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SYMPOSIUM ON UNSTEADY AERODYNAMICS FOR AEROELASTIC ANALYSIS OF
INTERFERING SURFACES, PART II

Paper 12 UNSTEADY AERODYNAMICS FOR WINGS WITH CONTROL SURFACES by H.Tijdeman and
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1. Page 12-2 Section 2-2

. 4th paragraph, 3rd line; add after *.... inboard control surface™

“(AR = 1.53, A,

= 50.1° t = 0.25, lyp/lger = 0.573 (Ref.12)."
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PREFACE

Professor Norman D .Ham is presenting here a revised and up-dated version of the article he wrote in 1967,
under the same title, for the Aeroelasticity Manual, and which was included in Chapter 10 of Volume Il the
following year.

Since that date, many advances and developments have been made regarding the vibration theory of the
rotating parts of helicopters, and the underystanding of the instabilities created in flight by these vibrations. For
the Manual to continue to fulfil its information mission, it had become necessary to bring it up-to-date. -Professor
Ham, who had been the first one to draw attention to developments in the field covered by his article, accepted
this task himself; no one could have brought it to a more successful issue.

New questions nave been raised and solved. The analytical methods used to convert in-flight vibrations into
equations and to detect aeroelastic instabilities are presented for hinged and locked blades, for take-off or cruise
flights. The reasons for such instabilities are considered in detail, and efficient means prescribed to avoid them.
Besides conventional type flutter, a large section is devoted to stall flutter. The text is illustrated and completed
by many diagrams giving the results of calculations carried out in the United States.

Considered from a general standpoint, this article which is intended to replace that of 1968, provides an
excellent survey of the data available in 1972 on the vibratory stability in flight of hel.copters, and should therefore
prove extremely useful to helicopter engineers and manufacturers.

R. MAZET
General Editor of the
Manual on Aeroelasticity

PREFACE

Le Professeur Norman D.Ham présente (i une édition révisée et complétée de Iarticle rédigé par lui sous le
méme ti re en 1967 pour le Manuel d°Aéroélasticité et qui a pris place au Chapitre 10 du Volume III 'aninée
suivante.

Depuis cette date, de nombreux progres et développements avaient été apportés i la théorie des vibrations des
organes tournants des hélicoptéres et & la connaissance des instabilités auxquelles ces vibrations donnent naissance
en vol. Pour que le Manuel continue de remplir la mission d’information qui lui a été assignée, il devenait nécessaire
de procéder & une remise 3 jour. Le¢ Professeur Ham, qui avait le premier signalé ’évolution des connaissances sur
la matiére de son article, a bien voulu assumer lui-méme ce travail: nul ne pouvait mieux que lui le mener 3 bien.

Des questions nouvelles sont posées et résolues.  Les méthodes analytigues permettant de mettre en équations
les vibrations en vol et de déceler les instabilités aérodlastiques sont présentées pour des pales articulées ou
encastréces, pour le vol au décollage ou en croisiére.  Les raisons de ces instabilités sont examinées en détail et des
moyens efficaces sont préconisés pour les éviter. A coté des flottements de types classiques, une large place est
fait au flottement de décrochage (stall flutter). De nombreux graphiques traduisant en courbes les résultats de caleuls
effectués aux USA illustrent et completent fe texte,

D'une fagon géndrale, cet article, qui ost destiné & se substituer & celui de 1968, est une excellente synthése
des connaissances disponibles en 1972 sur la stabilité vibratoire ¢n vol des hélicoptéres et doit rendre. 3 ce titre.
d’utiles services aux constructeurs et aux ingénicurs spécialistes de ces appareils.

R. MAZET
Editeur Genéral du Manuel
d’Adroélasticité
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SUMIMARY

HLLTCOPTER BLADE FLUTTER

by
Jdorman D. Ham
Professor
MIT
Cambridre, HMass. 02139
UeSonl,

Methods of analysis of nellicopter blade flutter for both hinged and hingeless

blades are presented. ‘Tne major types considered are bending-torsion flutter, flap-larg
flutter, and stall flutter. Uoth hover and forward flight are considered. Means of
avoiding flutter are described.

SYABOLS

vlade section 1ift curve slope, per radian

blade section semi-cnord

blade sectlon chord

displacement of blade first elastlc bendinp mode

displacement of blade «th bendingy mode
wb
2R(Ox + u siny)
blade spanwise running mass, slugs per foot

blade section reduced frequency,

blade nondimensional spanwlise statlicn

chordwlise displacement of sectlon aerodynamic center
from elastic axls, positive forwaru

cnordwise displacement of sectlion center of gravity
from elastic axls, positive forwary

spanwlse distance alon; blade from axls of rotation
vertical distzance from rotor nub glane

