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The  ^over  id an  excerpt of  the proof of 

he main.,lnmmB  irf.Meyer and  Stockmeyer's 
-paper,   "The  Equivalence  Problem  for Regular 
Expressions  with  Squaring  Requires Exponential 
space   . 

The equations  reveal  how certain notations 
from automata  theory   (called  regular expressions) 
can describe  the behavior  of  Turing machines, 
from which  it  follows  that  the equivalence 
problem  for  regular expressions  is  inherently 
difficult  to decide,   no matter what procedure 
is  used  to decide equivalence. 
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PREFACE 

Project KAC was established in 1963 as an interdepartmental 
laboratory a', the Massachusetts Institute of Technology, to 
do research in Multiple Access Computer Systems and Machine 
Aided Cognition.  This effort resulted in the development 
of the crss and Multics Systems.  Project MAC is currently 
movinr toward a major effort in Automatic Proqramming. 

During the year ending June 30, 1372, there were 325 
persons associated with Project MAC.  They included:  21 faculty 
members, mainly from the Department of Electrical Engineering, 
Department of Mathematics and from the Alfred P. Sloan School 
of Management; 103 staff members, fDSR Staff and Support Staff), 
195 students, (both Undergraduate and Graduate), and 8 guests. 

u   ^u Thi?.year' through extensive discussions and consultations 
both within and oatside of M.I.T., Project MAC arrived at 
its new focus on Automatic Programming.  One effort in Automatic 
Programming involves a system, which has embedded in it, extensile 
knowledge of the subject for which the programnung is being 
automated.  The other effort is based on making it easier 
to build large programs from simplier programs.  The first 
effort is being carried out in the newly formed Automatic 
Programming Group while the second approach is being carried 
out in the Dynamic Modeling Group. 

The Automatic Programming Group plans to construct Proto- 
systems of increasing complexity to gain experience in embedding 
knowledge into systems.  This task requires new programming 
techniques and languages.  Two new languages called PLANNER 
and CONNIVER, which have come out of the Artificial Intelligence 
efforts at M.I.T., seem the most promising languages for embedding 
knowledge into systems.  Development and implementation of 
these languages is in progress. 

The Mathematical Laboratory System, MACSYMA, can now 
carry out many symbolic manipulations previously considered 
very difficult.  It can, for example, factor polynomials in 
several variables and do so very efficiently. 

As the Multics development effort has tapered off, the 
Computer Systems Research Group has shifted its attention 
to security and protection in Computer Systems.  In conjunction 
with Honeywell, inc., new follow-on hardware for Multics was 
specified, which is especially tailored to make Multics secure 
and efficient.  This will be in operation early in 1973. 

The Computation Structures Group has continued its investi- 
gation into base languages, oarallel processing schemata and 
the means for description and realization of digital systems 
The Automata Theory Group has now focused its attention toward 
investigating the complexity of algorithms. 

Preceding page blank 
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During the past year, the basic program of Project MAC 
was supported by the InfonPation Processing Techniques Directorate 
of the Advanced Research Projects Agency (ARPA).Individual 
bv0the LhavT fU"df .b^ Several oth^ agencies!- Dyn^ic Modeling 
rLo  i ! K 

0ru1 Sclences Directorate of ARPA; Programm ng 
Generality by the National Science Foundation, and theimSLmen- 
tation of PLANNER by the Office of Naval Research      mPiemen 
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AUTOMATIC PROGRAMMING 

The automatic programming group has been formed to investigate 
the generation of programs from descriptions of the actions 
the programs are to perform, rather than from a description 
ot how these actions are to be performed.  To do this  pro- 
gram generating programs must have a knowledge of possible- 
methods which could be used to perform the actions.  They 
must also know how to select methods appropriate to a qiven 
problem. r 

Current day compilers are examples of program generating pro- 
grams,  ihey have a knowledge of machine structure and thev 
attempt to find the best series of register operations to oer- 
form a desired result such as the multiplication of a series 
of numbers.  To do this requires some search, but primarily 
it is a matter of incorporating into the compilers good tech- 
niques for the situations which are known to occur. 

In order to extend the program writing capabilities of pro- 
grams beyond what current compilers can do, it will be neces- 
sary to incorporate into them knowledge about specific pro- 
blem areas.  As with compiler.,, ehe problem is to represent 
this knowledge in the machine in a way that it can be employed 
with very little search. 

The group has chosen to center its initial investigation in 
the area of management-information systems.  This is because 
a) the automdtion of programming in this area would be of 
great practical importance, b) much can be done by solvinu 
problems of data and file structures, searching, sorting,'and 
scheduling which are quasi-universal in programming c) the 
area provides a good spectrum of problems of increasing 
difficulty.  A prototype system is being constructed and 
should be yielding initial results in a few months.  The sys- 
tem contains two major components: the first is for the inter- 
active specification of what logical information processing 
is to be done, the second is for the automatic realization of 
this processing on a specific computing system. 

Automatic realization of the processing requires the design 
of a series of data files and programs which do the specified 
processing at minimum cost.  Two methods of measuring cost 
seem plausible for investigation:  the charging scheme supplied 
with the IBM OS/360 MVT operating system and the evaluation 
procedure used by the SCERT computer systems simulation pack- 
age.  The IBM scheme is simpler and is being incorporated into 
the initial prototype system. 

Generation of the files and programs has been broken into two 
phases.  The first phase constrains the files and programs to 
a specific design.  The second phase generates PL/I and JCL 
to realize this design on an IBM/370 computer.  Three methods 
of implementing the first phase are under investigation  The 
first method is to provide a series of commands so that a user 
can design the files and programs interactively and then es- 
timate the cost of competing designs.  The system checks that 
ail of the user's design decisions are feasible ana consistent 
The user is also able to ask questions about a partial design 
The second method involves the use of search and heuristics to 
generate a design automatically.  The heuristics satisfy the 
high -'olume processing requirements first and rely on the 

Preceding page blank        3 
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assumption that a costly 
to tho best total design 
t-he problem as an intege 
optimal solution through 
techniques. It is possi 
much longer to find than 
ciably better. However, 
problems should help us 
heuristic routines. 

partial design does not often lead 
The third method is to formulate 

r programming problem and to seek an 
sophisticated integer programming 

ble that optional solutions will take 
good solutions, without being appre- 
optimal solutions to carefully chosen 

to understand the performance of our 

Our current thoughts are that the interactive design of the 
processing to be done will proceed in two phases.  The first 
phase will be the discusson with knowledgeable routines of the 
particular ways certain standard problems such as inventory 
control are to be handled.  In the second phase the system 
will apply these methods to generate an information system for 
a particular configuration of physical assets operating with 
a specified corporate plan.  During this phase specific pro- 
blems may require further interactive design. 

In addition to this central thrust, the group is also explor- 
ing related questions such as the analysis of programs and 
sponsoring the development of LISP on MULTICS, 

_.^l 



■ 

AUTOMATIC PROGRAMMING 

Publications 

1. Fateman, R. J., assays in Algebraic Simplification, 
Project MAC, M.I.T., MAC-TR-95, April 1572, AD 74Ö- 
132. 

2. Fateman, R. j., "Rationally Simplifying Non-Rational 
Expressions", SIGSAM Bulletin, No. 23/July 1972, 
pp. 8-9. 

3. Martin, W. A., "Determininq the Equivalence of 
Algebraic Expressions by Hash Coding", Journal of the 
ACM, Vol. 8, No. 4, October 1971, pp. 545-558.  

4. Martin, W. A., "Sorting", Computing Surveys, Vol. 3, 
No. 4, December 1971, pp. 147-174. 

5. Martin, W, A., and D. N. Ness, "Optimizing Binarv 
Trees Grown with a Sorting Algorithm", Communications 
of the ACM, Vol. 15, No. 2, 1972, pp. 88-93. 

6. Moses, J., "Algebraic Simplification; A Guide for the 
Perplexed", Comnunications of the ACM, Vol. 14, No. 8, 
August 1971, pp. 527-537. 

7. Moses, J., "Symbolic Integration:  The Stormy Decade", 
Communications of the ACM, Vol. 14, No. 8, August 1971, 
pp. 548-560. 

8. Moses, J., "Toward a General Theory of Special Func- 
tions", Communicatiors of the ACM, Vol. 15, No. 7, 
July 1972, pp. 550-5iT: 

9. Wang, P. S. , Evaluation of Definite Integrals by 
Symbolic Manipulation, Ph.D. Thesis. Department of 
Mathematics, M.I.T., 1971; also MAC-TR-92, October 
1971, AD 732-005. 

10. Wang, P. S., "Application of MACSVMA to an Asymptotic 
Expansion Problem", Proceedings of the ACM 25th 
Annual Conference, August 1972, pp. 844-850. 

Publications In Progress 

1. Fateman, R. J., and J. Moses, "Canonical Forms for 
First Order Exponential Expressions". 

2. Fateman, R. J., "Comments on Problem 2". 

3. Fateman, R. J., "On the Computation of Powers of 
Polynomials". 

4. Wang, P. S., "Factoring Multivariate Polynomials Over 
the Integers". 

5. Yun, D. Y. Y., "An Application of MACSYMA to Proving 

the Achievability of the | 2±i ]M  for Evaluation of 



s 

AUTOMATIC PROGRAMMING 

£^ii^ions_ln_P£o2ress (continued) 

General Non-monic Polynomials of Degree n". 

Talks 

6. 

7. 

1. 

Yun,    D.    Y      v i'n„   tu      , ^-. 
Algorithm".     ' the  Lfflci^cy of  the  Dijkstra 

Yun,   D,   v    v       "/-i„  r.    i_   , . 
Algebraic^Eqüätions"^01^ Soluti°n3  of  systems of 

&atJ^h:A
CX

rtair0 Sc^Sle^'ar3 f' 0f  leCt— August  1971. J-^nce  benunar,   Bonn,   Germany, 

^nt'co'ilo^iu^f^t^^^f^T"'  given at ^e 
and  Computers   S  CoLu^cations^Unf  0f Mathe^tics 
Ann Arbor,   Michigan,   Sove^e? ignf^"1^ 0f Mi^^, 

J-iona^Chung Hsing ÄSi^^^fSwan. 



■ . 

-     ■ ■ 

COMPUTATION STRUCTURES 

Prof, J. B. Dennis 

Academic Staff 

Prof. R. M. Fano prof. s. S- patil 

Instructors, Research Associates. Research Assistants and Others 

N. Amerasinghe 
H. G. Baker 
R. Barquin 
P. B. Bishop 
R. Cohen 
J. Fosseen 
P. J. Fox 
F. Furtek 
T. M. Gearing 
I. Greif 
M. Hack 
I. T. Hawryszkiewycz 

D. A. Henderson 
B. Lester 
J. P. Linderman 
J. 
J. 

B. Lotspiech 
A. Meldman 

J. E. Qualitz 
C. Ramchandani 
L. 
J. 
R. 

J. Rotenberg 
E. Rumbaugh 
J. Steiger 

S. R. Umarji 

Undergraduate Students 

G. 
H. 
C. 

G, Bajoria 
J. Kim 
K. Leung 

D. Misunas 

J. Nievergelt 

B. A. Morneault 

J. Phillips 
S. Sadeq 
J. C. Schaffert 
R. Swift 

DSR Staff 

Support Staff 

A. Rubin 



, . 

■ -",,v &-*■>'   ■ 
■■■■■■■. 

COMPUTATION STRUCTURES 

The Computation Structures Group is concerned with the 
analysis of fundamental issues arising in the design and 
construction of general-purpose computer systems through the 
tormulation and study of appropriate abstract models.  The past, 
year has seen new developments in the theory and application 
of Petri nets as a model of systems of interacting parts, 
improved techniques for realizing digital systems with assur- 
ance of correct operation, development of the theory of data 
flow schemata, and contributions to the study of program 
correctness and programming generality. 

A.  Petri Nets 

Our research relating to Petri nets is concerned with the 
theory of Petri nets, the relation of nets to logic circuits 
and asynchronous modular systems, and the use of Petri nets as 
a model for the behavior of systems of interacting parts, 
including systems within and outside the domain of computer 
science. 

Timed Petri Nets 

mode 
(8, 
beca 
easi 
ship 
term 
even 
the 
info 

Chander Rarachandani is investi 
Is in the performance analysis 
5) are an attractive model for 
use the important interactions 
ly represented.  Petri nets rep 
of events in a system that mar 

inacion of activities, but do n 
ts or durations of activities. 
Petri-net model of a system mus 
rmation. 

gating the use of Petri net 
of systems.  Petri nets 
studies of system performance 
between system parts are 
resent the ordering relation- 
k the initiation and 
ot represent the timing of 
For performance analysis 

t be augmented with timing 

In a Pevn net (Figure 1), the firing of a transition may 
represent an interval of activity by some system part.  If the 
transition is enabled (at least one token in each of its input 
pxaces) it means that activity of the system part may begin 
We associate initiation of activity with picking up one token 
from each input place, and termination of activity with adding 
one token to each output place.  This corresponds to consider- 
ing the transition to be two transitions and a place p as in 
Figure 2. r    r- 

Figure 3 shows a timed Petri net obtained by asyociatinq 
time parameters with certain transITTons of the net in Figure 
1.  In a timed net transitions without time paramete-s repre- 
sent sequencing constraints on activities as in a conventional 
Petri net.  Action of a timed transition may be explained in 
terms of Figure 2, where the time parameter T(t) is associated 
with place p.  Transition f may fire immediately when enabled 
or any time later (providing it remains enabled).  Then trans- 
ition t" becomes enabled and fires exactly i(t) time units 
after the firing of f.  Thus the firing of transitions f and 
t  represents initiation and termination of one instance of the 
activity represented by transition t.  It is possible for a 
transition t in a timed net to be re-enabled before a 
previously initiated instance of the associated activity has 
terminated.  In fact, many instances of the activity may be in 

Preceding page blank 
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-ex 
tronsition 

place 

token 

Figure I.   A   Pefri  net. 

^C O 

Figure 2.   Meaning of a timed transition. 
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T(O)   =  5 
r(b) « 2 

Figure 3.   A timed Petri net. 

(o) a timed marked graph (b) periodic schedule 

T(a) = 3 T{b)-2 T(C)=4 

transition 0:2-5, 8-11, 14-17, . 

b:0-2, 6-8, 12-14,. 

c: 2-6, 8-12,14-18,. 

transition 

♦• place 

place witn token 

Figure 4   Periodic schedule for a timed marked graph. 
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progress simultaneously, as we shall see in later examples. 
The number of tokens in place p is tiie current number of 
simultaneous instances of the activity. 

A schedule for a timed Petri net is a set of sequences of 
initiation and termination times for the timed transitions of 
the net.  A schedule is feasible if the timed net can exhibit 
the behavior specified by the schedule.  A schedule is not 
feasible if it calls for initiation of an activity earlier 
than allowed by terminations of other activities.  A feasible 
schedule is said to be prompt if each activity always initiates 
as early as possible.  Here are examples of feasible and prompt 
schedules for the timed net and initial token distribution 
shown in Figure 3: 

(a) a feasible schedule 
transition a:  0-5, 8-13, 13-18 

b:  2-4, 4-6, 9-11, 11-13, 15-17 

(b) a prompt schedule 
transition a:  0-5, 5-10, 10-15 

b:  0-2, 2-4, 5-7, 7-9, 10-12 
| 

Every timed net for which the underlying Petri net is persistent 
(no transition ceases being enabled except by firing) has a  
unique prompt schedule. 

We have studied the class of Petri nets known as marked 
graphs.  In a marked graph, each place is an input place of at 
most one transition, and an output place of at most one trans- 
ition.  All transitions of a marked graph fire equally many 
times in any behavior that returns the net to its original 
configuration.  In consequence, a prompt schedule for a timed 
graph is periodic in that each timed transition initiates at 
regular intervals.  The example in Figure 4 has a periodic 
prompt schedule with period six.  In this case, the rate of 
firing is determined by the circuit containing transitions b 
and c. 

Figure 5 illustrates a situation where several instances 
of an activity represented by transition b may proceed con- 
currently.  Instances of the activity represented by transition 
a are forced to occur strictly in sequence by the one-token 
self loop.  The prompt schedule shown has a period of eight. 

The computation rate of a timed marked graph is the average 
rate of firing for any transition of the graph in a prompt 
schedule.  For the example in Figure 4 the rate is 1/6; for 
Figure 5, the rate is 1/4. 

A = {al a ) 

There is a simple algorithm for determining the computation 
rate of a timed marked graph.  Let the vertices (transitions) 
and arcs (places) of a strongly connected marked graph be 

12 
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where an arc a (vi, v^) is directed from transition v. to 

V.j, and let Ti be the time associated with transition v. (T. = 

0 if v. is not a timed transition).  For any strongly connected 

marked graph one can find a set of simple circuits C  .,,, c 

that cover all arcs of the graph (5).  Let M. , be the number m 

of tokens on arc (v^ v.)   in the initial marking of the net. 

Then the computation rate p of the timed marked graph is given 
by 

where 

Lnk '  »'in  {ijr   | k  =  1,    ...,   m 

E '. 
v.eck 

is the sum of the times associated with transitions of circuit 
C, and 

(v.,v.)Eck 

M. . 
11 

is the number of tokens on arcs of circuit C 
k" 

Figure 6 shows a "PERT" chart with activities a,b,c,dfe 
and the corresponding timed marked graph.  Application of the 
foregoing procedure shows that the computation -ate is 1/8 
the reciprocal of the time for the critical path.  We may ask 
what happens to the computation rate if Np processors are 

permitted to perform activities concurrently.  The correspond- 
ing marked graph is shown in Figure 7, where it is assumed 
that only NR instances of activity e are permitted at one 

time, but arbitrarily many instances are possible for the other 

valieTofrL Ind ^ ^   ^ ^^^n  rates for several 
P      R 

Work is continuing on performance analysis of systems 
represented by more general classes of Petri nets.  Also, the 
properties of Petri nets having time bounds or statistical 

13 
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(a) 

(b) 

transition a: 0-2, 2-4, 8-10, 10-12,., 

b:2-8. 4-10,10-16,12-18,.. 

Figure 5. Marked graph with concurrent instances of an 
activity, 
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(a) "PERT" chart 

BEGIN   Jr 
 »-«^ 

(b) marked graph 

c5 

T(a)  --   1 
END T(b) =  5 

T(C) =   3 
T(d)   =    1 

T-(e)  =  6 

■♦■•, 

circuit 

ab 

cd 

aed 

I 

1 

6 

4 

8 

Figure 6,  Computation rate of a timed marked graph 
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distributions associated with transitions are being studied. 

Canonic Fornm for Petri Nets 

We have begun investigation of notions of equivalence and 
canonxc forms for Petri nets.  For the special case of marked 
graphs, Henry Baker (2) has shown how to reduce any marked 
graph to a simple form which is the same for all marked graphs 
equivalent to the given marked graph. S^apna 

Suppose G is a marked graph and N is some subset of the 
transitions of G.  Then if w is a firing sequence of G, the 
corresponding derived firing sequence u>N is obtained from OJ by 

erasing all elements that are not members of N.  Let G and G" 
be maiked graphs and let N = {^, ..., tn} be a set of n trans- 

itions that appear in both G and G'.  We say that G and G■ are 
equivalent with respect to N if for each firing sequence u of 
G there is a firing sequence u' of G' such that wN and u' are 

identical, and vice versa.  The two marked graphs in Figure 8 
are equivalent with respect to N = {a,b} since in each case the 
set of derived firing sequences is (ab U ba)*. 

First we give two rules which when applied to any marked 
graph will give a simpler marked graph equivalent to the 
original with respect to all of its transitions: 

Rule 1: If an arc originates and terminates on the same 
transition, and has at least one token, it may 
be deleted. 

Rule 2: Let a and b be any two distinct transitions, and 
let x be an arc from a to Jj.  if the number of 
tokens on arc x is greater than or equal to the 
total number of tokens on the arcs of any other 
simple, directed path from a to b, then arc x 
may be deleted. 

Use of the two rules is illustrated in Figure 9.  Rule 1 
f-n^d top

remove
K
a^ 1. and rule 2 is used to delete arcs 2, 

3 and 4.  For each of the three marked graphs, the firing 
sequences are all prefixes of the infinite string (abc)00  A 
marked graph for which no applications of the two rules are 
possible is called a minimal-arc marked graph. 

The minimal arc form of a marked graph always has the 
same set of firing sequences as the original marked graph 
Furthermore, any pair of marked graphs that are equivalent 
with respect to a one-to-one correspondence of their transitions 
have the samo minimal-arc form.  Thus the minimal arc form is 
canonic for these marked graphs. 

16 

Now suppose N is a set of n transitions common to two 
marked graphs G and G'.  How can we tell whether G and G' are 
equivalent with respect to N?  It turns out that if G is a live 

eauiva^nf^' ^ ftl  be reduced to an n-transition marked graoh 
equivalent to G with respect to N.  This is done by carrying 
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out the steps below for each transition t of G that is not a 
member of N: 

Step It     Delete any arcs that originate and terminate at 
transition t.  If any such arc has no token, the 
marked qraph is not live. 

