take   n. > n.    for small   m). 

We assume that the   n.    are chosen as    fn./Yjl    where   Y,  ■ 1,...,Y    •  (n1/n*)(>0) 

are fixed constants.    This makes    n    ■   fn*l.    The regions    R.    will be chosen as 

follows:    Rj    is the interval    [oCj//2n7,   oc!/»^n^],    R,    (2 <^ j ^ m)    is the 

pair of intervals    [aCJ/2n.,    aCT./^n.) U {oC.jSln.,    aC./S2n.]    where 

(4.2) C" . t'iSjSyJ^  .        C* - x^öj)^/^"       (1 ^ i ^m) 

and the values   R* 1 6, < 6    ,  <  6    «1    (x'(l) ■ 0,    x  (1) ■ »)    are given, m-i        m 

This choice of   R     is such that if   n    is the solution of 

r -  (o2/n)(l ♦ 2F(Zn ^ft/o)),    then    n <. 6^*    for    (oC'/^Sn^) 1 Zn    <_ (oC*//2n^), 

A conservative choice of sample sizes   n.   would be given by   n. > A    or 

^n/V * 6j    ^ i^ im^    lvhen   m "   T"*]  -  rn0l    and   "j "   rn
0l  ♦  (i-n, 

6.  ■ (n./n*),    then this is equivalent to the previous two sample procedure. 

Define 

(4.3) YN ■ Hj/N . 

As n* -* <■ (and n, ■♦ « since Y * 0), the range of possible values for i m 
2 2 YN   converges to    (YI »• • • tYm) •    Clearly, as   n*    increases,    YN   converges in 

2 
law to a random variable   Y       whose distribution is 

(4.4) P{Y* - Y.) ■  («(x+B) ♦ *ix-6)]\l        1 13 in 

MM wm *mM 
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where    F(x)|I      denotes 
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H^)  - FCCj) 

(4.5) 

j  -  1 

F^)  - F^j)  ♦ FCCjj)  - FCCj)        j  - 2... ,m 

and where 

(4.6) B ■ /2n7 u/o . 

Using   (4.4),   it is easy to see that 

(4.7) lim(l/n*)E(N) - ym      lim E(1/YJ) * Y E(1/Y2), 
n' 

and using (4.4) and (3.27) that 

(4.8)   lim lE(Z0N-a)
2 - (1/2) lim E(nVN) - (1/2 yj  lim E(YJ) - (1/2 Ym)E(Y

2) 

The other expressions corresponding to (3.35) and '5.36) simplify in a 

similar way to give 

(4.9) 

(4.10) 

(4.11) 

lim^/i E(X*.0*) -   (1/^)[I8 - /2"l7] 

lim j:E(ZN-a,)2 - (1/2 Y_)[E(Y2) ♦ K * 4ßl ] 

lim iE(X*-e*)2 -  (1/2 Ym)l2E(Yf) ♦ I6 ♦ 40l7l 
n"->» 

where 

h' '   l YvI(2-ß)*(r-6) ♦  (i+ßJ(Kz*ß)]| 
0 k-1 K \ 
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i7 • I (Y. (♦(z*e)»((i-eAv)//Är) - ♦(z-ßW-u^Aj/Aj 
k-1 k"  k; k" kJ 

■2^ ♦(6/^)^ 
I^Y:J 

♦ ß / [♦(y*em(y-ßx.)//rj ♦ ♦(y-ß)*(-(yßA.)//Är)idy} k" "k k" kJ 

and 

lo - I Yk{*(z*ß) - ♦(z-ß)]|T 0  k-1 K h 

Xk " " - \V\ 

I    f(x)dx 
I. 

J1 f(x)dx  if  k-1 

k-l        Ck 
/  f(x)dx ♦ f  f(x)dx if  k ■ 2,... ,m 
Ck k-l 

In the particularly simple case in which m - 2, we denote y     by   A, m 

and C. by C and C. by d, the formulas (4.7) through (4.11) reduce to 

(4.12a) 

(4.12b) 

(4.12c) 

(4.12d) 

lim(l/n*)E(N) - 1 - I 
n*-H» 10 

lim Yf E(XN-e*) • (1/^)II12 - ^ Inl 

n 
lim iE(Z0N-a)

2 - (1/2A)[A * 1^] 

lim 7E(ZN-a))
2 - (1/2A)IA ♦ I10 ♦ 2Ig ♦ 46^] 

^ k. ~* ««■■MMtfl 
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(4.12e) Hm   iE(X*-0*)2 -   (1/A)(A ♦   I      ♦  I    ♦ 261.) 
n'-XB n"-H» 

where, 

I9 ■   ((1-A )/2)[(c*ö)«(c*8)  -  (d*ß)*(d*S)  ♦  (c-6H(c-ß)  -  (d-B)*(d-ß)] 