1irt deficlency functlon includinp blade wake effects
rotor tnrust coefficlent

blade bending modulus of elasticlity

real part of 1lift deficlency function

imaginary part of 1ift deflciency function

blade section second moment of arca, flatwise bendlnr,
or ratio Ie/ll

blade moment of lnertia about flapping alnre
blade section moment of Inertia about its center of graviiy

nondimensional biade product of inertlia aovout flapping ana
elastic axes

nondimensional pgeneralized mass of «ta benuling node
blade section moment of inertia about its elastic axis
vlade bending moment at r

blade sectlon aerodynamic moment about elastic axis

rotor radlus

rotor thrus’

blade section angle of attack
blade section nean angle of attack

displacement of blade rigid flapping mode

4
. 5 pach
blade mass constant, or Lock number, ) —
1
mode shape of btlade first elastic bending mode

mode shape of blade kth bending mode

rotor advance ratio V/QR



2
v nondimensional root of bending-torsion characteristic equation
Vi nondimensional rotating natural frequency, kth bending mode
w imaginary part of v
Wy rotating natural frequency, kth bending mode
w, nonrotating natural frequency of blade torsional motion
p alr density
0 rotor solidity
f blade pitch angle
ie dgmping coefficlent of blade torsional motion, divided by
tne critical damping coefficient
Q rotor rotational speed, radlans per second
[ rotor blade azimuth angle, zero when reference blade 1s downstream
® (x) fundamental torsion mode shape

1. IHTRODUCTION

Tne flutter of helicopter blades can be classified under the following catepories:

(1) Flutter of Hinged Blades
(&) Flutter of iingeless Blades
(3) Stall Flutter

The analysis of case (1) differs from tne classical analysis of the high aspect
ratic wing dde to several important factors. The hiph centrifugal force fleld experienced
by tne rotating blade provides fundamental bending and torsional stiffness effects and
also important coupling effects under certain circumstances. Also, the presence of the
revurning wake beneatn the roteor at low flight speeds leads to unsteady aerodynamic ef-
fects that are substantially different from those characteristic of fixed wings. Finally,
tne variable velocity field encountered by the blade in forward flight generates important
time varlatlions in tne velocity- and amplitude-dependent restoring forces acting on the
vlade.

The fiutter in case (2) s due to the coupling between blade flapwise and lagwise
motlion wnicou may lead to instabllity at large blade-pitch settings. This instablility can
occur at any flight suveed provided the dampirg of the chordwise motion is below a certain
value.

The instability assoclated with case (3) Is due to the adverse time phasing of
the aerodynamic torsional moment resulting from the loss of blade bound vorticity during
tersional motion at nign angles of attack. The cruplex nature of the phenomenon precludes
an analytical representation of the unsteady airloads at the present time, but the pre-
alction of reprions of instablility 1s made possible by the application of experimental two-
dimensional data.

A useful survey of tne various instabilities of rotors is presented in Refer-
ence (1).

J.  FLUTTLH OF HINGED BLADES
a. kguatlions of lotlon

Consider benaing out of the plane of rotation of the flexible, untwisted, un-
tapered rotating blade snown in Figure {1). The bendinpg moment at r due to forces at s
is

R
M(r) =f [d—z?—)-z(s)m(s)] (s-r)ds
r

AR

)

r

s0% in(s) [z(s)- z(r)]ds

vlifferentiating twice with respect to r ylelds

dZMir)  dTlr) . d2z2(r) PR dzir)
7 —m(r)zh)*-——j—- sfl m(s)ds-
dr dr dr x

rﬂzm(ﬂ
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A SRR R

2
d
M(r) =EI1(r) ;
dr
g dz dzz dzl '[R 2 2 dz . dT
.d?l:EI(r)m-:l—gr? 4 mis) sQds+rQ m(r)g-r-+m(,)z= i

(1)

the differential equation for a beam bending in a centrifugal force fleld.

Assume a serles solutlon in terms of normal bending modes,

[e0]
2: 2 'qk(r) gk(t)

k= (2)

For free vibratlion of the rotating beam, neglecting acrodynamic damping,
dT(r)/dr = 0. Substituting Eq. (2) into Eg. (1)

2 2 R
4 42 "\ 97 2 2 47, .
z{[drz (EI dr? )—drz r plisTSeodarn (IR dr 9t My Oy =0

k=l
Assuming simple harmonic motion at the kth rotating undamped natural bending fre-
quency
_ iv, Ot
9y * Qg €
= - iy, Qt _ 22
g = —ukz .Q.zgke L - g
- 2 A2
[ ]gk' v " mn, 9,
Therefore, the bending equation of motion becomes
[¢o] [+2]
2 42 dT
+ T —_—
Z mvk 4 nk gk Z mnk gk r

As an approximation, assume that all blade torsional flexibility is concentrated
at the root (often true due to control system flexibility: the general case of distributed
torsion 1s discussed in Reference (2)). Then, for the geometry of Figure (2), the coupled
blade bending-torsion equation of motion is

8

dT

5 i + 20%n g -mx, 6-mx 0%z~
R m'qu mvy 79~ ™ mx, = (3)

kg k

Multiply all terms of Eq. (3) by n,_ and integrate from O to R:
k

R R
. o0 2 L2 = 2 - aTr n
SOM g My Qg - (848 9)'£m1;kx1dr-°1;kd' dr (4)
where M = IR 2
k omnkdr k=1, 2, . =
IR mn,n, dr = 0 J ¥k
o J'k

due to the orthogonality of the nk's.