Step 2:  Let X = fx,, ..., X^ be the set of input arcs 

and Y = fy,, ..., y 1 the set of output arcs of 

transition t.  Let M. be the number of tokens on 

arc x. and let N. be the number of tokens on arc 

yj- 

Step 2:  Replace transition t and the arcs in X U Y with 
'     the arcs 

{z..ii = l, ...,ni;  j = 1, ... , n} 

where z.. originates on the same transition as 

x. and terminates on the same transition as y.. 
1 J 

Put M + N  tokens on arc z 
i   j ii 

Applying this procedure to either marked graph in Figure 8 
gives the canonic form in Figure 10.  This example shows that 
the canonical form for a safe marked graph (5) is not 
necessarily safe. 

B.  Arbiters 

Arbiters are fundamental units of digital systems that are 
required whenever two or more asynchronous activities compete 
for access to a shared unit or resource.  A basic form of 
arbiter known as an elementary arbiter is illustrated in Figure 
11.  It controls access to a shared resource by two users — 
user 1 and user 2.  A 0-to-l transition on either one of the 
request wires is a signal thrt the corresponding user desires 
access_to the shared resource.  in the absence of a competing 
request from the other user the arbiter must promptly produce 
a 0-to-l transition on the corresponding grant wire.  The user 
signals completion of his use of the resource by a l-to-0 
transition on the request wire, whereupon the arbiter must 
respond with a l-to-0 transition on the grant wire.  If requests 
arrive nearly simultaneously from both users, the arbiter must 
promptly and unambiguously gran1-, either one of the requests 
and delay granting the second request until the resource is 
freed.  Correct operation of an elementary arbiter must satisfy 
these conditions: 

1. It must never occur that both grant wires are simul- 
taneously at level 1. 

2. If both grant wires are at 0 and at least one of the 
request wires is at 1, the arbiter must grant one of 
requests. 

17 
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Ve 'A 
V8 'A 

% Ve 
Vi 'A 
% V2 

Figure 7    Timed marked graph representing several 
processors and limited throughput of 
one activity. 

18 



■ 

■ 

■ 

■ 

■ - '.   . 

(a) 

(o) 

COMPUTATION  STRUCTURES 

(b) 

/~N O 

Figure 8.    Two equivalent marked graphs. 

a (b) (c) 

®. ® A 
firing sequences; (obc)* ( X Ua Uab) 

Figure 9.   Simplification of a marked graph. 

Figure 10. Canonic form  for the marked graphs in Figure 8. 

lequest 
wires EA grant 

wires 

■*- 2' 

Figure II. The elementary arbiter. 
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We have found that any requirement for arbitration in 
asynchronous digital systems can be met by a modular subsystem 
using elementary arbiters.  For example, an arbiter that over- 
sees sharing of a resource by n users can be built using a 
binary tree of elementary arbiters (14).  The case of n users 
and m servers has been studied thoroughly by Patil, and he has 
recently devised an improved solution based on n-user and 
m-usor arbiters (13). 

Designing an elementary arbiter that functions correctly and 
always acts within a specified time interval is a difficult 
problem.  When the two request wires make 0-to-l transitions 
nearly simultaneously, the arbiter may make an arbitrary choice, 
but it must do F- without hesitation, and without the appear- 
ance of spurious signals on the grant wires. 

Suhas Patil has devised an elegant scheme for building an 
elementary arbiter that will operate correctly in a fixed time 
with extremely small probability of error.  This scheme makes 
use of a subunit called finite resolution arbiter (FlvA) and 
illustrated in Figure 12.   An FRA can fail to operate 
correctly only if two request signals arrive with a separation 
of i   time units or less.  If an FRA fails, the result is that 
both grant wires switch to 1. 

Now consider a pair of FRA's connected in cascade as in 
Figure 13a.  If two requests arrive at FRA-1 separated by more 
than &   time units, only one of the request signals will reach 
FRA-2 and operation will be completed correctly.  If requests 
arrive at FRA-1 with less than 6 time units separation, then 
FRA-1 will transmit both grant signals. Assume for the moment 
that the two request signals are delayed equally by FRA-1. 
Then, so long as A > 26, the requests arriving at FRA-2 will be 
separated by more than 6   time units and FRA-2 will grant one 
and only one of the requests. 

One of several possible cricuits for a finite resolution 
arbiter is shown in Figure 14.  Each pair of NAND gates forms 
a set-reset flip flop which is forced into its 1 state by the 
presence of a request on the associated input wire.  The setting 
of one flip flop prevents the other flip flop from being set, 
thereby blocking its associated request.  If two requests 
arrive at nearly the same instant, both flip flops will be set 
since neither will be fast enough to block the other. 

The time interval 6 is the time separation of request 
signals such that a request signal and a block signal arrive 
simultaneously at one of the flip flops.  In this circumstance 
the flip flop may be placed in a metastable state in which it 
may remain for an arbitrarily long time (with decreasing 
probability).  The existence of metastable states, and the 
certainty that failures caused by circuits persisting in meta- 
stable states have been problematic in computer systems has 
been nicely explained by Ornstein (4). 

20 
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Figure 12, The finite resolution arbiter. 
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Figure 13,   Finite resolution arbiters 
connected  in cascade. 
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request 

Figure 14. Circuit for finite resolution orbiter. 

request 2 
eorlier 
region A) 

probability of 
failure given 
(t„t2)inA 

request I 
earlier 
(region B) 

Figure 15. Failure analysis for two FRA's in  cascade. 
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these actions are not productive.  We have found there is a 
trade-off in parallel schemata between productivity and degree 
of concurrency.  That is, to achieve maximum parallelism, it is 
necessary that the possibility of nonproductive actions be 
introduced.  John Linderman has studied this matter for a class 
of computation schemata closely related to the parallel program 
schemata of Karp and Miller (9), and the flow-graph schemata of 
Slutz (17). 

These schemata have separate parts, to represent the com- 
munication paths for data and -ehe sequencing of actions by 
operators and decision elements.  Since the distinction between 
"transformations" and "tests" is so pervasive in programming, 
we feel they should be modeled as different fundamental actions 
in computation schemata.  For this reason, our data flow graphs 
contain both operators, which model elements that transform 
values, and deciders, which perform tests with true/false 
outcomes.  Associated with each operator is a function letter, 
and with each decider a predicate letter.  Specific functions 
and predicates are assigned to the function and predicate 
letters by an interpretation of the schema.  In this way, 
several operators may be required to perform the same trans- 
formation — or several deciders, the same predicate — in any 
interpretation of the schema.  This departure from the Karp- 
Miller model permits treatment of determinacy and equivalence 
for a broader range of programs and systems. 

Each operator and decider has associated initiation and 
termination events.  When an operator or decider initiates, 
values are read from its ordered set of input memory cells 
and this vector of values is, in effect, entered into ^ first- 
in-first-out queue.  Thus multiple initiations of an operator 
or decider may occur without intervening terminations.  When 
an operator terminates, it writes into its output memory cells 
the values obtained by applying the function denoted by its 
function letter to the vector of values taken from the head of 
the queue.  For each decider there are two termination events 
corresponding to the true and false outcomes of applying the 
predicate denoted by its predicate letter to the vector of 
values at the head of its queue. 

When and if these events can happen is specified by the 
control of the schema.  A variety of explicit mechanisms have 
been used to represent the control, including finite state 
machines, precedence graphs, and Petri nets.  These mechanisms 
share the property that they specify which sequences of events 
are allowed and which are not allowed as possible behaviors of 
a schema.  The allowed sequences of events are called the 
control sequences of the schema.  Study of various control 
mechanisms has shown that certain properties of control 
sequences — persistence, commutativity, conflict freedom, and 
repetition freedom — are central to the study of equivalence, 
determinacy, parallelism and productivity, regardless of the 
mechanism used to specify the set of control sequences. 
For this reason we have studied these properties of schemata 
without regard to the mechanism used to specify the set of 
control sequences. 
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Consider the program below in which w and x are input 
variables and y and z are output variables: 

begin 

end 

y := f(g(w)) 
if p(w,x) then z := g(f (w)) else z := h(f(w)) 

Two schemata for this program are shown in Figure 16,  To be 
definitive, the control sets have been specified by Petri nets, 
Examples of control sequences :or S, include 

atacHt bcTdc 

t b t babaceec 

in which overbars and underbars indicate initiation and ter- 
mination, and the superscript T or F refers to the outcome of a 
decider. 

We identify certain memory cells of a schema as an ordered 
set of input cells and an ordered set of output cells.  Then we 
may discuss equivalence of two schemata in terms of producing 
the same output values when given identical inputs.  In Figure 
16, w and x are the input, cells and y and z the output cells 
of both Sj^and E2.  It is easy to see that, in either schema, 

any allowed sequence will assign the same values to cells y 
and z as are produced by the program.  Hence both schemata are 
"functionally determinate" and are equivalent with respect to 
the specified input and output cells. 

In these schemata, an issue arises that is not present 
when every termination event puts a value in some memory cell 
and all cell histories affect the question of equivalence, as 
in the Karp-Miller theory.  It is now possible for operators 
and deciders to be invloved in "useless activity."  For 
example, if y were not an output cell of schema S, or S , 

operators a and c would not be productive.  Similarly if the 
same sequence of actions followed either outcome of a decider, 
then that action of the decider would not be productive. 

The precise formulation of this notion of productivity 
requires formalisms we do not wish to develop here, but the 
central idea is fairly straightforward.  A use of an operator 
in a control sequence is productive if subsequent actions by 
operators "carry its result" to a schema output cell or to a 
productive decider.  Since an action by a decider does not 
directly affect contents of memory cells, determining its 
productivity is not as easy.  We consider a use of a decider to 
be productive if the schema has two control sequences that 
define inequivalent computations, and sre in "disagreement 
about decider outcomes" only at the given decider use.  For 
example, consider the program 
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(a)   schema S 

data flow graph 

w K 

control 

aa 

c c 

®beg 

Figure 16,  Two equivalent computation schemata. 
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(b)    schemo S2 : 

dofa flow graph 

w 

control 

a a 

c c 

Figure 16.      (Continued). 
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begin 

if p(x) then 

if q(x) then y := f(x) else y := g(x) 

else 

if q(x) then y := f(x) else y := g(x) 

end 

Since output y may be set to f(x) if p(x) is false, and g(x) if 
ll*l  "Htrue, one might conclude that this usi"^ is produc- 
tive.  However, both possibilities exist in either case  ?he 
trluJ^^  determi^d by q?*); hence p(x) is not really pro- ductive, in agreement with our definition.        reany pro 

Much of this research has been directed toward identifvino 
the most appropriate definitions for "productive control 
of^Tnll-.  A seern?ly desi"ble condition Jthat every use 
Snfortunatelvr ^.de"der in a c°ntrol sequence be productivl! 
degree of naralletf^^h"? Prc^ctivity condition limits the □egree ot parallelism that can be realized.     Suppose a 

^irrrTsuTt:^0^  if either 0f tWO tes^ P-d-es 

begin 

if p(x) or q(x) then y := f(x) else y := g(x) 

end 

of ^ fn either :,(X) 0r q(x) is found ^ ^ true, evaluation 
p(x) and af/5-^'0^^1^-  ThUS P^llel e^TTTation of 
wi i.n,qi   l11 vlolate the strong productivity conditioi 
We are studying a weaker form of productivity which does 
not clash with parallelism. Y       0es 

l>.ta Flow Schemata 

. ^ example of a data flow schema is shown in Figure 17 
It is a directed graph having two kinds of nodes-  actor nnd«« 
-d ii^i nodes-  The arcs of a data flow schem^rel^s^2^ 
through which data and control values flow from actor nodes 
to link nodes and from link nodes to actor nodes  T ink n^L« 

trLnV^dl^rT t0 —ral^r^odes and^re^of' two kinds -- data links drawn as small solid circles for da4-a 
values and controTTInks drawn as small open circles  for 
control values  Certain data link nodes are the input nodes of 
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There are five kinds of actor nodes: 

operator square box with a function 
letter written inside. 

decider diamond box with a predicate 
letter written inside. 

true gate/false gate  circle with T or F written 
inside. 

merge ellipse with T and F written 
inside. 

Boolean square box with one of the sym- 
bols A, V, -i written inside. 

Each arc leaving a link node acts like a first-in-first-out 
queue for values waiting for use by the actor on which the arc 
terminates.  A value arriving at a link node is replicated as 
required and entered in the queues of the emanating arcs.  In 
most cases, each queue will either be empty or hole, one value. 
However, permitting unbounded queues permits operation of a 
data flow schemata to achieve a kind of maximum parallelism 
we shall illustrate by a later example. 

Given a data flow schema and an interpretation of its 
function and predicate letters, computations by the schema are 
described by sequences of actions by the actor nodes, analogous 
to the firing sequences of a Petri net.  An operator, decider, 
or Boolean node is enabled to act when at least one value is 
available from each of its input arcs.  When enabled, one of 
these actors may "fire" by removing one value from each input 
queue, applying the specified function, predicate or Boolean 
operator, and sending the results to its output data or control 
link.  A true gate is enabled by the availability of a data 
value and a control value from its input arcs.  The gate fires 
by removing these values from their queues.,  Then, if the 
control value is true the data value is sent to the output data 
link; if the control value is false no further action takes 
place.  The false gate acts in an analogous manner.  A merge 
node acts by transmitting a value from its F-input arc if the 
control input value is false, or a value from its T-input arc 
if the control value is true.  The filled-in arrows on certain 
control links indicate that a false value is entered in their 
queues in the initial configuration of the schema.  This 
arrangement is needed to initiate action by a portion of a 
data flow schema that performs an iteration. 

According to these rules of behavior, every actor of a 
data flow schema is persistent:  once enabled an actor becomes 
not enabled only by firing.  From this fact and the discipline 
by which actor and link nodes interact, a result of Patil (12) 
shows that any data flow schema is a determinate system. 

Study of the schema in Figure 17 reveals that it is 
equivalent to the following "while scnema": 
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Figure  17 A well-formed data flow schema. 

Figure 18. A data flo* schema that is not free 
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Oc^ 

Figure 19   A dato flow schema requiring unbounded queues. 
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begin 

while p(x) do 

if q(x) then w := f (x) else w := q(x) 

x := h(w) 

end 

y := x 

end 

Just as in a while schema, the data flow schema has a nested 
structure indicated by the c'ashed lines, and uses specific 
configurations of gate, merge and decider nodes to form condi- 
tional and iteration subschemas.  ^ data flow schema having 
this structure is said to be well formed.  Any well forir^ 
data flow schema will generate exactly one value at each output 
node for each set of values presented at the input nodes. 
Because it is determinate, any well-formed data flow schema 
determines a functional dependence of output values on input 
values.  We consider two Schemas to be equivalent if both 
define the same functional dependence of outputs on inputs, 
and this is true regardless of the interpretation chosen for 
the function and predicate letters. 

On the basis of work by Ashcroft and Manna (1) one can 
construct a well-formed data flow schema equivalent to any 
"goto program" or any program schema of the type studied by 
Paterson (11),  Hence the general equivalence problem for data 
flow schemata is unsolvable. 

It has been found that the theory of "free" schemata is 
more rewarding in terms of positive results than the study of 
unrestricted schemata.  A data-flow schema is said to be free 
if no two actions by deciders apply the same predicate to the 
same value.  Figure 18 illustrates a schema that is not free 
because the first two uses of decider d both apply predicate 
p to the result of applying f to the schema input value.  Hence 
there is no way for the iteration subschema to perform exactly 
one execution of its body. 

John Fosseen (6) has found it possible to transform free 
data flow schemata in such a way that any pair of data arcs 
may be tested for equivalence.  (Two arcs are equivalent if 
they pass the same sequence of data values in any computation.) 
We hope the concepts developed to obtain this result will 
provide further insight into the equivalence problem for free 
data flow schemata. 

We remarked earlier that treating the input arcs of actors 
as unbounded queues permits greater concurrency.  The data flow 
schema in Figure 19 illustrates such a case and is based on an 
example of Keller (10).  The right-hand portion of the schema 
may run arbitrarily ahead of the left-hand portion, a true value 
being entered in the queues of arcs a, b, and c for each cycle. 
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The left-hand part may operate as fast as it can until the 
queues are emptied, whereupon (to be strongly productive) 
operation must wait for further decisions to be made. 

Any data flow schema is inherently maximally parallel in 
the sense that each operator and decider is at work whenever 
values are available for some productive use of the operator or 

Weakly Productive Computations 

In a data flow schema, actions are initiated when the 
required input values are present and the action (in most cases) 
is known to be productive.  As an interesting exploratory study 
we have studied properties of parallel computations in which 
every operation is initiated as soon as its input values have 
been computed, so long as some possible continuation of the 
computation makes productive use of the result.  Consider the 
data flow schema in Figure 20, which represents the followinq 
program with input variable x and output variable y: 

begin 

while p(x) do 

if q(x) then x := f(x) else x := g(x) 

y := x 

end 

If execution of this schema is performed according to the rules 
given earlier, then every action by the operators (a and b) and 
deciders (d and e) is productive.  Let us consider what happens 
if we allow all weakly productive actions to initiate.  Suppose 
termination of the first uses of deciders d and e is arbitrarily 
fh«Tf^ f1"0? thVirst

uUses of operators a and b require only 
the initial value of x, these uses are immediately initiated. 
Their terminations produce values that are inputs to further 
weakly productive uses of operators a and b, and so on.  These 
actions define the unbounded tree of values illustrated in 

Iv+lt  I1*'   the tr,T  haS a node for each value any computation 
by the schema could generate.  As outcomes of decider actions 
become known, portions of the tree of values become useless 
and may be deleted, since the operator uses that produce these 
values become known to be nonproductive.  For example, if the 
first use of decider d yields false, the tree of possibly useful 
values is as in Figure 21b, and-TT-deciders d and e have 
fW6?!! P? OUtc°I?es F'T and T'T'F' respectively, the tree becomes 
that in Figure 21c, and represents a completed computation. 

Joseph Qualitz (15) has studied the bookeeping requirements 
for weakly productive computations, and has devised execution 
structures in terms of which the detailed progress of such 
computations may be studied.  Clearly it is necessary to tag each 
value produced by a schema operator with the assumptions made 
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Figure 20. Data 'low schema. 
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f(fU)) g(f(x)) f{g(x)) g(g(x)) 

A Ä A A 
/  \ / \ /  \ / \ 

/     \ /     \ /     \ /     \ 

(b) (c) 

riT 
f(g(x)) 

ITT 

Figure 21. Value trees from a weakly productive 
computation. 
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about decider outcomes.  We let each value carry a color which 

is a set of sequences of the symbols {T, F, f, F}, one seauence 

denotTw ^^^f 0f the SChema-  The le"e" without ovlrbars denote known outcomes, whereas letters with overbars denote 
value  OUtCOmeS-  In Fi^,res 21b, 21c, colors arfshown for each 

valna«
AL,anK Stage in a weakly Productive computation, many 

values maj be associated with certain value nodes of a schema 
It is not useful to order these sets of values blcause  SnUkä 

values arrive'?" 0f.a data flOW SChen,a' the order in"hich 
used  ?n^ V ^ nefessarily the order in which they are 
used  Instead each value node is regarded as holding a pool 

^or^^'The'reforl^wh:^11 ^ aPPrOPriate COlor' anI liable <n„„^ f.'i Therffcre' when an operator or decider has several 
input value nodes, some means must be provided for identifyina 
^o,n^lnatl?nS.,0f Values to which a function or predicate 9 

- i^thKf ^ist^cti d0ne h
bY a-OCiati^ wi'h each^alue dn inaex tnat is distinct for each cycle of any loon in the 

iTeTets  andnS^herh!nitdfCiSi^ iS made' -rtain^alues^become 
must be tnhibiteS! lnitlatl0n of actlons that ^ these values 

We have devised rules of execution for weakly productive 
computations and have shown that these rules correct!? simulate 
the computations of any well-behaved data flow schema!  mUlate 

D. Inductive Proofs of Program Properties 

nrr,™™^ ?  Purposes of studying schemata or simplified 
programming languages is to isolate aspects of programs which 
must be encompassed by any approach to the construction of 
formal proofs about the functions computed by programs. Recursion 
rSesuTt5

S^\P.rOPertY-     TO prOVe equivalence or^orrectAesI results about recursive programs, some form of argument by 
induction must be made.  This has been recognized by many peoole 
and several of them have formulated induction rules to be used 
for particular classes of programr.  Generally, a program can 
be viewed as falling in several of these classes. By examinina 
a single program and proofs about it from differ^ntviewpointl 
we have been able to clarify the relationships among these 
various proof techniques.  By means of a simple example wl 
shall illustrate the work of Irene Greif (7) on relating the 
different ways of interpreting a recursive definition and the 
corresponding proof techniques. 

