
'

AD-756 689

PROJECT MAC PROGRESS REPORT IX,
JULY 1971 TO JULY 1972

Edward Fredkin

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research
Advanced Research Projects Agency
Defense Supply Service Administration
Rome Air Development Center
National Science Foundation

February 1973

DISTRIBUTED BY:

mr
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

... . _-.;■ ■ . ■..^■..

■ ._

'

The work reported herein was carried out within Proiect MAC an
M.I.T. interdepartmental laboratory. Support was providS by?

The Advanced Research Projects Agency
of the Department of Defense, under
Office of Nava] Research Contracts:
N00014-70-A-0362-0001, and
N00014-70-A-0362-0004,-

The Office of Naval Research, under
contract N00014-69-A-0276-0002;

The National Science Foundation, under
contract GJ00432;

The Defense Supply Service Administration,
under contract DAHC-15-69-C-0347;

Rome Air Development Center, under
contract F30602-72-C-0001.

L&
The ^over id an excerpt of the proof of

he main.,lnmmB irf.Meyer and Stockmeyer's
-paper, "The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential
space .

The equations reveal how certain notations
from automata theory (called regular expressions)
can describe the behavior of Turing machines,
from which it follows that the equivalence
problem for regular expressions is inherently
difficult to decide, no matter what procedure
is used to decide equivalence.

^

■■'"■" T

■' ^ ■■ ■ «4r?i ■. i ; ■ - ■ v , .■''.■ ■" ' " ,■■••';■■.

PROJECT MAC

PROGRESS REPORT IX

JULY 1971 to

JULY 1972

PERSONNEL

AUTOMATIC PROGRAMMING

COMPUTATION STRUCTURES

COMPUTER SYSTEMS RESEARCH

DYNAMIC MODELING, COMPUTER GRAPHICS,

AND COMPUTER NETWORKS

EDUCATIONAL COMPUTER SYSTEMS

MATHLAB

Roproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Springfield VA 2J151

PLANNER

SIMPL

THEORY OF AUTOMATA

PUBLICATIONS

o"1

■

TABLE OF CONTENTS

PERSONNEL

PREFACE

AUTOMATIC PROGRAMMING

II

III

IV

COMPUTATION STRUCTURES 7
A. Petri Nets 9
B. Arbiters 17
C. Computation Schemata 21
D. Inductive Proofs of Program Properties 36
E. A Computer for General Data Types 40

COMPUTER SYSTEMS RESEARCH 47
A. Progress Repon: 49

1. Introduction 49
2. Multilevel Storage Management 49
3. ARPA Network 50
4. Performance Model 51
5. Protection of Programs and Data 51
6. Follow-On Hardware 52
7. Maintenance of Multics 5 3
8. MPM Upgrade 53
9. Programming Languages 53

B. Future Plans 54

DYNAMIC MODELING, COMPUTER GRAPHICS, AND
COMPUTER NETWORKS 57
A. Introduction 59
B. Motivation 59
C. Over-All Plan of the Dynamic Modeling

System 60
D. Opposition and Confluence of Two

Philosophies 65
E. MUDDLE 6 8
F. CALICO 69
G. Documentation 72
H. Modeling 74

EDUCATIONAL COMPUTER SYSTEMS
A. Present Work
B. Future Work

79
81
82

VI MATHLAB
A.
B.
C.
D.
E.
F.
G.

H.

85
The Hardware and Time-Sharing System 87
Consolidation of MACSYMA Software 87
New Subsystems 88
The New LISP Ccmpiler 88
CONNIVER 88
The MACSYMA Experience 89
Future Directions 89
1. Improvements to the Current System 89
2. Subsystems for Important Areas of

Application 90
3. Research on New Algorithms 91
SIGSAM 91

'4

•

.