In practice an adequate representation of the blade bending motion 1s often ob-
tained in terms of the first two modes only. On this basis the bending motion of an
articulated blade is described by

2 = rf + ng (5)

where r = rigid flapping mode
n = first elastic node




- R
Thenzir Il z Ml 3 I, = M, /1 5 I - (1/11”0 mn, X, dr, Eas. (4) become, after division by
Il Q°, and since v, = 1,

53 o8 R
B .g-1 8 _19:-] f 4T (6)
o2 +B -1, 0z 1.8 I'QZ | Sy dr
g 2 ] 1 R aT
I, 5‘5+I2V29‘ Ix2?_1x26= I g2 f M 47 dr (n

Now ccnslder torsional motion of the blade shown in Figure (2). Taking moments
about the elastic axis,

R RO . 3
-f m(z-xIB) xIdr +f IOG dr+j; I,Q 8dr + Iewoe
(] 0

R R R
2 dz(o) f 2 dzlo) L dMa,
‘[ rm$l T xIdr-o mxIQ (z-r T xIB)dr- _IF).—Z- ‘£ e dr

for small 2z and 8, anu no lag hinge. The term [Io + fg x% dm] Q2e 1s the well-known
"propeller rmouent”.

Substituting Eg. (5) and dividing by 1192,

.. . B

8 2 B ! dMa,

[ +100+w)8-1, -1 B-1, g-= 5 f dr (8)
Q Nge!' x Ay 1% 4 dr

The aerodynamlic terms in Egs. (6), (7), and (8) are now considered in detail.

From Reference {(3), P. 272, for unict span of a thin alrfoil oscillating in incom-
pressible flow, and neglecting small unsteacy effects due t< itne unsteady component of UT’
Reference (4),

? : —é—;ﬂoc2 ['z'+ UTé—(xA—O.ZSC)é]
r
—%POCUTCI(k) [UP +UT6 + (OSC ‘XA) 6]
dMA A 2 . 2 -
£ . 2 - c
o B Pec [(xA-0.25c)z—UT9(0.5c—xA)—3—é 6 - (x,-0.25¢) 9]

*EI'POCUT"AC’“‘) [UP+ UT6+ (O.5C-XA)é]

where the blade incldent free-stream velocity, including rotor rotational velocity, is
UT = Qr + uQR siny

and the unsteady flow perpendicular to the blade is

=z 4 uflR

dz
2 ar

JF cosv

P

The quantity C'(k) 1is comparable to the classical Theodorsern function C(k), but has im=-
portant differences due to the unique characteristics or the rotor wake. Typical values



of C'(k) are shown in Figure (3), taken from Reference (5).

In the present analysis, the virtual mass terms proportional to ¥ and 0 are
neglected for simplicity. They can be included if desired by appropriate adjustment

(usually of the order of a few per cent) of the values of the blade inertial constants.

The aerodynamic terms can be expressed as follows:

I—Ia_z OR"c‘ierd': - g M2 g “Mn Mg 8- mgB-mg, 9
pHese el % C’ (k) [1+% psinw]
m, =?Yak—)[‘/:2;’dx+psm¢lf —g—dx]
mé/n =2L4[l+%,usmw][—+4(O.S%-;—A)m]
m, s %C'T)- [('+,,L2)+%psimp-p.2cos2w]
mB = %m [%#cosw+-‘i—pzsin2¢]
qu =?7C'T [p.cosq/_/;lxa%(—;L)dx+é—/.¢2sin2w‘£lx:—x

R

(R)]

The é/n term is normally neglected for ¢ << R. The coefficient T'(k) 1s a mean value

based on conditions at the blade three-quarter radius. Also

8 g é
I.Q.z f 17—dr- My "My g " M —E-maze-mpaﬁ-mqg

2

where

|
x
mi q C '81 [psmq/][-% 4(0.5%-R—A) C'(k)].[-%dx +

A~ [
ma2 ) c (k)
I I
maz = %C’(k) [%pzsmzwl—z—dx + pcosy A x %dx
- I I
.Y T LAY AP
mg =% c'(k) [y.cosw‘/; X(R) x(R)d’H'Z Fsmzwf(

Again, the é/ﬂ term 1s neglected for ¢ << R. Finslly,

R dM,

dr 6/% g/a Q ¢/ Q

2
1,02 4

' f t:_M. %-M. L o _m LM B Mg 8 -Mg




where 7 [ — x, e *alf .
i+ L5 Tos - ][4 e
iy 38 T [ & ]
Mysa - %- m:fxéldupsinw./:-;idx]
M‘9 =-4l—:55 ¢’ (k) :p.cos'l/+y.zsin 2\,&]
M, =-—€-%m :|+3psinw+3pzsin2w]
Mg =--21-%e- E;m :p.cosw-/;'xa%(-g—)duzlpzsinzwj;'%(-g—)dx]

