AD-756 861

STOL TRANSPORT THRUST REVERSER/
VECTORING PROGRAM. VOLUME II

John E. Petit, et al

Boeing Company

Prepared for:

Air Force Aero Propulsion Laboratory

February 1973

DISTRIBUTED BY:

National Technical information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Ya. 22151




AFAPL-TR-72-10Y
Voiume |1

AD756861

STOL TRANSPORT THRUST RFVERSER/VECTORING PROGRAM

Volume li

John E. Petit
Michael B. Scholoy

e MV EINE coweany

TE’.QD
MAR @ 1973
Technical Report AFAPL-TR-72-109, Volume 1} uﬂLbu U

February 1973 — B _‘./

NATIONAL TECHNICAL
INFORMATION SERV"E

tea
/7! |

Approved for puhlic ralem, distribution unlimited

Air Force Aeto Propulsion Laboratory
Air Force Systems Command
Wright-Patterson Air Forcs gase, Ohio

17



Ll
I
i

NOTICE

When Government drawings, specification3, or other data are used for any
purpose other than in connection with a defintely related Gevernment procure-
ment operation, the United States Government thereby inocurs no responsibility
nor any obligation whatsoever; and the fact that the government may have
formulated, furnished, or in any way supplied the said drawings, specifications,
or other data, is not to he regarded by implication or otherwise as in any
manner licensing the holder or any other person or corporation, or conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in 2ny way be related thereto.

ACCESSION for

1] Wty Seetion ;

nt hisutin 0

WARKOISSER ]
HSTEBATIIN . nnanssios crvvns sree
DRMENNR/ANRLELE 8

Coples of this report should not be returned unless return is required by

security considerations, contractual obligations, or notice on a specific
document,

L N o

T AR

RSN ES




M
N

Unclassified

Secunty Classification

rSecortty clms3ilication of tiele, bnady of ah 1 0l adening ar e teoron niast be entered when the overail teport is classilied)

DOCUMENT CONTROL DATA.R&D - 1

1 ORIGINATING AC Tr Vi Ty (Corporate authar) 28, REFORT SECURITY CLASSIFICATION

The Bdeing Compamr, Box 3999, Seattle, Washington _Unclassified

¢h GHOUP
98124

) REPORT tirt t

~ STOL Transport Thrust Reverser/Vectoring Program, Volume II

!

4 DFSCHIS Tivt NOTE S Dy ot report and wichi ive shate sy

July 1971 - November 1972 Final Report Volume I

John E, Petit and Michael B, Scholey

T —— B

p—
S AU THORGSY chaest pume, modole mitinl Inst numes

¢ RLPORT DaTE

‘e *OTaAL (e] fF PAGES b NO OF REFS
December 1972 183~ 7 30'7' 24

8 TONTRACTY T L.ANT +O Y0 ORIGINATOR'S KEHONTY NLMBERIS)

'33615-71-C-1850 None

b PROJtCTY HO

643A

¢

% OTHER REPORT NOIS) (Any uther numbers that may be assigned
this report)

, AFAPL-TR-72-109, Volume II

10 OISTRINR,TION STATFEMENT

1 SUBBLIMFNTARY NOTES

etails of illustrations in

this document moy be better
studied on microfiche,

12 SPONSONING MILITARY ACTIVITY

Afr Force Aero Propulsion Laboratory/TBD
Wright-Patterson AFB, Ohio 45433

1y ApusTiiac:e
‘

Desigr. studies were conducted of thrust reverser and thrust vectoring systems fur STOL
tactical transports to evolve systems properly integrated with the aircraft, The studies
inciuded configuration design, performance, and weight analyses of feasible thrust reverser
and thrust vectoring concepts., Test plans were developed for static tests of the most

promising concepts. Following Air Force approval of the test plans, test model hardware
were fabricated,

Model tests were conducted of 1y a fan thrust reverser that exhausts all of the fan flow
through cascades installed in the upper 180° sector of the nacelle, and 2)-an external
deflector/target TR/TV system that combinos the functions of thrust vectoring and
reversing into a single mechanism, Scaling relationships were used to correct the data
to full-scale performance, and data correlations were developed for the external/ target
model as a function of geometric parameters and nozzle pressure ratio.

DD "2.1473 I-~

Secunty Classification

4
4

T e s F T o X 1

e -

v e St o At sntl

o yw‘;lmﬁdﬂﬂmﬂuw‘ S B bl 3 W s & o T T




T v——

tsmininy

Security Classification

KEY WOROS

LINK A

LiINK 8

LIN::--1

ROLE wY

ROLE LA1

ROLE

Thrust Reverser
Thrust Vectoring
Nozzles
Turbine-Engines
Transport Aircraft

™

Security Classificut..

m——— i e Bt B <rotont




PENS TN ORI g OO gty

Sh e e

NN

STOL TRANSPORT THRUST REVERSER/VECTORING PROGRAM

VOLUME II

John E, Petis

Michael B. Scholey

This document has been approved for public
release, its distribution is unlimited.

fta ek e e

A m%!l.'ﬂWﬁMﬂMllﬂWw& JON

o B

A
e At




FOREWORD

This reporti was prepared by John E. Petit and Michael B.
Scholey of the Research and Engineering Division, Aerospace
Group, The Boeing Company, Seattle, Washington. It is the
second of a two-volume final report submitted under

Air Force Contract F33615-71-C-1850, "STOL Transport Thrust
Reverser/Vectoring Program." Volume II coveirs work conducted
during Design and Model Testing, from July 1971 to October
1972, Volume I covers work conducted during Part IA - Data
Review and Analysis from July 1971 to April 1972. The
contract was initiated under Project 643A, "Tactical Airlift
Technology," Task 63205F, "Flight Vehicle Subsystem Concepts"
and was administered by the Air Force Aero Propulsion
Laboratory with Captain J. W. Schuman, and Mr. R. J. Krabal
as Project Engineers. Subcontract support was provided by
Pratt & Whitney Aircraft with H. Kozlowski as Program Manager.
The final report was submitted to the Air Force in November
1972, :

The authcrs wish to acknowledge the following Boeing personnel
for their assistance during the design and model testing
chases of the contract: T. W. Wainwright, Airbreathing
Propulsion; L. J. Kimes and R. L. Wilson, Propulsion Project;
and K. Ikeda and W. J. Stamm, Prop:.sion/Noise Laboratories.

A special acknowledgement is due M. E. Brazier, Chief,
Propulsion Technology, for his continuing interest and
significant contributions made during the program.

This technical report has been reviewed and approved.

7,

E. C. Simpfon

Director, Turbine Engine Division

Air Force Aero-Propulsion
Laboratory
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SECTION I

INTRODUCTION AND SUMMARY

An essential requirement of military STOL tactical transports
planned for the 1980 time pwriod will be to operate from
airfields of 2500 feet or less. These aircraft will use
thrust reversers as primary braking devices throughout the
landing ground roll. Also, some STOL concepts will use
thrust vectoring systems to help control the £light-path

"of the airplane and reduce takeoff and landing speeds.
Consequently, emphasis must be placed on designing efficient
and reliable thrust reverser/vectoring systems to achieve

the field length objective.

Commercial jet aircraft have used thrust reversers as
secondary braking devices since the beginning of their
operation., However, the complex problems caused by the
interactions between reverser exhaust and aircraft flow-
fields have limited their usefulness. These problems
include exhaust gas recirculation which can lead to engine
surge, impingement of exhaust gases on the ground or
adjacent aircraft surfaces, and engine mass flow matching.
Also, the reverser flow can cause blanking out of aero-
dynamic control surfaces leading to a loss in aircraft
directional stability and cortrol, buoyancy effects that
decrease the efficiency of the ground braking systems,

and changes in airplane drag. All of these problems have
been experienced during the development of existing commer-
cial aircraft. However, the availability of long runways
has made it unnecessary to completely resolve the inter-
actions between the reverser and aircraft flowfields.

To avoid the limitations of exxsting systems on future STOL

aircraft, attention must be given to the following technical
areas:

TR/TV performance

Exhaust gas flowfield

Aercdynamic interference

Engine operation

TR/TV system design including weights and structures

00000

The above consideraticns have significant influence on
nacelle placement, thrust reverser and vectoring system
geometry, and operating envelope.
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The Boeing Company, with subcontract support from Pratt &
Whitney Aircraft, conducted an 1l8-month research program
to study the above technical areas. The program was
administered by the Air Force Aero Propulsion Laboratory,
Wright-Patterson Air Force Base, Ohio. Program objectives
are:

1. To develop methods to predict thrust reverser and
thrust vectoring system performance.

2. To establish design criteria for high efficiency,
lightweight thrust reversers or thrust vectoring
systems for STOL aircraft.

The program has three parts:

Part IA - Data Review and Analysis
Part IB - Design
Part IC - Model Testing

This volume of the report describes the results of Part IB
and IC, Detailed results of Part IA are contained in
Volume I.

Analytici 1l models for predicting TR and TV nozzle performance
and evaliating TR and TV influence on the total airplane
system w:re developed during Part IA. Three computer
programs were developed to predict jet trajectory and
spreading, reingestion, and TR and TV system performance.

The models were developed using analysis and data correla-
tions, based on the results of an extensive literature
survey. Supplemental static tests were conducted to £fill
data voids discovered in the literature.

Part IB consists of the following tasks:
Task 2.1 -

Conduct Design Studies of TR/TV Systems

Task 2.2 -- Analyze Performance of TR/TV Systems
Task 2.3 -- Select Designs for Part IC

Task 2.4 -- Test Plan Preparation

Task 2.5 =-- Fabricate Hardware for Part IC

The objective was to conduct design studies of thrust
reversers and thrist vectoring systems for STOL tactical
transport aircraft to evolve concepts that are properly
integrated with the airplane. During Task 2.1, TR/TV
concepts were designed in sufficient depth to define the
TR/TV system and nacelle geometry, formulate actuation
requirements, define materials, and allow performance

0§
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and weight estimates to be made. Three view layouts were
completed for esach system studied. The design study
evolved into studies of TR and TV systems for externally
blown flap (EBF), mechanical flap and vectored thrust

(MF + VT), and upper surface blowing (USB) 1lift systems
for STOL transports.

The TR and TV concepts were analyzed and evaluated during
Task 2.2 on the basis of TR and TV performance and weight
with the objective of cbtaining the best TR/TV performance
for the lightest weight system. The impact of the TR/TV
system on the aircraft aerodynamic characteristics was
also included in the evaluation.

The following conclusions were made based on the evaluation
results for the TR/TV systems considered:

1. The thrust reverser system for externally blown
flap lift systems will probably involve the use
of a fan cascade thrust reverser.

2. Mechanical flap and vectored thrust lift systems
could use either

a. rotating nozzles

b. multibearing vectoring nozzles

c. external deflector/target thrust vectoring/
reversing systems

depending on the type of engine cycle (mixed or
unmixed flow).

The rotating nozzle vectoring system would be
applied to unmixed flow engines and would utilize
the rotating nozzles for thrust vectoring and
thrust reversing. However, the required nacelle
position (forward of the wing leading edge) to
avoid reingestion and exhaust flow/airframe
interference during reverse operation results in
an adverse pitching moment during vectoring
operation. The external deflector/target TR/TV
system would also pose pitching moment problems
but to a lesser degree. Multibearing vectoring
nozzle installations would present no pitching
moment problems, because the installation allows
the thrust vector to be placed nearer the airplane
center of gravity. Combining the multibearing
nozzle with a reverser system is difficult,
primarily because of the weight of the separate
thrust reverser and thrust vectoring systems.
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The use of a fan reverser and "cycle spoiling" of
primary thrust would minimize the weight of the
reverser system but would result in lower reverser
performance.

3. Upper surface blowing lift systems will utilize an
external target thrust reverser system installed
with a mixed flow engine.

On the basis of the concept verformance evaluations, the
following TR/TV systems representing the various STOL lift
systems were considered for Part IC testst

1., Fan cascade thrust reverser system (EBF, MF+VT)
2. External deflector/target TR/TY system (MF+VT)
3. Multibearing vectoring nozzle (MF+VT)

4. External target thrust reverser (USB)

Existing data was considered sufficient to define the
performance characteristics of the multibearing nozzle

and external target thrust reverser systems. Therefore,
test plans were prepared during Task 2.4 for static testing
of the external deflector/target and fan cascade thrust
reverser systems. Following Air Force approval of the

test plans, the test models were designed and fabricated
during Task 2.5.

Part IC has three primary tasks:

Task 3.1 -- Conduct Static Performance Tests

Task 3.2 -- Correct to Full Scale Performance

Tagsk 3.3 ~-- Correlate with Existing Data and Analytical
Models

The fan cascade reverser model and the external deflector
TR/TV model were tested during Task 3.1. Also, the existing
data for multibearing nozzles and overwing external target
thrust reversers were compiled and reviewed. Task 3.2
consisted of correcting the scale model performance data
obtained during Task 3.1 to full scale performance. The
scaling method was also added to the TR and TV System
Performance Program, TEM-357 as an option. Data correlations
were developed during Task 3.3 for the external deflector/
target TR/TV model performance. The correlations were
compared with correlations of other external deflector
thrust vectoring concepts developed during Part IA.

i



SECTION 1I

PART IB - DESIGN -

The objective of Part 1B - Design, was to conduct design
studies of thrust reversers and thrust vectoring systems
for STOL tactical transport aircraft to evolve concepts tha:
are properly integrated with the airplane. The studies
included:

o Configuration design of feasible TR and TV
concepts.

o Performance analysis.

o Selection of TR and TV designs that meet the
design objectives.

o Planning of static tests to establish the reverser
and vectoring characteristics of the concepts.

o Fabrication of model hardware for Part 1C tests.

The following paragraphs discuss the results of Part 1B.

