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CHA.PTER 1

INTRODUCTION AND PURPOSE

Observations (references 2, 3, 4, 7, 16, 29, 30) show that vortices
are often shed periodically into the water flowing past a submerged
cable and produce time-varying reaction forces on the cable. If the
cable is movable, perhaps being flexible, it will be forced into
vibration, and this motion in turn may modify the shedding phenomenon.
The cable vibrations might also be coupled in various ways to
acoustically sensitive parts of a system associated with the cable.

The first purpose of this report is to discuss and trace the energy
transformations which occur in the water and cable, and thereby make
order-of-magnitude estimates of the relative importance of the various
mechanisms operating. Since the specific system considered is one in
which the cable is anchored at its lower end and put into tension by
a movable buoyant submerged case attached to the upper end, there are
two main types of motion to be considered: gross oscillatory motion
of the case and cable at low* frequencies and higher frequency
vibratory motion of the cable. The first we shall call "gross
flutter," and the second "cable strumming." These main modes can
interact - chiefly by the gross motions' producing a fluctuating -

relatively slow modulation of the higher frequency vibrations, and by
the higher frequency transverse vibrations producing a significant
alteration of the '.:oss drag on the cable. In this report, as far as
possible, we restrict ourselves to consideration of "cable strumming"
only.

Both types of motion generally are forced oscillations produced by
periodic forces of similar hydrodynamic origin but different i,
frequency, amplitude, and region of application. When resonances
occur, the two types can be distinguished by their restoring-force
mechanisms - gravity for the gross case and cable motion, and cable
tension for the cable strumming phenomenon. Otherwise, the
distinction can be made by reference to the main regions of applica-
tion of the hydrodynamic forces - the case surface for gross flutter,
the cable surface for strumming.

*In this report, less than five Hertz.



NOLTR 72-77

The physical phenomenon of fundamental importance in producing
these forced motions is the generation of systems of vortices in the
water surrounding the cable and case. Vortex generation is still a
subject for basic research, since the specific laws describing the
reaction forces on the obstacle inducing a vortex are not known or
understood in many important details, nor are the actual flow fields
computed for all relevant situations. A quantitative relation, first
px~posed by Strouhal, between certain kinematic variables: shedding
frequency f, flow speed U, transverse dimension of obstacle d, and
the Reynold's number of the flow when a 'Karman vortex street' is
produced, has been known for nearly a hundred years (references 12,
14a, 20b, 27) - but despite several studies, a complete derivation
from first physical principles does not seem to exist (references 20b,
21, 25)*. One of the difficulties in understanding lies in the fact
that the vortices are produced under flow boundary conditions which
are spatially symmetric and constant in time, yet the vortex flow
around the obstacle has a different symmetry and is periodic in time.
Moreover, the vortices appear 'automatically' even without unsteady
motion of the obstacle through the fluid. Thus "Strouhal flow"
results from an instability in uniform constant flow. A second
difficulty arises when unsteady, sometimes periodic motion of the
obstacle occurs - this motion interacts with the forcing flow field
and modifies it - a nonlinear phenomenon. Our energy estimation pro-
cedures applied to this phenomenon lead us to make a conje.ture con-
cerning the relation of the amplitude of such periodic cable motion
to the vortex generation mechanism. A second purpose of the report
is to sketch in the final section a new plausibility argument for
the Strouhal relation itself for steady uniform flow and thereby
propose for a later report an extension and detailed examinsation of
the theoretical study of the model on which the argument is based.
The developments of the model and logical context were stimulated by
discussions between the writer and Dr. D. Sallet.

Because the transverse high frequency vibrations of the cable
('cable strumming') produce concomitant longitudinal cable vibrations
or wave motion, noise of double** the Strouhal frequency can be com-
municated to acceleration sensitive acoustic pickup elements attached
within the buoyant case (references 2, 5, 6, 16, 30). Both transverse
and longitudinal motions can be analyzed in terms of traveling waves

*There are many excellent semi-empirical numerical and mathematical
studies of vortex motion and separation phenomena. Some are listed
under references 29, 31 and in references contained therein.
**As in MELDE's experiment, reference 20a. An additional mechanism
not discussed herein, has just been uncovered by recent theoretical
work, and will be reported later. It is due to coupling of trans- /
verse modes of vibration.

2
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along the cable which carry the noise energy to the mine case.
Acoustic isolation of such elements is thereby indicated to eliminate
this noise. This might be accomplished by introducing a lossy rope
connection between the cable and case, and this indeed has been
found to be a practicable solution to an annoying problem in some
applications (refercnce 2). Consequently, in a later report, it is
proposed to discuss more detailed analyses and data relating to the
acoustic filtering properties of such a lossy connector. In the
last section of the present report, however, to satisfy a third aim,
we present an indication of the kind of results to be expected from
an analysis of filtering processes in the system.

Another effective method for reducing the strumming noise or the
gross oscillations is by disruption of the characteristic vortex
flow field, but methods for accomplishing this will not be discussed
here (reference 26).

In summary, the general aim of the report is that it serve as an
introductory review and help give direction to further discussions
of some of the physical mechanisms operating in a moored mine system-
all related to cable strumming. The result is that we are led to
point out some areas in which further research investigations are
needed - both experimental and theoretical.

3
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CHAPTER 2

SPECIFICATION OF THE SYSTEM, SOME NOTATIONS,
AND THE BASIC PHENOMENA Or. INTEREST

Figure 2.1 shows a configuration able to be assumed momentarily by
the cage and cable in a flow field of speed U, In practice, the flow
velocity may not be constant either in magnitude or direction and will
vary with depth. The cable, of equilibrium length L, and radius RI ,
will in general be curved; and the case may be moving in translation
and vibration, so that its axis is generally not along the cable
direction at the point of attachment 'C' The other end of the cable,
of" course, is anchored at the origin 'A'. We assume the case to be a
smooth circular cylin;1'r of length L2 and radius R2.

Now the study of the gr'oss cable and case motion or "gross flutter"

is not the subject of this report; it is being and has been treated
elsewhere (references 1, 1G, 13, 17, 23, 24, 28). We consider here
only certain overall equilibrium characteristics of the gross configu-
ration described in terms of a constrained model of the cable-case
displacements and shall neglect entirely any sideways, low-frequency
flutter motion of the case and cable and concomitant transient gross
oscillation of the case around its center of mass. This is not unreal-
istic, since some methods and devices now under consideration may
effectively damp out or eliminate these gross motions. That is, except
for high frequency strumming motion, the case and cable will be assumed
to have nearly taken on an "equilibrium" configuration as in Figure 2.2
in which the cable is curved but lies in a vertical plane except for

acoustic vibrations; and the case is similarly motionless with its
axis in the plane of the cable and the vertical; this plai,., also con-
tains the constant flow vector. Appendix II contains details of the
derivation of an equilibrium configuration summarized and discussed at
the end of this section.

These simplifications allow us to concentrate attention on the
cable strumming phenomenon, of main interest in this report.
Energetically speaking, strumming will be seen to be capable of
extracting a significant fraction of the available energy in the
ambient flow field and, thus, may be of the same order of magnitude
in energy as the more obvious gross flutter phenomenon. We shall
usually use a subscript, '2' to denote "case" quantities, and '0' or
'1' to denote "cable" quantities, so that, for example, the area

4
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presented by the cylindrical case normal to its axis -- its side
aspect area -- is

a2 = 2R2L 2  (2.1)

while the cross-section or base area of the case is

a2 = (R2 ) 2

The net buoyancy of the case is the displacement buoyancy B2 decreased
by the weight of the case, W2. Similarly for the net weight of the
cable. Rates of working by forces will be denoted by dotted W's: fl,
r-tes of heat addition by 6, and rates of kinetic energy change by f.

A transverse displacement of the cable from equilibrium is called
y, with a maximum value yo; the frequency of transverse vibration,
almost equal to the unperturbed Strouhal vortex shedding frequency
will be denoted by f; Kinematic viscosity of the water is denoted by
P= u/mo where m is the water density and A is its viscosity. The
letter c will denote the phase speed of waves with appropriate sub-
scripts differentiating the medium or the mode. That is, cT denotes
the speed of transverse waves along the cable, for example. A
complete listing of notation is given in Appendix I.

The quantitative distinction between itrumming and flutter can be
made more explicit as follows. Water stleaming past the cable with
speed U1 normal to it results in the shedding of a sequence of
vortices from alternate sides of the cable with a frequency f, where

2 fRl =S (Re, )  (2.2)
Ul t

and the Reynold's number is

UIR1
Re I = - (2.3)

The universal function, St, has the value zero until the Reynold's num-
ber for the flow reaches the value 50. It then increases sharply to
a value near 0.2 and remains nearly constant until the Reynold's
number has a value about 105, beyond which point St increases rapidly
as a completely turbulent wake is produced at higher Re values, This
behavior of the combination

St=2 -f R

7
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called Strouhal's number, has been known for a long time -- and is
described by Rayleigh (references 19, 20b). It is also sketched in
Figure 2.3.

Now vortices are also generated by the flow past the long cylindri-
cal case, according to the same general law -- but the shedding
frequency is much lower, since the case radius R2 must now be inserted
in the Strouhal relationship; and R2 is much greater than RI. More-
over, this phenomenon setz in at a much lower stream speed because
the Reynold's number for the case is proportional to R2 . There is
some possibility that the vortex ger.arated from the case is a
continuous helical one, rather than a series of vortices shed from
alternate sides of the case. (See FigureAII-1 in Appendix II.)

