AD-757 049

SPEECH UNDERSTANDING RESEARCH

Donald E. Walker

Stanford Research Institute

Prepared for:

Advanced Research Projects Agency

February 1973

DISTRIBUTED BY:

National Technical Infor.nation Service
t. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

oy

d Annual Technical Report
QCovering the Period 4 October 1971 through 2 October 1972

C\SPEECH UNDERSTANDING RESEARCH
<

By: DONALD E. WALKER

Prepared for:

ADVANCED RESEARCH PROJECTS AGENCY
ARLINGTON, VIRGINIA 22209

CONTRACT DAHC04-72-C-0009
ARPA Order No. 1943
Program Element Code 61101D

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Deportment of Commerce
w3 Seppringﬁeld VAN i

Approved for public release; distribution untimited.

et B g

oVl W

/7 TN\

STANFORD
RESEARCH INSTITUTE

S1/77, Menlo Park, California 94025 - U.S.A. 1'

N

bl

- (.-

UNCLASSIFIED

Secunty Classification

DOCUMENT CONTROL DATA-R & D
(Security classilic ation of title, body of abstract and indexing annotation munt be entered when the overall report s classilied)
! ORIGINATING ACTIVITY (Corporate author) 28. REFORT SECURITY CLASSIFICATION
Stanford Research Institute Unclassified

2b. GROUP

Menlo Park, California 94025 5/a

3 REPORT TITLE

SPEECH UNDERSTANDING RESEARCH

4. OCESCRIPTIVE NOTES (Type of report and Inclusive dates)

Annyal Technjcal Report:; 4 October 1971 through 2 October 1972

8. AUTHORIS) (First name, middie Inltial, last name)

Donald E. Walker

6. REPORT OATE 78. TOTAL NO. OF PAGES 70. NO. OF RYFS
February 1973 2 g/ 8
38. CONTPRPACT OR GRANT NO. 88. ORIGINATOR’S REPORT NUMBER(S)

DAHCO4-72-C-~0009

b. PROJECT NO.

SRI Project 1526

€. Program Code No. 61101D ob. ‘c;"futn n‘fbonr NO(S) (Any oiher numbers that may be assigned
¢ repor

d. ARPA Order No. 1943

10. OISTRIBUTION STATEMENT

Distribution of this document is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
Arlington, Virginia 22209

13. ABSTRACT

Stanford Rescarch Institute is participating in a major program of research on
the analysis of continuous speech by computer. The goal is the development of a
speech understanding system capable of engaging a human operator in a natural
conversation about a specific problem domain. The approach being taken is distinc-‘
tive in its use of syntactic and semantic processing to guide the acoustic analysis.

““ﬁ
DD l'uoolv“u1473 (PAGE 9) F' A UNCLASSIFIED

S/N 0101.807.6801 Security Classification

N et s

§ e

b UNCLASSIFIED

Security Classification

KEY WORDS

LINK A

LiNk &

LINK C

ROL K wT

ROLE wT

ROLE wT

Natural language processing

Question answering

Speech understanding

Computer understanding

Speech recognition

Syntax

:
i

Semantics

b
DD "2V.1473 (eacx) -7

(PAGE @)

UNCLASSIFIED

Secuyrity Classification

gl

T __‘____;___M

PLLINSS

P/ [1\

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 - U.S.A.

AN\ | / / 4

e S 17 224

Approved for public release; Form Approved
distribution unlimited, Budget Bureau No. 22-RU293

February 1973

Annual Technical Report
Covering the Period 4 October 1971 through 2 October 1972
Stanford Research Institute Project 1526

%
1

SPEECH UNDERSTANDING RESEARCH

By

DONALD E. WALKER
Project Leader
{415) 326-6200, Ext, 3071

CONTRACT DAHCO04-72-C-0009
ARPA Order No. 1943
Program Element Code 61101D

Prepared for

ADVANCED RESEARCH PROJENT! AGENCY
ARLINGTON, VIRGINIA 22209

The views and conclusions conteined 1n this document are those of the euthors and should not be
interpreted es necessarily representing the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

Apnroved by:

BERTRAM RAPHAEL, Director
Artificial Intelligence Center

BONNAR COX, Executive Director
Information Science and Engineering Division

Copy No. S)

LIST OF ILLUSTRATIONS ..veceeeoss

LIST OF TABLESc.veeenecacnnans

1

11

IT1

v

CONTENTS

e 0 0000 0000000000000 0000000

INTRODUCTION o % eiaieis ofol o ohoiois oo ofaiaisie s (s sis s s s svsrs ot ofs s ake, olsaka"s

AN INTEGRATED SYSTEM FOR SPEECH UNDERSTANDING00..

A. Introduction

B. Understanding a Sample Sentenceceeeoeoeeecoe

C. Provisional Features of the Current
Implementationciieetieeertersccrcsnsecescacacons

SPEECH UNDERSTANDING SYSTEM COMPONENTS ..veovvsssesoeces

A, Initial Resources

B. Pintle-~Procedures for Syntactic and
Semantic AnalysSis ..vsecceeconosnccesnsnsesssosoese

C. A Grammar for the Speech Understanding

SYSIEOR FIEaEesERLD s e s wiskers's s sRAEREE Mol bh v b Ao

D. Acoustic Processing

E. Word Verification .

F. Interactive Speech Analysis Facility ..eeveeeeveene

1. Data Base Managementc..eeeeeesseeccsnnocs

2. Graphic Output

3. Interactive Program Controlco00000004-

G. The SRI Question-Answering SYStemececeeescese

DIRECTIONS FOR CONTINUING RESEARCH AND
DEVELOBMENT <G 55 5 fsise ave wress wjie[ohs] s[5 [e foke [shai 300 s 56 36 GG 6 & o w3

A, Overview .iieieissssessesssessossoscseocssnsoecssss

B. An Integrated Speech Understanding System

iii

12

15

15

16

21
23
32
36

37
39
39

40

43
43

43

i IV DIRECTIONS FOR CONTINUING RESEARCH AND
DEVF LOPMENT (Continued)

} 1. PIRtYI@ "invennsies oo siossmos s sesealoinisiaeessnessish 44
2. Acoustic Processing ...ccecececesccsscscsnscs 44
3. Word Verificationcesveeeoscccsccossnsse 45

C% Semantics and Pragmatics .eecceeccccescosscosccses 45

D. Prosodic Analysis and a Grammar for Spoken
English ..ccceeeccsceccsscccscsascsessssssssscnsns 46

E. Speaker Independence ...cccesessccsscscescsssssocs 47

APPENDICES

A DIGITAL FILTER DESIGN PROGRAMc0ccccennvsssascse 49

B A LISP-FORTRAN INTERFACE ...¢covcceesosessoscosascacas 51

plmSENTATIONS ® 9 0 2 00 00 0 00 000000 O OSSOSO 00O OE O eN e O EN O OEEPSGESOPSDS 57

REFERENCES © 090000000000 000000 0000080000600 00808080060060000°000060000000 59

iv

—_—

ILLUSTRATIONS

Analysis of a Sample Sentence ...ccicocecsccvcccscsssssoces

Basic Acoustic Processing for the SRI Speech
Understanding SysStemcccesceecescescsstosssssacassnsssse

Classification Algorithm for Acoustic Segmentscocee0.

Interactive Man-Machine Speech Analysis System
OFFARIZRTION cooioile srera ol ailearaiio siase)sinlsinigiai s s.e oloisis o oo s s sseissssess

TABLES

Acoustic Data for the Sample Sentenceceecceossscssscscs

25

27

38

28

i
1

I INTRODUCTIOXN

Stanford Research Institute is participating with other ARPA/IPT
contractors in a major program of research on the analysis of continuous
speech by computer* (see Newell et al., 1971T). The goal is the devel-
opment of a speech understanding system capable of engaging a human
operator in a natural conversation about a specific problem domain. The
domain chosen by the SRI project for its initial efforts was one devel-
oped by Winograd (1971), a simulation of the actions of a robot that can
manipulate various kinds of blocks. A person speaking to the computer
will be able to ask questions about the 'blocks world,"” to give commands
that will modify it, and to add information to augment its structure.
The procedures being developed to provide these capabilities integrate
pragmatic, semantic, syntactic, lexical, phonological, phonetic, and

acoustic analyses.

Efforts toward speech understanding contrast with those directed
toward speech recognition both in goal and in approach. Speech recog-
nition work has aimed at providing an orthographic transcription of the
sounds and words corresponding tc the speech signal. Analysis has con-
centrated on acoustic processing, although linguistic segmentations have
been attempted, particularly in relation to phonetics, phonemics, and
morphology. In contrast, speech understanding research seeks to deter-
mine the message intended in relation to the accomplishment of some task,

in spite of indeterminacies and errors in the generation, transmission,

*
Contract No. DAHCO4-72~-C-0009, SRI Project 1526.

f
References are listed alphabetically at the end of the report.

1

and reception of an utterance. Special emphasis is placed on semantic,
syntactic, and pragmatic information, and a question-answerin, system

may be used as a major processing component. In particular, our approach
at SRI stresses the critical role of semantics and pragmatics in reducing

the amount of acoustic processing necessary to understand an utterance.

The ARPA Speech Understanding Research Program spans the broad
range of research and development efforts necessary to produce a proto-
type speech understanding system. Within this range, our activities at

SRI are directed toward the following goals:

® Implementation of an integrated system

® Establishmen’ of effective procedures for handling semantic and
pragmatic information

® Formulation of techniques for dealing with variability within
and among speakers.

Our strategy in pursuing these goals has been to put a system into oper-
ation at the earliest possible time, making maximum use--within the con-
fines of the basic system design concept--of existing programs and
algorithms. We believe that exercising a system will allow us to identi-
fy the kinds of links that need to be established among the components,
as well as provide useful guidance for constructive revision of the

components themselves.

In the system we are developing at SRI, knowledge of the world, a
model of the user, and a grammar will combine to constrain the selection
of a small set of words, each of which might be expected to be present
at a particular place in the speech stream representing an utterance.

For each word, a program is written to enable determination of how well
the word corresponds to the acoustic data for that place. When the
presence of a word is confirmed, a new set of words is selected for
testing at the next place in the speech stream. Successive steps through

the utterance result in a determination of its structuru.

|
|

During this first year of the project, development has been carried
to the point where syntactic, semantic, and acoustic data are used in
processing sentences. The capabilities developed are rudimentary, but
we can predict words and test for their presence. No model of the user
has been developed yet. More preprocessing of the acoustic data is done
than we believe will be necessary. Only a small number of word fuunctions
have been written; thus, it is not possible to step through a complete
utterance. Nevertneless, the results to date are sufficient to encourage

us to continue implementation of the system design.