2.1 Task 2.l---Conduct Design Studies of TR/TV Systems
2.1.1 Baseline Airplane Configuration

The thrust reverser and thrust vectoring nozzle design studies
were conducted using a baseline STOL transport airplane con-
figuration to provide a basis on which to judge variations in
TR/TV system performance and weight. The baseline configur-
ation, designated Model 953-258 and shown in Figure 1, was
selected from a series of Boeing in-house STOL transport
studies, Reference 1. The 953-258 configuration meets the
mission requirements of a medium STOL transport.

The fuselage shape is dictated primarily by the cargo box, :
which is 138 inches wide by 135/148 inches high by 540 inches

long. The nose shape is a minimum drag fairing consistent

with crew station requirements. Similarly, the aft body

shape is a minimum drag fairing consistent with aft body load-

ing, air drop, and takeoff rotation reguirements. The landing

gear and fairing are configured to provide a minimum stowed

frontal area consistent with flotation and runway roughness
recquirements.
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The high wing configuration provides adequate cargo loading
truck bed height and minimizes adverse ground effect. The

wing has an aspect ratio of 8 and a quarter ‘chord sweep angle
of 10 degrees with a taper ratio of 0.3. Four nacelles are
single-pod-mounted located to minimize wing-nacelle drag
interference and flutter penalties. The wing area was deter-
mined by field length reguirements, lift system capability, and
deployment-mission fuel volume requirements.

The vertical tail is sized to provide adequate stability and
control., It is equipped with a serially hinged rudder for
maximum effectiveness. The horizontal tail is also sized to
provide adequate stability and control. It is located on top
of the vertical tail to minimize the required tail size and
weitht. This location also provides an end plate effect that
helps to reduce the vertical tail size and weight.

2,1.2 Ehgine Selection and Scaling

The design study used engine performance and design data pro-
vided by Pratt & Whitney Aircraft STOL transport study engines.
A review of the available study engines showed that the STF 342
series (Reference 2) and the STF 344 (Reference 3), covered
the range of bypass ratios from 3.0 to 12.0 and provides a
cansistent level of technology. The component technologies

of these engines is characteristic of the generation of

high bypass ratio turbofans which will be entering service

in the 1975-1980 time period. Although the study was ori-
ginally intended to include bypass ratio 2.0 turbofans, these
engines will adequately cover the bypass ratio range currently
being ccnsidered for medium STOL transport aircraft. Also,

it is expected that the results of the design studies may be
extrapolated to bypass ratio 2.0 if required. The study
engines are listed below:

Bypass Ratio Engine Designation
3.0 STF 342D
6.0 STF 342B
12.0 STF 344

The study engines are dual rotor, unaugmented axial flow
turbofans designed to operate with separate exhaust nozzles.
Sincethis study includes mixed flow systems as well as un-
mixed flow systems, mixed flow engine data was required. This
data was obtained by simulating mixed flow in the STF 342D

and STF 342B engines on a Boeing parametric engine performance
computer program. (Reference 4).

Engine performance data for the STF 342 and 344 engines are
shown in Figures 2 and 3. The results of the mixed flow
STF 342 simulation are shown in Table I.
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— STF 342 MIXED FLOW SIMULATION*

TABLE %

o

. e A

) FHT ‘WAT 8
! BPR .| ALT (1b) | (ib/sec) | .(Ft2 )
STF 342D 3.0 0 14200 352. 4.955
STF 342B | 6.0 0 14625 486.7 8.034

o

(S

('i

*PRODUCES 12100 1lb TOTAL NET THRUST AT
70 KTS, 2500 Ft, 93°F DAY.
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Scaling data was provided by Pratt & Whitney Aircraft to

scale the engines to the required thrust size for the Model
953-258 baseline airplane, Figures 4 and 5. The scaling rule
selected was to provide the thrust required for operation at
93°F, 2500 ft altitude, and 70 knots. This equates to the de-
sign point thrust of the engines on the baseline airplane. The
resulting scaled engine thrust, weight and dimensions are

shown in Tables II, III, and IV for the STF 342D, STF 342B,

and STF 344 enyines respectively.

2.1.3 Baseline Nacelle Design

The baseline nacelle designs provide a basis to evaluate
nacelle weight and performance with the thrust reverser and
thrust vectoring systems installed. Barcline nacelle config-
urations were developed for the various engines and engine pod-
installations to be considered in the study. The following
table summarizes the basic nacelles used in the design studies:

NACELLE CONFIGURATIONS BYPASS RATIO
3.0 6.0 12.0
Single pod, unmixed flow Fig. 6 Fig. 7 Fig. 8
Single pod, mixed flow Fig. 9 Fig. 10
Double pod, unmixed flow Fig. 11
TABLE V BASELINE NACELLE CONFIGURATIONS

The basic nacelles are designed in sufficient detail to define
the intake, nacelle contours, cruise nozzle design, engine
accessories, and engine mounting arrangement.

The following design criterion was used to establish intake
geometry:

l. The intake was sized to pass the engine design airflow
at csea level takeoff thrust power setting.
2. The ;ntake throat airflow per unit area is 0.289

lb/sec/ln .

3. The eng;ne face airflow per unit area is 0.292 1lb/
sec/in

4. The 1ntake highlight to throat area ratio, A,,/A
is 1.30. hl77eh,

5. The cowl exit radius, RE' is greater than 4.0 times
the throat radius.

6. The intake diffuser half angle, 8/2, is less than 5°.

7. The intake lip radius is 5% of the highlight radius.

8. External geometry established by an assumed cowl
thickness of 5.00 inches at the fan face.
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RELATIVE WEIGHT ~ LENGTH ~ DIAMETER
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Table Il: INSTALLATION DIMENSIONS — STF 342D ENGINE (BPR 3.0)

e o. C —————

Front Mount Figs =0 G "

Rear Mount

¢
Front Mt. {Thrust Mount)
(Thrust) AV_ .

Front View Side View

Installation Dimensiont for STF 342D BPR 3.0 Enigine Scaled from Basic 23,000 Lbs SLTO Thrust to 14,030 Lbs
SLTO Thrust (Equivalent to 12,100 Lbs Thrust @ 2500 ¥+, 93° F, 70 kts, 100% Ram Recovery, no Bleed or
Power Extraction)

Parameter or
Dimension {Inches) Basic Engine Scale Factor Scaled Engine
SLTO Thrust Lbs 23,000 0.610 14,030
Waight Lbe 3,310 0.500 1,966
Primary Exit Area  fF¢2 2.48 0.610 1.51
Fan Exit Area Ft 578 0610 . 353

A 343 0.746 258

8 565 _0.745 42.1

C 95.3 0.830 79.1

D 23.8 0.830 19.6

E 34.5 0.830 2868

£ 52.1 0.745 38.3

G 68.7 0830 55.4

H _238 0.745 12.7

| 36.1 0.745 261

J 9 0745 2

K 24.6 0.830 204

L 5e.9 Q745 2.9

" 18.2 0.745 13.6

N 12.3 0.745 13.6

P 8.75 0.745 8,51

R 23.6 0830 19.6

5 473 0.830 39.2 A

T 15.3 0.745 114

U 6.4 0830 13.8

16
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Table 111 — INSTALLATION DIMENSIONS, STF 3428 ENGINE (BPR 6.0)

C —mm———

Front Mount Ftgs : . € Rear Mount
Front My, {Thrust Mount)
(Thrust)
} ]l
pr p — }
1
L4 \ I
- Dis.  Dia,
! i ™ |

NS
= C. G,

Front View Side View

Installation Dimensions for STF 342B BPR 6.0 Engine Scaled from Basic 23,000 Lts SLTO Thrust to 14,490 Lbs
SLTO Thrast (Equivalent to 12,100 Lbs Thrust @ 2500 Ft, 93°F, 70 Kts, 100% Ram Recovery, No Bleed or
Power Extraction).

Parameter or Basic Engine Scale Factor Scaled Engine
Dimension (inches)
SLTO Thrust Lbs 23,000 0.630 14,490
Weight Lbs 3,230 0.620 2,003
Primary Exit Area  Ft2 2.63 0.630 1.68
Fan Exit Area Ft2 9,79 0.630 6.17
A 38.8 0.764 20.6
B 65.4 0.764 50.0
Cc 89.0 0.842 74.9
] 20.6 0.842 , 17.3
E 39.8 0.842 33.5
F 59.7 0.764 45.6
G 64.0 0.842 53.9
H 22.3 0.784 17.0
| 349 0.764 26.7
J 0 0.764 0
K 215 0842 18.1
L 678 0.764 51.8
M 18.0 0.764 13.7 .
N 121 0.764 9.2
P 11.86 0.764 9.06
R 18.5 0.842 15.8
S 37.0 0.842 31.2
T 14.9 0.764 11.4
U 14.3 0.842 12,0
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Tabie IV:  INSTALLATION DIMENSIONS — STF 344 ENGINE (BPR 12.0)

Front Mount Ftgs

Rear Mount

’VQ‘ {Thrust Mount)

Front View

Installation Dimensions for STF 344 BPR 12.0 Engine Scaled from Basic 20,000 Lbs SLTO Thrust to 14,926 Lbs
SLTO Thrust {Equivalent to 12,100 Lbs Thrust @ 2600 Ft, 93°F, 70 kts, 100% Ram Recovery, no Blesd or
Power Extraction),

Parameter or
Dimension (Inches) Basic Engine Scale Factor Scaled Engine
SLTO Thrust Lbs | 20,000 0.746 14,926
Weight Lbs 3,370 ‘0.742 . 2,500
Primary Exit Ares Ft2 3"30” (;u : 0.748 g-“_—fo
Fan Exit Area Ft2 T;}; Crutae 0.748 181',22:’; CiSie
A 45.80 0.865 30.62
B 73.25 0.885 63.36
c 80.23 0.916 81.65
D 24,08 0.915 22.01
E 37.00 0.915 33.86
F 72.60 0.865 62.80
G 61.54 0.916 56.31
H 17.90 0.866 15.48
| 30.50 0.866 26.38
J 4.90 0.865 423
X 25,08 0.916 27,493
L 75.65 0.865 65.44

18
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NOTES:
L ENGINE: PAWA STF 320 ENGINE TYPE #2R PLWA REPORT TOM-2177
OATES &/LU/69 SCALED FROM BASIC 23,000 POUND SLSTO THRUST
10 PROVIDE 14,00 POUNDS TAKEQFF THRUST FLAT RAFED 10 93

DEGREES ¥ AT SEA LEVEL.

ssTomTHRUST 14,030 POUNDS
WEIGHT NO BUCTS) 1,986 POUNDS
NOZZLE BXIT AREA 804 F12

2. AIR INTAKE DESICN REQUIPEMENTS:
THROAT MACH NO. + 0,40 AT SLSTO THRUST
DES1ON AIRR.OW 355 POUNDS/SECOND
HIGHUIGHT AREATHROAT AREA * L8
ERECTIVE 872 » S*LANGLE FROM THROATTO COMPRESSOR FACE
MEASURED ALONG A STRAIGHT LIND

3. AEVERSER SYSTEMS: TO B DEVELOPED ON DETAIL ORAWINGS.
NOZZUES SHOWN IN TAKEOFF POSITION,

4 COUER OF GRAVITY LOCATION SHOWM |5 FOR BASIC DRY ENGINE
WEIGHT ONLY, AND DOES NOT INCLUIDE INTAKE, COWLING, EXHAUST
NOZZLES, OR AYRFRAME ACCESSORIES.

S, NOZZLE BOATTAIL CHORD ANGRE « ¢°
PUG HALF ANGLE » 15°
COWR EXIT HALF ANGLE » §°

wnsmbs

0 10 20 30 40 30
LIRS

"BASIC N}CEL:E”WSTL -

- JENG-SNGLE PCO,
Figure 9: BASIC NACELLE INSTALLATION — % VXED ACW
BPR 3 ENGINE SINGLE POD, MIXED FLOW g-—ﬂL 22541+-PD200
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NQTES;
L ENGINE: PAWA STF 328 ENGINE TYPE PER PLWA REPORT TOM-21T7

~——_ DATED 4169 SCALED FROM BASIC 23,000 504N SLSTO THAUST
. T0 PROVIDE 14,490 POUNDS TAKEOFF THRUSY FLAT RATED T0 93
. 9— DEGREES F AT SEA LEVEL.
" SLSTO THRUST 14,450 POUNOS
WEIGHT N0 DUCTS) 2,003 POUNDS
NOZZLE EXIT AREA 1o

2 AIR INTAKE DESIGN REQUIREMENTS:
THROAT MACH NO. * 0.60 AT SLSTO THRUST
DESIGN AIRRLOW 481 POUNCS/SECOND
HIGHLIGHT AREA/THROAT AREA « 1.0
EFFECTIVE 32  3° (ANGLE FROM THROAT 70 COMPRESSOR FACE
MEASURED ALONG A STRAIGHT LINE

3. REVERSER SYSTEMS. TO BE OEVELOPED ON DETAIL ORAWINGS.
NOZZLES SHOWN IN TAKEOFF POSITION.

4 CENTER OF GRAVITY LOCATION SHOWN IS RIR 8ASIC DRY INGINE
WEIGHT ONLY, AND DOES NOT INCLUDE INTAKE, COWLING, EXHAUST
NOZQES, OR AIRFRAME ACCESSORIES.

