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I INTRODUCTIOW 

Stanford Research Institute ia participating with other ARPA/IPT 

contractors in a major program of research on the analysis of continuous 

♦ t 
speech by computer  (see Newell et al., 1971 ).  The goal is the Hevel- 

opment of a speech understanding system capable of engaging a human 

operator in a natural conversation about a specific problem domain.  The 

domain chosen by the SRI project for its initial efforts was one devel- 

oped by Winograd (1971), a simulation of the actions of a robot that can 

manipulate various kinds of blocks.  A person speaking to the computer 

will be able to ask questions about the "blocks world," to give commands 

that will modify it, and to add information to augment its structure. 

The procedures being developed to provide these capabilities integrate 

pragmatic, semantic, syntactic, lexical, phonological, phonetic, and 

acoustic analyses. 

Efforts toward speech understanding contrast with those directed 

toward speech recognition both in goal and in approach.  Speech recog- 

nition work has aimed at providing an orthographic transcription of the 

sounds and words corresponding to the speech signal.  Analysis has con- 

centrated on acoustic processing, although linguistic segmentations have 

been attempted, particularly in relation to phonetics, phonemics, and 

morphology.  In contrast, speech understanding research seeks to deter- 

mine the message intended in relation to the accomplishment of some task, 

in spite of indeterminacies and errors in the generation, transmission. 

Contract No. DAHCO4-72-C-0009, SRI Project 1526. 

Refc-nnces are listed alphabetically at the end of the report 
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and reception of an utterance.  Special emphasis Is placed on semantic, 

syntactic, and pragmatic information, and a questlon-answerln_, system 

may be used as a major processing component.  In particular, our approach 

at SRI stresses the critical role of semantics and pragmatics in reducing 

the amount of acoustic processing necessary to understand an utterance. 

The ARPA Speech Understanding Research Program spans the broad 

lange of research and development efforts necessary to produce a proto- 

type speech understanding system.  Within this range, our activities at 

SRI are directed toward the following goals: 

• Implementation of an integrated system 

• Establishmen of effective procedures for handling semantic and 

pragmatic information 

• Formulation of techniques for dealing with variability within 

and among speakers. 

Our strategy in pursuing these goals has been to put a system into oper- 

ation at the earliest possible time, making maximum use—within the con- 

fines of the basic system design concept—of existing programs and 

algorithms.  We believe that exercising a system will allow us to identi- 

fy the kinds of links that need to be established among the components, 

as well as provide useful guidance for constructive revision of the 

components themselves. 

In the system we are developing at SRI, knowledge of the world, a 

model of the Ufer, and a grammar will combine to constrain the selection 

of a small set of words, each of which might be expected to be present 

at a particular place in the speech stream representing an utterance. 

For each word, a program is written to enable determination of how well 

the word corresponds to the acoustic data for that place.  When the 

presence of a word is confirmed, a new set of words is selected for 

testing at the next place in the speech stream.  Successive steps through 

the utterance result in a determination of its structure. 

/ 
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During this first year of the project, development has been carried 

to the point where syntactic, semantic, and acoustic data are used in 

processing sentences.  The capabilities developed are rudimentary, but 

we can predict words and test for their presence.  No model of the user 

has been developed yet.  More preprocessing of the acoustic data is done 

than we believe will be necessary.  Only a small number of word functions 

have been written; thus, it is not possible to step through a complete 

utterance.  Nevertneless, the results to date are sufficient to encourage 

us to continue Implementation of the system design. 

A description of the current state of the system is presented in 

Section II.  A detailed analysis of the system components is given in 

Section III.  Section IV considers the directions for continuing research 

and development. 

. • 
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II  AN INTEGRATED SYSTEM FOR SPEECH UNDERSTANDING 

Introduction 

In the current state of the SRI system for speech understanding, it 

is possible to identify three major components:  Pintle, a set of pro- 

cedures for syntactic and semantic analysis; programs for acoustic 

processing; and a word verifier routine that links the other two.  There 

will be additional components and major changes in all three of the pres- 

ent ones, as well as much more complex interrelationships.  Nevertheless, 

In its current stata, the system does illustrate an approach to speech 

understanding that is distinctive because of its dependence on syntactic 

and semantic processing. 

Pintle is a major modification (in ways described below) of Terry 

Winograd's system for procedural analysis of language (Winograd, 1971). 

It combines a grammar—written as a set of programs—with senantic rou- 

tines that model changes in the arrangement of a set of blocks.  A 

sertence constitutes a path through the gran.mar.  Branching at choice 

points is determined by the order of the rules, by features on other 

constituents, and by semantic data.  At the end of each branch in the 

parse tree is a set of words from a particular grammatical class (e.g., 

determiners, adjectives, nouns, verbs), from which a subset can be select- 

ed on semantic grounds. 

The acoustic routines convert the recorded analog voice input to 

digital form.  The digitized signal is then fed into a bank of digital 

filters, which make it possible to assign successive acoustic segments 

to the follfvving rough classes:  silence, voiced turbulence, unvoiced 

turbulence, voiced stop, vowel-like, or other.  The signal also is 

Preceding page blank 
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processed by a more complex acoustic analysis procedure that identifies 

the frequency and amplitude for the first three spectral peaks of the 

vowel-like sounds.  The data from these two analyses are stored la 

files. 

The word verification routines take a set of words produced by Pintle 

and test each word against the acoustic data for a particular portion of 

the utterance.  The result is a subset of the words, ordered according to 

agreement with the acoustic data, with each word containing a pointer to 

identify Its approximate endpolnt in ^he acoustic stream.  Pintle takes 

the most likely word first and then proceeds on its path through the 

grammar to select the next set of words for processing by the word veri- 

fier.  Testing this new set against the acoustic data begins at the point 

designated by  the endpoint for the word previously accepted. 

An example is considered next, and a more detailed description of 

each of the components is presented in Section III. 

B.   Understanding a Sample Sentence 

A brief description of the "blocks world" problem domain used in 

the SRI system is necessary as background for the analysis of the 

sample sentence.  Visualize a table containing a box and several objects 

of different sizes, shapes, and colors.  There are five blocks (two red, 

one blrck, one green, one blue) and three pyramids (green, blue, and 

red); the box is white.  The objects are arranged in a particular 

configuration in the computer representation of the scene, but the 

details of the arrangement are not necessary to understand the example. 

Commands given to a simulated robot arm cause it to move the blocks. 

Alternatively, the person Interacting with the system can ask questions 

or provide information that will augment or change the semantic struc- 

ture of the world in some way. 

fmm 
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The sentence to be processed Is the following: 

PUT THE BLACK BLOCK IN THE BOX. 

All of the steps involved in its analysis are presented in the following 

pages as they occurred in an actual demonstration. The capabilities 

shown reflect the state of the system as of September 1972.  Lines pre- 

fixed by an arrow represent entries by the user.  Figure 1 contains the 

actual protocol. 

BBN LISP-10 12-11-72 

The speech understanding system is implpmented in BBN-LISP and is 

run on a PDP-10 computer under the Tenex Operating System. 

-SYSIN(<ROBINSON)SPINTLE) 

The file containing the system is called to be read in. 

((ROBINSON>SPINTLE.;1) 

Confirmation that the system (Version 1) is read in. 

-DEMOTRACE) 

The trace is turned on to show the output sequentially. 

AINTERP 

Confirmation. 

-FKINIT(<RIDDER)LSWDS.SAV) 

The FORTRAN fork containing the acoustic routines is initialized. 

(The LISP-FORTRAN interface allowing accejs to FORTRAN data files 

from LISP will be described later.) 

<RIDDER>LSWDS.SAV 

Confirmation. 

-SPEECHDATH(M351R) 

The prerecorded acoustic data for the sample sentence are read in. 

NIL 

Confirmation. 

H» (PUT THE ($ 37) ($ *) IN THE ($ 134).) 

