
AD-757 049

SPEECH UNDERSTANDING RESEARCH

Donald E . Walker

Stanford Research Institute

Prepared for:

Advanced Research Projects Agency

Feb ruary 1973

DISTRIBUTED BY: m
National Technical Infor.nation Service
ü. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

-J HkHM^^Mta

p m

^^ Annual Technical Report

^^Covering the Period 4 October 1971 through 2 October 1972

QSPEECH UNDERSTANDING RESEARCH

By: DONALD E. WALKER

Prepared for:

ADVANCED RESEARCH PROJECTS AGENCY
ARLINGTON, VIRGINIA 22209

CONTRACT DAHC04-72-C-0009
ARPA Order No. 1943
Program Element Code 61101D

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

Approved fjr public release: distribution unlimited.

^ D n C
nj tow ,5 ,973

C

2

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

6/

*mm

^ ■■

UNCLASSIFIED
jgcufUy Classification

DOCUMENT CONTROL DATA -R&D
Srcuiily clm$ail,cmtion o' till», body ol mbxlrmcl mid indriin* annolKliun nru«l be »nr«f rf whtn the uvmrall rtpotl U clasttlfd)

I OH,GIN*T,NC »CT.VITY rCofpo,... .urhor; [i.. P»E PO R T 5E C U Rl T Y C L » 5., F . C . T , ON

Stanford Research Institute
Menlo Park, California 94025

3 REPORT TITLE

Unclassified
lb. CROUP

n/a

SPEECH UNDERSTANDING RESEARCH

4 DESCRIPTIVE NOTES fTVp* ol rmpotl and inclutiv dmltt)

Annual Technical Report: 4 October 1971 through 2 October 1972
8 AUTMORIS. ffirtrnam«. middl» Inltiml, lati nmrnt)

Donald E. Walker

« REPORT D» TE

February 1973
ta. CONTRACT OR GRANT NO

DAHC04-72-C-0009
6. PROJEC T NO

•• Program Code No. 61101D

d. ARPA Order No. 1943
0 DISTRIBUTION STATEMENT

Ta. TOTAL NO OF PASES

nrff 7b. NO OF RITS

8
Sa. ORIGINATOR'S REPORT NUMIERIS)

SRI Project 1526

•"• ?hJ
Htn "fORT NO(SI (Any oihar numbara thai may b» mtilgntd

Distribution of this document is unlimited.

11 SUPPLEMENTARY NOTES

II ABSTRAC T

12 SPONSORING MILI TARV ACTIVITY

Advanced Research Projects Agency
Arlington, Virginia 22209

Stanford Resoarch Institute is participating in a major program of research on
the analysis of continuous speech by computer. The goal is the development of a
speech understanding system capable of engaging a human operator in a natural
conversation about a specific problem domain. The approach being taken is distinc-
tive in its use of syntactic and semantic processing to guide the acoustic analysis.

DD /SfJ473 (PAGE »'
S/N 0101.607.6601

jr^' UNCLASSIFIED
Security Clattifica.ion

- —

UNCLASSIFIED
Security Classification

K C V WO ROS

Natural language processing

Question answering

Speech understanding

Computer understanding

Speech recognition

Syntax

Semantics

DD .'^..1473 «"«CKI
(PAGE •)

"zr7?"
UNCLASSIFIED
Security Clsttificatlon

—« '

STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • USA.

Approved for public release;
distribution unlimited.

Form Approved
Budget Bureau No. 22-Rü293

February 1973

Annual Technical Report

Covering the Period 4 October 1971 through 2 October 1972

Stanford Research Institute Project 1526

SPEECH UNDERSTANDING RESEARCH

By

DONALD E. WALKER
Project Leader

(4151 326-6200, Ext 3071

CONTRACT DAHC04-72-C-0009
ARPA Order No. 1943

Program Element Code 61101D

Prepared for

ADVANCED RESEARCH PROJECT; AGENCY
ARLINGTON, VIRGINIA 22209

The views and conclusions contained in this uo^ument are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced
Research Projects Agency or the U.S. Government.

Approved by:

BERTRAM RAPHAEL, Director
Artificial Intelligence Center

BONNAR COX, Executive Director
Information Science and Engineering Division

Copy No. ...I.:.?..

X

mmk

CONTENTS

LI3T OF ILLUSTRATIONS v

LIST OF TABLES v

I INTRODUCTION 1

II AN INTEGRATED SYSTEM FOR SPEECH UNDERSTANDING 5

A. Introduc tion 5

B. Understanding a Sample Sentence 6

C. Provisional Features of the Current

Implementation 12

III SPEECH UNDERSTANDING SYSTEM COMPONENTS 15

A. Initial Resources 15

B. Pintle—Procedures for Syntactic and

Semantic Analysis 16

C. A Grammar for the Speech Understanding

System 21

D. Acoustic Processing 23

E. Word Verification 32

F. Interactive Speech Analysis Facility 36

1. Data Base Management 37

2. Graphic Output 39

3. Interactive Program Control 39

G. The SRI Question-Answering System 40

IV DIRECTIONS FOR CONTINUING RESEARCH AND

DEVELOPMENT 43

A. Overview 43

B. An Integrated Speech Understanding System 43

iii

^ I. ■ - • ^MrtM

p m

IV DIRECTIONS FOR CONTINUING RESEARCH AND
DEVELOPMENT (Continued)

1. Pintle 44
2. Acoustic Processing 44
3. Word Verification 45

C. Semantics and Pragmatics 45

D. Prosodlc Analysis and a Grammar for Spoken
English 46

E. Speaker Independence 47

APPENDICES

A DIGITAL FILTER DESIGN PROGRAM 49

B A LISP-FORTRAN INTERFACE 51

PRESENTATIONS 57

REFERENCES 59

iv

y

ILLUSTRATIONS

1 Analysis of a Sample Sentence 8

2 Basic Acoustic Processing for the SRI Speech

Understanding System 25

3 Classification Algorithm for Acoustic Segments 27

4 Interactive Man-Machine Speech Analysis System

Organization 38

TABLES

Acoustic Data for the Sample Sentence 28

j

- ^ ^^^^tut

I INTRODUCTIOW

Stanford Research Institute ia participating with other ARPA/IPT

contractors in a major program of research on the analysis of continuous

♦ t
speech by computer (see Newell et al., 1971). The goal is the Hevel-

opment of a speech understanding system capable of engaging a human

operator in a natural conversation about a specific problem domain. The

domain chosen by the SRI project for its initial efforts was one devel-

oped by Winograd (1971), a simulation of the actions of a robot that can

manipulate various kinds of blocks. A person speaking to the computer

will be able to ask questions about the "blocks world," to give commands

that will modify it, and to add information to augment its structure.

The procedures being developed to provide these capabilities integrate

pragmatic, semantic, syntactic, lexical, phonological, phonetic, and

acoustic analyses.

Efforts toward speech understanding contrast with those directed

toward speech recognition both in goal and in approach. Speech recog-

nition work has aimed at providing an orthographic transcription of the

sounds and words corresponding to the speech signal. Analysis has con-

centrated on acoustic processing, although linguistic segmentations have

been attempted, particularly in relation to phonetics, phonemics, and

morphology. In contrast, speech understanding research seeks to deter-

mine the message intended in relation to the accomplishment of some task,

in spite of indeterminacies and errors in the generation, transmission.

Contract No. DAHCO4-72-C-0009, SRI Project 1526.

Refc-nnces are listed alphabetically at the end of the report

^MriHMl

and reception of an utterance. Special emphasis Is placed on semantic,

syntactic, and pragmatic information, and a questlon-answerln_, system

may be used as a major processing component. In particular, our approach

at SRI stresses the critical role of semantics and pragmatics in reducing

the amount of acoustic processing necessary to understand an utterance.

The ARPA Speech Understanding Research Program spans the broad

lange of research and development efforts necessary to produce a proto-

type speech understanding system. Within this range, our activities at

SRI are directed toward the following goals:

• Implementation of an integrated system

• Establishmen of effective procedures for handling semantic and

pragmatic information

• Formulation of techniques for dealing with variability within

and among speakers.

Our strategy in pursuing these goals has been to put a system into oper-

ation at the earliest possible time, making maximum use—within the con-

fines of the basic system design concept—of existing programs and

algorithms. We believe that exercising a system will allow us to identi-

fy the kinds of links that need to be established among the components,

as well as provide useful guidance for constructive revision of the

components themselves.

In the system we are developing at SRI, knowledge of the world, a

model of the Ufer, and a grammar will combine to constrain the selection

of a small set of words, each of which might be expected to be present

at a particular place in the speech stream representing an utterance.

For each word, a program is written to enable determination of how well

the word corresponds to the acoustic data for that place. When the

presence of a word is confirmed, a new set of words is selected for

testing at the next place in the speech stream. Successive steps through

the utterance result in a determination of its structure.

/

mm*

During this first year of the project, development has been carried

to the point where syntactic, semantic, and acoustic data are used in

processing sentences. The capabilities developed are rudimentary, but

we can predict words and test for their presence. No model of the user

has been developed yet. More preprocessing of the acoustic data is done

than we believe will be necessary. Only a small number of word functions

have been written; thus, it is not possible to step through a complete

utterance. Nevertneless, the results to date are sufficient to encourage

us to continue Implementation of the system design.

A description of the current state of the system is presented in

Section II. A detailed analysis of the system components is given in

Section III. Section IV considers the directions for continuing research

and development.

. •

- • ^*a ^M^i ^MrtHft

II AN INTEGRATED SYSTEM FOR SPEECH UNDERSTANDING

Introduction

In the current state of the SRI system for speech understanding, it

is possible to identify three major components: Pintle, a set of pro-

cedures for syntactic and semantic analysis; programs for acoustic

processing; and a word verifier routine that links the other two. There

will be additional components and major changes in all three of the pres-

ent ones, as well as much more complex interrelationships. Nevertheless,

In its current stata, the system does illustrate an approach to speech

understanding that is distinctive because of its dependence on syntactic

and semantic processing.