A description of the current state of Lhe system is presented in
Section II. A detailed analysis of the system components is given in
Section III. Section IV considers the directions for continuing research

and development,

o= ¥

I1 AN INTEGRATED SYSTEM FOR SPEECH UNDERSTANDING

A, Introduction

In the current state of the SRl system for speech understanding, it
is possible to identify three major components: Pintle, a set of pro-
cedures for syntactic and semantic analysis; programs for acoustic
processing; and a word verifier routine that links the other two. There
will be additional components and major changes in all three of the pres-
ent ones, as well as much more complex interrelationships. Nevertheless,
in its current state, the system does illustrate an approach to speech
understanding that is distinctive because of its dependence on syntactic

and semantic processing.

Pintle 1s a major modification (in ways described below) of Terry
Winograd's system for precedural analysis of language (Winograd, 1971).
It combines a grammar--written as a set of programs--with semantic rou-
tines that model changes in the arrangement of a set of blocks. A
sertence constitutes a path through the granmar. Branching at choice
points is determined by the order of the rules, by features on other
constituents, and by semantic data. At the end of each branch in the
parse tiee is a set of words from a particular grammatical class (e.g.,
determiners, adjectives, nouns, verbe), from which a subset can be select-

ed on semantic grounds.

B

The acoustic routines convert the recorded analog voice input to
digital form. The digitized signal is then fed into a bank of digital
filters, which make it possible to assign successive acoustic segments

to the following rough classes: silence, voiced turbulence, unvoiced

turbulence, voiced stop, vowel-like, or other. The signal also is

; 5 g
1

Preceding page blank

}

processed by a more complex acoustic analysis procedure that identifies
the frequency and amplitude for the first three spectral peaks of the
vowel-like sounds. The data from these two analyses are stored in

files.

The word verification routines take a set of words produced by Pintle
and test each word against the acoustic data for a particular portion of
the utterance. The result is a subset of the words, ordered according to
agreement with the acoustic data, with each word containing a pointer to
identify its approximate endpoint in the acerustic stream. Pintle takes
the most likely word first and then proceeds on its path through the
grammar to select the next set of words for processing by the word veri-
fier. Testing this new set against the acoustic data begins at the point

designated by the endpoint for the word previously accepted.

An example is considered next, and a more detailed description of

each of the components is presented in Section III.

B. Understanding a Sample Sentence

A brief description of the "blocks world” problem domain used in
the SRI system is necessary as background for the analysis of the
sample sentence. Visualize a table containing a box and several objects
of different sizes, shapes, and colors. There are five blocks (two red,
one black, one green, ore blue) and three pyramids (green, blue, and
red); the box is white. The objects are arrasnged in a particular
configuration in the computer representation of the scene, but the
details of the arrangement are not necessary to understand the example.

Commands given to a simulated robot arm cause it to move the blocks.

Alternatively, the person interacting with the system can ask questions

or provide information that will augment or change the semantic struc-

ture of the world ir some way.

e

[}

The sentence to be processed is the following:
PUT THE BLACK BLOCK IN THC BOX.
All of the steps involved in its aralysis are presented in the following
pages as they occurred in an actual demonstration. The capabilities
shown reflect the state of the system as of September 1972. Lines pre-
fixed by an arrow represent entries by the user. Figure 1 contains the

actual protocol.

BBN LISP-10 12-11-72
The speech understanding system is implemented in BBN-LISP and is
run on a PDP-10 computer under the Tenex Operating System.
~SYSIN({ROBINSON)SPINTLE)
The file containing the system is called to be read in.
((ROBINSON)SPINTLE.;1)
Confirmation that the system (Version 1) is read in.
~DEMOTRACE)
The trace is turned on to show the output sequentially.
AINTERP
Confirmation.
~FKINIT({RIDDER)LSWDS.SAV)
The FORTRAN fork containing the acoustic routines is initialized.
(The LISP-FORTRAN interface allowing acceis to FORTRAN data files
from LISP will be described later.)
(RIDDER) LSWDS ,SAV
Confirmation.
+~SPEECHDATA{M351R)
The prerecorded acoustic data for the sample sentence are read in.
NIL
Confirmation.
~# (PUT THE ($ 37) ($ *) IN THE ($ 134).)

Analysis of the sentence by Pintle is initiated. At the time this

BBN LISP-108 12-11-72 ,..

«SYSINC(<ROBINSON>SPINTLE)
(<ROBINSON>SPINTLE. $!)
«DEMOTRACE)

A]NTERP
«~FKINIT(<RIDDER>LSWDS,SAV)
<RIDDER>LSWDS,SAV
«SPEECHDATA(IM3S5IR)

NIL

~f# (PUT THE (S 37) ($ *) IN THE ($ 134),)
PUT

THE

BLACK

BLOCK

IN

THE

BLACK

BOX

(CLAUSE MAJOR IMPER ACTV TRANSL)
(VG IMPER)
PUT (INF PAST VB TRANSL VPRT MVB)
(NG 0BJ 0BJ! NOLOC DET DEF NS)
THE (DET NPL NS DEF)
BLACK (ADJ)
BLOCK (NOUN NS)
(PREPG PLACE LOBJ)
IN (PLACE PREP)
(NG UBJ PREPOBJ DET DEF NS)
THE (DET NPL NS DEF)
BOX (NOUN NS)

B m e e o L e

x

MOVETO 472 192 128
GRASP $B3

MOVETO 4413 448 129
uug;asp

NIL
[_J

FIGURE 1 ANALYSIS OF A SAMPLE SENTENCE

protocol was made, the word verifier did not have word functions
available for the sets of words including PUT, THE or IN. Under
these circumstances--and in general to allow more flexible testing
of the system--it is possible to enter text to specify a word. For
convenience, the word verifier checks the input text first to see
whether any of the words in the set predicted has been typed in.
Finding none, it will use the appropriate word functions, if they
are available. If none are present, the words in the set will be
rejected.

PUT
Pintle begins by looking for a major clause; branching along the
imperative path, it looks for command verbs. The word PUT is
among those in the set generated at this point, and it is found

in the text input.

Having found a verb, Pintle begins its search for a noun group by

looking for a determiner. THE is confirmed from the text input.
BLACK

Having found a determiner, Pintle looks for an adjective. Since

there is no text input, the predicted words are tested against

the acoustic data. Beginning at a location 370 milliseconds into

the utterance (the 37th 10-millisecond segment), the word verifier

finds that BLACK corresponds to the acoustic data at the highest of

four confidence levels; RED, GREEN, BLUE, and WHITE are rejected.
BLOCK

Pintle now looks for a noun to complete the noun group. It begins at

the location in the acoustic data confirmed as the ending place for

BLACK, the previous word accepted. This condition is specified by

the asterisk in the initial entry for the sentence to be processed.

The word verifier finds that BLOCK corresponds to the acoustic data

at the highest confidence level; BALL, PYRAMID, and THING are

rejected.

IN

with the noun group complete, Pintle looks for a prepositional
phrase to complete the action denoted by PUT. IN is confirmed
from the text input.
THE
Looking for a noun group to complete the prepositional phrase, Pintle
begins with the determiners. THE is confirmed from the text input.
BLACK
Pintle next looks for adjectives. Beginning at a location 1340
milliseconds into the utterance (the 134th segment), the word veri-
fier finds that BLACK corresponds to the acoustic data at the third
highest confidence level. RED, GREEN, BLUE, and WHITE are rejected.
BOX
The location returned along with BLACK proves to be the end of the
utterance. Consequently, BLACK is rejected because the string so
ending would be ungrammatical; it also would be semantically unac-
ceptable. Pintle backtracks and begins looking for nouns. BOX
corresponds to the acoustic data at the highest confidence level;
BALL, PYRAMID, and THING are rejected.
(PUT THE BLACK BLOCK IN THE BOX)
The sentence as identified. At this point the system returns a
printout showing the grammatical structure of the sentence.
(CLAUSE MAJOR IMPER ACTV TRANSL)
(VG IMPER)
PUT (INF PAST VB TRANS VPRT MVB)
(NG OBJ OBJ1 NOLOC DET DEF NS)
THE (DET NPL NS DEF)

BLACK (ADJ)

10

R e AR g B o .

BLOCK (NOUN NS)
(PREPG PLACE LOBJ)
IN (PLACE PREP)
(NG OBJ PREPOBJ DET DEF NS)
THE (DET NPL NS DEF)
BOX (NOUN NS)
Briefly summarized, the sentence is identified as an active imper-
ative with the verb PUT involving the movement of an object, THE
BLACK BLOCK, to a location, IN THE BOX. (See the next section and
Winograd, 1971, for more extended discussions of the grammatical
structure.) This information is used to direct movements of the
simulated robot arm in conjunction with the semantic definitions
for the words and the determination of their relevance for the
current state of the problem domain, as indicated in the following
steps.
MOVETO 472 192 128
The arm moves to the black block, specified by the three coordinates
given,
GRASP :B3
The arm grasps B3, the black block.
MOVETO 448 448 129
The arm with the black block moves to the box, specified by the
three coordinates.
UNGRASP
The arm releases the black block inside the box.

OK

The system indicates that it has completed the action identified

in its "understanding" of the input utterance.

11

.

N

C. Provisional Features of the Current Implementation

In anticipation of a more detailed discussion of the system
components in the next section, it is probably reasonable to note here
sor.e characteristics of the analysis of i..- sample sentence that are
temporary expediencies not to be considered characteristic of the sys-
tem design. Some of the remarks made here are amplified in Section 1V,

Directions for Continuing Research and Developmrent.

The system is not totally on-line at this time; i.e., it is not
possible to speak directly into the system and to initiate processing
accordingly. Analog-to-digital conversion of the speech signal cannot
be performed on our PDP-10/15 computer facility yet, pending completion
of the necessary software. Consequently, for the present we are
digitizing the signal on a PDP-1l and transferring the resulting files

by tape to the PDP-10 for the remainder of the acoustic analysis.

The FORTRAN files accessed by thi: word verification routines now
contain preprocessed date from both the digital filters and from the
linear predictive coding analysis. In the system as designed, we
expect to do an analysis in real time that will produce the preliminary
classification of acoustic segments now provided by the digital filters.
However, we expect to perform spectral analyses of the kind provided by
LPCs and to call for other complicated acoustic processing only as
required to make the kinds of decisions necessary to distinguish among

the predicted words in relation to the acoustic data.

As noted in the analysis of the sample sentence, only a small
number of word functicius have been written. Consequently, it is not yet
possible to process a complete sentence. The option of testing predicted
words against textual, as well as acoustic, data is useful for debugging
the acoustic routines for particular sets of words. It is also useful

in the absence of semantic and prosodic procedures for establishing

12

- I - - .

A s o

constraints on paths through the grammar at the beginning of utterances,
and, in particular, at the beginning of a dialog when no context has been

established.