Consider the following definition of a function f over 
the nonnegative integers: uver 

f(m,n) : if n = 0 then m else f(m + 1, n 1) 

(The reader should convince himself that f(m, n) = m + n )  The 
first and most obvious interpretation of the definition is 
that it describes an algorithm for computing f.  The algorithm 
is to test for n = 0; if n = o then f(m, n) = m; otherwise 
apply the same algorithm in computing f(m + 1, n - 1) to obtain 
the result.  A second interpretation depends on the existence 
of an ordering on the domain of the function.  In this case 
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the pairs of integers (m,n) ran be ordered as follows: 

(m^, n^ Qy      (m2, n2) 

if and only if 

n1 < n2. 

Then the definition of f is an inductive definition.  The base 
of the definition is: 

For all m    f(m, 0) = m. 

The induction step is: 

f(m, n) = f(m + 1, n - 1) . 

The third interpretation of f is as the minimal fixpoint of 
the following functional: 

^(X) z   Xm.Xn. if n = 0 then m else X(m + 1, n - 1) 

It can be shown that the minimal fixpoint of W is M £   [Q) 

where :. is the function that is everywhere undefined and    (X) 
means the function produced by i applications of Ä to X. 
Notice that ^(:i) = Xm.Xn. if n = 0 then m else ;ä(m + 1, n - 1) 
is the function which is m for (m, 0T and undefined for all 
other ordered pairs.  ÄJ(^) has the value m for the ordered 
pair (m, 0) and m + 1 for the ordered pair (m, 1) and is 
otherwise undefined.  Proceeding in this manner, the function 
f which we are expecting will be generated. 

The last interpretation is that the function f represents 
the agreement of its "truncations." These truncations are the 
partial functions defined as follows: 

f.(m, n)=i_fn = 0 then m else fi_1(
m + li   n " D • 

The reader should note that in this case 

f. (m, n) = £x id)   (m, n). 

Now we will give four different proofs of the following 
simple fact: 

f(m + 1, n) = f(m, n) + 1. 

The first, by recursive induction, corresponds to the notion of 
definition by algorithm.  We show that f (m + 1, n) and f(m, n)+l 
can be computed by exactly the same algorithm by showing that 
they can be expressed in the same form, namely: 
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X(m, n) 

1.  g^m, n) 

if n = 0 then m + 1 else X(m + 1, n - 1) 

f(m + 1, n) 

»» if n ■ 0 t/.en m » 1 else f (m + 2, n - 1) 

»> if n ■« 0 then m + 1 else g. (m + 1, n - 1) 

2.  gjCm, n) = f{m, n) + 1 

= (i^f n = 0 then m else f (m + 1, n - 1) ) +1 

= i^f n = 0 then m + 1 else f(m+l, n-l)+l 

= i_f n = 0 then m + 1 else g,, (m + 1, n - 1) 

This shows that g, = g, on the domain of X.  If we are trying 

to prove g, = g- for the pairs of nonnegative integers, a separ- 

ate proof about the domain of X will be required. 

Another proof can be written, utilizing the partial order- 
ing on the domain of these functions, and the inductive defin- 
ition.  The basis of this proof by structural induction is: 

for all m 

f(m + 1, 0) ■ if 0 ■ 0 then m + 1 else f(m +2,0-1) 

= m + 1 

f(m, 0) + 1 ■ if 0 « 0 then m + 1 else f(m+1, 0-1) + 1 

= m + 1 

Therefore, for the minimal element in the domain, 
f(m + 1, n) = f(m, n) + 1.  The induction step, for (m, n), 
n ^ 0 is: 

Assume for (m, n), n < N that f(m + 1, n) = f(m. n) + 1 

1. f(m + 1, N) = f(m + 2, N - 1) 

2. f(m, N) + 1 = f(m + 1, N - 1) + 1 

= f(m+ 2, N - 1) by induction since N-l < N. 

The initial assumption, based on the means of definition of the 
function is that f in   total on the ordered pairs, partially 

ordered by \<J-     From this fact and the above proof, we know 

that f(m + 1, n) = f(m, n) + 1 for all pairs of nonnegative 
integers, 
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The third proof is actually simple induction on the depth 
of recursion of a computation.  In terms of the definition of 
the minimal fixpoint 

f - U   tfi("). 

computational (or yi-rule) induction is simple induction on i. 

1. for i = 0 we must show 

^(m + 1, n) = rj(m, n) + 1 

Obviously both are totally undefined. 

2. Assume X(m + 1, n) = X(m, n) + 1 

then prove ^(X) (m + 1, N) = tf(X) (m, n) + 1 

^(X)(m + 1, n) = if n = 0 then m+1 else X(m+2, n-1) 

= if n = 0 then m+1 else X(m+1, n-1) + 1 

(by induction) 

= (if n = 0 then m+1 else X(m+1/ n-1) )+l 

= tf (X) (m, n) + 1 

This proves that f(m, n) = f(m, n) +1 are totally equivalent, 
i.e., either both are undefined or both are defined and have the 
same value. 

A separate argument can easily be given to show that both 
functions are defined for all pairs of nonnegative integers. 

The last proof technique is very similar to computational 
induction, being course-of-values induction on the index i of 
the truncations of a function.  This amounts to doing course-of 
values induction on the depth of recursion.  For our particular 
example, in which equivalence depends only or>e one step in the 
computation of the fixpoint, the difference  ;I ween the two 
proofs is strictly a matter of formalism.  Wr ,. rove that for 
i = 0, f0(m + 1, n) = f0(m, n) + 1. 

Then for i / 0: 

assume for j < i, f.(m + 1, n) f . (m, n) + 1 

f.(m + 1, n) » if n « 0 than m+1 else f._1(m+2, n-1) 

= if^ n = 0 then m+1 else fi_1(m+l, n-l)+l 

= (if n = 0 then m+1 else fi_1(m+l, n-1) )+l 

fi(m, n) + 1 
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As in the last proof, this shows stronq equivalence, this time 
by truncation induction. 

Generally, any method can be used for a proof.  If the 
programmer had ore of these interpretations in mind in writing 
his program, then the corresponding proof technique will 
probably seem most natural.  Ideally an automatic program 
verifier would be flexible with respect to choice of induction 
rule.  It is unlikely, however, that all of these will be 
equivalently useful in mechanical proofs, even though there seems 
to be no real difference in scope of application among them. 

E.  A Computer for General Data Types 

One goal in the design of programming systems is to retain 
the generality of an algorithm when it is encoded into the 
language of the programming system.  A serious limitation on the 
generality readily achieved in contemporary computer systems is 
imposed by the fixed word length and finite size of computer 
memories. 

In preparing a program for execution by a computer system, 
the programmer first imagines the abstract function the program 
is to implement.  Simple examples might be to implement the 
scalar product of any two n-component vectors of real numbers, 
or to obtain the greatest common divisor of two integers.  As 
in these examples, the abstract function almost always has an 
infinite domain.  Then the programmer conceives o£ an algorithm 
for the function — a step-by-step process for obtaining the value 
of the function through the use of idealized primitive operations 
such as the arithmetic operations on integers and reals.  The 
next step is to express the algorithm in the language of some 
practical programming system.  Usually the actual data types 
of the programming system have their idealized counterparts, 
and, if the language is suited to the needs of the algorithm, 
the algorithm may be converted into a program with little 
difficulty.  Our problem of generality would be solved if the 
task of the programmer were completed at this point.  However, 
he must now check whether the word size and finite memory size 
of the computer system, as reflected in defects of the primitive 
operations of the programming language, may prevent correct 
operation of his program.  In many cases, the program will 
operate correctly for a large (but finite) number of points in 
the domain of the abstract function, and will fail (often with- 
out any hint to the user) for the remaining (infinite) set of 
domain points.  In other cases the programmer will find that 
the number of cases for which the program will work correctly 
is too small to be of interest and a new approach, using a 
language less suited to expressing the algorithm, or less 
efficient in execution, must be adopted. 

The ability of a programming system to correctly execute 
programs expressed in terms of idealized data types is called 
»jenerality with respect to domain.  Most programming systems 
fail to be general with respect to domain by limiting the 
amount of storage that may be allocated to one data value to 
less than the available memory of the computer on which the 
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programming system runs.  For instance, integers are usually 
liiiiited in value by the number of bits in one memory word, and 
the maximum range of an array subscript must often be specified 
at the moment the array is created. 

Since the memory of any practical computer system is, in 
face, finite we cannot expect any program to obtain the value of 
the prograimner's abstract function for any point in its domain. 
However, we should expect a programming system to produce the 
correct result unless the computer system runs out of memory 
in trying.  (If the computer system runs out of memory, should 
one blame the program for the absence of sufficient memory to 
compute the function ?)  This consideration is the basis for 
the following definitions: 

(xl' •••' xm) 

y ), computes a function 

Definition:  A program p, with input variables x 

and output variables y = (y, , .. 

f over domain D if and only if for each point x in D either 
1. program p produces output y from input x where 

y = f(x), or 
2. for inpu*- x  program p fails to complete due to an 

unsatisfied request for additional storage. 

Thus a program that computes a function must obtain the correct 
result whenever it is given sufficient resources to operate. 

Definition;  A programming system that implements a language L 
is general with respect to domain if and only if for any 
algorithm that defines^-Function f on domain D, the 
corresponding program in L computes f on D. 

The heart of the problem of implementing programming 
systems having generality with respect to domain is machine 
instructions which themselves are programs not general with 
respeit to domain.  The basic arithmetic instructions, for 
example, usually operate on representations that occupy a 
single register.  Since conventional programmed multiple length 
arithmetic introduces a high cost in time consumed, even for 
quantities that require only single-length representation, 
achieving generality for these data types in a conventional 
computer system is unattractive. 

Peter Bishop (3) has designed an abstract computer in 
which generality with respect to domain is achieved for a large 
class of data types including integers, floating point numbers, 
strings and arrays, as well as more elaborate structures.  In 
the abstract computer, each data value is represented by a 
pointer-linked tree structure having as many elements as 
necessary to represent the value. The representation of any 
quantity may expand arbitrarily as required until available 
memory is exhausted. 
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41   wÜ-1*' *• B.-.' 7he Design and Construction of Soft- 
ware Systems", Computation Structures Group Memo 69 
June 1972.   "    ' 

5. Dennis  J. B., "Modularity", Computation Structures 
Group Memo 70. June 1972.            & 

6. Dennis, J. B., On the Design and Specification of a 

S2^fffÄ§ä7f^ff7.l'r0]eCt mr'  M-1-T" ^ TR-101' 
7. Fano, R. M., "On the Number of Bits Required to 

Implement an Associative Memory", Computation Struc- 
tures Group Memo 61. August 19 71. ~~^ "  

8. Flinker, E., "Translation of a Block Structured 
language Into the Common Base Language", Computation 
Structures Group Memo J[6. January 1972. —   - 

9"   lOX'^\J"   "A L00k at "rhe Controlled Execution of 
Parallel Programs Operating on Structured Data' by 
Ian Campbell-Grant", Computation Structures Group 
Memo 62, October 1971";   ~ —— - 

1C . 

13, 

Greif, I. G., Induction in Proofs about Programs 
AD0737-7SC' M-I-T-' mC  TR-y3, February 1972,  ' 

U.  Hack, M. H. T., Analysis of Production Schemata by 

rfrf: ^740-320!^     ' M•I•T•, ^ TR~94' February 

12.  Lester, B. P., Cost Analysis of Debugging Syatems, 
P^^ect MAC, M.I.T., MAC TR-9U, September 1971, 
AD 730—521. 

Patil, S. S., "Forward Acting n x m Arbiter" 
Computation Structures Group Memo 67. June 1972. 
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Talks 

university. Las Cruces, New Mexico, January 3-5, 19 72 

4.  Dennis, J. B., "On the Design and Specification of s 
Common Base Language", talk at the General ElectrL 
Co., Schenectady, New York, July 15, 1972.  -äCtrlc 

Theses Completed 

1.  Bishop, P  B., Data Types for Programmina Generality 
S.B. and S.M. Tnesis, Department ot Klectrical T-ni^' 
eermg, M.I.T., June 1972. ^ectncal Engm- 

txectncal Engineering, M.I.T., June 1972. 

5'     ^'IL" ^^y313 of Production Schema by Petri Nets 

^    Thesis  E|i:i|
Werklyl

Pr0dUCtive SSglEutatior; Schemata 
M.?:^ ^'1972^  

Theses in Progress 
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Theses  in  Progress   (continued) 

4'     PhÜTThesJ;'   "Sm00th  InterProcess  Communication-, 

5.     Lotspiech,   J.,   "Reliability of  Speed-Independent 
Asynchronous  Systems",   S.M.   Thesis. 

6-     ZTe^k.iy^Ts1.5   ^ ^ AnalySiS  0f ^-hronous 

7'     Phthisis!   J"   "Making Computers  KeeP  Secrets", 
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A.  Progress Report 

1-     Introduction 

more methodical.  Its approach ?f comPlex information systems 
to the more theoreticafat^aS fol?^TK8

"^
1
 ' in ^"trast 

Structures Group.  Continuing ^f^ bY the ComP"tation 
as a laboratory! significant^/^ the ^l'Tl   Multics Wem 
memory management, networkina  no.f   performed ^ multi-level 
tection mecLnisms.^AnotS^^^^^-^eling, and pro- 
ing to move the system t-n m^   u  5 attentlon was prepar- 

ment, operatSn, ^Saintenfnce ol't^f  .ROUtine ^^loP- 

nX^f! the M-I-T- ^--on^r^Ss-nr^eS 1*^ 

tional control of others mimt**     ^T Came under the «Pera- 
students, have becomehearbIemtf ^ress^hem^^' ^^ areas as models of Qwo4-»m  ^ aaaress themselves to such 
the like.  in the CompSer'Nelworr06' instru^ntation, and 
with making use of the existfno  VreVS wel1' concern 
mentation has arisen althouah9^?^1"8 f0r stu^  and experi- 
completely satisfactory  ?his Sr^^H0" is sti11 ^t 
and building of systems" toward lUt  *"**  5r0m the ^^ 
also seen in the Group's ^rM.^S1S.and exPl°itation is 
Programming.  Here  tL f^cus L^on'the1" ^^ 0i  automatic 
"hospitable" environments? * rapld ^i^ering of 

ai:rtedd^onkg in\iTiaiZ'*ihorvaao pubi\shed the io^- 
which describes the intPrLi  5" L   0^anl^ ■     The book 
should be of m^or^L-^Cn e

S n^d^in^t^na thi^ HSyStem issues.  An effort ia   =ic„   J   "Köeminating the key design 
publish the book in Japanese" ^^ ^ Japan t0 ^^llate  Ind 

2-  Multilevel Storage Management 

As discussed in some detail la^t voar-  = 
the Group is the instrumentatfon It     '**  maDOr lnterest of 
the multilevel memory svstemnfM!.    experimentation with 
ties were introduce^into the Lit,v'"' SeVeral  new facili- 
experimentation.  ,  major step in th^T^3^ t0 SUPPort 

with the installation of I muUileve? Lo'"0^0" WaS taken 
in addition to the usual ^n^^     Paging strategy which, 
ments between core and drum autoirana??ment 0f page move- 
tion of pages between d^nd disk  PL^ managCS   the mi^- 
disk to drum on dctiv-.M™ ana,dlsk-  pages are moved from 
migration from drum to disk an?n

a" ^U^^orithm governs the 

kind of associative memor^ The interactSn tT  beCOmeS a 

SnrLudSln^t^!?^^ ^ -"-- -SfL^ow^ 

palinntra^gl1^^^ S^fTr T** by the multil-el 
management which trades space^ for tfm"^ 3trfegy in drum 

latency, multiple copies^T^el al^ri^^t^ Z^. 
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Currently, two copies are written, giving rise to the name 
"2-fold drum manager", but further experiments are possible 
with the existing software tc  -   tigate the characteristics 
of a 4-fold — or for that ma-,       n-fold drum manager.  As 
with multilevel paging, 2-fold     manager has proven to be 
a practical success in increasing system effectiveness, in 
addition to its experimental interest. 

Another new strategy of practical as well 
interest was proposed and implemented, al 
stalled, in disk management. Referred to 
this strategy entails having the disk DIM 
the seek-portions of pending requests can 
data transfers. This work evolved from M 
resoarch on the modeling of algorithms fo 
storage devices. Although pre-seeking is 
write type file systems, we view it as th 
exploitation of single strategies matched 
environments. 

as experimental 
though not yet in- 
as "pre-seeking", 
determine whether 
be overlapped with 

aster's thesis 
r moveable-head 
an old idea in rerd- 

e next step in the 
to demand paginq 

Neither the n-fold drum manager nor the disk pre-seek strategy 
is thought to be a unique approach, but in conjunction with 
multilevel paging strategy they offer a rich environment for 
further experimentation in the area of multilevel storage 
management.  To offer a standard of comparison for experimpnts 
a benchmark load is being developed. Although one might 
have expected a benchmark load to be among the earlier of pro- 
jects, in fact it is only now that enough information has 
been collected about the ways a Multics-type system is used- 
thus construction of a realistic benchmark can now proceed. 

A paper by Prof. J. H. Saltzer (still in draft) has been 
written on a simple model of demand paging, which is based on 
the experimental observation that over a wide region, the 
mean number of memory references between paging exceptions 
roughly increases linearly with the size of the paging memory. 
The resulting model is easy to manipulate, and is applicable 
to such diverse problems as choosing an optimum size for a 
paging memory, arranging for reproducible memory usage charges 
and estimating the amount of core memory sharing.  The model 
has already served as the basis for an implementation on 
Multics of an accounting scheme which allows for charging 
memory utilization independent of system configuration and 
system load. 

3. ARPA Network 

ConsiderabJe progress has been made in the Multics ARPA Net- 
work implementation.  At the beginning of the reporting per- 
iod, it was possible on a demonstration basis to login to 
Multics from Multics over the Network.  By the end of the 
reporting period, the Network was a standard feature of 
Multics.  Network logins on a supported, "samplina" project 
were on the order of half a dozen a day, and there was at 
least one paying customer of the system on the West Coast and 
one at the National Bureau of Standards.  The originally high 
cost of Network use of Multics has been coming down drastically 
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The target is for use of Multics via the Network to bo no more 
expensive than from local teletypewriters.  As the basic 
machinery comes under control, the Group's Network team will 
pay greater attention to participating in the design of Net- 
work Graphics and File Transfer protocols. 

4. Performance Model 

The doctoral thesis mentioned in last year's report is being 
completed.  In this thesis, a set of hierarcMcally organized 
analytical models has been developed to evaluate the perfor- 
mance of multiprogrammed time-shared computer systems using 
demand paging.  These models are capable of p"^dieting the 
throughput and response time characteristics of such systems, 
as a function of system hardware/software configuration as 
well as of the characteristics of terminal users and their 
programs.  These models are then used in optimizing the sys- 
tem performance and deriving the best system configuration. 
The system performance predicted by thece models is compared 
with that of an actual computer system, i.e., Multics, in 
order to examine the usability of these models as a design 
aid. 

5. Protection of Programs and Data 

With the opportunity for use, it has become apparent that the 
original Multics access control mechanism present an inter- 
face which is too complex and confusing even for expert users. 
Since confusion leads to misuse, and misuse to lack of the 
desired control of access, we have here a significant defect. 

As a result, a minor interface redesign was undertaken.  The 
changes, when implementation is completed shortly, will simpli- 
fy and clarify the use of these mechanisms, making their 
application to user protection problems more apparent to users. 
The potentially more far-reaching step was the evolution of a 
detailed plan for allowing all users to define protected sub- 
systems and share them with one another.  The proposed 
facility would allow groups of programs and data segments to 
be encapsulated and shared, potentially with any system user, 
in such a way that access of the borrowing user would be re- 
stricted to calling "gate" entry points.  This scheme seems 
to utilize the full functional capabilities of the ring pro- 
tection hardware in the follow-on processor.  The plan will 
be reported on in greater detail when it is implemented. 

Finally, a thesis on protection referred to in last year's 
report is almost completed.  Thif. thesis describes practical 
projection mechanisms that allow mutually suspicious subsys- 
tem.'., to cooperate in a single computation, a case which is be- 
yond the functional capability of protection rings.  The mech- 
anisms are based on an extension of the domain model of pro- 
tection.  This extension makes explicit provision for communi- 
cating arguments between domains when the execution point of 
a computation passes from one domain to another.  The extended 
domain model serves as the basis for the design of a hardware 
processor which automatically enforces the complex access 
constraints associated with general multi-domain computations. 
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matically  con^unicatfn"cross-Sinncan
r9UmentS  are  'Uto- 

domams   that normally have no L™ „      ^f." even between 
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supports  the Multics protection rin«^^  re^s^r structure 
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and communications computer of the follow-on. 