- - 5. NOZZLE SOATTAIL CHORD ANGLE » 6°
PLUG HALF ANGLE » 15
COWL EXIT HALF ANGLE - §°

A

\V/

2.0 % 0 4%
SCALE IN INCHES

}.___,_. - ' ——

4 00, L1 St N,

I N_NK 44 DN _ 400

BASC \CELLE  NSTL
=B8R & ING SNGLE ACO

I3 F

Figure 10: BASIC NACELLE INSTALLATION — TLEwW
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STA » STA STA
2200 2400 23861

NOTES:

L ENGINE: PAWA STF 3420 ENC NE TYPE PER PEWA REPORT TOM-2LT7
DATED &/11/69 SCALED FROF BASIC 23,000 POUND SLSTO THRUST
10 PROVIDE 14,030 POUND 3 TAKEOFF THRUST FLAT RATED 10 93

DEGREES F AT SEA LEVEL,
SISTO THRUST 14,000 POUNDS
~—STA 1587 WELGHT N0 DUCTS) 1906 POUNDS
~ —5Ta 1862 NOZZLE EXIT AREA 5.04
—5TA 2000
- 2 AIR INTAKE DESI N REQUIREMENTS:
o e THROAT MACH N0, * 0, AT SLSTO THRUST

DESIGN AIRRLOW 355 POUNDS/SECOND

HIGHLIGHT ARES THROAT AREA « 1.0

EFFECTIVE 872 » S*(ANGLE FROM THROAT T0 COMPRESSOR FACE
MEASURE

D ALONG A STRAIGHT LIND
3. REVERSER SYSTEMS: TO BE DEVELOPED ON DETAIL DRAWINGS.
NOZZLES S1OWN IN TAKEOFF POSITION,
& CENTER OF GRAVITY LOCATION SHOWN 1S FOR BASIC DRY ENGINE .
REAR

WEIGHT UNLY, AND DOES NOT INCLUDE INTAKE, COWLING, EXHAUST
N0ZZ:%S, OR AIRFRAME ACCESSORIES.
5. NCZZLE SOATTAIL CHORD ANGLE « ¢°
PLUG HALF ANGLE = 15¢
COWR EXIT HALF ANGLE « 8*

VIEW

Q.10 20 X 4 %
‘SCALE IN INCHES

B DEING . ‘
Har, enin

BASIC NACELLE INSTL —
8PR 3 ENG, DOUBLE POD

Figure 11: BASIC NACELLE INSTALLATION —~ MIXED FLOW _____|
BPR 3 ENGINE, DOUPLE POD , MIXED FLOW gl "', ;" 2254PD201 |
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The reéulting intake designs for each nacelle are shown inr
Figure 12.

The nacelle structure consists of aluminum sheet exterior
attached to conventional "Z" shaped stiffening rings. The
stiffening rings are secured to acoustically treated honeycomb
panels on the inside surfaces. Engine loads are distributed
between front and rear -engine mounts. On the unmixed flow
engines the front mount carries vertical, side, and thrust
forces. The rear mount carries vertical, side, and torsion
loads. For the mixed flow nacelle configurations the load
distribution is the same except the torsional loads are
carried by the front mount. Engine accessories and gear box
are located on the lower side of the engine fan case for
enginé maintenance and safety considerations.

The exhaust nozzles are designed to provide maximum thrust
minus boattail drag consistent with the nacelle maximum
diameter and nozzle flow area. The plug nozzles were
selected for the baseline nacelles because instal! ‘tions
utilizing convergent nozzles would have excessive aacelle
drag due to steep beattail angles.

A summary of the baseline engine and nacelle design char-
acteristics are shown in Table VI, includlng weight estimates.
The weight estimates are accurate to % 10 percent and do not
include weight required for a quiet nacelle installation or
flutter. The range of welghts for the basic nacelle config-
urations are shown in Figure 13.

2.1.4 Thrust Reverser and Thrust Vectoring System Design
Concepts

The design study was conducted in sufficient depth to:

1. define the fundamental geometry required.

2. define the fundamental requirements of the TR/TV
nacelle installation on the baseline airplane
configuration.

3. formulate the basic requirements for the actuation
mechanisms, actuators and systems.

4, define materials selection.

5. allow estimates of TR or TV internal performance,
weights, and aerodynamic effects to be made.

The design study resulted in three view layouts of each system

with -~ufficient detail to define internal and external nacelle
contours and accessories locations.
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PARAMETER STF STF STF
OR DIMENSION 342D 3428 344
DESIGN AIRFLOW LBS/SEC 355 481 708
THROAT AREA N2 1228 1664 2440
HIGH-LIGHT AREA N2 1697 2164 3172
ENGINE FACE AREA, GROSS N2 1392 1964 3153
ENGINE FACE AREA, NET N2 1259 1706 2502
THROAT RADIUS R 19.77 23.01 27.87
HIGH-LIGHT RaDJys R 22,55 26.24 31.78
THROAT EXIT RADIUS R 79.08 92.04 111.48
ENGINE FACE RADIUS 5 21.05 25.00 31.68
SPINNER RADIUS R 6.51 9.06 14.40
THROAT LENGTH | 14.63 24,20 4355
INTAKE LENGTH |, 20.19 30.66 51.37
SPINNER LENGTH Lg 8.60 11.97 19.03
Figure 12:  |NTAKE GEOMETRY
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Figure 13:  BASIC NACELLE WEIGHT VS MASS FLOW
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It was recognized early in the study that the aircraft high lift
system would have a strong influence on the TR or TV system
design. Consequently, the design study evolved into studies of
TR and TV systems for the followlng lift systems for STOL
transports:

l. externally blown flap (EBF)
2. mechanical flap + vectored thrust (MF + VT)
3. upper surface blowing (USB)

The various TR and TV systems for the high lift systems are
discussed in the following sections.

2.1.4.1 Flow Directional Control for STOL Transport Thrust
Reverser Systems

STOL transports will operate on short, unimproved runways and
will require thrust reversers as primary braking systems. Land-
ing roll studies have shown that the reverser cutoff velocity,
i.e. the velocity at which the engine must be shut down durlng
reverse mode, has a stronginfluence on the airplane stopping
distance. These studies have also shown that satisfactory
stopping distance is achieved when the reversers are operated
continuously at full rated takeoff power down to a rolling
speed of at least 20 knots. 1In contrast, most commercial
airplanes today must cut off the reverser or modulate the
engine power setting below 60 knots. The cutoff velocity

is determined primarily by engine tolerance to reverser ex-
haust reingestion and foreign object ingestion (dust and rocks
from an unimproved field).

To avoid the problems of reingestion and foreign object

damage at low ground roll speed, the thrust. reverser must bo~
designed to control the direction of the reverser exhaust -

away from the engine inlet, ground surfaces, and adjacent aircraft
surfaces.

There are few regious in which the exhaust flow can be

directeds

1) Upward and forward above the nacelle forward of the wing
leading edge (Figure l4a) - - - This requires asymmetric exhaust
flow with the corresponding problems of internal pressure losses,
unsymmetrical structural loads and for a fan thrust reverser
potential pressure distortion at the fan exit. An advantage

to this type of flow control, however, is the additional gear
loading obtained from the vertical thrust component of the
exhaust flow which increases the braking forces.

2) Outboard side of outboard nacelle (Figure 14b) - - - Impringe-

ment on the ground outboard of the outboard nacelle may be
allowable. For a two engine STOL aircraft this could be a

35
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A a) FLOW CONTROL UPWARD

b) FLOW CONTROL UPWARD AND
OUTBOARD (OUTBOARD NACELLE
ONLY)

YN

¢) UPWARD AFT OR WING
LEADING EDGE

=

Y

d) AFT OF WING TRAILING EDGE

Figure 14:  POSSIBLE REVERSER EXHAUST FLOW REGIONS TO MINIMIZE REINGESTION
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satisfactory appfoach. Howevef} left and right hand reverser
designs would be required for either two or four engine air-
craft.

3) All flow above the wing aft of leading edge (Figure l4c)
- - - This requires apertures in the wing to direct the reverser
flow upward and forward.

4) All flow aft of the wing trailing edge (Figure 14d) - - -
This installation is ideally suited for a target thrust reverser.
However, it will require removal of wing trailing edge flap
sections to accommodate the extended nacelle.

The thrust reverser concepts were configured to meet the above
flow directional control requirements.

2.1.4.2 Primary Thrust Reversing and Spoiling Options

Unmixed Flow Engines

It is well known that as the bypass ratio of a turbofan
engine increases and the corresponding primary thrust de-
creases, the benefits derived from reversing the primary
thrust diminish (Reference 5). This is shown in Figure 15.
The curves were derived from engine data for the Pratt &
Whitney Aircraft STF 342B (BPR 6.0), STF 342D (BPR 3.0) and
STF 344 (BPR 12.0) unmixed flow engines (References 2 and 3).

Based on these results, the following guidelines were estab-
lished for thrust reverser concepts for unmixed flow engines:

1. Bypass ratio 3.0 unmixed flow engines require thrust
reverser systems for both the fan and primary flows.
2. A mechanical spoiler may be used to spoil the primary
thrust of bypass ratio 6.0 unmixed flow engines.
3. A mechanical spoiler is recommended to spoil the
primary of bypass ratio 12.0 engine. The spoiler
may be eliminated provided fan reverser efficiency
of at least 50 percent can be achieved.

"Cycle Spoiling" of Primary Thrust for Mixed Flow Engines
Thrust reverser systems for mixed flow engines present special
design prblems especially for high bypass ratio turbofan
engines with the flow directional control requirements for

a STOL transport. The major difficulty encountered is concerned
with the design requirements of the blocker door mechanism.
Because the exhaust duct for such engines is relatively large,
the mechanism to block and turn the mixed exhaust flow becomes
lerge and, therefore, is heavy. Also, the nacelle length
must be extended to accommodate the reverser system for a
nixed flow engine as shown in Figure 1l6a.
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.60 —
‘ FAN REVERSER . |
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AND PRIMARY SPOILER >/’—
40 — 0
g
30
2 o FAN REVERSER
" a’ AND PRIMARY FDRWARD
/ THRUST
10
0
3 ] 12
BYPASS RATIO
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Figure 15:  EFFECT OF PRIMARY REVERSE THRUST MODE ON REVERSER

EFFECTIVENESS (1 g) gasic = 50%
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Cascade Reverser

Blocker Door
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Figure 16:A:  MIXED FLOW THRUST REVERSER

Cascade Reverser
Fan Duct Only

Blocker Door
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Figure 16-8 .

MIXED FLOW WITH FAN THRUST REVERSER AND CYCLE
SPOILING OF PRIMARY THRUST
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One method to reduce the nacelle length and weight involves
reversing only the fan exhaust flow and allowing the pri-~

mary flow to exhaust from the nozzle. This method is called
"cycle spoiling and is illustrated in Figure 16b. The effect
of this operation is to cause the primary flow to be "over
area which spoils the primary thrust. A study of "cycle
spoiling" was made by Pratt & Whitney Aircraft to assess the
effects on engine performance and also to identify engine
problem areas during reverse mode.

As a typical commercial mixed flow turbofan engine, the STF 402
is a fan-low-high, 2400°F T.I.T., BPR 5.0, 1.57 FPR mixed

flow engine utilizing an advanced high spool core. Figure 17
shows STF 402 "cycle spoiling" operation in the reverse

mode (separate streams) for various primary stream jet areas,
and two values of fan duct exhaust area. A value of AJE/AJE

1.4 is the size of the primary splitter area. It is believed

that for most installations the primary flow will be controlled

by the area of the primary splitter, A, splitter, and the re-
mainder of the nozzle will £ill up witﬁ ambient air. However,
this will depend on the duct length between the splitter and
the nozzle exit. If the duct is sufficiently long the con-
trolling area could occur at the nozzle exit. Note that for
AJE/AJE = 1,10 and A /A * = 1,0, the separate stream engine

cycle and performance coincides with the mixed flow engine.
The engine must be throttled as primary area is increased

to avoid low rotor overspeed. Note that the total thrust is
dropping off as fan thrust remains about constant, indicating
the primary thrust is being spoiled.

During the reverse operation the fan, low and high compressor
may need more surge margin than during sea level takeoff
steady state operation as inlet distortion is allowed to in-
crease. Thus, the loss in low compressor surge margin shown
in Figures 17 may be intolerable and would have to be recti-~
fied, probably with interstage bleed. There is no loss in fan
or high compressor surge margin for the case where fan duct
area is held constant. When the fan area is increased, the
fan gains considerable surge margin.

The results shown in Figure 18 indicate that low rotor over-
speed capability may be desirable. A comparison of the effect
on performance during reverse if fan overspeed were designed
for, and if fan overspeed is nc: allowed. This overspeed
capability would have to be designed into the engine or
reverse thrust would have to be applied at a reduced power
setting such that SLTO Nl would rot be exceeded. 1If the

overspeed capability were included it would be accompanied by
a weight increase. Figure 19 shows the STF 402 sea level
static low rotor speed characteristics at part throttle.
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Reverser effectiveness as a functic:. of primary streaim ex-
haust area is shown in Figure 20. If the primary flow matches
to the primary splitter area, the reverser effectiveness is
23.8 percent and 24.1 percent for throttled and overspeed
reverse modes, respectively, assuming the efficiency of the
fan reverser is 50 percent. This reverser eiffectiveness

is not sufficient to meet the landing field length for a

STOL transport. Therefore, it appears that "cycle spoiling"
would not be suitable for a BPR 5.0 engine.

Potential reverser effe~tiveness available using "cycle
spoiling" for a BPR 6.0 engine was studied using a Boeing
parametric engine computer program (References %). 2r unmixed
flow engine was used where the primary area was vari.. over

a range of 0.85 to 1.70 of the equivalent primary flow area
of a mixed flow engine. The results of the study are shown
in Figures 21 and 22. As showii in Figure 22 reverser effect-
iveness of 32 percent could be expected for a bypass ratio
6.0 engine assuming the basic efficiency of the fan reverser
is 50 percent. The operating poiint shown was determined for
a mixed flow simulation of the SYWF 342B engine for_which the
area of the primary flow at che mixer was 4.1A3 £¢2. This
area was assumed to be the controlliing area o. the primary
stream during fan thrust reversing.