When a vortex is generated and carried downstream, the associated
transient reaction of the water on the generating object contains a
component at right angles to the stream and to the axis of the object.
This is a time dependent "lift" force; since vortices peel off on
alternate sides, the lift force alternately changes its sense of
application.

Now one sees that if the cable is flexible, those vortices which
are shed from it tend to produce a transverse vibration -- cable
"strumming". If the case and cable are also free to move with a gross
sideways motion, the vortices shed from the case tend to produce a
"gross flutter" vibration at right angles to the stream velocity.
Clearly, the fundamental flutter vibration frequency would be much
lower than the strumming vibration frequency of our system. As we
have emphasized in the foregoing, constraints are assumed to be built
into the system which entirely inhibit the build-up of gross flutter
vibrations.

These constraints, although not very large, serve to simplify the
equilibrium shape of the case and cable. If the ambient flow speed
of the water past the cable is very small near the bottom where the
anchor is attached to the cable, then the cable is nearly straight
over a length Lo in this neighborhood, although it is tilted from the
vertical through an angle 0, as in Figure 2.2. The value of 0o, of
course, depends on the flow and drag conditions and on the cas;e
buoyancy - so it is found by the procedure described in Appendi.x II.
Over the section of the cable, beginning at point 'B' and extendiri.
to the case at 'C', the cable is curved upwards in a circular arc of
length L1 subtending an angle (o - (f2), and having a radius R. For
the purpose of this report, this simplified shape is an adequate
assumption - one can, of course, treat more complex situations where
the flow conditions are more varied - either by an extension of the

8
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analysis in Appendix II or by some other sta'+ !Frd procedures
(references 1, 15, for example) applicable to ,,ored mines.

The tilt angle 02 of the case is equal to that of the upper end of
the cable under the case loading and drag conditions assumed. Hence,
the angle Oof Figure A1I-2 is zero. Angle 02 may be found once the
net buoyancy, N2, of the case, the average flow speed U2 past the
case and the drag numbers A' and A" are known. If R2 is the case
radius and L2 is its length, and m0 is the density of water while
C' and C" are drag factors for the case side and end areas
respectively then:
I N2 =

N2 B 2-W 2

B2 = mogw(R 2 ) 2 L 2

W2  Case Weight (2.4)

A' moC'R2L2

A" = m C"w(R2 ) 2

0 2

Typical values of some of these and of many other parameters are
given in the Table 4.1 of Chapter 4. Figure AII-3 of Appendix II
shows a graphical construction for 02, the tension T2 in the cable
at the case, and for D2, the total drag on the case.

On the other hand, the graphs of Appendix II also yield values for
the cable tilt 0o (at its lower end), the tension To at the anchor
given the cable dimensions and parameters and the average speed U1
of flow past the cable. These are graphs corresponding to the
condition L. = 0, so that there are different flows over case and
cable but no region of zero speed near the bottom. It is easy to
find a similar solution for the case where there is a region of zero
flow speed over the lower part of the cable.

These results are samples only useful as a reference for the cable-
strumming energy-transformation estimation procedures given in the
next sections. Similar calculations of shape response values for
other flow and system parameter input values can be made using the
Computer Program H 21032* which also yields values of the dip and

*Internal memorandum "A Basic Program for the Calculation of Case
and Cable Equilibrium Configuration."

10
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horizontal displacement of the upper end of the cable, its radius of
curvature, the shear So at the anchor, and the total cable drag
force DI. This concludes our discussion of the moored mine system
in equilibrium. This system is to be subjected to cable strumming
effects.

We now pose the question, how much of the kinetic energy contained
in the stream "incident" on the cable goes into strumming, and how
is it subsequently partitioned?

To answer it we first trace qualitatively in the next section
various dynamical acoustic and thermal dissipation or energy conver-
sion processes occurring in the system.

111
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CHAPTER 3

OUTLINE OF ENERGY TRANSFORMATIONS

If water streams past a strictly stationary obstacle, impervious to
water, the only way for energy to be transferred from it to the
obstacle or the reverse is by radiation or heat conduction across the
surface layer in contact with the obstacle, or by induction of elec-
tric currents. None of these energy transfer methods is of any
importance to us in the context of the present report - except that
ultimately, o:E course, all energy dissipated in the case and cable
appears as heat conducted away into the water streaming past it. We
shall assume that the small temperature differences established in
certain processes have a negligible effect on those mechanisms of
energy transfer which do mechanical work. That is, work is done and
energy thereby transferred only by forces acting on moving parts of
our system, as considered in the sequel.

We have already ruled out considerations of the gross flutter
motions of the case and cable - aithough these, of course, influence
or modulate the forces responsible for cable strumming. Strumming in
turn influences the gross motions and configurations by, for example,
modifying the effective cable diameter and thereby the overall drag.*
Nevertheless, it seems preferable in this report to separate the two
sets of phenomena in the way we have previously specified and suppress
conside-Oation of the possible flow of energy from cable vibrations
into gross cable or case motions resulting from modification of the
overall flow streams. Nor shall we consider the converse possibility.

With this limited objective what remains to be considered? In the
work-energy flow diagram of Figure 3.1, the processes and estimates
of magnitude labelled (B), (C), (D), (E), (F), (G), (H), (1), (L) and
(M) are the relevant items for us. Each one will be discussed

*It has been necessary to estimate the drag increase effect and use
it in the previous sections in order to obtain a more realistic
estimate of the cable and case equilibrium shape. It was done by
using appropriate values for C' and C". See references 1, 4, 10, 11.

12
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individually, and most to a certain extent quantitatively in the next
section, together with a presentation of numerical estimates of its
values.

In the remainder of this section, we shall trace the relevant
physical processes through the system beginning with (I), the initial
flow of water upstream toward the moored system, and ending with the
downstream flux of water and vortices conveyed away in it. The
Process () furnishes us with a handy energy-source-rate figure as a
reference magnitude. Consider the area of the cable and case presented
perpendicular to the flow. The amount of kinetic energy k carried per
second across this area is an estimnate of the energy available to
produce motion of the system (i.e., gross flutter and strumming).
Naturally, there must be other later transformations of this energy
ending in complete dissipation in heat or a convective transfer away
with the stream, since the mine and cable motion generated presumably
does not grow in amplitude without limit.

Hence, as an upper limit* for Process (1), we have the number

K () = jTmo(2R L U1 3 + 2Ry 2 U2
3) -2136 in-lb/s (3.1)

of energy units available for U = U = 1 knot. (See Chapter 4.)
First some of this energy ordinrily2goes into kinetic and potential
energy of the gross motion of the cable and case.

This transformation is accompanied by the modification of the flow
past the case in the formation of a series of vortices, as explained
earlier, which then produce an alternating force - chiefly lateral
(references 9, 10, 13, 16, 17, 22, 24, 31) - effective in moving the
case alternately back and forth sideways, i.e., across the stream.
The case then can drag the cable sideways with it. However, this
motion and the subsequent trans. ormation of the associated energy is
to be suppressed in the remainder of this report. Its chief effect on

cable strumming is to modulate the sp. J of flow past the cable, and
to make it non-uniform along its lengthz. Hezice, the frequency spec-
trum of the strumming vibrations will be shifted and enriched. There
may also be some other transient non-linear flow interaction with
those vortices which produce the strumming, possibly significant at
least near the case. A second portion of this available energy simply
remains in the water, part of it being rotational in the associated

*Since we are not at this point taking dip or tilt of the system into
'Account.

14
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vortex flow pattern and some is converted to heat, process (M); it is
all conveyed downstream with the mass transfer of water. .. third
portion is transformed into a series of long vortices shed along
portions of the cable, with the resulting pressure forces producing
alternating sideways motions - Process (F) - of the cable - i.e.,
strumming. These forces press on the cable and effect a transfer of
energy to it by doing 'lift' work called Process (H). Energy can
then either be removed from or delivered back to the water, modifying
the vortex pattern nearly at the characteristic Strouhal cable fre-
quency, Process (B); some of this, too, is then lost in heat, Process
(L). The remaining kinetic energy in the water subsequent to Process
(B), is conveyed downstream with the rest of the flow pattern. If
some of the partly conveyed vortices pass near hydrophones (not to',
likely with a nearly upright case), pressure variations can add via
Process (E) to the noise picked up otherwise through the water from
acoustic radiation, mentioned later as Process (D). This part of the
energy becomes ultimately dissipated in heat or electrical signals -
the remainder is carried away downstream.*

Let us return to trace other energy fluxes of interest, those stem-
ming from the strumming of the cable - Process IF). It is helpful to
think of the forced transverse motion of the cable as resolved into
systems of 'tension' and 'bending waves' along the cable, traveling in
both directions. As we shall see, associated longitudinal compression
and rarefaction waves are also generated, too. (Process (C)).

Even if some characteristic normal mode of transverse motion is
excited, as a resonance vibration, one can resolve this motion into
such traveling waves. One reason that it is useful to introduce this
conception is because it will ultimately help surmount the difficul-
ties presented by the non-uniform equilibrium tension in the cable,
the cable curvature, and possibly other non-uniformities which might
be introduced in its density and elastic properties. A second reason
is that one can simply and most naturally use for each mode the
universal relation for all periodic waves

Xf = c (3.2)

to estimate the associated wavelength, in turn useful in helping make
the required energy estimates. More explicitly, one recalls that:
(1) transverse wave motions in a flexible cable obey one kind of

*Another mechanism 'collapse' of the vortex system mechanically, i.e.,
macroscopically, as distinct from viscous decay into heat, might
occur as a result of 'collision' with obstecles. Acoustic radiation
might be produced thereby, but its magnitt.de is not estimated herein.

i 15
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'wave equation' with a wave speed depending on the square root of the
tension divided by the linear density, (2) transverse bending waves
obey a second kind of 'wave equation' whose wave speed is frequency
dependent: i.e., dispersive, and depends on the cable bending modulus,
and (3) transverse waves are also coupled to a longitudinal stretch
or compression which can propagate as waves whose speed depends on
the Young's stretch modulus of the cable. It is our aim in the next
section to try to estimate roughly the coupling between some of these
modes and thereby make a first quantitative estimate of the energy
partition between them. It suffices here to point out that the
processes under discussion are labelled (C) on Figure 3.1.

