
AD-756   970 

ARTIFICIAL   INTELLIGENCE   --   RESEARCH 
AND  APPLICATIONS 

Peter   E.   Hart,   et   al 

Stanford   Research   Institute 

Prepare d for: 

Army Research Of f i ce-Durham 
Advanced Research Projects Agency 

December 1972 

DISTRIBUTED BY: 

KJDl 
National Technical Information Service 
U. S. DEPARTMENT OF COMMERCE 
5285 Port Royal Road. Springfield Va. 22151 

i 

i 



BEST 
AVAILABLE COPY 



Annual  Technical Report 

! 
\ 

(     ARTIFICIAL INTELLIGENCE-RESEARCH 

AND APPLICATIONS 

■   > 
t    H 

By:     P,   E    HART       R    E    FIKES       T    D   GARVEY       N.  J. NILSSON 
D.  NITZAN       J   M. Tf NENBAUM       B. M   WILBER 

Prepared for: 

ADVANCED  RESEARCH PROJECTS AGENCY 
ARLINGTON, VIRGINIA    22209 

CONTRACT DAHC04-72-C-0008 ^n >-*% ^*** 

'•;. MAR la   1S73 

c 

1 
j 

Approved  for  public release: distribution  unhmited. 

Reproduced bv 

NATIONAL TECHNICAL 
INFORMATION SERVICE 

U S Deparfmen» of Comm«ret 
Springfield VA 32151 

SSD STANFORD RESEARCH INSTITUTE 
Menlo Park, California 94025 • U.S.A. 

fl 



UNCLASSIFIED 
Sfi untv Cla«Aification 

DOCUMENT CONTROL DATA    R&D 
Svcunty flmttihcmtion of title,  budy of mbntrmrt MHJ mdeitin^ mnnotmtion r^i^f bt mnttred whrn thm uvmt. II r*po:t is ctmstHimd) 

I 
1    ONiGtNATINC  AC Tl vt T v fCorporcr« «url)or> 

Stanford  Research  Institute 
333  Ravenswood Avenue 
Menlo Park,   California    94025 

2«. REPORT   SECURITt    C L >MSI F I C * T IOK 

Unclassified 
J6.   CROUP 

n/a 

3     REPORT    TITLE 

ARTIFICIAL  INTELLIGENCE--RESEAHCH AND APPLICATIONS 

4    OESC RIP TivE NOTES (Typ9 ol fport mnd jncluaiv» drntei) 

Annual  Technical   Report:     8 October  1971  through  8 October  1972. 
9    *u THORISI (Flrtt name, middl» Inlllml, Imtl nmm») 

Peter E. Hart,  Richard E. Fikes,  Thomas D. Garvey,  Nils J. Nilsson, 

David Nitzan,  J. Martin Tenenbaum,  and B. Michael Wilber. 

e  P^PORT D» Tt 

December 1972 
r«.   TOTAL  NO    OF PACES 

ixr/j/ 
76. NO   or REPS 

10 
•a. CONTRACT OR GRANT NO 

DAHC04-72-C-0008 
b.   PROJEC T  NO. 

Program Code Nc. 2D30 

ARPA Order No. 1943 

«a.  ORIGINATOR'S REPORT  NUMBERISI 

SRI  Project   1530 

9t>. OTHER REPORT NOISI (Any oihtt numbtit Mat mar b» miilffd 
Ihli nporl) 

fitch - JAäStllbJt 
«0    DISTRIBUTION  STATEMENT 

Distribution of this document is unlimited. 

ii   SUPPLEMENTARY NOTES 12    SPONSORING MILITARY   ACTIVITY 

Advanced Research Projects Agency 

Arlington, Virginia 22209 

13  ABSTRACT 

This report describes activities during the most recent year of a program of 

research in artificial intelligehce.  During the year a number of experiments were 

conducted with an existing system for the control of a robot that autonomously plans, 

learns, and carries out tasks in a real laboratory environment.  Concomitantly, de- 

signs for a new robot system were evolving.  Of particular interest is a conceptual 

design for a novel perceptual subsystem, and some preliminary thoughts on the design 

of hierarchical problem solvers. 

DD .^..1473 
S/N 0101.807.6801 

(PAGE 1) 
UNCLASSIFIED 

Sacuritv Clattificstion 



UNCLASSIFIED 
Securttv Cldssificatiun 

r •   WORDS 
LINK   * LINK    B 

Computer-controlled robot 

Automatic problem solving 

Automatic perception 

Multisensory perception 

DD FORM 
• Nov..1473 (BACK) 

(PAGE   2) 
H UNCLASSIFIED 

Security '"Ussidction 



;RI STANFORD RESEARCH INSTITUTE 
Menlo Park, California  94025 • USA 

Approved for public release; 
distribution unlimited. 

Form Approved 
Budget Bureau No. 22-R0293 

December  1972 

Annual Technical Report 

Covering the Period 8 October 1971 through 8 October 1972 

Stanford Research Institute Project  1530 

ARTIFICIAL INTELLIGENCE-RESEARCH 
AND APPLICATIONS 

Submitted by 

PETER  E. HART 
Project Leader 

(415) 326-6200, Ext. 2129 

Authors 

P.  E. HART      R. E. FIKES      T.  D.  GARVEY      N. J. NILSSON 
D. NITZAN      J. M. TENENBAUM      B. M. WILBER 

CONTRACT DAHC04-72-C-0008 
ARPA Order Number 1943 
Program Code Number 2D30 

Effsctive Date of Contract:    8 October 1971 
Contract Expirat'on Date:    9 October 1973 
amount of Contract:    $1,191,607.00 

Prepared for 

ADVANCED RESEARCH PROJECTS AGENCY 
ARLINGTON, VIRGINIA    22209 

The views and conclusions contained in this document are those of the au.hors and should not be 
interpreted as necessarily representing the official policies, sit her expressed or implied, of the Advanced 
Research Projects Agency or the U.S. Government. 

Approved by: 

BERTRAM RAPHAEL, Director 
Artificial Intelligence Center 

BONNAR COX, Executive Director 
Information Science and Engineering Division Cdpy No. ±.:... 

Ill 



CONTENTS 

ABSTRACT     

LIST OF   [LLUSTOATIONS  

LIST OF TABIÜS     

GLOSSARY     

I     INTRODUCTION  

A. General  

B. Background   

C. Report Outline ,  

II  PROBLEM SOLVING   

A. Introduction     

B. Description of Work on the  STRIPS-PLANEX System.   .   .   . 

1. Development  and Refinements     
2. Experimental Results  

C. Preliminary Specifications for a New Problem Solving 
System    

1. Criteria for the New System    
2. Hierarchical Planning    

D. Multlrobot Experiments     

Ill    PERCEPTION  

A. Introduction   

1. Perceptual Philosophy   

2. Design Considerations   

3. Organization of this Section  

B. Overview of System   

1. Scenario  

2. Perceptual Strategy   

Ill 

ix 

xi 

xi 11 

1 

1 

1 

2 

2 

3 

4 

4 

6 

16 

16 

19 

22 

25 

25 

25 

26 

29 

29 

29 

34 

Precedinrpage blank 

- 



Ill  PERCEPTION (continued) 

C. Conceptual Design  

1. Introduction  

2. Definitions   

3. Planning  
4. Execution   

D. Goal Directed Scene Segmentation   

1. Background  

2. Classification Approach   

3. Coping with Texture   

4. Operational Details   

5. Error Recovery  

E. Multisensory Data  

1. Analysis of Range Data  

2. Effects of Errors in Range Data   

3. Line Fitting of Regier Boundary Points  

4. Analysis of Color Data  

5. Generation of Test Data   

F. Research Methodology . .   

1. System Features   

2. Plans ....   

IV SYSTEM SOFTWARE   

A. Introduction     

B. Utility Factors  

1. Comprehensibility   

2. Speed   

3. Reliability   

C. Translation to BEN LISP  

1. Overview -  

2. Forking   
3. Additions for TRANSOR   

V SYSTEM HARDWARE   

A. Introduction   

B. A Time-of-Flight Range Scanner   

1.  Introduction  

vi 

38 

40 

42 

52 

65 

66 
67 

69 

70 

71 

74 

75 

86 
86 

87 

88 

89 

90 

91 

95 

95 

95 

95 

96 

97 

97 

97 

98 

99 

101 

101 

101 

101 



I 

V SYSTEM HARDWARE   (continued) 

2. The  Experimental  Model of the Range Scanner   .   .   . 102 
3. Calculation of Sensitivity  106 

vii 

108 C. A Triangulation Range Finder     

D. A Radar  Motion Letector  HQ 

E. Unimate Arm  JIQ 

F. Current System Configuration      ,   , m 

VI     PUBLICATIONS  AND  PRESENTATIONS  115 

A. Publications  115 

B. Presentations , r>   r HQ 

REFERENCES  119 

DD  Form  1473 

J 

■ 



ILLUSTRATIONS 

1 Map of Shakey's Experimental Environment  7 

2 Example Problem 1,...,   10 

3 Example Problem 2  11 

4 Example Problem 3  12 

5 Example Problem 4  13 

6 Example Problem 5  14 

7 A Simplified Office Environment Representing our 

Experimental Domain   31 

8 Visual Memory Hierarchy   42 

9 Planning Tree for Finding 0BJECT1  43 

10 Extended Planning Tree for OBJECT1  45 

11 Planning Tree for Finding Telephone  59 

12 Telephone Planning Tree After Failure of Dark Gray Color 

Detector  61 

13 Tree After Finding Floor  62 

14 Tree Resulting from Location of Hoi izontal Plane  64 

15 Tre«, After Finding Table  65 

16 Range-Finder Centered Image Coordinates   77 

17 Computed Floor Boundary   80 

18 Range Values with Constant-cp Scan of a Horizontal Surface 

Below the Horizon  81 

19 Surface and Intersection Boundaries   82 

20 End-Point r(Pp) Fitting Method  84 

21 Multiple r(|3p) Planar-Region Segments of a Concave and 

Convex Surface  85 

22 Scanning Range Finder—Simplified   103 

23 Scanning Range Finder—Detailed   104 

ix 

? 

Preceding page blank 



24 Analog Output Function  107 

25 A Triangulation Optical Range Finder  109 

26 PDP-15/Unimate Communications:  Block Diagram   111 

27 PDP-15/Unimate Communications:  Unimate Control Logic . . . 112 

28 SRI Artificial Intelligence Center Computer System  113 

y 



1 

2 

3 

1 

TABLES 

Operator Descriptions   ......... 

Statistics for STTUPS Behavior  

Initial World Model   

Attributes and Contextural Relations for Acquisition. . . . 

g 

15 

32 

36 

xi 

■ 



t 

GLOSSARY 

ÜFÜM 

VOW 

GM 

1 

i ran 

MACROP 

M 

PLANEX 

SHAKEY 

SRI 

STRIPS 

STWM 

VM 

direct  liKure  of  murit 

1 i^ui-e  of  merit 

goal monltoi- 

Interest 

indirect  figure of  merit 

macro o|)erator 

normalized   interest 

name  of a plan executing system 

name  of  SRI's  mobile  robot 

Stanford Hesearch   Institute 

name of a plan generating  system 

short  term world   model 

visual memory 

xiii 

Preceding page blank 



I      INTKOLHCTION 

A. General 

Thli annual report describes the work performed during the most 

recent year of a prograa of research In the field of artificial Intelli- 

gence.  The work reported here brgan In October 1971, and Is Itself the 

continuation of work performed under a previous contract.  Therefore 

this Is a report on the most recent accomplishments and status of a con- 

tinuing research program. 

During the course of the year we have documented the details of our 

technical work In a series of reports, Journal articles, and presenta- 

tions.  (Xir Intention In this report is to provide an overview of the 

project, rather than to reproduce those details here. 

B.  Background 

For a number of years our work has been focused on the application 

of artificial Intelligence techniques to the control of a mobile automa- 

ton—a "robot" nicknamed Shakey—In an actual laboratory environment. 

This work reachel Its first plateau In 1969 with the completion of the 

first integrated robot system:  a mobile vehicle equipped with a TV 

camera and other sensors, and controlled by an SDS 940 computer.  During 

the following two and a half years we developed a new, more powerful 

robot system.  While the robot vehicle remained substantially unchanged, 

the old SDS 940 computer was replaced by a PDP-10/PDP-15 facility with 

Contract NASW-2164. 

These  are   listed   In Section VI. 



significantly more capability. The software controlling the robot was 

completely redesigned to incorporate more general and powerful methods 

both for solving robot problems in the abstract and also for executing 

the solutions in the real world. This second phase of our activity 

reached a plateau during the past year, by which time we had completed 

the design and implementation of the entire system and had carried out a 

series of experiments to explore its strengths and weaknesses. 

As this work progressed we developed preliminary ideas for methods 

that would dramatically increase the capabilities of the robot in 

several directions.  It was clear that these methods could not be included 

in the existing system in any convenient way.  Accordingly, we elected 

to devote most of our resources to the task of designing a new robot 

system that would encompass our new ideas for robot problem solving, 

perception, and real-world execution monitoring.  Thus, our work during 

the past year has been divided between completing some tasks associated 

with the existing robot software and beginning design studies for a new 

system. 

C.   Report Outlire 

Section II of this report presents our recent work in robot problem 

solving.  It describes some experiments performed on the existing system, 

and outlines some of our ideas for a new problem solver.  Section III 

discusses the design of a nbot perception system for analyzing pictorial 

and range lata.  In Sections IV and V we describe the software and hardware 

support actlvilies associated with our research.  Finally, Section VI 

lists the publications and presentations that were prepared or presented 

during the project period. 



II  PROBLEM SOLVING 

A.   Introduction 

Our research on automatic problem solving has as its goal the do- 

veloproent of systems that can plan and execute sequences of actions for 

a robot.  In our formulation, we assume that the robot is given some 

command such as "push the small box next to the large box," and the 

problem solver then creates a plan for accomplishing the task.  The plan 

consists of a sequence of motor-action programs, such as "move to posi- 

tion X = 3.2, Y = 4.6."  After a plan is generated, we desire that it be 

executed "intelligently," that is, with due regard for the actual effects 

of each action. 

During the last two years we have developed a plan generating system 

called STRIPS, a plan executing system called PLANEX, and a learning 

system that generalizes and saves plans produced by STRIPS.  The present 
* 

status of these systems is well documented In Ref. (1),  so we shall not 

describe details here.  We have also produced a 25-minute, 16-mm, sound 

film2 that depicts STRIPS and PLANEX in action controlling our mobile 

robot, SHAKEY.  During the past year we have mrde some Improvements to 

these systems and conducted some experiments illustrating performance 

on some learning tasks. The^e developments are discussed in more detail 

in the next section. 

Our work with STOIPS has clarified some of its limitations, and we 

have begun to think about how they might be overcome.  The results of 

some of our speculations on this subject are contained in a paper3 given 

References are listed at the end of this report. 

' 



at the last Machine Intelligence workshop.  Recently we have begun the 

design of a new problem solving system.  Progress on this design will be 

described later in this report. 

B.   Description of Work on the STRIPS-PLAWEX S\stem 

1.   Development and Refinements 

During the preceding year we continued development and ex- 

perimentation with plan generalization procedures for the STRIPS-PLANEX 

system.  We can illustrate some of the issues we have dealt with by 

considering the following example.  Assume that adjacent rooms Rl and R2 

are connected by door Dl, the robot Is in room Rl, box Bl is in room R2, 

and the task is to bring box Bl into room Rl. 

If STRIPS had available the appropriate GOTHRU and PUSHTHRU 

operators, then it could form the two step plan: 

G0THRU(D1,R1,R2)       [Go through door Dl from room Rl 

into room R2] 

PUSHTHRU(B1,D1,R2,R1)   LPush Bl through door Dl from R2 

into room RlJ, 

While this sequence solves the original task, it probably doesn't warrant 

being saved for the future unless, of course, we expect that the robot 

would often need to go from room Rl through door Dl to room R2 to push 

back the specific box, Bl, through door Dl into room Rl. We would like 

to generalize the plan so that it could be free from the specific con- 

stants, Dl, Rl, R2, and Bl, and could be used in situations Involving 

arbitrary doors, rooms, and boxes. 

In considering possible procedures for generalizing plans we 

first rejected the naive suggestion of merely replacing each constant in 

the plan by a parameter.  Some of the constants may really need to have 

specific values in order for the plan to work at all.  For example. 

' 



consider a modification of our box fetching plan in which the second 

step of the plan is an operator that only pushes objects from room R2 

into room Rl.  The specific plan might then be 

G0THRU(D1,R1,R2) 

SPECIALPUSH(Bl). 

When we generalize this plan we cannot replace all constants by parameters, 

since the plan only works when the third argument of GOTHRU is R2. We 

would want our procedure to recognize this fact and produce the plan 

* 
G0THRU(dx,rx,R2) 

SPECIALPUSH(bx). 

Another reason for rejecting the simple replacement of constants 

by parameters is that there is often more generality readily available 

in many plans than this simple procedure will extract.  For example, the 

form of our box pushing plan, GOTHRU followed by PUSHTHRU, does not require 

that the room in which the robot begins be the same room into which the 

box is pushed. Hence the plan could be generalized as follows: 

GOTHi{U(dx,rx,ry) 

PUSHTHRU(bx,dy,ry,rz) 

■ 

and be used to go from one room to an adjacent second room and push a 

box to an adjacent third room. 

The plan generalization procedure we have developed overcomes 

these difficulties by taking into account the Internal structure of the 

plan and the preconditions of each operator.  Our first verr.'ons of this 

procedure often introduced irrelevant items in the generalized plan's 

precondition list.  For example, the creation of extraneous parameters 

might cause the preconditions to include the requirement that box bx be 

* 
We use lower case letters to represent parameters. 



in rooir. rx and the requirement that box bx also be in room ry.  We know 

that any semantically correct model that satisfies these preconditions 

will require that rx and ry be instantiated to the same room name; hence, 

the creation of distinct parameters rx and ry is a superfluous over- 

generalization. Such cases of overgeneralization tended to bog down the 

theorem proving operations during planning and therefore degraded the 

efficiency of the system. We now eliminate almost all cases of this 

problem by introducing a processing step after the MACROP is formed that 

searches for such irrelevancies and removes them by "collapsing' two or 

more parameters into a single parameter.  A complete description of our 

plan generalizing procedure is given in Ref. (1). 

2.  Experimental Results 

We spent a sizable effort during the year running experiments 

with the STRIPS-PLANEX system to determine its behavior characteristics. 

The results of many of these experiments are documented elsewhere, but 

we will provide summary descriptions of some of them in this section. 

Problems were posed to the system in the SRI robot's current 

experimental environment, which is shown in Figure 1; there are seven 

rooms, eight doors, and several boxes about two feet high.  A typical 

state of this environment is modeled by STRIPS using about 160 axioms. 

a.  Operator Descriptions 

The operator descriptions given to STRIPS for these ex- 

periments model the robot's preprogrammed action routines for moving 

the robot next to a door in a room, next to a box in a room, to a loca- 

tion in a room, or through a door. There are also operators that model 

action routines for pushing a box next to another box in a room, to a 

location in a room, or through a door.  In addition, we have included 
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operator descriptions  that model  fictitious  action routines  for opening 

and closing doors;   theso  are  given  in Table  1. 

b. Example  Problems 

A sequence of five problems was designed to illustrate the 

various ways in whica MACROPs are used during planning.  We show in 

Figures 2 through 6 a summary of the system's behavior for each problem 

in the sequence. Each summary is preceded by a diagram of the problem's 

initial and final states.  STRIPS' attention was directed to the rooms 

shown in the diagram by closing the doors connecting all other rooms. 