7. Maintenance of Multics 

As noted above, normal development, operation, and maintenance 
of Multics have devolved upon the M.l.T. Information Process- 
ing Center and Honeywell,  it is significant that a new 
Multics site was brought into existence during the year by 
Honeywell personnel in Paris, France.  Compaigne Honeywell 
Bull is using this system as a 'software laboratory", in 
conjunction with a similar facility in Waltham, Massachusetts. 
(The fourth 645-based Multics site is at Rome Air Development 
Center, New York.)  Although occasional bursts of help from 
CSR personnel are required on very hard problems in certain 
areas, the successful day-to-day operation of four separate 
Multics si    is   speaks well of the successful transfer of 
expertise as well as responsibility to Honeywell. 

8.  MPM Upgrade 

Experience with the ARPA Network has strongly underscored the 
importance of user documentation.  Both our experience with 
attempting to learn to use other systems and reports 
by Network participants from other sites on their attempts to 
learn to use Multics suggest that the problem of teaching-at- 
a-cistance is far from solved.  The necessity of furnishing a 
solid foundation for learning in the form of documentation 
appears to be inescapable.  A concerted effort to both upgrade 
the quality and complete the contents of the Multics Program- 
mers' Manual was, then, probably the most important con- 
tribution of the Group to making the system easy to use during 
the reporting period.  As the MPM is the primary source for 
disseminating knowledge about the system, improvements in its 
quality serve a useful purpose for both users and students of 
the system.  Particularly noteworthy from the user's point of 
view are the additions of a rather extensive "Beginners' Guide" 
and an index.  Several new Reference Data Sections have been 
produced, as well as many new command and subroutine writeups. 

9.  Programming Languages 

Significant work on several programming languages was also 
performed.  Although only initial steps were taken during the 
reporting period, an upgrade of the LISP implementation is of 
particular interest because of its impact on the implementa- 
tion of the Automatic Programming project.  (See Future Plans 
for more information on this project.)  The effort is being 
performed jointly with Automatic Programming personnel, and 
is the first: step taken in the Group's collaboration in that 
area. 

An experimental version of APL was developed by Honeywell with 
assistance from a Computer Systems Research Group student. 
Although it is only an initial implementation, it has created 
considerable interest in the ARPA Network community as it is 
the only APL known to be available on the Network.  Its inter- 
face to the user has been constructed to be exactly the same 
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as the IBM APL — a construction which most APL enthusiasts 
consider essential. A plan for improving its performance has 
been evolved, which it is hoped will be implemented this 
summer. 

Work at Honeywell is nearly complete on "Version II" PL/I and 
FORTRAN.  The PL/I is ANSI standard, and offers superior per- 
formance as well as ability to make use of the capabilities of 
the follow-on hardware (which contains an extended instruction 
set to facilitate character manipulation).  It is interesting 
to note that the Fortran compiler shares the code generator 
of the new PL/I compiler. 

An XPL compiler implementation was completed as part of a 
Bachelor's thesis.  This language is of interest since it is 
the vehicle for SPL, a PL/I subset language which is used in 
the M.I.T. introductory programming course.  The languages 
are based on the work of McKeeman, Horning and Wortman at 
Stanford University and the University of California at Santa 
Cruz. 

B.  Future Plans 

In the next twelve months, the following major projects are 
planned: 

- Continued support of Honeywell's conversion of Multics 
to the 645F hardware system.  This activity will reach 
a peak in Fall, 1972, at the time of delivery of the 
645F processor and memory, and continue through Spring 
of 1973, when the conversion is scheduled for comple- 
tion.  Project MAC is currently providing about 1/4 
of the manpower for the conversion activity.  Develop- 
ment, with the Automatic Programming group, of a LISP 
interpreter and compiler system on Multics.  This work 
has two goals : 

1. A language essentially identical to the LISP used on 
the MAC and Artificial Intelligence Laboratory's 
PDP-10's. 

2. A compiler which produces the highest quality object 
code possible for the 645 follow-on processor.  The 
combination of an instruction execution rate in 
excess of 10° instructions/second, a 384K word core 
memory, and a virtual memory, should make this com- 
piler a very potent tool. 

- Completion of the Multics Programmers' Manual (MPM) and 
the System Programmers' Supplement (SPS) to the MPM. 
These two books are both about 3/4 complete, and a con- 
certed effort to finish them is underway.  Arrangements 
have been made with Honeywell's publications office to 
take over editing, updating, and publication of these 
two manuals as soon as they are substantially com- 
plete.  Current schedules call for the MPM to be avail- 
able from Honeywell in first quarter of 1973.  The SPS 
will come later. 
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Talks (continued) 
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DYNAMIC MODELING, COMPUTER GRAPHICS, 

AND COMPUTER NETWORKS 

A.  INTRODUCTION 

This year has brought almost to culmination the ioin<- 
oomputer-system research and development effort of the Dynamic 
Modeling Group, the Computer Graphics Group, and the part of 
the Computer Networks Group based on the PDP-10 computer! 
The effort has brought into being a rapidly responsive, highly 
interactive time-sharing system with sophisticated graphic 
display, good connection to the ARPA Network, and unusually 
well developed facilities for using and augmenting through use 
the twn^ f  s*a"ble procedures and data sets.  This summer, 
the two-and-a-half groups are beginning a transition from 
computer system building to research in automatic programming 
that will exploit the computer system.  Final integration of 
several parts of the system and the shift into automatic- 
programmir? research will confirm through the fall, and most 
of the reporting of ideas tested and experience qainsd in the 
system-building effort will be done during the fall and winter 
It is possible now, nevertheless, to present a description of 
the computer system and to relate several aspects of its design 
to the aims and aspirations that motivated the project. 

nv "n ,rh« ^S^em haS been called the "Dynamic Modeling Sys .em" 
or DynaMod despite efforts to promote use of names that 
retlec the participation of Computer Graphics and Computer 
Networks as well as Dynamic Modeling.  The name "Dynamic 
Modeling System" will be used in this report. 

B.  MOTIVATION 

The motivation benind the Dynamic Modeling System had 
(and has) several components.  In a general way, of course, 
they all stemmed from the drive for machine-aided cognition 
that motivated so much of computer research and development 
during the 1960's.  When the Dynamic Modeling System was 
undertaken, however, there was a widespread feeling that the 
thrust of the 1960's had fallen short in several ways.  Most 
time-sharing systems were slow to respond — not "hiqhlv 
interactive'.  None (we know or know of) had good facilities 
tor general-purpose graphical interaction.  The most 
responsive systems and the ones most convenient to use were 
threr^r^T396 systems . ^.g. , APL) or systems with two or 
three essentially noncommumcating language subsystems.  And 
most importantly, nowhere was there a time-sharing system tha^ 
had amassed or seemed on the threshold of amassing a large,  ' 
sharable, consistent, coherent collection of procedures and 
sets of data that could be retrieved on-line by users and 
conveniently incorporated into their own programs.  The concept 
ot a large and coherent run-time library had been about for 
several years as a gleam or a dream, but it had not been 
approached at all closely in actuality. 

Many of the features that we considered desiderata for 
the Dynamic Modeling System had been implemented in one time- 
sharing system or another by the time the Dynamic Modeling 
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System was  undertaken.      (Work on  the Dynamic Modeling  System 
began,  effectively,   in October,   1969,  when  a used  PDP-6 
computer with   32K words  of  memory was  delivered to Project MAC.) 
The designers  of  Multics  had   solved most of  the problems   that 
were  important  to  us   in  the  software-technical  area of 
controlled sharing  of  procedures  and data.     The  Artificial 
Intelligence Laboratory's   PDP-10/ITS  system was  providing 
fast and  convenient  interaction   (mainly  alphanumeric)   and  the 
myriad benefits  of  the LISP  language with its  options  of 
interpretation  and  compilation.     IBM's APL was  demonstrating 
most of  the advantages   (and  some of  the disadvantages)   of 
working  interpretively  in  a neatly  designed  language  and 
compact notation.     The  Lincoln  Laboratory's  TX-2/Apex Time- 
Sharing System was  operating  with  time-shared graphics  and 
was  testing  out  an  approach   (the  Reckoner)   to coherence  in 
programming  and  systematic  sharing  of programs.     In  the 
Augmentation  Research  Center of  Stanford  Research   Institute, 
Engelbart's  On-Line  System was   showing  how effectively  a well 
organized multi-access   file  system can correlate  and  integrate 
the activities  of  the members  of  a design  team.     And  there 
were,   indeed,   several other time-shared computer  systems   that 
demonstrated effectively one  or more of  the  features   that we 
considered essential,   but none  demonstrated  all   the  features. 
The  aspiration  for  the  Dynamic Modeling  System was   to put   all 
the desiderata  together  in one  reasonably efficient  system. 
Aaain,   the most   important design desiderata were: 

1. Fast response 
2. Convenient interaction 
3. Well developed graphic display 
4. Where and when needed, the flexibility provided 

by interpretation; where and when needed, the 
efficiency provided by compilation or assembly 

5. Large, coherent run-time library of sharable 
procedures and data — augmented by application- 
oriented users as well as system programmers 

C.  OVER-ALL PLAN OF THE DYNAMIC MODELING SYSTEM 

The general plan of the Dynamic Modeling System is shown 
in Fig. 1.  The figure shows only the largest features of the 
landscape.  They consist, of course, of hardware and software 
— of consoles, central software, central hardware, and 
interconnections. 

CONSOLES 

The consoles are Imlac PDS-l's, Adage Advanced Remote 
Display Stations (ARDSs), and Adage-built vector generators 
and displays that are part of the Evans and Sutherland LDS-1 
Line Drawing System.  For graphical input, there are "mice", 
"joysticks", and one stylus tablet.  (More stylus tablets are 
on order.)  The only software in the consoles is in the Imlac 
consoles, which include minicomputers.  Most of the software 
that operates in the Imlacs was provided by the manufacturer, 
but we have augmented it and, on a larger scale, prepared 
PDP-10 software that takes advantage of the Imlac's impressive 
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capabilities in editing and graphic display. 

CENTRAL SOFTWARE 

The great preponderance of our effort has been devnt^d 

sJsSr w" f19- l'<t0*  WOrk at lRVels above th' operating system.  We have tried to develop a system of facilities 

LTintö'thTreairof011^3^ ff- the ^"ting^Jste^toward ana into the realm of user applications.  It may holo to 

K^ff 0Ur fOCUS f,:0m  those of the PrimarJYdevelopers of 
Multics if we say that we adopted an already developed 

ne'ce"^ ZlTur^  ^^t  ^  ^  inSOfL - Cutely 
T,Jll 7 i     purpose, whereas they created an operatina 
system de novo devoting most of their resources to it! and left 
in large part to various subsystem developers in the MuUics 

"d-uta^nT^ ^ taSk 0f creati"g the extensions and adaptations that have primarily concerned us.  m this 

Arulici^'int??-"0"16^3 great debt to membe" of the Artificial Intelligence Laboratory who developed the ITS 
operating system and were extremely helpful in transferrina it 
to as and tutoring us in its maintenance and use g 

i„.-o f.Th0 U?Per tier of central software (Fig. I) is divided 
into two mam parts and an interface.  The main oarts ar^ 

gu fd Sct"anSdi:"U
e1
C0'\ ^  T -Pa^te^ecLsTtwo Ljuice aiotinct and largely antagonistic philosophies have 

influenced our work.  They are interfaced, and we are doim 
our best to meld the two into a functional unity? because J 

may deL'r th" T^  ^ " the beSt of both worlds!  But we may defer the philosophies.  Lot us first complete our 
examination of the over-all plan. ""Piere our 

/'"POLE is the part of the Dynamic Modeling System that im 

Tdeas and to 1° t It**™ ^ WantS t0 ^rmulate^nd explore 
trrendoH . ^ OUt ivickly ^d conveniently. it is 
intended to become m addition, for many applications  the 

SSP is liSLff/th* 0f ^  T^  M°de^ Syrern,' Whereas ijisk   is limited to the single data structure LIST, MUDDLE 
offers several data structures.  MUDD E has, indeed  several 
other areas of advantage over LISP ar  appears Ukely to serve 
as a follow-on to LISP and as a basis, for higher-level 
languages such as PLANNER and CONNIVER. 

The design and implementation of MUDDLE have been (and 
are being carried out as a joint undertaking of the MI T 
Artificial Intelligence Laboratory and Project MAC 

, "The CALICO World" is a system of programs intended to 
provide users with ronvenient ways of carrying out most of the 

has been prepared in the assembly language MIDAS.  it is 
consistent with a subset of PL/1.  it emphasizes a small set 
of data types and structures compatible with those of MUDDLE 
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General  Plan  of the  DM  System ; 

The heavy lines and cross-hatching indicate the main investments  of effort 
m the system on the parts of the Dynamic Modeling, Computer Graphics, 
and Computer Networks Groups.      See text and other figures for explication' 
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but admits a wider range, laying down conventions and 
procedures for registering data types and structures.  It 
defines several classes of subroutines and a preferred 
calling-and-returning sequence format, but it is hospitable 
to subroutines written in any language if they have been 
translated into loadable, callable, and executable PDP-10 code. 

CALICO subsumes a set of facility programs and a library 
of modular subprograms.  The facility programs handle the 
functions shown in Fig. 2.  The library consists of about 500 
subroutines (callable entries), each with documentation 
available (but vide infra) on-line through the consoles as well 
as in print-out form in files near the consoles  Most of the 
effort of the two-and-a-half groups has go-ie into CALICO, and 
it must be said at the present time to be tne main part of the 
Dynamic Modeling System created by the effort. 

HYDRA:  As shown in Fig. 1, MUDDLE and CALICO are inter- 
connected.  MUODLE functions can call subroutines from 
CALICO'S library and have them operate on data that have been 
processed by MUDDLE, and — although this is less useful   
CALICO subroutines can call MUJDLE functions and (if the data 
types and structures are among those dealt with by MUDDLE) 
have them operate on data that have been processed by CALICO. 
The interaction between MUDDLE and CALICO is at present 
rather inefficient and constrained, but it is rapidly being 
made more efficient and less constrained.  We are hopeful 
that, within a few months, we shall have in operation a true 
realization of what three years ago we envisioned in a nebulous 
way but did not know quite how to achieve:  a computer system 
providing both (a) the convenience and flexibility of 
interpretive execution in the upper echelons of program 
hierarchies and in any other areas in which procedures need 
to be readily modifiable and (b) the power and efficiency of 
assembly or compilation in all those parts of the programs in 
which off-the-shelf (i.e., out-of-the-library) subprograms 
can be used. 

ITS:  The operating system ITS, developed over a period 
of years by members of the Artificial Intelligence Laboratory, 
has proven to be excellent for our purposes.  We have modified 
it only insofar as necessary to accommodate our hardware, to 
permit shared use of pure procedures and data, and to support 
operation of the Dynamic Modeling System's PDP-10 as part of 
the ARPA Network.  It is important to note that ITS permits 
each user to have several processes, organized in a 
hierarchy, working for him concurrently.  That is often a 
great convenience:  the one-thing-at-a-time work style forced 
by single-process operating systems is not natural to most 
people, and there is great advantage (as in debugging a faulty 
program with a debugging aid such as DDT) in having programs 
able to communicate with each other yet not able to destroy 
each other. 

Network Control Program:  Partly under this headin.; and 
partly under "CALICO" there are several related program, that 
connect the Dynamic Modeling System into the ARPA Network. 
The Network Control Program proper, the Logger, the 
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implementation of the TELNET protocol, and an implementation 
of the new Data und  File Transfer protocols have now been 
brought into line with the conventions of CALICO, and they 
consist mainly of library subprograms.  The Network Daemon 
(independent ITS process), which earlier had to remain active 
continuously, now "wakes up" whenever it is called and "goes 
back to sleep" when it is finished. 

Independent Modules;  Not integrated with CALICO or 
MUDDLE but nevertheless of great value to users of the Dynamic 
Modeling System are the text editor TECO, the debugging aid 
DDT, and such utility programs as PEEK, LOCK, INFO, and TJ-6 
borrowed with appreciation from the M.I.T. Artificial 
Intelligence Laboratory,  Noc integrated, and of less value to 
users because of it, are the language and compiler LISP, 
borrowed with appreciation from the VJ.I.T. Artificial 
Intelligence Laboratory, and the language and compiler SAIL, 
borrowed with appreciation from the Stanford Artificial 
Intelligence Laboratory.  It will be very difficult to merge 
either LISP or SAIL into the MUDDLE-CALICO complex.  We do 
not see much to be gained from merging LISP, but the idea of 
merging SAIL refuses to die because SAIL would bring with it 
access to a host of published ALGOL algorithms, 

DEC Software:  Last year, a joint MAC-AI effort developed 
a program that makes the ITS EJstem look to the Digital 
Equipment Corporation's software like the DEC PDP-10 operating 
system.  That program makes available to us the whole collection 
of DEC software, including FORTRAN, but does not, of course, 
make it coherent with MUDDLE or CALICO. 

CENTRAL HARDWARE 

The hardware base of the Dynamic Modeling System was 
described in the Annual Report of 1970-71 and will, therefore, 
be described only briefly here.  The hardware base includes: 

1 DEC PDP-10 main processor 
1 E&S LDS-1 display processor 
8 Blocks of core memory (20 8K words) 
3 DEC RPjlf2 disk drives (15M words) 
1 DEC TU20  magnetic-tape unit (9-track) 
8 DEC 555 microtape units 
2 Bright BI1215 line printers 
1 Interface to ARPANET IMP 
1  Interface to consoles and printers 

together with the necessary ports, channels, and interconnec- 
tions.  Most of the hardware was purchased from the Digital 
Equipment Corporation.  Some was purchased from other 
manufacturers.  The ports for about half the core memory and 
the interfaces to the IMP, the consoles, and the printers were 
constructed in the laboratory, 

D.  OPPOSITION AND CONFLUENCE OF TWO PHILOSOPHIES 

In the preceding section, we mentioned that there are 
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two partly antagonistic philosophies in the world into which 
we are bringing the Dynamic Modeling System.  It is to a large 
extent the product of their attractions and counter attractions, 
their pullings and haulings. 

The one philosophy, embodied in various degrees in LISP, 
APL, BASIC, and now MUDDLE*, prizes the power and convenience 
that one can achieve by using a single, internally consistent 
language that provides the basic operators for working with a 
restricted set of basic data typos and a way of composing 
higher-level operators — procedures, functions, or subroutines 
— and accumulating them within the system.  Associated with 
this philosophy, but not an integral part of it, is the idea 
that each programmer-user should or will create his own, 
personal system of procedures, data and techniques, and that 
there is more to be gained through facilitation of such 
individual efforts than through attempting to organize one 
over-all system replete with standards, conventions, and a 
central software library, for use by, and to be contributed to 
by, an entire community of users. 

The other philosophy, which we think has never yet been 
fully and successfully embodied in any actual computer system, 
focuses upon an image (which may be quixotic, yet must surely 
contain the germ of the fundamental plan of distant-future 
computer systems) in which most of the procedures that users 
need have already been written, tested, debugged, documented, 
and cataloged — and in which users engage themselves more 
often, and more productively, in retrieving and using 
procedures than in creating (or recreating) them.**  This 
philosophy was strong among developers and users of the 
Compatible Time-Sharing System, the files of which at one 
point contained one to two million words of public programs 
and 20 to 30 million words of private but to some extent 
sharable programs.  However, no way of tightly organizing the 
CTSS user community was ever worked out, and although there 
were many cross-linkages among CTS3 files, it must be said 
that CTSS only defined and clarified the philosophy and did 
not fully realize it.  The philosophy of the community-wide 
coherent system has been strong in Multics, also, but — as 
already noted — most of the resources for Multics 
development went into providing an operational basis for 
sharing rather than into such things as or line facilities for 
retrieving library software.  At present, ehe main thrust in 
the Multics world toward community-wide coherence is that of 
the Cambridge Project, which is developing a Consistent System 

***** 

*It is dangerous to put these names into such proximity. 
The four languages/systems are different from one another in 
many ways, and proponents emphasize differences.  Nevertheless, 
there is a strong common theme.  Perhaps it is embodied more 
in the proponents than in the languages themselves. 

**In the distant future, of course, users may describe the 
programs they want to a program-writing program rather than to 
a program-retrieving program.  Automatic programming is to 
program retrieval as the calculation of functions of arguments 
is to table look-up. 
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for research and applications in ^he behavioral and social 
sciences. 

Any effort to achieve community-wide coherence ;s sure to 
bring more than one lanyuago into the picture.  It is more 
difficult to achieve coherence across languages than within 
one language.  It is even more difficult to convert a BASIC 
fan to APL (or vice versa) or to get an old-time FORTRAN user 
out of FORTRAN and into the more modern world of PL/1 (or even 
ALGOL) .  Thus there are partly antagonistic technical and 
social forces at work as weil as partly antagonistic 
philosophies.  We have tried, as mentioned, to achieve the 
best of both worlds, but of course we have had to compromise 
— for system engineering is almost always as much compromise 
as breakthrough. 