Analysis of the sentence by Pintle is initiated. At the time this 
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BBN LISP-10     12-11-72 

^SYSIN(«ROBINSON»SPINTLE) 
(<ROBINSON>SPINTLE.fl) 
«-DEHOTRACE) 
AIWTERP 
^FKINIT(<RIDDER»LSWDS.SAV) 
«RIDDER>LSWDS.SAV 
••SPEECHDATA (MS JIR) 
NIL 
«^   (PUT  THE ($ 57)   ($ ♦)   IN THE  ($   134).) 
• •• 
PUT 
THE 
BLACK 
BLOCK 
IN 
THE 
BLACK 
BOX 

(CLAUSE MAJOR  IMPER ACTV TRAWSL) 
(VQ  IMPER) 

PUT (INF PAST  VB  TRANSL  VPRT MVB) 
(NQ OBJ OBJ1   NOLOC DET DEF NS) 

THE (DET NPL NS DEF) 
BLACK  (ADJ) 
BLOCK  (NOUN NS) 

(PREPG PLACE LOBJ) 
IN (PLACE PREP) 
(NG UBJ PREPOBJ  DET DEF NS) 

THE (DET  NPL NS DEF) 
BOX  (NOUN MS) 

MOVETO 472  192  128 
GRASP  tB3 
MOVETO 44fi 448  129 
UNGRASP 

OK. 

NIL 

1 

FIGURE   1       ANALYSIS OF A SAMPLE SENTENCE 
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Pl'T 

THE 

BLACK 

BLOCK 

protocol was made, the word verifier did not have word functions 

available for the sets of words Including PUT, THE or IN.  Under 

these circumstances—and in general to allow more flexible testing 

of the system—it is possible to enter text to specify a word.  For 

convenience, the *ord verifier checks the input text first to see 

whether any of the words in the set predicted has been typed in. 

Finding none, it will use the appropriate word functions, if they 

are available.  If none are present, the words in the set will be 

rejected. 

Pintle begins by looking for a major clause; branching along the 

imperative path, it looks for command verbs.  The word PUT is 

among those in the set generated at this point, and it is found 

in the text input. 

Having found a verb, Pintle begins its search for a noun group by 

looking for a determiner.  THE is confirmed from the text input. 

I 

Having found a determiner, Pintle looks for an adjective.  Since 

there is no text input, the predicted words are tested against 

the acoustic data.  Beginning at a location 370 milliseconds into 

the utterance (the 37th 10-millisecond  segment), the word verifier 

finds that BLACK corresponds to the acoustic data at the highest of 

four confidence levels; RED, GREEN, BLUE, and WHITE are rejected. 

Pintle now looks for a noun to complete the noun group.  It begins at 

the location in the acoustic data confirmed as the ending place for 

BLACK, the previous word accepted.  This condition is specified by 

tho asterisk in the initial entry for the sentence to be processed. 

The word verifier finds that BLOCK corresponds to the acoustic data 

J 
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IN 

THE 

at the highest confidence level; BALL, PYRAMID, and THING are 

rejected. 

With the noun group complete. Pintle looks for a prepositional 

phrase to complete the action denoted l)y PUT. IN is confirmed 

from the text input. 

Looking for a noun group to complete the prepositional phrase, Pintle 

begins with the determiners.  THE is confirmed from the text input. 

BLACK 

Pintle next   looks  for  adjectives.     Beginning at   a  location  1340 

milliseconds  into the utterance   (the  134th segment),   the word veri- 

fier  finds  that  BLACK corresponds  to  the  acoustic data  at   the  third 

highest  confidence  level.     RED,   GREEN,   BLUE,   and  WHITE  are  rejected. 

BOX 

The location returned along with BLACK proves to be the end of the 

utterance.  Consequently, BLACK is rejected because the string so 

ending would be ungrammatical; it also would be seinantically unac- 

ceptable.  Pintle backtracks and begins looking for nouns.  BOX 

corresponds to the acoustic data at the highest confidence level; 

BALL, PYRAMID, and THING are rejected. 

(PUT THE BLACK BLOCK IN THE BOX) 

The sentence as identified.  At this point the system returns a 

printout showing the grammatical structure of the sentence. 

(CLAUSE MAJOR IMPER ACTV TRANSL) 

(VG IMPER) 

PUT (INF PAST VB TRANS VPRT MVB) 

(NG OBJ OBJ1 NOLOC DET DEF NS) 

THE (DET NPL NS DEF) 

BLACK (ADJ) 

10 
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BLOCK (NOUN NS) 

(PREPG PLACE LOBJ) 

IN (PLACE PREP) 

(NG OBJ PREPOBJ DET DEF NS) 

THE (DET NPL NS DEF) 

BOX (NOUN NS) 

Briefly summarized, the sentence is identified as an active imper- 

ative with the verb PUT involving the movement of an object, THE 

BLACK BLOCK, to a location, IN THE BOX.  (See the next section and 

Winograd, 1971, for more extended discussions of the grammatical 

structure.)  This information is used to direct movements of the 

simulated robot arm in conjunction with the semantic definitions 

for the words and the determination of their relevance for the 

current state of the problem domain, as indicated in the following 

steps. 

MOVETO 472 192 128 

The arm moves to the black block, specified by the three coordinates 

given. 

GRASP :B3 

The arm grasps B3, the black block. 

MOVETO 448 448 129 

The arm with the black block moves to the box, specified by the 

three coordinates. 

UNGRASP 

The arm releases the black block inside the box. 

OK 

The system indicates that it has completed the action identified 

in its "understanding" of the input utterance. 

11 
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C.  Provisional Features of the Current Implementation 

In anticipation of a more detailed discussion of the system 

components in the next section, it is probably reasonable to note here 

son.e characteristics of the analysis of t.. sample sentence t^at are 

temporary expediencies not to be considered characteristic of the sys- 

tem design.  Some of the remarks made here are amplified in Section IV, 

Directions for Continuing Research and Development. 

The system is not totally on-line at this time; i.e.. It is not 

possible to speak directly into the system and to initiate processing 

accordingly.  Analog-to-dlgital conversion of the speech signal cannot 

be performed on our PDP-10/15 computer facility yet, pending completion 

of the necessary software.  Consequently, for the present we are 

digitizing the signal on a PDP-11 and transferring the resulting files 

by tape to the PDP-10 for the remainder of the acoustic analysis. 

The FORTRAN files accessed by tho word verification routines now 

contain preprocessed datE from both the digital filters and from the 

linear predictive coding analysis.  In the system as designed, we 

expect to do an analysis in real time that will produce the preliminary 

classification of acoustic segments now provided by the digital filters. 

However, we expect to perform spectral analyses of the kind provided by 

LPCs and to call for other complicated acoustic processing only as 

required to make the kinds of decisions necessary to distinguish among 

the predicted words in relation to the acoustic data. 

As noted in the analysis of the sample sentence, only a small 

number of word functions have been written.  Consequently, it is not yet 

possible to process a complete sentence.  The option of testing predicted 

words against textual, as well as acoustic, data is useful for debugging 

the acoustic routines for particular sets of words.  It is also useful 

in the absence of semantic and prosodic procedures for establishing 

12 



constraints on paths through the grammar at the beginning of utterances, 

and, in particular, at the beginning of a dialog when no context has been 

established. 

A final comment on the analysis embodied in the sample sentence is 

probably in order.  We have not exercised the system to any great extent. 

There are only a few word functions, and they have been tested against 

only two speakers.  The flow of control in the current implementation is 

primarily from the syntactic and semantic component to the acoustic.  It 

is clear, however, that useful information can pass in the opposite dir- 

ection, not only from what a prosodic analysiu might provide, but also 

from what might be expected to arise in the course of testing words a- 

gainst the acoustic data.  In addition, there probably are ways in which 

the word verifier, which currently processes one word at a time, can 

operate more efficiently on the whole set of predicted words in relation 

to the acoustic data, thus i Jucing the search space involved. 

13 
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III     SPEECH UNDERSTANDING  SYSTEM COMPONENTS 

A. Initial  Resources 

When  the project was  initiated  at   SRI,   wr,  had  available   (or crald 

quickly obtain): 

• Techniques  fcr analog-to-digital  conversion of  the  speech signal 

• Algorithms  for performing Fast  Fourier Transforms   (FFTs)   to pro- 
vide  spectral data. 

• The  beginnings of  an  interactive  man/machine  speech analysis 
facility  for use  as  a  research and development  tool. 

Th(   bases  for two approaches  to syntactic  and  semantic processi ng. 

- A question-answering system, based on the first-order predicate 

calculus and incorporating a resolution theorem prover, which 

has been evolving at SRI over a period of years. 