Table 2 shows the search tree sizes and running times for 

the five problems. The problems were run both with and without the use 

of MACROPs for comparison.  Even when MACROPs were not being used for 

planning we include the MACROP production time, since PLANEX needs the 

MACROP to monitor plan execution.  Note that the times and the search 

tree sizes are all smaller when MACROPs are used and that the MACROPs 

allow longer plans to be formed without necessarily incurring an exponen- 

tial increase in planning time. 

c. Further Experiments 

In another set of experiments that were run with the new 

system, the primary goal was to produce long plans.  We ran a sequence 

of eight problems in our robot environment that culminated in the pro- 

duction of a 19-operator plan for fetching three boxes from three different 

rooms and then pushing the three boxes together.  This final MACROP sub- 

sumed the seven earlier ones so that only one MACROP was retained by the 

system.  Subsequences of the 19-step MACROP could be used to fetch boxes, 

push boxes together, move the robot from room to room, and so on. 

• 



Table 1 

OPERATOR DESCRIPTIONS 

GOTOB(bx) 

Preconditions: 
Deletions: 
Additions: 

GCTODCdx) 

Preconditions: 
Deletions: 
Additions: 

GOTOL(x,y) 

Preconditions: 

Deletions: 
Additions: 

PUSHB(bx,by) 
Preconditions: 

Deletions: 

Additions: 

PUSHDCbx.dx) 

Preconditions: 

Deletions: 

Additions: 

PUSHL(bx,x,y) 

Preconditions: 
Deletions: 
Ad lit Ions: 

GOTHRUDR(dx,rx) 
Preconditions: 

Deletions: 
Additions: 

PUSHTHRUDR(bx,dx,rx) 
Preconditions: 

Deletions: 

Additions: 

OPEN'dx) 

Preconditions: 
Deletions: 
Additions: 

CbOSE(dx) 

Preconditions: 
Deletions: 

Additions: 

(Go to object  bx). 

TYPECbx.OBJECTMErxK IHROOM(bx,rx) A   INROGHKROBOT.rx)J 
AT (ROBOT, $l,S2),NEXTTO(R0Ü0T,$l) 
*NEXTT0(R0B0T,bx) 

(Go to door   ix). 

TYPE(dx,DO0R),(Erx)(Ery)LlNROOM(ROBOT,rx) A CONNECTS(dx,rx,ry)] 
AT(R0B0T,$1,$2),NEXTT0(R0BCIT,$1) 
»NEXTTO (ROBOT,dx) 

[(Go  to coordinate  location  (x,y,)]. 

(Erx)tINROOM(ROB0T,rx) A  L0CINROOM(x,y,rx)) 
AT(R0B0T,$l,$2),NEXTTO(ROBarj$l) 
*AT(ROBOT,x,y) 

(Push bx to object by). 

TYPE (by,OBJECT), PUSHABIi;{bx),NEXTTO(ROB0T,bx), 
(Erx)i INR0OM(bx,rx) A   INROOM(by,rx)j 

AT(ROB0T,$l,$2),NEXTTO(ROBOT,$l),AT(bX,$l,$2),NEXTTO(bx,$l),NEXTTO($l,bx) 
♦NEXTTO(by,bx),*NEXTTO(bx,by),N£XTTO(ROB0T,bx) 

(Push bx to door dx). 

PUSHABLE(bx) ,TYPE(dXjDOOR), NEXTTO(R0BOT, bx) , 
(Erx)(Ery):lNROOM(bx,rx) A CONNECTS(dx,rx,ry)J 

AT(ROBOT,$l,$2),NEXTTO(ROBOT,$l),AT(bx,$l,$2),NEXTTO(bx,$l),NEXTTO($l,bx) 
♦NEXTTO(bx,dx) ,NEXTTO(ROBOT,bx) 

[ (Pusli  bx   to coordinate  location  (x,y,)]. 

PUSHABLE(bx),NEXTTO(R0BOT,bx),(Ei-x)i INROOM(ROBOT,rx) A L0CINR0OM(x,y,rx)] 

AT(ROB0T,$l,$2),NEXTTO(ROD0T,$l),AT(bx,$l,$2),NE'-TT0(bx,$l),NEXTTO($l,bx) 
*AT(bx,x,y),NEXTTO(ROBOT,bx) 

(Go through door dx  into room rx). 

TYPE((lx,DOOR ),STATUS(dx,OPEN),TYPE(rx,ROOM), NEXTTO(ROBOT,dx), 
(Ery)   INROOM (ROBOT, ry) A  CONNECTS(dx,ry,rx) J 

AT(R0B0T,$l,$2),NEXTTO(R0B0T,$l),INR0OM(ROBaT,$l) 
*INROOM (ROBOT,rx) 

(Push bx through door dx into room rx). 

PUSHABLE(bx),TYPE(dx,DOCR),STATUS(dx,OPEN),TYPE(rx,R0OM),NEXTTO(bx,dx), 
NEXTTO(ROB0T,bx),(Ery)[INROOM(bx,ry) A   CONNECTS(dx,ry,rx)] 

AT(ROB0T,$l,$2),NEXTTO(RCIBOT,$l),AT(bx,$l,$2),NEXTTO(bx,$l), 
NEXTT0($1 ,bx), INROOM(ROBaT,$l), INROOM(bx,$l) 

♦INR0OM(bx,rx),INRO0M(R0B0T,rx),NEXTT0(R0B0T,bx) 

(Open door dx), 

NEXTTO (ROBOT,dx),TYPE(dx, DOOR), STATUS (dx,CLOSED) 
STATUS (dx,CLOSED) 
•STATUS(dx,OPEN) 

(Close dooi- dx). 

NEXTTO(ROBOT, dx) , TYPE (dx, DOOR ), STATUS (dx, OPEN) 
STATUS (dx, OPEN) 
♦STATUS(dx,CLOSED) 

The  addition clauses  preceded by  an asterisk are  the primary  additions of  the operator. 

When STRIPS searches  for  a relevant  operator  it considers  only  these  primary  addition clauses. 
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FIGURE 2  EXAMPLE PROBLEM 1 

Task Statement: 

INROOM{ROBOT,RRAM) A NEXTTO(00X1,80X2) 

Generalized Plan: 

MACR0P1(par29,par37,par45,par54,par33) 

GOTOB(par29) 

PUSHB(par29,par37) 

GOTOD(par45) 
GOTHRUDR(par45,par54) 

Comments: 

The generalized plan for the first problem in the sequence pushes 

two boxes together and takes the robot into an adjacent room, 

given that the robot and the boxes are initially all in the same 

room. 
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FIGURE 3  EXAMPLE PROBLEM 2 

Task Statement: 

INROOM(R0BOT,RPDP) A NEXTTO(BOX2,BOX3) 

Generalized Plan: 

MACR0P2(par27,par52,par72,par91,parlll,par38,par40) 
G0T0D(par27) 

GOTHRUDR(par27,par40) 

GOTOB(par52) 

PUSHB(par52,par72) 

G0T0D(par91) 

G0THRUDR(par91,parlll) 

Comments; 

The second problem is similar to the first except that different 

rooms and different boxes are used, and the robot begins in a room 

adjacent to the room containing the boxes.  STRIPS uses a tail of 

MACR0P1 to get the robot into the room with the boxes and then uses 

the entire MACR0P1 to complete the plan.  The generalized plan takes 

the robot from one room into an adjacent room, pushes two boxes 

together in the second room, and then takes the robot into a third 

room adjacent to the second.  The system notes that MACR0P1 is com- 

pletely contained in MACROP2 and therefore erases MACROP1. 

11 
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SA-1530-23 

FIGURE 4      EXAMPLE PROBLEM  3 

Task Statement: 

INROOM(ROBOT,RPDP) 

Generalized Plan: 

MACROP3(par24,par59,par82,par32,par42) 
GOTOD(par24) 
GOTHRUDR(par24,par42) 

GOTOD(par59) 
OPEN(par59) 
GOTHRUDR(par59,par82) 

Comments: 

The third problem entails taking the robot from one room through 

a second room and into a third room, with the added complication 

that the door connecting the second and third rooms is closed. 

STRIPS first decides to use MACR0P2 with the box-pushing sequence 

edited out and then finds that the door must be opened; to get the 

robot next to the closed door, a head of MACROP2 is selected with 

the box-pushing sequence again edited out.  After formation of the 

plan to go to the door and open it, the PLANEX scan observes that 

only the final operator of the first relevant Instance of MACR0P2 

is needed to complete the plan. The generalized plan takes the 

robot from one room into an adjacent room, then to a closed door 

in the second room, opens the closed door, and then takes the robot 

through the opened door into a third. 

12 ' 
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SA-1530-24 

FIGURE 5  EXAMPLE PROBLEM 4 

Task Statement: 

NEXTT0(B0X1,B0X2) A NEXTT0(B0X2,B0X3) 

Generalized Plan: 

MACROP4(par37,parSO,parl02,parl23,parl34,par57, par59) 
GOTQD(par37) 

GOTHRUDR(par37,par59) 

GOTOB(par80) 

PUSHB{par80,parl02) 

GOTOB(parl23) 

PUSHB(parl23,parl34) 

Comments: 

The fourth problem requires that three boxes be pushed together, 

with the robot beginning in a room adjacent to the room containing 

the boxes. A head of MACROP2 is used to get the robot into the 

room with the boxes and to push two of them together; the box- 

pushing sequence of MACR0P2 is used to complete the plan, again 

with the assistance of the PLANEX scan.  The generalized plan takes 

the robot from one room into an adjacent room, pushes one box to 

a second box, and then pushes a third box to a fourth box. 

13 
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FIGURE 6  EXAMPLE PROBLEM 5 

Task Statement: 

NEXTTO(BOXl,BOX2) A. NEXTTO(BOX3,BOX4) 

Generalized Plan: 

MACROP5(par44.par87,parlSl,par208,par237,par265,par294,pari80, 

parl30,par64,par66) 

GOTOD(par44) 

GOTHRUDR(par44,par66) 

GOTOD(par87) 

OPEN(par87) 

GOTHRUDR(par87,par130) 

GOT0P(parl51) 

G0THRUDR(parl51,parl80) 

GOTOB(par208) 

PUSHB(par208,par237) 

GOT0B(par265) 

PUSHB(par265,par294) 

Comments: 

The fifth problem requires the robot to go from one room into a 

second room, open a door that leads into a third room, go through 

the third room into a fourth room, and then push together two pair 

of boxes.  The plan, which is formed by combining all of MACROP4 

with all of MACROP3, is well beyond the range of plans producible 

by STRIPS without the use of MACROPs.  Note that although MACR0P4 

was created by lifting a plan that pushed free boxes together, it 

has enough generality to handle this form of a four-box problem. 

Following the creation of MACROPS, MACR0P3, and MACR0P1 are recog- 

nized as redundant and deleted; hence the net result of this learn- 

ing sequence is to add only MACR0P2 and MACROPS to the system. 

14 ■ 
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The experl«ents we have been discussing show the use of 

M/CROPs during planning.     We have  also run experiments with PLANEX to 

Illustrate  the use of MACROPs during plan execution.     One such experiment 

Is shown In a fll«*  that   Illustrates how PLANEX monitors robot  task exe- 

cution  in the  seven-room experlnental environment.     One  interesting se- 

quence  in  this experiment  shows  the robot  attempting to go from one room 

through a second room into a täird room.     After entering  the second room, 

the robot discovers that a box  is blocking  the doorway  that   leads  into 

the third room.     Since PLANEX is working with a generalized plan,   the 

difficulty can be trvercome b"  findii.g a different  instance of the  plan 

that   is satisfied.    This ne« instantiation of the plan's  parameters 

causes  the robot  to be sent  from the second room into a fourth room and 

then  into the  target third  room. 

C.       Preliminary Specification»  for a New Problem Solving System 

1.       Criteria for  the New System 

Although STRIPS represents a considerable advance over earlier, 

theorem-proving based problem-solver«.   It still has many shortcomings. 

On recogniz? g  these,  we  are  :aced with the option either of  adding some 

additional  features to the STRIPS system or of creating a new system 

designed specifically to meet certain criteria.    We have chosen the  latter 

course,   partly because of the availability of the new language, QA4,   that 

simplifies  the task of writing problem solving programs of the  type we 

envision. 

We would  like our new problem solving and execution system  to 

contain as many  aF  possible of  the  following  features. 

16 



• Plans with loops and branches 

STRIPS produces "straight-line" code only, 

although it would not be too difficult to 

modify it so that it could produce plans with 

branches. 

• Plans incorporating information gathering operators 

The new system should be able to plan to acquire 

information when it needs it to complete a plan. 

Such an ability presupposes the ability co  generate 
plans having branches. 

• Procedurally defined  operators 

The preconditions and effects of STRIPS operators 

are stated in a rigid format.  Operator definitions 

in our ew system will be defined procedurally 

using QA1 programs. 

• Hierarchical planning 

Wc want our new system to I« able to generate a 

plan at some appropriately high level and then 

expand the steps of this plan by planning at 

successively lower and lowei levels that encompass 

more and more details. 

• Ability to earn 

The STRIPS system was able to save generalized 

versions of the plans it generated so that they 

could be ustd later in whole or part as components 

of new plant. We would like our new system to have 

this feature .IIBO, 

• Execution monitoring* 

The STRIPS system was  able to monitor  the execution 
of plans  in an intelligent manner.     We would  like 
the new system to do as well with perhaps a less 
clear-cut boundary between the  planning and execution 
phases. 

* 
The STUPS-PLANEX system has  this  feature. 
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• Compatibility with Speech Understanding Systems 

Ultimately, we would like to be able to interact with 

the new system through spoken English.  We shouTxl be 

able to give it commands and advice, tell It facts, 

and teach it how to perform new tasks, all by speaking 

to it. 

• Constraints 

The new system should be able to avoid getting into 

any situation that we define as "illegal." 

• Dynamic environments 

We want the new system to perform well in an environ- 

ment in which other agents of change (e.g., people) 

are operating. 

• Ability to deal with time 

The new planning system should be able to use the 

concept ol time so that it can perform tasks such 

as "Go to Room 21 at 3:00 p.m." 

,  Ability to interact with people 

Besides its ability to understand speech, we want 

the new system to know ^ome simple facts about the 

people around it, including rudimentary information 

about their capabilities, locations, and gmls.  We 

would want the system to know, for example, whom to 

ask for advice about the location of some other person. 

• Ability to work on conjunctive goals 

STRIPS had an unsophisticated rbillty to achieve 

two or more simultaneous goals.  We would like the 

new system to be able to generate the appropriate 

plans for highly interdependent goals.  (Goals A 

and B are interdependent if the appropriate plan 

to achieve A and B entails taking some (but not all) 

of the steps toward goal A and then taking at least 

some steps toward B before finishing A.) 

For the past few months we have given a great deal of attention to how 

these features might be achieved.  People working on the development of 

The STRIPS-PLANEX system has this feature. 
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the QA4 language have already written some simple illustrative programs 

that generate plans incorporating loops, branches, information gathering 

operators, constraints, and conjunctive goals.4  Mostly these abilities 

were illustrated one at a time in separate programs, and there are still 

large questions concerning their synthesis in a single system.  The QA4 

programs ignored the important question of plan-executing processes and 

how they interact with plan-generating processes.  Nevertheless, work to 

date makes us feel reasonably optimistic about our ability to program a 

system containing most of the features mentioned. 

We have also worked quit i hard on the matter of hierarchical 

planring  Cur ideas on this subject are still tentative, but we think 

the matter to be important and it is discussed in some detail in the 

next section. 

2.  Hierarchical Planning 

The ability to plan In a hierarchical fashion has obvious 

advantages. The general idea is simple:  first a plan consisting of a 

few macro-steps is roughed out in some abstract space. Then the steps 

of this high level plan are expanded in a little more detail, and so on 

until the plan is complete at whatever level of detail is defined by the 

available motor actions. We have explored two somewhat different means 

of implementing such a hierarchical planner.  In the first method, each 

of the preconditions of each planning operator is given a "criticality 

number."  The criticalities mi^it be assigned initially or they might be 

computed functions of the predicates and arguments involved.  Predicates 

with high criticality are important even at the highest levels of planning. 

Thus the precondition PUSHAB'.E(BQX) in a PUSH(BOX) operator would have 

high criticality, primarily because the system does not have an operator 

that can change the value of PUSHABIi. Whether or not a box is pushable 

is not merely a detail that can be faced at a low planning level. 

19 
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Predicates with low criticality can be ignored at the highest levels of 

planning.  Whether they are true or false is immaterial since they can 

(presumably) be easily given the desired value at a lower planning level. 

Thus at the highest planning level the predicate dealing with the robot's 

heading, say, can be ignored since it can easily be set correctly by 

lower levels. 

Using these criticality numbers, we can generate plans hierar- 

chically in a straightforward manner.  First the planner generates a plan 

with a high criticality threshold.  That is, only those preconditions 

whose criticality exceeds a rather high level are considered.  Such a 

plan consists of a sequence of operators each of which has rather weak 

preconditions-  Next we could, siy, pick the first operator in the se- 

quence (whose weak preconditions are satisfied in the initial model) and 

lower the criticality threshold on its preconditions.  Some more planning 

steps may now be necessary to satisfy the somewhat strengthened precon- 

ditions.  In this manner we generate a plan that gradually considers 

more details until finally the preconditions with the lowest criticality 

numbers are also considered. 

If at any stage the preconditions of an operator in the plan 

cannot be satisfied at a lower criticality threshold, the plan at the 

next highest level is rejected and an alternative must be found. 

There are important questions here regarding the order in which 

steps In a plan at a given level ought to be expanded to lower levels. 

An Interesting special case might be called FIFE (first in, first expanded) 

In the FIFE mode, the first step in the high level plan would be expanded 

at the next level of detail.  Then the first step in this expansion would 

be expanded, and so on until finally the first step corresponded to an 

executable action.  Here we face a choice.  Do we execute this operator 

and then continue with FIFE or do we continue expanding some or all of 

the rest of the plan before any executions are allowed? 

20 
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another important question concerns the level at which new 

planning is to be done as we gradually lower the criticality threshold. 

Suppose, for example, that the criticality threshold is at some inter- 

mediate level arid we are testing the preconditions of one of the operators 

in the plan.  If one of these preconditions is not satisfied, should we 

generate a high level plan to satisfy it or should we pnnerate a plan of a 

level corresponding to the current setting of the criticality threshold? 

Our current opinion is that any new planning activity always ought to 

occur at the highest level.  More details about this particular method 

are contained in a memo by Earl Sacerdoti.B This technique is row being 

implemented as an addition to the STOIPS-PLANEX system. 