Now if waves of these types are traveling along the cable, they
carry energy which can be transmitted t( other parts of the system.
One path is along the cable to the anchoz, It is very difficult to
estimate the energy transmitted to the anchor and lost there because
of the uncertainty and complexity in the boundary conditions at this
attachment. Perhaps a best first approximation would be to say that
the connection is perfectly rigid so there is a complete reflection
of the energy at point 'A'. However, in the last section, there is
a further discussion of this process. The situation at the case can
be quite different, however. Indeed, it appears that many of the
strrmming difficulties encountered in past field tests stemmed from
the transmission of acoustic waves of longitudinal type along the
cable to the case bottom. These vibrations were then transmitted
into and through the steel case plate structure - perhaps setting up
some local elastic plate resonances - and ultimately affecting the
hydrophones which were sensitive to accelerative motions of their
bases. The complexity of this 'loss' mechanism is such that more
theoretical work should be done on it to supplement experiments which
seem to be required.

Two practical approaches have, in the past, lessened the difficul-
ties with the noise transmitted to the hydrophones via this route.
The hydrophone pickup elements were themselves isolated acoustically
from their mounts, and a 'lossy' rope linkage about six-feet long was
sometimes inserted between the upper cable end and the point of
attachment 'C' to the case. Optimization of these means was not
completely dotermined, however, and further tests are indicated -

described in the last section.

The cable bending waves are completely reflected at the case, in
view of the type of flexible attachment previously posited -or the
system. However, the time varying direction of the tension T due to
the transverse flexural waves can produce a transient shearing force
which might be effective in producing a transient couple on the case.
However, the case and water masses and moments of inertia are so very
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large that 'u significant energy transmission via this manner seems
highly unlikely; our first rough estimate is, therefore, zero for
this as a loss mechanism.

There remain two further phenomena to be taken into account. They

are labelled (G) and (D) on Figure 3.1. Because the transversely
vibrating cable acts like an acoustic line source, we must estimate
how much energy per second is likely to be radiated into the water -

Process (G). As a result, these pressure waves through the water can
also reach the acoustically sensitive element of the hydrophones
mounted in the case - Process (D).

It is important to acknowledge again at this point the assistance
and stimulus given to the present study by previous NOL studies.*
We have extended some of the estimates appearing there, added others,
and refined several points. Ou' effort has, of course, been concen-
trated on extending only the knowledge about the cable strumming
phenomena.

*See references 2, 9, 10, 1, 22, 24, 30. In reference 16, Process (E)
is examined and found ineffective in noise production. We do not
repeat this calculation here.

17
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CHAPTER 4

ORDER OF MAGNITUDE ESTIMATES OF SOME WORK-ENERGY
TRANSFORMATION RATES

INTRODUCTION
In the following formulation-sketch of the rates of energy transfer

and transformation, almost every estimate indicates a need for more
experimental and theoretical studies of the process considered.
There ire also some processes mentioned in the preceeding chapter for
which no formulation is presented in this one. Several of these, too,
should be investigated more completely before one can say he has a
complete understanding of the physical acoustic and hydrodynamic
behaviour of moored mine systems It is perhaps a little startling
to realize that such an apparently simple mechanical system has such
a variety of phenomena - much of it incompletely understood - associ- i
ated with it. Indeed, this is pointed out in some recent public thior.s A
by Bertaux (reference 1) of the Woods Hole Oceanographic Institu,.e
which describe some excellent engineering and development work carried
out, successfully, to solve particular problems encountered in a
variety of situations. One hopes that by analyzing the phenomena
associated with the strumming behaviour in more detail, whetbh:r or not
it constitutes an existing engineering problem, future even more
imaginative and useful systems can be planned and engineered.

In writing down the formulas descriptive of the processes considered
in the succeeding discussion, very crude approximations are used
although each is based on valid physical principles. There is no
overall self-consistent theory yet developed for the curved cable sys-
tem immersed in a flow field as described in previous sections, which
includes all the puzzle pieces we are trying to fit together. Conse-
quently, it is difficult or impossible as yet to give confidence
level estimates or even uncertainty limits to the numerical values
computed from our formulas. Each formula could have been written
with a corresponding dimensionless proportionality constant of order
of magnitude unity, Further inves'*igations would presumably lead to
an accurate evaluation of it.

We are forced by ths complications resulting even from the simple
curved cable model described in Chapter 2 and Appendix II, to make
some simplifying assumptions and, thus, arrive at the simple
formulations of this section. That is, we assume that

18
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00 =02 0

so that the cable is approximated nominally, by a rigid straight line.
Moreover, we take Lo = 0 and make L= AL = L; likewise, U1 = U2 = U.

Next, we 'lump' the distributed drag, weight, and buoyancy loads
together and apply their resultant at the center of mass of the case.
This clearly entails a small error for the effects of buoyancy and
weight, and a larger one for the drag. Consequently, the tilt of
the case for a given speed (obtained from elementary equilibrium
considerations) is far larger, by a factor of about two, than it
ought to be. The magnitude of this error can be easily noted by
comparison of the nominal tilt value 7 with the Y2 values calculated
by the method of Appendix II from the more accurate picture described
in Chapter 2.* Similarly, we use a nominal tension value, T (equal
to that acting on the case) for calculation of transverse wave effects.
Obviously, bending waves are completely suppressed in this model.

However, as far as orders-of-magnitude are concerned, most of the
energy transformation phenomena associated with cable strumming are .
quite insensitive to the angle M (for-small values); the curvature of
the cable is likewise assumed to be irrelevant in making these
estimates. It is on such an elementary, but quite physical, basis
that we are able to formulate and then evaluate numerically, definite
expressions for the various energy-work-rate processes of this and
the preceding sections.

Numerical values are given in inch-pound (force)- second units;
see Table 4.1 for typical parameter values for the system.** In this
system, it may be useful to the reader to know that

1 in-lb = .113 joule, or

1 in-lb/s = .113 watt.

A force of one pound equals 9/2 newton approximately.

*Indeed, this is the reason for making the detailed analysis of the

equilibrium configuration. See Figure AII-5.
**Also see BASIC Program H22032 to obtain results for other input

.. values.

19
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AVAILABLE ENERGY (Process (I))
It is an easy matter to estimate the kinetic energy in the water

flowing up to the case and up to the cable - which must, of course,
be diverted in flowing past these objects. These energies can be
considered to be available for transformation (via lift and drag
forces) into other forms. As a conservative lower limit, we take,
for the energy flux up to the case, the projected area normal to the2
flow velocity of speed U2, times the kinetic energy density 1/2 mo U2 ;
then to determine the rate at which this energy is available to be
transformed, we multiply by the flow speed U2 . As discussed pre-
viously, an unknown empirically d6termined factor, somewhat greater
than unity and closely analo9ous to engineering lift and drag coeffi-
cients could have been introduced to get a more exact estimate of the
volume of water affected - but we shall ignore this for present rough
estimation parposes.

This is typical of the kind of estimation procedures we use in the
remainder of this section. It leads to calcuLable expressions -
which in turn lead to numerical values of orders of magnitude which
are obviously inexact but which should be useful in heightening one's
intuitive physical feeling for the relative importance of each
phenomenon considered.

Thus, we find

M2 k2 = moU23R2 * L2cs 02  (4.1)

for the average flow past the case. Similarly,

(I) = m U 13R (L-Z) (4.2)

is the iverage rate of kinetic energy flow past the cable, since Z
is the dip of the upper cable end.

It is also important to establish the Reynold's numbers for these
flows since in this way, one determines which of the Strouhal vortex-
shedding regiimes is applicable. For the case

Re2 2 cos V2  (4.3)

where v is the kinematic viscosity of (sea) water,
3 X 10 (Reference 14b.) For tho cable, or, the average,

UeR(
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In the remainder of this section, for definiteness, we shall choose
typical values for various parameters, listed in Table 4.1, underlined,
in order to present calculated magnitudes of quantities.

Thus, we find, as listed in Table 4.1, not underlined,

Rel .725 x 103 (4.5)

Re2 =1.64 x 10 5

for a flow speed of one knot (20 in/s).

Likewise on this basis

kl = 1135 in-lb/s1 (4.6)

K2 = 769 in-lb/s

are the available energy rate values (lower limit) for flow past the
cable and case.

Note that the larger portion might conceivably be transferred to
the system via the cable. However, it remains to consider in detail
how such transformations could take place, i.e., by doing work in an
appropriate fashion.

HEAT PRODUCTION (Processes (L) and (M))

It is instructive and important to estimate the order of magnitude
of the various available loss mechanisms - including heating of the
water by maans of shear and viscous stresses for in this way, reason-
able estimation of vibration amplitudes must be made (lacl.ing a more
detailed theory).