'NCLASSIFIED
untj I Lissili, .,:, n

i>l mi, ,•,„/,
DOCUMENT CONTROL DATA R&D V?/) KT<t£&

•MASSACHUSETTS INSTITUTE UK rECHNOLOGY

PROJECT MAC
UNCLASSIFIEU

NONE

PROGRESS REPORT IX, JULY 1971 to JULY 1972

ANNUAL SCIENTIFIC REPORT
-OB,-,, ,^,rif „amei mJUIr

Collection of reports fro. Project MAC narUcip.nts, edited Ly

Prof. Edward Fredkin, Director of Project MAC

N00014-70-A-0362-0001
N00014-70-A-0362-0004
N00014-69-A-0276-0002
GJ00432
DAHC-15-69-C-0347
F30602-72-C-0001

-' S T H I B U t ION 5 T * T FME •, T ~ ""

(ARPA)
(ARPA)
(ONR)
(NSF)
(DSSA)
(RADC)

MAC PR IX

O T M C fl R f P o r.
this report)

\()Ni-

nibmra that fi'«» 6e a««i^n»tJ

DISTRIBUTION OK THIS DOCl'MENT IK UNLIMITED

"-FNTABT NOTES

■ i SPONSOHiNG ■

ADAVNCED RESEARCH PROJECTS AGENCY-
OFFICE OF NAVAL RESEARCH; NATIONAL'
SCIENCE FOUNDATION; DEFENSE SUPPLY
SERVICE ADMINISTRATION; ROME AIR
DEVELOPMENT CENTER

The broad goal of Project MAC is investigation of new ways in

which computers can aid people in their individual work.

This is the ninth annual Progress Report sununarizing the rese.r.h

carried out under the sponsorship of Project MAC. Details of

this research .ay be found in the publications listed at the end

of each section and at the end of this report

DD F.r„l473 (f'Acr i)

\l
^CLASSIFIED
Si'.-imli Classituaium

,

UNCLASSIFIED
»•curity CUaBiflcation"*

Artificial Intelligence

Computer Networks

Computation Structures

Dynamic Modeling

Graphics

Hybrid Circuits

Information Systems

Interactive Management

Machine-Aided Cognition

Multiple-Access Computers

On-Line Computers

Programming Linguistics

Real-Time Computers

Theory of Automata

Time-Sharing

DD ."""..1473 (BACK'
(PAGE 2)

J.
UNCLASSIFIED

II Security Classificalion

■ •

TABLE OF CONTENTS (continued)

VII PLANNER
A.
B.
C.
D.
E.
F.
G.
II.
I .
J.
K.

VIII SIMPL
A.
B.

Adding Knowledge
Monitors
Ports

Data Structure Definitions
Generator
Process
Pattern Matchinq
Pattern Directed Retrieval
Pattern Directed Invocation
Simultaneous Goals
The Fire in the Warehouse

Summary
Review of the Past Year

IX THEORY OF AUTOMATA

A. Inherently Complex Decision Problems
B. Combinatorial Algorithms
C. Computation by Automata

1. Grammatical Transformations
2. Fault Detection
3. Linear Machines
4. Schemas for Programs
5. Complexity of Boolean Functions

X Project MAC Publications

9 5
9 8
98
9 8
9 8
99

100
100
100
109
100
101

105
107
10 7

109
111
113
116
116
117
117
118
119

125

iii

PROJECT MAC PERSONNEL

JULY 1971 to JULY 1972

Prof. E. Fredkin

D. c. Scanlon

G. B. Walker

A. E, Egendorf

B. H. Kohl

Prof. F. J. corbato

Prof. j. B. Dennis

Prof. M. L. Dertouzos

Prof. j. j. Donovan

Prof. R. M. Fano

Prof, E. Fredkin

Prof. G. A. Gorry

Prof. F. c. Hennie

Prof. c. Hewitt

Prof. M. M. Jones

Instructors, Research

J- Aiello

P- M. Allaraan

N, Amerasinghe

Y. S. Auyang

A, Bagchi

H. G, Baker

R. Barquin

C G. Benedict

P. B. Bishop

Preceding page blank

Administration

Director

Administrative Officer

Business Manager

Director of Information Services

Librarian

Academic Staff

prof, j. c. R. Licklider

Prof, c. L. Liu

Prof, w, A. Martin

Prof, A, R. Meyer

Prof. j. Moses

Prof, N, P. Negroponte

Prof, s. s. Patil

Prof, j, H. Saltzer

Prof, j, Weizenbaum

Associates, Research Assistante and oth.r.