A second method by which hierarchical planning can be accom- 

plished entails writing separate operators for different pltnning levels. 

For example, we might have the following hierarchy of operators for 

achieving the predicate INRO0M(ROB0T,R0OM):  G0T0RM1, G0TGRM2, and G0T0RM3. 

The highest level operator, GOT0RM1, would have rather mild preconditions, 

such as, say, a test for the existence of the target room.  The next 

operation, G0T0RM2 would have somewhat more restrictive preconditions 

say that the robot must be in a room adjacent to the target room.  Finally 

G0T0RM3 might insist that the door between the target and adjacent rooms 

must be open. 

First a plan would be generated using only high level operations. 

Then each of the operators in this plan beginning, say, with the first 

would be replaced by its next lower level operator and plans (at the 

highest level) wmld be generated to achieve its preconditions, and so on. 

This procedure would work very much like the one using criticality numbers, 

except that there is no* no necessity that the preconditions of a high 

level operator be a subset of those at lower levels. 
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There are many details to be worked out before we can begin 

Implementing a hierarchical planner.  We haven't quite decided yet, for 

example, how to administer the search process in generating hierarchical 

plans.  We desire an executive that can resume work on a possibly incom- 

plete plan at a higher level should some step in a lower level plan run 

into trouble.  Communication between levels is also a problem.  We might 

desire that information discovered by a lower level planner be available 

for use in generating alternative high level plans. 

Perhaps the most difficult of our tasks will be to integrate a 

hierarchical planning feature successfully with all the other features 

we men'ioned in the last section.  In particular, we have had some dif- 

ficulty in deciding how a hierarchical planner and a plan execution system 

ought to interact. 

D.   Nlultirobot Experiments 

In parallel with our work on a new problem solving system, we are 

planning some experiments using STRIPS and the present robot vehicle, 

SHAKHY, in conjunction with a Unimate arm.  (A Unimatc is a commercially 

available, fixed, industrial manipulator that is being used in our 

laboratory for experiments in the application of techniques in artificial 

intelligence to industrial automation.)  Use of both SHAKEY and the 

Unimate will allow us to explore some interesting problems concerned with 

multirobot cooperation.  Three fundamental types of experiments are 

envisioned: 

(1) Those in which each robot is viewed by the computer 

as an independent motor device exclusively under its 

control. 

(2) Those In which each robot is strictly autonomous and 

operates effectively in parallel by time sharing the 

same computer facility. 

22 



(3)  Those which are a mixture of the first two in which 

one robot plays the roll of master and the other slave. 

Type (1) experiments would not require the duplication of any robot 

software on the computer, but merely the addition of a new set of opera- 

tors for the Unimate.  The only aspect of robot communication protocol 

that is qualitatively different from the one-robot case is the fact that 

the two devices can operate asynchronously and thereby possibly physically 

interfere with one another, if careful attention is not paid to the se- 

quence and timing with which operations are carried out. 

Our interest in types (2) and (3) experiments stems in part from 

our desire to begin considering worlds containing large numbers of robot 

devices.  In such a world, it would not be reasonable to assume that all 

robots were controlled by a single computer.  Instead, we would assume 

autonomous robots that might be called together by a human to perform a 

task. The human would not, presumably, want to specify how the task is 

to be subdivided among the robots; the robots must figure this out among 

themselves. 

As a matter of experimental convenience, we will use only two 

robots (Shakey and the Unimate) and a single computer.  Hence, our type 

(2) experiments require the duplication of certain subroutines and model 

structures in computer memory to allow each robot to maintain its identity. 

Provision must be made in each robot's model for the current state, goals, 

and potential capability of its counterpart, including the ability to 

communicate.  By definition, neither robot can have direct access to the 

other's model data; each must carry out a symmetric dialog to discover 

the other robot's intentions.  The distinction between "knowledge" and 

"belief" is now Important, in contrast with type (3) experiments in which 

the master robot is assumed by definition to know precisely what the 

23 
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A possible experiment might be for Shakey and the Unimate to be 

given a joint task of turning a box upside down and moving it to a distant 

location.  This taak would capitalize on the unique ability of the 

Unimate to turn boxes upside down and the unique ability of Shakey to 

move them around.  In a type (2) experiment, both robots would need to 

communicate with one another according to some fixed protocol in order 

to develop Jointly a common plan of action to accomplish the goal.  This 

simple type of experiment can be easily embellished by adding disjoint 

(possibly conflicting) parallel goals for each robot.  Under more stringent 

constraints the difficulty in establishing and maintaining a dialog can 

be made arbitrarily complex. 
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Ill  PERCEPTION 

A.   Introduction 

In the p ist year we have formulated and refined a new approach to 

achine perception intended to overcome the major limitations of existing 

systems and to achieve useful real-world perceptual capabilities. This 

section presents, in considerable detail, both our design for a system 

for analyzing perceptual data and a research methodology for implementing 

the system. 

The goal of most vision research has been to describe simple geo- 

metric environments in an exhaustive, bottom-up fashion.  Unfortunately, 

many crucial perceptual issues—such as information overload, generality 

of perceptual strategies, suitable representations for real-world objects 

and segmentation of textured objects from the background—do not arise in 

this problem domain.  Consequently, that goal has proved largely self 

defeating, leadiu- to strategies and systems that could not be extended 

to cope with richer environments.  For example, the absence of natural 

perceptual redundancy and context meant that each object could only be 

recognized in terms of a completely articulated boundary shape descrip- 

tion.  Sach descriptions, while useful, are difficult to obtain for many 

real world objects.  Moreoever, detailed shape is often not the most 

appropriate distinguishing characteristic. The emphasis on shape also 

demanded unreasonable sensitivity and reliability from the initial bound- 

ary extraction routines.  This undirected sensitivity further limited 

the systems to textureless objects and background in order to avoid over- 

whelming the scene analysis stage with irrelevant edge detail. 
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1.   Perceptual Philosophy 

In contrast to the above, "e have chosen as our primary research 

objective the task of finding specilied objects in complex real-world 

environments.  This objective is consistent with the information require- 

ments of our robot, which typically is concerned only with locating 

particular objects involved in its current task. 

We proceed on the premise that there exist easy ways of "seeing" 

things.  The redundancy of visual cues and contextual constraints allows 

a desired object to be distinguished from others on the basis of a small 

subset of the available features.  To illustrate, a human can usually be 

distinguished from other contents of an office simply as a moving blob 

whose surface area is larger than two square feet. 

Moreover, even when such complicated features as shape are 

required, then if the context is suitably limited, a simple distinguishing 

measure related to that feature may suffice to resolve remaining recog- 

nition ambiguities.  Thus, either the relative position of the center of 

gravity or the presence of sharp corners should be sufficient to dis- 

tinguish the shape of a person from that of Shakey. 

2.  Design Considerations 

The above point of view suggests the following desigr considera- 

tions for a perceptual system. 

a.  Perception as Problem Solving 

Perception should be construed es a problem solving process; 

the system must utilize its knowledge of the current real-world environ- 

ment, and of its own perceptual capabilities to plan where and how to 

look for a specified object.  Specifically, .he computer must use its 

knowledge to select features of the desired object that are both dis- 

tinguishing and easy to see. 
26 



The utility of such 'distinguishing features' is criti- 

cally dependent on what is known at the current stage of analysis.  Hence 

it is unreasonable to preprogram these recognition strategies, except in 

the simplest and most static environments.  Moreover, a system that can 

plan its own strategy has inherent generality; it should be able to func- 

tion in any environment for which its knowledge base and perceptual 

primitives are adequate. 

b.  Sequential Decision Paradigm 

It is usually unnecessary to examine all features of an 

object to arrive at a confident recognition hypothesis.  Perception should 

proceed like the game of 20 questions.  Simple descriptive attributes 

(e.g., color, motion, size) should be used initially to establish a 

limited context. Remaining ambiguities can then be resolved within this 

context, using the distinguishing components of complex attributes (e.g., 

shape, texture). 

c.  Representation of Complex Objeccs 

Representations for describing the shape and texture of 

complex real world objects are not yet available.  Indeed, symbolic 

descriptions may not even be feasible. However objects can be represented, 

for purposes of discrimination, in terms of the many crude measures of 

shape (e.g., perimeter-squared/area, length/width of bounding rectangle) 

and texture (e.g., statistics, power spectrum) that are available.  The 

system should use the simplest representations sufficient to distinguish 

the object of interest in a given context. 

d.  Multiple Sensors 

The likelihood of finding suitable surface attributes for 

distinguishing a felven object increases with the number of Independent 
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sensory  modalities.     Furthermore,   simple discrimination  in each of 

several sensor}   modalities  should  be a cheaper,  more reliable alternative 

to using more detailed descriptions  in a single modality;   color and 

surface  orientation   (obtained directly   from range data)   are  substantially 

easier  to process  than shape  and   texture,   the principle means of dis- 

tinguishing objects  in gray-scale   images. 

e.       Goal  Directed  Feature Extraction 
'   ^————^—^——————— 

A key  problem  in doing  perception by distinguishing   fea- 

tures  is  to extract reliably  the  features.    One  lesson  that  has been 

repeatedly  leariKU   .n a decade of vision research is  that  feature extrac- 

tion cannot be adequately  performed bottom-up,   as  a preliminary to a 

knowledge-based  interpretative process. 

Rather,   the system must  be  integrated so that recognition 

strategies  are based on knowledge  of which features are easy  to extract 

in a given environmental context.     The  lo* level routines  should  then 

concentrate on extracting  those specific  features,   guided  again by 

knowledge of their distinguishing attributes.     For example,  regions can 

be grown on the basis of surface  attributes that are known to be both 

homogeneous over the goal object  and distinguished from those of other 

nearby surfaces,   previously   found  or anticipated  in the environment. 

f.       Incremental  Acquisition of Knowledge 

The substantial amour.t of ad hoc world knowledge required 

to plan perceptual strategies  is most reasonably acquired   in an  incre- 

mental  fashion.     The system should  thus  be designed  to request additional 

information  fron a user at  times  of  failure,   indecision,   or on encounter- 

ing a new object,  and  to incorporate  this information  immediately   in a 

revised strategy.    The new strategy establishes empirically whether  the 
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current description of an object  is sufficient  to distinguish it  from 

others  already known. 

3.       Organization of  this Section 

We have completed  the conceptual design of a perceptual system, 

Incorporating each of  the   features  listed above. 

In Section  III-B we present  an overview of the perceptual 

strategy. 

Section III-C describes a system design, modeled after utility 

theory, for planning and executing this strategy. 

Section III-D outlines our planned approach for utilizing high 

level world knowledge to direct low level feature extraction. 

Section III-E summarizes related work on interpreting color 

and range data, to realize a multlsensory capability. 

Section III-K concludes with our plans for implementing and 

experimenting with the system. 

B.  Overview of System 

1.   Scenario 

Before describing the system, let us first describe a scenario 

that has played an important role in helping refine our thinking.  Its 

inclusion here serves three functions:  it illustrates the intended mode 

of system operation, it provides explicit examples to clarify later 

discussions on perceptual strategy, and it establishes some concrete 

operational objectives against which our system, when implemented, will 

be evaluated. 
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a. Scenario Objective 

The scenario objective  Is  to analyze an uncluttered  office 

environment   like  that  shown  In  Figure  7,   usIng brightness,  color,   and 

range as sensory  Inputs.     The basic  task  xs  to find a designated object 

(e.g.,   a chair).    The system will designate  its comprehension by outlining 

the  Indicated object on a grey-scale display of the scene.     A second 

task  Is  to describe the scene,  which In  this  limited environment can be 

accomplished by commanding the system to find each of  the small set of 

known objects. 

b. Knowledge  »ase 

The system's world model will Initially contain five 

typical objects selected from offices, and three room fixtures. The 

objects are semantlcally constrained to appear in normal office relation- 

ships (e.g., chairs are not allowed to be on tables). Table 3 conveys, 

informally, the scope of information that will be available to the system. 

The given attributes and relations do not constitute complete descrip- 

tions, but should be adequate to distinguish among the objects using 

color and range data.  (Partial descriptions are, in fact, preferred 

because they provide possibilities for generalization. The descriptions 

can always be refined interactively, should the system err on their 

account.) The descriptions also indicate the range of specificity with 

which knowledge can be provided. Thus, dimensions may be given exactly, 

corresponding to particular objects (e.g., the door and chair in Table 3), 

or with a tolerance encompassing a class of possible objects (e.g., the 

picture in Table 3). 

Though spatial relationships are expressed here as gross 

symbolic constraints (e.g., back of chair "parallel to and above" seat), 

it is often more convenient, in practice, to represent such metrical and 
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lable 3 

INITIAL WORLD MOÜEL 

Object 

Wall 

Floor 

Door 
Door 
body 

Door 
knob 

Chair 
Seat 

Hack 

Attributes 

Vertical plane 
Dimensions:    > 7  ft  high   (except  at 

door)   and > 8  ft   long 
Shape:     rectangular,  except   for 

doorway 
Color:     buff,   homogeneous 

Horizontal plane   (height  = 0) 
Shape:     linear  boundaries 
Dimensions:     at   least  5  ft  of 

extent  along x and y  anes,  de- 
limited by  intersection with 
walls. 

Color:     buff with white and brown 
streaks 

Vertical rectangular prism 
SUe:     3-1/2 ft wide by 7  ft high 

by  1-1/2  in.   thick 
Color:     brown,  wood grain 

Cylindrical  prism 
Dimensions:     2 in.   (diameter)  by 

2  in.   (length) 
Color:     lilver 

Horizontal ;octangular  plane prism 
Dimensions:     18 in.  by  18 in. 

(horizontal  plane,   t-1;?/  and  18 
in.  by 4  in.   (vertical side 
planes) 

Height:     16 in.   to center of 
gravity 

Color:     tan or gray 

Vertical  rectangular  prism 
Heignt:     24  in.   to center of 

gravity 
Dimensions:     12 in.  high by  17 in. 

wide by   1-1   '-'  in.   thick 
Color:     sami   as  seat 

Relations 

Adjacent and perpendicular to 

floor (below) and other walls 

(side).  Adjacent to doorway 

and door. 

Adjacent and perpendicular to 

walls, door, and doorway. 

Continuous through doorway. 
Supports chair, table, basket. 

Hinged (-90 <- angle < 90) to 

wall on one vertical edge. 

Adjacent to floor on bottom. 

On (i.e., base coplanar with) 

both wide faces of door body 

at height ■ 38 in.  It is 5 
in. from unhinged edge. 

Supported by legs which are 

attached at each corner of 

the bottom roctannular face • 

Width of back parallel to 
and above edge of seat. 
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Table 3   (concluded) 

Object Attributes Relations 

Chair 

Legs Vertical rectangular prisms 

Number:  4 

Color:  gray or cocoa 

Size:  1-1/2 by 1-1/2 by 14 In. 

(height) 

Supported by floor. 

Table 

Top Horizontal rectangular prism 

Color:  buff or gray 

Dimensions:  3 to f ft long, 2 to 4 

ft wide, and 28 to 36 In. high 

Supported by table legs. 

Legs Vertical rectangular prism Supports table top at corners. 

Height:  20 to 36 in. Legs supported by floor. 

Basket Vertical cylinder 

Color:  gray or brown 

Hollow on top 

Dimensions:  13 In. (diameter) by 

14 In. (height) 

Supported by floor. 

Picture Vertical rectangular plane 

Dimensions:  8 In. to 30 In. 

(length or height) 

Multiple colors, usually In small 

regions. 

On (coplanar with) wall. 

Telephone 

Case Horizontal rectangular prism 

Dimensions of base:  5 In. wide, 8 

In. long, and 1 In, high 

Color:  black 

Supported by table. 

Horizontal rectangular wedge Supported by and aligned 

Dimensions:  5 In. wide, 8 in. with top of rectangular 

long, and 3-1/2 in. high prism. 

Color: black 

Dial Cylindrical prism with multiple Centered on sloping face of 

holes in end wedge. 

Dimensions:  3 in. in diameter 

by 1/8 in. thick 
Color:  gray 
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topological relationships implicitly, in the form of structural models 

(like those used for computer graphics).  In our initial implementation 

we plan to use crude structural models for objects with several parts. 

A chair, for example, will be represented by rectangular prisms for seat, 

back, and legs.  Such a model should convey spatial lelationsh.ips in 

sufficient detail for planning perceptual strategies, but be simple to 

obttin and use in early experimentation. 

2.   Perceptual Strategy 

The search for an object proceeds In two phases, called acqui- 

sition and validation.  During acquisition, the multisensory image Is 

sampled for characteristic surface attributes of the desired object.  If 

a sample satisfying all criteria is found, a sequence of top-down vali- 

dation tests determines whether the acquired sample does, In fact, belong 

to the desired object, or to another object with similar surface charac- 

teristics.  Each of these search phases will new be discussed in more 

detail. 

a.   Acquisition 

The selection of acquisition attributes for sampling is 

based on such considerations as: 

(1) Crlterlality—the attribute should invariably 

be associated with the object (e.g., the 

floor is always horizontal). 

(2) Distlnguishabillty—the attribute should not 

also be characteristic of other objects 

expected in that context. 

(3) Measurability—the attribute should be reliably 

obtained from simple, localized processing of 

sensory data. 
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These criteria are applied to the characteristics of each 

surface of an object to ascertain the best set of surface attributes. 

Let us illustrate our approach with the goal of finding a chair.  The 

initial system implementation will include primitives for testing height, 

color, and local surface orientation.  The discussion on multisensory 

data interpretation in Section III-E suggests that height will be the 

most easily measured attribute, followed by hrrizontal orientation, 

color, and vertical orientation. Refer now to the description of a chair 

in the basic world model (Table 3).  Height and horizontal orientation 

are both criterial tu the seat of a chair, and together are unique in 

that environment.  The color alternatives make that attribute less 

criterial.  Since vertical orientation, the primary attribute of the 

buck of the chair, is both less distinguishing and more difficult to 

test, a chair should be sought by sampling for a height of 18 inches, 

and checking successful points for local horizontal orientation. 

Table 4 summarizes the anticipated best acquisition 

attributes for each object in the scenario.  If a search fails to satisfy 

one of these criteria, the system can then select alternative attributes 

based on plausible explanations for the failure.  For example, the seat 

of a chair might not be visible if the chair were viewed from behind. 

Thus, failing to find a horizontal sample of appropriate height for a 

seat, the system could next look loi characteristic attributes of a back 

support. 

Sampling may bo localized to specific areas of the scene 

on the basis of objects already recognized.  For Instance, a wastebasket 

need only be sought in areas bordering the floor region.  In fact, the 

planning algorithm discussed later will have the option of looking first 

for a conttxtually related object that is larger or other ise easier to 

find, in order to localize the desired object with reduced total search 
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Table 4 

ATTRIBUTES AND CONTEXTURAL RELATIONS FOR ACQUISITION 

Acquisition Attributes 

Object (Test in order shown) 

Wall Color - buff; orientation - vertical 

Floor Height w 0 in.; orientation - horizontal 

Door Color - brown; orientation - vertical 

Chair Height - 18 in.; orientation - horizontal; 

color - tan or gray 

Table Height 20 to 36 in.; orientation - horizontal; 

color - buff or gray 

Uasket Color - gray or brown; orientation - vertical; 

ccntext - on floor 

Picture Buff nonbuff boundary; context - on wall 

Tele phone Color - black; orientation - vertical or inclined; 

context - on table 

effort.  Thus, to find a telephone, It might pay first to find a desk. 