Note that in forward flight, when the flow direction reverses periodically with
respect to portions of the blade, xA/R = 0,5 ¢/R, and the blade damping in pitch Mé/n
becomes zero for such portions,

b. Method of Analysis

(1) In Hover

For discussion purposes, torsional motion 6 and rigid flapping motion B of the
rotating blade will be considered. Then the equations of motion become

8 A & .
-ﬂ—z+mp:/n3+(l+mﬁ)ﬁ-l,_a—2+(me-1,)9-0
widion, Bonaseidion, & [ueser (2]
g *Ma g H ML) BT g +Mg o v [ Mg+ 141 ($%)° | 620

In hover, these equations have constant coefficients and can be solved by con-
ventional techniques. Assuming simple harmonic motion, where

8 = Be't

g = Fe\)ﬂt
the characieristic equation of the motion is
4 3 2

Av + Bv' ¢+ Cv- + Dv +E=20

For the cate of quasi-static airloading, T'(k) = 1, all coefficients of the characteristic
equation are real, and the stability of disturbed motion can be evaluated using Routh's
criteria.

When rotor wake effects are included, T'(k) 1is complex and a function of v, and
a trial anc error solution is necessary. For the case of neutral stability, v = iw,
where w is the flutter frequency, and the characteristic equation can be separated into
its real and imaginary components,

A'uu + B'm3 + sz + D'w + E' =0

. Al'wu + Bi'm3 + c'lwz + D'lw + E'l = 0

where the coefficients are functions of w. The palr of equations can then be solved simul-
taneously by assuming values of w and solving each of the two equations for the parameter
(uolﬂ)z. Values of w which yield identical values of this parameter for the two squations
are the flutter frequencies Wps and the torsional stiffness or rotational speed at flutter
is defined by the corresponding value of wo/ﬂ. Conditions for torsional divergence are

not dependent on wake effects since for divergence w = 0.

The flutter and divergence boundaries for a hovering rotor were computed in
Reference (6) for a rotor blade having the following pruperties:



I = ,001
b/R = .05
X, = 0

The results are presented in Pigure (Il).

The effect of the wake is shown in Figure (5) using values of C'(k) from Refer-
ence (7) to recompute the hovering boundary of Figure (4), It is seen that neglecting
the effect of the shed wake 1is adequate for design purposes in this instance.

The effect of blade flexibility on the flutter boundaries is also shown in
Figure (5) by a single point computed for a blade bending frequency v, = 2.5. For con-

ventional blades, neglect of bending flexibility results in negligible, though unconserva-
tive, error,

8 Further discussion and comparisons with test results are presented in References
(8) and (9).

Usually flutter of conventlional articulated helicopter blades is avoided by mass
balancing them about the quarter-chord point, 1 e., by making the blade chordwiiLe center-
of-gravity position coinciderit with the blade section aerodynamic center. However. in
certain instances appreciable blade bending coupled with a forward elastic axls location
can lead to flutter even with mass balanced blades, Referenceg‘(B) and (10).

(11) In Forward Flight

The equations of Section 2a can be solved numerically for the actual blade motion,
including the forcing aerodynamic terms due to blade pitch angle, varlable downwash,steady
state flapping and bending, advancing blade Mach number, stall, and reverse flow.

A recent investigation, Reference 11, presents step-by-step computations of rotor
blade motion, including the effect of blade dynamic stall, during flight at moderate to
high advance ratios. The three degrees of freedom considered in the analysis are rigid
blade pitching about the feathering axis, rigid blade flapping about the zero offset
flapping hinge, and blade first mode flatwise elastic bending. Variable inflow and re-
verse flow are included in the computation of blade forces and moments. The calculation
of inflow, aerodynamic loading, and blade motion is performed iteratively, using estimated
steady state initial values.

Typical results are shown in Figures (€) and (7). The nature of these results
suggests that classical methods of blade rlutter and divergence analysis, carried over
from fixed wing practice, should be replaced by numerical solution of the blade equations
of motion including not only the conventional harmonic excitation forces, but also the
nonlinear effects of reverse flow, variable inflow, dynamic stall, and compressibility.

Classical flutter 1s a highly periodic self-excited motion; rotor blade motion
at high advance ratio 1s larrely due to external excitation. The actual level of blade
motion is the important criterion, as seen in the present results, which demonstrate not
a stabllity boundary, but a blade stress level boundar' due to the excited motion. Even
the "classical flutter" case exhibits the effects of first harmonic excitation, while the
"torsional divergence" case is the blade response to the lift acting at the blade three-
quarter chord, and varying with the dynamic pressure over the reverse flow region.

At very high advance ratios, uncoupled flapping instabllity can occur due to
negative aerodynamic damping and spring forces resulting from the periodic nature of the
flow (Reference 12).

cls inite Bending Effects

The preceding discussion has neglected the effect of steady state coning, collec-
tive pitch, and elastic bending displacement of the blade. For a conventional articulated
rotor, these effects are small. However, for certain hub geometries, the steady state
displacements of significant modes are of fundamental importance and cannot be neglected.
A detailed analysis of such effects is presented in Reference (2). For example, in the
absence of a lag hinge, steady state flatwise bending displacement of the blade intro-
duces destabllizing moments due to centrifugal force which in extreme cases lead to in-
stability when the blade chordwise center of gravity coincides with, or is even ahead of
the blade aerodynamic center. These destabillizing moments are largely attenuatzd by the
incorporation of a lag hinge.