Pintle is a major modification (in ways described below) of Terry

Winograd's system for procedural analysis of language (Winograd, 1971).

It combines a grammar—written as a set of programs—with senantic rou-

tines that model changes in the arrangement of a set of blocks. A

sertence constitutes a path through the gran.mar. Branching at choice

points is determined by the order of the rules, by features on other

constituents, and by semantic data. At the end of each branch in the

parse tree is a set of words from a particular grammatical class (e.g.,

determiners, adjectives, nouns, verbs), from which a subset can be select-

ed on semantic grounds.

The acoustic routines convert the recorded analog voice input to

digital form. The digitized signal is then fed into a bank of digital

filters, which make it possible to assign successive acoustic segments

to the follfvving rough classes: silence, voiced turbulence, unvoiced

turbulence, voiced stop, vowel-like, or other. The signal also is

Preceding page blank

±^ rial

processed by a more complex acoustic analysis procedure that identifies

the frequency and amplitude for the first three spectral peaks of the

vowel-like sounds. The data from these two analyses are stored la

files.

The word verification routines take a set of words produced by Pintle

and test each word against the acoustic data for a particular portion of

the utterance. The result is a subset of the words, ordered according to

agreement with the acoustic data, with each word containing a pointer to

identify Its approximate endpolnt in ^he acoustic stream. Pintle takes

the most likely word first and then proceeds on its path through the

grammar to select the next set of words for processing by the word veri-

fier. Testing this new set against the acoustic data begins at the point

designated by the endpoint for the word previously accepted.

An example is considered next, and a more detailed description of

each of the components is presented in Section III.

B. Understanding a Sample Sentence

A brief description of the "blocks world" problem domain used in

the SRI system is necessary as background for the analysis of the

sample sentence. Visualize a table containing a box and several objects

of different sizes, shapes, and colors. There are five blocks (two red,

one blrck, one green, one blue) and three pyramids (green, blue, and

red); the box is white. The objects are arranged in a particular

configuration in the computer representation of the scene, but the

details of the arrangement are not necessary to understand the example.

Commands given to a simulated robot arm cause it to move the blocks.

Alternatively, the person Interacting with the system can ask questions

or provide information that will augment or change the semantic struc-

ture of the world in some way.

fmm

rr
The sentence to be processed Is the following:

PUT THE BLACK BLOCK IN THE BOX.

All of the steps involved in its analysis are presented in the following

pages as they occurred in an actual demonstration. The capabilities

shown reflect the state of the system as of September 1972. Lines pre-

fixed by an arrow represent entries by the user. Figure 1 contains the

actual protocol.

BBN LISP-10 12-11-72

The speech understanding system is implpmented in BBN-LISP and is

run on a PDP-10 computer under the Tenex Operating System.

-SYSIN(<ROBINSON)SPINTLE)

The file containing the system is called to be read in.

((ROBINSON>SPINTLE.;1)

Confirmation that the system (Version 1) is read in.

-DEMOTRACE)

The trace is turned on to show the output sequentially.

AINTERP

Confirmation.

-FKINIT(<RIDDER)LSWDS.SAV)

The FORTRAN fork containing the acoustic routines is initialized.

(The LISP-FORTRAN interface allowing accejs to FORTRAN data files

from LISP will be described later.)

<RIDDER>LSWDS.SAV

Confirmation.

-SPEECHDATH(M351R)

The prerecorded acoustic data for the sample sentence are read in.

NIL

Confirmation.

H» (PUT THE ($ 37) ($ *) IN THE ($ 134).)

Analysis of the sentence by Pintle is initiated. At the time this

•w^

BBN LISP-10 12-11-72

^SYSIN(«ROBINSON»SPINTLE)
(<ROBINSON>SPINTLE.fl)
«-DEHOTRACE)
AIWTERP
^FKINIT(<RIDDER»LSWDS.SAV)
«RIDDER>LSWDS.SAV
••SPEECHDATA (MS JIR)
NIL
«^ (PUT THE ($ 57) ($ ♦) IN THE ($ 134).)
• ••
PUT
THE
BLACK
BLOCK
IN
THE
BLACK
BOX

(CLAUSE MAJOR IMPER ACTV TRAWSL)
(VQ IMPER)

PUT (INF PAST VB TRANSL VPRT MVB)
(NQ OBJ OBJ1 NOLOC DET DEF NS)

THE (DET NPL NS DEF)
BLACK (ADJ)
BLOCK (NOUN NS)

(PREPG PLACE LOBJ)
IN (PLACE PREP)
(NG UBJ PREPOBJ DET DEF NS)

THE (DET NPL NS DEF)
BOX (NOUN MS)

MOVETO 472 192 128
GRASP tB3
MOVETO 44fi 448 129
UNGRASP

OK.

NIL

1

FIGURE 1 ANALYSIS OF A SAMPLE SENTENCE

^*a

Pl'T

THE

BLACK

BLOCK

protocol was made, the word verifier did not have word functions

available for the sets of words Including PUT, THE or IN. Under

these circumstances—and in general to allow more flexible testing

of the system—it is possible to enter text to specify a word. For

convenience, the *ord verifier checks the input text first to see

whether any of the words in the set predicted has been typed in.

Finding none, it will use the appropriate word functions, if they

are available. If none are present, the words in the set will be

rejected.

Pintle begins by looking for a major clause; branching along the

imperative path, it looks for command verbs. The word PUT is

among those in the set generated at this point, and it is found

in the text input.

Having found a verb, Pintle begins its search for a noun group by

looking for a determiner. THE is confirmed from the text input.

I

Having found a determiner, Pintle looks for an adjective. Since

there is no text input, the predicted words are tested against

the acoustic data. Beginning at a location 370 milliseconds into

the utterance (the 37th 10-millisecond segment), the word verifier

finds that BLACK corresponds to the acoustic data at the highest of

four confidence levels; RED, GREEN, BLUE, and WHITE are rejected.

Pintle now looks for a noun to complete the noun group. It begins at

the location in the acoustic data confirmed as the ending place for

BLACK, the previous word accepted. This condition is specified by

tho asterisk in the initial entry for the sentence to be processed.

The word verifier finds that BLOCK corresponds to the acoustic data

J

- ^m*

m<m

IN

THE

at the highest confidence level; BALL, PYRAMID, and THING are

rejected.

With the noun group complete. Pintle looks for a prepositional

phrase to complete the action denoted l)y PUT. IN is confirmed

from the text input.

Looking for a noun group to complete the prepositional phrase, Pintle

begins with the determiners. THE is confirmed from the text input.

BLACK

Pintle next looks for adjectives. Beginning at a location 1340

milliseconds into the utterance (the 134th segment), the word veri-

fier finds that BLACK corresponds to the acoustic data at the third

highest confidence level. RED, GREEN, BLUE, and WHITE are rejected.

BOX

The location returned along with BLACK proves to be the end of the

utterance. Consequently, BLACK is rejected because the string so

ending would be ungrammatical; it also would be seinantically unac-

ceptable. Pintle backtracks and begins looking for nouns. BOX

corresponds to the acoustic data at the highest confidence level;

BALL, PYRAMID, and THING are rejected.

(PUT THE BLACK BLOCK IN THE BOX)

The sentence as identified. At this point the system returns a

printout showing the grammatical structure of the sentence.

(CLAUSE MAJOR IMPER ACTV TRANSL)

(VG IMPER)

PUT (INF PAST VB TRANS VPRT MVB)

(NG OBJ OBJ1 NOLOC DET DEF NS)

THE (DET NPL NS DEF)

BLACK (ADJ)

10

dm*

BLOCK (NOUN NS)

(PREPG PLACE LOBJ)

IN (PLACE PREP)

(NG OBJ PREPOBJ DET DEF NS)

THE (DET NPL NS DEF)

BOX (NOUN NS)

Briefly summarized, the sentence is identified as an active imper-

ative with the verb PUT involving the movement of an object, THE

BLACK BLOCK, to a location, IN THE BOX. (See the next section and

Winograd, 1971, for more extended discussions of the grammatical

structure.) This information is used to direct movements of the

simulated robot arm in conjunction with the semantic definitions

for the words and the determination of their relevance for the

current state of the problem domain, as indicated in the following

steps.

MOVETO 472 192 128

The arm moves to the black block, specified by the three coordinates

given.

GRASP :B3

The arm grasps B3, the black block.

MOVETO 448 448 129

The arm with the black block moves to the box, specified by the

three coordinates.

UNGRASP

The arm releases the black block inside the box.

OK

The system indicates that it has completed the action identified

in its "understanding" of the input utterance.

11

m

C. Provisional Features of the Current Implementation

In anticipation of a more detailed discussion of the system

components in the next section, it is probably reasonable to note here

son.e characteristics of the analysis of t.. sample sentence t^at are

temporary expediencies not to be considered characteristic of the sys-

tem design. Some of the remarks made here are amplified in Section IV,

Directions for Continuing Research and Development.

The system is not totally on-line at this time; i.e.. It is not

possible to speak directly into the system and to initiate processing

accordingly. Analog-to-dlgital conversion of the speech signal cannot

be performed on our PDP-10/15 computer facility yet, pending completion

of the necessary software. Consequently, for the present we are

digitizing the signal on a PDP-11 and transferring the resulting files

by tape to the PDP-10 for the remainder of the acoustic analysis.

The FORTRAN files accessed by tho word verification routines now

contain preprocessed datE from both the digital filters and from the

linear predictive coding analysis. In the system as designed, we

expect to do an analysis in real time that will produce the preliminary

classification of acoustic segments now provided by the digital filters.

However, we expect to perform spectral analyses of the kind provided by

LPCs and to call for other complicated acoustic processing only as

required to make the kinds of decisions necessary to distinguish among

the predicted words in relation to the acoustic data.