2.1.4.3 anding Roll Analysis

A landin¢ field study was conducted to assess the influence of
reverser efficiency, cutoff speed, actuation delay time, and
runway condition on landing roll distance. 1In addition, the
effect of having a vertical thrust component during thrust
reversing, and the affect of airplane gross weight on the
landing roll distance was investiyated. An existing Boeing
computer program, TEM-036D (REference 6) was used for this
purpose.

The analysis was based on the Model 953-758 baseline config-
uration and the STF 342B bypass ratio 6.0 engine performance.

Figures 23, 24 and 25 show the landing roll distance as a
function of reverser efficiency,n,, cutoff veiocity, and delay
time for icy field (M= .10), and wet field (M= .30) and dry
field (u= .40) conditions respectively. The important para-
meters that effect the landing roll distance are the delay
time and the reverser cutoff velocity. Significant gains in
landing roll distance occur when the reverser cutoff speed

is reduced from 40 to 20 knots. Below 20 knots, the gains in
landing roll distance have less significance. Also, there

are significant improvements obtained when the delay time is
reduced tu instantaneous actuation at touchdown. Each second
of delay means approximately 150 feet of runway length required
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to stop the airplane. Reverser efficiency has a lesser
effect depending o~ the value of M.

Based on these results, an optimum reverser system for STOL
applications would have zero delay time, less than 20 knots
cutoff speed, and an efficiency greater than 30 percent. It
should be noted that this study assumes the fan and primary
thrust is reversed. However, the results can be applied to
spoiled primary thrust and fan thrust reverser systems by inter-
changing the reverser effectiveness for the system and reverser
efficiency in the Figures.

As discussed in Section 2.1.4.1, flow directional control
requirements for some reverser system will result in vertical
force componaits during thrust reversal. The vertical component
will place additional loads on the landing gear and will increase
the braking forces. The effect of the vertical force component
on landing roll distance is shown in Figure 26. Approximately

5 percent improvement in landing roll distance can be obtained
with icy runway conditions and up to 10 percent improvements

can be obtained under wet or dry field conditions.

The effect of airplane gross weight on landing roll distance
is shown in Figures 27 for various runway conditions. These
curves show that gross weight has a significant effect on
landing roll distance.

2.1.4.4 Thrust Reverser Concepts for EBF Lift Systems

A total of four thrust reverser concepts were considered

for an EBF system, each utilizing cascade thrust reversers
for flow control. The concepts are shown in Figures 28 i
through 31. !

An unmixed flow engine installation is shown in Figure 28.
Thrust reversing is accomplished using a fan cascade thrust
reverser and a mechanical primary thrust spoiler. The i
primary spoiler mechanism shown is similar to the spoiler 4
used on the General Electric CF6-6 engine. It must be
noted that other types of spoiler systems can be configured

for the unmixed flow engine including target and blocker/
deflector systems. A disadvantage of the primary thrust

spoiler concept for high wing, four engine aircraft install- :

ation is that the primary flow would be directed to the

side of the nacelle, which could result in impingement of
the exhaust flow on the: airplane fuselage and adjacent
nacelles. This could result in higher reverser cutoff speed
due to possible surface heating and reingestion problems.

A concept for a mixed flow engine installation is shown in
Figure 29. This concept also uses a fan cascade thrust
reverser to obtain the required flow directional control.
“Cycle spoiling" is used to spoil the thrust of the primary
flow.
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The thrust reverser concept shown in Figures 28 and 29
utilize a translating cowl and blocker door mechanism
similar to the mechanism used on the Boeing 747/JT9D primary
flow thrust reverser (Reference 7). The cascades are
fixed in the upper 180° sector of the nacelle and the
cascade strongbacks are skewed to provide the required
flow control upward. Air driven ball-screw actuators are
used to translate the fan cowl aft exposing the cascade
vanes. As the cowl translates, a drag link mechanism
deploys the blocker doors. The reverser cascades are
constructed of cast alumninum vanes and the blocker doors
are constructed of aluminum honeycomb panels.

The difficulties of designing a thrust reverser system

for mixed flow turbofan engines that reverse the total fan
and primary flows are demonstrated by the concepts shown in
Figures 30 and 31. Concept-14, shown in Figure 30 uses a
conventional clamshell blocker door mechanism similar to the
type used on the Boeing 727/JT8D and Boeing 707/JT3D thrust
reverser systems. Two clamshell blocker doors with a central
pivot block the engine and fan exhaust flow and divert the
flow through the upper portion of the nacelle. Fixed cascades
are exposed when the clamshell is deployed. This technique
is not compatible with the reverser exhiust flow control
requirement because the casicade aperture is too long and the
clamshell cannot seal the entire cascade during cruise mode.
Also, during reverse mode the clamshell blocks a portion of
the available cascade flow area. An alternate design for

a mixed flow engine is shown in Figure 31. A translating
sleeve and fixed plug block the mixed flow and primary flows
during thrust reversing. Fixed cascades provide the required
flow directional control. Air driven ball-screw actuators
are used to translate the cowl sleeve. The thrust reverser
cascade vanes, inner surface of the translating sleeve and
fixed plug are constructed of steel. This concept eliminates
blocker doors and linkages and also eliminates the problems
encountered with the clamshell mechanism.

2.1.4.5 Thrust Reverser and Thrust Vectoring Systems for
MF+VT Lift Systems

Thrust reverser and thrust vectoring concepts for mechanical
flap and vectored thrust lift systems included single pod
concepts for BPR 3.0, 6.0, and 12.0 engines, and dual pod
concepts for BPR 3.0 engines. Eleven concepts were evaluated,
Figures 32 through 44.

Mixed Flow Engines ~-- Single Pod

The design options available to the designer are basically
either to combine the functions of the thrust vectoring and
thrust reversing system into a single mechanism or to separate
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the thrust reversing and vectoring function and provide a
complete design for each system. The combined TR/TV is per-
haps the most desirable approach primarily because of the
potential weight savings and reduced mechanical systems
required. For example, a single actuation system and control
may be utilized for a combined TR/TV system where two actu-
ation and control systems are required for separate TR and
TV installations. However, it is probable that the combined
TR/TV system will require more mechanical complexity to
include both functions.

Separate thrust reverser and thrust vectoring systems that
require a common exhaust duct will require additional nacelle
length, and will result in a high weight installation. An
alternate to separate thrust reverser and vectoring system is

the "cycle spoiling" thrust reverser technique. "Cycle spoiling"
allows satisfactory flow directional control to be achieved with
a shorter overall nacelle and less weight. This technique was
utilized on several of the concepts to obtain the lightest

weight system possible.

A combined thrust reverser and vectoring concept for a BPR 3.0
mixed flow engine is shown in Figure 32. Cascades apertures in
the upper half of the nacelle direct the flow upward and forward
for thrust reversing. Cascades on the bottom of the nacelle
direct the flow down and aft for thrust vectoring. Continuous
thrust vector angle modulation between 45 and 90 degreees is
provided by variable angle cascades. Area match is maintained
by a mechanism that opens additional blade rows in the 45
degree positon. The TR or TV mode is selected by an annular
rotating valve. A translating sleeve covers the TR and TV
apertures during the cruise mode and also blocks the flow

by contacting the fixed position plug during the TR and TV
mode. A detailed design of the concept is shown in Figure 33.
The thrus: reverser and thrust vectoring cascade vanes and

the rotating selector valve are constructed of steel. Air
driven ball-screw actuators are used to translate the sleeve
fore and aft. An electric motor and linkage is used to actuate
the rotating selector valve.

Another combined thrust reverser and vectoring system concept is
shown in Figure 34. The system consists of three deflector
doors (inner, middle, and outer) mounted aft of tne exhaust
nozzle and utilicing common hinge points. The inner and outer
doors are geared together through a hub mounted planetary gear
train (3:1 ratio). The middle aad outer doors are linked to-
gether through a dwzll mechanism to allow the middle door to
rotate 75° before the outer door moves. A detailed schematic

of the mechanism and defl-r ~tor door positian is shown in Figure
35. The middle door is “civen by two ball screw jacks and the first
75° rotation produces 0 through 75° vectored thrust. The next

68

(o




2
™

- n. g P ) SO RN S
§

St oo
0

. R}
—— o A e ——————— g

.
-
~.

e . wa -

sy~

:_‘.l'{‘_. .-

ame s same oo omwe ¢lee o
" .

—

Sedimd v

Xt e e ——
Sk (el P ~) OUTER DOOR
4
- - -_:,'. 3 T i
e o7 - hE ! '
] .
| ;
et — : ' + + i e ¢ e et e
- ' ! |
- : ' -1 }
- -~ -J\ : MIDDLE DOOR
s S g i

LEFT SIDE VIEW REVERSE MODE INNER DO'OR

—————te

o o

Figure 35 :

T W .
o T A o A iy )

o OUTER DOOR

e . amy—r s -—

- - :
- - —mimmn -

MIDDLE DOOR

——feni ammeress = o e wemse e

INNER DOOR

-

LEFT SIDE

R )

VIEW MAX VECTOR MODE !

COMMON HINGE EXTERNAL DEFLECTION TR/TV SYSTEM

69




50° rotation of the middle door moves the outer door 60° and
the inner door rotates 180° (through the 3:1 gear ratio, inner
to outer door). This puts the three doors into reverse thrust
position. The deflector doors are constructed of steel honey~
comb sandwich panels. A variable geometry nozzle will be re-
quired to reduce the Mach number of the flow entering the de-
flector during thrust vectoring. Engine flow control must be
maintained at the deflector exit in order to avoid the losses O
associated with high Mach number turning. .

Figure 36 shows a concept that separates the thrust vectoring

and thrust reverser functions. A three bearing nozzle is

utilized for thrust vector modulation from horizontal to a

maximum of 90° depending on the bearing plane angle. The use .
of multiple counter rotating diuct segments eliminates side -
forces during vectoring. An electric or hydraulic drive system

with gears on each segment are used to rotate the segments.

Steel honeycomb sandwich panels are used to fabricate the

duct segments.

The thrust reverser system consists of a fan cascade thrust
reverser and "cycle-spoiling" of primary thrust. The reverser
concept shown consists of internal and external doors with

fixed cascades in the upper 180° sector of the nacelle. Hydrau-
lic or pneumatic actuators deploy the doors. The cascades,

and internal and external doors are made of aluminum.

A multibearing nozzle may also be used as a combined thrust
reverser and vectoring system as showrn in Figure 37. With
a bearing angle of 60°, the nozzle may be deflected to a
maximum of 120°, During approach and landing the nozzle
deflection angle would be at approximately 75°. At touch-
down the nozzle would simultaneously move to the maximum
deflection position and rotate 90° to direct the exhaust
flow outboard. Because of the possibility of cross flow
ingestion by an adjacent nacelle inlet, this concept will
probably be applicable to aircraft with one engine under
each wing.

The concept shown in Figure 38 employs a lobstertail=-type
external deflector vectoring system consisting of three
hemispherical panels deployed aft of the nacelle. The de-
flector doors have a common hinge and are deployed using

an air driven ball-screw actuator with incremental position
capability to obtain the desired vectored thrust angle. Engine
flow control must be maintained at the deflector exit utiliz-
ing a variable geometry nozzle to avoid the losses associated
with high Mach number turning. The thrust reverser system
consists of a fan cascade thrust reverser and "cycle-spoiling"
of the primary thrust. It is the same system discussed pre- '
viously for the multibearing vectoring nozzle concept.

70




o

INIONI MOT4 GIXIN 9 4dE — LdIINOD
@Ol..ﬂ-& —ALl \ Sl ONIHOLITA LSNYHL ONIYVYIGILTINW/ATY LSNYHL °9¢ anbro

3NION3 MO+ gaxiian 9 448 IN3HOS A3Y LSNYHL J1VYNY3ILIV

—1d3DNOD ONINOLDIA 4SNYHL
ONINVYIB-I1INN_ ATy LSNUHLITZ7Z 2 I'Nosvim 5 3 ]
_‘ —

NOLLISOd d340193A o006

> NOILISOd 3SINYD

71

H3SHIAIY NV




e
[2 738
€El—dd—Al/Y| | ——A3>=
3NIONI MO G3XIN 9 "¥d8
~ LdIONOD ONINOLOIA LSMHL - INIONIT MOT4 GIXIN 9 Yd8 — LdIINOD
./A3Y_LSTAHL ONINV3IE - LLINW[TZraaz RosTim T3]

ONIHOLIIA LSNYHI/AIH LSNYHL ONIYVIGILINN LE 38

{434) AINO
A3Y HO4 319NV

AQ3HOLI3A XV

SNOILLISOd A3H0103A

o0

%

72

[
\

{amd 50z1L)

NOILISOd ONISU3IAIY LSNYHL




LO—dd—ALlL/ /481

3NIONI MOT3 Q3XIK 9 ¥48
— 1d3DNOD ONINOLDIA LSNYHL
VL Y31S801/A3Y 1SNyHL 12767¢] NOSTM 14

NOILISOd U3HOLI3A 06

NOILLISOd 3SINYD

INIONI MOT7d GIXIWN 9 Hdg — LdIONCO
ONIHOLIIN LSNYHL TIVL YILSFOT/AIH LSNYHL -8E 34nb14

(V24




Figure 39 shows a vectoring concept consisting of a rect-
angular nozzle with fixed vertical side walls and hinged
horizontal panels. During thrust vectoring, the horizontal
panel at the bottom of the nacelle is translated forward
using an electric or hydraulic motor and a rack and pinion
drive mechanism. The upper hinged panels are slaved to the
motion of the bottom panel using linkages not shown in the
gchematic. The tlrust vectoring nozzle and side walls are ,
constructed of steel honeycomb sandwich panels. The degree 0
of mechanical complexity of this devise is equivalent to
other vectoring concepts. The primary design problems are
concerned with sealing the side walls to prevent leakage and
maintaining a good aerodynamic shape to minimize nacelle drag.
The thrust reverser system concsists of a fan cascade thrust
reverser system and "cycle-spoiling" of the primary thrust.