I10 -  (l-A)(»(d-ß) - «(c-ß) ♦ *(-c-ß)  - »(-d-ß) 

I.,  ■ ßU(-ß/^)  - (( / ♦ /)J-^eX?)»(y-ß)dy]) 
-d     c    ^    /X      J 

-^♦(ß/^){i - 2l*U=:l - ♦fr=:l)) 

-A{*(d+ß)«((d-ßA)//T)  ♦ ♦(c-ß)«(-(c*ßA)//Jr) 

-♦(c*ß)«((c-ßA)//>r). ♦(d-ß)#(-(d*ßÄ)//r)} 

♦  [♦(d*ß)  - ♦(c+ß)]  ♦ ßl»(d*ß)  - »(c+ß)] 

I12 «   ((l-A)//2')[*(d*ß) ♦ OCc-ß)  - (Kd-ß)  - (>(c*ß)] 

X »   (1-A)/A  . 

Numerical evaluations of (4.12) were made for a few combinations of   A 

and 6  f» 6,)    (on which   C.    is based through  (4.2)), namely: 

A \ 

0.8S 

0.90 

0.95 

6 
Ö.S5 

0.85 0.90 

0.85 0.90 0.95 

mammälmM 
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The values of x~(ö) and x (6) needed for constructing the procedures are 

6N x'(6) x (6) 
0.85 .26903 1.10597 1 

0.90 .15282 1.41758 

0.95 .06836 1.81395 1 

Tables 3 and 4 show the values of N (given (4.12a)) and M (given by 

(4.12e)) respectively for the various combinations of A and 6 shown above. 

For reference, N and M for the "regular" two sample procedure have been 

transferred from Table 1. These computations suggest that the simplified two 

sample procedures sacrifice too much of the information in the first sample 

resulting in very poor M.S.E. characteristics with little compensating saving 

in sample size. Generally, they seem inferior even to the conservative proce- 

dure, and do not pick up any of the good features of the regular two sample 

estimator. 

5. ALTERNATE LOSS FUNCTION 

Another possible approach to constructing a sequential procedure for the 

problem of Section 2, is to let the loss function for an estimate based on n 

2 
observations be en + (X*-e*)  where c represents a relative cost per observa- 

tion. The risk is then en ♦ (A*o /n^Cx.,...,)^ .) (Xj ■ tfi/a,      1 <^i <^k-l), 

The optimal sample size is obtained by differentiating the risk with respect to 

n and is the solution of 

(5.1) c - (A*o2/2n2)G(x1,...,xk_1) 

where   G(x1,.. .,x. _.)    is given by (A.11).    Define 

_4.  
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Table 3 

Comparison of   N   for Alternative 2-sample Procedures 

A:  .85 .90 .90 .95 .95 .95 
X Regular 6:  .85 .85 .90 .85 .90 .95 
0 .8662 .9221 .9481 " .9m .0740 " MM   ~ .§562 
.05 .8662 .9222 .9481 .9278 .9741 .9639 .9562 
.10 .8664 .9223 .9482 .9279 .9741 .9640 .9563 
.20 .8671 .9229 .9486 .9284 .9743 .9642 .9565 
.30 .8683 .9240 .9494 .9292 .9747 .9646 .9568 
.40 .8702 .9255 .9504 .9304 .9753 .9653 .9573 
.50 .8725 .9274 .9518 .9319 .9760 .9660 .9579 
.75 .8802 .9337 .9562 .9369 .9783 .9687 .9601 

1.00 .8897 .9412 .9615 .9431 .9811 .9719 .9630 
1.25 .9004 .9492 .9670 .9499 .9839 .97S5 .9665 
1.50 .9118 .9573 .9726 .9571 .9868 .9792 .9703 
1.75 .9237 .9653 .9780 .9644 .9896 .9830 .9744 
2.00 .9357 .9728 .9831 .9715 .9921 .9866 .9787 
3.00 .9764 .9935 .9963 .9926 .9984 .9968 .9934 
4.00 .9949 .9993 .9997 .9991 .9999 .9997 .9991 