Humans often pursue a similar style of perceptual search. 

b.  Validation 

The validation process begins by checking the global 

attributes of the surface surrounding the acquisition sample.  This 

suiface Is extracted by grouping the acquisition sample with proximate 

samples having similar attributes.  The resulting region Is then checked 

for appropriate size, shape, global uniformity and so on. 

The global attributes help distinguish the desired surface 

from surfaces with similar acquisition attributes, belonging to other 

objects In the knowledge base. We Intend to rely on the consensus of 



several crude, Individually tolerant tests related to these attributes, 

rather than actually to extract a detailed description of any particular 

one. For example, the ratio of perimeter squared to area, or of length 

to width, might suffice as a representation of shape.  The system will 

select the simplest of such tests that provide adequate discrimination. 

In addition, certain critical dimer a^ns (e.g., length, width, area) will 

be measured absolutely (using ra'.ge data) to reduce the likelihood of an 

unknown object slipping through the explicit discriminations. 

Unfortunately, past experience suggests that a test is 

as likely to fail because of errors in region growing as because the 

wrong object was acquired. We hope to overcome the unreliabilities in- 

herent in the region growing process by tightly controlling it with 

feedback from the evaluation objectives. This will be discussed in 

section III-D. 

If the confidence remains indecisive after surface evalua- 

tion, or if specific ambiguities remain, then validation continues by 

seeking additional parts of the object (e.g., the back of a chair, the 

knob of a door).  These subobjects can themselves be acquired and vali- 

d ited by using the basic programs recursively. 

Additional confidence can be obtained by finding other 

objects in appropriate context^ ai relationships, such as, "support" 

(e.g., telephone on table), adjac&ncy (e.g., wall and door), functional 

(e.g., hammer near nails), and the like. 

Validation proceeds as a sequential decision process that 

terminates whei. a definitive level of confidence has been reached. After 

each feature Is sought a decision must be made whether to accept the 

original acquisition hypothesis, to reject it (and resume sampling) or 

to continue tie validation process. This d. clsion will depend on param- 

eters of required confidence and allocated budget, reflecting the global 
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importance of this currrnt goal to a higher level robot strategist.  The 

decision to terminate validation also depends, in part, on the degree to 

which the desired object must be localized in the scene, since the more 

features of an object that have been found, the more tightly location 

and orientation are constrained. 

C.   Conceptual Design 

1,   Introduction 

We would now like to describe in detail a system designed to 

plan and execute the kind of perceptual strategy described above.  The 

design goal is to find a specified object with minimal cost (i.e., compu- 

tation time) within an allotted budget, while maintaining a required 

level of reliability (i.e., effectiveness).  This goal requires that the 

system utilize all available information about the object, the general 

environment, detector routines, and current sensory information. 

The system will generate a planning tree representing alterna- 

tive ways to acquire and then validate an object.  Initially, only paths 

emanating from the most promising acquisition features will be explored 

in detail.  Moreover, less detailed cost and reliability estimates will 

be used in calculating the utility of validation features, to simplify 

planning.  The system will then proceed to execute the most pxomising 

path based on its initial information, planning in greater detail as the 

strategy successfully progresses to the validation phase.  On the other 

hand, if a strategy fails, the system can utilize the new information it 

acquired during execution to choose an alternative execution path or 

perhaps to resume planning a previously unpromising approach.  Since 

knowledge is constantly acquired during the perceptual process, planning 

and execution will be tightly interwoven. 
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The planning/execution interaction will be coordinated by the 

GOAL \50NIT0R (GM).  The task of the GM will be to account for the effects 

of the success or failure of one subgoal on the rest of the subgoals in 

the planning tree awaiting execution. Thus, achieving me subgoal could 

remove others from consideration, could restrict the search space for 

others, or might change the importance of satisfying them.  The effect 

of goal monitoring is to use the most current information available to 

dynamically coordinate the planning and execution.  This process retains 

the flavor of utility theory (i.e., always do whatever is currently most 

promising), but many practical drawbacks of the formal theory can be 

avoided.  In particular, the combinatorial difficulties entailed in 

global optimization will be minimized by considering many processes to 

be independent until much later in the planning and execution sequence. 

Since we do not have accurate utility estimates, we cannot (and do not 

wish to) look too far ahead in our planning. 

The satisfacxion of our goal proceeds in three main steps: 

(1) The planning phase, which may include the generation 

of alternative paths to the goal.  For example, to 

find a telephone either look for the telephone 

directly, or look for a desk first and then look 

for a telephone on the desk.  The initial planning 

will be concerned with acquisition of the object. 

Additional considerations, such as validation and 

refinement, will then be examined for the most 
promising paths. 

(2) The acquisition phase, where some features of the 

current best subgoal are used to nttempt to locate 

it in the scene.  For example, if It is determined 

that the best way to find the telephone is via 

the desk, it may be decided to attempt to acquire 

the desk on the basis of a Ivrc* surface of a 
certain color. 

(3) The validation phase where, having found the initial 

acquisition feature, the system attempts to verify 

the acquisition through other parts or contextual 
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relationships.  For example, having located what 

appears to be the top of the desk, the system may 

attempt to show that It really is the desk by 

finding the sides. 

2.  Definitions 

Before proceeding, we would like to define certain parameters 

and explain how we plan to use them. We will assume that the input to 

the system is a list of goals of the find type and a budget allocation. 

Associated with each goal will be the interest (I) that the robot execu- 

tive has assigned. The interest is a number from 0 to 1, and is a measure 

of the importance of the goal to the executive. The I values will be 

used to set the confidence with which tie goal must be achieved,  rrom 

the set of I values, the system will compute the normalized interest (NI) 

for each goal. The NI of a goal will be the I of that goal divided by 

the sum of the I's for all goals. 

The budget is split into two parts:  a fixed percentage is to 

ue used for planning, and the rest for execution.  The allocation of 

ensures that the effort expended on a goal is proportional to its overall 

interest to the system. After planning for a goal, any remaining budget 

for that goal is reallocated among waiting goals. The execution budget 

allocation will be based on the results of the planning, and will change 

dynamically during the course of execution and replanning. 

We will take cost to be a measure of the processing time re- 

quired for completion of a task to a certain level of reliability. The 

reliability is the probaoillty that the results returned for a given 

task are correct—we will use the term confidence synonomously with 

reliability. 
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We will use FOM to represent a computed figure-of-merit for 

each node in the planning tree. This will take into account such things 

as the expected cost of achieving that subgoal with a required confidence, 

and its importance to higher goals.  We will distinguish two factors 

used in computing the FOM:  a direct FOM (DFOM) and an indirect FOM (IFOM). 

The DFOM measures the ease with which a feature (a tip node of the tree) 

can be acquired directly—that is, by looking for the feature in a pic- 

ture.  The IFOM measures the utility of the contextural information pro- 

vided by one object to the goal of locating another object.  The IFOM 

is a property of a relation between two objects (and is therefore asso- 

ciated with a branch of the planning tree).  It gives an estimate of how 

close you are to satisfying a higher level goal given satisfaction of a 

lower one.  The FOM of an intermediate node of the tree will be generated 

by backing-up the DFOMs and IFOMs of the tips and branches of the tree 

beneath it.  The values of the IFOMs, DFOMs, and FOMs will all be within 

the interval [0,1].  The FOM of a goal will be used to decide which is 

the best thing to pursue next during planning and execution. 

We will also be referring to three data bases.  The first is 

the VISUAL MEMORY (VM), which will contain permanent perceptual knowledge 

about objects, parts of objects, visual features of parts, and relation- 

ships between them.  The information in VM will be obtained mainly by 

interacting with a human o.^rator when new objects are encountered or 

when a strategy based on existing knowledge fails.  Some details of this 

interaction appear in Section III-F. 

The second data base is a short term world model (STWM) in 

which the results of current processing are represented as instances of 

the Items in VM.  An accompanying coordinate transformation gives the 

actual location and orientation of each instantiation.  There is also a 

low level data structure for representing regions, boundaries, and simi- 

lar partially digested Information about the scene. 
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The third major data base is the detector library, containing 

both perceptual operators and knowledge about their application.  This 

knowledge includes estimates of cost and reliability, as well as prag- 

matic advice on the use of given operators in particular contexts. 

3.   Planning 

We would like to give an overview of the initial stage of 

planning by describing in general the course of planning.  For the moment 

we will assume the existence of values of DPOM and IFOM at each stage, 

later discussing criteria thai may be used in their computation. 

a.   Plan Generation 

First we need to describe the hierarchical structure of 

visual memory, illustrated in Figure 8.  Object« havm  parts, and parts 

OBJFCT 

PART n 

FIGURE 8  VISUAL MEMORY HIERARCHY 

have features.  Features are the visual attributes that can be found 

directly in an image.  Examples of features include color, surface 

orientation, texture, size, and shape.  The basic concept of "part' is 

42 
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a surface with a collection of relatively homogcneoua features.  (Parts 

may themselves have parts, but we  will not consider that here.) 

Let us assume that we are trying to satslfy a single 

goal, FIND 0BJECT1, and have already allocated part of the budget to 

that goal for planning.  Let us also assume that we have an FOM value 

for the object to be found that we will use as a cutoff value in planning 

(the target FOM). We will evaluate the advisability of attempting to 

find an object directly versus finding it indirectly at each stage of 

the plan.  The plan we ultimately devise will be the "best" branch of 

the planning tree. 

The first level of the planning tree for finding OBJECTl, 

is merely the obJect~feature hierarchy detailed above, and is illustrated 

in Figure 9.  OBJECTl has two parts, PI and P2.  In turn, PI has features 

OBJECT I 

IFOM (OBJECTl. PI 

If CM  »r l»() 

SA-ISM-S 

FIGURE 9  PLANNING TREE FOR FINDING OBJECT 1 

Fl, F2, and F3.  P2 has F4 and F5 for its features.  The IFOM (OBJECT, 

PART) is always 1, since finding a part of an object brings you all the 

way to that object.  Likewise, the IFOM (PART, FEATURE) is also 1.  We 

will write the IFOM values on the branches (see Figure 9). 
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The  FOM of  a  tip   »ode will  be   the DFOM of  the   feature  at 

that  node.     The  backed-up FOM     ilue of  a  nontlp node will  be  computed 

from  the  FOMs  of the nodes c i     .   ly  below  it   in  the  tree,   and   the   IFOMs 

of these nodes with respect  to it,  by taking  the maximum of the set of 

values  of   IFOM (PARENT,OFFSPRING)   *  FOM(OFFSPRING).     The  FOM of  a node can 

therefore  be considered   to be   the  FOM of   the  planning  tree   from  that  node. 

Thus,   the  current  FOM(OBJECTl)   is equal   to 

maxfFOM(Pl)   •   IF0M(0BJECT1,P1)   ,   F0M(P2)   *   IF0M(0BJECT1,P2)}   . 

Now,   we  have 

FOM(Pl)       maxfFOM(Fl)   *   IF0M(P1,F1)   ,   F0M(F2) 
*   IFOM(Pl,P2)   ,   F0M(F3)   *   IF0M(P1,F3)} 

or,   since each  IFOM is equal to 1, 

FOM(Pl)       maxfDFOMCFl)   ,   DF0M(F2)   ,   DF0M(F3)) 

and   similarly 

F0M(P2)   =  maxrDF0M(F4)   ,   DF0M(F5)T   . 

Therefore, 

FOM(OBJECTl)       maxfDFOM(Fl)   ,   DF0M{F2),...,   DF0M(F5)}*   . 

Suppose now that t^e  FOM(OBJECTl)  is not high enough  (i.e., 

it  is  not greater  than the  target  FOM value),   and suppose also that we 

have  planning budget  left.     We would   like  to consider  looking for  a re- 

lated  object   to help us   find  0BJECT1.     We  wish to consider   IF0M(0BJECT1, 

obj)   for all objects,  obj  contexturally related  to 0BJECT1.     We can  im- 

mediately reject  any object,   obj,   for which IFOM(OBJECTl,obJ)  is  less 

than the current F0M(0BJECT1),   since even  if FOM(obJ)   is  1   (the maximum 

Those readers  familiar with probability  theory may recognize some simi- 
larities  between the  FOM computations  and  the calculation of probability 
of  two dependent events. 
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possible). It cannot improve FOM(OBJECTl).  (In practice, we will con- 

sider objects whose IFOM with respect to the original object are almost 

as high as the FOM of the original, since these estimate utilities are 

likely to change somewhat during execution. 

Now, suppose two objects, 0BJECT2 and OBJECTS, satisfy 

the test on IFOM. We grow the tree shown in Figure 10, and allocate 

OBJECT 1 

IFOM (OBJECT1   OBJECT2I 

IFOM (OBJECT!. 0BJECT3I 

OBJECT 3 

FIGURE 10      EXTENDED PLANNING TREE FOR OBJECT   1 

a percentage of the planning budget remaining,  based on the relative IFOM 

values,   to each of  the  two new objects.     Using FOM'COBJECTl)   as  the new 

FOM value,  wc  have 

FOM'(OBJECTl)   =  maxfFOM(OBJECTl), 

IFOM(OBJECTl,OBJECT2)   *  F0M(0BJECT2)   , 

IFOM(OBJECTl,OBJECTS)   *   F0M(0BJECT3)1 

with F0M{0BJECT2)  and F0M(0BJECT3)  calculated  as above. 
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As each new node is added to the tree, a backward pointer 

to its parent is stored with it.  These pointers will be used by the 

CM during execution to recalculate FOMs based on success or failure of 

subgoals. 

Whenever we start planning to find an object, we insert a 

pointer to the corresponding branch of the planning tree on the property 

list of that object in VM.  Accordingly, we do not have to plan for 

finding an object more than once.  Whenever we reach an object in the 

course of planning, we increment a counter associated with that object. 

When we are finished, we have a count of the number of times an object 

has appeared in the plan.  We will use this count in the execution of the 

plan in order to give higher weight to subgoals that can help achieve 

several goals. 

This mechanism allows a rudimentary form of learning. 

Previously successful plans would remain on the objects property list in 

VM with an accurate FOM value and be available for subsequent use.  The 

system will be designed to always check each node for an existing strategy 

before planning anew.  If a plan is available, the FOM stored with that 

plan is used in computing FOMs for higher nodes.  After checking the 

subgoals in the plan against other subgoals, we will treat the new branch 

of the tree Just like any other.  Property list pointers are also a con- 

venient way to incorporate experimental, manually generated strategies. 

We continue the planning process until one of several 

possible termination criteria is met: Either we run out of budget, 

there is no way to improve our current FOM, or the current FOM is good 

enough.  Whenever we "terminate" a planning branch, we really only suspend 

it.  Thus, if we decide later that perhaps it should have been considered 

further, we can start from where planning was discontinued.  This will 

be important should we terminate a subgoal because of budgetary limits, 

and then return to that subgoal along another branch of the tree when 
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we have more budget to allocate to It.  The process ends returning the 

best FOM calculated and the plan that produced it.  We will repeat this 

process lor any remaining goals on our list. 

At this point we have produced a plan for finding an objtrt 

based on information on hand, and some fairly crude estimates of DFOM 

and IFOM.  We have computed an FOM for the desired goal based on the 

apparent best choice of features for acquisition at all nodes.  If there 

is not a clear best choice, we can continue evaluation of the most promis- 

ing branches, using somewhat more sophisticated (and expensive) criteria. 

We will describe this in detail later. 

b.  Criteria for FOM 

We would like to describe some of the criteria to be used 

in the computation of the figures of merit, DFOM, and IFOM. The IFOM is, 

in essence, a measure of how spatially constraining one object is on 

another.  It will take into account the physical relationship of one 

object to another, the probability with which this relationship holds, 

and the amount of effort required to localize the constrained object 

given the constraining one.  For the parameter to De meaningful, the 

computation must take into account specific information available in the 

VM.  For example, we know that the wall is always adjacent to the floor, 

and that given the wall's location, the amount of work required in finding 

the floor is not very great—Just scan down the wall looking for a cer- 

tain kind of discontinuity.  This means that IFOM(FLOOR,WALL) will be 

fairly high.  Since the floor is not always adjacent to the wall (there 

may be doors), and since it may not always be easy to scan along the 

floor to find the wall, IFOM(WALL,FLOOR) will not be as high as IFOM- 

(FLO0R,WALL).  Let us look at the example of a telephone and a table. 

Given a certain table (say TABLED, where we know that there is always 

a telephone, the IFOM(TELEPHONE,TABI£) will reflect the work that may be 
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required co localize it  r TABLE1—this will not be very much, so the 

IFOM value will be high   If we know further that the telephone is always 

in a certain location on the table, then IFOM(TELEPHONE,TABU:) will be 

even higher.  However, suppose we know that there is a single telephone 

on some table in a given room, but that there are three tables in the 

room.  The probability that the telephone is on any given table is only 

one-third.  The value of IFOM(TEU:PHONE,TABLE), reflecting this proba- 

bility, will thus oe less than IFOM(TEU:PHONE,TABm). 

The DFOM indicates the advisability of a direct visual 

search for a feature.  In Section III-B we summarized the most important 

considerations entailed in selecting acquisition attributes. The first 

consideration was criteriality, the likelihood of the feature being 

present given that the object itself is.  If telephones are always black, 

then black is a criterial feature; but, if telephones come in several 

colors, then color becomes less criterial.  The second factor concerned 

the uniqueness of the featuie in the world; we prefer features that do 

not also characterize many other objects likely to be present. 

The DFOM must reflect the degree to which prospective 

features satisfy these two prerequisites.  It must also reflect the cost 

per sample of testing for the feature and the expected number of samples 

to be examined.  The second factor is primarily a function of the size 

of a feature and the degree of localization within the scene imposed by 

prior knowledge.  We will use whatever spatial constraints we have on 

the object to "window" the picture (i.e., to limit the area that must be 

searched for the feature). We will then compute the expected size of 

the object in that window.  The important criteria here will be the size 

of the feature in three-dimensional space and its expected distance and 

orientation with respect to the sensor.  The ratio of the expected size 

of the object to the size of the window determines both the expected 

number of points to be tested and the required sampling density. 
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The cost of testing each sample depends on the required 

detection reliability.  Reliability will be estimated using simplified 

detector models that take Into account common error conditions affecting 

the cost-rellablllty of particular modules.  For Instance, It Is known 

that highlights, to be expected on glossy objects, will adversely affect 

the accuracy of both range and hue measurements.  The cost of the cheapest 

detector with adequate reliability will be used In calculating the DFOM. 

Special purpose modules, designed to be highly cost-effective In very 

constrained tasks (e.g., a floor finder program) will be selected when 

available. 

A final consideration In selecting an acquisition feature 

is the prior availability of relevant Information In STWM.  If, for ex- 

ample, the color or surface orientation of some samples In the search 

window are already known as a result of previous goals, then the expected 

cost of another search Is correspondingly reduced.  The DFOM for such 

features should be Increased accordingly. 