Unimixed Flow Engines - Single Pod

The rotating nozzle concept shown in Figure 40 is believed to

be the simplest system to provide thrust vectoring and thrust

reversing of unmixed engine exhaust flows. The vectoring )
nozzles are rotatable from +90° for vectored thrust to =135° -
for reversed thrust. The nozzles would probably be rotated

forward during reverser deployment without serious risk of

reingestion., Satisfactory reverse thrust can be obtained at

the ~135° rotation angle position. The rotation rates during

reverse mode deployment must be high, approximately 180°/second .
which is twice the rate of the current Pegasus nozzles used on :
the Harrier V/STOL Fighter aircraft. A hydraulic motor connect-

ed to a gearbox and chain drive mechanism is used to rotate

the nozzles. The fan nozzles are rade of aluminum and the

primary nozzles are made of steel.

There are few vectoring system concepts that are applicable

to bypass ratio 12.0 unmixed flow engines. The single bearing
nozzle concept discussed above is limited to engines with bypass
ratios of approximately 6.0 or less. When scaled to larger
bypass ratios engyine size (i.e. BPR 12.0), the fbw area re-
quired for the fan nozzle increases the frontal area of the nacelle
which would substantially increase nacelle drag. Two concepts
for BPR 12.0 unmixed flow engines are shown in Figures 41 and

42. The multibearing vectoring concept (Figure 41) best ill-
ustrates the many difficulties of designing a satisfactory thrust
vectoring arrangement for BPR 12.0 engines. The large size
required for the fan duct results in a long nacelle that does

not have good azerodynamic contours. Also, the weight of the
ducts and vectering nozzle is prohibitive. The external de-
flector concept shown in Figure 42 utilizes a lobstertail de-
flector to achieve thrust vectoring. The deflector is deployed
using air driven ball screw actuators with incremental adjust-
ment capability. The primary problem with this concept is the
ability to maintain air flow match of the primarv stream during
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vectoring mode. The local pressure field surrounding the
primary nozzle will change when the fan flow is deflected

and the primary mass flow will change. Because the fan
nozzle pressure ratio is relatively low it may be possible

to maintain the controlling area at the fan nozzle and aveid
the necessity of a variable geometry nozzle. This would
probably help maintain primary air flow match. Thrust revers-

ing on the BPR 12.0 concepts is achieved using a fan cascade
thrust reverser.

It should be noted that it is possible to vector only the

fan flow of a BPR 12.0 engine and obtain satisfactory vector-
ing performance. Since the fan thrust is much greater than
the primary thrust there may be a favorable trade between

the savings in system weight and ccmplexity and the loss in
available vectored thrust. As shown in Figure 43, to achieve
an effective vector angle of 75°, the fan thrust will require
a mechanical deflection angle of 82° and wil produce a vector-
ed thrust ratio of FRESULTANT-/ FGROSS = .92.

VECTORED

Mixed Flow Engines --- Dual Pods

The design study included dual pod engine installations

using BPR 3.0 mixed flow engines. BPR 3.0 mixed flow engines
‘necessitate vectoring and reversing all of the engine flow (as
discussed in Section 2.1.4.2) to achieve satisfactory perform-
ance. Therefore, the available design options are separate
thrust vectoring and reversing systems or a combined thrust
vectoring/reversing system. Because of the potential weight
advantage, a combined thrust reverser and vectoring system

is probably the best option for a BPR 3.0 mixed flow engine.

Of the two combined TR/TV concepts considerzd for the single
pod mixed flow engine installation, the external deflector/
target thrust reverser/vectoring system shown in Figure 34
was selected for the duval pod inztallation. A schematic is
shown in Figure 44. Thisinstallation is relatively simple,

lightweight, and provides good thrust vectoring and thrust
reversing performance.

2.1.4.6 Thrust Reverser Concepts for USB Lift Systems

Two thrust reverser concepts are shown in figure 45 and 46
for an overwing USB installation. The BPR 6.0 unmixed flow
installation, Figure 45, utilizes a fan cascade thrust re-
verser and a mechanical primary *hrust spoiler. The fixed
cascades direct the flow upward above the wing surface. The
BPR 6.0 mixed flow engine concept, Figure 46, utilizes a
target thrust reverser consisting of two hinged doors, actu-
ated by cne centrally located hydraulic actuator. The target
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deflector door is hinged to the nacelle structure. The de-
flector ddor is hinged to the main deflector door. As the
target deflector is deployed the lip door is slaved into
position using mechanical linkzyes. The deflector doors are
constructed of stainless stezl. A nore detailed schematic of
the reverser installation is shown in Figure 47.

In order to obtain effective vectoring performance for upper
surface blowing, the engine exhaust flow must be attached to
the wing upper surface. This necessitates exhaust nozzle
designs that are D-shaped (aspect ratio of approximately 3.0)
and a highly integrated wing aund nacelle design. Boeing
studies of such nacelle configurations show that the mixed
flow engine concept shown in Figure 46 and 47 offers good
reverser performance, minimum weight, and good mechanical
design relative to other nacelle concepts. The unmixed flow
concept shown in Figure 45 would not be an acceptable install-
ation for upper surface blowing because of the requirements
cited above.

2.1.5 Fan Cascade Thrust Reverser Detailed Design

The objective of the detailed design study was to demonstrate
the feasibility of the fan cascade thrust reverser concept used
for the EBF and MF+VT engine installaticn. The problems of
exhaust flow contrcl, mechanization, and actuation were
examined in more detail.

Current high bypass flow engines reverse the fan air through
openings provided in portions of their full 360° circumference.
This allows them to use relatively short cascade assemblies and
single hinged, one p’ece, blocker doors. To avoid the re-
ingestion and ground impingement problems of current cascade
designs, the reverser exhaust must be directed through open-
ings in the upper 180° segment of the nacelle. This necessit~-
ates the installation of cascade panels approximately twice

as long as those in current use. The b_ocker door mechanism
and proper sealing of the cascade openings becomes a major
design problem. The use of bi-fold panels or a similar

design, is required to block the fan flow during reverser
ope;ation and also provide coverage of the cascades during
cruise.

Analysis of the fan cascade thrust reverser concepts discussed
in Section 2.1.4 disclosed several deficiencies. First, the
translating sleeve concept, Figure 28, would require high
actuation loads because of the large segment of cowl structure
in motion and the fast deployment time required. This would
require large size actuators and corresponding structure to
carry the loads which would result in higher weight. Also, it
was recognized that the blocker door mechanism envisioned

was not feasible because of the long cascade length and the
resulting sealing problems during the cruise mode. The re-
verser concept shown in kigure 3¢ is not feasible because the
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external doors would experignce ‘high loads during deployment.
The resulting weight .penalties for the actuation system and

structure would not be acceptable. Therefore, a reverser design

was conceived that eliminated the deficiencies of the other
concepts.

The revised fan cascade thrust reverser concept is shown in

" Figure 48. The design utilizes cascade panels and deflector

doors located in the upper 180° segment of the nacelle. The
cascades have an airfoil cross section with a leaving angle
of approximately 50° at the blade throat. The cascades
solidity, c/1, was selected as 1.40 based on Model 747 thrust
reverser development tests. The blocker doors form a smooth
surface for the fan duct in the cruise position and with an
actuator stroke of 4", the cascades are fully exposed as the
doors block the fan exhaust for thrust reversing. The eir-
flow area match during reverser deployment is shown in
Figure 49. The outer doors are oriented in  stream-wise
direction for possible in-flight .-deployment. Their opening
angle is intended to prevent possible cross-reingestion on
adjacent engines during reverser operation. Interconnecting
linkages are used-to operate the outer doors with a single
hydraulic actuator for each side of the nacelle.

Various blocker door design concepts were examined in trying
to develop a satisfactory thrust reverser design. Two of the
concepts are shown in Figures 50 and 51. The design in Figure
50 utilized a bi-fold door arrangement mounted to a track.
Although the design provides excellent internal geometry for
the reverser exhaust, the airflow area match during reverser
deployment is poor. When the blocker door is at approximately
one-half of its full cycle, the fan duct is totally blocked
and only 50 percent of the cascade area is exposed. The
concept shown in Figure 51 corrected the area match problem;
however, it has an open area between the blocker dcors and

the track while in the cruise mode. The open area could not
be easily sealed without added mechanism and, therefore, added
complexity to the reverser system. The concept shown in
Figure 48 corrects the airflow match and sealing problems
encountered with the previous designs.

Various locations for the blocker door actuator were studied
before selecting the placement shown in Section A-A of Figure
48. Early studies placed the actuator at the forward end of
the blocker door between the outer fan duct wall and the out-
side of the nacelle. This location required a separate link
between the door and actuator, approximately 10" long, -“ich
would follow the blocker door into the blocked positiou and

be exposed to the reverser gases along with a portion of the
actuator ram. The required stroke of this actuator would be
18" and its body length would be approximately 26" long. This
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length would piace the actuator attach point at the forward
flange of the engine fan case. This location is considered
unacceptable because of the various engine accessories and
service lines on the fan case. To alleviate this problem

and still actuate the door from this location, the entire
engine nacelle would have to be lengthened approximately 18"
with the cascades moved aft by this same amount. The actuator
and its connecting linkage could then be positioned aft of

the fan case rear flange. Also, the engine strut would have
to be lengthened in order to keep the reverser gases forward
of the wing leading edge. This potential increase in weight
of the strut and nacelle resulted in the decision to place the
actuator as shown in Figure 48. The temperature in this loca-
tion would be an estimated 300° - 400°F. The desirability to
keep hydraulic fluid away from the engine would indicate that
an air operated actuator be used rather than a hydraulic device.
However, if shrouded lines were discretely employed, hydraulic
fluia should not become a decisive safety factor and either

a hydraulic or pneumatic actuator could be used.

2.2 Task 2.2 --- Analyze Performance of TR/TV Systems

The design study conducted during Task 2.1 included thrust
reverser (TR) and thrust vectoring {(TV) systems applicable
to three high lift systems for STOL tactical transports
including:

l. externally blown flaps
2. mechanical flap and vectored thrust
3. upper surface blowin

The TR/TV concepts were evalu~:tc? zn the basis of TR and TV
performance and weight with the objective of obtaining the
best TR/TV performance for the lightest weight system. Also,
the impact of the TR/TV concept on the airplane aerodynamic
characteristics was included in the evaluation. The purpose
of the evaluation was to determine the most promising con-
figurations for model tests during Part 1C.

Internal performance for the cruise nozzles, vectoring nozzles,
vectoring nozzles. and thrust reversers was computed using
the empirical prediction methods developed during Part 1A,
Task 1.1 of the program. Detailed descriptions of the methods
are provided in Volume I of this report. Weight estimates
were made using Class I estimating methods, considering the
size, materials, and actuation systems of the nacelle and
TR/TV system installation. The weight accuracy is estimated
to be t 10 percent. This does not include weight that would
be needed for a "quiet" nacelle, or flutter. The range of
weights for the nacelle configurations is shown in Figure 52.
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2.2.1 Externally Blown Flap Lift Systems

The thrust reverser concepts evaluated for an EBF propulsion
system installation are shown in Pigures 28 through 31. Table
VII compares the predicted performance and weight for each
concept. As shown in the Table, concept -16, (Figure 31) has
the highest reverser performance, but the total propulsion
installation is 500 lb/installation heavier than the other

i feasible concepts. Concepts -02 and -~03 (Figures 28 and 29

; respectively) have essentially the same installed weight,

‘ but concept -02, a fan cascade and mechanical primary spoilerx,
has better reverser performance. Concept -03 utilizes a fan
cascade and “cycle spoiling" of the primary thrust during
thrust reversing.

These thrust reverser concepts will cause no adverse effect

: on engine operation due to the mechanical design of the re-

) verser. The detailed design study, Section 2.1.5, showed that

3 the blocker door mechanism can be designed to maintain airflow
match can be maintained for the translating sleeve aad cascade

; TR system (concept -16). However, exhausting the reverser

; flow from the upper 180° sector of the nacelle could distort

the internal flow which could affect engine operation. This

is especially true for the fan cascade thrust reverser concepts

(=02 and ~03). The degree of this problem is dependent on the

proximity of the reverser to the fan exit.

On the basis of Table VII, concept -02 has the best overall
system performance and weight. The reverser performance is
acceptable to achieve STOL landing field length, and it has
essentially the same weight as the lowest weight concept (1570
vs. 1550 lb). One disadvantage of the concept is that the ex-
haust flow from the mechanical primary thrust spoiler would be
directed to each side of the nacelle, resulting in impingement
of the exhaust flow on the airplane fuselage (inboard nacelle)
and on the adjacent nacelle. This could result in higher re-
verser cutoff speeds due to possible surface heating and re-
ingestion problems.

2.2.2 Mechanical Flap and Vectored Thrust Lift Systems

The evaluation of MF+VT vectoring concepts emphasized the
thrust vectoring performance and propulsion system weight.
Thrust reverser performance was considered for those systems
with equivalent thrust vectoring performance and weight. Table
VIII cowmpares the predicted performance and weight for each
concept.