3. FLUTTER OF HINGELESS BLADES

a. Equations of Motion

Classical blade flutter occurs due to the coupling of the torsional and flapping
degrees of freedom. Under certaln conditions, the two bending degrees of freedom of the
blade (in the plane of rotation and out of the plane of rotation) couple together to pro-
duce another type of instability called flap-lag flutter.

In this section, the flap-lag-type instability of torsionally-rigid hingeless
blades in the linear range of blade motion is treated in hover. This problem wa: first
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treated by Young with a restrictive analytical approach (Reference 13). Modal equations
of motion were obtained, but the numerical results were evaluated for a blade represented
by a centrally-hinged, spring-restrained, equivalent model. Young concluded that the
triggering mechanism of the flap-lag-type instability is the lag degree of freedom.

Hohenemser treated the same problem, using a somewhat unconventional numerical
integration scheme (Reference 1l4), Due to the various approximations made in Reference 14,
the results presented there are of a qualitative nature,

Consider the hingeless blade shown in the hub plane axis system of Figure (8).
FPollowing the analysis of Reference 15, the displacements v and w are exrcessed as

V/R = - v (X)n,(t) (1)
w/R = n,(X)g,(t) (2)
where nl(;) is the first normal mode shape of blade lapwise bending, una gl(t) 18 the

modal displacement. Similarly, yl(;) is the first normal mode shape for blade lagwise
bending, and hl(t) is the modal displacement.

The nonlinear equation of motion for flapwise bending is snown in Reference 15

to be
W (% ez2g):2F gn + L [F O-F, A -F. 5 -(2F 8-F )b +
FUYO T 9 tieh o+ 5 1 h 2% "8 9 ie? T e’
.2 I
Fiafh +Fgq hl] L5
3 i
s ; R 2 -
where MF 2 I_ f m"’l dx
| ] o
EF = first mnde rotating fiapping frequency
[
- ) R3 1 i - 12 -
I N A DAL RN LT
I % X
{ 2 |
F-'l z ‘/o-! 'qldr. Flo=j; xyln'dx
. 1 |
F2=j;l"’ldl F“=j;y|1"dl
I S R
e '£ xv;| dx
Ay = rotor inflow ratio referred to hub plane
(") = d/dy () = dsdx
The nonlinear equation of motion for lagwise bending is shown in Reference 15
to be
-— (3 - Z - - » - L
MLl(hl+”L,hl)=(asl'2M7,) h,h, - 2M,,lg|gI
C
X B} 90
+3 (L, 8 Lz"o”‘o’ 5 Lg
C 3
N : —do
+(L,8-2L g2l g, = (L,38A,+2 5L ) )
*2 [
“Lig9y ~Lgfo, hl]
where
M : —R—3 flm 2 4x
L| I| 5 7.
w, = tirst mode rotating logging frequency
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Equations (3) and (4) are a system of two second order nonlinear equations de-
scribing the motion of the system. These equations are coupled through the following
effects:

(a) Coriolis forces
(b) 3hortening effects
(¢) Aerodynemic lorces

The nonlinear system given by Eqs. (3) and (4) are linearized about the static
equilibrium condition (1.e., with all time derivatives set equal to zero), denoted by
8) » h1 ; from the eq.ytions it is clear that
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Let
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Substitution of Eqs. (7) and (8) into (3) and (4}, and use of Eqs. (5) and (6) ylelds,
after neglecting ‘erms of type Agi, Agl 'Ahl’ etc., and writing ng, as g, for convenience,
- o -2 == L) l -‘b _ r .}
Mr,(°|""r, °|)'zp|°|° 2 { 9, Fg (2F|°8 r||xo)"| (9)
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Note that the term 2(5'1 - ﬁyl)hlh1 T 0 has been omitted in Eq. (10) because it is usually
tero. For convenience, the following terms will be defined:
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With Eqs. (11) through (14), Eqs. (9) and (10) can be rewritten in the following conveni-
ent manner

[ X ] [ ] [ ]

‘1’”151"7'2?131"0‘1'°

e 3 g P2 I . (15)
hy ¢ Dhy ¢ wpy by - Yy

Prom Eq. (15), it is clear that X,Y represent the coupling terms, and from Eqs. (12) and
(14) it 1s clear that the coupling is partly due to Coriolils effects and partly due to
aerodynamic effects.

The quantities Dl' D represent the damping in the system, the damping inflap 1s
a relstively large number, while the damping in lag is a small quantity of order C /a;
the lag degree of (reedom 1s the potentially unstable one. o

b. Method of Analysis

The flutter or the critical condition of the linearized system (15) is character-
i1zed by the existence uf a small amplitude oscillation for Eqs. (15).