R. G, Bratt

D. Bricklin

D. J. Brown

G. P. Brown

K, M, Brown

R. H, Brown

S, S, Brown

B, Carlson

D. D, Clark

R. Cohen

B. K, Daniels

T. L, Davenport

T, M, Demchock

J. D. DeTreville

D, R, Dick

A. R. Downing

A, C. England

J. F, Farrell

Inst-uctors, Research Associates, Research Asjistants

and Others (cont.)

R, J. Fatoman

J. Ferrante

R. J. Fleischer

D. Folger

H. Forsdick

J. Fosseen

P. J. Fox

R. M. Fox

R. M. Frankston

F. Furt^k

T. M. Gearing

M. R. Genesereth

W. Godfrey

L. I. Goodman

B. S. Greenberg

S. Gregory

I. Greif

F. E. Guertin

R. A. Gumper^z

R. M. Haas

M. Hack

M. M. Hammer

R. V. Harrington

G. Harris

I. T. Hawryszkiewycz

D. A. Henderson

R. F. Hossley

P. W. Hughett

D. H. Hunt

P. M. Hutchins

D. L. Isaman

P. Jessel

D. Johnson

J. W. Johnson

R. Johnston

J. Kaplan

P. A. Karger

D. J. Kfoury

P. A. King

M. Knaur

D. Koenig

J. Kok

S. Kruger

S. Kuo

R. S. Lamson

P. D. Lebling

R. Lefkowitz

B. Lester

J. P. Linderman

W. J. Long

J. B. Lotspiech

N. A. Lynch

C. Lynn

S. M. Macrakis

S. E. Madnick

C. Mah

R. Mandl

F. Manning

W. A. MrCray

J. A, Zeldman

M. S. Miller

P. L. Miller

R. N. Moll

E. J. Montos

D. A. Moon

R. C. Moore

M. L. Morgenstern

S. G. Morton

W. D. Nortiiup

H. F. Okront

L. S. Perrin

G. L. Peskin

G. F. Pfister

J. Piggins

K. T. Pogran

J. E. Qualitz

C. Rackoff

C. Ramchandani

D. P. Reed

K. G. Rhoads

E. C. Rosen

J. L. Rosenberg

L. J, Rotenberg

J. E. Rumbaugh

vi

• ■■ , ■ " ■ '

Instructors, Research Associates. Research Assistants

and Others (cont.)

J. A. Stern

R. A. Stern

J. R. Stinger

L. Stockmeyer

S. M. Stoney

J. R. Taggart

S. Tepper

R. C. Thurber

B. M. Tragpr

E. Tsiang

L. Tsien

S. R. Umarji

B. Vilfan

<
G. Ruth

J. Sabath

S. E. Saunders

L. J. Scheffler

M, D. Schroeder

J. I. Seiferas

A, Sekino

M. S. Seriff

W. G. Shaw

R. M. Seigel

J. R. Sloan

B. J. Smith

R. J. Steiger

M. J. Ablowitz

S. L. Alter

M. C. Amyot

E. R. Banks

A. K. Bhushan

E. H. Black

R. A. Bogen

M. F. Brescia

R. D. Bressler

M. S. Broos

A. L. Brown

DSR Staff

B. Byer

H. 0. Capps

M. A. Cohen

D. G. Cressey

J. S. D'Aversa

M. S. Draper

A. D. Egendorf

R. J. Feiertag

S. W. Galley

C. C. Garman

M. J. Ginzberg

C, M. Vogt

P. S-H, Wang

S. A. Ward

R. W. Weissberg

J. Wish

R. T. Wong

F. T. Yao

C. Ying

D. Yun

S. Zaborowski

C. Ziering

R. F. Zippel

R. P. Goldberg

J. P, Golden

R. C. Goldstein

P. M. Gunkel

R. J. Harman

J. F, Haverty

J. P. Jarvis

R. K. Kanodia

P. Y. Knight

B. H. Kohl

M. Lenot

:

,

M. I. Levin

R. F. Mabee

K. J. Martin

R. M. Metcalfc

E. W. Meyer, Jr.

J. C. ^ifhonor

N. I. Morris

J. NieverCjelt

S. E. Niles

R. C. Owens

M. A. Padlipsky

M. H. Alpert

Y. S. Auyang

G. G, Bajoria

G. G. Benedict

R. G, Bratt

D. Bricklin

H. R. Brodie

R. L. Brooks

K. M. Brown

R. H. Brown

S. S. Brown

J. L. Caruso

A. Y. Chan

D. J. Chang

S. S. Cohen

C C. Conklin

DSR Staff (cont.)

L. G. Pantr.lone

S. G. PeJtan

J. Phillips

C. L. Reeve

L. P. Rothschild

D. C. Scanlon

R. Schroeppel

T. Skinner

J. Spall

M. J. Spier

Undergraduate Studenta

R. G. Curley

S. E. Cutler

T. L. Davenport

T. M. Demchock

D. R. Dick

A. R. Downing

R. Elkin

R. A. Freedman

D. E. Geer

M. R. Genesereth

W. Godfrey

P. A. Green

R. A. Guida

P. H. Guldberg

P.. H. Gumpertz

C. A. Hannah

A. J. Strnad

A. Sunguroff

A. Vezza

V. L. Voydock

G. B, Walker

D. C. Watson

M. B. Weaver

S. H. Webber

D. M. Wells

J. L. White

R. V. Harrington

G, Harris

J. H. Harris

M. D. Horowitz

W. F, Hui

E. Kant

P. A. Karger

R. M. Katz

c. A. Kessel

H. J. Kim

R. N. King

N. V. Kohn

J. Kok

D. M. Krackhardt

R. S. Lamson

C, K. Leung

vm

:

■

-.■;„*„..,;,.., ,.,, ,

S. M. Macrakis

W. S, Mark

D. Misunas

D. A. Moon

W. Y. Ng

B. Niarr.ir

G, Fdvel

L. S. Perrin

G. L. Peskin

J. Phillips

Undergraduate Students (cont.)