- A program package, originally developed at MIT, for the Wino- 

grad system for natural language understanding. 

Our plan for the first year included the following tasks: 

• To develop a comprehensive capability for acoustic analysis, in- 

cluding completion of the interactive speech analysis system. 

• To pursue the two approaches to syntactic and semantic analysis, 
modifying each to allow for speech input. 

• To prepare for each syntactic and semantic component an inter- 

face with algorithms built on the acoustic analysis processes. 

To implement these interfaces and test the rrsuiting systems. 

To do the necessary work on system organization required to co- 

ordinate LISP and FORTRAN programs and provide a common file 

structure that would allow data to be accessed by each, while 

exploring the relevance of QA4, a new programming system being 

developed at SRI under separate support (Rulifson, 1972),  for 

future system implementations. 

Contract NASW-2086, SRI Project 8721 

15 

Preceding page blank 

^MÜ 



■' »I I 'Uli«! 

We were able to ( irry out this plan during the year with one ex- 

ception.  It was not possible to prepare algorithms that would allow the 

SRI question-answering system to interface with acoustic processes.  Not 

only would that effort have required more resources than were available, 

but, in addition, similar algorithms are being developed elsewhere, 

and it should be possible to take advantage of the developments later. 

The decision to concentrate on the system described in Section II was 

made because it involved a more radical design concept and because th* 

requirements for acoutsic analysis are believed to be le^s demanding.  The 

present section contains more detailed descriptions of the components of 

this system.  Also included are a brief overview of the interactive speech 

analysis facility and a summary of the work performed on the SRI question- 

answering system in anticipation of an acoustic interface. 

B.   Pintle—Procedures for Syntactic and Semantic Analysis 

Pintle, the syntactic and semantic component of the SRI system for 

speech understanding, is based currently on the Winograd "Computer Pro- 

gram for Understanding Natural Language" (Winograd, 1971).  It is a top- 

down system for linguistic analysis in which syntax, semantics, and 

inference are combiied to direct the processing of questions, statements, 

and commands.  Now implemented by SRI in BBN-LISP, Pintle constitutes a 

substantial modification of Winograd's program.  Changes have been made 

in the linguistic analysis, in the ordering of paths in the grammar, in 

the flow of control, and in the establishment of semantic constraints. 

A backtracking facility has also been introduced. 

In Winograd's work, is in most existing parsing systems, successive 

words from a typed input string guide the analysis.  Since we proposed 

to use the parsing procedure to help segment and identify the words in 

the speech input, it was necessary to find other ways io control the 

generation of paths through the grammar.  In order to explain the 

16 
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operation of Pintle, it will be useful to consider the general form of 

that grammar. 

Michael Halliday's systemic grammar forms the linguistic basis 

for Winograd's system, and we have used it in our initial work with only 

minor modifications (see Winograd, 1971, and Hudson, 1971, for detailed 

descriptions).  In Halliday's grammar, syntactic and semantic features 

are associated with words and with higher order grammatical structures. 

There are three basic ranks of units:  word, group, and clause.  The 

word is the basic constituent; the word classes include noun, verb, 

adjective, determiner, preposition, among others.  There are four groups: 

noun group, verb group, preposition group, and adjective group, each of 

which has slots for the words that compose it.  For example, one noun 

group might include determiner, number, adjective, classifier, and noun. 

A clause can be major or secondary; major clauses may be declarative, 

imperative, or question, active or passive, and the like; secondary 

clauses account for relatives, complements and various kinds of modifiers 

and qualifiers.  A unit at any rank has associated with it a set of fea- 

tures. For example, words exhibit features identifying number, inflection, 

various kinds of affixation; groups may show definiteness, tense, negation; 

clauses may be marked tor yes-no or WH questions, subject or object.  There 

are systems of mutually exclusive features and networks representing the 

relations among the units at a rank. 

Each of the units above the word level (clause, noun group, verb 

group, preposition group, adjective group) is represented in Winograd's 

«ystem by a program written in PROGRAMMAR, a language developed by him 

for this purpose.  Parsing is done by an interpreter that processes 

PROGRAMMAR code; the flexibility of this method allows various kinds of 

tests to be made that call on larger grammatical contexts and on other 

sources of information, particularly semantic ones.  The parser operates 

17 



in a top-down, left-to-rlght manner, beginning with a search for a major 

clause.  In Winograd's implementation, the clause program checks the 

features of the first word in the typed input string to decide what unit 

to begin with.  Features in words guide the parser through an analysis by 

delimiting or selecting subsets of related groups of choices.  In this 

way, the parser traces a path through the grammar, arriving at a struc- 

ture for the sentence. 

To adapt Winograd's procedures for speech understanding, it was 

necessary to establish syntactic and semantic constraints that influence 

successive choices through the grammar, leading to the selection of a 

subset of the words of a particular word class.  In what follows we are 

presenting the information available in the grammar for this purjose, 

with some additions where it seemed appropriate.  Consider again the 

sample sentence discussed in the previous section, PUT THE BLACK B1X)CK 

IN THE BOX.  Assuming that at the time this utterance is made in a 

hypothetical dialog of a user with the system it is reasonable to expect 

a command, the clause program would look for an imperative.  (Prosodic 

information also may provide such guidance.)  Since imperative clauses 

generally start with verbs, the parser enters a verb group program look- 

ing for imperatives.  Since imperatives are in infinitive form, only 

those verbs with that feature are identified.  The result of thi'.s path 

through the grammar is a small set of imperative verbs, one of which 

may correspond to the first word of the utterance.  We expect to be able 

to constrain the set of verbs further by additional semantic information— 

perhaps regarding what command might be appropriate at this point in the 

dialog.  And pragmatic information specific to a particular user should 

be possible to capture; for example, the frequent use of certain com- 

mands. However this verb group is constrained, the initial result is c 

set of words to check against the acoustic data. 
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Confirming one (or more) of the words from this initial set might 

result in Pintle looking for a noun group, as is the case with the word 

PUT, which requires an object.  Identification of a different imperative, 

PICK, could result in Pintle looking first for the particle UP.  Accept- 

ing PUT in the sample sentence, Pintle might begin the search for a noun 

group with a determiner.  Since the set of determiners is small, all of 

them could be predicted.  However, they are difficult to distinguish 

acoustically, and it might be reasonable, on semantic grounds, to look 

only for a definite or only for an indefinite determiner, e.g., THE or 

A. 

Finding a determiner, an adjective would be likely to follow.  There 

are various classes of adjectives, and in English there is an ordering 

controlling the sequence in which they typically modify a noun.  For 

instance, size adjectives precede color adjeolivea; e.g., BIG RED DLOCK 

but not RED BIG BLOCK  Again, in a dialog it would be reasonable at cer- 

tain points to predict the amount of specificity required to identify an 

object on the basis of its qualities.  Pragmatically, (assuming we have 

models for our users) some people may make things perfectly clear, while 

others are more sparing in their characterizations.  So, sets of adjec- 

tives will be checked against the acoustic data.  Subsequently, and in a 

similar fashion, various paths among the nouns would be selected for 

testing.  The kind of verb would influence the choice; verbs of manipula- 

tion call for nouns that represent manipulable objects.  This information 

also could be used to influence the choice of an adjective In the prior 

search, limiting it to those adjectives appropriate to manipulate objects. 

Continuing the parse beyond the noun group would lead to consider- 

ation of preposition groups because PUT requires a location.  Identifying 

a place preposition would lead to a search for an object noun group, with 

decisions being made similar to those discussed for the preceding noun 

group.  However, only those nouns that can have objects PUT IN them need 
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to be considered.  In this manner, a set of predictions are made regarding 

the sequence of sets of words likely to occur in the utterance. 

The foregoing description presumes the accuracy of the initial 

predictions.  In the sample sentence, however, the adjective initially 

found in the second noun group proved to be in error.  Thus, backtrack- 

ing and tracing down an alternate path were required to find the noun. 

An interpreter for PROGRAMMAR has been added that contains a backtracking 

mechanism not available in Winograd's system.  The interpreter makes It 

possible to specify a set of alternatives at a particular point in the 

grammar and to try these in succession, backtracling automatically if 

the initial choice is not subsequently confirmed.  This same mechanism 

allows an easy return and recovery following acceptance of a word that 

proves to be in error, as in the stmple sentence. 