As noted in the analysis of the sample sentence, only a small

number of word functions have been written. Consequently, it is not yet

possible to process a complete sentence. The option of testing predicted

words against textual, as well as acoustic, data is useful for debugging

the acoustic routines for particular sets of words. It is also useful

in the absence of semantic and prosodic procedures for establishing

12

constraints on paths through the grammar at the beginning of utterances,

and, in particular, at the beginning of a dialog when no context has been

established.

A final comment on the analysis embodied in the sample sentence is

probably in order. We have not exercised the system to any great extent.

There are only a few word functions, and they have been tested against

only two speakers. The flow of control in the current implementation is

primarily from the syntactic and semantic component to the acoustic. It

is clear, however, that useful information can pass in the opposite dir-

ection, not only from what a prosodic analysiu might provide, but also

from what might be expected to arise in the course of testing words a-

gainst the acoustic data. In addition, there probably are ways in which

the word verifier, which currently processes one word at a time, can

operate more efficiently on the whole set of predicted words in relation

to the acoustic data, thus i Jucing the search space involved.

13

mt

■^■^

III SPEECH UNDERSTANDING SYSTEM COMPONENTS

A. Initial Resources

When the project was initiated at SRI, wr, had available (or crald

quickly obtain):

• Techniques fcr analog-to-digital conversion of the speech signal

• Algorithms for performing Fast Fourier Transforms (FFTs) to pro-
vide spectral data.

• The beginnings of an interactive man/machine speech analysis
facility for use as a research and development tool.

Th(bases for two approaches to syntactic and semantic processi ng.

- A question-answering system, based on the first-order predicate

calculus and incorporating a resolution theorem prover, which

has been evolving at SRI over a period of years.

- A program package, originally developed at MIT, for the Wino-

grad system for natural language understanding.

Our plan for the first year included the following tasks:

• To develop a comprehensive capability for acoustic analysis, in-

cluding completion of the interactive speech analysis system.

• To pursue the two approaches to syntactic and semantic analysis,
modifying each to allow for speech input.

• To prepare for each syntactic and semantic component an inter-

face with algorithms built on the acoustic analysis processes.

To implement these interfaces and test the rrsuiting systems.

To do the necessary work on system organization required to co-

ordinate LISP and FORTRAN programs and provide a common file

structure that would allow data to be accessed by each, while

exploring the relevance of QA4, a new programming system being

developed at SRI under separate support (Rulifson, 1972), for

future system implementations.

Contract NASW-2086, SRI Project 8721

15

Preceding page blank

^MÜ

■' »I I 'Uli«!

We were able to (irry out this plan during the year with one ex-

ception. It was not possible to prepare algorithms that would allow the

SRI question-answering system to interface with acoustic processes. Not

only would that effort have required more resources than were available,

but, in addition, similar algorithms are being developed elsewhere,

and it should be possible to take advantage of the developments later.

The decision to concentrate on the system described in Section II was

made because it involved a more radical design concept and because th*

requirements for acoutsic analysis are believed to be le^s demanding. The

present section contains more detailed descriptions of the components of

this system. Also included are a brief overview of the interactive speech

analysis facility and a summary of the work performed on the SRI question-

answering system in anticipation of an acoustic interface.

B. Pintle—Procedures for Syntactic and Semantic Analysis

Pintle, the syntactic and semantic component of the SRI system for

speech understanding, is based currently on the Winograd "Computer Pro-

gram for Understanding Natural Language" (Winograd, 1971). It is a top-

down system for linguistic analysis in which syntax, semantics, and

inference are combiied to direct the processing of questions, statements,

and commands. Now implemented by SRI in BBN-LISP, Pintle constitutes a

substantial modification of Winograd's program. Changes have been made

in the linguistic analysis, in the ordering of paths in the grammar, in

the flow of control, and in the establishment of semantic constraints.

A backtracking facility has also been introduced.

In Winograd's work, is in most existing parsing systems, successive

words from a typed input string guide the analysis. Since we proposed

to use the parsing procedure to help segment and identify the words in

the speech input, it was necessary to find other ways io control the

generation of paths through the grammar. In order to explain the

16

^^^^mt

r^ ■■■MMBMIMBM

operation of Pintle, it will be useful to consider the general form of

that grammar.

Michael Halliday's systemic grammar forms the linguistic basis

for Winograd's system, and we have used it in our initial work with only

minor modifications (see Winograd, 1971, and Hudson, 1971, for detailed

descriptions). In Halliday's grammar, syntactic and semantic features

are associated with words and with higher order grammatical structures.

There are three basic ranks of units: word, group, and clause. The

word is the basic constituent; the word classes include noun, verb,

adjective, determiner, preposition, among others. There are four groups:

noun group, verb group, preposition group, and adjective group, each of

which has slots for the words that compose it. For example, one noun

group might include determiner, number, adjective, classifier, and noun.

A clause can be major or secondary; major clauses may be declarative,

imperative, or question, active or passive, and the like; secondary

clauses account for relatives, complements and various kinds of modifiers

and qualifiers. A unit at any rank has associated with it a set of fea-

tures. For example, words exhibit features identifying number, inflection,

various kinds of affixation; groups may show definiteness, tense, negation;

clauses may be marked tor yes-no or WH questions, subject or object. There

are systems of mutually exclusive features and networks representing the

relations among the units at a rank.

Each of the units above the word level (clause, noun group, verb

group, preposition group, adjective group) is represented in Winograd's

«ystem by a program written in PROGRAMMAR, a language developed by him

for this purpose. Parsing is done by an interpreter that processes

PROGRAMMAR code; the flexibility of this method allows various kinds of

tests to be made that call on larger grammatical contexts and on other

sources of information, particularly semantic ones. The parser operates

17

in a top-down, left-to-rlght manner, beginning with a search for a major

clause. In Winograd's implementation, the clause program checks the

features of the first word in the typed input string to decide what unit

to begin with. Features in words guide the parser through an analysis by

delimiting or selecting subsets of related groups of choices. In this

way, the parser traces a path through the grammar, arriving at a struc-

ture for the sentence.

To adapt Winograd's procedures for speech understanding, it was

necessary to establish syntactic and semantic constraints that influence

successive choices through the grammar, leading to the selection of a

subset of the words of a particular word class. In what follows we are

presenting the information available in the grammar for this purjose,

with some additions where it seemed appropriate. Consider again the

sample sentence discussed in the previous section, PUT THE BLACK B1X)CK

IN THE BOX. Assuming that at the time this utterance is made in a

hypothetical dialog of a user with the system it is reasonable to expect

a command, the clause program would look for an imperative. (Prosodic

information also may provide such guidance.) Since imperative clauses

generally start with verbs, the parser enters a verb group program look-

ing for imperatives. Since imperatives are in infinitive form, only

those verbs with that feature are identified. The result of thi'.s path

through the grammar is a small set of imperative verbs, one of which

may correspond to the first word of the utterance. We expect to be able

to constrain the set of verbs further by additional semantic information—

perhaps regarding what command might be appropriate at this point in the

dialog. And pragmatic information specific to a particular user should

be possible to capture; for example, the frequent use of certain com-

mands. However this verb group is constrained, the initial result is c

set of words to check against the acoustic data.

18

y

Confirming one (or more) of the words from this initial set might

result in Pintle looking for a noun group, as is the case with the word

PUT, which requires an object. Identification of a different imperative,

PICK, could result in Pintle looking first for the particle UP. Accept-

ing PUT in the sample sentence, Pintle might begin the search for a noun

group with a determiner. Since the set of determiners is small, all of

them could be predicted. However, they are difficult to distinguish

acoustically, and it might be reasonable, on semantic grounds, to look

only for a definite or only for an indefinite determiner, e.g., THE or

A.

Finding a determiner, an adjective would be likely to follow. There

are various classes of adjectives, and in English there is an ordering

controlling the sequence in which they typically modify a noun. For

instance, size adjectives precede color adjeolivea; e.g., BIG RED DLOCK

but not RED BIG BLOCK Again, in a dialog it would be reasonable at cer-

tain points to predict the amount of specificity required to identify an

object on the basis of its qualities. Pragmatically, (assuming we have

models for our users) some people may make things perfectly clear, while

others are more sparing in their characterizations. So, sets of adjec-

tives will be checked against the acoustic data. Subsequently, and in a

similar fashion, various paths among the nouns would be selected for

testing. The kind of verb would influence the choice; verbs of manipula-

tion call for nouns that represent manipulable objects. This information

also could be used to influence the choice of an adjective In the prior

search, limiting it to those adjectives appropriate to manipulate objects.

Continuing the parse beyond the noun group would lead to consider-

ation of preposition groups because PUT requires a location. Identifying

a place preposition would lead to a search for an object noun group, with

decisions being made similar to those discussed for the preceding noun

group. However, only those nouns that can have objects PUT IN them need

19

-A

p >•

to be considered. In this manner, a set of predictions are made regarding

the sequence of sets of words likely to occur in the utterance.

The foregoing description presumes the accuracy of the initial

predictions. In the sample sentence, however, the adjective initially

found in the second noun group proved to be in error. Thus, backtrack-

ing and tracing down an alternate path were required to find the noun.

An interpreter for PROGRAMMAR has been added that contains a backtracking

mechanism not available in Winograd's system. The interpreter makes It

possible to specify a set of alternatives at a particular point in the

grammar and to try these in succession, backtracling automatically if

the initial choice is not subsequently confirmed. This same mechanism

allows an easy return and recovery following acceptance of a word that

proves to be in error, as in the stmple sentence.