Assume the solution in the form

PV h e AyeP?

8 - Ale
Substitution of these into (15) ylelds the following characteristic equation
2 — 2 2 -2 _ .2
(p"+D P+ g ) p“+D,pew ) -p°XY20 (16)

For a small value of 8, the root of Eq. (16) has Real(p) < O and the solution is stable,
Por 6 = oc, the system 1s neutrally stable. For 06 > oc. at least one of the roots of

Eq. (16) has Real(p) > 0 and the system 1s unstable.

At 6 = 6., theve are two solutions to Eq. (16) such that p is imaginary:

p - 11uc

Substituting into (16) and setting to zerc the real and imaginary part of (16)
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where v, is the flutter frequency. It is interesting to note that D.,/D1 << 1, Therefore,
2 v =2
Ye Y1

Stability boundaries resulting from the solution of Eqs. (17) and (18) are shown
in Pigure 9 for no structural damping and the mode shapes

Nyt % (1 -4x - (1 - ;)“]

The areas inside the elliptical boundaries are combinations of rotating flap and
lag frequencies for which the system is unstable. These areas are reduced for increasing
structural damping, and increased for increasing v.

c. Torsional Effects

The addition of the torsional degree of freedom is stabilizing for the lower
branch of the flap-lag stability boundary shown in Pigure 9, and strongly destabilizing
for the upper branch, as shown in Pigure 10.

Note: Important effects are associated with the nonlinearities contained in Eqs. (3) and
(4). Por further details, see Reference (15).



4., STALL FLUTTER
a. Aerodynamic Loading During Dynamic Stall

Studies described in References (20) and (21) have shown that the negative damping
in pitch associated with airfoils oscillating at high mean angles of attack can lead to
torsional instability of helicopter rotor blades under certain conditions. The mechanism
of the instability was shown to consist of the adverse time phasing of the aerodynamic
pitching moment associated with the loss of blade bound vorticity as the dynamic stall
occurs.

Subsequent tests, Reference (22), indicated that the same mechanism is found for
the case of airfoil linear angle-of-attack change through high angles of attack. The
nature of these results indicated several important conclusions not only with respect to
the analysis of rotor blade stall flutter instability, but also with respect to the gen-
eral nature of the aerodynamic loading of an airfoil experiencing transient angle-of-
attack changes of large magnitude.

A typical time history of the pressure variation acting at one spanwise station
of a model helicopter rotor blade experiencing stall-induced oscillations while operating
in the static thrust condition showed the initiation of a pressure disturbance in the
region of the leading edge as the blade section approaches maximum angle of attack, and
the subsequent motion of this disturbance in the chordwise direction, at considerably less
than free-stream velocity. The character of the disturbance suggested that it consisted
of free vorticity introduced into the blade flow fiela from the neighborhood of the blade
leading edge during the dynamic stall process. The results indicated that the dynamic
stall phenomenon has far different characteristics than those associated with the static
stall of an airfoil.

The negative pressure peak generated by the pressure disturbance moving aft from
the leading edge leads to a nose-down pitching moment component in phase with the nose-
down motion of the airfoil. Since this nose-down moment is generated once per pitching
cycle, it is seen that the nonlinear aerodynamic moment variation due to pitching motion
at high mean angles of attack is such as to sustain the motion. This self-excited, self-
limiting motion is termed "stall flutter".

The acove results suggested that the same stall mechanism would be found in the
general case of large transient blade angle-of-attack changes. Accordingly, an experi-
mental investigation was commenced at MIT to study large linear angle-of-attack changes
of a two-dimensional wing (Reference (22)). Comparison of the dynamic 1lift variation
with the corresponding values of static 1lift at the same angles of attack indicated that
the maximum dynamic lift achieved was substantially higher than the maximum static 1lift.
A very large, sustained, transient nose-down moment occurred in the high angle-of-attack
region.

The origin of these effects was found in the corresponding chordwise pressure
variations. Dynamic stall began to occur, as indicated by the drop in leading-edge suc-
tion, at an angle of attacx much higher than that for static stall. A negative pressure
disturbance moving aft from the leading edge simultaneously increased the suction in the
mid-chord regic.)\. JSubsequently, the pressure disturbance moved further aft and was still
of considerable magnitude. The delay in the occurrence of stall (as evidenced by loss of
leading-edge suction) due to the high rate of cnange of angle of attack, and the sustained
upper surface suction assoclated with tne chordwise passage of the vorticity shed during
the stall process, both contributed to the high sustained 1lift. In addition, the in-
creasingly aft center of pressure due to the aft motion of the shed vorticity generated
extreme nose-down pitching moment. Finally, the pressure distribution indicated greatly
increased pressure drag on the airfoil. This drag may be a transient analog of the
"vortex drag" due to the leading edge vortex of a slender delta wing at low speed and
high angle of attack.

The above results led to several important conclusions with respect to stall
flutter and airload prediction of high speed and/or highly loaded helicopter rotor blades.