The requirement for speech input (the absence of words with identi- 

fiable features in the input string) and the availability of the backtrack- 

ing facility resulted in other modifications to Winograd's analysis pro- 

cedure.  Winograd tested to eliminate the least likely alternatives first, 

checking the longest possible constituent and cutting back wher that 

failed.  PROGRAMMAR, in his original version, returned the first suc- 

cessful analysis, having provided both syntactic and semantic guidance 

to make that a likely interpretation within the mode* of the "blocks 

world."  Selective backup was possible in a particular situation, but 

it involved specifying a location to return to for alternative proces- 

sing.  With voice input, it is necessary both to test for most likely 

alternatives first and to have a more general backup mechanism in case 

of failure.  What is needed further for speech understanding is the 

flexibility in the grammar to allow dynamic reordering of rules, depend- 

ing on the state of the analysis at the moment.  To help provide this 

capability, changes have been made that allow identification at any 

particular choice point in the grammar of what alternatives are possible. 
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In  Winograd's  system,  alternative  choices could only be  identified serial- 

ly after  failure of   the  predecessor. 

Many more  cianges  in  Pintle  are contemplated  that will   improve   its 

ability  to use  syntactic,   semantic,   and—hopefully—pragmatic constraints 

to  reduce  the  number of words  that needs   to be  considered at  any  particu- 

lar point.     Currently,   checking  against   the  actual  configuration  of ob- 

jects  on  the   "blocks world"   is  done only after a group has  been  parsed. 

Thus,   in  the  sample  sentence,   both  BALL and  PYRAMID are  tested  against 

the acoustic  data.    However,   there are no balls  in the current situation 

(although  the word  is  in the lexicon),   and  there are no black pyramids. 

Information  of   this kind can  and  should be  used  to  influence  the  selection 

of words  in a  set as soon as  it  is  relevant. 

Major modifications  in  Pintle  can  be  expected  to  follow  the   intro- 

duction of  new  structures  for managing semantic  and pragmatic   information. 

These new structures will   replace  and extend  Winograd's MICROPLANNER 

code  for  "blocks  world" manipulation,   Exploratory development will  be 

done   in QA4,   a  procedure-oriented  programming  system particularly  well 

suited  for work  in artificial  invelligence because of  Its  flexibility 

and  special   features.     We also  plan  to experiment with  revisions   to  the 

parser  in QA4;   new  techniques  are  necessary   to   facilitate   the  accommoda- 

tion of  semantic  and pragmatic   information  and   to simplify  the dynamic 

reordering of   paths  through  the grammar. 

C.       A Grammar  for the Speech Understanding  System 

No substantial changes have been made as  yet  in the actual  grammati- 

cal   rules   that  Winograd has   in his  system.     However,   modifications  are 

essential  because  there are  significant differences between  spoken and 

written English.     Previous  systems   for computational   linguistic  analysis, 

Including  Winograd's,   have worked  with grammar  rules  for  the written 
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language.  But, function words and affixes, which existing parsers use 

extensively for structural Identification, tend to be blurred in speech. 

Instead, prosodic features—such as intonation, stress, pause, and juncture- 

are used as indicators and delimiters.  Spoken utterances are frequently 

incomplete and include errors, hesitations, and false starts, all of which 

are either edited out of the typed input or relatively easy to identify 

in it.  In contrast, there is no easy way to separate out the well- 

formed parts in speech.  Misspelled words are easy to detect; mispro- 

nounced words are not.  Moreover, the relation between a word and its 

alphabetic representation is stable in text, whereas the spoken form of 

a word varies significantly and often dramatically in relation to other 

words around it.  Phonetic or even phonemic transcriptions are not suf- 

ficient.  Consequently, it is essential to have a set of grammatical 

rules suitable for working with spoken English. 

A group at the University of Michigan under the direction of Mchael 

O'Malley has begun work on a grammar of spoken English, and we ari 

working closely with them in its development.  Our intent is to incorpor- 

ate prosodic information directly into our procedures to help determine 

sentence type, to identify phrase and clause boundaries, to elin. .iate 

false paths, to reduce ambiguity, and to provide a basis for handling 

incomplete sentences and hesitations.  More recently, groups at 

UNIVAC and at the Speech Communication Research Laboratory in Santa 

Barbara have Joined in the study of prosodic information. 

In conjunction with the University of Michigan and with Bolt 

Beranek and Newman, (BBN) we have begun a comparative analysis and 

evaluation of the current grammars used by BBN and SRI.  We hope to 

clarify similarities and differences and to establish a common grammar 

for the overall ARPA Speech Understanding Research Program.  As the 

first step in this effort, we converted the grammar in Pintle into the 

transition network formalism used by BBN to facilitate comparison. 
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Since this model seems to be easier for linguists to work with, having 

this alternative representation for our grammar may simplify incorpor- 

ating the prosodic rules. 

A complete grammar for spoken English should include a phonological 

component that contains acoustic/phonetic rules relevant for the genera- 

tion and recognition of utterances.  It is not clear that all of the 

strategies for speech understanding could make productive use of such a 

grammar, but it could serve to model a substantial part of the relevant 

linguistic framework. 

In addition to developing a set of rules for a grammar of spoken 

English sentences, a considerable amount of research needs to be done 

to provide structural descriptions for larger amounts of discourse, 

particularly those involved in dialog of the kind envisioned for interac- 

tion with the various problem domains selected by the ARPA contractors. 

; 

D.  Acoustic Processing 

The major capabilities for acoustic processing added to our facility 

for use in speech understanding were a digital filter package and a 

procedure for calculating linear predictive coeffiients (LPCs).  The 

decision to use digital filters rather than to build a hardware filter 

bank was made because of our uncertainty about the most appropriate set 

of filters for the system.  The ones currently implemented were chosen 

to allow us to make a preliminary classification of segments, as descrJbed 

below.  Changes can be made easily to refine that classification, and 

it will be simple to specify an analog filter package or parallel 

digital filters when we need to be concerned about time required for 

processing.  The particular filter package we acquired is described in 

more detail in Appendix A. 

The programs we have written for linear predictive coding, essential- 

23 

- *maM 



^'W 

ly John Markel's algorithm (Markel, 1971), produce better spectral data 

than could be gotten from Fourier analysis (FFTs) and can provide a 

major portion of the frequency analysis done by conventional analog or 

digital filters.  We have been using LPCs successfully for formant 

tracking, and we are developing a pitch-extraction procedure based on 

them. 

An overview of the acoustic data processing currently done in the 

SRI system is presented in Figure 2.  The speech data are obtained in 

a quiet room using a B&K 433 condenser microphone and an Ampex AG 500 

tape recorder.  An analog tape is produced at 7-1/2 inches per second 

recording speed.  The speech data on the tape are then digitized in 

segments of up to 3.1 seconds in length.  A presampling low-pass filter 

with an 8-kHz bandwidth is employed to reduce aliasing errors, and the 

digitization is accomplished by 12-bit A/D converter operating at a 

rate of 20,000 samples per second. 

The raw digital data are processed further by digital filtering 

and by linear predictive coefficient analysis.  Figure 2 indicates that 

five rms values of the time series data are calculated in each 10-milli- 

second interval of time.  Four of these values are from time series 

calculated by digital filters with bandpass characteristics shown on the 

figure.  The fifth value is calculated from the unfiltered time series. 

Each of these live values is labeled by the notation shown in parentheses, 

e.g., raw, voice.  The upper channel indicated on Figure 2 calculates 

three formant frequencies and amplitudes by finding spectral peaks in a 

128-point spectrum derived by an LPC analysis of the raw time series 

dt ca.  The spectral peak data, which correspond to formants in voiced 

speech segments, are stored immediately on magnetic disk files for later 

use. 
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The strings of rms values are used In a classification algorithm 

shown in Figure 3.  This algorithm current1y classifies each 10-milli- 

second  time segment as one of six events: 

• Silence, SI 

• Unvoiced turbulence, UT 

• Voiced turbulence, VT 

• Voiced stop, VS 

• Vowel-like, V 

• None of the above, T. 

The filter outputs and preliminary classifications of each segment are 

stored in disk files with the formant frequency and amplitude data, and 

they are subsequently available for further processing. 