A final comment on the analysis embodied in the sample sentence is
probably in order. We have not exercised the system to any great extent.
There are only a few word functions, and they have been tested against
only two speakers. The flow of control in the current implementation is
primarily from the syntactic and semantic component to the acoustic. It

is clear, however, that useful information can pass in the opposite dir-

he e o AR aaet . BRaE R o

ection, not only from what a prosodic analysis might provide, but also

from what might be expected to arise in the course of testing words a-

gainst the acoustic data. In addition, there probably are ways in which
the word verifier, which currently processes one word at a time, can
operate more efficiently on the whole set of predicted words in relation

to the acoustic data, thus 1-Jucing the search space involved.

13

II11 SPEECH UNDERSTANDING SYSTEM COMPONENTS

A. Initial Resources

When the project was initiated at SRI, we had available (or ccuid

quickly obtain):

Techniques fcr analog-to-digital conversion of the speech signal.

Algorithms for performing Fast Fourier Transforms (FFTs) to pro-
vide spectral data,

The beginnings of an interactive man/machine speech analysis
facility for use as a research and development tool.

The bases for two approaches to syntactic and semantic processing.

- A question-answering system, based on the first-order predicate
calculus and incorporating a resolution theorem prover, which
has been evolving at SRI over a period of years.

- A program package, originally developed at MIT, for the Wino-
grad system for natural language understanding.

Our plan for the first year included the following tasks:

F —
Contract NASW-2086, SRI Project 8721

To develop a comprehensive capability for acoustic analysis, in-
cluding completion of the interactive speech analysis system.

To pursue the two approaches to syntactic and semantic analysis,
modifying each to allow for speech input.

To prepare for each syntactic and semantic component an inter- 1
face with algorithms built on the acoustic analysis processes.
To implement these interfaces and test the resulting systems. i {

To do the necessary work on system organization required to co- 1
ordinate LISP and FORTRAN programs and provide a common file : 1

structure that would allow data to be accessed by each, while
exploring the relevancz of QA4, a new programming system Eeing
developed at SRI under separate support (Rulifson, 1972), for
future system implementations.

15

—
Tt

[R5

Preceding page blank

-

r-r-—’———v—v' T T T T, e
i 1 :

i 4

We were able to carry out this plan during the year with one ex-~
ception. It was not possible to prepare algorithms that would allow the
SRI question-answering system to interface with acoustic processes. Not
only would that effort have required more resources than were available,
but, in addition, similar algorithms are being developed elsewhere,
and it should be possible to take advantage of the developments later.
The decision to concentrate on the system described in Section II was

made because it involved a more radical design concept and because tl-

A e R e D e ol

requirements for acoutsic analysis are believed to be less demanding. The

» present section contains more detailed descriptions of the components of
this system. Also included are a brief overview of the interactive speech
analysis facility and a summary of the work performed on the SRI question-

answering system in anticipation of an acoustic interface.

B. Pintle--Procedures for Syntactic and Semantic Analysis

Pintle, the syntactic and semantic component of the SRI system for
speech understanding, is based currently on the Winograd "Computer Pro-
gram for Understanding Natural L.nguage' (Winograd, 1971). It is a top-
down system for linguistic analysis in which syntax, semantics, and
inference are combined to direct the processing of questions, statements,
and commands. Now implemented by SRI in BBN-LISP, Pintle constitutes a
substantial modification of Winograd's program. Changes have been made
in the linguistic analysis, in the ordering of paths in the grammar, in
the flow of control, and in the establishment of semantic constraints. {

A backtracking facility has also been introduced.

In Winograd's work, as in most existing parsing systems, successive
words from a typed input string guide the analysis. Since we proposed
to use the parsing procedure to help segment and identify the words in
the speech input, it was necessary to find other ways to control the

generation of paths through the grammar. In order to explain the

g 16

& L ___4_.____‘.—_“

| operation of Pintle, it will te useful to consider the general form of

that grammar.

Michael Halliday's systemic grammar forms the linguistic basis
for Winograd's system, and we have used it in our initial work with only l
minor modifications (see Winograd, 1971, and Hudson, 1971, for detailed
descriptions). 1In Halliday's grammar, syntactic and semantic features
are 2ssociated with words and with higher order grammatical structures.
There are three basic ranks of units: word, group, and clause. The
word is the basic constituent; the word classes include noun, verb,
adjective, determiner, preposition, among others. There are four groups:
noun group, verb group, preposition group, and adjective group, each of
which has slots for the words that compose it. For example, one noun
group might include determiner, number, adjective, classifier, and noun.
1 A clause can be major or secondary; major clauses may be declarative,
imperative, or question, active or passive, and the like; secondary
3 clauses account for relatives, complements and various kinds of modifiers

and qualifiers. A unit at any rank has associated with it a set of fea-

tures. For example, words exhibit features identifying nvmber, inflection, |

various kinds of affixation; groups may show definiteness, tense, negation; !

clauses may be marked tor yes-no or WH questions, subject or object. There 1
are systems of mutually exclusive features and nctworks representing the 1
|

relations among the units at a rank.

Each of the units above the word level (clause, noun group, verb

group, preposition group, adjective group) is represented in Winograd's

system by a prograin written in PROGRAMMAR, a language developed by him

for this purpose. Parsing is done by an interpreter that processes 1 J
PROGRAMMAR code; the flexibility of this method allows various kinds of]
tests to be made that call on larger grammatical contexts and on other
sources of information, particularly semantic ones. The parser operates : i
R
i 1
17

ve

T

)

|
|

in a top-down, left-to-right manner, beginning with a search for a major
clause. In Winograd's implementation, the clause program checks the
features of the first word in the typed input string to decide what unit
to begin with. Features in words guide the parser through an analysis by
delimiting or selecting suhsets of related groups of choices. In this
way, the parser traces a path through the grammar, arriving at a struc-

ture for the sentence.

To adapt Winograd's procedures for speech understanding, it was
necessary to establish syntactic and semantic constraints that influence
successive choices through the grammar, leading to the selection of a
subset of the words .of a particular word class. In what follows we are
presenting the information available in the grammar for this purpose,
with some additions where it seemed appropriate. Consider again the
sample sentence discussed in the previous section, PUT THE BLACK BLOCK
IN THE BCi. Assuming that at the time this utterance is made in a
hypothetical dialog of a user with the system it is reasonable to expect
a command, the clause program would look for an imperative. (Prosodic
information also may provide such guidance.) Since imperative clauses
generally start with verbs, the parser enters a verb group program look-
ing for imperatives. Since imperatives are in infiniiive form, only
those verbs with that feature are identified. The result of this path
through the grammar is a small set of imperative verbs, one of which
may correspond to the first word of the utterance. We expect to be able
to constrain the set of verbs further by additional semantic information--
perhaps regarding what command might be appropriate at this point in the
dialog. And pragmatic information specific to a particular user should
be possible to capture; for example, the frequent use of certain com-
mands. However this verb group is constrained, the initial result is ¢

set of words to check against the acoustic data.

18

Confirming one (or more) of the words from this initial set might
result in Pintle looking for a noun group, as is the case with the word
PUT, which requires an object. Identification of a different imperative,
PICK, could result in Pintle looking first for the particle UP. Accept-
ing PUT in the sample sentence, Pintle might begin the search for a noun
group with a determiner. Since the set of determiners is small, all of
them could be predicted. However, they are difficult to distinguish
acoustically, and it might be reasonable, on semantic grounds, to look
only for a definite or only for an indefinite determiner, e.g., THE or

A.

Finding a determiner, an adjective would be likely to follow. There
are various classes of adjectives, and in English there is an ordering
controlling the sequence in which they typically modify a noun. For
ingtance, size adjectives precede color adjectives; e.g., BIG RED BLOCK
but not RED BIG BLOCK Again, in a dialog it would be reasonable at cer-
tain points to predict the amount of specificity required to identify an
object on the basis of its qualities. Pragmatically, (assuming we have
models for our users) some people may make things perfectly clear, while
others are more sparing in their characterizations. So, sets of adjec-
tives will be checked against the acoustic data. Subsequently, and in a
similar fashion, various paths among the nouns would be selected for
testing. The kind of verb would influence the choice; verbs of manipula-
tion call for nouns that represent manipulable objects. This information
also could be used to influence the choice of an adjective in the prior

search, limiting it to those adjectives appropriate to manipulate objects.

Continuing the parse beyond the noun group would lead to consider-
ation of preposition groups because PUT requires a location. Identifying
a place preposition would lead to a search for an object noun group, with
decisions being made similar to those discussed for the preceding noun

group. However, only those nouns that can have objects PUT IN them need

19

to be considered. In this manner, a set of predictions are made regarding

the sequence of sets of words likely to occur in the utterance.

The foregoing description presumes the accuracy of the initial
predictions. In the sample sentence, however, the adjective initially
found in the second noun group proved to be in error. Thus, backtrack-
ing and tracing down an alternate path were required to find the noun.

An interpreter for PROGRAMMAR has been added that contains a backtracking
mechanism not available in Winograd's system. The interpreter makes it
possible to specify a set of alternatives at a particular point in the
grammar and to try these in succession, backtraclking automatically if

the initial choice is not subsequently confirmed. This same mechanism
allows an easy return and recovery following acceptance of a word that

proves to be in error, as in the s.mple sentence.

The requirement for speech input (the absence of words with identi-
fiable features in the input string) and the availability of the backtrack-~
ing facility resulted in other modifications to Winograd's analysis pro-
cedure. Winograd tested to eliminate the least likely alternatives first,
checking the longest possible constituent and cutting back wher that
failed. PROGRAMMAR, in his original version, returned the first suc=
cessful analysis, having provided both syntactic and semantic guidance
to make that a likely interpretation within the modei of the "blocks
world." Selective backup was possible in a particular situation, but
it involved specifying a location to return to for alternative proces-
sing. With voice input, it is necessary both to test for mcst likely
alternatives first and to have a more general backup mechanism in case
of failure. What is needed further for speech understanding is the
flexibility in the grammar to allow dynamic reordering of rules, depend-
ing on the state of the analysis at the moment. To help provide this
capability, changes have been made that allow identification at any

particular choice point in the grammar of what alternatives are possible.

20

L5 el

P -

In Winograd's system, alternative choices could only be identified serial-

ly after failure of the predecessor.

Many more changes in Pintle are contemplated that will improve its
ability to use syntactic, semantic, and--hopefully--pragmatic constraints
to reduce the number of words that needs to be considered at any particu-
lar pzint. Currently, checking against the actual configuration of ob-
jects on the "blocks world" is done only after a group has been parsed.
Thus, in the sample sentence, both BALL and PYRAMID are tested against
the acoustic data. However, there are no balls in the current situation
(although the word is in the lexicon), and there are no black pyramids.
Information of this kind can and should be used to influence the selection

of words in a set as soon as it is relevant.

Major modifications in Pintle can be expected to follow the intro-
duction of new structures for managing semantic and pragmatic information.
These new structures will replace and extend Winograd’'s MICROPLANNER
code for "blocks world" manipulation, Exploratory develupment will be
done in QA4, a procedure-oriented programming system particularly well
suited for work in artificial inielligence because of its flexibility
and special features. We also plan to experiment with revisions to the
parser in QA4; new techniques are necessary to facilitate the accommoda-
tion of semantic and pragmatic information and to simplify the dynamic

reordering of paths through the grammar.