The requirement for speech input (the absence of words with identi-

fiable features in the input string) and the availability of the backtrack-

ing facility resulted in other modifications to Winograd's analysis pro-

cedure. Winograd tested to eliminate the least likely alternatives first,

checking the longest possible constituent and cutting back wher that

failed. PROGRAMMAR, in his original version, returned the first suc-

cessful analysis, having provided both syntactic and semantic guidance

to make that a likely interpretation within the mode* of the "blocks

world." Selective backup was possible in a particular situation, but

it involved specifying a location to return to for alternative proces-

sing. With voice input, it is necessary both to test for most likely

alternatives first and to have a more general backup mechanism in case

of failure. What is needed further for speech understanding is the

flexibility in the grammar to allow dynamic reordering of rules, depend-

ing on the state of the analysis at the moment. To help provide this

capability, changes have been made that allow identification at any

particular choice point in the grammar of what alternatives are possible.

20

.A *mm Bi

In Winograd's system, alternative choices could only be identified serial-

ly after failure of the predecessor.

Many more cianges in Pintle are contemplated that will improve its

ability to use syntactic, semantic, and—hopefully—pragmatic constraints

to reduce the number of words that needs to be considered at any particu-

lar point. Currently, checking against the actual configuration of ob-

jects on the "blocks world" is done only after a group has been parsed.

Thus, in the sample sentence, both BALL and PYRAMID are tested against

the acoustic data. However, there are no balls in the current situation

(although the word is in the lexicon), and there are no black pyramids.

Information of this kind can and should be used to influence the selection

of words in a set as soon as it is relevant.

Major modifications in Pintle can be expected to follow the intro-

duction of new structures for managing semantic and pragmatic information.

These new structures will replace and extend Winograd's MICROPLANNER

code for "blocks world" manipulation, Exploratory development will be

done in QA4, a procedure-oriented programming system particularly well

suited for work in artificial invelligence because of Its flexibility

and special features. We also plan to experiment with revisions to the

parser in QA4; new techniques are necessary to facilitate the accommoda-

tion of semantic and pragmatic information and to simplify the dynamic

reordering of paths through the grammar.

C. A Grammar for the Speech Understanding System

No substantial changes have been made as yet in the actual grammati-

cal rules that Winograd has in his system. However, modifications are

essential because there are significant differences between spoken and

written English. Previous systems for computational linguistic analysis,

Including Winograd's, have worked with grammar rules for the written

21

*mm

language. But, function words and affixes, which existing parsers use

extensively for structural Identification, tend to be blurred in speech.

Instead, prosodic features—such as intonation, stress, pause, and juncture-

are used as indicators and delimiters. Spoken utterances are frequently

incomplete and include errors, hesitations, and false starts, all of which

are either edited out of the typed input or relatively easy to identify

in it. In contrast, there is no easy way to separate out the well-

formed parts in speech. Misspelled words are easy to detect; mispro-

nounced words are not. Moreover, the relation between a word and its

alphabetic representation is stable in text, whereas the spoken form of

a word varies significantly and often dramatically in relation to other

words around it. Phonetic or even phonemic transcriptions are not suf-

ficient. Consequently, it is essential to have a set of grammatical

rules suitable for working with spoken English.

A group at the University of Michigan under the direction of Mchael

O'Malley has begun work on a grammar of spoken English, and we ari

working closely with them in its development. Our intent is to incorpor-

ate prosodic information directly into our procedures to help determine

sentence type, to identify phrase and clause boundaries, to elin. .iate

false paths, to reduce ambiguity, and to provide a basis for handling

incomplete sentences and hesitations. More recently, groups at

UNIVAC and at the Speech Communication Research Laboratory in Santa

Barbara have Joined in the study of prosodic information.

In conjunction with the University of Michigan and with Bolt

Beranek and Newman, (BBN) we have begun a comparative analysis and

evaluation of the current grammars used by BBN and SRI. We hope to

clarify similarities and differences and to establish a common grammar

for the overall ARPA Speech Understanding Research Program. As the

first step in this effort, we converted the grammar in Pintle into the

transition network formalism used by BBN to facilitate comparison.

22

I

...... ■■

Since this model seems to be easier for linguists to work with, having

this alternative representation for our grammar may simplify incorpor-

ating the prosodic rules.

A complete grammar for spoken English should include a phonological

component that contains acoustic/phonetic rules relevant for the genera-

tion and recognition of utterances. It is not clear that all of the

strategies for speech understanding could make productive use of such a

grammar, but it could serve to model a substantial part of the relevant

linguistic framework.

In addition to developing a set of rules for a grammar of spoken

English sentences, a considerable amount of research needs to be done

to provide structural descriptions for larger amounts of discourse,

particularly those involved in dialog of the kind envisioned for interac-

tion with the various problem domains selected by the ARPA contractors.

;

D. Acoustic Processing

The major capabilities for acoustic processing added to our facility

for use in speech understanding were a digital filter package and a

procedure for calculating linear predictive coeffiients (LPCs). The

decision to use digital filters rather than to build a hardware filter

bank was made because of our uncertainty about the most appropriate set

of filters for the system. The ones currently implemented were chosen

to allow us to make a preliminary classification of segments, as descrJbed

below. Changes can be made easily to refine that classification, and

it will be simple to specify an analog filter package or parallel

digital filters when we need to be concerned about time required for

processing. The particular filter package we acquired is described in

more detail in Appendix A.

The programs we have written for linear predictive coding, essential-

23

- *maM

^'W

ly John Markel's algorithm (Markel, 1971), produce better spectral data

than could be gotten from Fourier analysis (FFTs) and can provide a

major portion of the frequency analysis done by conventional analog or

digital filters. We have been using LPCs successfully for formant

tracking, and we are developing a pitch-extraction procedure based on

them.

An overview of the acoustic data processing currently done in the

SRI system is presented in Figure 2. The speech data are obtained in

a quiet room using a B&K 433 condenser microphone and an Ampex AG 500

tape recorder. An analog tape is produced at 7-1/2 inches per second

recording speed. The speech data on the tape are then digitized in

segments of up to 3.1 seconds in length. A presampling low-pass filter

with an 8-kHz bandwidth is employed to reduce aliasing errors, and the

digitization is accomplished by 12-bit A/D converter operating at a

rate of 20,000 samples per second.

The raw digital data are processed further by digital filtering

and by linear predictive coefficient analysis. Figure 2 indicates that

five rms values of the time series data are calculated in each 10-milli-

second interval of time. Four of these values are from time series

calculated by digital filters with bandpass characteristics shown on the

figure. The fifth value is calculated from the unfiltered time series.

Each of these live values is labeled by the notation shown in parentheses,

e.g., raw, voice. The upper channel indicated on Figure 2 calculates

three formant frequencies and amplitudes by finding spectral peaks in a

128-point spectrum derived by an LPC analysis of the raw time series

dt ca. The spectral peak data, which correspond to formants in voiced

speech segments, are stored immediately on magnetic disk files for later

use.

L ■ » i ^MÜ

■^^

1. rfliil

^Jlli«!
•jiietii
I1 i|3|p

- O u o>

u .. >
UJ <A U UJ
c v: z Q
I < Ui D
I- lU D K
^ »■ O j
M -I ü! ö!
c < f S
££"■ <

^ UJ Ä O O ir O

.hi i:xi
0«!S

O Ü

11

i o §1
x
00 o

CN —

>
to

z
5
z
<

cc
LU
D
z
D
I
o
111
UJ

5
CO

O
(A O
QC UJ _
UJ I- "
I- < E

J _j >-
< < c
t- O UJ

ll«

J
3!

25

FT= 1

The strings of rms values are used In a classification algorithm

shown in Figure 3. This algorithm current1y classifies each 10-milli-

second time segment as one of six events:

• Silence, SI

• Unvoiced turbulence, UT

• Voiced turbulence, VT

• Voiced stop, VS

• Vowel-like, V

• None of the above, T.

The filter outputs and preliminary classifications of each segment are

stored in disk files with the formant frequency and amplitude data, and

they are subsequently available for further processing.

Table 1 summarizes the extent of the current acoustic processing on

the utterance PUT THE BLACK BLOCK IN THE BOX. Reading any line from

left to right, the entries have the following meanings:

• Column 1 is the time in milliseconds of the occurrence of the

segment baing analyzed and described by the line.

• Column 2 is the segment classification, one of six class names.

• Columns 3 through 7 are pairs of rms and decibel values of

filter outputs.

• Column 8 is identical to Column 2.

• Columns 9, 10, and 11 are the frequencies of the first three

spectral peaks.

• Columns 13, 14, and 15 are spectral peak amplitudes correspond-

ing to the frequencies listed in Columns 9, 10, and 11.

• Column 12 is an overall rms value in decibels computed from the

LPC analysis. The numbers differ slightly from the raw value in

Column 3 because there is a difference in the interval of time

over which the rms is computed.