Table 1 summarizes the extent of the current acoustic processing on 

the utterance PUT THE BLACK BLOCK IN THE BOX.  Reading any line from 

left to right, the entries have the following meanings: 

• Column 1 is the time in milliseconds of the occurrence of the 

segment baing analyzed and described by the line. 

• Column 2 is the segment classification, one of six class names. 

• Columns 3 through 7 are pairs of rms and decibel values of 

filter outputs. 

• Column 8 is identical to Column 2. 

• Columns 9, 10, and 11 are the frequencies of the first three 

spectral peaks. 

• Columns 13, 14, and 15 are spectral peak amplitudes correspond- 

ing to the frequencies listed in Columns 9, 10, and 11. 

• Column 12 is an overall rms value in decibels computed from the 

LPC analysis.  The numbers differ slightly from the raw value in 

Column 3 because there is a difference in the interval of time 

over which the rms is computed. 

Note that Columns 3,4,5,6, and 7 each contain two values.  The 

first is an rms value computed on a 10-millisecond  time series, and the 
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second value is the decibel equivalent of the first, normalized so that 

the largest decibel entry in each column is 0.0.  Since all of the data 

in the table remain in disk storage, it is always possible to recover 

the normalization constant if necessary. 

We do not contemplate adding any new basic capabilities for acoustic 

processing.  Rather, we intend to develop algorithms that produce more 

precise acoustic parametrization using data provided by the existing 

procedures.  We expect to refine our formant tracking and to establish 

a method for extracting pitch.  However, since these and other changes 

are to be understood primarily in the context of the procedures for word 

verification, further elaboration is presented at the end of the next 

section. 

E.   Word Verification 

Procedures for word verification relate the words predicted by 

syntactic and semantic processing to the acoustic data.  The input to 

the word verifier from Pintle is a set of words that could be expected 

to occupy the next position in the utterance.  The result of word 

verification is a subset, possibly empty, of the candidate words ordered 

according to a degree of agreement with the acoustic data at that location 

in the utterance. 

Since Pintle is written in LISP and the acoustic processing is done 

in FORTRAN, it was necessary to develop procedures for communication 

between the two languages.  An interface package, described in detail 

in Appendix B, makes it possible for a LISP program to create a fork 

(an Independent process in the time-sharing system) containing a FORTRAN 

program, to share directly accessible data with that program, and to 

call functions in that program according to standard FORTRAN conventions. 

For oach candidate word, there is a function that tests for that 

particular word.  The correspondence between the expected form specified 
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in the function and the contents of the acoustic stream is expressed as 

one of four confidence levels:  positive, possible, unlikely, and 

impossible.  For the first three levels, the function also returns an 

estimate of the ending position of the word in the acoustic stream. 

The word verifier collects the results for each word in a set, 

eliminates the impossible words, and constructs a list ordering the rest 

of the words according to confidence level.  The word with the highest 

ranking is returned to Pintle; any others are saved on a backup list to 

be used successively if their predecessor does not lead to the prediction 

of a new set of words, one or more of which can be found in the utterance. 

The ending position of the accepted word is used as the starting point for 

testing words in this new set. 

To illustrate the word verification procedure, consider the sample 

sentence, PUT THE BLACK BLOCK IN THE BOX, in relation to the acoustic 

data contained in Table 1.  In the analysis, BOX is one of the words 

predicted by Pintle at a location beginning approximately 1.34 seconds 

after the beginning of the utterance.  This time is represented as 1340 

milliseconds in Table 1.  The word function for BOX produces the following 

actions. 

1. It increments the time pointer by 170 milliseconds. 

2. It attempts to find a vowel-like string in a 200-millisecond 

window centered at the incremented time pointer. 

3. If Step 2 is successful: 

(a) It searches for a voiced stop ahead of the vowel-like string, 

(b) It searches for silence at the end of the vowel-like string. 

If a silence is found, it searches for unvoiced turbulence 

after the silence.  It returns a confidence level, where 

appropriate, for each search. 

4. It examines the vowel-like string as follows: 

(a)  It calculates the average frequencies of the first and 
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second formants. 

(b) It calculates the average slope of the first and second 

formants. 

(c) It looks for discontinuities in the first and second 

formants. 

If there are significant discontinuities or rapid changes in 

formant freo jncies, it returns the value impossible. 

5.   It combines the results of the consonant search from Step 3 

and the analysis of the vowel-like string in Step 4 as follows: 

(a) If the average formant frequencies are reasonable for the 

vowel [Q] and all consonant searches are successful, it 

returns positive. 

(b) If the average formant frequencies are reasonable, but a 

consonant search failed, it returns possible. 

(c) If t.'.e average formant frequencies are unreasonable but 

all consonant searches are successful, it returns unlikely. 

(d) If the average formant frequencies are unreasonable and at 

least one consonant search failed, it returns impossible. 

In the example, the confidence level for BOX is positive.  The 

results show a vowel-like string with first and second formant values 

consistent with [CL] in the interval 14?0 to 1600, a voiced stop before the 

vowel-like string in the interval 1340 to 1410, silence after the vowel- 

like string from 1650 to 1690, and unvoiced turbulence from 1690 to 1910. 

It should be clear that a word verification procedure of this kind 

was designed for use in a system with powerful syntactic and semantic 

constraints.  In the analysis of the second noun group in the sample 

sentence, before BOX was confirmed, a set of adjectives was processed by 

the word verifier.  All of the words were rejected except BLACK, for 

which the confidence level vas unlikely.  Pintle accepted BLACK tentative- 

ly, but that would have had to be the end of the sentence, and PUT THE 

BLACK BLOCK IN THE BLACK .« syntactically and semantically unacceptable 

in the current system.  Consequently, Pintle backtracked and locked for 
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nouns.  Of the set predicted, BOX was confirmed with the highest con- 

fidence level.  If BLOCKS had been a member of that set, the word verifier 

might have returned positive as well.  However, since things can not be 

put in blocks, that word was excluded, on semantic grounds, from the 

set to be considered. 

As Indicated in the analysis of the sample sentence in Section II, 

the data used to test for the candidate words can be either acoustic or 

textual.  If textual data are to be used, then the input is either a 

single typed word or a list of typed words.  Each input word is analyzed 

to determine if it matches one of the candidate words from Pintle. 

Multiple matches make it possible to study Pintle's response to ambiguity 

in acoustic recognition without actually calling on the acoustic routines. 

The use of textual entries also makes it possible to study the word 

verification procedures for a variety of words in a particular context 

without requiring word functions to be written for all of the words that 

might be required in the processing of complete and meaningful sentences. 

It is obvious that the word verification procedures in their present 

form would not allow subtle discriminations.  However, the addition of 

more complex and powerful acoustic/phonetic rules to the analysis and 

decision-making parts of each word function should permit significant 

expansions of the system capabilities.  The word verifier strategy is 

particularly appropriate for our system design, since Pintle operates on 

words rather than phonemes, allophones, or other phone-like units. 

Furthermore, the word verifier provides a way to deal with a significant 

subset of coarticulation problems that would be quite troublesome in a 

phoneme-verifier approach.  For example, in testing for the sound [A] 

in BLOCK, the effects of the preceding [b] and following [0] can be 

Incorporated into the word function.  A generalized routine for verifying 

[i] in random context is not required.  Similarly, it is possible to use 

acoustic information about the end of the preceding word to influence 
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processing of the initial  sounds   in  the current word.     Coarticulatlon 

with  following words  is  still  a problem. 

To  a  considerable  extent,   changes  in the word  verification procedures 

depend directly on increasing sophistication in acoustic processing. 

However,   as  indicated   in the previous  section,   the  need  is not   for new 

techniques  for acoustic  analysis  but  rather for ways   to extract  more 

information  from the data we have.     Furthermore,   we  believe  that   the 

motivation  for changes   should  come primarily  from the   requirements of 

word  verification.     Our  current  efforts  are directed   toward providing 

many more  subroutines   for acoustic  parametrization  in order  to  refine  the 

initial  classification provided  by  the digital   filter  analysis  and  to 

provide  additional  formant data.     For example,   we  are developing  an 

algorithm to distinguish reliably  among  fricatives,   specifically   to 

separate  [s],   [f],   and   [f-e]   (we do not  expect  to separate [f]   and   [f]). 