To keep the problem within reasonable bounds, we defined 
a community of programmer-users much smaller than the Multics 
user community — considerably smaller than the Cambridge 
Project's behavioral and social-science community within 
Multics.  Sixty users have permanent files in the Dynamic 
Modeling System.  Although the group includes representatives 
from physics, microbiology, neurophysiology, political science, 
urban planning, and nuclear engineering, most of the members 
are primarily computer scientists and speak the same languages. 
Almost all the participants have desks or offices in the same 
laboratory.  Intercommunication is easy and there has been 
much of it.  For an example, this spring there were 12 Special 
Interest Groups — actually, planning-design-implementation 
task forces -- and one over-all Central Coordinating Committee. 
For another example, the working documents of the Dynamic 
Modeling System come to approximately 2,000 typewritten pages. 

Even with the problem of achieving coherence thus scaled 
down, the difficulties have seemed very great.  From the very 
beginning, the "managers" preached coherence, generality, 
documentation, and modularity-in-the-small while the creative 
drives of the "progranmers" and the joyous positive reinforce- 
ment achieved through successful erection of ever-larger-and- 
more-elegant software castles swept the project in the opposite 
direction.  (We put "managers" and "programmers" in quotes 
because they are roles, not people.  A group leader alone at a 
console is a programmer and creates his own castle.  A software 
specialist on the library "SIG" is a manager — until he gets 
back to a console.) 

The coherence and systematization that we have achieved 
was won at the cost of great effort, mainly group rather than 
individual effort, and always through several iterations that 
discarded much or most or all of the initial schema in order 
to adjust to new ideas or to concurrent interacting 
developmsnts.  The process has been hard on several proponents 
of initial schemata, and it has given the Dynamic Modeling 
System some of the nature of a patchwork quilt.  Nevertheless, 
the process has brought the system close enouch to the 
initial "dream" to let the dreamers feel that it is what they 
envisioned, and has come close enough to melding the partly 
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antagonistic philosophies thai- ^u   ■ 
disruptive factor.        hat thelr an^gonism is no longer 

E.  MUDDLE 

PLAN  OP  THE   DYNAMIC  MODELING  ^S^M^n^^3   in   the  OVER-ALL 
powerful  and convenient  enviroSJ'for ^f^PrOVides  a very 
can   create   a   fairly  complex  proar^ l1"*3 OUt   ideas •     One 
is  wrong with   it,   Ld modify^^'retLt   ft   ^  right  and what 

it   away  and  begin  over  -   relativelv  on     u,^   ""  0r  even   throw 
person with  almost  zero previnn«  2 y ^Ulckly-     For example,   a 
LISP,   to  which  MUDDLE  LPmortcloseier^?Cf  ^  MUD^E   (and 
deougged  a descriptor-basod   fnf ^   related)   prepared  and 
10  hours  at   the  cSe"^ ^"^^-n-retrieval   system in 
hours   at   the  console  he  r^proa™^     I       S   desk-      In   10  more 
ways.     The best  versior  is   no,^ K lt  ln  two 1uite  different 
MUDDLE  retrieval   system   (sonewh^1"9  Combined ^ith  another 
a  more  e:,periencedyprogr™r?n  one^ft0^1^'   P^^ammed  by 

too  demanding  of  memory   space   to  han^f?"  ln  ^ration  and 
practical  way.     Even  under  those  circnL.   rge~SCale   tasks   ^  a 
-   the preferred environment   Tot  try^^^^nd  S^Ing'id^a^ 

an^deve'rop^t^of^UD^I a^G^Suff ^^  t0 ^ d-ign 
Hin.   ana  Drew McDermott  O-  the IrM f^fT^   Carl  Hewitt'   Jeff 
Laboratory   and   Reeve,   Daniels     r^f31   Intelligence 
Darnels   is  developing  a  MIDDLE   comnf?7'   a^. "Äscher*. 
increase  efficiency  of  execution     PTt'■ W^Ch   Wl11   ^^V 
form,   and   it   functions,   but  it will  nnt^3   "5"  in  "dimentary 
use   until   late   fall.     MUDDLE's   vnlL e   ready   for  widespread 
space  will   become   tolerable   in   tea^t ^0nsumPtion  of memory 
Paging  subsystem of   the ^t-to  co^Sr  L^insJalL^?6^^ 

The   present  MUDDir   i *K 

subroutines   and   300 MDDLE  functions"^  0f  150 basic MÜDDM 
the confluence of  the personal JSL^  f^6  la^ter are  simPly 
Pfister,   Broos,   Metcalfe,   Stern     m^vn68  0f  Reevo'   DanielS, 
and  Licklider,   and  the collection  con^'^33^'   Ryan'   R^in 
It  is  a mere beginning because MUDDLE^iff3/ mere  ginning, 
of   the  Dynamic  Modeling  System   rath^   ?T   lnt0   the  Panning 
ease  with  which   one   ran  Droar^m f^   late   and  because  the 
dependence  upon  a  librar^MUDDLE   S^t  ^t*   t0 d—Phasize 
nevertheless,   as  very  ^ort^^^JlheX^ic^Xl^' 

MEDDLE^fisS! thafjreltl'ffaciut^f and debu«ing aid. 
There   is,   also,   a  dynamic  loader   ?PffS   USe  0f  MUDDLE. 

functions  that  retrieves   thlf |r
ro^fL\tefileTK^h%^r 

*For  full  names,   see  lisi-s   r,f  L  u 
Computer Graphics,   and Co^ll^l^Vrouls^^ ^^' 
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called by other MUDDLE functions.  Graphics capabilities are 

Ev^s i^0^at?d rt0 MUDDLE in tWO "^  0"e exploits the 
"P^vv^fon" mrlan? Pr°ce^or and * graphics subsystem called 
d^n I      (Daniels, Mxchener, Black, Broos) ; the other uses 
display programs that operate in the Imlac consoles (Ryan, 
Rubxn and Brodie). 

F.  CALICO 

with ^mo=r IWK
19

- 
2•■   CALIC0 includes subsystems concerned 

with almost all the various aspects on interactive computing. 
All the subsystems are built out of library subroutines, and 
the subsystems share subroutines insofar as possible.  The 

seofr^J^n^11163 "! either entirely P"re procedures or are 
n™^  ^ t0 PUre and lmpure Parts-  0nly one copy of a pure 
procedure (or pure part) is held in core memory, but there is! 

proces^Tthe^of?1* ^ ^ ^^^ Part f0r e-h ^ ^ 

MEDIATION OF INTERACTION   

and thi
nrlr.aCtfi0.nKbetWefn the user-Prograimner at the console 

and the rest of the system is mediated mainly by the command 
interpreter (Seriff), the console alphanumeric subsysteHcohen 
Brescia  Peltan) , and several console-graphics subsystems     ' 
The latter, more complex than shown in Fig. 2, include a 
display-management subsystem for the Evans and Sutherland 
display processor (Michener, Black, Geer and Curley), a sub- 
system for stylus-tablet input (Hui, Guertin, Broos Niles), a 
subsystem for composing two-dimensjonal and three-dimensionaJ 
graphs and charts (Black, Pangaro, Cutler, Siegel) , and Hub- 
system for Imlac and ARDS graphics (Peltan, Conklin, Rubin, 

SUBROUTINE MEDIATION OF CALLING AND RETURNING 

There are no "main routines" in CALICO — only subroutines 
Either a MUDDLE function or the mediator's initialiser serves   ' 
as the top-level routine.  The subroutines of CALICO are of 
several kinds.  On one dimension of variation are "fullv 
mediated", "lightly mediated", and "unmediated".  On a second 

LronT^re/l0Ca!:i0n"Sensitive" and "location-insensitive", 
and on a third are "internal" and "external".  The mediator ^RE 
(Reeve, Harris, Hughett, Brodie, Licklider) handles the calling 
and returning of fully and lightly mediated subroutines 
assuming control at times of calling and returning, performina 
several housekeeping functions on behalf of the filing     * 
called, returning, and receiving subroutines, and affordina 
the user-programmer an opportunity to intervene.  Only low- 
level, inner-loop subroutines are unmediated, and only such 
routines (and only a few of them) are internal — i.e.  built 

cal?. ?n?erVhi9her_ieTel.rOUtineS-  The governing philosophy 
rnnffnf f extr^e modularity, for independence of each sub- 
routine from all others except through calling and returning 
sequences, and for purity and location-inse.isitivitv insofar 
as possible.  Every fully mediated subroutine and ever? data 
set has a header that permits other software entitiPs to 
discover its pertinent properties.  The mediator is'set up to 
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go  into effect   [oJln Tplfonll bL^sf Tortly* '  ^  ^ Wil1 

COMMUNICATION 

inherent^Tthe'lTS^sterand"   ^   ^  0n   CaP^intie8 
purposes   (Cohe^/ßresLa! Peltan?^  »tvl^  au?rnted  ^ our 
and  user-to-user messages  are dlLlaved a^r^    ar'nouncements 
in-     If  the intended  recipient's  on  ^1 e  tlme  0f   l°^ir.g is  enabled,   one  user can  tv^V  on   llns  conmunication   function 

project descSpt^"""^';^?"0 "U■*"8•  "'"eato. 

INFORMATION RETRTEVAI, 

about^r^gr^fand^data'sets'fK^ ^  fffievi^ information 
Multics and is used «^hf^ fu( ^?n' Martln) operates in 

a Multics console d (It^as SlvefSoSVfA r,etWOrk or th™^ 
had disk files.)  It has "rned oC? not'to'h ^  PDP"10 SySt'm 
because of log-in delays and process?nJ co^ ^ ^actic^' 
subsystem as an aid in nn ,. Fiocessing costs, to use that 

reprogra^ning the^eTon'tL^U-lT^k. **  f^S   therefore, 
versions (Broos  Lickl-irwV Two Preliminary 

design of ^hrcom^nd1 nteipr
aertern0:nd0PLrning.in MUDDLE-  The 

make it possible to stop at^ny poin? Whf6^" mfdiator 
program, explore the librarv L^  K t     the execution of a 
subprogram for one that [s In line^n'h1^'?. a.neWly ^eiected 
substitute a newly selected data L^^6 Called " or to 

be processed.  We hope to refn L ^ f0r 0ne that ls in ^^  to 
this fall. P  t0 reallze that capability in operation 

DATA MANAGEMENT 

■'Keyed'Ljf.CS^ave^tv^S,?0^13^ at present of the 
(Haverty) .  The former provides a ieani T"   "^-^text- 
retrieval labels (kevs) «7'h  \ ..      for associating 
filing and retrievlnrihe data a'a^if^'8 05 data a"d then 
The latter provides a means f^f \uniform  ^  efficient way. 
basic lexical unitl usually ^gUs^ad^anff'^ ^^ 0' 
structured concatenations (phraies  sentfnLf3 hlerarchically 
chapters) of them.  It is mnnh ^  sfntences, paragraphs, 
efficient to process LexicontL^  straightforward and 
it is to prodsHtriSs |fncharlcters "B represe"tatives than 
Modeling System was conceived of as a ^ener^1136 ^ Dynamic 

we have not developed a conter^-orientld ^f. PUrpOSe SyStem' 
system.  Even as our interest now are f data-management 
automatic programming and debuaoino  ?/°CUSln?.P" the field of 
shall want to keep the datT^ g 9'    Seems llkely that we 
rather than field-speci??c and^T^ Subsystem general, 
upon processing pr^rams bitten ii'such lanauf Sensit-ity in such languages as PLANNER 
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and CONNIVER. 

DEBUGGING 

The principal debugging aid is still DDT, which operates 
as a process separate from (superior to) the one that is being 
debugged.  DDT is not a part of CALICO.  We have augmented it 
somewhat (Cutler), but we have not tried to modularize and in- 
tegrate it. 

In an effort to aid the programmer in visualizing the 
execution of his programs and in seeing their flaws as the 
flaws are encountered, we have developed a PDP-10 simulator 
(Galley, Hughett) and a graphical debugging aid (Galley, Liu). 
Together, they display the flow of control through selected 
parts of a procedure and, at the Sc.me time, the flow and trans- 
formation of the data operated upon by the procedure. 

A second graphical debugging aid is nearing completion 
(Hughett).  It records the execution history of a program and 
then organizes and traces "trees of influence", working back- 
wards, into the past, to check each operation that contributed 
to the shaping of an incorrect value. 

Work is under way on other debugging aids that check the 
values of selected variables during the course of execution 
(Stern) .  Plans call for the integration of all these debug- 
ging tools (except DDT) and for their correlation with the 
mediator, which will make it possible for the programmer to turn 
them on and off at call and retrieve points during the execution 
of a program. 

INPUT/OUTPUT, INTERRUPT HANDLING, AND UUO HANDLING 

The input/output, interrupt-handling, and UUO handling 
subsytems include sets of CALICO macros and subroutines that 
are invoked by application programs and that, in turn, 
communicate with ITS.  They include, also, the code required 
to handle certain common interrupt situations and to ac-repc new 
UUOs.  ("UUO" stands for "Unimplemented User Operations", which 
are codes that resemble PDP-10 instruction codes but are left 
for us^rs to define.)  These subsystems allocate resources 
dynamically, insulate application routines from such absolute 
qualities as channel numbers, and generally facilitate 
applications programming.  They were designed and implemented 
by Haverty, Broos, Reeve, Seriff. Long, Lebling, and Hughett. 

COMPILING 

The only compiler that we have thus far made consistent 
with CALICO is the PL/1 subset compiler mentioned earlier 
(Okrent, Sybalski).  It translates statements from the subset 
of PL/1 into MIDAS source language and accepts all the macros 
and respects all the conventions of CALICO. 

SPECIAL TOOLS FOR MODELING 

In the philosophy of modeling that we have tried to 
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implement, it is not held desirable to restrict oneself a 
priori to the context or "world view" of any single modeling 
or simulation language such as SIMSCRTPT, GPSS, SIMULA, or 
DYNAMO.  Ideally, we would like to have the good features of 
many such languages brought together within one consistent 
framework (such as MUDDLE or PL/1).  In fact, vie  have devoted 
our energies mainly to erection of the framework, and we have 
not completed a kit of tools of the kind (e.g., event schedulers, 
queue managers) that are features of the simulation languages 
mentioned.  Work on several such tools is being done by 
Okrent, Fox, and Weissberg.  A major aim in this work is to 
facilitate the construction of models that include both 
continuous-process and discrete-event components. 

DYNAMIC LOADING 

In CALICO, the top-level subroutine is called through the 
mediator either by a MUDDLE function or by the user at his 
console.  If it is already in core memory, the subroutine is 
executed; if it is not already in core memory, it is loaded by 
DYNAL (Reeve, Erodie) and then executed.  Thereafter, each 
called subroutine that is not in core is loaded dynamically 
and then executed.  The called routines are sought by DYNAL 
first in the user's files, then in a recent-accessions file, 
and finally in the main library. 

THE LIBRARY 

The part of the Dynamic Modeling System into which the 
greatest amount of effort has been put — and the part on which 
the success or failure of the "community" philosophy rides — 
is the library.  At present, there are about 500 subroutines in 
the library.  They range from simple, low-level subroutines 
thc.t "get" and "put" characters or symbols to complex, high- 
level subroutines that translate programs or display three- 
dimensional graphs of hand-printed functions.  Corresponding 
to each executable library subroutine there is a source- 
language listing that includes an abstract that can be retrieved 
on-line and contains all the information required by a program- 
mer-user to use the subroutine successfully. 

G.  DOCUMENTATION 

An over- all view of the Dynamic Modeling System and infor- 
mation about how to get started are provided by Galley's "A 
Novice's Introduction to the System".  It deals with CALICO, 
ITS, the utilities, and the hardware rather fully but leaves to 
another document a comparable introduction to MUDDLE.  That 
document is Pfister's "A MUDDLE Primer", which permits anyone 
with basic knowledge of programming to move very quickly into 
MUDDLE programming. 

Essential technical information about the PDP-10 computer 
is collected in the manufacturer's System Reference Manual. 
Full descriptions of the JTS operating system, the MIDAS 
assembler, and several utility programs are contained in reports 
of the M.I.T. Artificial Intelligence Laboratory.  The DEC and 
AI Laboratory sources cover the foundations of the Dynamic 
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Modeling System.  The superstructure is described in 

the basis of these documents/ 

The set of documents is subdivided into several classes: 

GA General and Administrative 
SYS Basic System 
SR Subroutines 
MCR Macros 
UUO "Unimpleraented User Operations" 
DTCS Data Types, Classes, and Sets 
FA Form Abstracts 
LA Listing Abstracts 

Convention II: 

r!Mi f,1^66" 0f.the 2J  General and Administrative documents 
ca^Pd "r^ SYt ?!,(

standa^' protocols, and conventions 
called Convention II".  it sets forth rules intended to foster 
uniformity and coherence in those areas of software system 
development in which many minor decisions must be made among 
alternatives that differ only slightly in utility.  Decisions 
about format are often of that kind:  it doesn't matter much 
which format is adopted for bibliographic references  for 
coStent  w^ is,co^iderate of the reader to make things 
consistent.  We note, however, that the subject of software 

tZ^l^f13  0n1  in Which pe0ple have deeP ego-involvements, 
ance oftte isisue!Vement bein9 related inversely ^ the import- 

TT  JH ^0k mar}yu
hours of argumentation to define Convention 

ii, and it would have taken many more hours of policing to 

on ^ ^ ^ ^/^f n0t f0r 0ne fact:  th- documentation is 
on-lme, and uniformity of format makes it possible for comouter 
programs to deal with documents.  There is now quite a coUec- 
tioa.of subroutines and macros that extract the titles, one- 
line descriptions, descriptor sets, and so on from listing 
abstracts.  Broos• TECC macros run through the library of 
source programs and update the Listing Abstract Book at 
regular intervals.  Lebling's macros count each user's files 
and measure the disk space they occupy, and the poster! results 
apply strong moral pressure on "disk hogs" to delete the least 
active items.  And so on.  it is obvious now that it is very 
important for programs to be able to know a lot about programs 
and we want to move toward having programs understand 
documentation.  Format is of course only one of many facets of 
software that programs should know about, but it holds some of 
the Keys to learning about the other facets. 

Subroutines:  For most low-level subroutines, the listing 
abstract -- usually about two typewritten pages in length -- 
provides adequate documentation.  For high-level subroutines 
however, the problem is different because each hiah-level 
subroutine organizes the work of several or many low-level 
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callTfor^   ^n'   ^  effect'.is   a  complex  subsystem.     Protocol 
calls   for  a  full  program write-up  for each  such  subsystem? 

discuS  lh
rl^

in^le   Zysten of  the  type  under 

Name               Function                               author Identification 

PARSE            General  parser                K.   Brown SR   i?  en 
OBDIS             Object  display SR.12.01 

handler                              Hui c0   i r   «, 
CHAREG          Character  recognizer  Hui qp   l^ 
GRAPH            Cartesian   graphs, SR.15.05 

ESKBD            Character  strings          ^^ SR-15^6 

PENGET        stJlusfäbLt input    Signer ^Jl^ 
MATTER          Display   of   2D   &   3D SR.15.13 

graphs  corresponding 
to  hand-printed 
functions                         Guertin CD  IC   I, 

PREORD         Binary  trees                     QkrSt tl'll'a, 
ATTACH          Compression  of SR.16.01 

machine-language 

DATPGE          ofta'paging   for               DanielS SR.lB.Vl 
disk   files                       Haverty SR  18  «T 

KDM                 File  manager                      HavertJ SR"""^ 
OLDS              On-Line  document faR.i9.0r2 

SR.21.00 

File manager        Haverty 
^n-Line document 
system Bryan 

and Martin SR.21.12 

Other Categories;  Macros, UUOs, and other categories of 
rcuSS "but thTff^/r ^--^tely the same wl^as suC- rcutines, but the effort to get them and keep them under 

of the source-language listing of each subrouting or data set 

mainstay. listing abstracts have become the 

H.  MODELING 

^-SÄss„r^"^:! "siif .ssr ,^: ih"r 
neuron.l network   (Bingham,  Jarvi.,  Reeve,  Balln" m fL- 
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traffic-control simulation (McMillan), a simulation of airport 
air traffic (Dosett), an urban development simulation (Professor 
Aaron Fleischer, Allaman), a political science simulation 
(Lebling) , a model of a neural time-to-place transformation 
(Professor Jerome Lettvin, Paul Pangaro), and a model of the 
protein-building process that involves RNA (Professor Alex 
Roch, Siemeus) .  The last-mentioned effort, just getting under 
way, involves an IBM 360-91 computer at UCLA as well as the 
Dynamic Modeling System;  the 91 will handle the "number 
crunching" and the Dynamic Modeling System the interactive part 
of the work, which will exploit quasi-3D graphic display. 
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Publications 

1. Brescia,   M,   F.,   Time-Sharing a Display  Processor  for 
a  Time-Shared  Computer   System,   S.B.   Thesis.   Department 
of  Electrical  Engineering,  M.I.T.,   February  1972, 

2. DeTreville,   J.   D.,   Design  and  Implementation of an 
Example  Operating  System,   S.M.   Thesis.   Department of 
Electrical   Engineering,   M.I.T.,   1972. 