Note that Columns 3,4,5,6, and 7 each contain two values. The

first is an rms value computed on a 10-millisecond time series, and the

/

mmM

f-
3

-i ■ I
< I

A
< J

la
K I
Z O ■

< P C s ^

I
1]
11

II
I
M

27

^iMH

Best
Available

Copy

tr. "■.■^«rif.'^ÄtvB'ttfcsn.ft*;'«* •• • • f ^t^^fc«^««;^««»!««*-, r%'

umf^w a r, n.^^'»sit^O(^»»ej'^"a'»'l»»,Msie*r. ■-"ja»'«'«'^ »w«««»»!-*;-'■«**«•*•» "iR"'

I • fStfX
^t^,0*-."r'\if>'*«<

I % « -1 i -.j *■«»-» o •»%. "v* 3 % -« -S. "-• "S "i --■-"-'--'- ^ '-'• ^ -- 'J *- - -V O* »V rv % -i -^ ^ - ■

r. ^ r, r- i. r. »^ e. »■_ p. e-, '*. -. rv '■- ". »v f. f- T. r. r. .'. r. r, n. r; ^. fv '. K e. R. ^ •- e» ^ ^ ■ - t ''- f- (i ^ ■ w: rsi f. r r -

tft P*. N «4 *4 «
V tft K NN *4
^ « <x> m (r< o.
N ru •"« *< «4 «-•

o ra 1^ fM «i « «««»«)«■%«

<>l •«>«-• fW (V CM CM (M 1

■o
ID
3
C
•H
■M

0)

. tAi-> •«•-• M — »- K i/t(rv>(/ii/itfimvt
■ >>■>»>>:

• ■
• r»

«^
in r* «

n v • rC at a.
• • CM • r4» » «

« «ll\

1 1
»n IM
I I

r4
t • III! t

■

« M •4 • M
1 • 1 1

^^t»-l^r-fMtMfMlNifMCMrg--«^t^<V(K)«»O»0*OWftJrt
1 1 •• 1 1 1 1 1 1 1 ■ 1 1 • 1 1 1 1 t 1 1 1 1

T4 v4 1 1
1 1

t I i 1 1 1

iSt

iAtfMrn*o««'inmirt«\rf«nfM»oM(MMnini(MrufMrM»MNfM(MtM(M*4^fMnnfo«o«
. > i ■ • i i t i i i i i i i i i i i » < i • • i i ■ • • • • i • i ■ • i t

« K> ^«
• • 1

i t I I (l t 1 1 1

»» »

» » m «
ir -o r- t-
rt .-1 ^t ^

••••MM
« O fM ^ fh IT
(MCMCM CM ^ -«

IA IMA « »O «
1 • 1 1 1 I iTTTTTTTTTT•TTTTTTTTVTTl •• *-« IM <M ni CM K) m i

i i • t i i i

(M(MIM(MCM<-(<-'rM''i«
1 • 1 • 1 1 1 1 1 1

««M« *-*CMCMC>M\«>cO«Bia04>*On*4«4IM«4rt*4'UM«<attl(MCMCMCMCMV ■o«a>(afM««'*o*onrofOio«« o
K).-) ♦ « ^ --> M Kl -1 K> -• « fM ^ rt I i I I I I I 1 t I t I I • • » I ' i • t ■ I -< -' • • I • • t » • I • I
I I ■ I I t I I I i ■ I I I t *•

»«ttokio« <-!««»>»••«•«>« cM«)ac»»s»o>o>(>Biaa'«amrMntr>»s«4iM«ntA«««mfr>>n«tn«
«ir«(omnn«««irtif\cMtM«H«4«4*4«4i I^I i i i«4<-t«-*«-i|w4«4«-ta'i«icMrMi^cM<-*i > ' * * * ' ■ * '
I t > ■ * * I I I I (I I (I I i • • I III! I I I I I i I i I I

T4«4*4*f^«»(M«««4««*4«)|f«»««IIM«)rOrv»«»««fa»ir%^>-t*0«IM^IMfO»«^<HnCM»««<-t«t«r<«
^ v4nin««>«ar4*4«(M<H*4>H*^s<«Q>'O««p^in«>f0CMCMCM-4»«s<-i«-Y«cM«>M>

^^tH^ir»^^^^,<^,^^4r«-^ v4«4fMrM(MfM(MfMCM<-*>-l

CM>0 • if. ö r-. « « «fMKi«B\«r^«>0'«^*cMK>«ir«r«- «o-s. «-tiMn« »r» o ^ « • oi ^ (M "i « rv o r- «»ra •< >J ■ «««4 «4 ,««4»«»**«iM«M<MCMiMiMfM w«i«»o nnnwmomo««« «»«'•«»«iftNnir* i

30

^■^^

T

•D I
1
Ü

§

I

9 r-

I ^ "S 1 ■ 4 ". '1 ^ "«i ^i * •■ -".I ^■. ^■6'a^fyfi- e. ^ ^ R. •

«'•■ i w •* o j ^ ä r- i (v -a j % -^ ^ ^ % ■ - '. N - J '- '. •, -- '"^ -i -S T3 -^ -B -, -. -^ • j -Sj ~- ",

r« f*«t«ff*CM- r-iT V M W U MPk •« ««^ •••••• HI «♦ 'ifi * * o ^ O ■> M ■ ^fv ■«»■iMittikMM ■ V ^Ik * tt A M s ^^-4^Mn* • i i ^ i ^ . ^r««-^^^^i^rt.^ 35 3 T T i» Y 7 i 7 S i 2 2 T •
• < • iiit i i »

M *. K *■ •« K * »a e« ^ !■; r. *>» is R K « K r •:' n «r w r ^ * :'£ <C * * £ a C »* * <* * * m miimmmvmmmm*
■

*^ ^ ^ ^ ^ *4 «4 v4 *4 »4

X . . . 1 I I I t I t . I I I 1 . , III lllllillllltllllllllllll

^ n *«• n «-«i t^wrg^t-ia-r^^^Rjf^rvo^^ör-^ir-ir-^fvj^.^.^.^.^, «»--■

\ K) o *4«««>invttt« tv r

»•• • •»•IIII*IIIIIIII»IIIITTTTTTTTTTVIIYVI*

»««nrMrMCMnt^rstfMfHi^rsKMnjrMni^oifMwNw^w^^«^^^«

il>*«4«tAin««ii«n« ^»»«DrwiAr^ -(K»Pi«i«<oS)r«i«*>«inn«n»tK'n««'«<«Ki<M««n«K)«")?; «(Mm

i i rt ^ w ^ i (Mn«ru'OK>«v««r>i*nK)(M(>j(MfM(MfMrwcw'0*onK)
• ■it ■ i ■ • ■ • ^ i i i i i t i i t > i i i i • i , , '> "' -O f" r-l ■• « * « ««▼ r -/(■-. i --

■ (((•iitiitiiiiiiii
^O* ^•»»/ »« n-o^-^Ki^,^^.^. .,,..,....,.

^ —HiüS—222222i2ü-1^^^.^ür^'iri"c,*,",*,","«,">«»» »»»»»»»o» «>«■>««.

1

;

31

t^M iiMi

second value is the decibel equivalent of the first, normalized so that

the largest decibel entry in each column is 0.0. Since all of the data

in the table remain in disk storage, it is always possible to recover

the normalization constant if necessary.

We do not contemplate adding any new basic capabilities for acoustic

processing. Rather, we intend to develop algorithms that produce more

precise acoustic parametrization using data provided by the existing

procedures. We expect to refine our formant tracking and to establish

a method for extracting pitch. However, since these and other changes

are to be understood primarily in the context of the procedures for word

verification, further elaboration is presented at the end of the next

section.

E. Word Verification

Procedures for word verification relate the words predicted by

syntactic and semantic processing to the acoustic data. The input to

the word verifier from Pintle is a set of words that could be expected

to occupy the next position in the utterance. The result of word

verification is a subset, possibly empty, of the candidate words ordered

according to a degree of agreement with the acoustic data at that location

in the utterance.

Since Pintle is written in LISP and the acoustic processing is done

in FORTRAN, it was necessary to develop procedures for communication

between the two languages. An interface package, described in detail

in Appendix B, makes it possible for a LISP program to create a fork

(an Independent process in the time-sharing system) containing a FORTRAN

program, to share directly accessible data with that program, and to

call functions in that program according to standard FORTRAN conventions.

For oach candidate word, there is a function that tests for that

particular word. The correspondence between the expected form specified

32

.A ^MÜ

in the function and the contents of the acoustic stream is expressed as

one of four confidence levels: positive, possible, unlikely, and

impossible. For the first three levels, the function also returns an

estimate of the ending position of the word in the acoustic stream.

The word verifier collects the results for each word in a set,

eliminates the impossible words, and constructs a list ordering the rest

of the words according to confidence level. The word with the highest

ranking is returned to Pintle; any others are saved on a backup list to

be used successively if their predecessor does not lead to the prediction

of a new set of words, one or more of which can be found in the utterance.

The ending position of the accepted word is used as the starting point for

testing words in this new set.

To illustrate the word verification procedure, consider the sample

sentence, PUT THE BLACK BLOCK IN THE BOX, in relation to the acoustic

data contained in Table 1. In the analysis, BOX is one of the words

predicted by Pintle at a location beginning approximately 1.34 seconds

after the beginning of the utterance. This time is represented as 1340

milliseconds in Table 1. The word function for BOX produces the following

actions.

1. It increments the time pointer by 170 milliseconds.

2. It attempts to find a vowel-like string in a 200-millisecond

window centered at the incremented time pointer.

3. If Step 2 is successful:

(a) It searches for a voiced stop ahead of the vowel-like string,

(b) It searches for silence at the end of the vowel-like string.

If a silence is found, it searches for unvoiced turbulence

after the silence. It returns a confidence level, where

appropriate, for each search.

4. It examines the vowel-like string as follows:

(a) It calculates the average frequencies of the first and

33

.^A. — -

■«n

second formants.

(b) It calculates the average slope of the first and second

formants.

(c) It looks for discontinuities in the first and second

formants.

If there are significant discontinuities or rapid changes in

formant freo jncies, it returns the value impossible.

5. It combines the results of the consonant search from Step 3

and the analysis of the vowel-like string in Step 4 as follows:

(a) If the average formant frequencies are reasonable for the

vowel [Q] and all consonant searches are successful, it

returns positive.

(b) If the average formant frequencies are reasonable, but a

consonant search failed, it returns possible.

(c) If t.'.e average formant frequencies are unreasonable but

all consonant searches are successful, it returns unlikely.

(d) If the average formant frequencies are unreasonable and at

least one consonant search failed, it returns impossible.

In the example, the confidence level for BOX is positive. The

results show a vowel-like string with first and second formant values

consistent with [CL] in the interval 14?0 to 1600, a voiced stop before the

vowel-like string in the interval 1340 to 1410, silence after the vowel-

like string from 1650 to 1690, and unvoiced turbulence from 1690 to 1910.