Table 4 

Comparison of   M   for Alternative 2-sample Procedures 

A: .85 .90 .90 .95 .95 .95 
X Regular 6: .85 .85 .90 .85 .90 .95 
0 1.1028 1.0473 i.öiM " 1.0493 l.Öli4~ 1.0229 1.ÖS46 
.05 1.0667 1.0353 1.0140 1.0275 .9921 .9965 1.0041 
.10 1.0337 1.0305 1.0062 1.0138 .9779 .9780 .9822 
.20 .9786 1.0427 1.0129 1.0114 .9721 .9666 .9CS4 
.30 .9383 1.0829 1.0484 1.0424 .9964 .9899 .9846 
.40 .9121 1.1466 1.1087 1.1031 1.0476 1.0449 1.0364 
.50 .8980 1.2274 1.1878 1.1875 1.1200 1.1260 1.1150 
.75 .8997 1.4613 1.4235 1.4572 1.3506 1.3975 1.3848 

1.00 .9279 1.6818 1.6507 1.7416 1.5837 1.6928 1.6939 
1.25 .9629 1.8539 1.8290 1.9923 1.7714 1.9554 1.99S6 
1.50 .9963 1.9671 1.9447 2.1870 1.8945 2.1578 2.2664 
1.75 1.0245 2.0178 1.9927 2.3119 1.9456 2.2832 2.4867 
2.00 1.0455 2.0058 1.9733 2.3566 1.9248 2.3204 2.6345 
3.00 1.0570 1.5255 1.4674 1.8266 1.4125 1.7461 2.2809 
4.00 1.0224 1.1047 1.0802 1.1843 1.0611 1.1447 1.3598 

Jk^. ■M 
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(5.2) 

so that 

(5.3) 

2      r 2   . 2, v    -  (n c/o ), 

x.  ■ A./v/Zo 7c 

A sequential stopping rule which Is natural to use when the   A.    are not known, 

is stop the first time that 

(5.4) 

where 

c >  (A*o2/2n2)G(x1....,xk_1) 

*i ' h.n^'0 1 < i < k-1  . 

If one studies the behavior of such a rule for fixed a  as c ■> 0, it is 

seen from comparing (5.1), (5.2) and (5.3) with (2.3), (2.4) and (2.6) that the 

behavior is almost identical, with /c   replacing r and G in place of H. 

It might have been suspected that the difficulties pointed up by Theorems 1 and 

2 were due to the choice of loss function and criterion for choosing the sample 

size. It might then have been hoped that using this loss function would lead 

to probability one convergence to unity (as c decreases) of the ratio of the 

random sample size N to the optimal sample size (computed from (5.1) with 

fixed A.). Instead, the analogues of Theorems 1 and 2 hold as c * 0 (in 

the analogue of Theorem 1, the sample size behaves as though all A. ■ +<», 

which from (A.12) implies that lim(N^c/o) » ? a.s.). Suppose c is fixed 
c-»0 

and o •♦ », and it is assumed that {(•'n/o)Ä.  , 1 ^ i ^ k) have the joint 
i,n 

distribution of {(Y*-Y,), I < i <^ k) where the Y's are normal, variance 1 

and means {-•'Wo)A.}. For the present sampling rule it is seen that (/n/o) 
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is proportional to (1//Ö) so that the means of the Y. are in the limit 

(o ■*■ •) rero, regardless of the original A.. Thus as o ■♦ • for fixed 

A., N has a limiting distribution (not an almost sure limit) which is inde- 

pendent of the A.. A result like Theorem 2 will obtain if the A. are 

proportional to ^o. 

If the global maximum of G is at the origin (see (A. 15) and the dis- 

cussion following it), then the conservative sampling procedure takes 

n - (o^V/c) (see (A. 13)). 

In the case k ■ 2, the shape of G is very similar to that of H and 

all of the results of section 3 could be transcribed easily for this loss func- 

tion. 

6. A RELATED PROBLEM 

2 
Let X.(...(X  be normal, mean u, variance T ,    and suppose that it 

is desired to estimate |u| by means of the estimator Z ■ [JT |. The risk 

of this estimator is 

(6.1) R(Z.W) • (T /n)[l ♦ 4F(w/n/T)l 

where F(x) is given by (3.5). The behavior of this risk function is the same 

as of (3.4) so that sequential and multiple sample procedures based on substi- 

tuting Z  for a> in (6.1) will have the same properties as described in 

Sections 2 and 3. The bias, expected iample size, and risk functions for the 

two sample procedure will be very similar to those tabulated for the case 

k « 2, but not identical since for (6.1), R* ■ 0.596, and from equations 

(3.36), it is seen that R* enters these expressions in a non-linear way. 
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APPENDIX 

PROPERTIES OF THE RISK FUNCTION 

The risk function R(X*; 9.,...,6.) can be expressed as 

<*> k ,2   r   ,  ..,2, (A.ij  E(x*-e*r ■ / (x-e*) (i n ♦(/n~(x-ei)/o) 
-OD i«l 

» /yd n ♦(*/rr(y*Ai)/o) 
-co      isl 

»   2     k k 
»    / / d[ n   ♦(/fTCy+Aj/a) -    n   ♦(i^r(-y*A.)/o)] 

0 i»l * i-1 1 

» k _ k _ 
= 2 / y(l -    n    ♦{^~(y+a.)/o) *    n    ♦(^~(-y*A.)/a)]dy 

0 i-1 1 i-1 1 

2 « k k 
=  (a /n)2 / y[l -   n   *(y*x.) *   n    ♦(-y*x.)]dy 

0 i«l 1        i=l 1 

when. 