We  also are working on vowel  segmentation and classification procedures 

that  will  extract boundaries within vowel-like strings,   smooth  formant 

curves,   and plot  slopes  and  standard deviations of   formants.      Air goal 

is  to provide a variety of general  procedures  thut   can  be used   in  the 

preparation of word  functions  for use  in word verification. 

F.        Interactive Speech Analysis  Facility 

In the development  of algorithms  for acoustic  parametrization and 

for word  verification,   we  have made  considerable use  of  the  Interactive 

Man-Machine  Speech Analysis System  (IMMSAS).     IMMSAS  is  a  large  FORTRAN 

program that  handles  data and process  control  for graphic display- 

oriented  speech work.     It operates  on the PDP-10/PDP-15 computer 

facility with interaction through an Adage C-'-aphics  Display and   a 

Teletype or similar terminal.     IMMSAS contains a   flexible,   modular 

structure designed  to  accommodate present  and  future   analysis  tech- 

niques   (e.g.,   digital   filters,   FFTs,   and LPCs).     Experiments  can  be 
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designed  and  run with real  data;   results  are displayed  graphically or 

on  the  line printer.    A D/A converter provides  an auditory  response  to 

verify  the contents of a  segment  of digitized  speech.     A/D conversion, 

currently  being done by a  stand-alone  program on the PDP-11,   soon will 

be  available  through  IMMSAS  by  microphone, thus  facilitating data  ac- 

quisition  for exploratory  testing. 

IMMSAS has  been used   for  the development of many acoustical  proces- 

sing algorithms.     These  algorithms,   written as  subroutines  without   local 

storage,   can be  run within   IMMSAS or in  a  LISP/FORTRAN program structure. 

Furthermore,   simple algorithms  can be  synthesized  interactively  from 

elementary  array operations  and  FORTRAN  functions.     The  interactive 

display facility  has greatly  facilitated debugging and program checkout. 

The  structure of  IMMSAS  is  shown  in  Figure 4;   single   lines  represent 

p ogram control,   and double   lines  show data  flow.     It  will  be useful   to 

describe  its  operation in  terms of data  base management,   graphic out- 

put,   and  interactive program control. 

1.       Data  Base  Management 

There are two types  of data  handled  by  the system:     time  series 

data  and  processed data.     Time  series data  represent  the digitized  out- 

put  of A/D conversion with 9  to  12  significant  bits.     One utterance  by 

a  single speaker is assigned   to one disk  file.    A record  contains  a 

description of  the  recording   (speaker,   sentence  identifier,   date of 

entry  into  the file system,   sample  rate,   and  number of  samples).     Two 

additional  records can be used   to indicate significant  indices  in a  time 

series:     one  to point  to events,   such as  phrase  boundaries,   word  bound- 

aries,   or phonetic boundaries,   and  the other to mark pitch pulses. 

Processed data result   from submitting time series data to one 

of  the processing modules.     Each processed   file  is associated with its 

corresponding  time series  file.     An  identification record  describes  the 
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recording conditions and the contents of the rest of the file.  The 

remainder of the file contains an arbitrary number of records of arbitrary 

length, each corresponding to a data array.  For Instance, the file con- 

tained In Table 1 resulted from the digital filter and LPC analyses of 

the time series data from the sample sentence discussed in Section II. 

Both time series and processed data can be read from the disk 

Into arrays organized to allow flexible referencing and dynamic allocation 

of available core. 

2. Graphic Output 

IMMSAS provides fast and flexible graphic output on the Adage 

display.  For time series data, an rms envelope of the entire utterance 

can be shown on the upper half of the screen, while an expanded represen- 

tation of a selected portion of the actual acoustical signal is shown on 

the lower half.  Event markers and pit^h markers can be displayed in a 

coordinated fashion on both the upper and lower traces. 

Processed arrays are displayed using a general plotting routine 

that does automatic scaling and labeling.  Data can be displayed in one 

dimension (in relation to an index) or as two-dimensional plots, e.g., 

a frequency spectrum or a distribution over time of the successive 

frequencies for the first three spectral peaks,as contained in Columns 

9, 10, and 11 of Table 1.  Control of various plot parameters, such as 

type of line (e.g., solid, dash, dot, blinking) and graph placement 

(e.g., coordination of rms envelope with formant frequency data, super- 

imposition of two different analyses for the same raw data), provides 

flexibility In viewing the results of a processing step. 

3. Interactive Program Control 

Commands entered from the Teletype are used to control program 

flow:  setting display and data parameters, specifying data input and 

i 
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output, and calling for particular processing modules.  The first part 

of each command is a mnemonic, followed by any required parameters, which 

are entered, free format, as floating point numbers or alphanumeric labels, 

Some parameters can be changed while a process is running by using the 

software pseudo-interrupt feature of the POP-IO. 

A "mouse" connected to the Adage display can be used to interact 

with displays of time series data.  Moving the mouse changes the location 

of a pointer on the face of the display.  Pressing a button on top of the 

mouse assigns an index to a point in the time series; a line is entered 

on the display at that location, and a marker is entered in a correspond- 

ing location in the data file.  Another button on the mouse allows 

scanning through the expanded representation of the time series data on 

the lower half of the display, either continuously, at periodic intervals, 

or discretely. 

G.   The SRI Question-Answering System 

As indicated in the introduction to Section III, our initial intent 

was to pursue two separate system designs reflecting two different ap- 

proaches to question answering.  We chose to concentrate our resources on 

Pintle, accessing the data from acoustic processing through a word 

verification procedure.  However, we did some preliminary work on 

modifications of an existing system so that it could be Interfaced with 

a more traditional acoustic analysis procedure. 

ENGSPK is the latest in a series of natural language, interpretive, 

question-answering systems being developed at SRI.  Developed over a 

period of years by Coles and incorporating some early work by Raphael 

and Green (see Coles, 1972, for references), it integrates a formal 

theorem-prover with a procedure for natural language analysis to retrieve 

information from data files.  In this system, the input sentence is 

analyzed by transformational and phrase structure procedures to identify 
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its syntactic structure.  A semantic interpreter maps this structure 

into the first-order predicate calculus. A resolution theorem-prover 

is used to relate the resulting deep structure to axioms that represent 

the information stored in the data base.  A generative component provides 

for a natural language response.  Coles' most recent efforts have been 

directed toward determining the feasibility of using this system for 

querying a large data file (Coles, 1972). 

The syntactic analysis component of ENGSPK is a bottom-up parser, 

dependent upon the availablility of an input string for processing.  For 

use in a speech understanding system, ENGSPK would require a detailed 

analysis of the speech signal to generate hypotheses regarding the words 

in the message.  These word hypotheses then would be checked against the 

accumulated syntactic and semantic data.  In anticipation of the avail- 

ability of such an acoustic processing component, some changes were made 

to allow for the accommodation of the system to speech Input and to the 

"blocks world" problem domain.  Three dictionaries were defined to sat- 

isfy the vocabulary requirements:  the first contains 250 words, the 

second about 1000, the third is a domain-independent special list contain- 

ing about 3000 verbs.  In addition, a simple morpheme dictionary of 

prefixes and suffixes haL oeen specified, and a scenario has been 

formulated for demonstration purposes.  A technique for verb general- 

ization using inflectional analysis now allows the system to represent in 

its memory verbs it has never encountered previously.  The anaphoric 

reference subroutines have been improved to allow extended sequences of 

such references.  Conversion of the whole system from Stanford-LISP to BBN- 

LISP also allowed substantial improvements in random access from second- 

ary storage files. 

Although we do not now intend to develop an appropriate acoustic 

processing component for ENGSPK, we do believe that work done by other 

ARPA contractors may prove relevant for this purpose.  To the extent 
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that a suitable word hypotheslzer becomes availaale, the development of 

a system linking it with ENGSPK would be a worthwhile effort.  We are 

willing to cooperate with other contractors toward accomplishment of 

this goal. 
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IV DIRECTIONS FOR CONTINUING RESEARCH AND DEVELOPMENT 

A.  Overview 

Our program for continuing research and development centers on the 

implementation of an integrated speech understanding system.  We do not 

expect to make any substantial change in the system design until we have 

thoroughly investigated our current strategy.  As indicated in the pre- 

vious sections, we recognize the need for further work on Pintle, on 

algorithms for acoustic parametrization, and on word verification pro- 

cedures.  Most important will be the effects on the system from an 

increasing interdependence of these components as we experiment, make 

modifications, and experiment again.  Additional work on semantics and 

pragmatics, on prosodies, on a grammar for spoken English, and on tech- 

niques for speaker independence can be expected to have a significant 

impact on increasing the sophistication of the system.  We also are ex- 

ploring ways of increasing the richness of the problem domain so that it 

can sustain more complex goal-oriented interactions with a user. 