It should be clear that a word verification procedure of this kind

was designed for use in a system with powerful syntactic and semantic

constraints. In the analysis of the second noun group in the sample

sentence, before BOX was confirmed, a set of adjectives was processed by

the word verifier. All of the words were rejected except BLACK, for

which the confidence level vas unlikely. Pintle accepted BLACK tentative-

ly, but that would have had to be the end of the sentence, and PUT THE

BLACK BLOCK IN THE BLACK .« syntactically and semantically unacceptable

in the current system. Consequently, Pintle backtracked and locked for

34

M^M

nouns. Of the set predicted, BOX was confirmed with the highest con-

fidence level. If BLOCKS had been a member of that set, the word verifier

might have returned positive as well. However, since things can not be

put in blocks, that word was excluded, on semantic grounds, from the

set to be considered.

As Indicated in the analysis of the sample sentence in Section II,

the data used to test for the candidate words can be either acoustic or

textual. If textual data are to be used, then the input is either a

single typed word or a list of typed words. Each input word is analyzed

to determine if it matches one of the candidate words from Pintle.

Multiple matches make it possible to study Pintle's response to ambiguity

in acoustic recognition without actually calling on the acoustic routines.

The use of textual entries also makes it possible to study the word

verification procedures for a variety of words in a particular context

without requiring word functions to be written for all of the words that

might be required in the processing of complete and meaningful sentences.

It is obvious that the word verification procedures in their present

form would not allow subtle discriminations. However, the addition of

more complex and powerful acoustic/phonetic rules to the analysis and

decision-making parts of each word function should permit significant

expansions of the system capabilities. The word verifier strategy is

particularly appropriate for our system design, since Pintle operates on

words rather than phonemes, allophones, or other phone-like units.

Furthermore, the word verifier provides a way to deal with a significant

subset of coarticulation problems that would be quite troublesome in a

phoneme-verifier approach. For example, in testing for the sound [A]

in BLOCK, the effects of the preceding [b] and following [0] can be

Incorporated into the word function. A generalized routine for verifying

[i] in random context is not required. Similarly, it is possible to use

acoustic information about the end of the preceding word to influence

^M* M*

processing of the initial sounds in the current word. Coarticulatlon

with following words is still a problem.

To a considerable extent, changes in the word verification procedures

depend directly on increasing sophistication in acoustic processing.

However, as indicated in the previous section, the need is not for new

techniques for acoustic analysis but rather for ways to extract more

information from the data we have. Furthermore, we believe that the

motivation for changes should come primarily from the requirements of

word verification. Our current efforts are directed toward providing

many more subroutines for acoustic parametrization in order to refine the

initial classification provided by the digital filter analysis and to

provide additional formant data. For example, we are developing an

algorithm to distinguish reliably among fricatives, specifically to

separate [s], [f], and [f-e] (we do not expect to separate [f] and [f]).

We also are working on vowel segmentation and classification procedures

that will extract boundaries within vowel-like strings, smooth formant

curves, and plot slopes and standard deviations of formants. Air goal

is to provide a variety of general procedures thut can be used in the

preparation of word functions for use in word verification.

F. Interactive Speech Analysis Facility

In the development of algorithms for acoustic parametrization and

for word verification, we have made considerable use of the Interactive

Man-Machine Speech Analysis System (IMMSAS). IMMSAS is a large FORTRAN

program that handles data and process control for graphic display-

oriented speech work. It operates on the PDP-10/PDP-15 computer

facility with interaction through an Adage C-'-aphics Display and a

Teletype or similar terminal. IMMSAS contains a flexible, modular

structure designed to accommodate present and future analysis tech-

niques (e.g., digital filters, FFTs, and LPCs). Experiments can be

36

^m*t mm*

designed and run with real data; results are displayed graphically or

on the line printer. A D/A converter provides an auditory response to

verify the contents of a segment of digitized speech. A/D conversion,

currently being done by a stand-alone program on the PDP-11, soon will

be available through IMMSAS by microphone, thus facilitating data ac-

quisition for exploratory testing.

IMMSAS has been used for the development of many acoustical proces-

sing algorithms. These algorithms, written as subroutines without local

storage, can be run within IMMSAS or in a LISP/FORTRAN program structure.

Furthermore, simple algorithms can be synthesized interactively from

elementary array operations and FORTRAN functions. The interactive

display facility has greatly facilitated debugging and program checkout.

The structure of IMMSAS is shown in Figure 4; single lines represent

p ogram control, and double lines show data flow. It will be useful to

describe its operation in terms of data base management, graphic out-

put, and interactive program control.

1. Data Base Management

There are two types of data handled by the system: time series

data and processed data. Time series data represent the digitized out-

put of A/D conversion with 9 to 12 significant bits. One utterance by

a single speaker is assigned to one disk file. A record contains a

description of the recording (speaker, sentence identifier, date of

entry into the file system, sample rate, and number of samples). Two

additional records can be used to indicate significant indices in a time

series: one to point to events, such as phrase boundaries, word bound-

aries, or phonetic boundaries, and the other to mark pitch pulses.

Processed data result from submitting time series data to one

of the processing modules. Each processed file is associated with its

corresponding time series file. An identification record describes the

37

. _ ._. ^^ ^^■^1

f

</)
5
i
i-
oc
a "i r™
o <
_i «) K ...
< Z OT <
z 2 ^
O K £

a
a

10
LU
-I

i
o
s
o

S
E

G
M

E
N

T
 C

L
A

S
S

IF
IC

A
T

IO
N

F
O

R
M

A
N

T

T

R
A

C
K

IN
G

A
C

O
U

S
T

IC

P
A

R
A

M
E

T
R

IZ
A

T
I

W
O

R
D

V

E
R

IF
IC

A
T

IO
N

F
U

N
C

V
O

IC
E

A

N
A

L
Y

S
IS

A

N
D

S
Y

N

• • •

1

■
^ ni-i ID

8 ...
a.

z
1
LU i <

- -

8
cr
a.

<

M
LU

E • • •
■ tu 9 M
t-
j LU

E 1
-i P
< «. ■

2 k: t $ 9 • . .
.

Q -1 u. Q <

i t
■
o

S -I
< o 11 2
oc E
f n i— o
Ü c H
o z » s ■
£8 58

V)
5

^v.^^ ^

RHI
UJ !■ ^1
0. ^^r ^1 1 ■I Vfl
M ^H^^r ■ ^^v^^l
-1 ^■^^^1 1

WSm L. II^HHi

LU
OC

>
<

tu
O
<
c
<

J

MMttl ^nü

recording conditions and the contents of the rest of the file. The

remainder of the file contains an arbitrary number of records of arbitrary

length, each corresponding to a data array. For Instance, the file con-

tained In Table 1 resulted from the digital filter and LPC analyses of

the time series data from the sample sentence discussed in Section II.

Both time series and processed data can be read from the disk

Into arrays organized to allow flexible referencing and dynamic allocation

of available core.

2. Graphic Output

IMMSAS provides fast and flexible graphic output on the Adage

display. For time series data, an rms envelope of the entire utterance

can be shown on the upper half of the screen, while an expanded represen-

tation of a selected portion of the actual acoustical signal is shown on

the lower half. Event markers and pit^h markers can be displayed in a

coordinated fashion on both the upper and lower traces.

Processed arrays are displayed using a general plotting routine

that does automatic scaling and labeling. Data can be displayed in one

dimension (in relation to an index) or as two-dimensional plots, e.g.,

a frequency spectrum or a distribution over time of the successive

frequencies for the first three spectral peaks,as contained in Columns

9, 10, and 11 of Table 1. Control of various plot parameters, such as

type of line (e.g., solid, dash, dot, blinking) and graph placement

(e.g., coordination of rms envelope with formant frequency data, super-

imposition of two different analyses for the same raw data), provides

flexibility In viewing the results of a processing step.

3. Interactive Program Control

Commands entered from the Teletype are used to control program

flow: setting display and data parameters, specifying data input and

i

39

output, and calling for particular processing modules. The first part

of each command is a mnemonic, followed by any required parameters, which

are entered, free format, as floating point numbers or alphanumeric labels,

Some parameters can be changed while a process is running by using the

software pseudo-interrupt feature of the POP-IO.

A "mouse" connected to the Adage display can be used to interact

with displays of time series data. Moving the mouse changes the location

of a pointer on the face of the display. Pressing a button on top of the

mouse assigns an index to a point in the time series; a line is entered

on the display at that location, and a marker is entered in a correspond-

ing location in the data file. Another button on the mouse allows

scanning through the expanded representation of the time series data on

the lower half of the display, either continuously, at periodic intervals,

or discretely.

G. The SRI Question-Answering System

As indicated in the introduction to Section III, our initial intent

was to pursue two separate system designs reflecting two different ap-

proaches to question answering. We chose to concentrate our resources on

Pintle, accessing the data from acoustic processing through a word

verification procedure. However, we did some preliminary work on

modifications of an existing system so that it could be Interfaced with

a more traditional acoustic analysis procedure.

ENGSPK is the latest in a series of natural language, interpretive,

question-answering systems being developed at SRI. Developed over a

period of years by Coles and incorporating some early work by Raphael

and Green (see Coles, 1972, for references), it integrates a formal

theorem-prover with a procedure for natural language analysis to retrieve

information from data files. In this system, the input sentence is

analyzed by transformational and phrase structure procedures to identify

40

f
its syntactic structure. A semantic interpreter maps this structure

into the first-order predicate calculus. A resolution theorem-prover

is used to relate the resulting deep structure to axioms that represent

the information stored in the data base. A generative component provides

for a natural language response. Coles' most recent efforts have been

directed toward determining the feasibility of using this system for

querying a large data file (Coles, 1972).