C. A Grammar for the Speech Understanding System

No substantial changes have been made as yet in the actual grammati-
cal rules that Winograd has in his system. However, modifications are
essential because there are significant differences between spoken and
written English. Previous systems for computational linguistic analysis,

including Winograd's, have worked with grammar rules for the written

21

{
i
|
|
:
i
i

e e o . e daae . Bl e

language. But, function words and affixes, which existing parsers use

extensively for structural identification, tend to be blurred in speéch.
Instead, prosodic features--such as intonation, stress, pause, and juncture--
are used as indicators and delimiters. Spoken utterances are frequently
incomplete and include errors, hesitations, and false starts, all of which
are either edited out of the typed input or relatively easy to identify

in it. In contrast, there is no easy way to separate out the well-

formed parts in speech. Misspelled words are easy to detect; mispro-

nounced words are not. Moreover, the relation between a word and its
alphabetic representation is stable in text, whereas the spoken form of

a word varies significantly and often dramatically in relation to other

words around it. Phonetic or even phonemic transcriptions are not suf-

ficient. Consequently, it is essential to have a set of grammatical

rules suitable for working with spoken English.

A group at the University of Michigan under the direction of Michael
O'Malley has begun work on a grammar of spoken English, and we are
working closely with them in its development. Our intent is to incorpor-
ate prosodic information directly into our procedures to help determine
sentence type, to identify phrase and clause boundaries, to elin. nate
false paths, to reduce ambiguity, and to provide a basis for handling
incomplete sentences and hesitations. More reéently, groups at
UNIVAC and at the Speech Communication Research Laboratory in Santa

Barbara have joined in the study of prosodic information.

In conjunction with the University of Michigan and with Bolt
Beranek and Newman, (BBN) we have begun a comparative analysis and
evaluation of the current grammars used by BBN and SRI. We hope to
clarify similarities and differences and to establish a common grammar
for the overall ARPA Speech Understanding Research Program. As the
first step in this effort, we converted the grammar in Pintle into the

transition network formalism used by BBN to facilitate comparison.

22 1

Since this model seems to be easier for linguists to work with, having
this alternative representation for our grammar may simplify incorpor-

ating the prosodic rules.

A complete grammar for spoken English should include a phonological
component that contains acoustic/phonetic rules relevant for the genera-
tion and recognition of utterances. It is not clear that all of the
strategies for speech understanding could make productive use of such a
grammar, but it could serve to model a substantial part of the relevant

linguistic framework.

In addition to developing a set of rules for a grammar of spoken
English sentences, a considerable amount of research needs to be done
to provide structural descriptions for larger amounts of discourse,
particularly those involved in dialog of the kind envisioned for interac-

tion with the various problem domains selected by the ARPA contractors.

D. Acoustic Processing

The major capabilities for acoustic processing added to our facility
for use in speech understanding were a digital filter package and a
procedure for calculating linear predictive coefficients (LPCs). The
decision to use digital filters rather than to build a hardware filter
bank was made because of our uncertainty about the most appropriate set
of filters for the system. The ones currently implemented were chosen
to allow us to make a preliminary classification of segments, as described
below. Changes can be made easily to refine that classification, and
it will be simple to specify an analog filter package or parallel
digital filters when we need to be concerned about time required for
processing. The particular filter package we acquired is described in

more detail in Appendix A.

The programs we have written for linear predictive coding, essential-

23

ly John Markel's algorithm (Markel, 1971), preduce better spectral data
than could be gotten from Fourier analysis (FFTs) and can provide a
major portion of the frequency analysis done by conventional analog or
digital filters. We have been using LPCs successfully for formant
tracking, and we are developing a pitch-extraction procedure based on

them.

An overview of the acoustic data processing currently done in the
SRI system is presented in Figure 2. The speech data are obtained in
a quiet room using a B&K 433 condenser microphone and an Ampex AG 500
tape recorder. An analog tape is produced at 7-1/2 inches per second
recording speed. The speech data on the tape are then digitized in
segments of up to 3.1 seconds in length. A presampling low-pass filter
with an 8-kHz bandwidth is employed to reduce aliasing errors, and the
digitization is accomplished by 12-bit A/D converter operating at a
rate of 20,000 samples per second.

The raw digital data are processed further by digital filtering
and by linear predictive coefficient analysis. Figure 2 indicates that
five rms values of the time series data are calculated in each 10-milli-
second interval of time. Four of these values are from time series
calculated by digital filters with bandpass characteristics shown on the
figure. The fifth value is calculated from the unfiltered time series.
Each of these five values is labeled by the notation shown in parentheses,
e.g., raw, voice. The upper channel indicated on Figure 2 calculates
three formant frequencies and amplitudes by finding spectral peaks in a
128-point spectrum derived by an LPC analysis of the raw time series
dsta. The spectral peak data, which correspond to formants in voiced
speech segments, are stored immediately on magnetic disk files for later

use.

24

a
!

A L . s -

W31SAS ONIGNV.ISHIANN HO33dS 1HS IHL HOJ ONISS3D0Hd J1LSNOJV Jisva

A

S3IONLINIWY HIZHL
ONV S)V3d TVHLI3dS
QONY ‘SNOILVDIJISSYID
AHYNINITI3Hd ‘'S1NdLNO
431N ONV MvE “9t

‘SISATVNY swr0l

HOV3 40 S1INS3Y

FHL NSI0 OL 3LIEM

(sw Ol AW3A3
Q31VINI VI suu)
SY31T14 IVLIDI0

Z 34N9ld

NOILVZILNVYNO Li8-1 Y
ZHY 0Z 1V

{(HOIH)
ZHY §9-Z°¢
(37001}
ZH 0082-00S
$3SSV1D
J1LSNOJV XIS
40 INO SV (MO
ANIWO3IS sur-Ql IH 0001-00€
HOV3
AJISSVID
(3D10A)
ZH 00Z-08
(Mvyd)
ZHY 80
30NL1IdNY ONY MOOM M

AININO3BL4 340LS

‘$MV3d TVYHLD3dS
3349HL 1SHId ONIY

gl ¥ H3IAD
B 0L AHIAI
SISATWNY 3d

% I'E OL 4N
H3143ANOD OQ/V

3AVLOO0 H3d 8P 0L
ZHY 8 SSYd MOT
431714
ONITdNVSIHd

ov
X3dNY

(wWooy

= 131N0)

HO33dS

25

G

The strings of rms values are used in a classification algorithm

shown in Figure 3. This algorithm currently classifies each 10-milli-

second time segment as one of six events:

e Silence, SI

® Unvoiced turbulence, UT
® Voiced turbulence, VT

o Voiced stop, VS

® Vowel-like, V

& None of the above, T.

The filter outputs and preliminary classifications of each segment are
stored in disk files with the formant frequency and amplitude data, and

they are subsequently available for further processing.

Table 1 summarizes the extent of the current acoustic processing on
the utterance PUT THE BLACK BLOCK IN THE BOX. Reading any line from
left to right, the entries have the following meanings:

® Column 1 is the time in milliseconds of the occurrence of the

segment being analyzed and described by the line.

e Column 2 is the segment classification, one of six class names.

e Columns 3 through 7 are pairs of rms and decibel values of
filter outputs.

e Column 8 is identical to Column 2.

s Columns 9, 10, and 11 are the frequencies of the first three
spectral peaks.

e Columns 13, 14, and 15 are spectral peak amplitudes correspond-
ing to the frequencies listed in Columns 9, 10, and 11.

e Column 12 is an overall rms value in decibels computed from the
LPC analysis. The numbers differ slightly from the raw value in
Column 3 because there is a difference in the interval of time
over which the rms is computed.

Note that Columns 3,4,5,6, and 7 each contain two values. The

first is an rms value computed on a 10-millisecond time series, and the

26

. R T o Ry s Sy .. —

SLNIWDIS DILSNO0DY HO4 WHLIHCOTY NOILYDIAISSYD & 3HNDI4

‘o a

A 138V L. 3@V

S

AN, 138V LA 138V

¢
TIVINE = ID0A

A8 13EYT TIVNS = MO

£
D18 = MOT - HDIH

FINIINEENL

¢
TIWING = () MYH ONY
"INOA QI THEHH

'POICIIPUI SEIAIBHIE SSH{LN SONIBA HE
PoZISULIDE W Peijideds INANA(,

T™HA B9 — T¢ #H
ZH DOBZ — 005 [31%]
ZH 0003 — 00E Mo

' DOZ — 08 3DI0A
HY 8—0 MvH
«SIONVYH H3LNY

27

o R

Best
Available
Copy -

e s - e | ——— — i

S fl="s veel="ur LA S 1] v'7e 'S0 L*Tr=28
yet-‘e §°5- ‘6L PR L
CA S 6'2= *p¢
£'2= *pg
£'e= 92
d'02=%y
L'68="1
2'8%2=°¢
2="p
Prpe g2
(383 AT}

‘ocr
‘eer

9°15=°29
Z0= *04l
o126 g£°E= 09}

(A]
e'gi-*L
298§
[N

§°13=°29

LoL= *08

1 o1qe}

‘6641 1S stenety
‘v

[l
2rug-1y
[¥] Rk CHIL

L] L L

agmty &
viotet) e
-*2

Loge-"te

§'FT=-"¢9
9'e- ‘ot
€'c= 601
‘g1z
*692
‘912
1 t4
‘s82
‘982
*Lv2
‘ede
‘922
‘oi2

(38 &

6°%= ‘pu2

*'T- *f92

%2~ 192

"et=¢e
alW LR rea
L] € v

(penutiuo)) 1 a1qer

-
o

P e

-
e e T E T vy

’-t>b)a>>>>>:ag

L]
-

e ¢* 61 aee A
LT 222 a°ce 2L
«*ol [14 oree e
£°92 [34 T CAX -2 A
[T et eee e°e
[L I A 14 [24 e‘e
A8 ¥4 €°92 392 e
e'»t e*ge *5¢ ece
2°¢t 2°v2 3¢ a°e
e°et 2°%2 z2°et e'¢
[3K A west 2° L% a'e
e'wt aeez 3'ge 400
9L 8's [AX
e L~ 2'e it
°ee 2% 41 J'e
ez .oe'tr LA
'3] E R § 4 4%
et e°st o2
' et 4°2
(3] e°tz #°@
[A4 £°92 e°e
2'9 ezt 2°€T 2°0
e°2t 3%y 1°9% a0
«°ste aty gLt éce
e*'gt LAl 2°¢Lt e's
€'t e°'1 ey 2'e
reet 3t FALC) 2°2
¢°ag 2°3 8°e2 c'e
(2 14 3°2 'S {4 e‘e
4° 68 8°s 8 m2 82
ez e°sz [ShVa 4 4°0
vt e°se CAS 4 4 2°e
¢°6 f°2- 2'1t 2°e
(L] e°2- @°tt 2'e
e°et 2°¢ a°21 29
¢° LT o'l 7°91 23
ceetr e‘e 2°8% 2°e
€It fe f° LT e°2
¢S 2°s gLt 2°e
et peg 2°z- #4°2
L'6- ey~ 2'33- 0°¢
¢ €9~ 2°g- e‘ec
[-2 f6- g2t~ 2*2
e [AF 28 a'g- @'
T~ 2°Tr- 0'Ge 2°2
A 2°21- 2°9 22
[22 '8~ a*s
sl 2°6t 22t e
voge z2°9 2°2%~- 3w
G 22 26~ 3¢
[4 3°9- Ay LA
L3 2y Tv Sw~d
(1] (2 3 2zt