The shear stress set up in laminar flow past the cable is of order
of magnitude

M UI
o R1 (4.7)

- 4.65 x 10
- 5 lb/in2

so that the total shear force on the water along the entire cable
affected is roughly

2i RL 1 = .489 lb. (4.8)
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This assumes a velocity gradient of the order of UI/2RI . This illus-
trates, among other more important matters: che insignificance of this
as a drag mechanism in comparison with the "vortex-induced" drag which
can also be laminar (It is turbulent at higher Reynold's numbers.)
However, the loss rate from the cable by heating the water is

Q1 =2 RUIL cos4'
(M) 1(4.9)

=8.77 in-lb/s.

Vibration of the cable can add to this loss mechanism by increasing
the relative speed, but it is quite small, at least for an amplitude,
yo, of vibration (strumming) of .01 inch adopted to obtain a first
estimate of amplitude dependent quantities. For certain reasons dis-
-inssed later, we also calculate values for yo = .04 inch.* Then, if
f is the Strouhal frequency of the order of 38.5 Hz, we have a typical
maximum velocity component due to vibration of magnitude
2rfyO = 2.42 in/s. (9.68)* The corresponding estimate for the heat
dissipated is[

(L) 6T = mob _2 fL = .0713 in-lb/s (1.14)*
(4.10)

This is formulated analogously to the previous expression except for
the factor 1/2 inserted because of the vibratory nature of this
velocity component.

TRANVERSE (LIFT) FORCE (Process (H))
The cable experiences a force on it, transverse to the ambient flow

direction, every time a vortex peels off. This sheddinig phenomenon,
described in much more detail in Chapter 5, results in a displacement
of the aft-flow-stagnation point through an angleAO from its normal
position in steady laminar flow. See Figure 4.1 (a) and (b). The
result is the establishment of a concomitant net non-zero circulation
about the cable, resulting in a Kutta-Joukowski type of lift force
(references 16, 22).

It is extremely important to determine, for cable strumming, the
magnitude of this force, and remarkable that a detailed, correct
theoretical description has been so long in appearing. In the next

section, we give an outline of a theoretical argument, which furnishes
an estimate of the value of the Strouhal number; it also bears promise

*Values of quantities corresponding to a strumming amplitude
yo = .04 inch are given in parentheses immediately following the
values for yo .01 inch for ready comparison.
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UCABLE"
X-SECTION -

(a) IN STEADY LAMINAR FLOW, THE AFT STAGNATION- POINT
IS DIRECTLY OPPOSITE THE FORWARD ONE AND IN LINE
WITH THE FLOW VELOCITY .

R,. VORTEX

(b) IN UNSTEADY LAMINAR FLOW THE AFT STAGNATION POINT
MOVES AROUND THE CABLE X-SECTION AS A VORTEX IS
FORMED AND PEELS OFF.

FIG. 4,1
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of leading to a detailed physical theory of such lift forceis (as
distinct from theories based on the Karman vorte-: street dEscription
which is strictly applicable to free-field flow conditions).

Our estimate of the lift forces at this juncture, however, like
those of previous authors, utilizes the Kutta-Joukowski formula -

strictly valid only for steady flow conditions, This is

FL = mo r u,(AL1 ) cos # (4.11)

where r is the circulation estimated to be

r = 2 UIR1AG cos 0 (4.12)

and AL1 is the length of cable over which each vortex peels off. It
might be called a vortex "coherence length".

The amplitude of motion of the stagnation point is a certain fraction
z of r radians. That is,

AG = Xr (4.13)

and estimates have been given for 2 of about 0.1 (references 16, 31).

Now if AL1 = L1 = L, then we find

FL = 31.6 lb (4.14)

a sizeable sideways force. M4ultiplication by the strumming velocity
amplitude (2irfy o ) again yields the work rate

WL = FL " 2rfy°
(H) (4.15)

= 76.5 in-lb/s (306)

(maximum) estimated done by the lit forces in producing cable strum-
ming vibrations and vortices during differing phases of the phenomenon,
of course. One guesses that the increase in the drag force associated
with cable strumming is of the same order of magnitude as FL.

ENERGY TRANSFER ALONG CABLE BY WAVES AND AWAY FROM IT BY CONVECTION:
(Processes (F) and (B))
We think of the transverse motion produced in the cable by the vortex

shedding as composed of waves along it; such waves move with the speed
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of kinematic transverse waves - primarily transmitted by the tension
forces in the cable. Hence, they travel with the speed

CT 2 6.16 x 10 in/s (4.16)
(RI) (m+mO)

for a nominal tension of 213 pounds. They can also be transmitted as
elastic bending waves - but these depend on the presence of shear
force gradients, suppos-id to be very small. The transverse wave
motion can be described by

y = yoh [2 7rf(t - x/c T)] (4.17)

where h-i so that the transverse velocity associated with it is

atY = (27fyo)h' [21f(t - x/cT)]IT J(4.18)

where we suppose hl- 1 also.

Associated with this wave motion are energy densities, in the cable,
in the adjacent water. Their magnitudes are of the order

1/2 m lty = 1/2 m (27rfy o ) 2

= .215 x 10 - 2 in-lb/in
3 (3.44 x0 - 2  (4.19)

in the cable and
2 .- 2 3 -2

1/2 mo .0274 x 10 in-lb/in (.439 x 10 - ) (4.20)

in the water. One should think of this second energy density in the
water as arising from the modification in the vort flow structuze
produced by the transverse motion of te cable. Of course, like the
cable motion itself, both kinetic energies appear because of the lift
force exerted on the cable by the water, and conversely on the water
by the cable.

Now if the wave produced on the cable travels off to the cable ends
and is dissipated completely, there will be no transverse motion left--
the strumming will die away. This does not always happen, of course,
and is the subject for later discussion in Chapter 5. This rate of
energy transmission along the cable has a magnitude2 2= 1/2 m(2rfyO ) 2(R I ) c T

(F) = .0899 in-lb/s (1.44) (4.21)
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approximately ...... not very large. However, when tho flow structure
of the shedding vortices is modified by the motion o. the cable and
the vortices move away, or are conveyed away into the water, energy
can be dissipated this way at a much higher rate. Assuming a typical
convection velocity equal to the projected flow speed U1 cos €, we
find

(B) kW = 1/2 m (27rfy o) 2 cos (4.22)

= 16.4 in-lb/s (263)

for the estimate of this loss rate.

ACOUSTIC RADIATION (Processes (D)and (G))
The cable strumming phenomenon seems to have caused a certain num-

ber of problems because pressure waves generated by the vibrating
cable can be picked up directly as noise on hydrophones nearby. It
behooves us to make estimates of the pressure field and radiated
power generated in this way.

The standard expression for the power radiated from a circular
cylinder vibrating transversely to its length (reference 1) in a
medium where the sound speed is co (for water, c0 = 6 x 10 in/s)

Pw =k (27rfyo )2 AL1(G) 5 nl/ Z'.7l 5(4.23)

.180 x 10- in-lb/s (2.87x0

if AL = L := L, and where k is the radiation resistance per unit
lengtn of Lihe cable (lb-s/in2):

k 12 12f 2 1012

ko%-- ]  
2 ) co = 8.51 x • (4.24)

The acoustic waves emanating along the cable spread out and impinge
on the sensitive hydrophone pick-up area

aH " 4 in2 .

The waves received from different portions of the cable combine
according to their received phases, and these, as we shall see, depend
on the ratio of the speed of the transverse waves along the cable to
the sound speed in water - and the cable-case configuration in relation
to the hydrophone.
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Let us assume the hydrophone is in the case near the upper cable
end. This means that the radiation direction is nearly along the
cable, so that I in the next formula is zero. According to Morse,
the (complex) velocity amplitude in the water from the cable motion
depends on the distance rr from the nth radiating 'loop' to the
point in question by the formula

ik' (m-cot )  - 3r/4] (4.25)b c
mC 0  f cos e r-n=1 moI 2 frn

where 2 2

2rf/co , (b/m 0co) = 1/2 (2)f (22fY°)7RI (4.26)

and & = number of loops vibrating. Hence, the power received at the
hydrophone case bottom is, with cos, = 1:

(D) PH = aH 1/2 moc 0 i12 (4.27)

Altogether, since
cT *

AT pc T

L = F (2n (4.28)

XT = cT/f

is the wavelength, we find

P= 29 me 0 _ (,~ ' c , co (LIR) aH N
2-H = 0 1 H i

7.95 x 10-13 j~I in-lb/s (1.27 x 1i0- II 2

for f = 38.5 Hz, N = 451 (i.e., LI = L = 36 x l03 in).
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'Li this expression
i -N 22

2; 2;e rCT( f-C 2 (4.30)

is less than 2N - 1 = 901.* Since one in-lb/s 2' .11 watt,

(D) PH < 7.16 x 10-10 in-lb/s " .79 x 10-10 watt (4.31)
(1.15xl0 8 ) (.12x10-8 )

is felt to be a crude but very conservative upper bound.

LONGITLDINAL STRAINS AND WAVES (Process (C))

Melde's experiment shows that there are longitudinal waves associ-
ated with transverse ones on a string, and conversely. For standing
waves, the frequency of the longitudinal ones is double that of the

transverse ones.

If we have a vibrating loop, or a traveling transverse wave under
tension, there is a longitudinal strain associated with this sideways
deformation of amount

E -
(4.32)so0

where s is the modified length of the segment of cable normally of
length s. if

y(x) Yo sin (2rfx/cT) (4.33)

is the shape of the transverse wavelet (wavelength X = cT/f), then
for a quarter wave,

,r /4 2

s 1/2 (y') dx. (4..34)
Jo

Consequently, we have the estimate

2 -7 -7
E (wfY0/CT) = .387 x 10 (E.19x ) (4.35)

for the associated strain under our approximate conditions.