3. Donovan,   J.   J.,   Systems  Programming,  McGraw-Hill, 
New York,   19 72. 

4. Donovan,   J.   J.,   Teacher's  Manual  to Accompany  Systems 
Programming,  McGraw-Hill,   New York,   1972. '  

5. Fleischer,   R.   J.,   Computer-Aided Visual Analysis of 
Statistical  Data,   S.M.   and  S.B.   Thesis,   Department of 
Electrical  Engineering,   M.I.T.,  August  1971. 

6. Galley,   S.   W.,  A Novice's   Introduction  to  the  System, 
DM/CG/CN  Group Memo,   SYS.00.00,   Project  MAC,   M.I  T— 
March   19 72. 

7. Haverty, J. F., Lexicontext A Dictionary-Based Text 
Processing System, S.M. and S.B. Thesis. Department 
of  Electrical  Engineering,   M.I.T.,  August  1971. 

8. Hui,   W.   F.,   An Algorithm  for  Detecting  the   Inter- 
section of  Arbitrary Computer-Displayed  Figures,   S.B. 
Thesis,   Department  of   Electrical  Engineering,   M.I.T., 
June   1972. 

9. König,   D.,   Evaluation of  PL/I  as an  Interactive 
Language,   S.M.   Thesis,   Department of  Electrical  Engin- 
eering,   M.I.T.,   1972. 

10. Licklider, J. C. R., "Criteria for Design and Evalua- 
tion of Information Networks", SIGIR, ACM, Las Vegas, 
Nevada,   November  19 72. 

11. Madnick,   S.   E.,   "Program Parallelism Based  upon Compu- 
tation  Schemata",   Sixth   International Congress  on 
Cybernetics,   1972,   pp.   48Ö-494.   

12. Madnick,   S.   E.,   Storage  Hierarchy Systems,   Ph.D.   Thesis, 
Department  of  Electrical   Engineering,  M.I.T.,   1972. 

13. Metcalfe,   R.   M. ,  Anderson,   et al.,   "The  Data  Recor.~ 
figuration  Service  — An  Experiment in  Process/Prot ess 
Communication",   Proceedings  of  the  Second  Symposium 
on Problems   in  the  Optimi^ation of Data Communications 
Systems,   Stanford  University,  October  1971.  

14. Metcalfe,   R.   M.,   S.   Crocker,  et al.,   "Function-Oriented 
Protocols   for  the ARPA Network",   SJCC,   19 72. 
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Publications      (continued) 

15. Metcalfe,   R.   M.,   "Strategies   for  Interprocess  Communi- 
cation   in  Distributed  Computing  Systems",   Conference 
on Computer Communication  and  Teletraffic,  April   1972. 

16. McCray,   W.   A.,   SIM360:     A  S/360   Simulator,   S.B.   Thesis, 
Department  of   Electrical   Engineering,   M.I.T.,   1972; 
also MAC  TM-30,   May   1972,   AD   749-365. 

17. Okrent,   II.   F.,   Design  of   the   Dynamic Modeling  Manager, 
S.H.   Thesis,   Department  of   Electrical  Engineering, 
M.I.T.,   June   19 72. 

18. Pfister,   G.,   A  MEDDLE  Manual,   DM/CG/CN Group  Memo, 
SYS.11.02,   Project  MAC,   M.I.T,,   January   1972. 

19. Pfister,   G.,   A  MUDDLE  Primer,   DM/CG/CN  Group  Memo, 
3YS.11.01,   Project  MAC,   M.I.T.,   July  1972. 

20. -Soiferas,   J.   I.,   Observational  Complexity of  Character 
Strings,   S.B.   Thesis,   Department of  Electrical  Engin- 
eenng,   M. I.T. ,   1972. 

21. Zaborowski,   S.,   Monitoring   Student Programs  — A Case 
Study  in  Software  Reliability,   S.B.   Thesis,   Department 
of  Electrical   Engineering,   M.'l.T.,   1972. 

Talks 

1. Donovan, J. J., "Memory Management", presented as 
part of the Yale Fall Lectures in Computer Science, 
1971. 

2. Donovan, J. J., a series of 8 lectures presented at 
the University of Pittsburgh, Spring 1972, 

3. Licklider, J. C. R., "The Concept of an Interactive 
Technical Journal", Annual Symposium on Information 
Retrieval, May 1972. 

4. Licklider, J. C. R., "ADP Technology", Department of 
Defense Computer Institute, June 1972. 

5. Licklider, J, C, R,, "Future of Library and Informa- 
tion Systems", National Academy of Sciences, June 
1972, 

6. Metcalfe, R, M. , "The ARPANET', ACM/SIGREAL, Cambridge, 
Mass,, March 19 72, 

7. Metcalfe, R, M, , "The ARPANET", Stanford Digital 
E,-stems Seminar, May 19 72. 
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Publications  in  ProarP** 

1. 

2. 

3. 

4. 

5. 

pübllcaaöf'pUnned  for"972 ge'  Mas^h^ett:s, 

^T-kuXTVr*  ^uJlic1?'  5P££atin2_JlsteIns, ,   iMew  York,   publication planned  for  1973. 

inTsyste^-f-   ^  S-   E-   Madnick'   "^els  of  Operat- 

Sperlting'sys^e^f  ^   E-   Madnick'   "Crashing  in an 

anT^aluaüo^  ^   ^   MadniCk'   "S^t- Perforn.ance 
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A.     Present Work 

During  the period July  19 71  to  May   19 72,   the group  continued 
several   research  activities which were  initiated  before  this 
period,   and  are  discussed below.     Halfway   through  this  period. 
Prof.     M.   L.   Der*-.ouzos  and his   students  came  from  the Elec- 
tronic Systems   Laboratory  to Project MAC  and  joined the group. 
During that   time,   relatively   few new  activities  were  initiated 
partly  because  of extensive  involvement  of  the   faculty  in  the 
development  of   6.252  and partly  because,   w^th   the departure 
of  Prof.   J.   Weizenbaum  for a twc-year period  starting  in the 
Fall  of   1972,   the group intends   to  re-orient  its  objectives 
and scope of   research. 

Continuing  research  entailed the  following: 

1. Study  of  means   for making  possible  the  animation  of dyna- 
mic processes   for  educational  purposes.     In particular, 
several  approaches were  investigated  for  the  interconnection 
of  a simulated process   (a simple  two address  machine)   to a 
graphical  process   (e.g.,   representations  of  registers  and a 
processor  stack) .     It  is  intended  that  this   interconnection 
be  flexible  ei.ough  to  allow on-line editing  of  the graphical 
representations   independently  of  the  simulated machine.     Super- 
vision of   this  work was  initially  under Prof.   J.   Weizenbaum 
and has   shifted  to Prof.   M.   L.   Dertouzos   a  few months   ago. 

2. An  associative memory higher-level  interpreter.     This 
workTnvolves  exploration of  the  use of  an  associative  memory 
with  a higher-level   language hardware  interpreter.     The 
objective  is   to match the hardware memory  and processor to  the 
environment   and  interpreter structures  of  a higher-level  lan- 
guage  such  as  LISP.     Such  a match which  appears   to be econo- 
mically   feasible with  current   technology,   eliminates   the need 
for  the  typical  machine  language  and numerical  memory  loca- 
tion  issues  which  are quite distinct  from  the  user's   language. 
This,   in  turn,   means   the  absence  of  assembly,   compilation, 
relocation,   storage  allocacion,   ana address  computation  tasks 
in their traditional  sense.     The  elimination or  reduction of 
these problems,   in  turn,   frees   us   to study more   fundamental 
notions   concerning procedure  semantics  and computing environ- 
ments.     This  work  is  supervised by Prof.   M.   L.   Dertouzos. 

3. Two Ph.D  theses  being completed June   19 72   and  September 
1972  are  carry-overs   from the  research  of  Prof.   M.   L. 
Dertouzos   in Computer-Aided Design.     One  thesis   involves  the 
study of  exact-inexact machines   for  the  solution  of  large  sys- 
tems  of  equatiCi.-..     These machines   consist of  a digital 
relatively   accurate  exact part  and  an  analog  or  coarser digi- 
tal  inexact  part.     Programming  the machines  entails  decompos- 
ing  the  problem  into  a part,  which  checks   a proposed  solution 
with  a computing  time  that grows   relatively  slowly with pro- 
blem size  —   this   is  handled by  the exact part  of  the machine; 
and  another part  which proposes   a new solution  on  the basis 
of  the above  check  —  this  part which would normally  require 
a  large   amount  of  computing  time  is  done  rapidly  by  virtue  of 
the  inexactness  of  the  subsystem  that  handles   it.     The overall 
solution   is   as  exact  as  the exact  part  of  the machine. 

This   research  has   resulted in many  interesting  results which 
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arc documented by Jim Stinger's Ph.D. Thesis.  The work is 
supervised by Trof. M. L. Dertouzos. 

4. The other Ph.D. thesis (P. Jossel) involves the develop- 
ment of a "language" which describes existing and hopefully 
new circuit analysis programs.  Expressing a circuit analysis 
program in this language leads to the ability of measuring 
with acceptable accuracy the power of that program, e.g., the 
computing time it will require for various classes and various 
sizes of circuits, the amount of storage used and so on. 
These measurements, in turn, make possible a comparison of 
the (many) existing and p.oposed circuit analysis programs in 
a systematic way.  Several interesting results have been ob- 
tained to date and more are expected during the summer.  This 
work is supervised by Prof. M. L. Dertouzos. 

5. A thesis completed under the supsrvision of Prof. J. 
Weizenbavm involves the development of simple primitive 
functions for natural language.  Those arc based on a lay-word 
transformational grammar distinguishing English function 
words and a canonical representation of English sentences. 
Vhe functions provide the general capability for saving infor- 
mation for answering questions, for executing commands, and 
for doing elementary deductions.  They are designed to facili- 
tate the constructnn of special-purpose computer natural lan- 
guage systems, with Lhe particular application to a program 
for generating computer graphic displays for piano geometry. 

B.  Future Work 

1. The 6.252 Computer System 

Academic activities will continue to occupy a substantial 
part of the time spent by several members of the group.  These 
activities involve continuation of the development of 6.252 
and the development of a 6.252 time-shared system.  The latter, 
based on a PDP-11/45 CPU, is a limited-objective 8-user sys- 
tem (no swapping, one file per user) which will offer to stu- 
dents a subset of the PDP-11 assembly language and several 
LISP interpreters with progressively mere complex environment 
and control structures.  This system, /hich was purchased by 
the Electrical Engineering Department, will be used exclusively 
by 6.252 students who will be expected to use it for an average 
of 2 (console) hours per week. 

It is also expected that the system will be used to implement 
the on-going research work on graphics (1 above), for the 
purpose of demonstrating to students either on-line or through 
movies, several dynamic processes, e.g., (i) stack operations 
during execution of recursive procedures, (ii) implementation 
and consequences of global labels and free variables, and 
(iii) garbage collection algorithms. 

2. Continuation of Present Work 

Of the present work, it is expected that items A.l. and A.2. 
above will be continued. 
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3.  Exploration of New Areas 

the^-ea^f ^'^   aCti"ities' the group wishes to explore 

As , nrfL     ? execution of engineering-3rientod tasks 
As a prime example, consider the current (and oast) ar«* Af 

oSt "»v<i,ue""' "ith the 1-0 technique, dceljped J^the 

In addition 
to explore 
eering robo 
to use some 
Artificial 
phi.losophy, 
principles" 
?.s a result 
one or more 
to the cone 
direction 

to exploring this problem, the group would like 
other possible applications areas, where engin- 
of%ufn be ?tudied and developed.  Our intent is 
of the excellent results obtained to date by the 
Intelligence people, but with an engineering 
i.e., to some extent., subordin?tion of "first 
to the expediency of achieving specific tasks, 
of this exploration, we would like to arrive at 
applications areas that deserve further work, or 

lusion that we should not continue work in this 
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Publications 

Dertouzos,  M.   L.,   "Time  Bounds  on  Space  Comu.ca.ion" 
OCeedlnqS..0f l

the  Switchin(J_and Automata  Theory ' symposium,  Octöbvt  lj-lb,   1971,   PP.   liJ2-l(i7.      '- 

?EEE0T^n:i;-L-'   ~   a1---'    "lnsi^   VS.   Algorithms", 
^     lÜl-xor S   ^   Ed'lna<"inn     Vul-   E-14,   No.   4, 

AeF^oZvS'   M; L-'."Ele^nts,   System',   and  Computation- 
A Five  Year Experiment  in  Combining  networks    Diaital 
Systems  and Numerical Techniques  in  the  First Course" 
ggE_Ty.ansactions on gducation,  Vol.   E-14,  No.   4? ' 

Dertouzos,   M    L.,  G.   P.   Jessel  and J.   R.   stinger, 
Circal-2:     General-Purpose  On-Line  Circuit Desiän" 

Proceedings   of  the   IEEE.   Vol.   60,   No.   1,   pp.   39-48.' 

Dertouzos,   M.   L.,   M.   Athans,   R.   N.   Spann   and  S    Mason 
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The past year has been a year devoted mostly to consolidating 
our previous work.  The "Mathlab" PDP-10 arrived during the 
year and became operational in February 1972.  Scores of 
casual sessions with the MACSYMA system have been held. Users 
were increasingly satisfied with MACSYMA as more capabilities 
were integrated into it and as the system, now approaching 
150K words, became better debugged. 

A. The Hardware and Time-Sharing System 

The basic PDP-10 processor and one half its memory (i.e. 128K) 
arrived in October 1971.  Richard Greenblatt and Thomas Knight 
made an heroic effort to bring up an ITS time-sharing system 
compatible with that on the Artificial Intelligence Group's 
machine.  The new file system they created was given to the 
Dynamic Modeling group and tripled their effective disk utili- 
zation. 

The remainder of the memory arrived in December.  In January 
Systems Concepts installed a pager compatible with the one on 
the Artificial Intelligence machine.  As a result, the Mathlab 
machine is able to use the latest versions of the Artificial 
Intelligence time-sharing systems.  Some tnrashing originally 
encountered when three or more MACSYMA's were being run on 
the Mathlab machine caused a redesign of the scheduler.  As 
a result of the compatibility of the software, the new sched- 
uler has been used on the Artificial Intelligence machine as 
well. 

B. Consolidation of MACSYMA Software 

The past year was spent mostly in debugging and consolidating 
existing code into the MACSYMA system.  The presence of the 
new machine meant that more users were available to report on 
bugs, and two or more versions of MACSYMA could be run and de- 
bugged at the same time. 

While MACSYMA was on the Artificial Intelligence machine, we 
were restricted to a system of about 90K words.  This meant 
that several subsystems of MACSYMA were left on the disk. 

The latest versions of MACSYMA contain almost all of the code 
and a little larger working storage.  These versions approach 
150K in size.  Over 60% of the system is pure and is shareable 
by several users.  Recently we have run five simultaneous 
versions of MACSYMA. 

We decided to avoid having separate user and experimental ver- 
sions for a while longer.  The current version of the system 
has a great number of debugging aids, in particular the ability 
to trace any function in the system.  The effect of the ease 
of debugging is a slowdown of the system of a factor of about 
four.  We have started to create a first "release" version of 
the system which would not have the debugging aids.  The timing 
studies attempted thus far for the release version have un- 
covered a number of surprises, as seems to be common in systems 
of this size.  One common style of LISP programming is to call 
a function indirectly through its name which is kept on the 
property list of an atom.  This technique seems to slow 
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down a function call by a factor of at least 50.  With the 
present maturity of the system the modularity of the indirect 
call is not required, and we expect an increase in speed in 
subsystems which rely on thir ^-.pchnique.  Another effect of 
the shift in coding style will be that the amount of impure 
data in the system will be decreased noticeably. 

C. New Subsystems 

Paul Wang completed his doctoral research on definite integra- 
tion last summer.  This subsystem together with the limit 
routines comprise 15% of all of our code.  It is being inte- 
grated into MACSYMA at the present time. 

During the past year, we completed work on a polynomial 
factorization program based on Berlekamp's method for factori- 
zation modulo a prime.  Drs. Linda Rothschild and Paul Wang 
did the bulk of the coding with some help from Dr. Richard 
Fateman.  The present program is the only one which can fac- 
tor polynomials in several variables efficiently.  Special 
case techniques, such as for polynomials of the form Xn + 1, 
have been implemented in the program, 

Richard Zippel, a sophomore in mathematic-, has almost com- 
pleted a subsystem for the manipulation of power series. 
The representation of power series is different from that of 
polynomials in that the coefficients are rational functions 
rather than polynomials. „The subsystem allows the use»- to 
declare cutoffs such as X -♦• 0 so that powers of a variable 
higher than a given degree ate neglected.  This Ls a desirable 
capability because it keeps the intermediate expression swell 
down in certain applications. 

D. The New LISP Compiler 

Eric Rosen, with the help of Jeffrey Golden and Jon White, 
completed a new version of the LISP compiler which compiles 
purely arithmetic code better than the cun^nt DEC PDP-10 
FORTRAN compiler.  A new version of LISP whicl: hariles arith- 
metic function efficiently was designed by William Martin, 
Jon White and Eric Rosen.  MACSYMA will begin using the new 
LISP system and the new compiler in the coming year. 

E. CONNIVER 

A new language, called CONNIVER, has been implemented in LISP 
by Gerald Sussman and Drew McDermott of the Artificial 
Intelligence Laboratory.  The central features of this language 
were suggested by Joel Moses.  This language is intended for 
use in Artificial Intelligence applications and also in the 
Mathlab group's automatic programming efforts.  The language 
has the capability of handling local data bases which are 
erased after function returns.  The language has some of the 
features of PLANNER such as pattern matching, but lacks the 
automatic backup which PLANNER utilizes.  We believe it to be 
superior to PLANNER for most applications. 
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F-  ^e MACSYMA (maximus?, maximuni?) Experience 

Successful use of MACSYMA has increased markedly during the 

versionTs   uTll'ta^16 ^  bUgS Sti11 **^  *"*  thl ScSYMA „„lü® I    llable to change from moment to moment, the fre- 
quency of complaints about bugs has decreased to the point that 
of use?"  * SeS310ns do not «bouncer bugs in several hours 

A console connected to the Mathlab machine is operatinq in the 
Mathematics department.  Richard Fateman has used the console 
facSr aT"

umbe,r.of Priems for the Applied Mathematics 
faculty,  m particular, he solved certain integration oro- 
ll^f; T.^ 0J  f1"6" equatj°n= with parameters and non- 
linear differential equations. We believe that at the Present 
time successful use of MACSYMA is best achieved by a "hand- 
holding operation in which someone familiar with MACSYMA 
solves the problem on the computer.  Should the sysJem S 
sufficiently attractive to the Mathematics faculty, then thev 
^ V3^ 1°  inVeSt the time to learn how to use it thlmsSves 
It should be noted that much of the faculty does not know 

himself^th SS! at a11- 0ne haS alrea^ familiarized 

MAr^UP ? thtJet  pf0Pulsion Laboratory has been using 
MACSYMA by making calls through the Federal Telecommunications 
tl^Tl     TS8 line qUality throu5h PTS is quite po™  This 
group is howevet, too impatient to wait for the ASPA connec- 
tion, which should occur in the summer. The group has a con- 

thev hon^rT^^69"18 0f hyPer^o^tric9functions which they hope to do with MACSYMA. 

A doctoral student of Prof. G. C. Rota has been using MACSYMA 
to investigate simplification properties of linear oLrators 
^ailor^L'pnnv"96 SiZe ?  his exP"ssions, he hafused I" tailor-made 200K version of the system. 

Many members of Project MAC and the Artificial Intelligence 
Laboratory have made casual use of MACSYMA for solvin^homl- 
work problems and the like. At present, we do not kelp track 

nLd^n6?3'^ USagei bUt We tend to be quickly infoS of the need to fix bugs and improve certain aspects of the system. 