1. The stall of an airfoil section during rapid transient high angle-of-
attack changes !s delayed well above the static stall angle and re-
sults in a large transient negative pressure disturbance leading to
large transient 1ift and nose-down pitching moment.

2. The magnitude of the pitching moment of (1) is such as to generate
substantial nose-down pitching displacements of the blade. These
pitching displacements can substantially alter the angle-of-attack
distribution of the rotor blade. Transient pitching displacement
of the blade in response to the initial stall-induced pitching moment
acting on the blade should be included in stall flutter analyses.

3. The dynamic stall phenomenon of a helicopter rotor blade can be
separated into three major phases:

a. A delay in the loss of blade leading-edge suction to an angle
of attack above the static stall angle, with associated airloads
of the type descriped by classical unsteady airfoil theory.

b. A subsequent loss of leading-edge suction accompanied by the
formation of a large negative pressure disturbance (due to the
shedding of vorticity from the vicinity of the blade leading
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edge) which moves aft over the upper surface of the blade.
Assoclated with this phase are high transient 11ft, drag, and
nose-down pitching moment associated with the greatly altered
pressure distribution on the airfoil,

¢. Complete upper surface separation of the classic static type,
characterized by low 1lift, high drag, and moderate nose-down
pitching moment.

b. Method of Analysis

Investigations of harmonically oscillating two-dimensional wings in forced motion,
for example, References (15), (16), (17), (18), (19), (20), and (21) have demonstrated that
under stalled conditions the average damping in pitch over a cycle can become substantially
negative and is strongly dependent on the wing mean angle of attack, the reduced frequency
of the harmonic motion, the oscillation amplitude, and the airfoil configuration and pitch-
axis location. Reference (16) indicated that the origin of the negative damping was aero-
dynamic moment hysteresis, and that for certain mean angles of attack, reduced frequencies
and amplitudes of oscillation, the mean damping in pitch was zero over a cycle, and that,
under these conditions, a self-excited but self-limiting one degree of freedom limit cycle
oscillation of prescribed amplitude could occur. These results indicate that potential
theory unsteady aerodynamic predictions of two-dimensional airfoil pitch damping are pro-
gressively less representative as the mean angle of attack approaches the static stalling
ang.e. Typical variation of the pitch damping with mean angle of attack is shown in
Figure (11). This figure represents an analytic synthesis of data presented in References
(16), (17), and (20). In the referenced experiments, the amplitudes of the stable limit
cycle oscillation were developed as functions of the initial angle of attack and reduced
frequency. 1n the present analytic synthesis, an attempt was made to correct for differ-
ences in rotation point and static stalling angles of the various data. This was followed
by a calculation of equivalent viscous damping. The necessary balance of energy over a
cycle of oscillation yielded a generalized equivalent viscous pitch damping function.

This equivalent viscous damping function by the nature of the averaging process smooths
out the higher frequency components of the destabilizing aerodynamic pitching moment. It
is important to note that the instantaneous values of negative damping vary about this
mean value and can be substantially more negative near the stalling angle.

The extent of the stalled regions of a helicopter rotor and the possibilities for
unstable pitching-torsional oscillations are illustrated in F.zure (12) which illustrates
a typical angle-of-attack distribution in the high speed cruise condition. This distribu-
tion is based on a detailed calculation of the rotor velocity field, and indicates an ex-
tensive region of stall; the corresponding net integrated pitch damping is found to be
negative over a significant range of azimuth angles. This indicates the origin of a
transiently unstable pitching-torsional oscillation which will occur with a once per rotor
revolution repetition rate. Since only a few cycles of torsional motion are possible be-
fore the blade becomes unstalled, limit cycle motion is usually not achieved. However,
substantial increases in blade torsional stress and pitch link loads are possible either
by self-excitation or in response to external disturbances.

Experimental evidence of such unstatle pitching-torsicnal oscillations or rotor
blade "stall flutter" is abundant. The term "comfort stall" has been used to describe an
almost asymptotic rise in cyclic pitch link loadings and related helicopter vibratory
phenomena which cccur when significant zones of blade stall are present. Some typical ex-
perimental evidence of this asymptotic rise in cyclic pitch link loadings is presented in
Figure (13) in the form of a set of wave forms showing the time variation of the torsional
loading in a typical case.

In view of the experimentally derived damping function, the current insight into
the rotor stalling pattern, and this experimental evidence, it is evident that the net
pitch damping of the rotor blade can and often does become periodically negative in for-
ward flight. Therefore, whenever combinations of thrust ratio and rotor advance ratio
result in significant zones of blade stall, an unstable torsional oscillation may result.