To help coordinate current goals and information already 

in hand, we will store pointers with each detector module (in the detec- 

tor library) to all subgoals utilizing them.  This record of subgoals 

dependent on the same module, together with a history of which ones have 

been executed, will enable the planner to determine whether Information 

potentially relevant to a current subgoal is available.  Eventually, the 

GM may be able to use these pointers to dynamically redirect information 

not pertinent to the particular subgoal for which the information was 

gathered. 

We will conclude this discussion of FOM computation by 

reiterating the fact that the IFOM computations are based primarily cm 

spatial constraints, while the DFOM computations are based primarily on 

direct visual features.  However, both rely on some common factors like 

feature size and the criteriallty and uniqueness of a feature conditioned 
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on  the  presence  of  other  objects.     IFOM  is  a  function of  three main  things— 

the  type of  relation between objects,   the  probability  that   the relation 

holds,   anü   the  amount  of residual work required   to  localize  the constrained 

object given the constraining one.     The ÜFOM Is  also a function of three 

things—the crlterlallty and uniqueness of the  feature    the relative size 

of  the  feature,   and  the utility of the detector  for  that  feature. 

We have by now generated  a plan for  finding an object 

based on crude estimates of the cost  of acquiring objects using their 
■ 

strongest visual characteristics.    We have not  taken  Into account any 

Interactions between goals,   or  possible alternatives  that may be available 

at a node.     These factors,   along with more precise estimates of FOM will 

be the subject of the  following section on plan reflnemrnt. 

c.       Plan Refinement 

During the refii.    -snt stage of  planning,  we wish to take 

a closer  look at subgoals  that appeared  promising during the Initial 

phase of the planning.     We  intend to perform more  precise checks that, 

because of cost and   level of detail,   were  inappropriate  in the  initial 

stages.     One  important refinement  is  to obtain more precise  localization 

of  features  in the  picture.     This  localization could require relational 

chains  of inference  from other more precisely known objects and may 

result  in changed FOM values  for various nodes.     These precise spatial 

bounds will be used again during execution to provide starting points 

and windows  for the detector routines. 

So far,   our estimated FOM for finding an object has been 

based solely on anticipated costs of direct and  Indirect acquisition. 

These estimates must be refined to take account of the expected cost of 

corresponding validations.     If we have several strong characteristics 

of an object,   then we know that it will be possible to increase our 
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confidence In that object fairly easily.  If, however, the object only 

has a few characteristics, or only weak ones, then It may be more diffi- 

cult to validate.  Thus, a gual with several good acquisition alternatives 

Is more promising than one with only a single acquisition feature, and 

should have Its FOM Increased accordingly. 

These considerations provide a crude planning estimate of 

the ease of validation, estimating the ease of Increasing confidence of 

the desired object, but without concern for distinguishing it from other 

similar ones.  During the validation phase of execution, we will con- 

sider which of the remaining easily acquired features distinguish as well 

as confirm the object.  However, this level of detail is not necessary 

at our present stage of planning. 

DurinR the refinement of the plan, we will also consider 

the fact that several branches of a plan may have subgoal.^ ii> common 

(e.g., finding the floor might be useful to finding tables, desks, and 

the wall).  Since we can distribute the cost of this operation over 

several branches of the plan, we can effectively reduce the cost of the 

individual subgoals.  This would increase the FOM of those branches, and 

perhaps of the parent nodes of the blanches. 

Earlier, we mentioned that a detector might produce useful 

information for subgoals other than the one for which it was activated. 

We will attempt to anticipate the likelihood of this sharing during 

planning, in order to improve the FOMs of the related subgoals. 

An in.portant constraint on module sharing is that the 

search spaces of the related subgoals must overlap.  A reasonable way to 

group subgoals satisfying this condition is to lay a coarse grid on the 

picture and note objects whose search space overlaps each cell. When 

one of the objects is found, the search space of the other objects should 

be contracted to avoid overlapping the identified portion of the sane. 
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Reducing the search space will then cause a corresponding increase in 

the FOMs of these remaining objects. 

We have now concluded the initial stage of planning to 

find an object.  We have, as a result of this, a planning tree for each 

desired object.  At each node of the tree, we have computed a static 

FOM value to guide us in our choice of execution alternatives.  As new 

information is acquired, we expect that these values will change, and 

also that the expected execution path will change.  We now proceed to 

a discussion of how this tree is used in the execution of the plan. 

4.   Execution 

We would like to preface our discussion of the execution 

phase of our system by indicating the principal distinction between our 

concepts of planning and of execution.  In planning, the only information 

available to the system is that which Is already In VM (due either to 

manual model building or to previous processing) or in the STWM (due to 

recent execution).  During execution, we will also perform "planning", 

but this will primarily use new information acquired by processing TV or 

range pictures.  That Is, during execution we can draw on information 

gained by the application of detectors to Images (which may be new or old). 

We will begin our description of the execution phase of the sys- 

tem with a brief overview.  Following this overview will be a more de- 

tailed description, and finally an example. 

a.   Overview 

The execution will start with the selection of the best 

(i.e., highest FOM) object to find, from the list of desired objects. 

From the plan for finding that object, we will select the best object 

to look for directly.  We will then choose a part of that object, and 

the best feature of that part (the PRIMARY A-FEATURE) for acquisition 
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in the picture.  The image will be examined by sampling coarsely, and 

looking for a sample with the appropriate characteristics.  When one is 

found, the system will attempt to grow the part using the PRIMARY A- 

FEATURE and any other useful features of the part. 

After acquiring the part, we will begin to validate by 

performing some immediate tests to increase our confidence in the fact 

that we have found the desired part. Validation will then proceed by 

attempting to distinguish the desired object from other objects having 

a similar part. 

When we have sufficient confidence in the object which 

we have found, we will proceed back up the planning tree to attempt to 

satisfy the goal that had this object as a subgoal. When we have either 

satisfied all assigned ta?ks, or exhausted the budget, we terminate. 

During the course of execution, new information will cause 

conditional adjustments in our FOM estimates.  We now describe how these 

adjustments may affect the flow of control.  The GM will examine infor- 

mation obtained in the course of execution, decide which goals are af- 

fected, and compute appropriate adjustments to their FOMs.  Whenever the 

FOM of a subgoal is modified, the new value is backed up the planning 

tree, making FOM adjustments at each level, until a tip-level goal is 

reached, or until no further adjustment is necessary. 

FOM modifications will usually be backed up only when we 

terminate the current subgoal (either successfully or unsuccessfully). 

This will eliminate a tendency to flit from goal to goal, and will thus 

minimize expensive overhead functions. 

At this point, based on the updated FOMs, the planning 

budget must be reallocated and a new subgoal selected. We expect that 

when a subgoal succeeds, the goal that initiated it will usually be the 

most promising thing to do next.  However, if another subgoal should 

have a significantly better FOM, it would be selected for attention.  If 

53 

■ 

' 



no goal appears sufficiently promising (i.e., the FOMs are all too low), 

the GM may decide that replanning is the best alternative; it can recall 

the planner, either to awaken suspended nodes or to reevaluate existing 

nodes in a new context. 

b.   Acquisition 

The first step in execution will be the distribution of 

budget among the set of top-level goals similar to the resource alloca- 

tion for planning.  In this case, however, budget will be allocated on 

the basis of both I values and FOM values for the goals.  Goals will be 

allocated a pcioentage of the budget proportional to the ratio of the 

product of their FOM and interest, normalized by the sum of such products 

over all the top level goals.  The goal with the highest allocation will 

then be selected for execution.  Execution will proceed by descending 

into the planning tree and, at each branch, selecting the subgoal with 

the highest I-OM value.  Budget passed down from the previous level can be 

distributed among the subgoals, at each node, in a number of ways; for 

instance, in proportion to their normalized FOM values.  However, in the 

initial implementation we will simply pass on the total remaining allot- 

ment to the best subgoal at each node.  As FOM values change during exe- 

cution, remaining budget will be dynamically reallocated to the currently 

best subgoal. 

This initial phase of execution proceeds down the tree 

until a node is reached that represents an object that can be looked for 

directly.  The best feature of the most promising part of the object will 

be chosen to be the HIIMARY A-FEATURE. The rest of the features will be 

SECONDARY A-FEATURES, or VALIDATION FEATURES. 

The scanner will be called with the PRIMARY A-FEATURE, 

and the "starting Information" for the part.  This starting information 

will consist of the window within the picture where we have localized 
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the part, and information about the scan, such as the order and density 

of sample points. 

The scanner will select the coordinates of the next sample 

point in the picture, and then test the local sample characteristics for 

correspondence with the PRIMARY A-FEATURE.  For example, we might be 

looking for a table, using its horizontal surface as the BUMARY A-FEATURE, 

and its color as a SECONDARY A-FEATURE.  The starting information may 

cause us to examine only the lower half of the picture, and to sample it 

with a 3 by 3 operator applied at every 15th picture-point.  A typical 

(default) sampling raster will be from left to right across the window 

and then bottom to top.  A 3 by 3 surface will be fit at each sampled 

location to determine whether a horizontal surface of the appropriate 

height might be present. 

If the scanner is unable to find any samples with the 

appropriate characterizations, it exits with failure.  The GM will then 

cause failure of all nodes in the tree that required that feature.  This, 

in turn, might require the FOM values of all the nodes in the tree above 

these pruned nodes to be updated.  At this point, the executive will 

choose whether to use a SECONDARY A-FEATURE as an alternate acquisition 

test, or to pursue another goal.  The choice depends on the revised FOM 

values. 

If the SCANNER succeeds in finding a suitable surface 

characterization, the successful sample will be checked to see that it 

has the appropriate SECONDARY A-FEATURES.  In the case of a table. If a 

sample had the right surface height and orientation, the next step would 

be to check the color. 

If the SECONDARY A-FEATURES all match, then the global 

characteristics of the part must be checked. If any of the secondary 

features (or subsequent tests) fail, the GM will still make note (in a 
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"sample table") of those characterizations that do succeed.  Later, the 

FOMs of other subgoals characterized by the successful features can be 

increased. 

Now, assuming that a good candidate for the desired part 

is found, the scanner will be suspended (so that it can be restarted 

later) and the global attributes of the part extracted.  We will base 

our discussion on surface parts that appear as "regiona."  Parts need not 

be surfaces—to locate the wall it may be wise to search for the wall- 

baseboard boundary—however, the remarks below will still apply.  In 

general, the system will need to use a priori information to aucceasfully 

extract a part.  Thus, it might seek to extract a region with specific 

color, surface orientation, and tcxtural attributes.  A detailed discus- 

sion of goal directed region extraction follows in Section III-D. 

c.  Validation 

The initial step in validation is to compare the global 

attributes of the extracted region with those of the desired part.  Some 

of the region properties that can be compared are size, shape, and uni- 

formity of color. This initial vallf' tion step will establish a basic 

level of confidence, indicating that what was found at least looks like 

the desired part. 

If any of these global tests fail, several options are 

open, depending on the current level of confidence in the part.  First, 

if the overall confidence is low, the validation should fail.  In this 

case, control returns to the scanner, which is restarted from its sus- 

pended state. The GM first will update FOM values of goals which are 

affected by the information obtained during the suspension. 

The second option for marginal confidence is to examine 

the reasons for failure of the test.  Thus, the system might hypothesize 
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and check for oc ludlng objects.  If the hypotheses prove to be true (or 

at least plausible), then validation could continue with other features. 

Alternatively, It may be appropriate to vary the criteria used in region 

extraction and try rcgrowing it. We would then reenter the validation 

stage with the new region. 

The final choice is simply to ignore the failure and con- 

tinue validating other subgoals.  We would, of course, select this option 

if the confidence were already high enough to accept the region as being 

the required part.  However, it also seems reasonable to suspend, at 

least temporarily, any error diagnosis whenever there are other reasonable 

alternatives to pursue.  The need for diagnosis effectively makes the 

original subgoal very expensive.  Therefore, it should be abandoned until 

all the more promising alternatives have been exhausted. 

Now that the extracted region is known to possess the 

visual attributes of the described port, it is necessary to ascertain 

whether that part, in fact, belongs to the desired object.  To accomplish 

this, we will comoare the object with other objects in VM having similar 

appearing parts.  (These objects make up the "ambiguity set" of the de- 

sired object.)  A set of object attributes will be selected, which dis- 

tinguish the desired object from others in the ambiguity set.  These 

attributes will include parts and features which the desired object must 

have, and those which it specifically must not have. 

Even if the ambiguity set is empty, there is still the 

possibility of accepting an unknown object that happens to have some 

visual attributes of the desired object.  To minimize the chance of such 

a mistake, it is desirable to check other parts of the desired object. 

Additional parts of the object, beyond those necessary to confirm recog- 

nition, may also be needed to locate boundaries more precisely. 
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The relevant criteria for deciding which feature to pursue 

in validation happen to be the same as those for selection of acquisition 

attributes—I.e., a feature that Is crlterlal, distinguishing, and easy 

to obtain.  Therefore, both the selection and the search for validation 

features can be accomplished by recursively applying FIND to the remain- 

ing features of the desired object, in the context established by those 

already validated.  Features will again be selected in an order determined 

by the product of their estimated FOMs and I values.  Here, I values 

reflect the extent to which each validation goal raises conlidence in 

the object. 

The limited context simplifies these subordinate finds 

in two important ways.  First, the area that must be searched is re- 

stricted to the immediate vicinity of the previously acquired parts. 

Second, the selected feature need only distinguish the desired object 

from remaining members of the ambiguity set. 

Validation of a tree branch terminates when either the 

alloted budget is exhausted, the required confidence in the goal is 

achieved, or the confidence drops below a failure level.  If validation 

succeeds, control passes to the next most promising (and adequately 

funded) subgoal.  If it fails, control returns to the scanner, after the 

GM has updated affected FOM values. 

d.   Example 

We would like to conclude this discussion with an example 

illustrating a possible flow of execution.  The goal will be:  Find a 

telephone.  Let us assume that during planning the tree shown in Figure 

11 was generated.  In this tree, the FOM values—chosen arbitrarily for 

purposes of illustration—are written next to the nodes, and the IFOM 

values also illustrative, are written beside the branches.  Note that 

in several cases the FOM value shown for a node is greater than what 
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would be obtained from backing up the maximum descendant FOM.  Such an 

increment would have been added during plan refinement to reward nodes 

vith several good alternative subgoals (e.g., the desk can be found by 

looking for its top or side) or those that are subgoals to several other 

nodes (e.g., the FOM of the floor is increased due to the fact that it 

appears twice). During the development of this example, the quantitative 

adjustments of FOMs will be somewhat arbitrary; what we consider important 

here is the qualitative effect of these adjustments. The discussion will 

not include budget allocation; assume that sufficient budget has been 

allotted to perform the task. 

Now, proceeding down our tree, we see that the best way 

to locate the telephone is to first find a desk.  In looking for a desk, 

the top is the best part for acquisition, and the color, dark gray, is 

the most promising feature. Therefore, we start the scanner (with any 

available starting information) in an attempt to find a dark gray sample. 

Let us assume that it fails.  The GM now changes the FOMs of nodes re- 

quiring a dark gray region to zero and prunes those branches.  After the 

adjustment of all affected FOMs, we have the tree shown in Figure li. 

The desk is still the most promising way to find a tele- 

phone, but this time the floor should be used as an aid to finding the 

desk. The scanner thus attempts to locate samples belonging to a hori- 

zontal plane of height 0.  Assume It succeeds both in finding such a 

sample, and in growing a surrounding region based on these surface attri- 

butes and the color (buff). The GM now readjusts the FOMs of affected 

subgoals to reflect success in finding the floor. 

In the new tree, shown in Figure 13, the desk remains the 

best way to proceed to our goal of a telephone. We should point out that 

this is because the side of a desk Is more distinctive than the leg of a 

table. The scanner now attempts to locate a horizontal plane 30 Inches 

above the floor, in search of the desk top.  Assume that a sample of such 
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a plane is found, but with the wrong color (even though color was removed 

as an acquisition feature, it is still a requirement for validation). 

This fact is noted in the sample table, and the scanner continues.  It 

ultimately terminates, never having found a horizontal plane of the ap- 

propriate color.  However, the several samples of a horizontal plane at 

a height of 30 inches that were found will increase the FOM of the 

HPLANE(30) feature of the top of the table.  The resulting planning tree 

is shown in Figure 14.  The top of the desk has been abandoned as an 

acquisition feature, but the side still exists as a subgoal.  If the 

side is ever located, then the characteristics of the top can still be 

used in validation (with more tolerant acceptance thresholds). 

The top of the table is now the strongest subgoal.  The 

sample table provides the location of the samples of horizontal plane 

that were observed, and a check indicates that the color matches that 

required for the top of the table—light gray.  The complete region is 

grown, and its size and shape are successfully compared with the expected 

dimensions of the top.  The validation of the table is completed by 

finding its legs.  Successful validation of the table causes another 

flurry of FOM reevaluation, resulting in the new tree of Figure 15. 

It is now cost-effective to look directly for the telephone 

within the boundaries of the table top, using the "black side" as the best 

feature.  This color is located, and it is verified that the sample be- 

longs to a vertical surface.  The region is then grown and found to have 

appropriate shape.  Finally the dial is sought to complete validation 

and pin down the location of the telephone.  (Of course, by now our 

caller has hung upl) 

This example shows how the output from the planning stage 

was processed during execution.  The GM performed substantially the same 

evaluations tnat were required during planning.  While there was no actual 

reincarnation of the planner at a suspended ncxie, it would probably have 
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been necessary to resort to this if the table had not been found. At 

each stage, the executive selected the best goal and the best acquisition 

features to pursue. We expect to implement a system that functions es- 

sentially in this way, in the coming year. 

D«  Goal Directed Scene Segmentation 

One of the most interesting aspects of the strategy outlined above 

is the degree to which high level recognition and low level feature ex- 

traction have been integrated; one knowledge base and one basic strategy 

concept are used at all levels of the perceptual process, from the selec- 

tion of attributes for region growth to the selection of distinguishing 

features for object recognition. 

In this section, we want to elaborate on our goal directed approach 

to scene segmentation (i.e., region extraction) based on irultisensory 
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data.  The success of any perceptual system Is largely dependent on the 

accuracy and appropriateness of the vsual features it extracts.  We 

believe we have found a straightforward way of utilizing high level 

knowledge to improve substantially the reliability with which regions 

can be extracted. 

1.  Background 

"Segmentation" is the process of partitioning a scene into in- 

teresting figures distinguished from the background.  This process is 

essential to virtually every perceptual function. Robot projects have 

hitherto largely avoided the problems of segmentation by choosing texture- 

less environments in which both objects and background could be adequately 

characterized by regions of homogeneous brightness.  A typical algorithm 

for segmenting such an environment was: 

• Group contiguous raster points into regions of 

identical brightness. 

• Merge adjacent regions if the contrast over a 

suitable fraction of their common boundary is 

sufficiently low. 

• Merge recursively until no more combinations are 

possible. 