G.  Future Directions 

Future efforts of the group will be concentrated in three 
directions. -••»«» 

1.  Improvements to the Current System 

The current system was written in less than 3 years bv 
essentially 4 people (Fateman, Martin, Moses, Wang). This has 
led to a system in which a number of useful featured were 
ignored in order to concentrate on others which were deemed 

TncludIsS?ntial " the t0tal eff0rt-  The list of i-Prov^enfs 

a) A better representation of matrices - 
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1^LrtPreSent^0nS  exist at Present.  Paul Wang is trying to consolidate them. 

b) A more efficient input parser - 

The current parser is an LR{1)   parser.  An operator 
precedence parser is being designed by Steve Saunders. 

c) Better storage mechanisms for intermediate results - 

Several schemes for storing intermediate results of a 
long session have been attempted in the past without 
much success.  Jeffrey Golden is working on this project. 

nL^Vi30 interested ^ integrating into MACSYMA significant 
^P

a  i^ ^ avaiUble in other algebraic manipulation systems 
(e.g. the physics package in REDUCE-2 and Laplace transform package In MATHLAB) . f-^a^e transrorm 

It is clear that the large number of users of MACSYMA which we 

^tff^ Se6 Ä year Wil1 SUggeSt ^ Vari^ ot^Pro™ 

2.  Subsystems for Important Areas of Applicftion 

fL«^"9 to.cfeate a. general-purpose system, we have largely 
ignored special capabilities desirable in only one or two y 

areas.  Areas which we have been examining are: 

a) Numberical Analysis - 

One important use of an algebraic manipulation system is 
as a front end to numerical analysis programs.  David 
Yun has used MACSYMA to set up an efficient numerical 
o?1^« ?4^iP?rtfal differential equations for members 
or the Civil Engineering and Mathematics departments. 

b) Optimization and Control 

David Yur. has also explored the use of MACSYMA in problems 
in optimization and control which involve parameters and 
hence cannot be easily solved by numerical ieSquls. 

t)  Psrturbation Theory 

Jeffrey Golden has been examining the possibility of 
JÄMA  \n-?1-^

hniqUeS fr0m Pe^urbatior theory in 
MACSYMA.  With Dr. Mark Ablowitz he studied the stability 
of a classical problem in applied mathematics last su^msr. 

d)  Astronomy 

VtLTJ,  sPectacuiar achievements of algebraic manipula- 
tion have occurred in astronomy.  Dr. Andre Deprit 
a?v!n iy ltCetVtd  the only awavd in computer science 
given by the National Academy of Science for a recalcu- 
lation of the moon's orbit.  This calculation originally 
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believe a more qenerL ^h i1360 a tailor-made system, we 
ten for doing suchfcalcSatfnn 0'mCS^ couidbe w^it! 
reasonable efficiency? and many others  with 

a)     Number Theory  and Combinatorics 

^tT.zz^tint^tr^ si9ned to be - - to 
of users interested in'pure math^3 S^nific^  number 
number theory , and co^^^tor^^^ould"!^^0111^ 
tend our capabilities in these areas. t0 eX" 

3-  Research on New Alanri t-h^ 

Algebraic manipulati 
user to provide a me 
rare cases, such as 
approach far differe 
approach of people, 
obtain a new set of 
which will solve the 
ticians. 

^hJ^  S ^aVe up to now relied on the 
thod for solving his problem, only in 
integration, have these systems used an 

WeSie^e* fhafit^   '^  ™*t*ncil» 
algori^J^e^^^^-^e1^-. 
traditional problems  of applied mathemL 

tions  and then ask  the aulstfon« H    
Gn^al  0r dif^rence egua- 

traditional  approach hafbeen  to Jrv'to L?v   ^ a0ä91'     ?he 

closed  form in terms  of  a  claaa  of -J^   f1^  the  system *■* 
exponentials,   Bessel  °nn^^  f       !  sPecxal   functions   (e.g. 
stability)   of thnilutio'n "^ is' well  f' the question9 e.g. 
possess  closed  form solutionJ       LJtll knOW"'   few syste^ 
been  to get an approximation  to  the SoluK ^ apProach  ^s special  functions    ^nrf t-hJ~ solution in terms  of 
tion.     This  method  f^L^ly^^e^ ^  ^  W'**^- linear. ^ ^'"-^y  raiis when the  system is  non- 

erence equatio.is.     Recent  result^  fnfiKerentlal  or diff- 
combinatorics  have  shed qrlat  Jfaht  nn  9ebralC.ge0,netry  and 

integration  and identities M   l9^ on properties  such  as 
is  some hope that "sultfon at^ilK f10*^0" rUles) "     The« well.     The  current  situation   ft^111^ are  forthcoming  as 
forthcoming pajefin the 2l2h fn«f8Cribed in Joel Hos^' y  V per m the  25th Anniversary  Issue of CACM. 
H.     SIGSAM 

ChaSaV^d1 SelsSr SpS^ *'  T^ ™* *^* 
Group on  Sympolic and Algeb^ic  S'   ? ^he Special  ^terest 
will  serve  in these pos^Sntil S^m^ ^ ACM-     They 
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Publications 

3. 

4. 

Fateman, R. J., Essays in Algebraic Simplificatinn . 
Probet MAC. M.l.T./MAC-TR-gs, April 1972, AD 740- 

Fateman, R. J., "Rationally Simplifying Non-Rational 
Expressions", SIGSAM Bulletin. No. 23, July 1972, 

Martin, W. A. , "Determining the Equivalence of 
Algebraic Expressions by Hash Coding", Journal of the 
ACM, Vol. 8, No. 4, October 1971, pp. 549-558.  

Moses, J., "Algebraic Simplification: A Guide for the 
Perplexed", Communications of the ACM, Vol. 14. No 8 
August 19 71, pp. 527-537. 

Moses, J., "Symbolic Integration:  The Stormy Decade", 
Conununications of the ACM. Vol. 14, No. 8, August 1971, 
pp. 548-560. 

Moses, J., "Toward a General Theory of Special Func- 
tions", Communications of the ACM, Vol. 15. No  7 
July 1971; pp. 55Ö-554.  

Wang, P. s.. Evaluation of Definite Integrals by 
Symbolic Manipulation, Ph.D. Thesis. Department nf 
Mathematics, M.I.T., 1971; also MAC-TR-92, October 
1971, AD 732-005. 

Wang, P. s., "Application of MACSYMA to an Asymptotic 
Expansion Problem", Proceedings of the ACM 25th 
Annual Conference, August 19V2, pp. 844-S5Ö.  

Publications In Progress 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Fateman, R. J, , and J. Moses, "Canonical Forms for 
First Order Exponential Expressions". 

Fateman, R. J., "Comments on Problem 2". 

Fateman, R. j. , "On the Computation of Powers of 
Polynomials". 

Wang, P. s., "Factorirg Multivariate Polynomials Over 
the Integers". 

Yun, D. Y. Y., "An Application of MACSYMA to Proving 

the Achievability of the f —^ ]M  for Evaluation of 

General Non-monic Polynomials of Degree n". 

Yun, D. Y. Y., "On the Efficiency of the Dijkstra 
Algorithm". 

Yun, D, Y. Y., "On Symbolic Solutions of Systems of 
Algebraic Equations". 
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Moses, J., "Algebraic Manipulation", a set of lectures 
given at the Computer Science Seminar, Bonn, Germany, 
August 1971. 

Moses, J., "Algebraic Manipulation", given at the 
Joint Colloquium of the Departments of Mathematics 
and Computers & Communications, University of Michigan, 
Ann Arbor, Michigan, November 1971. 

Wang, P., "Factoring Multivariate Polynomials", given 
at the Department of Applied Mathematics, Taiwan 
National Chung Hsing University at Taichung, Taiwan. 
June 1972. 
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PLANNER 

The PLANNER project is implementing a high-level goal-oriented 
language on Multics,  The aim is to have a clean implementation 
of a procedural foundation for problem solving.  The founda- 
tion attempts to be a matrix in which real world problem-solving 
knowledge can be efficiently and naturally embedded.  As a 
first step, we are implementing the basics of the control 
structure and data structure. 

The fundamental data structure of PLANNER is the directed graph 
with named links and nodes.  Any data element can be used as 
the name of a link.  Furthermore, any data element can have 
links associated with it.  The actual linkage can be mechanized 
by hash coding, indirect addressing, indexing, or by a proce- 
dure call. 

Processes are the active elements in the model.  Instantan- 
eously, a process is a data structure in its own right con- 
sisting of a pseudo-stack of activations of procedures.  The 
actions of processes are caused by executing a general kind of 
CALL statement.  There are two actions for each CALL:  control 
leaving a procedure and control returning to the procedure. 
Control can leave a procedure of a process P by calling ou*- to 
any of the following: 

an ordinary function. 

a label function L which is a function <■ \at returns to 
the block in which L is defined instead of to the point 
at which L is called. 

3. a port which is a communication channel between processes, 

4. some combination of the above. 

Control can be resumed in the process P by one of the fo^low- 
ing : 

1. 

2. 

an ordinary function return. 

receiving a container of values on a port in which the 
process P is waitirg. 

3.   some combination of the above such as simultaneously 
waiting on several ports or waiting for any of a number 
of ports. 

Our goal is to procedurally embed problem-solving knowledge 
in the data and control structurü so that it can be effectively 
used.  The overhead of a mechanism should scale in proportion 
to the use of the mechanism.  In terms of control structure 
we are implementing some ideas of Landau, Bobrow, and Weqbreit 
for a pseudo-stack for processes.  The efficiency of thepseudo- 
stack falls off linearly in proportion to the degree that 
stack discipline is violated.  We have implemented a hash cod- 
ing scheme which scales properly with respect to large data 
bases. 
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A.  Adding Knowledge 

In constructing models we need the ability to embed more know- 
ledge in the model without having to totally rewrite it. 
Certain kinds of additions can be easily encompassed by'de- 
clarative formalisms such as the quantificational calculus by 
simply adding more axioms.  However, declarative calculi do 
not allow new deductive procedures to be added.  We are imple- 
menting mechanisms that allow a great deal of flexibility in 
adding new procedural knowledge.  The data structures of 
PLANNER can be bound to the control structure through a variety 
of mechanisms.  The mechanisms provide the following abilities: 

They provide the means by which knowledge can easily 
and naturally be embedded. 

They enable new knowledge to be added without rewriting 
everything. 

They make it possible to reorganize the connections 
between the pieces of knowledge. 

PLANNER must provide interfaces so that the bindings can be 
controlled by knowledge of the domain of the problem.  The 
right kind of interface promotes modularity because the pro- 
cedures on the other side of the interface are not affected 
so long as the conventions of the interface are not changed. 
These interfaces aid in debugging since traps and Checkpoints 
are conveniently placed there.  More generally, formal condi- 
tions can be stated for the interfaces and verified once and 
for all. 

B. Monitors 

The mechanism of monitoring allows the attachment of an 
arbitrary procedure (called a monitor) to a location so that 
whenever the contents of the location are read, changed, 01 
executed the monitor will be invoked.  Monitors allow pro-esses 
to be dynamically bound to read, write, and execute operations 
on particular structures.  In general, whenever data is examined 
or modified, there must be a mechanism for a process to mediate 
the action. 

C. Ports 

Ports act as communication channels between processes. They 
allow the output of some processes to be fed to others without 
the processes having to know each others names.  Thus the 
connections can be dynamically reconfigured without affecting 
the processes. The simplest kind of port consists of two 
queues. The first queue consists of containers of values wait- 
ing in the port to be given to processes. The second queue 
consists of processes waiting for containers of values. Typic- 
ally either or both queues are empty. 

D. Data Structure Definitions 

A data structure definition binds the operational properties 
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of a data type to a concrete physical representation.  For 
example, sequences can be physically realized in a variety of 
ways. 

Consider the following methods for realizing the sequence: A, 
B, C. 

LIST 

B k c 
/ 

F 

VECTOR 

NODE 

E.  Generator 

A generator is a function of no arguments which can be 
called repeatedly to produce the elements of a sequence 
Thus the first call to a generator for the sequence would 
return A, the second ci.ll Bf and the third C.  Generators 
work from side-effects since they are always entered from the 
top with no arguments. 
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Process 

A process (co-routine) has the capability of being resumed 
from the place where it produced its last value. Thus, unlike 
a generator, it does not always have to start over from the 
top. 

G.  Pattern Matching 

Pattern matching is a natural way to conditionally recognize 
and bind the substructures of a particular data structure. 
Pattern matching procedures preserve visual fidelity since 
they "look like" the object they match.  Pattern matching 
exhibits controlled binding by allowing a whole class of data 
structures to be specified. 

H.  Pattern Directed Retrieval 

Pattern-directed retrieval enables data structures to be re- 
trieved by a pattern of what they look like.  For example, 
the pattern (AT NAUTILUS 7PLACE) can be used to bind the 
identifier PLACE to the location of the NAUTILUS if it appears 
in the data base. 

I.  Pattern Directed Invocation 

Pattern-directed invocation enables processes to be invoked 
by triggering patterns.  It is a convenient way to bind the 
processes that propagate the implications of updates to a 
model.  Recommendations can be used to further control the 
binding of which processes will actually be invoked.  Pattern- 
directed invocation is often used as a kind of data base 
monitor or "demon".  Demons are more powerful (but less 
efficient) than ordinary monitors since they watch for changes 
to a whole class of data instead of just a single location. 

J.     Sinultaneous Goals 

Often we need to be able to achieve more than one goal at 
once.  For example, we might want to have Joe, Fred, and 
Martha at the airport at three o'clock.  We might be tempted 
to express the problem as follows: 

<achieve (at Joe airport 3:00)> 
<achieve (at Fred airport 3:00)> 
<achieve (at Martha airport 3:00)> 

However because of complicated travel arrangements, we might 
not know beforehand the order in which to try to get the 
people to the airport.  For example, some of the people might 
have to chauffer others.  If this is the case, then we don't 
want to bind the order in which a problem solver attempts the 
goals.  We would prefer to write: 

Simultaneous 
(at Joe airport 3:00) 
(at Fred airport 3:00) 
(at Martha airport 3:00)> 
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PLANNER 

K.  The Fire in the Warehouse 

In this section we present an example to Illustrate the opera- 
tion of PLANNER'S tree-structured data bases.  PLANNER allows 
facts and procedures to be stored in data bases where they 
can be conveniently retrieved.  The data bases are indexed 
using hash coding so that the time to retrieve an element is 
almost independent of the size of the data base.  Suppose that 
warehousel has S5000 worth of plywood, $1000 of bricks and 
$4000 of tractors.  Tractors and plywood are flammable. We 
can express this more formally as: 

<assert (in warehousel plywood $5000)> 
<assert (in warehousel bricks $1000)> 
<assert (in warehousel tractors $4000)> 
<assert (flammable plywood)> 
<assert (flammable tractors)> 

If the warehouse burns down, then everything inside of it which 
is flammable will be burned up. 

<define burn 
.•"define burn to be the following procedure" 

<if-asserted 
(burn-down :PLACE) 
;"if (burn-down :PLACE) is 

asserted then bind PLACE 
to tht actual location and 
execute the following" 

for "current" (in .PLACE :THING <?> ) 
;"for each thing that is 
currently in the place 
execute the following" 

<if <current? (flammable .THING)> 
;"if THING is flammable then" 
<erase (in .PLACE .THING <?> )> 
;"erase the fact that THING is in PLACE">>>> 

Now let us suppose that warehousel burns down. 

<new-world ((WORLD2 <world>)) 
;"we go down inside a new-world (which we name 

WORLD2) to construct our experiment" 
;"this new world starts out identical 

to the world from which we have just 
come but changes made in here will 
not affect the outside" 

<assert (burn-down warehousel)> 
;"the assertion will trigger the burn 'demon' which 

will erase 
(in warehousel plywood $5000) and 
(in warehousel tractors $4000)"> 

Now we can compare and contrast the initial world with W0RLD2 
in which the fire took place.  For example, we can ask the 
value of the conten ,s of the warehouse destroyed by the fire. 
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'S "current"'■'('S1!"1;26 the ™*  to 0" 
> "«X.Ouii\hfrf??8eJ

1 :THING :VALUE) . execute the following for each THTM^ ^  *. 
<lf    originally in warehousel"   

G that WaS 

!" Är:Är'houMi — 
<dif "--•-->"W0RLD2 th-ftB 
. add the VALUE OF THING into LOSS"» 

After the above is executed  <.»,-. 
which is the value of tha flJ^V*1^8 0f L0SS will be S9000 
-rid and WORLDS^re^bo'fh KKÄ^0

"' 
0ur '«ituS 

cation,  when we have finished our «   lnspection and ir.odifi- 
save the resulting worlds or dl scar IST^' We can ei^er 
the pertinent information.  aiscard them  having abstracted 
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A. Summary 

The Simpl group has completed its implementation of the Simpl 
interactive simulation language on Multics, and has completed 
the documentation for the system.  The completed system is 
being submitted to the Multics Author-Maintained Library for 
general use on Multics. 

B.  Review of the Pant Year 

By July, 197., an efficient version of the Simpl translator 
and run-time system (known as System III) had been implemented. 
Since then, the system has undergone five additional major 
evolutions, described below: 

System IV  The Simpl statistical features (tables, histograms, 
time-plots, and queueing statistics) and tracing 
facilities were added. 

System V   The Simpl Monitor, which enables on-iine interac- 
tion with a Simpl model, was completed. 

System VI External activities and connector variables were 
implemented, and a central error handler was in- 
stalled for the translator and run-time system. 

System VII The system was modified to handle storage alloca- 
tion more efficiently, and the files in the process 
directory were reorganized. 

System VIII Reactivation labels (in the translated program) and 
internal static label variables (in the translator 
and run-time system) were eliminated. 

We had hoped to recompile the entire system — translator, 
run-time package and monitor — with the new version II PL/1 
compiler. However, even by late in May it was still not 
sufficiently bug-free to allow us to make this final step. 

During the last few months, all documentation of the Simpl 
system was completed.  The "Simpl Primer" and "Simpl Refer- 
ence Manual" were updated to be consistent with System VIII, 
and the "Simpl Implementation Manual" was written, which des- 
cribes the internal workings of the entire system.  All three 
of these documents will be published as MAC TR's. 

There are no future plans for the Simpl Group. 
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THEORY  OF  AUTOMATA 

The Automata Theory  Group  is  concerned with  the  structure  and 
complexity of computational models   and  algorithms.     In  recent 
years,   major interest within  the  group has  centered on  the 
study  of  algorithms  and decision procedures.     This  study has 
as   its  goals:     i)   The  analysis   and design of optimal  algorithms 
for basic  computational  tasks,   such  as  graph "'-'nipulation, 
sorting,   scheduling,   and various   arithmetic  calculations;   and 
ii)   The development  of methods   for proving  that ce.-tain  com- 
putational  tasks  are  inherently  difficult  to perform.     In 
addition  to  this  emphasis  on  algorithms,   the group  also  retails 
an  interest  in  some  of  the more  traditional problems  of  auto- 
mata  and complexity  theory,   such  as   the  relationships  between 
the  structure  and efficiency of  various  computational models, 
and  the  abstract  theory  of the  complexity of recursive   func- 
tions. 

The major  accomplishments  of  the   last year are outlined  in 
four  section«?  below.     The  first  section,   titled Inherently 
Complex  Decision Problems,  describes   some new results  that 
provide,   for  the  first  time,   examples  of  "natural"   computation 
problems   that  can be  shown to be  inherently difficult.     The 
second  section.   Combinatorial  Algorithms,   describes  progress 
made  in the  investigation of  various  packing,   scheduling,   and 
sorting  problems.     The   lasL  two  sections  present  results   in 
several  more  "classical"   areas.     That  labelled Computation  by 
Automata  includes work  on grammatical  transformations,   fault 
detection,   machine decomposition,   complexity of Boolean   func- 
tions,   and  the  theory  of program Schemas.     The final  section 
describes  continuing work  in  abstract  complexity  theory. 

A.     Inherently  Complex  Decision  Problems 

Godel's   celebrated  theoic^.c  reveal   that no computer program 
can  verify  all  the  true  statements  of  elementary  arithmetic. 
Nevertheless,  decision  procedures   have  been developed  for a 
number of more  restricted classes  of  mathematical  statements. 
Four  years   ago  Rabin  succeeded  in  proving  that  there  is   an 
algorithmic procedure,   for determining   the  truth or  falsity of 
an  arbitrary  sentence  of what  is  called  the monadic  second 
order  theory of  two successors   (S2S) .     This  discovery  is   re- 
markable because S2S  is  one of  the  few decidable  theories   in 
which   it  is  possible  to phrase  interesting mathematical  state- 
ments . 

Unfortunately,   Rabin's  decision procedure  for S2S  is  impossibly 
slow,   as   is  Buchi's  decision procedure   for  the weak monadic 
second order theory  of  one  successor   (WS1S),   a precursor   of 
Rabin's  work.     Attempts  have  been made  to reduce  the enormous 
computations   involved  in  the known  decision procedures   for 
WS1S,   but  as  a consequence of  a  new  result of Prof.   A.   R.   Meyer, 
we now know  that  any  decision procedures   for WS1S,   S2S,   and 
several  related  theories  must  involve   impractically   long 
computations. 

Meyer's   results  apply  equally well   to  certain  first oraer 
logical  theories.     As  a  specific example,   consider  the  first 
order theory of nr.tural number addition together with  the  two- 
place  predicate  P,  where  r(x(y)   s   [x  is  a power of  2  that 
divides  yl.     The  formula?  of  this   theory  are obtained  in  the 
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usual way from atomic formulas of the form P(x,y) and x+y = z 
by means of the logical connectives and quantifiers. Thus 

Vx3y(P(y,y) A gz(x+z = y)) 
is a (true) sentence which asserts that there are arbitrarily 
large powers of two. 

Let J  denote the set of all sentences of this theory.  Then 
there exists an algorithmic procedurr for determining whether 
an arbitrarily specified member of ja   represents a true asser- 
tion about the natural numbers.  The idea behind th^s proce- 
dure is that for ?ny formula F(x) in the theory, it is possi- 
ble to construct a finite automaton '■hat accepts pr cisely 
the binary representations of thost aitural numb^-s n for 
which F(n) is true.  Carrying out tnis construction for a given 
sentence in J  therefore yields an automaton that accepts every 
string of O's and I's if the sentence is true and accepts no 
string if the sentence is false.  Since it is relatively easy 
to determine whether an automaton accepts all input strings, 
one can effectively decide whether a given sentence in J  is 
true. 