The stability boundary can be approximated by considering the net aerodynamic
pitch damping of the rotor blade control system fundamental pitching-torsion mode of os-
cillation. Because of the complex angle-of-attack distributions which occur in forward
flight, this net damping function will vary widely with azimuth. It can be expected to
exhibit a heavily damped condition in the region of blade advance, and can be expected
to exhibit a negatively damped condition in the region of blade retreat, if large values
of rotor thrust coefficient-solidity ratio and/or rotor advance ratic lead to significant
zones of stalling. Inasmuch as the instantaneous negative pitch damping can exceed the
averages shown in Figure (11), a simple approximation of the stability boundary is ob-
tained by the condition that the motion will be transiently unstable if

[C.(w)]_‘.w“ -[ e (e, [ao(..w)] dx <0

average

where the reduced frequency 1s based on the actual velocity at the relerence radius of the
retreating blade rather than on the mean velocity, i.e.:

wg b
QR(x+psiny

In other words, the local blade element average damping ratio (depending on the

k(x,y)=
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local initlal angle of attack and local reduced frequency) is weighted by the square of
the local fundamental mode amplitude to obtain the net pitch damping at each azimuth
angle. If this welghted average damping becomes negative at any azimuth angle, the
pitching-torsional motion can be expected to become transiently unstable. If the range
of azimuth angles over which the pitch damping 1s negative is broad enough to permit one
or more cycles of a torsional osclllation, a marked increase in cyclic control loading
can be expected.

To illustrate the application of this stability criterion, a calculation of the
net damping function versus azimuth angle was carried out in Reference (20) for a severe
rotor loading condition characterized by w = .17 and CT/o = ,111. The result of this

calculation is presented in dimensiocnal form i Figure (1l4). It 1is seen that the net
pitch damping 1s negative for the region bounded by the azimuth angles 225° and 10° (or
370°). Stall flutter would be expected to occur. Figure (13) presents torsional strain
and pressure data for this flight condition which is seen to support the theoretical pre-
diction of stall flutter. The trace of absolute pressure transducer at the 80 percent
radius statiou and 5 percent chord point is indicative of the loss of leading edge suction
and accompanying pitching moment variation. It is seen that the blade torsional response
to this initlally nose-down moment exhibits an unstable behavior in the region in which
the net damping in pitch is negative. In this case, the instability is short-lived, but
especially pronounced, as evidenced by the peak in the pitch link load trace near the
330° azimuth.

A more precise method of evaluating stall flutter effects has recently been de-
veloped (References (23), (24), (25), (26)). The equations of motion, e.g., Subsection 2a,
are solved numerically for the actual blade motion, including the forcing aerodynamic terms
due to blade dynamic stall.

The representation of blade dynamic stall is based on the results of References
(22) and (27), some of which are presented in Figure (15). The applicability of these
two-dimensional results to the rotating blade is demonstrated in Reference (28). It is
seen that under conditions of rapid transient, as opposed to oscillatory, blade angle-of-
attack change, the maximum 1ift and tcrsional moment generated are proportional to

&(’)c/v, where (s) denotes the value at the instant of dynamic stall, and are considerably
larger in magnitude than those measured in tests of airfoils oscillating through the stall.
In the latter case it 1s believed that some degree of flow separation persists throughout
the oscillatory cycle, leading to forces and moments that are lower than those found in
the transient tests.

The three degrees of freedom considered in the analysis are rigid blade pitching
about the feathering axis, rigid blade flapping about the zero offset flapping hinge, and
olade first mode flatwise elastic bending. Variable inflow and reverse flow are included
in the computation of blade forces and moments. The calculation of inflow, aerodynamic
loading, and blade motion is performed iteratively, using estimated steady-state initial
values.

A typical result is shown in Pigure (16). The corresponding rotor angle-of-
attack distribution is shown in Figure (17). Note that the blade passes in and out of
stall several times as a result of its torsional response to the initial dynamic stall.

¢c. Mear: of Alleviating Stall Flutter

Several approaches to the design problem of postponing rotor blade stall flutter
are evident. The first is the obvious one of avoiding significant regions of blade stall
by increasing rotor solidity beyond that dictated by ordinary performance considerations.
This approach may incur a performance penalty. Excess solidity increases rotor profile
drag, resulting in a reduced rotor Iift to effective drag ratio at the design point, with
an attendant loss in the hellcopter's range and maximum speed capability. A second ap-
proach is to counteract the negative aerodynamic pitch damping with positive mechanical
damping. The difficulty stems from the deformation pattern associated with the funda-
mental torsion mode. Generally, this mode is twisting motion in addition to rigid body
pitching against the effective tcrsional spring of the helicopter control system. In this
case, a dashpot in parallel with the control system is relatively ineffective, and in-
ternal torsional damping becomes necessary; this is slight in conventional metal rotor
blade structures. On the other hand, the use of a glass fiber-resin matrix structure
could be expected to dissipate considerable energy in torsion due to its visco-elastic
damping which varies with the rate of sheer strain.

The most appealing approach, wita the least performance penalty and design com-
plication is to reduce the extent of the stalled zones by departing from the typical con-
temporary blade airfoll section, and employing sections having high dynamic stall angles.
Sections having an appreciable amount of leading edge camber have favorable dynamic stall
characteristics (References (29) and (30)).
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Fig.2 Blade torsional geometry
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Theoretical angle of attack distribution  with non-uniform downwash: Vertol .nodel CH-47A front rotor
V = 140 kts; forward C.G. position, gross weight = 27.500 Ibs.
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