Such an algorithm cannot cope with intensity variations due to 

color, texture, and range that characterize most real-world scenes.  A 

superficial solution is simply to incorporate additional primitives (e.g., 

texture operators) and/or sensory data (e.g., color and range) into the 

initial similarity Judgements.  However, this solution exposes serious 

limitatiois that are deeply rooted in the bottom-up nature of the strategy. 

In a bottom-up approach, one would lump the new primitives and 

sensory data together into a weighted attribute vector and Judge simi- 

larity by distance in a multidimensional space.  However, in any particu- 

lar context, some of these attributes will be irrelevant, erasing 
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unnecessary fragmentation of surfaces that are actually homogeneous with 

respect to an appropriate attribute set. 

This fragmentation, in addition to the fragmentation caused by 

ambiguities inherent in local similarity judgements, must again be 

resolved by merging similar regions at a subsequent level of processing. 

However, in naturally textured scenes, it is necessary to consider com- 

bining proximate as well as contiguous regions, according to criter? \ 

that may include size, shape, spatial orientation, spatial relationships 

with other regions, and so on, in addition to the original attribute 

vector.  A lumped computation here will obviously include inappropriate 

factors.  An alternative is to try various combinations of attributes 

and see which provides the "best organization" according to some Gestalt 

type criteria.  Unfortunately, this alternative is infeasible combina- 

torially with a serial computer. 

2.  Classification Approach 

Scene segmentation at all levels must be responsive to higher 

level intent and expectations.  In our goal directed vision system, 

regions are grown hierarchically by selecting more primitive regions 

satisfying specific criteria associated with the object of interest. 

The lowest level regions are grown by selecting proximate image samples 

having local attributes (i.e., color, surface orientation) characteristic 

of a particular object. 

Growth by selection brings high level knowledge to bear on the 

problems of low level feature extraction in an intuitively nice way. 

Regions can be grown on the basis of attributes that both unify the de- 

sired object and distinguish it from surrounding surfaces.  Our basic 

strategy for choosing simple distinguishing features can be directly 

applied to choosing selection criteria for scene segmentation.  In fact, 

the same criterion originally used for acquisition will often be 
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appropriate as a selection criterion for extracting the surrounding sur- 

face.  This criterion may be improved, however, by using knowledge of 

surfaces likely to border physically on the desired surface (e.g., door 

is adjacent to wall and floor, door knob is surrounded by door). 

When specific surface adjacencies are known, the selection 

decision can be based on a direct discrimination of their distinguishing 

attributes.  A sample is accepted if its relative feature-space distance 

is closer to the characteristics of the desired object than to those of 

the known alternatives.  Such discrimination tests tend to be much more 

tolerant and reliable than one-sided acceptance thresholds. 

The optimal discrimination criteria will usuali be directionally 

dependent.  For example, when extending a door region downward, it may 

be best to ascertain whether the local orientation of the next sample is 

more nearly vertical or horizontal (the latter indicating a floor). 

However, sideways expansion might have to be based on a brown versus 

buff color discrimination, since the wall is also vertical, and probably 

at an unknown angle to the door. 

Surface adjacencies can be determined empirically when a 

region, in the process of growth, intersects a previously identified 

surface.  The common border, which was originally obtained by criteria 

selected independently for each surface, can then be refined by reclas- 

sifying samples in the vicinity according to a discrimination criteria 

based on both surfaces. 

Many other characteristics of the desired object can be brought 

to bear as additional constraints governing sample selection.  For example, 

the area from which samples should be selected is bounded by the expected 

region size, while texture scale specifies the required sample density. 

The acceptance thresholds for selection can be set from knowledge of the 

expected uniformity of an object's surface attributes and of expected 
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distortions introduced by the associated detection processes. Since the 

resulting thresholds are absolute, selection is not subject to the ambi- 

guity of local similarity judgements. 

3.   Coping with Texture 

Textured surfaces provide the clearest illustration of the 

advantages of a classification approach to scene organization.  It is 

simply not feasible to extract arbitrarily textured surfaces, bottom-up, 
■ 

on a serial computer because of the impossibly large number of organiza- 

tional hypotheses that would have to be tested to discover the criterial 

pattern. Consider, for example, the effort that might be required to 

determine, bottrm-up, that the floor region should not be segmented ac- 

cording to the shape of linoleum streaks. 

The combinatorial problems associated with serially discovering 

two-dimensional patterns can be overcome by looking top-down for the 

known criterial attributes of a desired surface. Raster points can be 

selected in groups, satisfying explicit statistical or descriptive cri- 

teria, such as a required distribution of colors within a specified 

radius, or even a detailed prototype micropattern with specified spatial 

relationships among the colors. 

Many textures admit to a hierarchical organization, consisting 

of primitive regions that are grouped into subpatterns, which in turn 

are grouped into patterns, and so on.  For these surfaces, the selection 

process can be applied recursively.  Thus, a checkered texture might be 

organized by first selecting contiguous samples of specified colors to 

get the primitive regions (i.e., the squares) and then selecting the set 

of resulting regions that are contiguous, are of appropriate size and 

shape, and alternate in color. 
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This approach Is applicable to organizing several oojects in 

our scenario.  For example, the floor can be grown by collecting sets of 

contiguous brown or black samples (corresponding to linoleum streaks) 

and then collecting the set of such regions with appropriate size (shape 

arbitrary) that are surrounded by buff.  Similarly, a picture could be 

extracted within the context of a vertical wall plane by selecting a 

contiguous set of nonbuff regions and small buff regions completely 

surrounded by non-buff ones. 

Conceptually, the selection process can be recursively applied 

through many levels of hierarchy to extract arbitrarily complex patterns. 

However, in limited contexts, a single level organization based on simple 

distinguishing features of the desired texture may prove more effective. 

For example, a highly textured object on a plain surface might be best 

extracted as a region of many small regions; the detailed structure of the 

texture is Irrelevant here, and can be ignored.  In another environment, 

the same object might be most easily extracted by selecting samples on 

the basis of their proximity to a distinguishing color that happened to 

be a component of the texture. 

The above representations are admittedly ad hoc and of limited 

generality, but they provide optimum knowledge-based partitioning in 

those environments.  Region growth, like recognition, can often be ac- 

complished more cheaply and reliably using simple discriminations between 

context limited alternatives than by exhaustive description. 

4.  Operational Details 

Most surfaces can be extracted on the basis of several Inde- 

pendent criteria, such as color, texture, or orientation.  In practice, 

we shall choose the simplest logically sufficient set of attributes to 

grow the Initial region, saving the remaining alternatives for error re- 

covery.  The selection criteria for each attribute can be combined Into 
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a weighted vector or logic function which Is used to test each sample 

point.  A logic function seems preferable because absolute constraints 

like "must"' and "must not'" can be applied to specific attributes and be- 

cause the problem of scaling unrelated criteria is bypassed. 

Regions will initially be grown with coarse resolut ion, relying 

on crude measures of size and shape to eliminate cheaply many bad hypothe- 

ses.  Detailed boundaries can then be obtained, if necessary, by using 

the attributes of the crude surfaces as classification criteria.  Addi- 

tional image samples obtained at finer resolution are simply assigned 

to whatever neighboring surface they most closely resemble. 

5.   Error Recovery 

Although our classification approach can be expected to extract 

regions more reliably tnan past bottom-up techniques, we forsee the 

continuing necessity of an Iterative growth process, guided by feedback 

from unsuccessful validation teats. 

a.   Background 

Past attempts to graft such feedback onto bottom-up systems 

have largely failed because knowledge of an error was often available 

only after a global recognition decision failed.  This was too far re- 

moved from the source of error to pin-point the cause explicitly.  It 

was also difficult to model conventional region growing algorithms so as 

to establish the relations between detector idiosyncracies, known object 

attributes, region-grower parameters, and the resultlsig regions.  Conse- 

quently, it was difficult both to diagnose the cause of suspected errors 

and to alter parameterj given an assumed cause. 

By contrast, our goal directed perceptual strategy attempts 

to validate the expected attributes of a region (e.g., size, shape, 
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uniformity) as soon as it is grown.  For example, evaluation will be 

performed on regions extracted at each level of a hierarchically organized 

texture.  Suspected errors can be dirpctly related to specific selection 

criteria, based on world knowledge and pragmatic experience with the 

various sensory processes.  Feedback from this diagnosis is then treated 

as simply another goal directed factor influencing the refined selection 

criteria. 

b.  Diagnostics 

The type of knowledge-based diagnostic process we en- 

visage is illustrated by the following list of plausible explanations 

and corresponding recovery strategies for a region that is smaller than 

expected: 

(1) Occlusion—This hypothesis is easily 

established given range information; 

occlusion is likely when the visual 
boundary of a selected region is bordered 

by samples of nearer range.  Additional 

samples that satisfy the classification 

criteria and are within the expected size 

boundary, but are not contiguous to the 

originally selected s» t (due to occlusion), 

can then be included in a refined size 

estimate with reasonable confidence. 

(2) Holes—Explanations f-.r holes in a supposedly 

homogeneous region, not explained by occlusion, 

can be sought by checking whether any attributes 

of the expected region excite known limitations 

in .« sensory domains used for selection.  For 

example, color data can be anticipated to be 
umeliable lor pastel (weakly saturated) objects, 

and at highlights expected on glossy objects. 

Range data will also be unreliable at highlights 

as well as on dark or very oblique surfaces 

(because of inadequate reflected light).  Such 

explanations are easily checked and can often 

be rectified by looking for continuity of an 
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alternative attribute not involving the 
affectsd sensor. 

(3)  Gradients—Illumination and texture gradients 

frequently distort homogeneous surfaces due to 

artifacts inherent in the imaging process.  As 

a result, static acceptance thresholds often 

fail.  Suspected gradients can be extrapolated 

to correct the selecti-r threshold as a function 

of position.  One ein alto obtain the surface 

orientation with range dai,* and use it with an 

appropriate imaging or illumination model to 

compensate for the gradient analytically. 

Brice and Fennems^5 suspected intensity gradients 

whenever the boundary of a region was weak 

(i.e., low contrast) and wiggly, a so-called 

quantization contour.  Contiguous regions with 

such boundaries were merged since. Individually, 

they did not correspond to known objects. 

Although this heuristic was originally intended 

for use In a bottom-up algorithm, the charac- 

teristics "weak" and "wiggly" can be used by 

our system like any other region grouping 
criteria. 

A more general heuristic is based on the fact 

that quantization contours are unlikely to 

affect two independent sensory ".lodalitles at 

the same points on an object.  Thus, continuity 

In another attribute (e.g., surface orientation) 

can Justify ignoring weak boundaries among the 
original (e.g., color) regions. 

(4) Wrong Object—The most obvious cause of error 

is simply that an undesircd surface was acquired. 

The global attributes of the cxtrao ed region 

can be checked to determine if they correspond 

to any surface of an acv.ual known object.  If 

so, the surface should be regrown based on local 

surface attributes that distinguish this other 

object from the desired one.  Where no such 

attributes exist, discrimination must be accom- 

plished In terms oi other parts of the objects, 

by a higher level validation strategy. 
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These error hypotheses are only representative.  Similar 

error recovery lists have been compiled for regions that are too large 

or of the wrong shape. 

c.   Diagnostic Strategy 

Diagnosis will be performed by systematically investigating 

possible errors.  The order of examination will be empirically based on 

the frequency with which each error is observed in the current environ- 

mental context.  We have yet to decide whether statistics will be kept 

only for a general class of errors (e.g., wrong object) or for very common 

specific errors (e.g., floor often merged with wall due to similar color). 

It may seldom pay actually to pursue such detailed diag- 

noses.  Diagnosis is most important In cases where high confidence re- 

quirements demand a positive explanation for errors or where exact surface 

honnriarics are needed (e.g., for manipulation).  Otherwise, it should be 

more effective simply to exercise available strategy options without re- 

gard to the cause of original failure.  For example, the system could 

attempt to regrow the region using other attributes and/or sensory mo- 

dalities.  Alternatively, the initial failure may make it more desirable 

to attewpt validation in terms of other surfaces.  In either case, sub- 

sequent successes or failures should quickly establish a definitive con- 

fidence level.  Tests for the most common error conoitions (e.g., for 

occlusion or inconsistency of regions extracted with different attributes) 

could be built into the initial growing process to increase its basic 

reliability. 

E.   Multisensory Data 

An important goal of our perception research is to make effective 

use of multistrsory data.  The Initial system is designed to work with 
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coordinated  arrays  of range values  and  intensity values  seen through a 

number  of  color   filters.     In this  section we  summarize  our  progress   in 

interpreting range  and  color data.     We  also describe  a technique  for 

interactively generating coordinated  arrays  of  color  and range  data which 

we  will use   to obtain experimental data until our   new rangefinder,   to be 

described subsequently,   is available. 

1.       Analysis  of hange Data 

Range data should ultimately allow simple solutions to some  of 

the  most confounding  problems  now  faced  by  passive vision systems.     We 

are currently experimenting with algorithms  to obtain the position and 

orientation of a surface element for use  in acquisition and goal directed 

region extraction as described above.     As a step t   vard extracting addi- 

tional useful  information,  we have analyzed  some  general problems con- 

cerning the  low  level  interpretation of range data as planar surfaces. 

We expect  this  analysis  to lead  to special purpose routines  for  rapidly 

extracting certain common types of surfaces   (e.g.,   a horizontal surface 

of known height).     Moreover,   the analysis may  provide  improved  algorithms 

for bottom-up sc^ne segmentation.     A reliable,   a priori knowledge  of a 

principle  planar surface  in a scene   (e.g.,   the  floor)  could help the 

planning algorithms   immensely  in tasks requiring some description,   es- 

pecially when an object has to be  found in in unknown environment. 

The analysis  is divided  into five  topics:     (1)  alternative 

methods  for scanning and measuring quantized range data;   (2) extraction 

of  image  points  belonging  to horizontal and vertical surfaces;   (3)  clas- 

sification of planar-region image boundaries  and methods  for  finding 

points  along those boundaries;   (4)  adverse effects  of errors in the range 

data on the resulting  image boundary  points;   and   (5)   line-fitting methods 

for determining the vertical,   horizontal,  and   three-dimensional  boundaries 

in  the scene.     The  analysis,  whose details are described elsewhere,''   is 

summarized as  follows. 
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a. Range  Uata 

Referring  to ligures   16(a)   and   16(b),   two  types  of   image 

coordinates,   centered  at  the range   finder,   are distinguished:     spherical, 

r.a     and m   ,   whose  angular   increments AB     and  ttD     are constant,   and 
'pp ^p' p "^p 

planar,   r,x    and   z   ,   whose   increments  AR     and  Aco     are  tangent  adjusted 
  p P P P 
so that  the  increments AZ    and,   for given z   ,  AX    are constant.     The range 

P P P 
data are confined  to a solid  angle defined  by   (Ig   I   -s P     ;   lep   I   ^ cp     ). 

'   p pm p pm 

There  are  two types of optical range  finder,  each consist- 

ing of a transmitter and a receiver    «f a light beam,   to consider:     one  is 

based  on  the   trigonometry  of  transraitter-receiver-object  triangulation; 

the  other  is  based  on  splitting  a transmitted   amplitude  modulated   light 

beam  into  two beams   and  measuring the  phase  shift  between one  of  them 

end  the scattering of  the other  from the object.     (Both types of range 

finders  are discussed more  fully  in Section V.)     For a triangulation 

range   finder,   missing data   (called  "shadow gaps")   occur  for some   image 

points   (I,J)   if  the corresponding object  points  are seen by the receiver, 

but  are not  illuminated   jy  the  transmitter   (I  and J  are the  indices  of 

the  array column and row,   respectively). 

Six types of errors  in  the measured range data,   r   (I,J), 

are recognized:     inherent   inaccuracy of  the  range  finder,  shadow gaps, 

data dropout,  quantization error,   noise,   and gross sporadic error. 

b. Image   Points of  Horizontal  and  Vertical Surfaces 

A general  plane equation,  using range-centered   image 

coordinates,   has  been derived and   then simplified  for horizontal  surfaces 

and   the  floor,   and   for vertical  surfaces.     Consequently,   a method   is 

proposed   for  fast  extraction of  those   image  points  belonging  to either 

the  floor or a horizontal surface of height  z     i ftz  .     The method   is 
H H 

based on the observation that,   for  these surfaces,   the  function r(fi  ) 
PP 
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FIGURE 16      RANGE-FINDER CENTERED IMAGE COORDINATES 
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(bt    PLANAR IMAGE COORDINATES X  . Z . AND r 
P     P bA   1530  II 

FIGURE  16      RANGE-FINDER CENTEREL   IMAGE COORDINATES    (Concluded) 
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for a given cp  is symmetrical about its minimum value, r   , at R  = 0 
P min    Mp 

and is so flat in the range -g  < g < g   that it may be approximated 
pm   p  Mpm rr 

by a constant.  A floor point la detected if r (8 ) S: a  r    where 
p     min 

a- < 1 is a safety factor.  This algorithm was applied to ideal range 

data (see Section III-E-3) of a scene consisting of a floor, a box, a 

polyhedral object, and a wall.  Using 0-= 0.98, the results are shown 

in Figure 17.  Computed floor points that agree with the true ones are 

marked by "F," and those computed points that differ from the true ones 

are marked by "D." Cells marked by "u" indicate surface boundary points, 

to be discussed in the following section. 

Referring to Figure 18, a point on a horizontal surface 

below the horizon is detected if r*(0 ) is between r . r"11", corresponding 

to zH + frz    and B = 0, and r - r a ^ corresponding to z - ^z and g =■ 
P H    H     p 

Bpm'  Addltional tests are employed in order to eliminate wrong points 

that pass this test.  A method is also proposed for detecting horizontal 

surfaces of unknown heights, finding their heights, and extracting their 

image points.  The method Is based on computing z for each data point, 

quantizing the z values into a one-dlmenslonal array of cells, and de- 

tecting cells with high counts.  To prevent missing a high count due to 

quantization, this process Is performed twice, using two arrays that are 

offset by half a cell relative to each other. 

The above method can be extended to detection of vertical 

planes.  Here, tue x and y coordinates of all the data points are first 

computed.  High density clusters of (x,y) points are then fitted into 

straight segments, using a window-count method or a modified Hough 

transformation method. 

c«   Image Points of Different Boundary Types 

Five types of region boundaries are distinguished:  frame 

boundary (of the range data picture"), Jump boundary (where one object 
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FIGURE  17      COMPUTED FLOOR  BOUND'RY 

"F" points agree with the true ones; "D" points differ from 
the true ones.    Points marked by "B" indicate surface 

boundaries. 
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occludes another), shadow boundary (along a region where range data are 

missing), known region boundary (enclosing a region, such as the floor, 

a horizontal surface, or a vertical surface, whose image points are given), 

and intersection boundary (between the images of two nonparallel adjacent 

planar regions).  The first four types of boundary are collectively 

called surface boundaries because they are sufficient to outline the con- 

tour of an object surface.  Surface and intersection boundaries are il- 

lustrated in Figure 19, assuming that only the image points belonging to 

the floor and the first step are known a priori. 