R. L. Prakken

D. P. Reed

K. G. Rhoads

E. C. Rosen

L. M. Rubin

N. D. Ryan

S. Sadeq

S. E. Saunders

J. C Schaffert

R. M, Seigel

M. E. Baker

S. A. Bankole-Wright

M. A. Bizot

M. S. Eroos

G, W, Brown

0. D. Carey

L. S. Cavallaro

M. T. Cheney

S. J. Cohn

M. J. Connell

M. Cuiranings

S. Daise

J. A. Darcy

B. Doyle

P. Azema

Prof. J. Berger

Prof. J. I. Elkind

Support Staff

C. P. Doyle

C T. Falls

L. L. Gammell

A. M. Garrity

J. Ä. Haley

L, J. Haron

A. J, Hicks

R. F. Hill

D. L. Jones

D. Kontrimus

J. S. Lague

E, Y. Lewis

E. T. Moore

B. A. Morneault

Guests

A. Endo

Prof. M. Greenberger

Prof. K. Ikeda

H. J. Seigel

S. M. Stoney

R. Swift

J. D. Sybalsky

C. D. Tavares

B. M. Träger

E. Tsiang

M. E. Wolfe

R. E. Zippel

E. F. Nangle

K. W. Pierce

S. Pitkin

N. J. Robinson

E. M. Roderick

A. Rubin

A. C, Simmons

K. K. Simpson

A. H. Speare

A. G. Testa

M. F. Webber

L. E. Yaple

M. Miyazaki

L. Priese

ix

PREFACE

Project KAC was established in 1963 as an interdepartmental
laboratory a', the Massachusetts Institute of Technology, to
do research in Multiple Access Computer Systems and Machine
Aided Cognition. This effort resulted in the development
of the crss and Multics Systems. Project MAC is currently
movinr toward a major effort in Automatic Proqramming.

During the year ending June 30, 1372, there were 325
persons associated with Project MAC. They included: 21 faculty
members, mainly from the Department of Electrical Engineering,
Department of Mathematics and from the Alfred P. Sloan School
of Management; 103 staff members, fDSR Staff and Support Staff),
195 students, (both Undergraduate and Graduate), and 8 guests.

u ^u Thi?.year' through extensive discussions and consultations
both within and oatside of M.I.T., Project MAC arrived at
its new focus on Automatic Programming. One effort in Automatic
Programming involves a system, which has embedded in it, extensile
knowledge of the subject for which the programnung is being
automated. The other effort is based on making it easier
to build large programs from simplier programs. The first
effort is being carried out in the newly formed Automatic
Programming Group while the second approach is being carried
out in the Dynamic Modeling Group.

The Automatic Programming Group plans to construct Proto-
systems of increasing complexity to gain experience in embedding
knowledge into systems. This task requires new programming
techniques and languages. Two new languages called PLANNER
and CONNIVER, which have come out of the Artificial Intelligence
efforts at M.I.T., seem the most promising languages for embedding
knowledge into systems. Development and implementation of
these languages is in progress.

The Mathematical Laboratory System, MACSYMA, can now
carry out many symbolic manipulations previously considered
very difficult. It can, for example, factor polynomials in
several variables and do so very efficiently.

As the Multics development effort has tapered off, the
Computer Systems Research Group has shifted its attention
to security and protection in Computer Systems. In conjunction
with Honeywell, inc., new follow-on hardware for Multics was
specified, which is especially tailored to make Multics secure
and efficient. This will be in operation early in 1973.

The Computation Structures Group has continued its investi-
gation into base languages, oarallel processing schemata and
the means for description and realization of digital systems
The Automata Theory Group has now focused its attention toward
investigating the complexity of algorithms.

Preceding page blank

i

■

During the past year, the basic program of Project MAC
was supported by the InfonPation Processing Techniques Directorate
of the Advanced Research Projects Agency (ARPA).Individual
bv0the LhavT fU"df .b^ Several oth^ agencies!- Dyn^ic Modeling
rLo i ! K

0ru1 Sclences Directorate of ARPA; Programm ng
Generality by the National Science Foundation, and theimSLmen-
tation of PLANNER by the Office of Naval Research mPiemen

AUTOMATIC PROGRAMMING

Prof. w. A. Martjn

instructors, Research Asgociate«, Research Assistants and others

J. D. DeTreville
A. C. England
L. I. Goodman
M. L. Morgenstern

W. D. Northup
J. L. Rosenberg
G. Ruth

W. S. Mark

Undergraduate Students

B. Niamir

S. L. Alter
E. R. Banks
J. S. D'Aversa

DSR Staff

M. J. Ginzberg
J. P. Jarvis
A. Sunguroff

B. Doyle

Support Staff

J. S. Lague

' -.»WWrwwwe1,1"

AUTOMATIC PROGRAMMING

The automatic programming group has been formed to investigate
the generation of programs from descriptions of the actions
the programs are to perform, rather than from a description
ot how these actions are to be performed. To do this pro-
gram generating programs must have a knowledge of possible-
methods which could be used to perform the actions. They
must also know how to select methods appropriate to a qiven
problem. r

Current day compilers are examples of program generating pro-
grams, ihey have a knowledge of machine structure and thev
attempt to find the best series of register operations to oer-
form a desired result such as the multiplication of a series
of numbers. To do this requires some search, but primarily
it is a matter of incorporating into the compilers good tech-
niques for the situations which are known to occur.