The syntactic analysis component of ENGSPK is a bottom-up parser,

dependent upon the availablility of an input string for processing. For

use in a speech understanding system, ENGSPK would require a detailed

analysis of the speech signal to generate hypotheses regarding the words

in the message. These word hypotheses then would be checked against the

accumulated syntactic and semantic data. In anticipation of the avail-

ability of such an acoustic processing component, some changes were made

to allow for the accommodation of the system to speech Input and to the

"blocks world" problem domain. Three dictionaries were defined to sat-

isfy the vocabulary requirements: the first contains 250 words, the

second about 1000, the third is a domain-independent special list contain-

ing about 3000 verbs. In addition, a simple morpheme dictionary of

prefixes and suffixes haL oeen specified, and a scenario has been

formulated for demonstration purposes. A technique for verb general-

ization using inflectional analysis now allows the system to represent in

its memory verbs it has never encountered previously. The anaphoric

reference subroutines have been improved to allow extended sequences of

such references. Conversion of the whole system from Stanford-LISP to BBN-

LISP also allowed substantial improvements in random access from second-

ary storage files.

Although we do not now intend to develop an appropriate acoustic

processing component for ENGSPK, we do believe that work done by other

ARPA contractors may prove relevant for this purpose. To the extent

41

»

that a suitable word hypotheslzer becomes availaale, the development of

a system linking it with ENGSPK would be a worthwhile effort. We are

willing to cooperate with other contractors toward accomplishment of

this goal.

42

^ A. ^rii M^MHtaM

IV DIRECTIONS FOR CONTINUING RESEARCH AND DEVELOPMENT

A. Overview

Our program for continuing research and development centers on the

implementation of an integrated speech understanding system. We do not

expect to make any substantial change in the system design until we have

thoroughly investigated our current strategy. As indicated in the pre-

vious sections, we recognize the need for further work on Pintle, on

algorithms for acoustic parametrization, and on word verification pro-

cedures. Most important will be the effects on the system from an

increasing interdependence of these components as we experiment, make

modifications, and experiment again. Additional work on semantics and

pragmatics, on prosodies, on a grammar for spoken English, and on tech-

niques for speaker independence can be expected to have a significant

impact on increasing the sophistication of the system. We also are ex-

ploring ways of increasing the richness of the problem domain so that it

can sustain more complex goal-oriented interactions with a user.

B. An Integrated Speech Understanding System

The communication between the programs for syntactic and semantic

analysis and the acoustic data through the procedures for word verifi-

cation is relatively simple at present. Pintle predicts a set of words,

the word verifier tests the words against the acoustic data, a word is

selected according to degree of agreement, and Pintle continues accord-

ingly. It is reasonable to expect that communication should be more

complex. Prosodic information can affect high-levol decisions in Pintle,

and feedback of acoustic data within the word verification procedure

can result in more economical searches. Consequently, although we are

43

now Independently making changes in P^tle and in the word verifier, it

is likely that future modification w:ll reflect the increasing interde-

pendence of procedures within the system.

Following the analysis of the sample sentence in Section II, some

provisional features of the current implementation were noted. We do

expect to be completely "on-line" relatively soon, i.e., to have the

A/D conversion take place wholly within our PDP-10 computer rather than

having to transfer digitized tapes from the PDP-11. When the A/D

programs are available, we will be able to enter voice directly into

the system. However, this capability will not make a major difference

in exercising the system itself in the near future because of the time

required for A/D conversion and for other basic acoustic data processing.

Still, it will simplify debugging algorithms to be used in word verifi-

cation. The availablility of a quiet room for r -jrding in close

proximity to our display facility and to the computer should increase

our efficiency, but it also will have little actual effect on the system

itself for the present.

1. Pintle

To achieve greater flexibility in our procedures for syntactic

and semantic analysis, we are beginning to test some new algorithms in

QA4. They must be able to use information from word verification, from

semantics, and from prosodic analysis to control the path through the

grammar. We want to be able to assign priorities to the alternatives

at any particular choice point. In effect, we are trying to find the

minimal cost path through the graph that represents our grammar.

2. Acoustic Processing

As indicated in the previous section, no new basic capabilities

for acoustic processing will be developed. Rather, we will be trying

to extract more useful information from the data now available to us.

^ - ^^ — • MalH^BÜ

In relation to the procedures for word verification, we need more

precise techniques for parametrization to allow us to distinguish more

clearly among the words in a set predicted by Pintle. For prosodic

analysis—i.e., to identify stressed words, intonation contours, and

linguistically significant pauses—it will be necessary to process

acoustic data over substantial periods of an utterance. In this work,

we expect to cooperate closely with the University of Michigan and with

UNIVAC.

3. Word Verification

With the availability of algorithms for making more precise

classifications of sounds, it should be easier to write more word

functions. Having written 100 or so, we should be able to establish

some general procedures for creating them. More important, we will

have used enough to be able to judge how well the word verifier concept

actually works. We Relieve that word functions provide a particularly

good medium for embodying acoustic phonetic rules. Coarticulation

effects within words can be handled easily, and we are interested in

determining how well the procedure works for coarticulation between

words. Feedback of acoustic data from word verification is another

major problem. It does seem likely that such information can help in

testing successive words witbin a set, but we are interested in determin-

ing whether it can be used more generally to influence Pintle.

C. Semantics and Pragmatics

The development of effective procedures for handling semantics and

pragmatics is essential both for the operation of an initial speech

understanding system and for extrapolating the results of our efforts

to other problem domains. Recent research in syntax has provided some

very general and reasonably efficient procedures for parsing that (in

principle) can handle perhaps all of the syntactic constructions in

■ i— ■ ^Mi

English. However, it is not clear that existing parsers can acconunodate

the semantic information that we believe is necessary for our system.

Our continuing work on Pintle is intended to provide flexibility and

control over priorities assigned to choice points in the grammar. Now

we need procedures that model the world and the user to provide the

proper kind of guidance for assigning those priorities.

The point of departure for our work on semantics and praiirnatics

is the model of case grammars being developed by Charles Fillmore (1971a,

1971b) of the University of California at Berkeley. This model is being

extended by him and others toward "a fully developed system of linguistic

description" involving the analysis of complex utterances or messages,

not just sentences, ind including multiple participants in conversations.

Fillmore's work builds on transformational grammar but extends beyond

competence into performance in a social context.

Even without all of the possible elaborations, Fillmore's case

concept has a direct implication for the kind of semantic structures

that we intend to incorporate into revisions of Pintle, In case grammar,

the prepositional core of a simple sentence is a predicator (verb, noun,

or adjective) in construction with one or more entities, each related

to the predicator in one of a set of semantic functions known as cases.

The cases identify particular roles, such as instigator of an action,

experiencer of an event, object undergoing change or movement, and

location or time of an event. The number of cases proposed is small, and

there are some markers in the surface structure (e.g., prepositions)

that make the application of these linguistic concepts to recognition a

realistic enterprise.

D. Prosodic Analysis and a Grammar for Spoken English

The importance of prosodic information already has been mentioned

several times in this section. It is particularly important for the SRI

46

^m^am -J

speech understanding system because it can provide a basis for assigning

priorities in Pintle at the beginr^ng of an utterance. It also can sug-

gest hypotheses about the presence of syntactic or semantic "boundaries"

in an utterance that can be used in determining the most likely path

through the grammar. More generally, however, the rules for such

speech elements as stress, intonation, and pauses should form part of a

grammar for spoken English. This grammar also should incorporate phono-

logical and acoustic/phonetic rules that describe how people actually

speak.

We can eypect that the artificiality both of the problem domains

chosen for speech understanding research and of the interaction with a

computer through a microphone will limit the range of English spoken

and the variety of styles used. However, it is obvious that we need to

maintain close communication with linguistics because even our more

limited tasks can be accomplished only through cooperative efforts.

Coordination within the ARPA Speech understanding Research Program needs

to be complemented by extensive contacts with other linguists.

E. Speaker Independence

In their present form, our feature-detection algorithms havt not

been talker-dependent, principally because they have been designed to

make reliable—if crude—classifications. As the algorithms become

more complex, it is likely that variations among speakers will create

perturbations in the results from the word functions. The first attempts

to gain acceptable speaker-independent performance will probably involve

manual threshold adjustments of the variables defined in the word veri-

fication procedures. As familiarity with the data base and with the

procedures themselves increases, attempts will be made to introduce some

automatic "speaker normalization" calculations.

^■^

 -

Appendix A

DIGITAL FILTER DESIGN PROGRAM

Technology Service Corporation of Santa Monica, California, prepared

a digital filter design program for SRI that will design and verify

recursive digital filters. The program Is user oriented to permit In-

experienced programmers and designers to use It. Included In the

program are three standard filter prototypes: Butterworth, Bessel, and

elliptic (Cauer parameter) designs. Other filter functions may be sup-

plied externally by a specification of the poles and zeroes of the

transfer function.

The program has the capability of transforming any of the above

standard designs to bandpass, bandstop, low-pass, and high-pass transfer

functions with arbitrary cutoff frequencies. In addition, the program

determines recursive sampled-data or digital representations for any of

these filter transfer functions using either the standard z-transform

or the bilinear z-transform. Program output Includes poles and zeroes

of the above continuous functions, the coefficients for the recursive

digital filter functions realized In parallel form, and optionally printed

frequency and time response characteristics, as well as a FORTRAN function

representation of the digital filter. The frequency and time response

characteristics may be displayed by the graphics system associated with

the computer.

49 Preceding mßM

r-
Appendix B

A LISP-FORTRAN INTERFACE

The interface facility provides for:

• Creation from LISP of subfork(s) containing FORTRAN programs.

• Subprogram calls from LISP to the FORTRAN fork.

• Creation of REAL or INTEGER arrays accessible from both forks.

1. The FORTRAN Side

There are only a few requirements for the FORTRAN program:

• The symbol table produced by the loader must be saved with

the program.

• A small MACRO Interface package must be loaded with the program.

• Several entry vector locations (Numbers 3 to 6) must be left

free for use In Interfork transfers. (Programs normally use

Locations 0 and 1 only).

• If arrays are to be shared with LISP, then a block of pages to

hold the arrays must be specified when the program Is saved.