B.  An Integrated Speech Understanding System 

The communication between the programs for syntactic and semantic 

analysis and the acoustic data through the procedures for word verifi- 

cation is relatively simple at present.  Pintle predicts a set of words, 

the word verifier tests the words against the acoustic data, a word is 

selected according to degree of agreement, and Pintle continues accord- 

ingly.  It is reasonable to expect that communication should be more 

complex.  Prosodic information can affect high-levol decisions in Pintle, 

and feedback of acoustic data within the word verification procedure 

can result in more economical searches.  Consequently, although we are 
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now Independently making changes in P^tle and in the word verifier, it 

is likely that future modification w:ll reflect the increasing interde- 

pendence of procedures within the system. 

Following the analysis of the sample sentence in Section II, some 

provisional features of the current implementation were noted.  We do 

expect to be completely "on-line" relatively soon, i.e., to have the 

A/D conversion take place wholly within our PDP-10 computer rather than 

having to transfer digitized tapes from the PDP-11.  When the A/D 

programs are available, we will be able to enter voice directly into 

the system.  However, this capability will not make a major difference 

in exercising the system itself in the near future because of the time 

required for A/D conversion and for other basic acoustic data processing. 

Still, it will simplify debugging algorithms to be used in word verifi- 

cation.  The availablility of a quiet room for r -jrding in close 

proximity to our display facility and to the computer should increase 

our efficiency, but it also will have little actual effect on the system 

itself for the present. 

1. Pintle 

To achieve greater flexibility in our procedures for syntactic 

and semantic analysis, we are beginning to test some new algorithms in 

QA4.  They must be able to use information from word verification, from 

semantics, and from prosodic analysis to control the path through the 

grammar.  We want to be able to assign priorities to the alternatives 

at any particular choice point.  In effect, we are trying to find the 

minimal cost path through the graph that represents our grammar. 

2. Acoustic Processing 

As indicated in the previous section, no new basic capabilities 

for acoustic processing will be developed.  Rather, we will be trying 

to extract more useful information from the data now available to us. 
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In relation to the procedures for word verification, we need more 

precise techniques for parametrization to allow us to distinguish more 

clearly among the words in a set predicted by Pintle.  For prosodic 

analysis—i.e., to identify stressed words, intonation contours, and 

linguistically significant pauses—it will be necessary to process 

acoustic data over substantial periods of an utterance.  In this work, 

we expect to cooperate closely with the University of Michigan and with 

UNIVAC. 

3.  Word Verification 

With the availability of algorithms for making more precise 

classifications of sounds, it should be easier to write more word 

functions. Having written 100 or so, we should be able to establish 

some general procedures for creating them.  More important, we will 

have used enough to be able to judge how well the word verifier concept 

actually works.  We Relieve that word functions provide a particularly 

good medium for embodying acoustic phonetic rules. Coarticulation 

effects within words can be handled easily, and we are interested in 

determining how well the procedure works for coarticulation between 

words. Feedback of acoustic data from word verification is another 

major problem.  It does seem likely that such information can help in 

testing successive words witbin a set, but we are interested in determin- 

ing whether it can be used more generally to influence Pintle. 

C.  Semantics and Pragmatics 

The development of effective procedures for handling semantics and 

pragmatics is essential both for the operation of an initial speech 

understanding system and for extrapolating the results of our efforts 

to other problem domains. Recent research in syntax has provided some 

very general and reasonably efficient procedures for parsing that (in 

principle) can handle perhaps all of the syntactic constructions in 
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English. However, it is not clear that existing parsers can acconunodate 

the semantic information that we believe is necessary for our system. 

Our continuing work on Pintle is intended to provide flexibility and 

control over priorities assigned to choice points in the grammar. Now 

we need procedures that model the world and the user to provide the 

proper kind of guidance for assigning those priorities. 

The point of departure for our work on semantics and praiirnatics 

is the model of case grammars being developed by Charles Fillmore (1971a, 

1971b) of the University of California at Berkeley.  This model is being 

extended by him and others toward "a fully developed system of linguistic 

description" involving the analysis of complex utterances or messages, 

not just sentences, ind including multiple participants in conversations. 

Fillmore's work builds on transformational grammar but extends beyond 

competence into performance in a social context. 

Even without all of the possible elaborations, Fillmore's case 

concept has a direct implication for the kind of semantic structures 

that we intend to incorporate into revisions of Pintle,  In case grammar, 

the prepositional core of a simple sentence is a predicator (verb, noun, 

or adjective) in construction with one or more entities, each related 

to the predicator in one of a set of semantic functions known as cases. 

The cases identify particular roles, such as instigator of an action, 

experiencer of an event, object undergoing change or movement, and 

location or time of an event. The number of cases proposed is small, and 

there are some markers in the surface structure (e.g., prepositions) 

that make the application of these linguistic concepts to recognition a 

realistic enterprise. 

D.   Prosodic Analysis and a Grammar for Spoken English 

The importance of prosodic information already has been mentioned 

several times in this section.  It is particularly important for the SRI 

46 

^m^am -J 



speech understanding system because it can provide a basis for assigning 

priorities in Pintle at the beginr^ng of an utterance.  It also can sug- 

gest hypotheses about the presence of syntactic or semantic "boundaries" 

in an utterance that can be used in determining the most likely path 

through the grammar.  More generally, however, the rules for such 

speech elements as stress, intonation, and pauses should form part of a 

grammar for spoken English.  This grammar also should incorporate phono- 

logical and acoustic/phonetic rules that describe how people actually 

speak. 

We can eypect that the artificiality both of the problem domains 

chosen for speech understanding research and of the interaction with a 

computer through a microphone will limit the range of English spoken 

and the variety of styles used. However, it is obvious that we need to 

maintain close communication with linguistics because even our more 

limited tasks can be accomplished only through cooperative efforts. 

Coordination within the ARPA Speech understanding Research Program needs 

to be complemented by extensive contacts with other linguists. 

E.   Speaker Independence 

In their present form, our feature-detection algorithms havt not 

been talker-dependent, principally because they have been designed to 

make reliable—if crude—classifications. As the algorithms become 

more complex, it is likely that variations among speakers will create 

perturbations in the results from the word functions.  The first attempts 

to gain acceptable speaker-independent performance will probably involve 

manual threshold adjustments of the variables defined in the word veri- 

fication procedures.  As familiarity with the data base and with the 

procedures themselves increases, attempts will be made to introduce some 

automatic "speaker normalization" calculations. 
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Appendix A 

DIGITAL FILTER DESIGN PROGRAM 

Technology Service Corporation of Santa Monica,  California,   prepared 

a digital  filter design  program for SRI  that will design and verify 

recursive digital  filters.     The program Is user oriented  to permit  In- 

experienced  programmers  and designers  to use  It.     Included  In  the 

program are  three standard  filter prototypes:     Butterworth,  Bessel,   and 

elliptic   (Cauer parameter)  designs.    Other filter functions may be sup- 

plied externally by a specification of the poles and zeroes of the 

transfer function. 

The program has  the capability of  transforming any of  the above 

standard designs to bandpass,   bandstop,   low-pass,   and high-pass transfer 

functions with arbitrary  cutoff frequencies.     In addition,   the program 

determines recursive sampled-data or digital  representations  for any of 

these filter transfer functions using either the standard z-transform 

or the bilinear z-transform.     Program output  Includes  poles and zeroes 

of the above continuous   functions,   the coefficients  for the recursive 

digital  filter functions  realized In parallel  form,   and optionally printed 

frequency and time response characteristics,   as well  as  a FORTRAN function 

representation of the digital  filter.    The  frequency and time response 

characteristics may be displayed by the graphics system associated with 

the computer. 
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Appendix B 

A LISP-FORTRAN INTERFACE 

The interface facility provides for: 

• Creation from LISP of subfork(s) containing FORTRAN programs. 