E

‘8tv2
‘9602
2114
cLsv2
‘Lsve
114
114
cler
‘Lsve
°5L82
‘9tee
‘atee
‘L922
M11%4
*zege
‘t2ge
ctege
‘g2z
‘ate2
1974
1514
*e£62
K 1314
‘9692
‘9e92
‘9692
‘9692
‘9692
WiiZ4
Lsre
*2692
‘agLe
‘T16t
6861
‘gz
‘evte
cL982
7314
‘vige
114
*69L2
‘9392
‘Lsve
‘g8st
24 14
‘6861
*13ge
‘2401
1314
M43
cgzte

€4

1T

‘eRzt
c682t
‘6221
‘622t
ceu2t
‘eLtt
‘LTt
‘eltt
‘IETT
‘gLt
~26al
i1
‘vr2l
‘yret
‘geet
*Z681
‘Zel
‘Igtt
‘oLrt
‘eret
*92¢t
‘ool
‘vart
‘cort
°T28t
*99st
*LL9t
‘v6LT
‘g£get
* L9t
‘89St
‘vesLl
‘1Lt
‘SLé

*9£6

‘958

t618

‘oot
‘erte
‘vRt2
‘92
*2922
*LL9t
*Zret
M ATAY
‘vlat
*12st
c1est
*eLet
cLsve
1277

LE]

or

‘oL
‘e8¢
*Ine
‘Tl
‘Ird
‘IvL
*Zed
‘€99
M1
‘29
K11
‘Las
‘gL
Y14
‘gL
N Y14
‘gLl
‘gL
czig
‘1
L1414

*16€

‘a6t
‘f6t
33
‘et
*‘tTetf
%1+
‘g6t
62y
‘o2
‘9Lt
*gorct
°‘Isg
‘et
*3et
‘16t
‘v29
‘e
‘632t
*t2¢t
‘Sort

14

06~ el
$°0- °£3
ve9- LT
Lov~ 62
9°p- 12
89~ °9%
99~ °£3
6°L~- °?3
6°0t-°2%
3e2t-°6
8°rl=-°9
SA 2°62-°1
SA 8°6£-°L
SA L°6E-"8
SA p°eE~-"¢
SA i*(g-°@
SA 8°¢E-°T
SA 8°g£g-"3
SA 2°62-'3
A g£ool="L
A p°2T-'6
A Lo°GT="9
SA 9°¢2-°2
SA 8°92-°2
A 9°92-°2
A g p2-°2
SA 6°92-°2
SA i°g2-'2
SA 2°92-°2

bR 2 B B 2 B 3 3 5 5

1S 8°ev-°¢C

1 HOIH

8 i

‘vel
‘gLt
M AT
g 114
‘98
‘vl
‘vet
‘SLT

L°9~
9~
9°€-
z2°g-
6°2~
2y~
| 3
[T
9°6~ 69T
g9~ ‘68T
TeeT-fd
£o6L-""

L°Tye't

Tegv-°¢

6°L8=-""

2'gL-°9

g ge-°¢

2 18-6

£re2-°11
¢ Bl=68
2°91-°2¢
pee2-"1¢
g92-°4L3
v°92-°9¢
y°92-°91

2°92-°91

9°g2-°41
8°g2-°4L3
1°62-°981
peg2-*01

8°es-°2
2°es-°0

Cla

(penuijuo)) I 21qeL

‘eET
95l
*8Ll
‘96T
‘fol
*get
744
‘oLt
‘99t

6 v-
9 f-
| A2
9T~
Lt~
T2~
L2~
82~
6°2~-
92~ oLt
6L~ °S6
6°18~-°9

6°28-°L

s°62-°80

pei2-c9t
Tee2-"6¢t
#°12-°12
e 6l-°92
6°LT-"0E
L°TTt="19
8°8~- °98
¢ 11-°¢o
6°93=-°2¢
e°gl="2¢
2°¢T=-"Ty
9°pT-"Cy
[A L AE 1
2°ri-9y
9°9T="0p
2°ri-90
8°3%-'99
Tept-°gL
gat-°"m¢
9°It=-"99
6°cl=60

£°9= °»f
[3 214
L34 TR 2
L°S= °9Y
9°C- 9
§°E= LY
9°g= 9
$°g=- *4L?
ge°c=- "0y
v~ ‘ary
€9~ ‘gt
6°21=°91
T°pt-°22
9°8- °¢2
38~ 92
T°9- °¢t
£°o- °CY
82~ *0s
2°2- ‘9%
e°2~ *'9¢
2°2- °6¢
§°2~ °t¢
L°3= °S9
vege *L9
6°9- °£9
9°3- °¢9
§'Q= °L9
T°t1e °29
£°1- ‘89
6°%- °9¢
22~ 95
2°%- *L¢
8°t- °(¢

2°eg-°1
2°gf-°%

39104

1 4

el
191
vz
iz
b4 24
124

yee-
§°S-
¢y
vog-
£°g-
T°g-
F A TR 1 {4
9y~ c602
8- 202
2°g- °f6l
Tegl=-*11%
e*v2-02
gr22-°92
9°32-°62
9°p2-°¢¢
v gl-‘2¢y
8°¢tl-*LS
g°LEtT-°2,
geZt-"90
L°gr-°g0t
9°9- °1Ifl
goet-"L01
9°pt-°get
2°0t~-'60t
Teer-"21z
L°6- °911
86~ °rtl
r°6- 613
26~ °92%
2°gt-e0l
9%6- *LIT
6°6=- °£13
£eet-get
9°et-°281
3°2%-°09
9°r1=°99
2°6T~°4¢C
T'92-°¢E
T°92=°91
9'95-°%
9°0s-°1
6°Lv="T
ecor-2
6°vr-°2
6°TE="4%
2°8C="y
L°8€=°¢
9°ec-‘at
6°9v-°1
ges-°1
reer-'%

nyy

€

PR B S B R ERE

wunnn
> > >

NN I>>

4
4
1
1
1

2263
2183
aest
aert
uert
[73 3
29t
[112
1334
esrt
[T4

- TR e

30

[T

Al fon L

e
[2

7eet
oo
£
ety
<°¢T
ez
C*FfT
291
acet
3°91

[4]

T

-

et
e e

. NN
L]

n

.
~
-

£T

LR Y
o o o

L, MR R 8 T K™

. o o o s o e
NENA LR G

2R GLGHRAEGIYS AT
.

e o 0 0 0 00 o
v LERRERNRNARNNNENY

€. 0 G & &6 & G Aoty B 0

LL]

o~
-

LT
"R6fE
M INY
c2rge
‘o8r2
tefee
‘69sL2
‘rbLT
*E£L€61T
*r2tg
coere
4 l'rd
tLsre
‘Lere
“61ve
‘9eve
‘vo62
*2692
‘oete
‘6861
‘81re
‘sr12
K114
‘Tege
iiz4
‘v962
‘Tg2t
‘o802
‘ve62
*g262
‘vet2
"64TE
*666T
*T261
173y
‘tgete
2449
‘€192
‘ot
N I4-r4
‘9202
2Lt
‘tTeg2
*Ta£2
*arge
"8102
‘81ve
‘gIr2
‘8102
‘etr2
‘Lere

£4

134

‘9312
cqfel
1374
MZII
*t2st
YA
NIy
6981
*y921
*a2eet
*G9fl
cvdrl
‘@94t
* 126t
‘o2l
‘rarl
* 1281
*LERT
c28rl
*T261
*8£9tT
*@9stT
*9TLT
‘vdet
2ol
c2art
‘r6sT
*9L9t
*9TLT
*LLst
* 128t
*§a92
*92¢T
‘§r2t
‘£90f
‘6861
‘g2z02
L9t
‘gorl
cLeet
‘Erel
‘o2rl
*G9¢€T
°92¢1
*n2t
*id32t
‘g2t
‘vt
‘or2t
*gr2t

24

o1

PCgE="r
v FE=*E
B gt
el
a1
FrEE="1
pe="1
Fue="1
erE=-"1
FrLE="T
LAY T
=1
Pt
L Ew="d
e
st iw- I
v E aws""E
2 le="g
& EE=-"F
areE="C
‘968 1N Tegi-°9 Pl T
ei=""r
ai="r
EriE="%
M=-"6
& "efi="G
Foif="y
EEF=-"9

(papniouo)) T s1qel

e*26-9
0°26="¢
eczs-°¢
2°rs="1
8°06-°T
£°26-°1
@°es-°¢
8°6r-°T
2°9r-°1
e°ir-°1
£Lr-°3
§°rr-°T
£'er=-°2
Lowp="'T
6°Ty="2
T 1p-°2
9°rr="1

L°eg=°2
§°3r-°2
2°Tp=-2
§'Iy-*2
6°8f="¢
peig-9
e og=-"»

T T—

§°6r-°1
2691
9°69-1
(M E A
Feeg-°1
G°er-
gees-
[24 2 2
[33 L
9'ur-
2°cy-
£or-
ggr-°¢
6'0r='g
v°6f-°y
9°6E=-"9
6°9€-°¢
Lovs-y
6°1c-"¢
£e2f="2
ye2£-%
g ag-"11
€ 1g-"6
§°62-°T1
£L2-°61
2'62-21
9°92-°¢T
9°s2-21
ver2-41
9°82-'¢3
Tee2-*21
g£r2c-'s
1e28-'¢
L°62-°2%
g°2r-'¢
2eor-2
8°Lr-°t
6°6r-°2
£o8E-"

— ot et s et b et e
nuvBunBLLLVYLKLY

et
azee
eT82.
srez
a6l
edst
36t
298t
as6t
2rel
reet
vZet
[29)4
(1134

(L)
[73)

31

second value is the decibel equivalent of the first, normalized so that

the largest decibel entry in each column is 0.0. Since all of the data
in the table remain in disk storage, it is always possible to recover
| the normalization constant if necessary. 1
We do not contemplate adding any new basic capabilities for acoustic l
processing. Rather, we intend to develop algorithms that produce more
precise acoustic parametrization using data provided by the existing
procedures. We expect to refine our formant tracking and to establish

a method for extracting pitch. However, since these and other changes

e TS S ey

are to be understood primarily in the context of the procedures for word
| verification, further elaboration is presented at the end of the next

section.