The steps to create the FORTRAN program are as follows:

• Load the program with symbols (i.e., use /B/S) and Include

<RIDDER>F40F.REL. When the loader exits, go into DDT, do any

pre-save initialization necessary, and then transfer to the

Interface package by typing FKINIT$G. It will respond with

NUMBER OF PAGES SHARED: and wait for you to type in a number

(in OCTAL) indicating how many pages will be shared with LISP.

• If this count is non-zero, then the program will type FIRST
SHARED PAGE: and wait for another number (also in OCTAL) in-
dicating the first page in the FORTRAN address space of the block
of pages to be shared.

• Control then returns to the EXEC. Save the program and symbols

using either SAVE or SSAVE. (DDT need not be saved—it will be

l

51

Preceding pagöiiank

mm* J

automatically brought in if needed at run time).

2. The LISP Side

The following functions constitute the LISP side of the inter-

face. (Load (RIDDER)FORK.COM to use them).

fkinit [program]

This function is an nlambda that creates and initializes a fork

containing PROGRAM. Information about the fork is saved on

FORKDATA. (FORKDATA is used as a free variable by the other

functions to access the data associated with the fork. This

makes it possible to talk about multiple forks by changing

the binding of FORKDATA).

Example: (FKINIT (RIDDER)IMMSAS.SAV)

fkddtC]

This function transfers control to the fork DDT and waits for

the fork to halt. It is not necessary to have saved DDT with

the program. To return to LISP from the fork, type HALT$G to

DDT.

Example:

\

- FKDDTO

X+1$1B HALT$G

From LISP go to DDT in fork

Set a breakpoint, then return to

LISP

Value of FKDDT is T

- FKCALL (XFCN REAL) From LISP call the fork subroutine

(FKCALL is discussed below)

$1B)>X+1 ... $P

3.1415979

Stop at breakpoint then proceed

FKCALL types result

Back in LISP

fkkillü

This function kills the fork and sets FORKDATA to NIL.

52

..,..

-A^ *m*

I

fkarray [id;type;size]

This function is an nlambda that creates a shared array. SIZE

is evaluated and a block of SIZEt-l words is allocated in the

pages shared with the fork. ID is set to the LISP address of

the array and entered into a LISP hash table of symbols for

the fork with value equal to the fork address of the first

data word of the array. TYPE can be either REAL or INTEGER

and specifies the type of number to be stored. The value of

FKARRAY is the LISP address of the array.

■n

NOTE: shared arrays are not garbage collected. They stay
around until the fork is killed.

Example: (FKARRAY SHR REAL 100)

fkarraysizeCa]

This function returns T iff A is a shared array for the fork
specified by FORKNAME.

fkelt[a;n]

This function returns the Nth element of shared array A. Its

value is a boxed integer or a boxed floating point number ac-

cording to the type of A.

fksetata;n;v]

This function stores V into the Nth element of shared array A.

Its value is V.

fksymCid]

This function asserts that ID is either a global symbol ia the

fork or the name oi a shared array. Its value is the fork ad-

dress of ID (as a boxed integer). FKSYM first looks for ID in

the hash table of symbols for the fork. If ID is not found

there, then the symbol table saved with the fork is searched

for a global definition of ID, and the resulting value is

entered in the hash table. If ID cannot be found, then FKSYM

calls error.

Note that to reference an ID declared in the fork, it must be

a global symbol. This means it must be in named COMMON with

53

ID the name of the COMMON block (i.e., declared as COMMON

/ID/ID). This is the same convention that must be followed if

ID is to be referenced from a MACRO program loaded with the

FORTRAN program.

Example: (FKSYM (QUOTE F4ARRY))

fkcalltid; type;argl ... argn]

This function is a nospread nlambda (i.e., it can have an arbi-

trary number of arguments, and it gets them in an unevaluated

form) that calls a FORTRAN subprogram and returns the result.

The value of ID is used as the name of the subprogram,

function FKSYM is called to find the fork address.

The

The value of TYPE specifies the result type of the subprogram.

The result types currently accepted are:

INTEGER—value is boxed integer

REAL—value is boxed floating point number

LOGICAL—value is T or NIL

SUBR—value is NIL

The following process is carried out to determine the meaning

of ep.ch subprogram argument.

If ARGi is of the form (BIAS A N), then A is evaluated and con-

verted to a fork address by FKSYM. The sum of (eval N) -1 and

the fork address for A is used to specify the parameter. This

mirrors the use of A[Nl as an argument in FORTRAN.

If ARGi is a list of the form (INTEGER X), (REAL X), or

(LOGICAL X), where X is any atom, then the value of X is

passed, and later X is set to the value assigned by the sub-

program to its corresponding dummy argument. This makes it

possible to return multiple results from subprograms in tht

standard FORTRAN manner.

In case ARGi is not one of the above, it is evaluated, and the

type of the value is used to determine the manner in which the

argument is passed.
■

If the value is a logical quantity (T or NIL) or a number, the

appropriate value is used (-1 for T, 0 for NIL, the unboxed

value for a number).

54

mmk

If the value is a LISP array, then a copy of the entire array

Is passed. (Needless to say, it should be a small array.)

If the value is a string, then a copy of the string (left-

justified, 7-bit ASCII, and followed by a word containing 0)
is passed.

If the value is the address of a shared array, then the fork
address is used.

If the value is an atom the FKSYM is called and its value is
used to specify the parameter.

Otherwise FKCALL calls error.

NOTE: lists cannot be sent—use shared arrays to create
"lists" for FORTRAN.

Rough timings indicate that the simplest FKCALL, namely a call

to a SUBR of no arguments, takes about 15 milliseconds, of

which about 10 are spent executing the appropriate monitor

JSYSs. Each argument for the subprogram adds about 2 milli-
seconds, as does returning a result.

The argument information must fit in 14 words, since it is sent

to the lower fork in the accumulators (the other two accumula-
tors are used for specifying the argument types and the

subprogram address). LISP array arguments take arraysize words;

strings take (nchar+4)/5 + 1 words; all other argument types
take a single word.

Example:

(FKARRAY IA-LISP INTEGER 100)
(FKSYM (QUOTE IA))

(FKCALL (QUOTE MOVARY) (QUOTE SUBR) (BIAS (QUOTE IA) 100) IA-LISP 100)
(FKCALL) (QUOTE SUM) (QUOTE INTEGER) IA-LISP 10 50).

(FKCALL (QUOTE AVG) (QUOTE REAL) (QUOTE IA) 100 (REAL DEVIATION))

NOTE: a minor annoyance occurs when FORTRAN does teletype I/O

because the Job global TTY mode information is changed la a way

that interferes with standard LISP interaction. The primary

symptom of this is the failure of LISP to respond when the

closing right parenthesis is input. To restore the proper

settings, simply type a control-E to LISP (part of the proces-

sing of control-E resets the TTY mode to its original value).

55

.

-t-^ta^riHta J

rj—

Alternatively, the problem can be eliminated by use of the

LISP (nlambda) function FKX, which saves the TTY mode, eval-

uates its argument, and restores the mode.

Example:

(FKX (FKCALL (QUOTE PRIN) fQUOTE SUBR) "('eHELLO*)"))

*m^mM

PRESENTATIONS

1. D. E. Walker, Human Speech: In Recognition of the Problems

Involved in Its Understanding," IEEE Systems, Man, and Cybernetics

Chapter, Menlo Park, California, 8 May 1972.

2. (same). Queens College of the City University of New York, Flushing
New York, 16 May 1972.

3. (same). University of California, Berkeley, California, 31 May 1972.

4. D. E. Walker, "Speech Understanding and Computational Linguistics,"

Annual Meeting of the Association for Computational Linguistics,

Chapel Hill, North Carolina, 27 July 1972.

I

57

^ ^mttm

REFERENCES

1.

2.

Coles, L. S., "Techniques for Information Retrieval Using an Infer-
ential Question-Answering System with Natural-Language Input,"
Technical Note 74, Artificial Intelligence Center, Stanford Research
Institute, Menlo Park, California (November 1972).

Fillmore, C. J., "On a Fully Developed System of Linguistic Descrip-
tion," in "Feasibility Study on Fully Automatic High Quality Transla-
tion," W. P. Lehmann and R. Stachowitz, eds., Vol. I, pp. 77-94,
RADC-TR-71-295, Griffiss Air Force Base, Rome Air Development Center
(December 1971 (a)).

 f "Some Problems for Case Grammar," in 22nd Annual Round
Table on Languages and Linguistic , R. J. O'Brien, ed., pp. 35-56
(Georgetown University Press, Washington, D.C.,) (1971 (b)).

4. Hudson, R. A., English Complex Sentences (North-Holland Publishing
Company, Amsterdam, Netherlands, 1971).

5. Markel, J. D., "Formant Trajectory Estimation from a Linear Least-
Squares Inverse Filter Formulation," SCRL Monograph No. 7, Speech
Communication Research Laboratory, Santa Barbara, California (October
1971).

6. Newell, A., et al., "Speech Understanding Systems: Final Report of
a Study Group," Carnegie-Mellon University, Pittsburgh, Pennsylvania
(May 1971). To be published by North-Holland Publishing Compa>:,
Amsterdam, Netherlands, 1973.

7. Rulifson, J. F., Derksen, J. A., and Waldinger, R. J., "QA4: A
Procedural Calculus for Intuitive Reasoning," Technical Note 73,
Artificial Intelligence Center, Stanford Research Institute, Menlo
Park, California (November 1972).

8. Winograd, T., "Procedures as Representation for Data in a Computer
Program for Understanding Natural Language," Report MAC-TR-84, MIT
Project MAC, Massachusetts Institute of Technology, Cambridge,
Massachusetts (February 1971). Published as Understanding Natural
Language (Academic Press, New York, New York, 1972).

59

Preceding page blank

- ^MÜ