In order to extend the program writing capabilities of pro-
grams beyond what current compilers can do, it will be neces-
sary to incorporate into them knowledge about specific pro-
blem areas. As with compiler.,, ehe problem is to represent
this knowledge in the machine in a way that it can be employed
with very little search.

The group has chosen to center its initial investigation in
the area of management-information systems. This is because
a) the automdtion of programming in this area would be of
great practical importance, b) much can be done by solvinu
problems of data and file structures, searching, sorting,'and
scheduling which are quasi-universal in programming c) the
area provides a good spectrum of problems of increasing
difficulty. A prototype system is being constructed and
should be yielding initial results in a few months. The sys-
tem contains two major components: the first is for the inter-
active specification of what logical information processing
is to be done, the second is for the automatic realization of
this processing on a specific computing system.

Automatic realization of the processing requires the design
of a series of data files and programs which do the specified
processing at minimum cost. Two methods of measuring cost
seem plausible for investigation: the charging scheme supplied
with the IBM OS/360 MVT operating system and the evaluation
procedure used by the SCERT computer systems simulation pack-
age. The IBM scheme is simpler and is being incorporated into
the initial prototype system.

Generation of the files and programs has been broken into two
phases. The first phase constrains the files and programs to
a specific design. The second phase generates PL/I and JCL
to realize this design on an IBM/370 computer. Three methods
of implementing the first phase are under investigation The
first method is to provide a series of commands so that a user
can design the files and programs interactively and then es-
timate the cost of competing designs. The system checks that
ail of the user's design decisions are feasible ana consistent
The user is also able to ask questions about a partial design
The second method involves the use of search and heuristics to
generate a design automatically. The heuristics satisfy the
high -'olume processing requirements first and rely on the

Preceding page blank 3

I

AUTOMATIC PROGRAMMING

1

assumption that a costly
to tho best total design
t-he problem as an intege
optimal solution through
techniques. It is possi
much longer to find than
ciably better. However,
problems should help us
heuristic routines.

partial design does not often lead
The third method is to formulate

r programming problem and to seek an
sophisticated integer programming

ble that optional solutions will take
good solutions, without being appre-
optimal solutions to carefully chosen

to understand the performance of our

Our current thoughts are that the interactive design of the
processing to be done will proceed in two phases. The first
phase will be the discusson with knowledgeable routines of the
particular ways certain standard problems such as inventory
control are to be handled. In the second phase the system
will apply these methods to generate an information system for
a particular configuration of physical assets operating with
a specified corporate plan. During this phase specific pro-
blems may require further interactive design.

In addition to this central thrust, the group is also explor-
ing related questions such as the analysis of programs and
sponsoring the development of LISP on MULTICS,

_.^l

■

AUTOMATIC PROGRAMMING

Publications

1. Fateman, R. J., assays in Algebraic Simplification,
Project MAC, M.I.T., MAC-TR-95, April 1572, AD 74Ö-
132.

2. Fateman, R. j., "Rationally Simplifying Non-Rational
Expressions", SIGSAM Bulletin, No. 23/July 1972,
pp. 8-9.

3. Martin, W. A., "Determininq the Equivalence of
Algebraic Expressions by Hash Coding", Journal of the
ACM, Vol. 8, No. 4, October 1971, pp. 545-558.

4. Martin, W. A., "Sorting", Computing Surveys, Vol. 3,
No. 4, December 1971, pp. 147-174.

5. Martin, W, A., and D. N. Ness, "Optimizing Binarv
Trees Grown with a Sorting Algorithm", Communications
of the ACM, Vol. 15, No. 2, 1972, pp. 88-93.