Mixed Flow Engines --- Single Pod

As shown 1n Table VIII, concepts -06, -07, =13, and -19 (Figures
36, 38, 37, and 34) have essentially the same weight (within

100 1lb) and vectoring performance. Concepts =13 and -19 have

96




© VRIS R FUEE O W o T TTETIYIS TR AR

o™ T

[

TR Y R LT WA TR, VAR PR ARy E G AN N S ] ¥ e

e S e

ye'd

SRR O SRR oS VTt

£

-

s

INIASVE M)~ M - Mg H3IND018 ON1d ‘3AII IS SNVHL
aninasve (90) - 30-9g, ¥3ASHIAIY ISNHHL IAVISYD
anasve (Mo -Mo="o, ., -
Q3gNTONI LON 3NION3I 40 LHOIFM MO14 9l-dd-AL/dl
‘ aaxiw
oc6 | ozz ! oitc | 900+ | zeo-{oLoz | o8z 06Li | 896 | 0S| 066 | 656 09
.— pr—
HO0Q Y3018 TIIHSWVID
Y3SYIAIY ISNYHL 3QVISVD
. 3 “
[F 2 < = B -
mod | ra f pl-dd-AL/BL “
a3IxXIN _ o m
06 | 0zz | oLz | oo+ | ¥zo+| 0961 | o2 0691 | SvL'L| 09 | ¥S6° | 166 09 | <= . |
. 1SNUHL AHYWIHA JO'ONITIOdS 3TDAD
43SHIAIY ISNYHL NV 3AVISYD
=z IR £0-dd-AL/HL
s | MOS % - iy .
a3axiw \:
06 | 0ZZ | OLL o o losst! ove ol€L | 220’1 | 2 | v86" | L96° 09 i -
LY
] —
. ' - 43710d4S AHYWIHd
6€0-: o 6v6 | 896" | moTs | HISHIATY 1SNYHL NV 3QVISYD
14d m ud ! 1¥d | 14d | G3XIN - e 2
OEL | 00Z | oOes Y 0 ,0.51] ovZ OEEL | G90'L | GE° | 8Y6 ;8961 —NN .- %m S M‘ 20-dd-AL/HL
i NVd | Nvd Nvd |Nvd 09 Lo L —
VIO 1IN 5 —
A Y BWB,T._Bmw,‘z G5y Moy hvioalinuispas & 1801 99| Mo | 0wy Ld3ONOD .
IHOEM — —13Had AIY ] _ISINHD _§SSVJAS Y3SHIAIY 1SNYHL NOILVNSISIa
- TIVLSNi 3NIT3SVE L IHOIEM JONVIWHOAYId
. TVNHILN

m.\\m.hm.\amr 1417dV74d NMOT8 ATTIVNYILXI HOH SLdIONOD Y3ISYIAITY LSNYHL

1IN 919eL




the highest thrust reverser performance which makes these
concepts attractive for a mixed flow engine installation.
However, the under area air flow match characteristic of
concept -13 suggests that a variable area nozzle will be
required for that concept to maintain air flow match during
reverse mode. This will result in a weight increase. As
notea in Section 2.1.4, applications of concept =13 will pro-
bably be limited to aircraft with one engine under each wing
because of the possibility of cross-~ingestion and ground
impingment during reverse mode. Concept -06 has potentially
greater reverse thrust than concept-07 because of the length
of the multibearing nozzle duct. It is possible that the longer
duct length would cause higher spoiling of the primary flow.

Since concepts -06 and -19 require cruise nozzle area variation
during the vectoring mede (and concept ~19 reverse mcde) engine
areacontrol will be an important consideration during the

steady state and transient conditions. It is believed that
engine airflow match will be possible but will require a reliable
control system that senses engine power demand, nozzle area

and deflector position.

Therefore, it appears that the best overall vectoring system
concept of those studied for mixed flow engines on four-engine
aircraft could be either the multibearing concept (concept =6
Figure 36) or the combined thrust vectoring/reverser external
deflector concept (concept ~-19, Figure 34). Concept =13

would be best suited for airplane configurations with one
engine under each wing. Although these concepts were drawn for
a BPR 6.0 engine, only concepts =19 and -13 would be suitable
for BPR 3.0. The "cycle spoiling" feature of concept -05

would be unsuitable for engines with BPR < 6.0.

Uni' ted Flow Engines --- Single Pod

Thi. rotating nozzle concept (Figure 40) offers a technique

to v.ctor and reverse the thrust of bypass ratio 6.0 or less
unmixed flow engines. This concept was the only zvstem
evaluated for BPR 3.0 and 6.0 engines. Vectoring performance
is high because the nozzle geometry is virtually the same

as the cruise and vectored positions and additional pressure
losses during vectoring or reversing would be minimal. It
should be noted, however, that cruise nozzle performcnce will
be affected by the bifurcated fan and primary ducts.

As shown in Tabel VIII the concepts evaluated for BPR 12.90
unmixed flow engines have poor weight characteristics. It

was concluded from the evaluation that thrust vectoring systems
for BPR 12.0 size engines are probably not feasible primarily
due to excessive weight.
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Mixed Flow =--- Dual Pods - .

As shown 1n Table VI1I the external deflector/target thrust
vectoring/reverser systemes offer good performance and weight
characteristics for BPR 3.0 dual pod installations.

Aerodynamic Stability and Control Considerations

The effective thrust vector of a mechanical flap and vectored
thrust lift system rarely acts through the airplane center of
gravity. Therefore, the resulting thrust pitching moment must
he cmnsidered when balancing a vectored thrust airplane. Accept-
able engine locations must be defined to avoid adverse effects
on the stability and control of the aircraft. Figure 53
illustrates how four stability and control balancing require-
ments are used to define the envelope of acceptable engine
locations. These criteria are for takeoff rotation, longi-
tudinal control power, static tip up, and static longitudinal
stability. Of the four boundaries the forward boundary of

the envelope, static longitudinal stability is the most critical.
Placing the thrust vector forward of the envelope means that

the airplane will be unstable because of the horizontal tail

size cannot compensa%*e for the adverse pitching moment.

As shown in Figure 53 concepts -06, -07, and -13 are within
the acceptable thrust vector location envelope, and concepts
-10 and -19 are outside the boundary. Therefore, rebalancing
of the airplane configureation is required for concepts =10
and -19, This could require either resizing the horizontal
tail or relocating the wing further aft toward the c.g., or
both, with corresponding possible weight penalties. Rebalancing
the airplane to accommodate concept -10 will be more difficult
than for concept -19 because the pitching moment is greater.
It should be noted that the pitching moment problem exists

for those systems that combine the function of the thrust re-
verser and thrust vectoring systems and directs the reverser
exhaust forward of the wing leading edge. Concepts that
separate the thrust vectoring and thrust reverser systems do
not have pitching moment problems.

2.2.3 Upper Surface Blowing Lift Systemns

Evaluation of upper surface blowing concepts was based pri~
marily on the reverser performance and weight comparisons. It
was assumed that the thrust reverser concept would not influence
the performance of the vectoring system. Table IX compares

the performance and weight characteristics for the two thrust
reverser concepts for upper surface blowing lift systems., Con-
cept -18 (Figures 46 and 47) provides the required exhaust

flow characteristics for optimum USB performance, and also
offers good reverser performance and weight characteristics.
This concept has been successfully applied to STOL configurations
currently under study at Boeing.
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2.2.4 Conclusions

The results of the TR/TV concept evaluations are summarized
in Table X. The following conclusions can be made based on
the evaluation results:

1.

2.

3.

The thrust reverser system for externally blown flap
lift systems will probably involve the use of a fan

- cascade thrust reverser.

Mechanical flap and vectored thrust lift systems
could use either

a. rotating nozzles

b. multibearing vectoring nozzles

c. external deflector/target thrust vectoring/
reversing systems

depending on the type of engine cycle (mixed or un-
mixed flow).

The rotating nozzle vectoring system would be used

for unmixed flow engines and would present airplane
balancing problems due to the thrust vector location
and the resulting adverse pitching moment. The ex-
ternal deflector/target TR/TV system would also pose
balancing difficulties but to a lesser degree. Multi-
bearing vectoring nozzle installations would present
no airplane balancing problems.

Upper surface blowing lift systems will utilize an
external target thrust reverser system installed with
a mixed flow engine.

2.3 Task 2.3 Select Designs for Part 1C

On the basis of the evaluations, the following TR/TV sys-

tems representing various lift systems for STOL tactical trans-
ports were considered for Part 1C static tests and future low
speed wind tunnel tests:

1.

A fan cascade thrust reverser system that exhausts
the fan flow through cascades installed in the
upper 180° sector of the nacelle (EBF, MF + VT).

An external deflector/target TR/TV system that
combines the functions of thrust vectoring and
reversing into a single mechanism. (MF + VT)
A multibearing vectoring nozzle (MF + VT),

An external target thrust reverser for an over-
wing installation (USB).
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Table X: EVALUATION SUMMARY
LIFT SYSTEM ENGINE TYPE DESCRIPTION TR/TV CONCEFT
EXTERNALLY BPR 6.0 FAN CASCADE THRUST TR/TV-PP-02
BLOWN FLAP UNMIXED REVERSER AND PRIMARY
THRUST SPOILER
BPR 12,0 FAN CASCADE THRUST TR/TV-PP-02
UNMIXED REVERSER SCALED TO BPR
12.0 NO PRIMARY
SPOILER
" MECH FLAP BPR 6.0 ROTATING FAN AND TR/TV-PP-10
AND VECTORED UNMIXED PRIMARY NOZZLES
THRUST
BPR 6.0 MULTIBEARING VECTORING TR/TV-PP-13
MIXED NOZZLE TR/TV SYSTEM
(o =120°)
EXTERNAL DEFLECTOR/ TR/TV-PP-19
TARGET TR/TV SYSTEM
MULTIBEARING VECTORING TR/TV-PP-03
NOZZLE FAN CASCADE THRUST
REVERSER AND PRIMARY
“CYCLE SPOILING"
BPR 3.0 ROTATING FAN AND PRIMARY TR/TV-PP-10
UNMIXED NOZZLES SCALED TO BPR
3.0 SIZE
BPR 3.0 MULTIBEARING VECTORING TR/TVPP13
MIXED NOZZLE TR/TV SYSTEM SCALED TO BPR
(o =120°) 3.0 8126
e
EXTERNAL DEFLECTOR/ TR/TV-PP-19
TARGET TR/TV SYSTEM SCALED TO BPR
- 3.0 SIZE
BPR 12.0 NO VECTORING SYSTEM
UNMIXED FEASIBLE IN THIS BYPASS
RATIO ENGINE
BPR 3.0 EXTERNAL DEFLECTOR/ TR/TV-PP-16
MIXED TARGET TR/TV SYSTEM
DUAL POD
UPPER SURFACE BPR 6.0 EXTERNAL TARGET THRUST TR/TV-PP-18
BLOWING MIXED REVERSER SYSTEM
BPR 3.0 EXTERNAL TARGET THRUST TR/TV-PP-18
MIXED FLOW REVERSER SYSTEM SCALED TO BPR
SINGLE OR 3.0 S1ZE
DUAL POD
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Parametric test data are available that are applicable to the
multibearing nozzle and the external taryet thrust reverser
concepts. Multibearing nozzle data was obtained during Part
1A of the program (Reference §). A wide range of geometry
variations were tested that is adequate to define the vector-
ing and reversing performance of multibearing nozzles. The
multibearing nozzle test results are reviewed in Volume I of
this report. Data for the external target thrust reverser for
the USB lift system was obtained from a Boeing sponsored
static test program (Reference.9). The results have been -
made available to the STOL Transport TR/TV Program and are
reviewed in Section 1IV.

Because of the existence of data for the multibearing nozzle
and external target thrust reverser concepts further testing
of these concepts was considered unnecessary. Therefore, the
fan cascade thrust reverser system and the external deflector/
target TR/TV system concepts were selected for Part 1C static
testing.

2.4 Task 2.4 - Test Plan Preparation

Test plans were developed for Part 1C static tests for the
thrust reverser and thrust vectoriny concepts selected during
Task 2.3. The purpose of the tests was to obtain parametric
performance data as a function of geometric variables and
engine power setting. The test plans (Reference 10) provide
definition and descriptions of the test objectives, method-
ology, models, facility requirements, conditions, procedures,
and data acquisition requirments. The test plans were sub-
mitted to the Air Force Project Engineer for approval on

31 March 1972 and wexe approved on 26 May 1972.

2.5 Task 2.5 - Fabricate Hardware for Part IC

Test model design and fabrication was initiated imiiediately
following approval of the Air Force Project Engineer to
proceed. Model fabrication was initiated on 17 June and

was completed on 27 July 1972, Detailed descriptions of the
test model hardware are contained in Section 1IV.
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SECTION III
PART IC - MODEL TESTING

3.1 Task 3.1 - Cunduct Static Performance Test

The objective of Task 3.1 was to obtain parametric performance
data for the promising thrust reverser and thrust vectoring
concepts developed during Part 1B design studies. Static
performance data as a function of fundamental geometric var-
iables and engine power setting was required.

As discussed in Section III, a fan cascade thrust reverser
system and an external deflector target TR/TV system were
selected for static testing. The tests were conducted at
the Boeing Propulsion/Noise Laboratories during July and
August 1972. The test results are summarized here-in. De-
tailed results are contained in a test report (Reference 1ll)
submitted to the Air Force Project Engineer in October 1972.

3.1.1 Fan Cascade Thrust Reverser Model Test

A proposed method to minimize thrust reverser exhaust gas
reingestion and aerodynamic interference on STOL tactical
aircraft is to direct the exhaust flow upward and forward

of the wing leading edge. For a fan cascade reverser system,
this means the aperture opening of the fan cascade will be
limited to the upper 180° sector of the nacelle. The cascade
aperture will be longer than conventional cascade designs
(i.e., 747, DC-10) as a result of this requirement. There
are several problems associated with this design, most
notably the potenetial distortion of the fan duct internal
flow during reverser operation vertical directional control
of the exhaust flow while providing acceptable reverse thrust
performance.
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Objectives
The objectives of the static test was to:

1) Obtain performance data for a fan cascade thrust
reverser designed to exhaust the fan flow from
the upper 180° sector of the engine nacelle.

2) Investigate the characteristics of the fan duct
internal flow during reverser operation.

3) Establish design criteria for future wind tunnel
models and for full scale nardware design.