• Subprogram calls from LISP to the FORTRAN fork. 

• Creation of REAL or INTEGER arrays accessible from both forks. 

1.  The FORTRAN Side 

There are only a few requirements for the FORTRAN program: 

• The symbol table produced by the loader must be saved with 

the program. 

• A small MACRO Interface package must be loaded with the program. 

• Several entry vector locations (Numbers 3 to 6) must be left 

free for use In Interfork transfers. (Programs normally use 

Locations 0 and 1 only). 

• If arrays are to be shared with LISP, then a block of pages to 

hold the arrays must be specified when the program Is saved. 

The steps to create the FORTRAN program are as follows: 

• Load the program with symbols (i.e., use /B/S) and Include 

<RIDDER>F40F.REL. When the loader exits, go into DDT, do any 

pre-save initialization necessary, and then transfer to the 

Interface package by typing FKINIT$G.  It will respond with 

NUMBER OF PAGES SHARED:  and wait for you to type in a number 

(in OCTAL) indicating how many pages will be shared with LISP. 

• If this count is non-zero, then the program will type FIRST 
SHARED PAGE: and wait for another number (also in OCTAL) in- 
dicating the first page in the FORTRAN address space of the block 
of pages to be shared. 

• Control then returns to the EXEC.  Save the program and symbols 

using either SAVE or SSAVE.  (DDT need not be saved—it will be 

l 
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automatically brought in if needed at run time). 

2.   The LISP Side 

The following functions constitute the LISP side of the inter- 

face.  (Load (RIDDER)FORK.COM to use them). 

fkinit [program] 

This function is an nlambda that creates and initializes a fork 

containing PROGRAM.  Information about the fork is saved on 

FORKDATA.  (FORKDATA is used as a free variable by the other 

functions to access the data associated with the fork.  This 

makes it possible to talk about multiple forks by changing 

the binding of FORKDATA). 

Example:  (FKINIT (RIDDER)IMMSAS.SAV) 

fkddtC] 

This function transfers control to the fork DDT and waits for 

the fork to halt. It is not necessary to have saved DDT with 

the program. To return to LISP from the fork, type HALT$G to 

DDT. 

Example: 

\ 

-    FKDDTO 

X+1$1B HALT$G 

From LISP go to DDT in fork 

Set a breakpoint, then return to 

LISP 

Value of FKDDT is T 

- FKCALL (XFCN REAL)  From LISP call the fork subroutine 

(FKCALL is discussed below) 

$1B)>X+1 ... $P 

3.1415979 

Stop at breakpoint then proceed 

FKCALL types result 

Back in LISP 

fkkillü 

This function kills the fork  and sets FORKDATA to NIL. 
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fkarray [id;type;size] 

This function is an nlambda that creates a shared array.  SIZE 

is evaluated and a block of SIZEt-l words is allocated in the 

pages shared with the fork.  ID is set to the LISP address of 

the array and entered into a LISP hash table of symbols for 

the fork with value equal to the fork address of the first 

data word of the array.  TYPE can be either REAL or INTEGER 

and specifies the type of number to be stored. The value of 

FKARRAY is the LISP address of the array. 

■n 

NOTE:     shared arrays  are not garbage collected.    They stay 
around until   the  fork  is killed. 

Example:     (FKARRAY SHR REAL 100) 

fkarraysizeCa] 

This  function returns T iff A  is a shared array for the fork 
specified by FORKNAME. 

fkelt[a;n] 

This function returns the Nth element of shared array A. Its 

value is a boxed integer or a boxed floating point number ac- 

cording to the type of A. 

fksetata;n;v] 

This function stores V into the Nth element of shared array A. 

Its value is V. 

fksymCid] 

This function asserts that ID is either a global symbol ia the 

fork or the name oi a shared array.  Its value is the fork ad- 

dress of ID (as a boxed integer).  FKSYM first looks for ID in 

the hash table of symbols for the fork.  If ID is not found 

there, then the symbol table saved with the fork is searched 

for a global definition of ID, and the resulting value is 

entered in the hash table.  If ID cannot be found, then FKSYM 

calls error. 

Note that to reference an ID declared in the fork, it must be 

a global symbol.  This means it must be in named COMMON with 
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ID the name of the COMMON block (i.e., declared as COMMON 

/ID/ID).  This is the same convention that must be followed if 

ID is to be referenced from a MACRO program loaded with the 

FORTRAN program. 

Example:  (FKSYM (QUOTE F4ARRY)) 

fkcalltid; type;argl ... argn] 

This function is a nospread nlambda (i.e., it can have an arbi- 

trary number of arguments, and it gets them in an unevaluated 

form) that calls a FORTRAN subprogram and returns the result. 

The value of ID is used as the name of the subprogram, 

function FKSYM is called to find the fork address. 

The 

The value of TYPE specifies the result type of the subprogram. 

The result types currently accepted are: 

INTEGER—value is boxed integer 

REAL—value is boxed floating point number 

LOGICAL—value is T or NIL 

SUBR—value is NIL 

The following process is carried out to determine the meaning 

of ep.ch subprogram argument. 

If ARGi is of the form (BIAS A N), then A is evaluated and con- 

verted to a fork address by FKSYM.  The sum of (eval N) -1 and 

the fork address for A is used to specify the parameter. This 

mirrors the use of A[Nl as an argument in FORTRAN. 

If ARGi is a list of the form (INTEGER X), (REAL X), or 

(LOGICAL X), where X is any atom, then the value of X is 

passed, and later X is set to the value assigned by the sub- 

program to its corresponding dummy argument. This makes it 

possible to return multiple results from subprograms in tht 

standard FORTRAN manner. 

In case ARGi is not one of the above, it is evaluated, and the 

type of the value is used to determine the manner in which the 

argument is passed. 
■ 

If the value is a logical quantity (T or NIL) or a number, the 

appropriate value is used (-1 for T, 0 for NIL, the unboxed 

value for a number). 
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If the value is a LISP array, then a copy of the entire array 

Is passed.  (Needless to say, it should be a small array.) 

If the value is a string, then a copy of the string (left- 

justified, 7-bit ASCII, and followed by a word containing 0) 
is passed. 

If the value is the address of a shared array, then the fork 
address is used. 

If the value is an atom the FKSYM is called and its value is 
used to specify the parameter. 

Otherwise FKCALL calls error. 

NOTE:  lists cannot be sent—use shared arrays to create 
"lists" for FORTRAN. 

Rough timings indicate that the simplest FKCALL, namely a call 

to a SUBR of no arguments, takes about 15 milliseconds, of 

which about 10 are spent executing the appropriate monitor 

JSYSs.  Each argument for the subprogram adds about 2 milli- 
seconds, as does returning a result. 

The argument information must fit in 14 words, since it is sent 

to the lower fork in the accumulators (the other two accumula- 
tors are used for specifying the argument types and the 

subprogram address). LISP array arguments take arraysize words; 

strings take (nchar+4)/5 + 1 words; all other argument types 
take a single word. 

Example: 

(FKARRAY  IA-LISP  INTEGER 100) 
(FKSYM   (QUOTE   IA)) 

(FKCALL (QUOTE MOVARY) (QUOTE SUBR) (BIAS (QUOTE IA) 100) IA-LISP 100) 
(FKCALL)  (QUOTE SUM)  (QUOTE INTEGER) IA-LISP 10 50). 

(FKCALL (QUOTE AVG) (QUOTE REAL) (QUOTE IA) 100 (REAL DEVIATION)) 

NOTE:  a minor annoyance occurs when FORTRAN does teletype I/O 

because the Job global TTY mode information is changed la a way 

that interferes with standard LISP interaction. The primary 

symptom of this is the failure of LISP to respond when the 

closing right parenthesis is input.  To restore the proper 

settings, simply type a control-E to LISP (part of the proces- 

sing of control-E resets the TTY mode to its original value). 
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Alternatively, the problem can be eliminated by use of the 

LISP (nlambda) function FKX, which saves the TTY mode, eval- 

uates its argument, and restores the mode. 

Example: 

(FKX   (FKCALL   (QUOTE  PRIN)   fQUOTE  SUBR)   "('eHELLO*)")) 
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