The difficulty with this approach is that sentences of length 
n yield automata having on the order of e(n) states, where 

a(n) =2 

The number of steps neeued to determine whether such an auto- 
maton accepts every input string is therefore of the same 
order.  Thus although it is in theory possible to determine 
the true sentences of «3 , the procedure outlined above is 
totally impractical.  Meyer's result shows th^  in fact every 
procedure which determines the true sentences Oi. ä  must use 
the same exorbitant number cf steps.  Specifically: 

There exists a number ?>0 such that for üny Turing 
machine that decides the truth of sentences ir AJ , 
there is an integer n0 such that for all n i n0 there 
is a sentence of length n in ^ on which the given 
machine requires at least 9(fn) steps. 

Although this result is phrased in terms of Turing machine 
computations, essentially the same result holds for more real- 
istic computational models, since even the most powerful model 
can be simulated by a Turing machine in an amount of time that 
is very small compared to 9(n). 

This does not necessarily mean that no progress can be made in 
the development of decision procedures for the theories men- 
tioned above. It might be that there are fast ad hoc 
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procedures for all sentences of length less than (say) 10 
letters, or that moot sentences of a given üength are easy to 
decide, or that all "interesting" sentences are easy to decide. 
Nevertheless, our results strongly suggest that there is little 
hope for practical application of many decision procedures in 
logic. 

Another interesting conrequence of these results is that we 
now have examples of procedures that exhibit the Blum ,=: 2ed- 
up property.  Earlier work in abstract complexity theory, some 
of which was carried out in this group, established the exis- 
tence of computable functions with speed-up, but it did not 
appear that any natural mathematical problem had this property. 
We now know that given any decision procedure for J , one can 
effectively construct another procedure requiring less than 
the logarithm of the number of steps of the given procedure 
for infinitely many sufficiently long sentences. Th'is there 
is no optimal decision procedure for ^1, and no exact computa- 
tional complexity that can be assigned to the problem of 
deciding ,j . 

Meyer's results are derived in part from the work of several 
other members of the group. One of the key ideas in Meyer's 
proof comes from Larry Stockmeyer's study of the complexity 
of.  a  problem in automata theory.  Stockmeyer has shown that 
the problem of deciding whether two nondeterministic finite 
automat?, are equivalent requires an amount of time that grows 
faster than any polynomial function of the size of the automata. 
Robert Ilossley and Charles Rackoff have significantly improved 
a portion of the proof tl.at S2S is decidable.  Hossley, Rackoff, 
and Jeanne Ferrante also obtained corollaries establishing the 
inherent computational coir^lexity of various theories related 
to WS1S.  Efforts are now being made to extend our techniques 
to the first order theory of addition, and to the subcase of 
existential statements about addition.  Success in the latter 
subcase would yield lower bounds on the complexity of integer 
programming and related combinatorial problems of widespread 
interest. 

B. Combinatorial Algorithm.-. 

The area of combinatorial algorithms, which at first sight 
seems to consist of many unrelated problems, is beginning to 
show some coherence. Within the last year. Cook and Karp have 
proved that the following problems are computationally equiv- 
alent: 

i)  Solving a zero-one valued travelling salesman problem 
ii)  Finding a maximal size clique in an undirected graph 

iii)  Finding a minimal covering of a family of sets 
iv)  Determining whether a Boolean function is identically 

equal to 1. 
These problems are "equivalent" in the sense that a fast 
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algorithm for solving any one of them can be used as the basis 
for constructing a fast, algorithm for solving any one of the 
others.  (Here a "fast algorithm" is ons whose computation time 
is bounded by at most a polynomial function of the size of the 
inputs.)  At present, all known algorithms for solving these 
problems require an amount of time that grows exponentially 
with the size of the input.  Thus these four problems, as well 
as many other familiar combinatorial problems, are hard for 
the same reason—assuming that they really are hard, which 
remains to be shown.  In particular, a proof that any one of 
them is inherently time consuming to solve would automatically 
establish that they all are. 

Several members of the group have been investigating extensions 
of the Cook and Karp classification.  As already noted, Larry 
Stockmeyer's efforts to classify the equivalence problem for 
nondeterministic finite automata led to Meyer's results on 
decision problems.  And David Johnson, working with Professors 
Meyer and Fischer, has shown the following problem to be equiv- 
alent to the Cook-Karp problems:  Given a sequence of rational 
numbers rj ,. . . ,1^, , where 0 < r^ si, find the smallest number of 
unit-sized "bins" into which the given rational numbers can be 
"packed" subject to the constraints that each r^ is assigned 
to exactly one bin and that the sum of the numbers in any bin 
is at most one. 

This packing problem differs from the problems of Cook and Karp 
in on<: important respect.  Although finding an optimal packing 
appears to require an amount of time that grows exponentially 
in n, there are very efficient packing algorithms that give 
nearly optimal results.  Extending earlier work of Garey, 
Graham and Ullman, David Johnson has discovered a packing 
algorithm that is guaranteed to operate in time proportional 
to n and that never uses more than 11/9 the optimal number of 
bins.  Moreover, it has been shown that this bound of 11/9 
is the best possible one for the class of fast algorithms under 
consideration.  Johnson is now trying to extend his techniques 
to various covering problems, where it also appears that effi- 
cient methods yielding near optimal results C'in be found. 

In a related area. Prof. C. L. Liu has been investigating the 
efficiency of various algorithms for scheduling -jobs in a 
multi-processor computing system.  Typical of the problems 
studied is the following.  A set of tasks (^,T2,...,Tr' are 
to be scheduled on a two-processor system, where the execution 
time of each task is known.  Tie order in which the tasks may 
be performed is constrained by a specified partial order ~ so 
that if T^* Tj the execution of Tj  must not begin until the 
execution of Ti  has been completed.  How is the total elapsed 
time for the execution of all the tasks affected by the nature 
of the algorithm used to schedule the tasks? 

One of the major results obtained is a quantification of the 
relative efficiencies of preemptive and non-preemptive sched- 
uling algorithms.  (A preemptive schedule is one in which the 
execution of one task may be interrupted to begin another task.) 
Let u denote the total elapsed time required for the execution 
of a given set of tasks when an optimal non-preemptive schedule 
is usßd, and let u" denote the corresponding time when an 
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optimal preemptive schedule is used.  Clearly, 

However, Liu has shown that 

for any set of tasks and any specified partial order i .  This 
result can be extended to the case of n processors, where 

ui' S 
n+1 
2n 

Moreoever, these bounds have been shown to be the tightest 
possible ones. 

Liu's results may be interpreted as follows.  The introduction 
of a high-speed drum so as to make possible the use of preemp- 
tive schedules can increase the speed of a two-processor com- 
puting system by at most 25%, and that of an n-processor sys- 
tem by at nst 50%. 

Burton Smith and Prof. C. L. Liu have been investigating Hie 
behavior of sorting networks made up of two-input, two-output 
comparators.  Although general methods for designing n-input, 
n-output sorting networks are known, the problem of designing 
networks that use as few comparators as  possible is very 
difficult. One of the best networks of modest size known to 
date, due to M. W. Green, uses 60 comparators to sort 16 in- 
puts.  Liu has recently found a 61-comparator, 16-input network, 
as well as a new four-way merge technique that yields a 4n 

input sorting network using  (n2 - 2 +10)un-  1°  comparators 
for any n. 12n  9    T 

The difficulty of designing efficient sorting networks is due 
in part to the difficulty of determining whether or not a given 
network of comparators actually sorts its inputs.  One cri- 
terion for making this determination is Knuth's zero-one prin- 
ciple:  A comparator network sorts if it correctly sorts all 
possible zero-one valued input patterns.  Smith has shown that 
this criterion is sharp, in that for any given zero-one input 
pattern (other than the all-zero or all-one patterns) there 
exists a network that correctly sorts every zero-one input 
pattern except the one in question. 

Another criterion for deciding whether a network sorts is 
based on the fact that many sorting networks are formed by 
combining several sorting networks with fewer inputs.  Indeed, 
every sorting network can be viewed as a cascade combination 
of two-input sorting networks.  Liu has developed a procedure 
for analyzing certain composite networks of this type which is 
useful both in designing sorting networks and in proving that 
a given network operates correctly.  Smith has extended Liu's 
work to apply to arbitrary networks of comparators, and has 
developed several techniques for succinctly characterizing the 
patcerns that can appear at the output of a given comparator 
network.  Such characterizations are useful in designing 
networks as cascades of simpler ones. 
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In some cases, the set of possible outputs cf a comparator net- 
work consists of precisely those patterns of va)ues that are 
consistent with a particular partial order on the output ter- 
minals.  Smith has shown that if this is true when the network 
inputs are restricted to patterns of distinct values, it must 
also be true when the inputs are zero-one valued.  In the case 
of arbitrary real-valued inputs, the set of possible outputs 
will be those consistent with a singl  partial order if and only 
if the outputs form a convex set in uu Iidean n-space.  This 
case is interesting because it results n  a very compact des- 
cription of the output behavior of a ne Lork.  However, if an 
n-input sorting network is designed so this condition obtains 
at every point within the network, the network will necessarily 
require (5) comparators and hence will bu very inefficient. 

C.  Computation by Automata 

Automata and formal linguistic models have many applications 
in the study of computers and computation, ranging from logi- 
cal design to compiler construction to complexity theory. 
During the past year, several members of the group have ex- 
plored computational issues arising from such models.  Their 
results are outlined below. 

1.  Grammatical Transformations 

One of the most fruitful developments in automata theory in 
recent years has been the application of automata theoretic 
ideas to problems in the theory of languages and compilers. 
Substantial progress in this area has recently been made by 
Michael Hamitier, who has been investigating grammatical trans- 
formations that are capable of converting given programming 
language grammars into equivalent but more useful grammars. 
In particular, he has found a class of transformations yield- 
ing grammars whose languages can be parsed top-down. 

While top-down parsing has a number of advantages over bottom-up 
parsing, the grammars that admit top-down parses (the so- 
called LL grammars) constitute a small subset of those that 
admit bottom-up parses (the LR grammmars). Hammer has been 
working with a subclass of the LR grammars known as minimally 
predictive (MP) grammars.  These grammars can be parsed in a 
hybrid fashion that is basically a bottom-up parse with 
occasional judi-ious predictions.  A procedure has been found 
for transforming any MP(k) grammar into an LL(k) grammar that 
generates the same language.  Moreover, this transformation 
preserves the semantic capabilities of the original grammar, 
in the sense that any translations supported by the original 
grammar are also supported by the new one. 

The transformation itself is based on the s 
finite-state machine that directs the progr 
parse for ehe given LR grammar- The first 
the states of this machine in such a way as 
kindü of loops in the machine's state diagr 
been done, the new grammar can be "read off 
the altered machine. Transformed grammars 
way can be shown to have a number of intere 

tructure of the 
ess of a bottom-up 
step is to split 
to break certain 

am.  Once this has 
directly from 

obtained in this 
sting properties: 
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they are frequently LR(0),they support a wide range of trans- 
lations, and they can be parsed quickly.  The same kind of 
transformation can also be applied to certain non-LR grammars 
so as to yield equivalent deterministic grammars. 

Results obtained so far have provided new insight into the 
nature of LL and LR grammars and the relationship between top- 
down and bottom-up parsing.  Moreover, this work promises to 
have applications to the derivation of optimal grammars for 
use in practical compilers. 

2. Fault Detection 

It is of considerable practical importance to be able to deter- 
mine experimentally whether a given piece of hardware is 
operating cc-rectly.  Although a variety of fault detection 
and diagnosis techniques are available for use in practical 
situations, the essential complexity of the detection and 
diagnosis problems is still poorly understood.  In particular, 
realistic upper and lower bounds on the lengths of general 
fault-detection experiments for sequential circuits have yet 
to be established.  In the case of lower bounds, for example, 
it is easy to see that a valid fault detection experiment must 
cause the correctly operating circuit to traverse each of its 
state transitions at least once, an observation that leads to 
a lower bound of mn for the length of a fault detection exper- 
iment for an m-input.. n-state circuit.  However, no circuit 
admits a detection experiment of this short a length. 

Some progress in this ^irea has been made by Ken Brown in work 
done for his SB thesis.  He has shown that every fault detec- 
tion experiment for a two-input circuit must cause the circuit 
to traverse each transition at least once and half of the 
transitions at least twije. This result provides a lower bound 
of 3n for the length of detection experiments for n-state, 
two-input machines.  There exist circuits for which this 
bound is attainable, and there exists a class of circuits for 
which the argument leading to the lower bound provides a simple 
set of necessary ai.d sufficient conditions for an input 
sequence to be a fault-checking sequence,. Thus we now have 
examples of circuits that are easy to test and an accurate 
assessment of the complexity of the experiments needed to test 
them.  We expect that this work can be extended so as to yield 
more accurate bounds for more general classes of circuits. 

3. Linear Machines 

In the course of investigating some fault-detection questions 
for linear sequential machines, Robert Johnston discovered a 
new approach to the decomposition of a broad class of linear 
systpms. 

The usual notion of a linear machine as one whose input and 
state spaces are vector spaces over some field was extended to 
that of a machine whose input and state spaces are modules 
over an arbitrary ring. The development of this more general 
class of machines parallels that described in Kaiman, ralb, 
and Arbib. Johnston next derived cert-.in conditions that are 
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(ideal) is properly contained In ihfi' in.whlch each submodule 

gations will be carried out jointly wiS tS^n^V^68^" Laboratory. jomciy with the Electronic Systems 

technique for answprinrr ^h■ie „,, J. •   •   .^ ^ri^^.  ine usual 
finite-state machine aIsociIted^Jhn.HnVOlVeS constructing the 
then determining Whether in fact that ^1VeneX?reSSion and 

that impulse response  ?t X'n UCt the linear machine h^i"g 
the machine actual"^ rerÜnizes th^a?3 0nly ^ decide wheth" 
plans to try to extend hi! Jf^ f  giVeü ^S»1^ set.  Horowitz 
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4.  Schemas for Programs 

rel^nn iS f sentially a program in which some or all of the relations and operations arp Taft-  „„^„c-     j  _    •L-L or the 
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what must be required of the flow-structure of programs in 
order to achieve a certain level of computational power? 

Different classes of Schemas have different expressive powers. 
The first objective of Kfoury's thesis is to find a "univer- 
sal" class S of schemas which, when interpreted I« any alge- 
braic structure, yield the set of all effective procedures 
over the domain of that structure — effective relative to the 
underlying relations and operations of the structure.  Given 
an arbitrary class S' of schemas, Kfoury investigates condi- 
tions on an algebraic structure CL  that will ensure the equi- 
valen :e of S' to the universal class S, in which case S" will 
capture the notion of effectiveness in CL .   In particuJar, he 
considers the class of flow-chart schemas, and shows that they 
are sufficient to "apture the notion of effectiveness in many 
of the algebraic structures encountered in practice, including 
rings, fields, and ordered fields,. 

A second objective of the thesis is to compare algebraic 
structures in terras of their "algorithmic behavior" — i.e., 
in terms of the properties of schemas interpreted in those 
structures. Kfoury gives special attention to conditions 
under which this algorithmic behavior is the same for related 
structures, such as two groups or two fields. As a by-product 
of this investigation, he has shown that over sorae familiar 
structures, such as the complex number field, an effective 
procedure is tot.^l only if it is equivalent to a loop-free pro- 
cedure. 

5.  Complexity of Boolean Functions 

In order to explore the role of information-theoretic 
arguments concerning the complexity of functions, Bostjan 
Vilfan has been studying the sizes of expressions needed to 
represent certain Boolean functions.  In particular, he has 
considered expressions built up from variables and symbols 
for the Boolean operations of and, or, not and exclusive or, 
for such functions as the n-variable function wEose vaTue-is 
1 if and only if the number of arguments equal to 1 is 
divisible by 3. Using some rather deep combinatorial argu- 
ments, Vilfan has shown that expressions for this "divisible 
by three" function of n variables must grow nonlinearly with 
n no matter what finite set of basic operations are allowed 
in expressions. This lower bound is close to being the best 
possible, since for anyp > 0 there is a finite set of opera- 
tions in terms of which the "divisible by three" functions 
have expressions of length at most n1+f . 
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Abstract Complexity Theory 

As noted in our last progress report, the development of ab- 
stract complexity theory no longer constitutes a dominant part 
of the group's activity.  Nevertheless, the results on the in- 
herent complexity of decision problems cited above illustrate 
the relationship between theoretical work in complexity and 
computational problems of more practical interest. Ve  expect, 
therefore, to maintain a small research effort in the area of 
abstract complexity theory. 

During the last year, Amitava Bagchi, Nancy Lynch, and Robert 
Moll have all made valuable contributions to complexity theory. 
In these contributions, some of the highly developed methods 
of recursive function theory have been brought to bear on 
questions of complexity.  In particular, several of Lynch"s 
and Moll's results make use of the priority-injury arc,iments 
of recursion theory. 

The main theorem of Lynch's thesis illustrates the nature of 
these results. This theorem is motivated by the Cook-Xarp 
result noted earlier in which a class of familiar problems 
are shown to be computationally equivalent. Computationally 
equivalent problems have solutions that are equally hard to 
calculate. Is the converse true? That is, if two decision 
problems are known to require the same (large) amount of time 
to solve, does it follow that the ability to solve one pro- 
blem in no time at all (as by means of an instantaneous 
oracle) would provide a way of solving the other problem 
quickly? Lynch has shown that for any decision problem wdth a 
known lower bound on the time required for solution, there are 
arbitrarily complex decision problems that do not help in the 
solution of the given problem.  This result gives mathematical 
meaning to the intuitive assertion that while the Cook-Karp 
problems are hard for the same reason, other equally hard 
problems are hard for different reasons. 
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* TM-18  Reprinted as TR-85 

* TM-19  Fenichel, Robert R. 
A New List-Tracing Algorithm 
October 19 70 

AD 708-400 

AD 711-379 

AD 712-068 

AD 711-965 

AD 713-989 

AD 720-761 

AD 713-852 

AD 729-011 

AD 714-522 
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PUBLICATIONS 

* TM-20 Jones, Thomas L. 
A Computer Model of Simple Forms 

of Learning, (Based on Ph.D. Thesis, 
EE Dept., September 1970) 

January 1971 

* TM-21 Goldstein, Robert C. 
The Substantive Use of Computers 

for Intellectual Activities 
April 1971 

TM-22 Wells, Douglas M. 
Transmission of Information Between 

a Man-Machine Decision System and 
Its Environment 

April 1971 

TM-23 Strnad, Alois J. 
The Relational Approach to the 

Management of Data Base." 
April 1971 

* TM-24  Goldstßin, Robert C. and Alois J. Strnad 
The MacAIMS Data Management System 
April 1971 

* TM-25 Goldstein, Robert C. 
Helping People Think 
April 1971 

TM-26 lazeolla, Giuseppe G. 
Modeling and Decomposition of 

Information Systems for Performance 
Evaluation 

June 19 71 

TM-27 Bagchi, Amitava 
Economy of Descriptions and 

Minimal Indices 
January 1972 

TM-28 Wong, Richard 
Construction Heuristics for Geometry 

and a Vector Algebra Representation 
of Geometry 

June 1972 

TM-29  Hossley, Robert and Charles Rackoff 
The Emptiness Problem for Automata 

on Infinite Trees 
Spring 1972 

AD 720-337 

AD 721-618 

AD 722-837 

AD 721-619 

AD 721-620 

AD 721-998 

AD 733-965 

AD 736-960 

AD 743-487 

AD 747-250 

t************************-****************** 

TM's 1-9 were never issued 
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PUBLICATIONS 

Project MAC Progress Report I 
to July 1964 

Project MAC Progress Report II 
July 1964-July 1965 

Project MAC Progress Report III 
July 1965-July 1966 

Project MAC Progress Report IV 
July 1966-July 1967 

Project MAC Progress Report V 
July 1967-July 1968 

Project MAC Progress Report VI 
July 1968-July 1969 

Project MAC Progress Report VII 
July 1969-July 1970 

Project MAC Progress Report VIII 
July jp/O-July 1971 

Project MAC P.agress Report IX 
July lS71-July 1972 

AD 465-088 

AD 629-494 

AD 648-346 

AD 681-342 

AD 687-770 

AD 705-434 

AD 732-767 

AD 735-148 

ar^rcrSlo6^' H'T"^ 22151- The ^2"rams 
yelrs old S6 nn $«i? L?ard ^P1!81 sports  more than two 
«T-« ec «A9 mu' a11 others are $3.00 except TR-83 which is 
also $6.00. The AD number must be supplied with the request. 

»Out-of-print, may be obtained from NTIS  (see above). 
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