*However, the number of coherently vibrating loops or half-wavelengths
is a highly uncertain quantity.
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If the whole cable underwent such a strain, it would correspond to
a deformation of

eL1 = .139 x 10-2 in (2.33 x 10-2) (4.36)

This may be contrasted with the stretch of the cable under a uniform
tension of 213 pounds. Since Young's modulus is about

E = 18 x 106 lb/in
2

for steel cable, we have

7 1.74 x 10- 3  (4.37)

or a strain thousands of times as great as the "acoustic" one. The
static deformation is similarly greater and equal to 63 inches (or
5 feet). Clearly, the only way for the cable strumming to affect the
case and its contents is by the transmission of waves - either
through the water as we have already considered, or along the cable
and through the case end-plate. The power which might be delivered
this way to the end of the cable is

2 2
P = /2 E rR cc C 1 C

(C) 1.43 x 10 - 5 in-lb/s - 1.57 x 10-6 watt (4.38)

(3.67 x 10 - 3 ) (.404 x 10 - 3 .Y

This is 10,000 timea larger than the conservative maximum estimate
for acoustic waves through the water.

SUMMARY: THE STRUMMING AMPLITUDE .Yo
It is instructive to recall the major estimation formulas. This

aids in comparing their numerical magnitudes and in demonstrating
which physical factors are of most importance in the phenomenon. But
of even greater significance, we are able to "derive" a relationship
between the amplitude of strumming y., the Strouhal frequency f, and
the flow speed U1 and the parameterz governing the magnitude of
the lift force.

Reference to the flow diagram of Figure 4.1 again shows that the
vortex lift work rate (Process (H)) can be considered as the maininput to the cable system.* The resulting energy flow is then

*Since we are not considering the groos low frequency motion. Also,
Process (Ei is calculated in reference 16 and found to yield negligible
pressure effects.
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partitioned into Processes (B) and (L) and (F). Process (F) in turn
acts as input to Processes (G) and (C), and the transfer processes - .1
not calculated - resulting in energy loss rates to the anchor and in
the other direction to the case. The acoustic filtration process
discussed later deals with the associated phenomena.

Diagramming these, we have the scheme shown in Figure 4.2. This is
not a complete sketch, but it does illustrate what we are aiming at.
That is, numerically, Proce*sses (F) and (L) arc small and almost
n'gligible compared to (B); and Processes (C) and (G) can certainly
be accounted for by the energy flow via (F). Moreover, all the energy
flow from (H) to (F), (L), (L) seems accounted for. Consequently, we
should have the equality: (H) = (B) + (L) + (F), or

cos 0 UIZ = fy 0  + RiL1  c (m/m )cTI 1 (4.39)2RIALIU1 cos 0

The factor in square brackets has the value 1.01, independently of
y* .Hence we see that, energyvise, the strumming amplitude y- is
limited by its relation to f, U, and _.

That is, we must have:

cos 4' U1Z > fyo . (4.40)

The numerical estimates we have given were based on two assumed
values for z and yo, which clearly might now be modified - yo might
be four times as great, or I might be one-fourth as large. If the
latter were true, the magnitude of the work Process (H) would be
reduced by a factor of four, and all other estimates would remain
unchanged on the other hand. The corresponding values for yo = .04
have been listed as parenthetical alternatives in the preceding dis-
cussion. We assume these are the appropriate values until further
investigations are made.

This relation (4.40) is similar dimensionally to the static Strouhal
relation - but it has dynamic implications important in the considera-
tion of the mechanisms which are instrumental in helping limit the
maximum amplitude.

It is interesting to coniiine (4.40) with the Strouhal relation

cos V' UISt= 2fR1  (4.41)
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0
KE1 + KE2  .. 4 GROSS MOTION OF CASE & CABLE

~) 2 (VRTEX
: 2nmoUlos RIR1L Z(2nfyc) LIFT

WO:,K

DOWNSTREAM TRANSV. WAVES

LOS F: 1/2monRc T(2nfyo)2

HEAT LONG. WAVES

--nVLl t(2nF,O)
2  

C : 1/2E1C2rt(R1)2 cc

IADIATION

VORTEX MOD. Gl k(27r, ")2LI

moU 1LI RI (2tfo)2 Cos RECEPTI ON

D : 12m ocoaH 112

FIG. 4.2 SOME IMPORTANT STEPS IN THE PARTITION AND
'DEGRADATION' OF ENERGY FROM THE FLOW FIELD.
SINCE (B)>@), THE STRUMMING AMPLITUDE yo IS
LIMITED.
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so that

"< 2R, (4.42)
Tt

If Z indeed has the value .1 often observed, then yo < R11

It is also instructive to consider (4.40) in relation to a simple
application of Newton's Law assuming a harmonic transverse cable
acceleration produced by the lift force F . This leads to mo< 4m,
which is certainly satisfied!

Until a more detailed theoretical examination o4 the dynamic
inequality (4.40) is available, supplemented by sufficient investiga-
tions - theoretical and experimental - of its limits of validity, we
must regard this limit on yo as a conjecture which is possibly valid
but not yet sufficiently verified.
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CHAPTER 5

CONCLUSIONS AND NEEDEr RESEARCH: ANALYSES AND EXPERIMENTS

SUMMARY OF RESULTS
The rough, rather crude nature of many of the approximations

entering into the estimates given in Chapter 4 make it almost self-
evident what research needs to be done in getting a better, more
exact understanding of the cable struxring phenomenon associated with
a moored mine system. Nevertheless, we did specify, in Chapter 2,
the system and its equilibrium configuration rather carefally. The
principal characteristics of the vortex shedding and en'-rgy transfor-
mation processes were described qualitatively and fairly completely
against this setting. This qualitative analysis is summed up in

Figure 3.1 of Chapter 3, and yields the background for making most of
the quantitative estimates. Despite the approximations used in meking
them, the numerical values do corroborate the physical principles
used and yield a proper perspective for the relative importances and
intercorrelations of those processes which were examined. That is,
we maintain that the numerical ordering furnished by the estimates in
Chapter 4 is correct for the flow regime of greatest importance in
moored mine applications, were the flow speed can be up to a few knots.
These relative magnitudes led to the ordering shown in a diagrarrnatic
List of most important processes, Figure 4.2 Chapter 4.

There is no doubt that the predominant portion of the initially
available kinetic energy in the water flow is ineffective in producing
dynamic system response, and much of it is transformed into the gross
flutter motion response. Yet, a significantly sizable proportion, in
terms of ability to affect acoustically sensitive portions of such
systems, is handed over via Process (H) to cable strumming, but then
most is re-transformed (Process (B)) into a modification of the vortex
shedding phenomenon. I,- this form of the energy, acoustic effects can
only be produced either 1)y the sound field generated by collapsing
vortices, or by the convection of vortex flow pressure patterns near
sensitive elementL. However, Rrocess (F) - energy dissipation in
transverse wave motion along the cable - although perhaps only of the
order of one percent of (B), can still be effective acoustically by
transmission into the mine case via the cable attachmeht device.
Further degradation by acoustic radiation from the cable and reception
at the hydrophone is not likely to lead to troublesome effects, but
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experimental tests of such a conclusion must be made to evaluate a
confidence limit.

A kind of spin-off result of our energy estimation procedure is
the recognition of the possible near equality of Processes (H) and (B),
which implies a 'dynamic Strouhal inequality relation' to hold between
the strumming amplitude and the amplitude of motion of the aft stag-
nation point on the cable. This is stated simply by

fyo < U1Z cos V (5.1)

which certainly requires further investigation, both theoretical and
experimental.

Finally, we wish to discuss two otloer specific well-formulated
problems needing further research. Each has been investigated
theoretically in a preliminary way. The first investigation led to
an original rudimentary theory which underlies the well-known
'static kinematic' Strouhal relation, basic to cable strumming and
gross flutter. The second consists of a reapplication of acoustic
filtration theory to the problem of wave transmission along the cable,
through a lossy rope connection and into the case. The discussions,
although describing preliminary investigations, are presented in the
following two sub-sections, since they were made during the initial
phases of this review.

AN ELEMENTARY DERIVATION OF AN APPROXIMATION TO THE STROUHAL RELATION
We examine the regime of Rey:;old's numbers in which the Strouhal

number

S fd (5.2)
StU

is approximately constant (r 0.2). This regime is

l03 < Re < 105 (5.3)

where

Ud( 4
e  = -(1 .4

is Reynolds' number.

(U = normal stream speed relative to object of transverse diameter
d; f = vortex shedding frequency and V = kinematic viscosity.) Lot
us assume the following (reference Figure 5.1):
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1) A vortex of cross-section area (J'r (d/2)2 ) forps on and sheds
from a given side and to the rear of an object of diam.,ter d during
each period of the motion. The formation of an oppositely oriented
and spinning vortex on the other side is exactly one-half a period
out of phase. J' is a proportionality constant of the order of unity.

2) The vortex strength while it is growing is

ra(t) (5.5)

where a(t) is its time varying cross-section, and is its vorticity
(2 times average particle angular rotation speed). We assume-that the
vortex vorticity is accumulated in 'a' by convection across a kind of
a "throat" - and does not diffuse appreciably during the shedding
period. That is, 'a' grows by accretion of vorticity from the
diffusing region ahead of the throat. Hence, is constant throughout
'a', approximately.

3) The rate of increase of the area 'a' is given by

(5.6)

where f is the throat size, which we shall assume grows rapidly from
zero to a maximum, and then shrinks rapidly to zero again.

The fluid velocity next to the cylinder is zero, while that at
the farthest point of the throat from the cylinder is 2V = J"U with
an average value V across the throat.