Surface Boundary 

Intersection Boundary 
SA  1530 3 

FIGURE  19      SURFACE AND INTERSECTION BOUNDARIES 
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The points thai form the surface boundaries are easily 

determined:  Frame and shadow boundaries are given; a known-region 

boundary is obtained as the perimeter of a given set of image points; 

a jump boundary point is established during the horizontal or the verti- 

cal scan if a range value differs from the preceding one by more than a 

threshold value and if the following range discontinuity is less than 

this threshold (the latter condition prevents confusing a true Jump 

boundary with range increments on a very oblique surface). 

Intersection boundary points are established by first 

assuming that adjacent pairs of surface boundary points on each horizontal 

raster line (of constant cp or z ) bound the same planar surface.  The 
P    P 

absolute value of the error between the measured range, r*(0 ), and that 

predicted by these ideal surfaces, r(g ), is computed for each point in 

these intervals.  The maximum error, Ar, equals |r(B ) - r*(p )l   If 
PP       P 

Ar between any pair of boundary points exceeds a threshold, then an 

intersection boundary is established at that point, and the process is 

repeated recursively for the left and right surfaces thus established. 

Figure 20 illustrates this fitting process for two surfaces crossing at 

an intersection boundary.  (The x-v plane corresponds to the plane swept 

out by the range finder scanning a line of constant rn .) Notice in 
P 

Figure 19(b) that we fit trigonometric functions (instead of straight 

lines) to the range data, because a "range image" of a straight line is 

not itself a straight line.  The above, called the "end-point fitting 

method," is applicable to convex and concave polyhedral surfaces, as is 

shown in Figure 21, wheic N^, the number of intersection boundary points, 

is 12.  The method can also be applied to obtain a piecewise planar 

approximation of a curved surface.  The cost of computation entailed in 

using the end-point fitting method is (in the worst case) proportional 

to N , the highest level of recursion.  It can be shown that 
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where 

1 + [tn (1 + N )'/n2]l s M < 1 + N 
i |       i 

denotes round up to the nearest integer.  Fortunately, N is 

likely to be equal to its lower bound, especially if N is large. 

2.  Effects of Errors in Range Data 

We now examine the effects of errors in the range data on the 

resulting region and boundary points, and propose some context-dependent 

ad hoc rules that may minimize these adverse effects.  First, a slightly 

expanded floor region is extracted by using or < 1«  (This minimizes the 

error incurred in subsequently fitting non-floor planes by ensuring the 

exclusion of floor points.)  Small adjacent regions or "islands" of no 

data may be considered part of a large region if there is reason to assume 

that they resulted from erroneous data.  Jump boundaries resulting from 

high r*(P )  "spikes" of decreased range may be disregarded if no thin 
P * 

objects are expected and if r is relatively short. Horizontal and 

vertical scans, in conjunction with different data errors, may result in 

wide intersection boundaries, but fortunately have no effect on widening 

the surface boundaries. Two cases are distinguished relative to r (g ) 

spikes:  if only smooth and relatively large region surfaces are expected, 

then the spikes are disregarded; otherwise, the spikes are associated with 

the surface texture. 

Errors in range data may also cause gaps in the postscan boun- 

daries, especially the intersection boundaries. These gaps may be bridged 

by the line fitting methods described next. 

; 

3.  Line Fitting of Region Boundary Points 

Methods are proposed for determining gap-free surfaces and 

intersection boundaries by line fitting the boundary points found pre- 

viously. We begin with vertical boundaries, because these are common 
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and easiest to compute.  We divide the x-y plane (within the limits of 

interest) into L x M cells, compute the x and y coordinates of every 

boundary point, detect high-count CJIIS using triple entry quantization, 

identify the cells with the top views of vertical boundaries, and compute 

the extreme z values of each vertical boundary from its extreme I values. 

Two types of quantization cells are considered:  a fixed size rectangular 

cell and a variable size curvilinear cell.  The latter matches the in- 

herent error of a range finder of given angular tolerance.  After deleting 

the vertical boundary points, we determine the horizontal boundaries. 

The computation is similar to that of vertical boundaries, except that 

we begin by detecting clusters of similar z values, compute the x and y 

coordinates of the high count clusters, and fit straight segments to the 

resulting (x,y) points.  Finally, we compute the parameters of three- 

dimensional straight boundaries by fitting straight lines to the projec- 

tions of the remaining boundary points onto the x-y and y-z planes, and 

compute their end points. 

'!.   Analysis of Color Data 

A color recognition module has been implemented, which takes 

ss input the absolute intensities observed through three or more band 

pass filters (normally the standard red, green, and blue separations). 

Its output names a hue and provides a numerical estimate of the purity 

of that hue.  This program has three distinguishing features: 

•  Interactively tralnable—New hues are learned by 

example, when they are encountered for the first 

time.  The Initial characterization can be refined 

with additional examples if the color Is later 

mlsclassified.  This approach overcomes several 

disadvantages associated with using a fixed charac- 

terization of hues, obtained, for example, from a 

standard observer table.  Achromatic hues are 

recognized by low saturation and identified as 
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white, gray, or black depending on their relative 

brightness compared with averages taken over the 

scene. 

Additional filters possible—Hues can be charac- 

terized in terms of an arbitrary number of filters. 

More filters may allow discrimination between hues 

that cannot oe distinguished with three color 

separations.  Narrow band color (e.g., recognizing 

objects by the presence of certain spectral lines) 

is an extreme example of how additional filters 

could be used to capitalize on knowledge of the 

environment. 

Color constancy—Illumination observed from objects 

is a product of incident illumination and object 

reflectivity. To obtain the intrinsic hue of an 

object it is necessary to normalize by the observed 

illumination to eliminate the incident component. 

Our system is designed to achieve first order color 

constancy by normalizing out the illumination 

source.  (Second order effects on incident illumi- 
nation, such as reflection from neighboring objects, 

are not handled.) Source normalization allows 

colors learned under one illumination to be recog- 

nized under any other illumination, once that 

source has been calibrated using an object whose 

color is known. 

5.  Generation of Test Data 

The perceptual system uses arrays of both color and range data. 

Because we did not want to wait until the scanning rangefinder (described 

in Section V) was built, interfaced, and calibrated, we decided to create 

simulated range data.  The interactive program that produces an array of 

range data from a picture array works as follows.  A picture is taken 

and its gradient is shown on the CRT display.  An operator controls a 

TV cursor to outline polygonal boundaries of the planar regions in the 

scene.  He also Identifies each region, thereby providing the program 
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with the parameters that define each plane in three-dimensional space.* 

Thus, for every point in the picture, the corresponding plane In thre. - 

dimensional space can be found by table lookup. 

The procedure described by Wichman8 and Falk9 is use^. to de- 

termine a ray in space for each picture point.  Their procedure uses 

four reference points on the floor to determine the collineation trans- 

formation between picture points and floor points, and two reference 

points off the floor to determine the lens center.  Thus, for any picture 

point the collineation transformation yields the corresponding floor 

point, and this together with the lens center defines the ray in space. 

The range is obtained merely by computing the intersection of this ray 

with the corresponding plane. Repetition of this »rocess for each point 

in the picture produces a range array in exact register with the picture 

array. 

F.  Research Methodology 

In the preceding sections we have described our design for a system 

for interpreting perceptual data.  Our belief is that such a system can 

be successfully implemented only if we explicitly accommodate ourselves 

to the empirical nature of machii  perception research.  Accordingly, 

the design includes certain key fe tures to facilitate experimentation 

with real scenes and to enable us t . incorporate the experimental results 

into an evolving system implementation.  We first single out these fea- 

tures and then present our overall research plan. 

I 

These parameters are currently measured manually.  If desired they 

could also be obtained interactively by having the operator designate 
corresponding points in two stereo views. 
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1.   System Features 

Two key features that should make our system especially valuable 

as a research tool are that it is data driven and highly interactive. 

a. Data Driven Organization 

Almost all of the system's perceptual knowledge will re- 

side in its knowledge base, in easily accessible declarative form.  This 

knowledge includes object attributes and their relations, as well as the 

cost and reliability of perceptual operators for extracting them.  The 

system itself consists essentially of just two relatively small programs. 

One selects a cost-effective sequence of attributes and the other in- 

terpretively executes the resulting strategy. Very little perceptual 

understanding is required for either program.  Thus, once they are de- 

bugged, the system can be incrementally refined and expanded primarily 

by modifying the symbolic knowledge base (and occasionally by programming 

a new perceptual operator). 

b. Facilities  for  Interaction 

The experimenter will be able to test manually generated 

strategies either by interactively calling system modules or by speci- 

fying the complete strategy as a program for interpretive execution. 

New visual concepts will be derignated either by entering symbolic des- 

criptions or, in the absence of adequate semantics, by outlining them 

(with a cursor) on a grey scale display. 

The combined capabilities for graphical as well as sym- 

bolic communication should prove to be a powerful experimental tool for 

perception research.  For example, specified perceptual operators can be 

applied interactively to graphically designated surfaces to determine 

how effectively they discriminate that surface from adjacent ones or 
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from those previously characterized  to visual memory.     The resulting 

information can then be used  to select,   respectively,   good region growth 

and acquisition criteria.     The outlined surface ^an also serve as an 

exemplar for  learning new colors,   textures,  shapes,   and the  like,  "by 

example."    Symbolic values  for  these attributes   (e.g.,   red,  grainy, 

elongated)  can be represented  internally  in terms  of perceptual operators 

that discriminate the designated surface  from exemplars  of previously 

defined values.     Finally,   structural models can be constructed  inter- 

actively by specifying spatial constraints between outlined parts of an 

object.    The constraints can be provided symbolically   (e.g.,   part A must 

be  above part B)  or photogrammetrically,   by specifying measurement 

routines  to extract metric relationships designated graphically in the 

picture. 

2.      Plans 

We plan to implement the system in, roughly, four phases. 

PhaseJL: A skeleton system is now being assembled, consisting 

of some primitive perceptual operators, an interactive interpreter for 

applying those operators, and a facility for graphical communication. 

This facility will initially be used to validate experimentally our basic 

premise that there exist easy ways of distinguishing objects in con- 

strained contexts. The investigator will attempt interactively to gener- 

ate distinguishing features strategies (like those in Section III-B). 

for finding the various scenario objects in a feu test scenes.  Criteria 

for acquisition, growth, region evaluation, and validation will be se- 

lected pra6matically. by choosing the most distinctive attributes of an 

object that are easily represented in terms of available perceptual 

operators.  Immediate feedback from the system will indicate the validity 

of these intuitions. 
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Strategies will occasionally fail because the investigator 

had not anticipated the literal implications of applying a single crite- 

rion to all objects.  The investigator may then specify more constraining 

criteria.  However, we expect that failures will more commonly arise due 

to inadequate primitives that cannot reliably perceive intended discrim- 

inations.  In such cases, one mignt again choose other criteria, but if 

no suitable alternative exists it becomes necessary to refine the pro- 

grammed operators. We expect a set of adequate operators to emerge as 

a major result of this phase of research. 

Successful perceptual strategies constitute procedural descrip- 

tions of objects, and will be retained to establish the system's initial 

world model. The corresponding initial planning algorithm for finding 

an object is then simply to retrieve the appropriate strategy. 

Phase 2:  In this phase our emphasis will shift to machine 

generated strategies for finding a limited set of objects, efficiently as 

well as reliably, in a wide range of scenes.  To this end we will augment 

the knowledge base with descriptions of objects in declarative form and 

will develop basic modules for planning and execution monitoring, like 

those outlined in Section III-C. 

Progress in Phase 2 depends in good part on obtaining quantita- 

tive expressions for utility and recognition confidence.  We seek, for 

each object feature, numerical estimates of utility that correlate rea- 

sonably well with the effectiveness of corresponding strategies. We 

also require pragmatic expressions for recognition confidence, so that 

we can terminate our sequential decision process on "he basis of confi- 

dences observed so far. 

We will not be concerned in this phase with planning efficiency, 

but will instead search exhaustively for the best plans.  Objects will 

, 
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be described in the knowledge base directly in terms of their distingush- 

ing features.  These features, in turn, will be described in terms of 

specific feature extraction operators.  This allows us to defer to a 

subsequent phase of research the key problem of automatically discovering 

good distinguishing feature representations for objects. 

We expect to arrive empirically at both adequate object descrip- 

tions and utility estimates by evolving them frow the initial intuitive 

estimates developed during Phase 1.  A human experimenter will analyze 

failures of machine generated strategies and interactively refine utility 

estimates.  He will also be able to enhance discrimination by suggesting 

additional object attributes and/or contextual constraints.  Interactive 

refinement of crude intuitive estimates should prove an effective com- 

promise between the unworkable extremes of unsupervised learning and 

exhaustively analyzed initial models. 

When strategies can be generated for reliably findir. ;he 

original objects, the scenario will be incrementally enlarge I o encom- 

par. additional office items.  Descriptions will again be interactively 

generated. The experimenter will suggest initial features that distin- 

guish the new object from others already in visual memory.  Those features 

may then be refined with feedback on their empirical effectiveness. 

Phase 3:  Phase 3 will concentrate on developing heuristics 

for efficient planning.  The effectiveness of strategies generated under 

various simplifying assumptions will be compared with the effectiveness 

of those generated by exhaustive search in Phase 2.  Two representative 

heuristics that will be studied are the use of a fixed budget percentage 

as a termination criterion, and the elimination of combinatorics intro- 

duced by the consideration of shared modules. 

93 



Phase 4:  In this final phase we will attempt to automate much 

of the decision making and problem solving handled interactively in 

Phases 1 and 2.  Specifically, the system itself should ueduce from its 

general fund of world knowledge the features and corresponding represen- 

tations that best distinguish a given object in a particular context. 

The data base might now include knowledge about the functions and material 

compositions of objects, models of perceptual operators and their error 

processes, and the level of detail needed to fulfill various task ob- 

jectives. 

Phase 4 is a formidable long range goal that may well require 

breakthroughs in automatic programming.  However, we feel that perceptual 

strategies constitute a particularly well structured Jomain in ./hich to 

explore the key issues.  In fact, we suspect it will be again posjible 

to proceed incrementally, by adding knowledge and inference rules, as 

necessary, to the basic Phase 2 system. 

i^^^^i 
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IV  SYSTEM SOFTWARE 

A.   Introduction 

Several features were needed at the close of the previous year in 

order to enhance the utility of the robot as a general purpose experi- 

mental vehicle.  This section discusses developments on this front from 

a software viewpoint; as will be explained presently, we have made con- 

siderable progress.  For the purpose of discussion, we can view the pro- 

cess of increasing the experimental utility as proceeding along two paths: 

making the robot easier to use, and telling people how to use it.  Here 

we describe the former task; a recently completed primer1" describes the 

current robot system from a user's viewpoint. 

There were three parts to the task of making the robot more usable. 

First, we made the robot usable to an experimenter who has a minimum of 

specific knowledge of its inner workings and second, we greatly increased 

the speed of the robot so that the experimenter would not be thwarted by 

lack of extraordinary patience.  Finally, we made the overall robot action 

system more reliable.  Now, for example, the robot can execute a fairly 

long STRIPS-produced plan with reasonable assurance of success in the 

face of normal day-to-day radio interference and other adversities. 

B.   Utility Factors 

1.   Comprehensibility 

We have increased the comprehensibility of the robot action 

routines in two ways:  we have made them available In a neat, self- 

contained package, and we have included in this package a command inter- 

preter.  Formerly, we had provided the action routines primarily In 
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symbolic (source code) form for the »ould-be user (necessarily a pro- 

grammer) to include with his own software.  Now the primary form in which 

the action routines are available is a LISP SYSOUT file, which makes the 

action package almost as easily available as any other major subsystem 

within TENEX.  We now have a command interpreter (which was easily pro- 

vided as a minor extension of an already existing debugging aid).  This 

modest amount of software permits a novice experimenter to use the action 

loutines as programs, and to easily obtain informative status reports 

couched in meaningful terms.  The combination permits a person to estab- 

lish contact with the robot in less than a minute by typing three command 

lines. 

2,   Speed 

The action routines in their most primitive state were executed 

so slowly as to require inordinate patience on the part of the user. 

Around the beginning of the project year, we changed from DEC's time- 

sharing system to BBN's TENEX time-sharing system.  This gave us a tre- 

mendous speedup due to the difference in swapping techniques; formerly, 

we had to swap a program's entire core image into core before running it, 

whereas we now can swap only a SMUII part of a program into core before 

running it.  The gain was especially great because a typical Job mix 

contains several programs each large enough nearly to fill user core.  At 

the beginning of the project year, then, a single complex ILA (interme- 

diate level action) could still take as long as 40 minutes to execute. 

At that stage, the action routines were run entirely in an interpretive 

mode.  The speedup techniques we employed were a combination of compiling 

and rewriting the routines and trasnferring the whole package to BBN LISP. 

The net result of our efforts was to reduce execution times of the more 

complicated ILAs by a factor of about five. 
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3.   Ryllability 

The reliability laprovenents vie made are an extension 01 the 

rugRednesj» already built into the software.  For example, the ILAs have 

always been capable of coping with accumulated swa'l mechanical inaccura- 

cies, or with more serious events such as encountering unexpected ob- 

stacles.  This year we extended the ruggedness tn an ability to cope with 

■ore drastic failures, such as a telemetry failure.  Provision is made 

for error handling in many places throughout the action routines,  Each 

routine is rather limited in scope, and so the overall ruggedness is due 

■ore to the dovetailing of the error provisions than to the power of the 

error handling in any one of them. 

One of the more interesting illustrations of this ruggedness 

was the following incident.  During an experiment, the robot lost power 

in mid-maneuver; power was hurriedly restored to the robot, which without 

further intervention visually ascertained its position and proceeded in 

its execution of the ILA in progress at the time.  The loss of power 

control caused the LLA'a to report a large uncertainty in the robot's 

position.  The response of the ILAs was to attempt (multiple times, as Is 

their way) to ascertain the robot's position visually.  Finally succeeding, 

the normal (for the ILAs) reassessment of the goals and the information 

at hand led the ILAs to continue the maneuvers in progress.  The relia- 

bility features of the robot software are greatly enhanced (if not made 

possible) by the .lexible error handling features of the BBN LISP system. 

C.  Translation to BBX LISP 

1.   Overview 

For reasons outlined elsewhere in this section, we converted 

the robot action routines from the Stanford LISP system to the BBN LISP 

Implementation.  This translation was tremendously aided by TRANSOR, a 

1 
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BBN-supplied translating program.  We added a few programs to the TRANSOR 

system to automate additional required or helpful ancillary processes, 

and we tailored the transformations to the purpose at hand.  TRANSOR made 

all straightforward transformations automatically; it noted all doubtful 

constructs and transformed them as well as it could; and it especially 

flagged all constructs requiring hand translation.  The principle part 

of the action software requiring hand work was the support package, which 

handles symbolic disk files containiug STRIPS operator descriptions and 

the ILA routines (in the lorm of modified Markov tables1.  This support 

package had been well integrated into SMILE, the Stanford LISP package 

for handling symbolic files.  We now have attached it to BBN's "pretty- 

print" package, which serves the same function in the BBN implementation. 