«  fA*o /n)H(x1,...,xk_1) 

(A.2) L  « 6* - Oj,      xi -  OfiT^/o)   . 

Lenma A.l.  For fixed values of (x.,.. .,x. ..x. .... .,x. .) HCx.,.. .,x. ,) 

taken as a function of x. decreases for 0 f. x* < x? then increases for 

xj < x. < <*>. 

Proof:  Writing 

(A. 3) {—) 
j  3H(Xj,....x^) 

3X. 

.X./2 »     x.y -x.y 
2e    / y«(y)[e   n »(-y+xj-e   n »(y^x ) 

0        jjU     3     jti 3 
]dy 

36 
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it is seen that at    x.  • 0,    the bracketed term in the integral is negative for 

all    y > 0   so that the derivative is also.    Further, a lower bound on the 
k-1 bracketed terra is    ((1 ♦ x.y)«     (-y)-ll   so that the integral in  (A.3) becomes 

infinite as   x.    increases.    Taking the derivative of the integral  in (A.3) with 

respect to   x.    gives 

2 
,        a      ,    x./2 dHix.,...,x.)       -    . x.y -x.y 
faw-tj9  hi —) •     yHy)le       n    ♦(-yx,)*e n   ♦(yx.))dy>0 
A   i    2 axi       0 j^i     j       j^i    J 

so that the derivative has only one sign change, completing the proof. 

Two of the more important properties of the risk function for k * 2 will 

now be demonstrated. 

Lemma A.2. 

(A.4) 3R ^ (x*; e^) < o 

Proof:  From (3.4), (3.5), and (3.6) it is seen that 

(A. 5) |jU -(o2/n2)[l ♦ 2F(x) - 2nf(x)(x/2n)] 

where f(x) « dF(x)/dx, and it is easily checked that (A.5) becomes 

l^-- -(o2)/n2)(l - xo(x)) 

completing the proof since x*(x) < (^(1) < 1 for x > 0. 

• 
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In obtaining the distributions in section 3, use was made of the equivalence 

between the statements 

o o 'y 
(n   < 6}     where      n       satisfies:    n   ■  [1 ♦ 2F.(nu)/57r)] 

and    {w' < a < u).},    where    u, ■ xj/i,    and    x.    is one of the two solutions of 
0 0 0 0 0 

(A. 6) 6 »  1  ♦ 2F(x)   . 

-     ♦ 
This equivalence depends on the fact that   u. (uO    is a monotone increasing 

(decreasing) function of   6    (0 < 6 < R*).    The fact that    x'(x6)    is a monotone 

increasing (decreasing) function of    6    follows immediately from the fact that 

(1 + 2F(x))   decreases monotonely for    x < x*    and increases monotonely for 

x > x*    (see Lemma A.l).    We now show that   m.    behaves in the same way. 

Lemma A.3.      Let    u'    and    u-    be the two solutions of 

(A.7) 6 « 1 ♦ 2F(w/267r)  . 

Then -r;  has the same sign as —75—,    and is zero only when the latter is 
00 00 

zero. 

Proof:  Writing u.    as dx./Zi),    it is seen that 

(A. 8) 
3W«   c f ,/\ 

From (A.6) it is seen that 

dx, 
(A. 9) 1 •2f fVar 

.A  mM ^»»i^i 
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Thus using (A.9) in (A.8) along with (A.6) it is seen that 

(A,10) ^'5^2(2f(x))Kf(Xg) * 1*2F(X6)1 " ?77(1 ' ^^'^ 

and since    (1 - x^(x)) > 0,    this completes the proof. 

It is difficult to characterize   H(x1,...,x. _.)    in great detail, but the 

following remarks indicate some of the known properties. 