We also assume

= dJ, sin rft (5.7)
2

where J", J"' are proportionality constF.nts possibly of nearly unit
magnitude,.

At time I t 1 the vortex sheds and a new one begins to form.
But at this instant

1/f-:J dtJif r(d)2a dt= J'(5.8)
l~Jl

0

Hence, j J", d U 2 J T (5.9)
22 rf
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or
fd - 2 J"J"' _ 0.2 (5.10)

U 7r2 J"

if J' = J" x J"'. (5.11)

The question remains: what are the actual values of J', J", and J'"
and how are they really related? 

8

LOSSY WAVE PROPAGATION AND THE FILTRATION OF SOUND IN THE MOORING
CABLE SYSTEM
We outline in the following a brief derivation of equations for the

reflection coefficients of compressional (longitudinal) waves along
a cable (which may be slightly curved) attached to an anchor at one
end and to a section of lossy rope at the other and through it to the
bottom of a mine case. There are two such coefficients - one appro-
priate for the anchor connection, the other for the rope and case
segment. By studying the behaviour of these expressions as functions
of physical parameters occurring in the complex acoustic impedances
of the elements involved, one hopes to be able to optimize the reflec-

tion and transmission processes so that energy of vibration is kept
away from acoustically sensitive portions of the system.

Figure 5.2 shows the system contemplated with acoustic particle
velocities designated by u' for waves moving from the anchor toward
the case and u" for waaves traveling oppositely. A subscript R
denotes rope variables, while A denotes anchor ones. As before,
subscript '2' is attached to case quantities and 'I' and '0' to the i
appropriate cable values near the rope end and the anchor end respec-
tively. Transient overstress (tension) values are denoted by T,
while p stands for 4rf, the cyclic frequency of longitudinal waves,
where f is the Strouhal strumming frequency for transverse waves.

For longitudinal waves, the strain is

--- ) " where cT (m+mo)TR 2  (5.12)

and the particle velocity for compressional or longitudinal waves is

related to it by the usual formula

U = ec C  (5.13)

where c "Ed" being Young's stretch modulus. In a traveling
acoustic wave, we, of course, have the impedance relations

= mcCU' , 7" = mcCu" for the stresses (tensions). We suppose
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that stands for the particle displacement either at the anchor or
in the rope, as the case may be.

Reflection At The Anchor. At the point of connection 'A' at the
anchor, we require continuity of particle velocity:

uO + uo" = att (5.14)

whereas, if MA" KA, RA are appropriately chosen (empirical) mass,
stiffness and resistance parameters for the anchor connection
mechanism, Newton's second law posits

(7' +'r") a, - RAat t+ KA + YA tt( (5.15)
= ZA(p)9t

where a - 7r R1 
2 .

In this we have supposed that t is proportional to eiPt so that

ZA(P) =A + i (MAP + KA/p) (5.16)

is the complex impedance of the anchor at this point. Let

z1 = z O =mcC  (5.17)

be the acoustic impedance per unit area of the cable material.
Then we have the expression

I A

F + (5.18)

0 Uo' 2 =iZlal +ZA12

for the fraction of energy incident on the anchor which is reflected
back up the cable. This gives a measure of the effect of the anchor
on inhibiting the loss of cable strumming energy.

Propagation in the Rope. Before we can derive a similar coefficient
to determine the effectiveness of the rope in acoustically isolating
the case from the cable, we must consider lossy wave propagation in
the rope.
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In the cable we are able to write expressions

= uI eip (t - x/cC)

u" e ip(t + X/CC) 
(5.19)

for the component traveling waves in terms of particle velocity
amplitudes uI ' and uI  at x = 0 (where the rope is connected to thecable). In the rope, on the other hand, we must write

u =ue-aXeip (t x ) (5.20)

u= u1e a(x-1)eiP(t + 0x/p)

where
2_82  = 2/ 2

(5.21)

#= rp/c 2
R

and cR is the speed of propagation while r is a dissipation constant
for the rope. That is, particle displacements in the rope obey the
lossy wave equation (ref: 20a)

+ 2 rattR C2ROxR (5.22)
att R +R R x t

zR = iu/p, cR ER/mR

As a result, the (complex) rope overstresses are:

71= -iER (a + i )u '/p
(5.23)

711= -iER(a + i )u"/p

for the two types of traveling waves. In most cases,
a,-r/cR<< O p/cR. Hence, the rope has a complex acoustic impedance
per unit area:

ZR(P) = -iER(a + i#)/p. (5.24)

Because

a <<, (5.25)

We have

ERP/p - mRcR. (5.26)
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Reflection at the Rope Isolation Element. At x 0, we suppose
the cable and rope to be jointed by a massive .linkage M. Hence

t it | it -aL-

u= uI + ul = UR + uRe R

- a1l-aRrR = Mipu I  (5.27)

= Z(p)ul

where: = z - u' ar1dR = -ZR(UR - R

At x = LR, the rope and case arc, connected through a system similar
to that at the anchor. So we have

u e- (a + i)L R + uR eiLR= a..c (5.28)

aRzR(-uke-(a + if)LR + uR e 1 LR) = -Zc(P)at c

where: C is the particle displacement at the case, and

Zc(p) = RC + i(McP - Kc/p) (5.29)

is the load impedance at the case.

After a considerable amount of algebraic manipulation, we find an
expression for the reflection coefficient:

_I u11 2
F 1 I' 2

(zal--)ZC + (zla+Z+)Ze-2Y (530)
+ + - -2TI2

I (zla+Z-)Z c 
+ (Za-Z)Zce R1

where:

Y 2 = (a + if)2 - 2irp - p2

+

z-= ZR'(P) aRfz (p) (5.31)

Zc± = zR(p)aR _+ Zc(p) •

Since F1 is of the form

K + e-2YLRI2 =K ID"I 2

16' + e-2TLRI
2  ID'12
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where: 5' and 6" are complex parameters independent of LR, we can
plot the numbers D' and D" in the complex plane, as in Fig. 5.3.

There are clearly optimum conditions encountered as the length of
the rope LR is changed, so t7hat there is a maximum energy reflected
back into the cable, i.e., the case can be isolated optimally.

What is needed, of course, are the empirical values of the
pa:ameters appearing in the acoustic impedances: the lumped
quantities Rc, Mc, Kc

RA MA, KA

and the various distributed quantities. These can be determined by I
suitable experiments. However, a straightforward acoustic engineer-
ing experiment to test the isolation properties of such a rope would
seem to be in order as a prior endeavor. One could suspend a mine
case in water with adjustable tension and isolation elements inserted
in the cable. Longitudinal vibrations of small amplitude in the
cable can be generated and the energy transmitted to the case can be
measured by suitable acoustic pick-up instrumentation.
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APPENDIX I - NOTATION

1. BASIC Cbmputer Program H21032

There follows a reproduction of the 'Introduction' to H21032
which contains definitions or names of all symbols used In READ and
DATA stements and In PINT output statements. These definitions
are not reproduced In the listing of the second section of this appendix
aithougi each computer symbol Is listed with a (P) to designate that It
Is defined In the computer program. Computer symbols are followed
by the symbol used In the report to designate the same quantity, when
this is necessary for clarity.

PROGRAM H21032 OF 23 FEBRUARY 1972
FOR CALCULATION OF MOORED MINE CABLE AND CASE
EOUILIBRIUM CONFIGURATIONS AS FUNCTIONS OF FLOW

SPEED

TO SKIP I-;TRODUCTION TYPE 'O'.OTHERWISE'TYPE '1'*
?I

INTRODUCTION

THE CABLE OF LENGTH 'L' IS SEMI-RIGID AND CON-
SISTS OF A STRAIGHT SECTION OF LENGTH 'LO' SMOOTHLY
JOINED TO A CURVED SECTION -OF LENGTH 'LI**THE
AVERAGE FLOW SPEED FAST THE CASE IS'U2'iTHAT PAST
LI IS 'UI',AND THAT PAST LO IS =P.'LO IS ATTACHED
TO THE ANCHOR' WH4ICH EXERTS TENSION 'TO' AND SHE;AR,
'SO' ON IT. LI IS ATTACHED TO THE CASE WHICH
EXERTS ONLY TENSION 'T2' ON IT.

TILT OF CASE IS '02'J TILT OF LO IS 'O.DRAG
ON CASE I'S 'D2'j WGT. IS 'W2'S BUOYANCY IS 'B2')
NET BUOYANCY IS 'N2') CASE LENGTH IS 'L2'.

RADIUS OF ARC Li IS 'R'; 'NI' IS NET WJGT. OF LI
AND 'NO' THAT OF LOS 'N' IS NET WGT. OF ENTIRE
'CABLE. ALL 'NETS' INCLUDE BOTH INTRINSIC WEIGHT
AND BUOYANCYD I.E. WATER DISPLACEMENT*

DRAG ON LI IS 'PI'. CASE RADIUS IS .'R2' WHILE
THAT OF CABLE IS 'RI'* HORIZONIAL DISPLACEMENT
OF UPPER CABLE END IS 'X' AND ITS DIPIS 'Z*.