E. Word Verification

Procedures for word verification relate the words predicted by

syntactic and semantic processing to the acoustic data. The input to

the word verifier from Pintle is a set of words that could be expected

to occupy the next position in the utterance. The result of word
verification is a subset, possibly empty, of the candidate words ordered
according to a degree of agreement with the acoustic data at that location

in the utterance.

Since Pintle is written in LISP and the acoustic processing is done
in FORTRAN, it was necessary to develop procedures for communication 4
between the two languages. An interface package, described in detail
in Appendix B, makes itwpossible for a LISP program to create a fork
(an independent process in the time-sharing system) containing a FORTRAN
program, to share directly accessible data with that program, and to J

call functions in that program according to standard FORTRAN conventions.

For cach candidate word, there is a function that tests for that

i

particular word. The correspondence between the expected form specified

g

32

e

ARy

RPN s vt R A Y R NN s T

B i ik

in the function and the contents of the acoustic stream is expressed as
one of four confidence levels: positive, possible, unlikely, and
impossible. For the first three levels, the function also returns an

estimate of the ending position of the word in the acoustic stream.

The word verifier collects the results for each word in a set,
eliminates the impossible words, and constructs a list ordering the rest
of the words according to confidence level. The word with the highes®*
ranking is returned to Pintle; any others are saved on a backup list to
be used successively if their predecessor does not lead to the prediction
of a new set of words, one or more of which can be found in the utterance.
The ending position of the accepted word is used as the starting point for

testing words in this new set.

To illustrate the word verification procedure, consider the sample
sentence, PUT THE BLACK BLOCK IN THE BCOX, in relation to the acoustic
data contained in Table 1. In the analysis, BOX is one of the words
predicted by Pintle at a location beginning approximately 1.34 seconds
after the beginning of the utterance. This time is represented as 1340
milliseconds in Table 1. The word function for BOX produces the following

actions.

Ies It increments the time pointer by 170 milliseconds.

2. It attempts to find a vowel-like string in a 200-millisecond
window centered at the incremented time pointer.

3. If Step 2 is successful:

(a) It searches for a voiced stop ahead of the vowel-like string.

(b) It searches for silence at the end of the vowel-like string.
If a silence is found, it searches for unvoiced turbulence
after the silence. It returns a confidence level, where
appropriate, for each search.

4, It examines the vowel-like string as follows:

(a) It calculates the average frequencies of the first and

33

|
?

second formants.

(b) It calculates the average slope of the first and second
formants.

(c) It looks for discontinuities in the first and second
formants.

If there are significant discontinuities or rapid changes in
formant frec::ncies, it returns the value impossible.

5. It combines the results of the consonant search from Step 3

and the analysis of the vowel-=like string in Step 4 as follows:

(a) If the average formant frequencies are reasonable for the
vowel [0] and all consonant searches are successful, it

returns Eositive.

(b) If the average formant frequencies are reasonable, but a
consonant search failed, it returns possible.

(c) 1If tie average formant frequencies are unreasonable but
all consonant searches are successful, it returns unlikelz.

(d) If the average formant frequencies are unreasonable and at
least one consonant search failed, it returns impossible.
In the example, the confidence level for BOX is positive. The
results show a vowel-like string with first and second formant values
consistent with El] in the interval 1420 to 1600, a voiced stop before the
vowel-1like string in the interval 1340 to 1410, silence after the vowel-

like string from 1650 to 1690, and unvoiced turbulence from 1690 to 1910.

It should be clear that a word verification procedure of this kind
was designed for use in a system with powerful syntactic and semantic
constraints. 1In the analysis of the second noun group in the sample
sentence, before BOX was confirmed, a set of adjectives was processed by
the word verifier. All of the words were rejected except BLACK, for
which the confidence level wvas unlikely. Pintle accepted BLACK tentative=-
ly, but that would have had to be the end of the sentence, and PUT THE
BLACK BLOCK IN THE BLACK .. syntactically and semantically unacceptable

in the current system. Consequently, Pintle backtracked and locked for

34

t
!

nouns. Of the set predicted, BOX was confirmed with the highest con-

fidence level. If BLOCKS had been a member of that set, the word verifier
might have returned positive as well. However, since things can not be
put in blocks, that word was excluded, on semantic grounds, from the

set to be considered.

As indicated in the analysis of the sample sentence in Section II,
the data used to test for the candidate words can be either acoustic or
textual. If textual data are to be used, then the input is either a
single typed word or a list of typed words. Each input word is analyzed
to determine if it matches one of the candidate words from Pintle.
Multiple matches make it possible to study Pintle's response to ambiguity
in acoustic recognition without actually calling on the acoustic routines.
The use of textual entries also makes it possible to study the word
verification procedures for a variety of words in a particular context
without requiring word functions to be written for all of the words that

might be required in the processing of complete and meaningful sentences.

It is obvious that the word verification procedures in their present
form would not allow subtle discriminations. However, the addition of
more complex and powerful acoustic/phonetic rules to the analysis and
decision-maeking parts of each word function should permit significant
expansions of the system capabilities. The word verifier strategy is
particularly appropriate for our system design, since Pintle operates on
words rather than phonemes, allophones, or other phone-like units.
Furthermore, the word verifier provides a way to deal with a significant
subset of coarticulation problems that would be quite troublesome in a
phoneme-verifier approach. For example, in testing for the sound [2]
in BLOCK, the effects of the preceding [b] and following [O] can be
incorporated into the word function. A generalized routine for verifying
[l] in random context is not required. Similarly, it is possible to use

acoustic information about the end of the preceding word to influence

35

i
1

T R R ———— e

processing of the initial sounds in the current word. Coarticulation

with following words is still a problem.

To a considerable extent, changes in the word verification procedures
depend directly on increasing sophistication in acoustic processing.
However, as indicated in the previous section, the need is not for new
techniques for acoustic analysis but rather for ways to extract more
information from the data we have. Furthermore, we believe that the
motivation for changes should come primarily from the requirements of
word verification. Our current efforts are directed toward providing
many more subroutines for acoustic parametrization in order to refine the
initial classification provided by the digital filter analysis and to
provide additional formant data. For example, we are developing an
algorithm to distinguish reliably among fricatives, specifically to
separate [s], [f], and [f-8] (we do not expect to separate [f] and [6]).
We also are working on vowel segmentation and classification procedures
that will extract boundaries within vowel-like strings, smooth formant
curves, and plot slopes and standard deviations of formants. ‘mr goal
is to provide a variety of general procedures thut can be used in the

preparation of word functions for use in word verification.

F. Interactive Speech Analysis Facility

In the development of algorithms for acoustic parametrization and
for word verification, we have made considerable use of the Interactive
Man-Machine Speech Analysis System (IMMSAS). IMMSAS is a large FORTRAN
program that handles data and process control for graphic display-
oriented speech work. It operates on the PDP-10/PDP-15 computer
facility with interaction through an Adage CGraphics Display and a
Teletype or similar terminal. IMMSAS contains a flexible, modular
structure designed to accommodate present and future analysis tech-

niques (e.g., digital filters, FFTs, and LPCs). Experiments can be

36

designed and run with real data; results are displayed graphically or
on the line printer. A D/A converter provides an auditory response to
verify the contents of a scgment of digitized speech. A/D conversion,
currently being done by a stand-alone program on the PDP-11, scon will
be available through IMMSAS by microphone, thus facilitating data ac-

quisition for exploratory testing.

IMMSAS has been used for the development of many acoustical proces=-
sing algorithms. These algorithms, written as subroutines without local
storage, can be run within IMMSAS or in a LISP/FORTRAN program structure.
Furthermore, simple algorithms can be synthesized interactively from
clementary array operations and FORTRAN functions. The interactive

display facility has greatly facilitated debugging and program checkout.

The structure of IMMSAS is shown in Figure 4; single lines represent
p::ogram control, and double lines show data flow. It will be useful to
describe its operation in terms of data base management, graphic out-

put, and interactive program control.

1; Data Base Manggement

There are two types of data handled by the system: time series
data and processed data. Time series data represent the digitized out=-
put of A/D conversion with 9 to 12 significant bits. One utterance by
a single speaker is assigned to one disk file. A record contains a
description of the recording (speaker, sentence identifier, date of
entry into the file system, sample rate, and number of samples). Two
additional records can be used to indicate significant indices in a time
series: one to point to events, such as phrase boundaries, word bound-

aries, or phonetic boundaries, and the other to mark pitch pulses.

Processed data result from submitting time series data to one
of the processing mcdules. Each processed file is associated with its

corresponding time series file. An identification record describes the

37

PR7YeR

am

[S BN

. e o

R T T v

NOILVZINVOHO WILSAS SISATVNY HO33dS INIHOVW-NVIW JAILOVHILNI ¥ IHNOIL

AV1dSia 3ovav

o . . 39VHOLS XSIQ
/
|] 1 | L]
L1] |]
v1va a3ss3o0ud viva S3I¥3S IWIL
3sva viva
[+ o]
™M
>
70HLNOD]
AV1dSIa ‘
gy
i
SISTHLNAS NV SISATVNV 3DI0A arv \
NOILONNS NOILVOIJIHIA QHOM v/Q |e TOULINOD - 3dALITIL
SWHLIHOO9TV NOILVZIHIIWVHYd DILSNOIV 144 WvHyO0uHd
ONINOVHL LNVWHOS 241
NOILVDIJISSYTO LNIWO3S Y314 IVLI9Ia
$37NAOW ONISSII0Hd

Y

recording conditions and the contents of the rest of the file. The
remainder of the file contains an arbitrary number of records of arbitrary
length, each corresponding to a data array. For instance, the file con-
tained in Table 1 resulted from the digital filter and LPC analyses of

the time series data from the sample sentence discussed in Section II.

Both time series and processed data can be read from the disk
into arrays organized to allow flexible referencing and dynamic allocation

of available core.

28 Graphic Output

IMMSAS provides fast and flexible graphic output on the Adage
display. For time series data, an rms envelope of the entire utterance
can be shown on the upper half of the screen, while an expanded represen-
tation of a selectod portion of the actual acoustical signal is shown on
the lower half. Event markers and pitrh markers can be displayed in a

coordinated fashion on both the upper and lower traces.

Processed arrays are displayed using a general plotting routine
that does automatic scaling and labeling. Data can be displayed in one
dimension (in relation to an index) or as two-dimensional plots, e.g.,

a frequency spectrum or a distribution over time of the successive
frequencies for the first three spectral peaks, as contained in Columns
9, 10, and 11 of Table 1. Control of various plot parameters, such as
type of line (e.g., solid, dash, dot, blinking) and graph placement
(e.g., coordination of rms envelope with formant frequency data, super-
imposition of two different analyses for the same raw data), provides

flexibility in viewing the results of a processing step.