Remarks: 

1) By direct application of the proof of Theorem 1 of Saxena and Tong [3], it 

is easy to see that for fixed (x.,...,x ) (say) 

max    HCXj,...^^) « HCXj,...^ ,0,...,0) 
xp*V""\'l 

2) The unimodal shape of   HCx.) ■ HCx.,...^)    in   x.     (fixed values of    (k-2) 

other   x's)    implies monotonicity of the solutions    x7(6),    x. (6)    to the equa- 

tion    6 ■ H(x.)    (for   6 > 1/A*,    there will be only one solution,    xT(6)).    As 

in the case   k = 2,    it would be desirable to be able to show monotonicity of 

(x7^    i6)//E),   or alternatively to show that   x.//R(x.)    is monotone increasing 

in    x.,    i.e., to show that    [2H(xi) - x. (dHfx.Vdx.)] > 0.    This is trivial 

when   H(x.)    is decreasing, but illusive in general.    As   x.    becomes very 

large,    H(x.)   has a positive limit, while   x.(dH(x.)/dx.)    goes to zero.    Thus 

the difficulty encountered is for    x, > x?,   but not too large. 

3) Similarly, it would be desirable to show that for general    k,     (dR(X*; 

9|.....ejt)/dn) < 0.    This is equivalent to showing that   GCx.,.,.^ ,) > 0 

Mi 
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for all    (x.,. ..,x. _.)    where 

k-1 
(A.11)      GCXj,...,^) ■  [2H(x1,...,xk)  -    I    xi(3H(x1,...,xk)/3xi)] 

1"1 

The difficulties are of the same nature as mentioned above. 

4)    It is not clear whether the function   HCx.,...^.   .)    has a unique minimum. 

The system of equations    aHCx.,... ,x. Vax. «0    (1 1 i 1 k-l)    has a solution 

on the diagonal    x. ■ x. ■  • • • ■ x.   j  ■ x,    given by 

CO 

/ y*(y)lexy*k"1(-yx).e_xV'1(yx)]dy - 0 . 

Whether this solution is unique and whether there are solutions off the diagonal 

is not clear. If a solution off the diagonal exists, then from the symmetry of 

the function, any permutation of that solution is also a solution.  If one con- 

siders a ray x. = tr.  (r. £ 0, fixed, 0<^t<», l^il k-1) 

3H(tr1,..,.trk_l,0)  k-1 

3t I   r. 
i«l 

dH(x.,.,. »x. ) 

3x. 
x^tr.J 

It is clear that this derivative is initially negative since each term is, and 

that there is a t* (depending on the r's) such that for t > t*, it is 

positive but since the individual terms change signs at different values of t 

and since the terms are not necessarily monotone increasing (because of the 

-(tr.)2^ 
e        factor) it is not clear whether there is only one sign change. 

There is a possibility of the function oscillating in a limited t range. 



41 

S) One property which can be established is that R* is a decreasing function 

of k, with a lower bound which approaches (1/2A*) as k increases. To see 

this, let x*,...,x? . be such that 

«(x*,...^*^) ■   min    H(x1,...,xk_1) ■ R* . 
xr,,,,xk-l 

Then 

k*l min   HCXj,...^) <, min H(x*,. ...XJJ.XJ^) 
xr*,,'Xk xk 

< Htx*,...^^,-) - HCxJ....^*^) - R* 

From Theorem 4.2.5 of Dudewicz [2], it is easily seen that 

2.^ 
Cl/A*)[Cl/2) ♦ / x^K(x)] <_R*<^  (1/A*) 

and the lower bound decreases to (1/2A*) as k increases. A somewhat sharper 

upper bound for Rf is 

(1/A*) inf  / y2d«(y)*k"1(y*x) . 
0<x<m  -« 

The function GCx.,.. .,x. ,) of (A. 11) is of interest in section 5, 

and a few of its properties will be described here. Clearly, since 

(3H(x.,. ...x, .)/3x.) goes exponentially fast to zero as x. increases, 

(A.12) lim      G(x1....,xk_1) « 2H(«.,...,») « (2/A*) 
min(x1,...,xk_1)-*«' ' 

i am   I 
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(A.13) G(0,...,0) - 2H(0,...t0) - 2 > (2/A*) . 

Also 

<A14) -^TT^-' ax.    " 1 *i       ax. ax. 
j J i»l vi"Äj 

so that 

(A.15) 
aGCxj,.. -»^.i) 

ax. 
aH(Xj,...»x^.j) 

ax. 
(0,...,0) (0,...,0) 

Thus G(x ,...,x, ,) decreases from its value at the origin which in turn is 

higher than the value at infinity. Whether the value at the origin is a uni- 

versal maximum, and details on the shape of the function are not known. When 

k = 2, G(x) = 2(1 - X(j>(x)) decreases monotonely for 0 ^ x <^ 1, then 

increases for x > 1 with a minimum value of 2(1 - $(1)) ^ 2(0.76). 

■- ^- 