DIMENSIONLESS CYLINDER DRAG FACTOR IS 'CI' AND
END DRAG FACTOR IS 'C2'. 'At', 'A2',AND 'A' ARE
CASE CYLINDER AND END, AND CABLE (PER UNIT LENGTH)
CYLINDER DIMENSIONAL DRAG NUMBERS. 'B' IS NET WGT*
PER UNIT LENGTH FOR CABLE.'G' is GRAVITY ACCEL. 4
'M' AND '"10' ARE CABLE AND WATER MASS DENSITIES*
'P' IS PI3.141592,"

DATA READ AT 1600 AND 1610 AND LISTED AT 2410
MUST BE GIVEN IN A CONSISTENT SYSTEM OF UNITS
AND OLTPUT WILL BE IN THAT SYSTEM.
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SYMBOL LISTING
In the following list of symbols, Table IA-I names, and definitions,

subscripts '0' and 'I' refer to cable quantities, 'R' to rope
quantities, 'A' to anchor, 'H' to hydrophone, 'C' to compressional
wave or to case, 'T' to transverse wave quantities, and 'L' to lift
forces. Exceptions are m0 and co referring to water density and
sound speed respectively, and yo, the transverse strumming amplitude.
The symbols (B), (C), (D), (E), (P), (G), (H), (I), (L), (M) signify
processesl 'A', 'BI ', 'B2 1, 'C', 'D' label points, as explained in
the tex t.

TABLE IA-I

1) (P) denotes a symbol defined in Program H21032
2) Page No's. are those where symbol occurs first in text

SYMBOL NAME OR DEF. PAGE SYMBOL NAME OR DEF. PAGE

A (P) aR Rope X-section 42
area

A' Cyl. side drag 10
no. B (P)

A" End drag no 10 B1  Cbl. displace. 20
(broyancy)

A (P) (=A')
B2  Case displace. 7

A2  (P) (=A") (buoyancy)

a Shedding vortex 37 b Sound veloc. 28
area ampl. coeffic.

a1  Cable X-section 40 C' Side drag factor 10
area

C" End drag factor 10
a1  Cable aspect 20

area C1  (P) (=C')

a2 Case X-section 7 C2  (P) (=C")
area

c Sound speed 7
a2  Case aspect area 7

c Sound speed 20
aH  Hydroph. sens. 27 (water)

area
c C Compress. wave- 20 1:

speed (cbl)
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TABLE IA-I (Cont)

SYMBOL NAME OR DEF. PAGE SYMBOL NAME OR DEF. PAGE

cT Transverse wave- 7 g Gravity accel. 10
speed (cbl)

h Wave-form 26
cR Compress. wave- 41 (transverse)

speed (rope)
JIj,J " Proportionality 37D Drag force 56 coeff's.

D' Complex filter 42 K Kinetic energy 7
vector (numer.) flux rate

D" Complex filter 42 K1  KE flux rate 21
vector (denom.) (past cbl)

D1 (P) K2  KE flux rate 21
(P) (past case)

KT Trans. wave KE 26d Diameter of 37 flux
cable

Kw  Vortex Mod. KE 27Ec  Young' s mod. 20 (cbl)
(steel)

K(I) Incident KE flux 14
E Young's mod. 41 limit

(rope)

KA Acoustic stiff- 40
F Reflect. coeff. 40 ness (anchor)0 (anchor)

K Acoustic stiff.- 42
F1  Reflect. Coeff. 42 c ness (case)(rop )

k Radiat. resis- 27
FT Vortex lift force 25 tance (cable)

f Strouhal 2 k' Cyc. wave no. 28
frequency (cbl) (water)

i Strouhal 52 L (P)
2 frequency (case)

Lo  (P)
G (P) (=g) 0

L1 (P),
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TABLE IA-I (Cont)

SYMBOL NAME OR DEF. PAGE SYMBOL NAME OR DEF. PAGE

L2  (P) n Running no. vib. 28
2 oops

LR Rope length 42
e4Pc Power in compres- 30

L1  Vortex coher. 19 sion waves (cbl)
length

P Radiat. power recd.28
Vortex diffusor 37 by hydroph.throat size

P Rad. power from 27

M (P) (=m) cable

Acoustic linkage 42 p Cyc. freq. long. 38

mass waves

(P) (-m) QViscous heating 23(cable)

MA Acoustic mass 40
(anchor) QT Viscous heating 23

• (strimming)

Mc Acoustic mass 42(case) R (P)

M1  Force moment 60 R1  (P)
(cable)

m Cable density 20 RA , ""coustic resis. 40

mO  Water density 7 (anchor)

mR  Nylon rope density 41 Rc  Acoustic resis. 42
R c(case)

N Net wt c.able (p) r Diss ,cn 41

No  Net wt straight (p) (rope)
part cbl.

Distance from 28

N1  Net wt curved (p) n vib. loop
part cbl. Re1  Reynold's no. 7

N2  Net buoyancy case 10 (cable)

No. of vib. loops 20
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TABLE IA-I (Cont)

SYMBOL NAME OR DEF. PAGE SYMBOL NAME OR DEF. PAGE

Re2  Reynold's no. 20 u ,(uo", Compress. wave 38
(case) Ul",UR") part. speeds(down)

S Shear force 60

(cable) V Ave. flow speed 37
in diffusor throat

S 0 Cable shear (at 11
anchor) W Rate of working 7

St Strouhal number 8 W Lift work rate 25

s Stretched seg. 29 W1  Cable wt. 20
of cable

W 2  (P)
so  Tnstretched cable 29 2

seg. X (P)

T Nominal tension 20 x Coord. var. 29

To  Tension (at 10 Y Complex sound 28
anchor) veloc. ampl.

T2  Tension (at case) 10 y Trans. cable 7
displace.

U Speed of water 2
flow YO Max. Trans. 7

cable disp.
U1  Water speed past 

7

upper cable z Case Dip 20

--.d 'past 10liAos.ip-4

pr.speed

c0 Acous. impe- 42
dance (link)Water spe^,=,~l

normal to case "F 42

u Compress. wave 38 at linkpart. speed +"i

Zic -  Acous. impe- 42"
u',(uO,, dance (rope)
uI,', uR ' ) compress. wave 38 at case

-t. speeds (up)
ZA Acous. impe- 40

dance (anchor) -A'
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TABLE IA-I (Cont)

GREEKSYMBOL NAME OR DEF. PAGE SYMBOL NAME OR DEF. PAGE
Zc  Acous. impe- 42 c Propag. decay 41dance (case) const. (rope)

Zo=z1  Ac. imp. per 40 Propag. wave 41unit cable length const. (rope)
ZR Ac. imp. per unit 41 r Water Circula- 25rope length tion

y Complex proport. 42
const. (rope)

so, a" Ave. filter 42
vectors

Long acoustic 29
straip (cable)

Static strain 30
(cable)

Cable tilt 57

0(P)

2(P)

Nominal cable 19
tilt

K Reflect coeff. 42
factor

X Wave length 15

XT Trans. wave 28
length

A Viscous coeff. 7
(water)
Kin. Viscous coeff.7

50

• I',.pI 
--, .

- .



NOLTR 72-77

TABLE IA-I (Cont)

GREEK
SYMBOL NAME OR DEF. PAGE

Dyn. strouhal no. 20

Shear stress 22
(water)

Ave. curved cable 19
tilt

case tilt rel. 10
to cable

6e Ampl. stag. 23
motion

r Compress. stress 38
dev. (wave up)

1r" Compress. stress 38
dev. (wave down)

7O, r8 Compress. stress 40
dev. (anchor)

7I  Compress. stress 42
dev. (link)

7R  Compress. stress 42
dev. (case)

Long. wave part- 40
icle displace.

tc Long. wave particle 42
displace, at case

tR Long. wave particle 41
displace. in rope

Rel. rad. 28
direction

vorticity 
37
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APPENDIX II

CABLE AND CASE CONFIGURATION

THE CASE EQUILIBRIUM POSITION AND ORIENTATION
Consider the configuration shown in Figure 2.2 and in particular

the equilibrium of the cylindrical case.* In practice vortices
would peel off, alternately on opposite sides of the case, with
vortex axes parallel to the cylindrical case sidewall generators,
with the Strouhal frequency

f2 _- R2 U2 (AII. i)
2R2

where U2'- is the relative water speed past the case normal to the
g9nerators. We shall assume that, to a close approximation,

U2
1 = U2 cos (AII.2)

where a is the case tilt relative to the cable end. It is quite
possible that successive vortices are joined alternately so that the
net result is a continuous "helical" vortex which peels off around
the case, as sketched in the Figure AII-1. However, the slow periodic
generation and shedding of vortices from the case, and the associated
gross cable and case motion are subjects for more detailed discussion
elsewhere. We shall assume here that mechanical constraints of some
type have made these motions negligible and shall consider in this
part of the appendix only the equilibrium of the case under the
influence of steady drag and buoyant forces, and the tension force
exerted on the bottom of the case by the mooring cable.

Moreover we shall treat as negligible the fluid forces on the case
area elements by mainstream flow components parallel to them, only
retaining the influence on the drag of the mainstream flow components
normal to the elements. Forces on the two end areas will be treated
as equal. Also the weight distribution through the case will be
treated as uniform, and the gradient of the ambient flow field in

*The type of derivation given in this appendix occurs of course else-
where, e.g. Ref. #1, 15. It is presented here for r-.±dy reference,
and furnishes a realistic model %4th which the simple rectilinear
cable model used in making the energy estimates can be compared.
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"HELICAL"
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CASE
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FIG. A-I A POSSIBLE METHOD OF VORTEX DETACHMENT FROM
THE CASE, AND ITS SUBSEQUENT FORM.

5iI

53



NOLTR 72-77

the neighborhood of the case position will in this case be assumed
to be zero. The centers of drag, buoyancy and gravity are assumed
to coincide.

With these suppositions and constraints, the force and moment
equations on the case can be written down and lead to (see
Figure AII-2).