3. Interactive Program Control

Commands entered from the Teletype are used to control program

flow: setting display and data parameters, specifying data input and

39

[

|

output, and calling for particular processing modules. The first part

of each command is a mnemonic, followed by any required parameters, which
are entered, free format, as floating point numbers or alphanumeric labels.
Some parameters can be changed while a process is running by using the

software pseudo-interrupt feature of the PDP-10.

A "mouse' connected to the Adage display can be used to interact
with displays of time series data. Moving the mouse changes the location
of a pointer on the face of the display. Pressing a button on top of the
mouse assigns an index to a point in the time series; a line is entered
on the display at that location, and a marker is entered in a correspond-
ing location in the data file. Another button on the mouse allows
scanning through the expanded representation of the time series data on
the lower half of the display, either continuously, at periodic intervals,

or discretely.

G. The SRI Question-Answering System

As indicated in the introduction to Section III, our initial intent
was to pursue two separate system designs reflecting two different ap-
proaches to question answering. We chose to concentrate our resources on
Pintle, accessing the data from acoustic processing through a word
verification procedure. However, we did some preliminary work on
modifications of an existing system so that it could be interfaced with

a more traditional acoustic analysis procedure.

ENGSPK is the latest in a series of natural language, interpretive,
question-answering systems being developed at SRI. Developed over a
period of years by Coles and incorporating some early work by Raphael
and Green (see Coles, 1972, for references), it integrates a formal
theorem-prover with a procedure for natural language analysis to retrieve
information from data files. In this system, the input sentence is

analyzed by transformational and phrase structure procedures to identify

40

. . oaaam.

its syntactic structure. A semantic interpreter maps this structure

into the first-order predicate calculus. A resolution theorem-prover

is used to relate the resulting deep structure to axioms that represent
the information stored in the data base. A generative component provides
for a natural language response. Coles' most recent efforts have been
directed toward determining the feasibility of using this system for

querying a large data file (Coles, 1972).

The syntactic analysis component of ENGSPK is a bottom-up parser,
dependent upon the availablility of an input string for processing. For
use in a speech understanding system, ENGSPK would require a detailed
analysis of the speech signal to generate hypotheses regarding the words
in the message. These word hypotheses then would be checked against the
accumulated syntactic and semantic data. In anticipation of the avail-
ability of such an acoustic processing component, some changes were made
to allow for the accomnodation of the system to speech input and to the
"blocks world" problem domain. Three dictionaries were defined to sat-
isfy the vocabulary requirements: the first contains 250 words, the
second about 1000, the third is a domain-independent special list contain-
ing about 3000 verbs. In addition, a simple morpheme dictionary of
prefixes and suffixes has been specified, and a scenario has been
formulated for demonstration purposes. A technique for verb general-
ization using inflectional analysis now allows the system to represent in

its memory verbs it has never encountered previously. The anaphoric

reference subroutines have been improved to allow extended sequences of
such references. Conversion of the whole system from Stanford-LISP to BBN-
LISP also allowed substantial improvements in random access from second-

ary storag~o files. !

Although we do not now intend to develop an appropriate acoustic 1
processing component for ENGSPK, we do believe that work done by other

ARPA contractors may prove relevant for this purpose. To the extent

41

that a suitable word hypothesizer becomes availanle, the development of

a system linking it with ENGSPK would be a worthwhile effort. We are
willing to cooperate with other contractors toward accomplishment of

this goal.

42

B . . e

IV DIRECTIONS FOR CONTINUING RESEARCH AND DEVELOPMENT

A. Overview

Our program for continuing research and development centers on the
implementation of an integrated speech understanding system. We do not
expect to make any substantial change in the system design until we have
thoroughly investigated our current strategy. As indicated in the pre-
vious sections, we recognize the need for further work on Pintle, on
algorithms for acoustic parametrization, and on word verification pro-
cedures. Most important will be the effects on the system from an
increasing interdependence of these components as we experiment, make
modifications, and experiment again. Additional work on semantics and
pragmatics, on prosodics, on a grammar for spoken English, and on tech-
niques for speaker independence can be expected to have a significant
impact on increasing the sophistication of the system. We also are ex-
ploring ways of increasing the richness of the problem domain so that it

can sustain more complex goal-oriented interactions with a user.

B. An Integrated Speech Understanding System

The communication between the programs for syntactic and semantic
analysis and the acoustic data through the procedures for word verifi-
cation is relatively simple at present. Pintle predicts a set of words,
the word verifier tests the words against the acoustic data, a word is
selected according to degree of agreement, and Pintle continues accord-
ingly. It is reasonable to expect that communication should be more
complex. Prosodic information can affect high-levc:l decisions in Pintle,
and feedback of acoustic data within the word verification procedure

can result in more economical searches. Consequently, although we are

43

[ot T

T e N T p———

e

Al o b . &

now independently making changes in Pintle and in the word verifier, it

is likely that future modification will reflect the increasing interde-

pendence of procedures within the system.

Following the analysis of the sample sentence in Section II, some
provisional features of the current implementation were noted. We do
expect to be completely 'on-line” relatively soon, i.e., to have the
A/D conversion take place wholly within our PDP-10 computer rather than
having to transfer digitized tapes from the PDP-11. When the A/D
programs are available, we will be able to enter voice directly into .
the system. However, this capability will not make a major difference
in exercising the system itself in the near future because of the time
required for A/D conversion and for other basic acoustic data processing.
Still, it will simplify debugging algorithms to be used in word verifi-
cation, The availablility of a quiet room for r: Jurding in close
proximity to our display facility and to the computer should increase
our efficiency, but it also will have little actual effect on the system

itself for the present.
1, Pintle

To achieve greater flexibility in our procedures for syntactic
and semantic analysis, we are beginning to test some new algorithms in
QA4, They must be able to use information from word verification, from
semantics, and from prosodic analysis to control the path through the
grammar, We want to be able to assign priorities to the alternatives
at any particular choice point. In effect, we are trying to find the

minimal cost path through the graph that represents our grammar.

2, Acoustic Processing

As indicated in the previous section, no new basic capabilities
for acoustic processing will be developed. Rather, we will be trying

to extract more useful information from the data now available to us.

44

T
In relation to the procedures for word verification, we need more 1
precise techniques for parametrization to allow us to distinguish more j
clearly among the words in a set predicted by Pintle. For prosodic j
analysis--i.e., to identify stressed words, intonation contours, and l
linguistically significant pauses--it will be necessary to prucess ’

acoustic data over substantial periods of an utterance. In this work,

we expect to cooperate closely with the University of Michigan and with
UNIVAC,

3. Word Verification

— TSRS AN W ey .

With the availability of algorithms for making more precise
classifications of sounds, it should be easier to write more word

functions. Having written 100 or so, we should be able to establish

have used enough to be able to judge how well the word verifier concept
actually works. We helieve that word functions provide a particularly
good medium for embodying acoustic phonetic rules. Coarticulation

effects within words can be handled easily, and we are interested in

some general procedures for creating them. More important, we will 1
determining how well the procedure works for coarticulation between
words. Feedback of acoustic data from word verification is another
major problem. It does seem likely that such information can help in
testing successive words within a set, but we are interested in determin-

ing whether it can be used more generally to influence Pintle.

(o Semantics and Pragmatics

gl

The development of effective procedures for handling semantics and
pragmatics is essential both for the operation of an initial speech
understanding system and for extrapolating the results of our efforts

to other problem domains. Recent research in syntax has provided some

o e

very general and reasonably efficient procedures for parsing that (in

|
[
principle) can handle perhaps all of the syntactic constructions in : 1
4
1

45

N N "N =y mm—

English. However, it is not clear that existing parsers can accommodate

the semantic information that we believe is necessary for our system.
Our continuing work on Pintle is intended to provide flexibility and
rontrol over priorities assigned to choice points in the grammar. Now
we need procedures that model the world and the user to provide the

proper kind of guidance for assigning those priorities.

The point of departure for our work on semantics and pragmatics
is the model of case grammars being developed by Charles Fillmore (1971la,
1971b) of the University of California at Berkeley. This model is being
extended by him and others toward ''a fully developed system of linguistic
description” involving the analysis of complex utterances or messages,
not just sentences, and including multiple participants in conversations.
Fillmore's work builds on transformational grammar but extends beyond

competence into performance in a social context.

Even without all of the possible elaborations, Fillmore's case
concept has a direct implication for the kind of semantic structures
that we intend to incorporate into revisions of Pintle. In case grammar,
the propositional core of a simple sentence is a predicator (verb, noun,
or adjective) in construction with one or more entities, each related
to the predicator in one of a set of semantic functions known as cases.
The cases identify particular roles, such as instigator of an action,
experiencer of an event, object undergoing change or movement, and
location or time of an event. The number of cases proposed is small, and
there are some markers in the surface structure (e.g., prepositions)
that make the application of these linguistic concepts to recognition a

realistic enterprise,

D. Prosodic Analysis and a Grammar for Spoken English

The importance of prosodic information already has been mentioned

several times in this section. It is particularly important for the SRI

46

t
r

speech understanding system because it can provide a basis for assigning
priorities in Pintle at the beginning of an utterance. It also can sug-
gest hypotheses about the presence of syntactic or semantic "boundaries"
in an utterance that can be used in determining the most likely path
through the grammar. More generally, however, the rules for such

speech elements as stress, intonation, and pauses should form part of a
grammar for spoken English. This grammar also should incorporate phono-
logical and acoustic/phonetic rules that describe how people actually

speak.

We can expect that the artificiality both of the problem domains
chosen for speech understanding research and of the interaction with a
computer through a microphone will 1limit the range of English spoken
and the variety of styles used. However, it is obvious that we need to
maintain close communication with linguistics because even our more
limited tasks can be accomplished only through cooperative efforts.
Coordination within the ARPA Speech Understanding Research Program needs

to be complemented by extensive contacts with other linguists.

E. Speaker Independence

In their present form, our feature-detecfion algorithms have not
been talker-dependent, principally because they have been designed to
make reliable--if crude--classifications. As the algorithms become
more complex, it is likely that variations among speakers will create
perturbations in the results from the word functions. The first attempts
to gain acceptable speaker-independent performance will probably involve
manual threshold adjustments of the variables defined in the word veri-
fication procedures. As familiarity with the data base and with the
procedures themselves increases, attempts will be made to introduce some

automatic "speaker normalization” calculations.

|
|

Appendix A

DIGITAL FILTER DESIGN PROGRAM

Technology Service Corporation of Santa Monica, California, prepared
a digital filter design program for SRI that will design and verify
recursive digital filters. The program is user oriented tc permit in-
experienced programmers and designers to use it. Included in the
program are three standard filter prototypes: Butterworth, Bessel, and
elliptic (Cauer parameter) designs., Other filter functions may be sup-
plied externally by a specification of the poles and zeroes of the

transfer function.