The transfer of the support package required considerable hand work since 

it was outside the useful scope of TRANSOR.  However, this hand work af- 

forded us the opportunity to rework this relatively new software and not 

only weed out the vestiges of the usual false starts, but also to increase 

its flexibility and coherence. 

2.   Forking 

To date we have transferred the individual pieces of the robot 

system to BBN LISP.  What remains is the reestablishment of the links 

from the action routines to the STRIPS/PLANEX cluster on the one hand 

and to the vision routines on the other.  Part of the price of the higa 

degree of flexibility offered by the BbN LISP implementation is a reduc- 

tion in the memory size available to a user's own program.  In our case, 

the available address space was large enough to accommodate either the 

STRIPS/PLANEX cluster or the action package alone, but it was not large 

enough to accommodate them both.  A more fundamental restriction of the 

BBN LISP system, however, is its inability to accommodate FORTRAN (or 

other non-LISP) programs; the Stanford LISP system provided a usable, if 
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awkward and inflexible, means of accommodating such "foreign" programs. 

There is, however, a boon in BBN's TENEX time-sharing system:  forking. 

That is, any program can have some number (about 25) of subprograms, and 

each of those programs (the mother as well as her daughters) can have 

completely independent address spaces of one-quarter million words each. 

Other projects within SRI's Artificial Intelligence Center have jointly 

developed software to handle the interfacing of forks with their descen- 

dants (and ancestors), including creation and other initialization capa- 

bilities.  This software permits a LISP program to generate multiple in- 

dependent subforks and to call FORTRAN subroutines within them.  We in- 

tend to adapt this software to permit the subfork to be LISP and/or to 

call subroutines in its mother.  The former will permit PLANEX actually 

to call the action routines, and the latter will permit the vision rou- 

tines to move the robot via the action routines (instead of requiring 

the vision routines to have their own action routines). 

3.   Additions for TRANSOR 

Before we leav? the subject of the transfer to BBN LISP, we 

will briefly describe our addition to BBN's TRANSOR.  As supplied, it 

consisted of four parts:  a rule driven translator, a set of rules, a 

package of programs to generate or modify such a set of rules, and a 

prescanner to make certain simple character transformations so the 

translator could read the program to be translated.  Of these, we ex- 

tended the power of the set of rules (mainly to translate our modified 

Markov tables) and the prescanner (to cope with the way Stanford LISP 

handles overflow of a print line).  This still left two of the conven- 

tions of Stanford LISP with which TRANSOR could not cope:  (1) Stanford 

LISP could (and in practice often did) use octal numbers (instead of 

decimal), and (2) it also could (and often again did in practice) flag 

decimal numbers as such by following them with a decimal point.  The BBN 
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LISP system (in which the translator was embedded) would interpret an 

octal number as the decimal number with the same sequence of digits, and 

it would interpret the trailing decimal point as a sign to represent the 

number internally in floating-point format.  However, the Stanford LISP 

system is also perfectly capable of producing numbers in a BBN-compatible 

format, so we simply wrote a small "pre-prescan" program in Stanford LISP 

that would read a Stanford LISP file in any format and write it in a 

format suitable for the BBN system.  This gave us a system in which a 

file of Stanford LISP programs was first "pre-prescanned," then pre- 

scanned and then translated; this produced the translated version as 

well as a file of notes pointing out dubious portions of the output file. 

This last had to be listed so the programmer could check the translation; 

then it and the two intermediate files from the prescanners had to be 

deleted.  Typically, the next step was to load the translated file for 

checkout and any necessary hand modification.  We wrote a small program 

to perform all these steps and to produce a translated version given 

only the name of the Stanford LISP version of the file. 

] 
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V SYSTEM HARDWARE 

A,   Introduction 

In this section we briefly describe several pieces of special pur- 

pose hardware that we are currently builcing or interfacing to our robot 

system.  This hardware includes two types ol scanning range finders, a 

doppler radar (for detecting motion) and a Unimate arm.  We also briefly 

describe the current configuration of our complete computer system. 

B.  A Time-of-Flight Range Scanner 

1.   Introduction 

For the purpose o scene analysis in a three-dimensional world, 

it is desired to generate a "picture" analogous to a television picture, 

but where each picture point is associated with an analogue value denoting 

range rather than light intensity.  The simplest method for determining 

the range of each picture point might seem to be by measurements on 

stereo pairs of images taken by the same television camera.  In practice 

this method has proved to be seriously limited on at least four counts: 

• Inadequate resolution:  at the 120 by 120 element resolution 

we have been using, the displacement (measured in elements) 

between corresponding points in the images Is not enough. 

• The range accuracy falls off rapidly with distance. 

• The calculations for so many points consume too much com- 
puter time. 

• There are difficulties due to occlucion, because a picture 

element visible from one lens viewpoint may not be visible 
from the other. 

] 
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A scanning range finder currently under construction eliminates 

all of the above problems in that it possesses high range resolution that 

does not vary with distance, and gives direct readout without computation. 

In addition, since it is a "one-eyed" device, the occlusion problem does 

not arise. 

2.   The Experimental Model of the Range Scanner 

A simplified block diagram of the range scanner is given in 

Figure 22 and a more detailed diagram in Figure 23.  The range scanner 

consists of three functional components:: 

• A transmitter that amplitude modulates a light beam with a 

9-MHz sine wave 

• A mirror scanner that sweeps the modulated beam over the 

field of interest 

• A receiver that picks up the light from whatever object 

intercepts the scanning beam.  After amplification the 

output from the receiver is demodulated by a phase demodu- 

lator. 

The demodulator effectively measures the length of time required for a 

light beam to make the round trip from range scanner to light scattering 

object and back.  The range value, of course, is a constant multiple of 

this time. 

The merits of the phase demodulator are worth emphasizing.  In 

this device the output from the receiver is compared with the phase of the 

inodalating signal feeding the transmitter, and a dc level is derived that 

is a function only of this phase difference.  Since the phase difference 

varies linearly with the distance to the light scattering object, the dc 

level is a measure of the range of the object.  The method has the virtue 

of being a one-frequency method not depending on the amplitude of the 

received signal  it is therefore possible to trade range discrimination 

i 

102 - 

■   ^1 



REFLECTING 
OBJECT 

TRANSMITTER 

AMPLITUDE 
MOrULATED 

LIGHT 
SOURCE 

RECEIVER 

PHOTOMULTIPLIER, 
AMPLIFIER AND 

PHASE 
DEMODULATOR 

REFERENCE PHASE 

SA-1S30-16 

FIGURE 22  SCANNING RANGE FINDER—SIMPLIFIED 

against signal Integration time.  The sensitivity calculation described 

later Indicates that It should be possible to make 1,000 measurements per 

second with a range discrimination ol 0. 1 inch using a transmitter power 

of only 1 milliwatt. 

Considering the transmitter section, the process begins with 

the 9 MHz crystal oscillator that drives the modulator via an adjustable 

phase shifter.  The phase shifter provides an adjustment of approximately 

±  60° so that one may adjust for a precise zero or, alternatively, off-set 

the minimum range and use increased sensitivity in the read-out.  The zero 

may also be displaced by fixed amounts and with great precision by short 

lengths of coaxial cable Inserted between the various units.  The 
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modulator then provides amplitude modulation of the light source, which 

may be either a 9050 A.U. gallium arsenide diode or a 6328 A.U. helium- 

neon laser.  The latter will most probably be used since it can provide a 

smaller spot size (better lateral resolution).  Although gas lasers 

typically show 1 percent amplitude noise modulation, this does not inter- 

fere, except to a minor extent, with the precision of the phase measure- 

ment.  The modulated light beam is then deflected by a scanning mirror 

system (in two orthogonal directions) so that it scans the field of view 

that is of interest. 

The receiver section makes use of the same scanning unit so 

that its line of sight coincides with that of the laser beam.  The return 

signal is put through an interference filter to eliminate the ambient il- 

lumination and passes to a high-grade photomultiplier, an RCA CA 31034, 

where it is converted to electrical form.  The use of a premium quality 

photomultipler is warranted since it is here that the slgnal-to-noise 

ratio of the system is determined.  The primary requirements are for an 

efficient photocathode and low dark current.  It is anticipated that the 

signal level from the CA 31034 will be at least 1 millivolt.  This signal 

is then put through a 2.5 kHz wide crystal filter (form factor 2:1) at 

the first opportunity in order to minimize effects due to electrical 

interference, in particular before any saturation can occur.  The filter 

is followed by a symmetrical limiter to remove amplitude variations due 

to inverse square law, orientation of the surface, reflection coefficient, 

laser noise, and so on.  Note that the limiter must limit the top and 

bottom halves of the sine wave symmetrically since asymmetry usually in- 

troduces a shift in phase. 

Perhaps the most stringent part of the design occurs in the phase 

demodulator.  What is required is a clean multiplier.  We wish to multiply 

together the reference signal, e sin out, and the reflected signal that 

has passed down the receiver chain, e sin(u)t + cp).  We do not have a 
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great deal of control over thr; various phase shifts that occur down the 

receiver chain, but we assume they can be nulled out by the phase shifter 

mentioned previously.  We are interested in developing a dc level that 

varies linearly with the variable part of ^; i.e., the part due to the 

variable path length between the deflecting mirrors and the reflecting 

object.  The output, M, from the multipler is 

M = k • e e  • sin il)t • sin((rt + cp) 
1 £ 

kei e2 
• sin (Dtfsin at • ,..,     cos cp + cos tut • sin cpl 

(      1  cos 2 (Jut   sin 2 out | 

I   ' 
where k is an arbitrary constant.  The terms in 2 uut are easily removed 

by a low-pass filter leaving an output depending only on cos cp; we shall 

be working over the linear region either side of 90°, as shown in Figure 24. 

Note that the output also varies with e and e^ and therefore these must 

be kept constant to at least the precision of range measurement.  In the 

hardware that has been constructed, the output fluctuation is of the 

order of ±3 millivolts for a working output range of ±3 volts. 

3.  Calculation of Sensitivity 

The initial design assumptions are as follows: 

-3 
Scanning transmitter power (collimated beam) = 10  watt 

Maximum range = 10 ft 

Minimum reflectivity = 1 percent 

The reflected power is assumed to be scattered uniformly ^ver 

a hemisphere. 

Receiver capture area = 1 sq in. 
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FIGURE 24      ANALOG OUTPUT FUNCTION 

The received power,  P,   applied to the photomultipler is 

-3 -2 
P =   10       -10 

2TT   •    (120) 

-10 
=   10 watt 

The sensitivity of the RCA CA 31034 photomultipler is given as 4 x 104 

4 
amps per watt at 6328 A.U., and 1 x 10  amps per watt at 9050 A.U.  For 

an input of 10   watt at 9050 A.U., the output current = lo"10 x 104 amps, 
-6 

which equals 10  amps.  Assuming a load impedance of 2,000 ohms 

3    —6 
Output level = 2 x 10 x 10  =2 millivolts 
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For a bandwidth of 2.5 kHz In the receiver chain, the self-generated noise 

level should be less than 2 microvolts; this is compatible with 10-bit ac- 

curacy for the range output and 1000 measurements per second. 

C.   A Triangulation Range Finder 

A range finder based on triangulation was designed and built by the 

late John H. Munson.  A schematic drawing of this range finder is shown 

in Figure 25.  A collimated light beam scans the field of view by means 

of a rotating "transmitting" mirror.  A portion of this beam, scattered 

or reflected from a surface "point" of an object in the scene, is ac- 

cepted by a rocking "receiving" mirror.  The angular velocity of the 

transmitting mirror is much higher than that of the receiving mirror.  The 

functions that relate time, t, to the angles OL, and m of the transmitting 
T      R 

and receiving mirrors, respectively, are known.  The cyclic time of the 

receiving mirror is divided into N time intervals, where N is the number 

of points scanned horizontally.  For each of these time intervals, ^„(t) 

is known and may be regarded as fixed relative to the time varying cp (t). 

By measuring the time of acceptance of the scattered light by a receiving 

photo detector, cp (t) is computed.  Knowing cp , rp , and the distance 
T T  R 

between the transmitting and receiving mirrors, the range (defined as 

the distance between the receiving mirror and an object point) is com- 

puted for each of the horizontally scanned N points.  This procedure is 

repeated as the tilt angle of the whole system is varied incrementally 

by means of a tilting drive.  A raster of range values for the entire 

field of view is thus obtained. 

Although range data have been collected by this range finder, 

we have decided to concentrate our efforts on the range finder described 

in the preceding section, because the range finder of Figure 25 has the 

following disadvantages: 
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• The accuracy and sensitivity are inadequate, especially as 

the range increases. 

• Runge data are missing tor those object points that are seen 

by the receiving mirror but not by the transmitting mirror. 

• The maxijnum range is limited to 8 leet by the intensity of 

the transmitting light source. 

• The offset between the receiving mirror ;ind a camera used 

in scene analysis poses a registration problem. 

Ü.   A Radar Motion Detector 

A «nail, Inexpensive, doppler radar, motion detector *as physically 

installed on the robot vehicle during the summer.  Its primary commercial 

application is as an intrusion alarm.  This sensor, when made operational, 

can detect even a slight motion that occurs within a teardrop shaped re- 

gion 10 feet wide and 50 feet long directly in front oi the robot. The 

device is essentially a microwave transmitter radiating from a parabolic- 

section horn antenna and a receiver operating from a second similar an- 

tenna.  The KCC allocated frequency is 10,525 mHz 125 i^'z. 

This novel capability will provide the robot with a way of dealing 

with dynamic changes in its environment and, when interfaced, may be thy 

basis for a new series of experiments.  For example, an interrupt from 

the motion detector could be used to turn on the TV camera in order to 

determine what changes have taken place. 

E.   Unimate Arm 

A Inimate industrial arm is being interfaced with the PÜP-15/PDP-10 

time-sharing system to provide a facility for multiple effector experi- 

ments.  As originally manufactured, the Unimate arm and hand assembly is 

hydraulically positioned under the control of a program stored on a mag- 

netic drum.  The absolute position for each of live degrees of freedom 

is determined by optical shaft encoders.  The Unimate is also conveniently 
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equipped »ith Input lines to sense external rVMld and output lines to 

provide indication of coapleted internal events 

In converting the Uniaate to conputer control, the memory drum is re- 

placed by a buffer register that is connected to the computer through an 

interface. A block diagram of the Interconnections for a PDP-15/Unimate 

system is shown in Figure 26.  A block diagram of the interface control 

logic ia sho«n in Figure 27. 
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DRIVERS   |    SERIAL/ 
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RECEIVERS | PARALLEL/ 
SERIAL 

SA-1B30 17 

FIGURE 26     PDF-15/UNrMATE COMMUNICA.IONS:    BLOCK DIAGRAM 

F.       Current  System Configuration 

The current  configuration of our computer system is shown  in Figure 28. 

The primary changes made during  the past   year have been  the addition of a 

fifth disk pack drive,   two magnetic  tap«   drives  (end  interface),   a scan 

converter  (that will  allow us to display gray-scale digital   pictures), 

and a new   television camera  suitable  for obtaining color  information. 
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FIGURE 27      PDP-15/UNIMATE COMMUNICATIONS;    UNIMATE CONTROL LOGIC 
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VI  PUBLICATIONS AND PRESENTATIONS 

A. Publications 

B. Raphael, "The Role of Formal Theorem Proving in Artificial In- 

lelliKence," Artificial Intelligence Center Technical Note 63, 

Stanford Research Institute, Menlo Park, California (February 197?). 

This was the first of two lectures presented at the Japan Industrial 

Technology Association International Symposium en Pattern Information 
Processing Systems, Tokyo, March 6-17, 1972. 

"Robot Research at Stanford Research Institute," Arti- 

ficial Intelligence Center Technical Note 64, Stanford Research 
Institute, Menlo Park, California (February 1972). 

This was the second of two lectures at the Japan Industrial Tech- 

nology Association International Symposium on Pattern Information 
Processing Systems, Tokyo, March 6-17, 1972. 

R. Fikes, P. Hart, and N. Nilsson, "Some New Directions in Robot 

Problem Solving," Artificial Intelligence Center Technical Note 68, 

Stanford Research Institute, Menlo Park, California »May 1972). 

Also to be published in Machine Intelligence 7. 

 , "Learning and Executing Generalized 
Robot Plans," Artificial Intelligence Center Technical Note 70, Stan- 
ford Research Institute, Menlo Park, California (July 1972). 

Also will be in Artificial Intelligence, Vol. 3, No. 4   (to appear 
Winter 1972). 

D. Nitzan, "stereopsis Error Analysis," Artificial Intelligence 

Center Technical Note 71, Stanford Research Institute, Menlo Park, 
CaMfornia (September 1972). 

 _, "Scene Analysis Using Range Data," Artificial Intelli- 

gence Center Technical Note 69, Stanford Research Institute, Menlo 
Park. California (August 1972). 
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P. E, Hart and N. J. Nilsson, "shakey:  Experiments in Robot 

Planning and Learning," 25-minute color and sound film that reviews 

recent experiments, Stanford Research Institute, Menlo Park, Cali- 

lornia (August 1972). 

B.   Presentations 

Technical meeting on Computer Vision held at Pa.jaro Dunes, California, 

November 10-13, 1971. Attendees Irom SRI: T. D, Garvey, C. A. Rosen, 

and C, L. Fennema, 

N. J. Nilsson, seminar talk entitled "Composing, Using, and Exe- 

cuting Robot Plans" at the University of Illinois, Champaign, Illi- 

nois, December 16, 1971 

Fiibush Point Seminar held at the University of Edinburgh, Scotland, 

February 28 to March 3, 1972.  Attendees from SRI:  R. E. Fikes, 

P. E. Hart, N. J. Nilsson, and J. F. Rulifson. 

N. J. Nilsson, lecture tour in 1972:  University of Calgary, Alberta, 

Canada, March 22; University of Alberta, Edmonton, March 23; Uni- 

versity of British Columbia, Vancouver, March 24.  The talk was en- 

titled "A Problem-Solving System for a Robot." 

Current Research in Problem Solving and Machine Perception Seminar 

held at the University of California, Department of Psychology, San 

Diego, California, April 17, 1972.  Attendees from SRI:  R. B. Fikes, 

B. Raphael, and J. M. Tenenbaum. 

R. E. Fikes, seminar talk entitled "New Experiments with Shakey the 

Robot" at the University of California, Irvine, California, June 2, 

1972. 

P. E. Hart, seminar talk entitled "A Short Survey of Artificial In- 

telligence and Robots," at Jet Propulsion Laboratory, Pasadena, 

California, June 30, 1972. 

C. A.  Rosen, seminar talk entitled "Roboti., Productivity, and 

Quality," Jet Propulsion Laboratory, Pasadena, California, June 30, 

1972. 

J. M. Tenenbaum, talk on robotics to ACM Peninsula Chapter, July 13, 

1972. 
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Hemolcly Manned Systems Comerence, Pasadena, California, September 

13-15, 1972; sponsored by the National Aeronautics and Space Admini- 

stration and the California Institute ol Technology.  Attendees fron 
SRI E.   Hart,   N,   J.   Nil sson,   and  C.   A.   Rosen. 
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