B2 = W2 + T2 Cos 02

D = T2 sin '2 (AII.3)
where:

B2 = mogw(R 2 ) L2  (AII.4)

is the buoyancy force on the case (the displacement), and

D2 = m0C'R2L2U22 cos 2 (02 -e) + moC"7(R2)2U22sin2 (42 -0) (AII.5)

is the total drag force on it. C' is a drag constant appropriate
for the cylinder side face and C" is one for the ends.*

Taking moments about the poiit of attachment of the case to the
cable, and cancelling the factor L2/2, we have

B2 sin(02 -o) - W2 sin(-02 -B) = D2cos(O 2 -B). (AII.6)

These equations determine T2, 02' and B in terms of the case and water
parameters and interaction constants. An immediate consequence is
that

e=0 (AII.7)

under the stated hypotheses. Hence, the tilt of the axis of the
case simply equals that bf the mooring cable end. Of course a
redistribution of weight in the case, or unequal fluid forces on
the case ends would require a reexamination of this result.

*The usual drag coefficients are C' cos(O 2 - 8) and C" sin(02 - 0).

Our formulation emphasizes that C' and C" have practically constant
values with espect to changes in (02 -8).
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FIG. AWI-2 FORCES ON THE CASE. THE TOTAL DRAG IS: J
D2=U2

2(A'cos2  + A"sin2 2 )
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Carrying t-he algebra a step further, we find

T 2 (AII.8)T2 =D22 + N22 AI8

and

tan 2 = D2/N2

= U2 (A'cos 22 + A"sin 202)/N 2  (AII.9)

where: N2 = B2 - W 2

is the net case buoyancy, and

A'U22 and A"U2
2 U2

are the maximum values of the drag on the side and ends of the case
respectively. The numbers

A' = moC'R2L2 (AII. i0)
A" = moC"7r(R 2 ) 2  V

are independent of U2, if C', and C" are.

These relations permit an interesting geometrical interpretation
to be made of their solution. For clarity, omit the subscript '2'
on T2 and D2 , then the equilibrium conditions

N= T cos 02' D = s in 42 = (A' cos 2 02 + A" sin2 02)U 2

(All. 11)

can also be written

T2 = D2 + N2
2  (AII.12)

T2 (D-A"U 2 2) = N 2 2(A'-A")U22

as equations to be solved for T and D, given the values of A', A",
U2 and N2. Then twice the tilt angle is given by

2 2
Cos 24'2 = T2 (AII.13)

2

In the (D, T2 ) - plane, the equilibrium solution is quickly
obtained from the coordinates (D2, T2

2 ) of the point of intersection
of two curves:
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(a) a parabola, whose T2 - intercept is N22 2j
(b) a rectangular hyperbola, whose asymptotes are the D - axis

and the line D = A"U2
2 parallel to the T2 - axis.

These curves are sketched in Figure AII-3; one easily sees how the
equilibrium depends on U2 and on N2.

The equilibrium cable shape derivatives at the case are of course
given by

x' (L) = sin 2  (AII.14)

ze(L) = coso 2

since 0 := 0.

THE CABLE EQUILIBRIUM SHAPE

Differential Element Analysis. In Figure AII-4 we depict the
forces acting on an element of the cable of length ds when it is in
equilibrium. It is assumed that the cable is not completely
flexible, i.e., it supports a small bending moment; it is also
assumed that the drag is due only to the flow component normal to the
gable axis. Moreover, the flow velocity itself is horizontal, and
in the x-direction, but its magnitude may depend on the vertical
z-coordinate. Hence we assume that the drag force on this element
is purely horizontal and has a magnitude

dD = moU2 (Z) cos24RiC'ds
_ 2 (AII.15)

= AU 2cos 2ds

Note that C'cosO is again the "usual" drag coefficient, and
2dscosOR1 is the projected area of the cylindrical element normal
to the flow so that C' has nearly constant values which approximate
the values listed in tables for cylinders immersed in flow fields
normal to their axes. It is convenient to introduce the cylindrical
cable drag number per unit length:

A- moRiC'.
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FIG. AIE-3 A SOLUTION OF THE CASE-TILT-AND-DRAG,
CABLE-TENSION EQUILIBRIUM EQUATIONS.
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FIG. AIE-4 FORCES AND MOMENTS ON A CABLE ELEMENT
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Similarly the net weight of the cab.. element has a magnitude

dN = (m-mo)gr(Rl)2ds
(AII. 16)

= Bds.

The net bending moment exerted on the cable element by the

contiguous cable material is counterbalanced by the moment due to
the shear force distribution so that we have

S ds M = EcIc/R (AII.17)

where I. is the geometric moment of inertia of the cable x-section,
as the condition for rotational equilibrium. The tenicin and shear
force gradients must I.n turn be counte:cbalanced by components of
buoyancy and drag in the directions along and at right angles to the
cable, so that

+SdO + dT = -dD sin0 + dN coso (AII.18)

-TdO + dS = dD cosO + dN sin

are the remaining differential equilibrium relations.

The intrinsic equation of the cable shape is given by the formula

= *(s) (AII. 19)

where 0 is the tilt of the cable axis from the vertical; consequently
the parametric equations of the cable axis

x = xls)
(AII.20)

z = z(s)

are related to the tilt angles by

sino = dx/ds
(AII.21)

cos6 = dz/ds

while the radius of curvature R of the cable at the element is
obtained from

1/R = -do/ds (AII.22)

(as s increases, 0 in general decreases).
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A Semi-Rigid Model. Now instead of attempting to use these
differential relations to find the cable shapes, given a flow
velocity distribution, it is far more feasible to assume a given
type of overall shape with suitable boundary values and express some
features of the current distribution in terms of the relevant para-
meters. In this way the differential conditions can be 'integrated'
under some general hypotheses which can then be checked for accuracy
and consisteucy.

Thus we hypothesize that the overall cable shape can be represented
closely by a straight portion of length Lo attached to the anchor
at 'A' (as in Figure Z .2) and connected smoothly to a portion of a
circular arc, length L1 , whose upper end is attached to the case at
C'. Its center of curvature is at 'D'.

Clearly we have L = L0 + L1(A1.23)

and R = Ll/(00-0,

Such a shape will be hypothesized to arise from a flow pattern
having almost zero speeds near the bottom of the straight portion
- and a non-vanishing flow distribution with average speed U1 past
the curved section, and than a flow with average speed U past the
case. Moreover, we posit that (1) -he bending moment and shear
force at 'C' are zero, since the cable is attached flexibly to the
case, and (2) the bending moment at the anchoi. is zero, but the
shear force, S0, helping sustain the weight of the straight portion
does not vanish. Our problem is to try to find U1 and U2.

First, however, we must define U more precisely. The definition
we use will require that the center of drag and the center o- net
buoyancy (and weight) of the curved portion coincide, at 'BI'.

If U.(z) is the flow speed at height z above the bottom, then let
UI2 = Z ~2d

1 (jcs 2 (AII.24)

where the integration is over the curved portion, and

- 'o + 02 (AII.25)

2
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Next, we only consider those flows for which

fU2(z)cos2Osin~ds = UI 2 Rcos 2 q,(coso 2 -cospo) (AII.26)

Clearly, at least one such speed distribution exists, namely:

U2 (z) = U1
2 COS 2k/cos 2 o. (AII.27)

This type of model not only leads to a soluble set of relations, but
it can be generalized, rather easily, to lead to an exact solution
of the differential equation under arbitrary flow conditions - but
this is not the task of this report. All we require here is that
the cable be "rigid" enough in the assumed shape to support the
bending moments and shear force distributions.

A straightforward application of the euilib:ium conditions, after
a little algebra, leads to the equations

2 2To = T2cos(Oo-02) + AU, cos 4,Llsino-BLcos&o

-so = -T2sin('o-02 ) + AU1 cos 2Llcoso + BLsin- 00

AUl 1 PFbR2 (cos2-co0)-RLj sinoo-LLdcos4o] (All. 28)

= T2~ cos(,-,)-R-Losin(Oo-0 2 )] +

+ B[LLosinoo -LL-2 sin, + RLlcoso' + R2(sinoo-sinO2)]

In these, the bending moment at the case is neglected. If we are
given L1 , 02, 0o, T2 , A, and B then the third relation yields Ul

2,

since is known. The first and second then give T.0 and So .
Physically, the mea*.*ng of these is as follows. Consider the cable
as a rigid body, ac:.,i on by forces T2, So and To at its ends. The
net weight of the straight portion No = BLO is concentrated at its
center, while an average drag force

= AU 1
2cos2 'L1  (AII.29)

acts at the center of weight and buoyancy of the curved section.
The net weight of che curved section is N1 = BLi of course, and
acts downward.

THE CALCULA'ION PROCEDURE
The equations for the case equilibrium to can be "turned

around" and regarded as defining the flow speed over the caee-
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Thus we find
U22 =N tan A
2 N2 A'cos2 2 + A"sinzo.2  (AII.30)

Hence, having given N2, A' and A" we can find U 2 knowing 02" Frcm
N2 and 02 alone we find T2 (and the drag D2 ).

The procedure to be followed in any given case is then this. We
are given values for L, LI, A', A", A, and B. Curves or tables of
T,, D and U 2 versus 02 can be prepared. Sets of curves or tables
(ohe -for each 02) can be prepared, of TO, S, R and U1 versus o
(E.g. see Figures AII-%5, 6, 7.) Given a particular value of U2
we can find ,2 and then given a value for U we can find - andcorresponding values for all other quantities. A BASIC program

H21032 to do the calculations has been written. Besides the other
quantities one also calculates the displacemerU

X = Losin O + R(cos0 2-cos o ) (AII.31)

and the dip:

Z = L-L cosO -R(sin o-sinO2 ). (AII.32)

4

1
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