Test Model

The test model simulated a fan cascade thrust reverser
suitable for either un-mixed flow or mixed flow (with
cycle spoiling of primary thrust) high bypass ratio turbofan
engines. A schematic of the model is shown in Figure 54.
The model consisted of an annular flow duct simulating a
fan exhaust duet, with simulated duct bifurcations for the
strut (upper) and engine accessory controls (lower), and

a cascade reverser located in the upper portion of the
nacelle. The annular flow passage was held concentric

by three struts located radially 120° apart. Blocker
inserts were used to simulate the thrust reverser blocker
door geometry. Inserts for 45°, 90°, and 135° were
tested. A photograph of the model is shown in Figure 55.
Each configuration was tested over the total pressure to
ambient pressure range of 1.2 to 2.2.

-~
LY

o~
.

The cascade reverser used was a model fabricated for Model 747
thrust reverser development testing. The cascade segments
were rearranged to provide the desired flow directional

: control as shown in Figure 56. The cascade vane entrance

i angle varied depending on the axial location of the vane

. and the leaving angle of each vanz was fixed at 50°,

L e o s e b W e et 4 I G TR A T

Details of the model total pressure instrumentation are shown
in Figure 54. Three rakes with a total of 33 probes were
installed radially 120° apart. The probes -are "area-weighted"

~ so that each probe measures the total przssure in an equal-
area sector of the flow. The model total pressure was computed
using the average of the duct total pressures. Model total
temperature was measured by a chromel alumel thermocouple
located in the plane of the total pressure probes.
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Figure 55: FAN CASCADE REVERSER MODEL INSTALLATION
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Figure 56: Annular Duct and Cascade Geometry
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Static pressure taps were installed in the inner and outer wall
of the duct as illustrated in Figures 54and 57 The first
static tap in rows 2 and 7 were positioned in the same plane

as the total pressure probes. In addition, two static

pressure taps were located adjacent to each total pressure
rake, one on the inner wall and the other on the outer wall.
These static taps were used to evaluate the characteristics

of the internal flow during reverser operation.

A total pressure survey of the fan cascade thrust reverser
exhaust flow field was conducted using a 12 probe total
pressure rake installed at various radial positions as shown
in Figure 58 and illustrated in Figure 59 The exit probes
were positioned approximately equidistant between each vane
except for the first vane where space was sufficient for two
probes. Surveys were made for the radial positions and
blocker door geometries shown in Figure 59 The rake was
always oriented to be parallel to the cascade strongbacks
(see Figure 59). The correct angle was verified using an
inclinometer.

Test Results

Results of the fan cascade thrust reverser static test are
summarized below. Because some of the configurations had
nearly equivalent performance, data points are not shown in
the performance comparison plots to maintain clarity. Per-
formance data for each configuration is presented in Reference
11. .

1, Reverser efficiency of at least 50% is possible for a
fan cascade thrust reverser that exhausts all of the
fan flow through the upper portion of the nacelle,
(Figure 60).

2. The highest reverser performance was obtained when
the duct blocker door angle was 135° (Figure 60and 61).

3. The cascade discharge coefficient was not appreciably
affected by the duct blocker door geometry. Air flow
match data indicate the reverser was slightly over-
sized relative to the assumed cruise nozzle flow area
(Figure 62).

4. The position of the cascade in the upper 180° segment of
the model resulted in internal flow distortion in the
annular fan exhaust duct (Figure63) . Static pressure
data show that the distortion diminished at approxi-
mately x/h = =3.00 upstream of the cascade.
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ROW v AXIAL STATION X
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¢ 13° 245 | 130 | -50 +70 | +250
7 6° | 33 | .24 | -1.30 .50

8 2r° 246 | -1.30 -50

s1 e® | 33

$2 1%0° | 330

$3 300° | 33

$4 0° | -3

$5 180° 3.30

ss 300° 3.30

Figure 57: Internal Duct Static Pressure Tap Locations
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Figure 58 : FAN CASCADE REVERSER MODEL - EXIT TOTAL
PRESSURE RAKE INSTALLATION
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A survey of the cascade exit total pressure showed that-
the ‘exhaust flow was fairly uniform except at the
cascade rows nearest the top of the model and to the
side 6f the model, (Figure 64). Tailoring of the
internal geometry adjacent to the cascade would improve
the reverser performance.

RSN G

Engine Stability Assessment

sponding fan/compressor sensitivities with correlations normally
being derived from test data. The test data required to estab-
lish these correlations are fan exit total pressure profile

Q measurcments. Since velocity distortions are influenced by
the presence of a fan and compressor in the system, quantitive
predictions of performance change cannot be made. However,
velocity distortion measurements are a good indication of flow
quality and are useful in evaluating various reverser/deflector
schemes relative to upstream flow field effects.

% An analysis of the supply duct internal static pressure data
% B was conducted by Pratt & Whitney Aircraft to assess the duct
5. pressure distortion on engine operation. Fan/compressor back
%, pressure distortions caused by asymmetric thrust reversing is
T recognized as a potentially significant destabilizing effect.
g The resulting loss of engine stability margin is a function of
g g magnitude and extent of back pressure distortions and corre-

An assessment of the destabilizing effect of a velocity
distortion in a clean duct can be made only if the influence
of the fan/compressor on the velocity distortion is ignored
and percent velocity distortion is assumed equal to percent
total pressure distortion. With this in mind, the pressure

G data was used to calculate the velocity distortion at a
location upstream of the reverser, considered representative
of the fan exit plane (x/h = 3.00). The distortion generated
by the reverser and propagated upstream is assumed to be 180°
in extent and the data taken in the low and high velocity
flow regions is assumed to be representative of the flow

G within their respective segments.

The reverser tesi data shows a velocity distortion Vmai-Vmin

of 15 percent plus over a range of duct Mach number typygally
from low to high engine power setting. This is considered
to be significant level of distortion.

Reverse has been previously identified as a critical stability
operating condition for STOL aircraft engines. For example
when all destabilizing effects imposed upon a STOL aircraft
; engine during reverse operation were taken into account in

a recent stability assessment, a back pressure distortion

we v
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Figure 64: CASCADE EXIT TOTAL PRESSURE SURVEY -
BLOCKER DOOR ANGLE - 90°P
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repregsentative of 10% 4 Pt/Pt was accommodated by oversizing
the reverser cascade. Distortion levels greater than 10%
cannot be further accommodated without excessive performance
penalties, however trades of performance and/or weight pen-
alties (increased duct length for distortion attenuation)
for stability can be negotiated.

It has been pointed out that it is not currently possible to
quantitatively equate loss in stability margin with measur:=d
velocity distortion in a clean duct. This is primarily due

to interactive effects of the upstream fan/compressor with

the downstream velocity distortion. The velocity distortion
amplitude will change and will be exhibited as both a static
and total pressure distortion when a compressor characteristic
and the magnitude of the distortion and is not currently
predictable.

3.1.2 External Deflector/Target TR/TV Model Test

Details of the external deflector/target TR/TV design are
shown in Figure 35. The TR/TV system consists of three
movable panels with a common hinge. During thrust vectoring,
the middle panel is rotated clockwise to deflect the"exhaust
flow. During thrust reversal, the inner panel rotates to
the bottom of the nacelle to block the deflected flow and
the outer panel is rotated to expose flow area at the top

of the nacelle to block the deflected flow and the outer
panel is rotated to expose flow area at the top of the
nacelle for the reverser exhaust. The concept may be used
for either single pod or dual pod installations.

The optimum deflector design will be a correct combjination of
deflector setback distance from the nozzle exit and the
entrance flow Mach number as determined by the nozzle diameter.
Provisions will be required to increase nozzle throat area to
reduce the Mach number of the flow entering the deflecto:r
during thrust vectoring. Flow control must be maintained at
the deflector exit in order to avoid losses associated with
high Mach number turning.

Objectives
The objectives of the static test are to:

1. Obtain thrust vectoring performance data as a function
of the following parameters:

(o} deflector setback distance

125




o turning Mach number
0 deflection angl«e
O nozzle pressure ratio

2. Evaluate the thrust reverser performance of the model
geometry corresponding to the optimum geometry for
thrust vectoring.

3. Establish design criteria for future wind tunnel
models and for full scale hardware design.

Test Models

A schematic of the excernal deflector/target TR/TV model
installation is shown in Figure 67. A total of 25 external
deflector configurations were tested. Table XI lists the
configurations and their respective geometric variations as
defined by Figures 66, 67, and 68.

The external deflector model was tested in three basic modes:

1. cruise mode
2. thrust vectoring mode
3. thrust reversing mode

over the nozzle total to ambient pressure ratio range of 1.2
to 2.2. Thr cruise nozzle configuration, Dn/D = 1,0, estab~

lished the kaseline thrust and mass flow characteristics of
the model used to compute thrust vectoring efficiency, thrust
reverser efficiency, and airflow match for the vectoring and
reversing model configurations.

The initial thrust vectoring mode runs tested the model in the
fully deflected position to determine the effect of deflector
setback distance, S, and entrance Mach number on vectoring
performance and to determine the required setback distance
corresponding to the maximum effective vector angle and airflow
match conditions. The setback distance was held constant for
the remaining vectoring mode runs, while deflector position
was varied to determine vectoring performance at intermediate
deflector positions. Also, the nozzle diameter was varied to
determine the required schedule of nozzle diameter versus
deflector position. Photographs of the vectoring model are
shown in Figures 69 and 70. The reverser model, shown in
Figure 71 was tested at the setback distance corresponding to
optimum performance for the vectoring model.
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Model total pressure was measured using a 10 probe "area-
weighted" total pressure rake located in the air supply
duct upstream of the test model. A chromel alumel therom-
couple installed in the duct adjacent to, and in the same
plane as the total pressure probe monitored model flow

total temperature. Static pressure taps were installed near
the throat of the test nozzles as shown in Figure 66. These
pressures were used to determine the flow Mach number
entering the deflector.

Test Results

Results of the external deflecfor/target TR/TV model test are
summarized below. Detailed results are contained in Reference 11.

1, Vectoring performance was very sensitive to nozzle
pressure and deflector geometry. Small changes in
pressure ratio setting (Figure 72) and in the
deflector setback distance and deflector rotation
position had significant effects on the vectoring
efficiency and airflow match characteristics.
(Figure 73, 74, 75, 76, 77, 78)

2. Optimﬁm vectoring efficiency at PT/P°° = 1.6 was
ny = 0.88 with an effective vector angle O.¢¢ = 66°

at airflow match conditions. The vectoring perfor-

mance was lower than the performance goal of ny = .90

and Oosr = 75° indicating that the deflector design
should be revised.

3. Optimum vectoring performance occurred when the flow
Mach number at the entrance of the deflector was
approximately Moyr = 0.45 (Figure 79).

4. The thrust reverser performance evaluation showed
that the reverser efficiency and airflow match were
also sensitive to nozzle pressure ratio (Figure 80),
Reverser efficiency at PT/R. = 1,60 varied between

34 to 41% depending on the nozzle diameter. Airflow
match data indicated the reverser was significantly
under area and that modifications to the deflector
geometry would be required to improve the reverser
airflow match characteristics (Figure 81).
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Further details of the test models and installation, instru-
mentation, procedure, and results of the fan cascade thrust
reverser model and external deflector/target TR/TV model
static tests are presented in Reference 5.

3.1.3 Overwing Target Thrust Reverser Data Review

Static performance for an overwing target thrust reverser de~
sign were obtained during a Boeing sponsored static test pro-
gram. Thrust reverser efficiency and airflow match character-
istics were investigated with a small scale model on the Boeing
Thrust Vectoring Test Rig. Figure 82 shows a schematic of

the reverser model and photographs showing the model installed
on the test rig are presented in Figures 83 and 84 . The model
was tested with separate fan and primary mass flows and pressure
ratios simulating a high bypass ratio turbofan engine. Geometric
parameters investigated during the test included door length,
lip length, door angle, reverser door setback distance, and duct
shape. Data correlations for reverser efficiency and airflow
match for the reverser model are discussed in the following
paragraphs.

Reverser efficiency data corresponding to the engine take-off
power setting are summarized in Figure 8% As discussed in

Volume I , a parameter that provides satisfactory correl-
ations of target thrust reversers performance is ¢ - §, the
difference between the reverser door blockage angle, ¢ , and

the reverser door angle, 0 (see Figure 82). This parameter

was successfully used to correlate annular target thrust reverser
performance and was applied to the overwing external target
thrust reverser data.

The correlation ~ wn in Figure 85 indicates that the reverser
geometry should ; ide for a net angle $- @ of approximately
-25° to achieve 5.\ percent reverser efficiency. It should be
noted that the correlation seems to provide best agreement

when the door angle is constant and the lip geometry and setback
distance are varied to establish the blockage angle. The door
angles for doors 10 and 11 were 93° while the other configura~
tions had a door angle of 78°. This characteristic was also
noted for annular target thrust reverser correlations pre-
sented in Volume I.
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Experience with the annular target thrust reverser showed that
the parameter, § - 6, did not satisfactorily correlate airflow
match data. Similar results were obtained for the overwing
target thrust reverser model as shown in Figure 86 for the
primary nozzle flow data. Considerable data scatter occurred
that was dependent on the reverser door geometry. However,
modifying the airflow match data by the ratio of the nozzle
height, h, and door opening, 1 , considerably reduced the

data scatter as shown in Figure 87. A similar correlation

of fan airflow match data is shown in Figure 88.