The program has the capability of transforming any of the above
standard designs to bandpass, bandstop, low-pass, and high-pass transfer
functions with arbitrary cutoff frequencies. 1In addition, the program
determines recursive sampled-data or digital representations for any of
these filter transfer functions using either the standard z-transform
or the bilinear z-transform. Program output includes poles and zeroes
of the above continuous functions, the coefficients for the recursive
digital filter functions realized in parallel form, and optionally printed
frequency and time response characteristics, as well as a FORTRAN function
representation of the digital filter. The frequency and time response
characteristics may be displayed by the graphics system associated with

the computer, |

% Preceding pag¢Splank l:

Appendix B

A LISP-FORTRAN INTERFACE

The interface facility provides for:

® Creation from LISP of subfork(s) containing FORTRAN programs,
® Subprogram calls from LISP to the FORTRAN fork.

® Creation of REAL or INTEGER arrays accessible from both forks.

The FORTRAN Side

There are only a few requirements for the FORTRAN program:
® The symbol table produced by the loader must be saved with
the program.
A smail MACRO interface package must be loaded with the program,

Seversl entry vector locations (Numbers 3 to 6) must be left
free for use in interfork transfers. (Programs normally use
Locations O and 1 only).

If arrays are to be shared with LISP, then a block of pages to
hold the arrays must be specified when the program is saved.

The steps to create the FORTRAN program are as follows:

® load the program with symbols (i.e., use /B/S) and include
(RIDDER)F4fF .,REL, When the loader exits, go into DDT, do any
pre-save initialization necessary, and then transfer to the
interface package by typing FKINIT$G. It will respond with
NUMBER OF PAGES SHARED: and wait for you to type in a number
(in OCTAL) indicating how many pages will be shared with LISP,

If this count is non-zero, then the program will type FIRST
SHARED PAGE: and wait for another number (also in OCTAL) in-
dicating the first page in the FORTRAN address space of the block
of pages to be shared.

Control then returns to the EXEC. Save the program and symbols
using either SAVE or SSAVE, (DDT need not be saved--it will be

51

t automatically brought in if needed at run time).

| 2, The LISP Side

The following functions constitute the LISP side of the inter-

face. (Load (RIDDER)FORK.COM to use them).

fkinit [program)

This function is an nlambda that creates and initializes a fork
containing PROGRAM. Information about the {ork is saved on
FORKDATA, (FORKDATA is used as a free variable by the other
functions to access the data associated with the fork. This
makes it possible to talk about multiple forks by changing

the binding of FORKDATA),

Example: (FKINIT (RIDDER) IMMSAS , SAV)
fkddtl[]
This function transfers control to the fork DDT and waits for

the fork to halt, It is not necessary to have saved DDT with
the program. To return to LISP from the fork, type HALT$G to

DDT.
Example:
~ FKDDT() From LISP go to DDT in fork
X+1$1B HALTS$G Set a breakpoint, then return to
LISP
T Value of FKDDT is T

~ FKCALL (XFCN REAL) From LISP call the fork subroutine
(FKCALL is discussed below)

$1B))X+l ... $P Stop at breakpoint then proceed
3.1415979 FKCALL types result |
- Back in LISP J

fkkilll]

This function kills the fork and sets FORKDATA to NIL,

SR o L e o

. — - T — B . i "‘ - __-u-—]
I = = ‘

)

fkarray [id;type;sizel

This function is an nlambda that creates a shared array. SIZE
is evaluated and a block of SIZE+1 words is allocated in the
pages shared with the fork. 1ID is set to the LISP address of
the array and entered into a LISP hash table of symbols for
the fork with value equal to the fork address of the first
data word of the array. TYPE can be either REAL or INTEGER
and specifies the type of number to be stored. The value of
FKARRAY is the LISP address of the array.

|
!
.l

NOTE: shared arrays are not garbage collected. They stay
around until the fork is killed.

Example: (FKARRAY SHR REAL 100)
fkarraysizelal

This function returns T iff A is a shared array for the fork
specified by FORKNAME,

fkeltla;n]

This function returns the Nth element of shared array A. Its
value is a boxed integer or a boxed floating point number ac-
cording to the type of A.

fksetala;n;v]

This function stores V into the Nth element of shared array A.
Its value is V.,

fksym[id]

This function asserts that ID is either a global symbol ia the

fork or the name of a shared array. 1Its value is the fork ad-

dress of ID (as a boxed integer). FKSYM first looks for ID in

the hash table of symbols for the fork. If ID is not found |
there, then the symbol table saved with the fork is searched

for a global definition of ID, and the resulting value is

entered in the hash table. If ID cannot be found, then FKSYM

calls error.

.

#
Note that to reference an ID declared in the fork, it must be J
a global symbol. This means it must be in named COMMON with !

%t.
53 é
|
g

ID the name of the COMMON block (i.e., declaured as COMMON
/1ID/ID). This is the same convention that must be followed if
ID is to be referenced from a MACRO program loaded with the
FORTRAN program.

Example: (FKSYM (QUOTE F4ARRY))
fkcalllid; type;argl ... argnl
This function is a nospread nlambda (i.e., it can have an arbi-

trary number of arguments, and it gets them in an unevaluated
form) that calls a FORTRAN subprogram and returns the result.

i o . . e | B i o R

. The value of ID is used as the name of the subprogram. The
function FKSYM is called to find the fork address.

The value of TYPE specifies the result type of the subprogram.
The result types currently accepted are:

INTEGER--value is boxed integer

REAL--value is boxed floating point number
LOGICAL--value is T or NIL

SUBR--value is NIL

The following process is carried out to determine the meaning
of each subprogram argument.

If ARGi is of the form (BIAS A N), then A is evaluated and con-
verted to a fork address by FKSYM. The sum of (eval N) -1 and
the fork address for A is used to specify the parameter. This
mirrors the use of A[N] as an argument in FORTRAN.

If ARGi is a list of the form (INTEGER X), (REAL X), or
(LOGICAL X), where X is any atom, then the value of X is
passed, and later X is set to the value assigned by the sub-
program to its corresponding dummy argument. This makes it
possible to return multiple results from subprograms in the
standard FORTRAN manner.

In case ARGi is not one of the above, it is evaluated, and the
type of the value is used to determine the manner in which the
argument is passed.

If the value is a logical quantity (T or NIL) or a number, the
appropriate value is used (-1 for T, O for NIL, the unboxed
value for a number).

1 54

If the value is a LISP array, then a copy of the entire array
is passed. (Needless to say, it should be a small array.)

If the value is a string, then a copy of the string (left-
Justified, 7-bit ASCII, and followed by a word containing 0)
is passed.

If the value is the address of a shared array, then the fork
address is used.

If the value is an atom the FKSYM is called and its value is
used to specify the parameter.

Otherwise FKCALL calls error.

NOTE: 1lists cunnot be sent--use shared arrays to create
"lists" for FORTRAN.

Rough timings indicate that the simplest FKCALL, namely a call
to a SUBR of no arguments, takes about 15 milliseconds, of
which about 10 are spent executing the appropriate monitor
JSYSs. Each argument for the subprogram adds about 2 milli-
seconds, as does returning a result.

The argument information must fit in 14 words, since it is sent
to the lower fork in the accumulators (the other two accumula-
tors are used for specifying the argument types and the
subprogram address). LISP array arguments take arraysize words;
strings take (nchar+4)/5 + 1 words; all other argument types
take a single word.

Example:

(FKARRAY IA-LISP INTEGER 100)

(FKSYM (QUOTE IA))

(FKCALL (QUOTE MOVARY) (QUOTE SUBR) (BIAS (QUOTE IA) 100) IA-LISP 100)
(FKCALL) (QUOTE SUM) (QUOTE INTEGER) IA-LISP 10 50).

(FKCALL (QUOTE AVG) (QUOTE REAL) (QUOTE IA) 100 (REAL DEVIATION))

NOTE: a minor annoyance occurs when FORTRAN does teletype 1/0
because the job global TTY mode information is changed in a way
that interferes with standard LISP interaction. The primary
symptom of this is the failure of LISP to respond when the
closing right parenthesis is input. To restore the proper
settings, simply type a control-E to LISP (part of the proces-
sing of control-E resets the TTY mode to its original value).

55 :

Alternatively, the problem can be eliminated bty use of the
LISP (nlambda) function FKX, which saves the TTY mode, eval-
uates its argument, and restores the mode.

Example:

(FKX (FKCALL (QUOTE PRIN) (QUOTE SUBR) '('@HELLO')"))

56

|
|

PRESENTATIONS

D. E. Walker, "Human Speech: In Recognition of the Problems
Involved in Its Understanding," IEEE Systems, Man, and Cybernetics
Chapter, Menlo Park, California, 8 May 1972,

(same), Queens College of the City University of New York, Flushing
New York, 16 May 1972,

(same), University of California, Berkeley, California, 31 May 1972.
D. E. Walker, "Speech Understanding and Computational Linguistics,”
Annual Meeting of the Association for Computational Linguistics,
Chapel Hill, North Carolina, 27 July 1972.

) .

L]

REFERENCES

Coles, L. S., "Techniques for Information Retrieval Using an Infer-
ential Question-Answering System with Natural-Language Input,"
Technical Note 74, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California (November 1972).

Fillmore, C. J., "On a Fully Developed System of Linguistic Descrip-
tion," in "Feasibility Study on Fully Automatic High Quality Transla-
tion," W. P. Lehmann and R. Stachowitz, eds., Vol. I, pp. 77-94,
RADC~TR-71-295, Griffiss Air Force Base, Rome Air Development Center
(December 1971 (a)).

, 'Some Problems for Case Grammar," in 22nd Annual Round
Table on Languages and Linguistic:, R. J. O'Brien, ed., pp. 35-56
(Georgetown University Press, Washington, D.C.,) (1971 (b)),

Hudson, R. A., English Complex Sentences (North-Holland Publishing
Company, Amsterdam, Netherlands, 1971),.

Markel, J. D., "Formant Trajectory Estimation from a Linear Least-
Squares Inverse Filter Formulation," SCRL Monograph No. 7, Speech
Communication Research Laboratory, Santa Barbara, California (October
1971).

Newell, A., et al., "Speech Understanding Systems: Final Report of
a Study Group," Carnegie-Mellon University, Pittsburgh, Pennsylvania
(May 1971). To be published by North-Holland Publishing Company,
Amsterdam, Netherlands, 1973.

Rulifson, J. F., Derksen, J. A., and Waldinger, R. J., "QA4: A
Procedural Calculus for Intuitive Reasoning," Technical Note 73,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, California (November 1972).

Winograd, T., "Procedures as Representation for Data in a Computer
Program for Understanding Natural Language," Report MAC-TR-84, MIT
Project MAC, Massachusetts Institute of Technology, Cambridge,
Massachusetts (February 1971). Published as Understanding Natural
Language (Academic Press, New York, New York, 1972).

59

Preceding page blank

[S v