As noted for the reverser efficiency correlation, the airflow
match correlation seems to work best when the door angle is
constant. The door 5 data with single flags are for a door
geometry with a longer lir then the other configurations.
This data would indicate that a correlating parameter that
includes the lip geometry might provide a better correlating
parameter,

3.2 -- Task 3.2 Currect Data to Full Scale Performance

The objective of Task 3.2 was to correct the scale model per-
formance data obtained during Task 3.1 using scaling relation-
ships to predict full scale performance. A brief review was
conducted of the literature collected during Part 1A of the
program and other existing data. Only two significant
references were found that pertain to scaling nozzle perfor-
mance, Reference 13 and 13. The first report describes an
analytical methou :0 scale nozzle velocity and discharge
coefficients., The method employs the turbulent, compressible
boundary layer analysis of Stratford (Reference 14 By
assuming the losses are due entirely to skin friction and

are a function of Reynolds number and geometry (at a given
nozzle pressure ratio) the influence of Reynolds number on
velocity coefficient is given by the following equation:

/s T (1-Cymg) (N+1) ]
Re
L o Bl BT rweyeer:
Rees \"'s[ |~ Cvms ]
-2 ¥
Sl b ww

where N is the turbulent boundary layer exponent (typically
N = 7 for a turbulent boundary layer), and the subscripts MS
and FS refer to model scale and full scale. The influence of
Reynolds number on discharge coefficient is given by the
following equation:

Rees
Coes = |- (Rems) (l C°M5>
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The effect of Reynolds number on velocity coefficient is shown
graphically in Figure 89. Nozzles with high velocity coeffi-
cient are affected less by Reynolds number than nozzles having
low velocity coefficients. Since the full scale Reynolds
number, ReFS’ is usually greater than ReMS' the full scale
velocity coefficient is usually greater than the model scalr Cye
A comparison of theoretical and experimental velocity coeffi-
cients at several Reynolds numbers is shown in Figure 90. The
s0lid lines were calculated from Cquation (1) by matching the
Cy at a Reynolds number ratio of 1.0.

Reference 14 presents test data illustrating Reynolds number
effects on nozzle performance coefficients. These data were
compared to predictions made using Equations (1) and (2) with
favorable results. For example, the effect of Reynolds number
on ASME nozzle discharge coefficient is shown in Figure 91.

Several references were found containing comparisons between
model and full scale TR and TV performance parameters (Reference
15 to 23). Comparisons for corrected reverser efficiency

are shown in Figures 92 to 96. In most cases the model scale
<fficiency is greater than full scale. The difference in
performance is usually attributed to exhaust gas leakage
through full scale tail pipe gaps and thrust reverser seals.
Model scale test hardware fregquently does not scale gaps and
seals accurately. 1In some cases differences between model
and full scale values were due to geometric differences.

For example, data taken for the full scale target reverser

thown in Figure 96 was obtained with a greater setback than
for model scale.

The existing data indicates that scaling of thrust reverser
airflow match characteristics is not always successful. For
example, differerces were not 4 between the Model 737 target
thrust reverser model and f . scale primary and*fan airflow
match characteristics. Full cale airflow match showed an
apparent increase in fan flow and decrease in primary flow
during reverse overation. ‘

Comparisons between combined fan and primary airflow (Figure 97)
indicates that model scale data predicts full scale airflow
match only within + 2%. Final tailoring of airflow match in
reverse thrus. must be done at full scale. However the model
data are useful in predicting large mismatch characteristics.

A comparison of model and full scale performance for a hinged
spherical deflector nozzle in the cruise mode is shown in
Figure 98. Nzuuniform 2xit flow conditions for the full scale
nozzle degraded predictions of nozzle coefficients and contrib-
uted to the observed discrepancies.
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Unfortunately, none of the reports noted above generalized
scale effects to predict thrust reverser or thrust vectoring
nozzle performance parameters, i.e., reverser efficiency,r1R,

vectoring efficiency, n_, or airflow match, §. Therefore,
the following approach wis taken to satisfy the okjectives
of Task 3.2. The scaling relationships for Cv and Cp given

Equations (1) and (2) were programmed into the TR and TV
System Performance Program (TEM-357) developed during Part 1A.
Scale corrections are made (at the users discretion) to the
following types of nozzles:

(1) Cruise nozzles

a) Conical

b) Annular

¢) Irregular shaped nozzle
(2) Thrust vectoring nozzles

a) Single bearing

b) Three bearing

¢) Spherical eyeball

d) Lobstertail

The changes in program input required for scale corrections
will be discussed in the Final Report.

3.3 -- Task 3.3 Correlate with Existing Model Data

The objective of Task 3.3 was to correlate the data obtained
during Task 3.1 with the data developed during Part 1A of the
program. The approach taken to fulfill this objective was to
analyze the data and incoporate the significant data
correlations into the Internal Performance Module of TEM~-357.
As noted in Velume I existing external deflecior data were
found inadequate to predict effects of setback and door length
ratio. Theoretical results were shown illustrating the effects
of external deflector geometric parameters. However, the
theoretical results showed considerable disagreement with

test data and were therefore not included in the subroutine
used to predict external deflector performance. Instead, two
specific sets of data were used to predict externzl deflector
performance, one for flat plate and the other for curved
deflectors.
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In order to assess the effects of deflector setback, experi-
mental data obtained from the hinged external deflector *est
were analyzed and correlated in terms of simple geomet- .
parameters. A correlation for discharge coefficient r.c.o as
a function of setback ratio is shown in Figures 99 to 1lQl.
Seventeen TV and three TR configurations correlated using the
setback ratio parameter. Correlations attempted in terms of
other geometric parameters resulted in greater data scatter.

A correlation for corrected vector efficiency is shown in
Figures1l02 to 1Q4.For setback ratios X/D > 1.0, the different
configurations correlate on a single line. For setback ratios
X/D & 1.0, however, the data correlation branches into two
curves, an upper curve for deflection angles of approximately
10 degrees and a lower curve for deflection angles of 30
degrees.

Efforts to develop a general data correlation for the three
types of external deflectors (flat, curved, and hinged) were
not successful, For example, discharge coefficient ratio
correlations are compared on FigurelO5 for anaular target
thrust reversers, the hinged external deflector and theory

for a flat plate deflector. Because of the lack of correlation
between different types of TR and TV configurations, the hinged
deflector data correlations were incorporated into the external
deflector subroutine of TEM-357 as a separate option., It is
believed that the effects of setback ratio are adequately
covered by the hirged deflector data correlations.
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CONCLUSIONS AND RECGHMENDATIONS

4.1 Part IB - Design

The design tasks conducted during this study have produced
sovaral thrust reverser and thrust vectoring concepts applicable

to the high lift systems likely to be used on STOL tactical
transport aircraft:

1. Externally blown flap (EBF)
2. Mechanical flap and vectored thrust (MF + VT)
3. Upper surface blowing (USB)

In addition, a detailed desigrn for a fan cascade thrust reverser
system that meets the requirements of airflow match, performance,
and flow directional control to minimize exhaust flow reingestion
and aercdynamic interference effects was complieted. The various
TR and TV concepts were evaluated on the basis of internal perform-
ance, weight, and aerodynamic stability ‘and control characteristics
to select test models for static performance tests conducted during

Part IC. The primary conclusions to be drawn from the design study
include the following:

1. The aircraft high lift system has a significant impact
on the thrust reverser or thrust vectoring system. Each
high lift system has unigque propulsion system installation
requirements that affect the thrust reverser or thrust
vectoring system design.

2. To avoid the problems of xeingesticn and foreign object
damage during the stopping ground roll, the reverser
system must have the capability of controlling the direc-
tion of the exhaust flow. There are few regions in wh.ch
the reverser exnhaust can be directed:

a) Upward and foxrward acove the nacelle
forward of the wing leading edge

b) Outboard of outkoard nacelle
c) Above the wing aft of leading edge
d) Aft of wing trailing edge
0f these four regions, the best solution consistent with a

practiczl reverser design is to direct the flow upward and
forward zzove the nacelle forwaxd of the wing leading edge.
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3.

Thrust reverser systems for unmixed flow engines may or may
not use a primary thrust spoiler depending on the engine
bypass ratio. The followingc general guidelines were estab~
lished:

a) Bypass ratic 3.0 unmixed flow engines require
thrust reversers for both the fan and primary
flows.

b) A mechanical spoiler may be used to spoil the
primary thrust of bypass ratio 6.0 unmixed flow
engines.

c) A mechanical spoiler is recommended to spoil
the primary thrust of bypass 12.0 unmixed flow
engines. The spoiler may be eliminated provided
the fan reverser efficiency is at least 50%.

"Cycle spoiling" of the primary thiuszt could provide a
simple and lightweight reverser system for a mixed flow
engine, and appears to be an attractive installation when
combined with a thrust vectoring system. However, the
overall reverser effectiveness is dependent on the engine
bypass ratio, and the controlling area of the primary flow
during reverse operation. The over area condition of the
primary flow determines the primary thrust spoiling effect.
"Cycle" spoiling would require interstage bleed for fan-
high-low compressor engine configurations because of loss
in low pressure compressor surge margin.

Landing field length studies conducted during the program
showed that the reverser delay time and the reverser cutoff
velocity are the significant parameters that determine the
landing roll distance. The field length studies also showed
that an optimum reverser system for a STOL tactical trans-
port would have a zero delay time, less than 20-knot cutoff
speed, and reverser effectiveness greater than 35%.

Combining the thrust reverser system and thrast vectoring
system for a mechanical flap + vectored thrust lift system
is a difficult design task. The options available to the
designer are either to 1) ccmbine the functions of thrist
reversing and thrust vectoring into a single mechanism or

2) separate the thrust reversing and vectoring functions

and provide a complete design for each system. The first
option is perhaps the most desirable because of potential
weight savings and reduced support systems reguired, but

is complicated by increased mechanical complexity, by the
reverser exhaust directional control requirements, and by
aerodynamic interference effects. For example, a combined
thrust reverser/vectoring system must place the reverser
exhaust forward of the wing leadinyg edge to obtain the
desired flow directional control. However, the requirements
mean that the thrust vector is forward of the airplane center
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gravity while directional control of the fan reverser
exhaust can be achieved.

U 7. The following conclusionz were made based on performance
and weight evaluation results:

a) The thrust reverser system for externally blown flap
lift systems will probably involve the use of a fan
cascade thrust reverser.

b) Mechanical flap and vectored thrust lift systems
¢ould use either

a. rotating nozzles
« b. multibearing vectoring nozzles

C. external deflector/target thrust vectoring/
reversing systems

depending on the type of engine cycle (mixed or

A unmixed flow). The rotating nozzle vectoring system

‘ would be used for unmixed flow engines and woulad
present airplane balancing problems due to the thrust
vector location and a resulting adverse pitching

i moment. The external defiector/target TR/TV system

would also pose balancing difficulties but to a

lesser degree. Multibearing vectoring nozzle instal-

lations would present no airplane balancing problems.

c) Upper surface blowing lift systems will utilize an
external target thrust reverser system installed
with a mixed flow engine.

8. Static performance tests and future wind tunnel investiga-
tions should include the following thrust reverser and
thrust vectoring systems:

a) fan cascade thrust reverser systems (EBF, MF + VT)

b) external deflector/target TR/TV system (MF + VT)

c) multibearing vectoring nozzle (MF + VT)

d) external target thrust reverser (USB)

Recommendations related to thrust reverser and thrust vectoring
system design include the following:

1. Future studies of TR and TV systems should include detailed
design studies of the thrust reverser and thrust vectoring
systems considered during Part IB. The design studies
would be based on the results of the Part IB design results
and would emphasize the system mechanical design requirements,
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structural life requirements, and safety and reliability

- requirements.

; 2. Future design studies should include trade studies of:

? a) TR/TV subsystems including

:j 1) controls - manual vs. automatic pneumatic vs.
15 ~ hydraulic

'§ 2) interlocks - engine, flight controls, landing
-8 gear
EZ 3) failsafe - redundancy, interlocks
\f. b) Noise suppression vs. no noise suppression.

4.2 Part IC - Model Test

A,

= The model static performance tests ¢onducted during Part IC of the

3 program iiave resulted in parametric tost data for a fan cascade

¥ thrust reverser system and an external deflector/target combined

N thrust vectoring and reversing system. These data plus existing
B data for multibearing nozzles and an external target thrust reverser
p: will be useful to define the performance characteristics of these
TR/TV systems and provide guidance for future wind tunnel model
and full-scale design criteria. The primary conclusions of the

bk A S VAL | ST S

LR
(ST

5 ’ model tested conducted during Part IC include:
E 1. Reverser efficiency of at least 50% is possible for a fan
4 cascade thrust reverser that exhausts all of the flow through
: the upper portion of the nacelle. The highest reverser
i performance was obtained when the duct blocker door angle
5 was 135°,
;, 2. Internal flow distortion can be expected when the fan
4 reverser is located in the upper 180° segment of the nacelle

that could effect the fan surge margin during reverser
operation depending op the spacing between the fan exit and
the reverser. The revrerser should be located at least three
. times the fan exhaust duct heigit downstream of the fan exit.

H 3. Careful tailoring of the internal duct geometry adjacent to
3 the fan cascade reverser would probably improve the reverser
R efficiency.

o 4, The external deflector/target TR/TV performance was very

sensitive to small changes in nozzle pressure ratio setting,
and deflector geometry.

-n'.‘r"fx“\ .
AR r NG Ay 2

5. The external deflector/target TR/TV system design must be
revised to improve vectoring performance and to increase
the effective vector angle. Also, the design must be revised

3

3
4
A

o
3
3
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to improve the airflow match characteristics during reverse
thrust mode. The impact of the design modifications on the
total system design including weight, and mechanical com-
plexity must be considered.

6. Optimum vectoring performance occurs when the controlling
area 1.8 located at the deflector exit and the entrance
Mach number of the flow entering the deflector is Mach .45.

Recommendations for future static performance and wind tunnel
models include the following:

L. Future static performance tests of fan tbrust reversers
should provide a degree of simulation of the fan exhaust
velocity profiles to assess the effect of the internal
flow distortion on the fan performance.

2. Future test model geometry should reflect the results of
the detailed design work recommended in Section 5.1.
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