6. Moses, J., "Algebraic Simplification; A Guide for the
Perplexed", Comnunications of the ACM, Vol. 14, No. 8,
August 1971, pp. 527-537.

7. Moses, J., "Symbolic Integration: The Stormy Decade",
Communications of the ACM, Vol. 14, No. 8, August 1971,
pp. 548-560.

8. Moses, J., "Toward a General Theory of Special Func-
tions", Communicatiors of the ACM, Vol. 15, No. 7,
July 1972, pp. 550-5iT:

9. Wang, P. S. , Evaluation of Definite Integrals by
Symbolic Manipulation, Ph.D. Thesis. Department of
Mathematics, M.I.T., 1971; also MAC-TR-92, October
1971, AD 732-005.

10. Wang, P. S., "Application of MACSVMA to an Asymptotic
Expansion Problem", Proceedings of the ACM 25th
Annual Conference, August 1972, pp. 844-850.

Publications In Progress

1. Fateman, R. J., and J. Moses, "Canonical Forms for
First Order Exponential Expressions".

2. Fateman, R. J., "Comments on Problem 2".

3. Fateman, R. J., "On the Computation of Powers of
Polynomials".

4. Wang, P. S., "Factoring Multivariate Polynomials Over
the Integers".

5. Yun, D. Y. Y., "An Application of MACSYMA to Proving

the Achievability of the | 2±i]M for Evaluation of

s

AUTOMATIC PROGRAMMING

£^ii^ions_ln_P£o2ress (continued)

General Non-monic Polynomials of Degree n".

Talks

6.

7.

1.

Yun, D. Y v i'n„ tu , ^-.
Algorithm". ' the Lfflci^cy of the Dijkstra

Yun, D, v v "/-i„ r. i_ , .
Algebraic^Eqüätions"^01^ Soluti°n3 of systems of

&atJ^h:A
CX

rtair0 Sc^Sle^'ar3 f' 0f leCt— August 1971. J-^nce benunar, Bonn, Germany,

^nt'co'ilo^iu^f^t^^^f^T"' given at ^e
and Computers S CoLu^cations^Unf 0f Mathe^tics
Ann Arbor, Michigan, Sove^e? ignf^"1^ 0f Mi^^,

J-iona^Chung Hsing ÄSi^^^fSwan.

■ .

- ■ ■

COMPUTATION STRUCTURES

Prof, J. B. Dennis

Academic Staff

Prof. R. M. Fano prof. s. S- patil

Instructors, Research Associates. Research Assistants and Others

N. Amerasinghe
H. G. Baker
R. Barquin
P. B. Bishop
R. Cohen
J. Fosseen
P. J. Fox
F. Furtek
T. M. Gearing
I. Greif
M. Hack
I. T. Hawryszkiewycz

D. A. Henderson
B. Lester
J. P. Linderman
J.
J.

B. Lotspiech
A. Meldman

J. E. Qualitz
C. Ramchandani
L.
J.
R.

J. Rotenberg
E. Rumbaugh
J. Steiger

S. R. Umarji

Undergraduate Students

G.
H.
C.

G, Bajoria
J. Kim
K. Leung

D. Misunas

J. Nievergelt

B. A. Morneault

J. Phillips
S. Sadeq
J. C. Schaffert
R. Swift

DSR Staff

Support Staff

A. Rubin

, .

■ -",,v &-*■>' ■
■■■■■■■.

COMPUTATION STRUCTURES

The Computation Structures Group is concerned with the
analysis of fundamental issues arising in the design and
construction of general-purpose computer systems through the
tormulation and study of appropriate abstract models. The past,
year has seen new developments in the theory and application
of Petri nets as a model of systems of interacting parts,
improved techniques for realizing digital systems with assur-
ance of correct operation, development of the theory of data
flow schemata, and contributions to the study of program
correctness and programming generality.

A. Petri Nets

Our research relating to Petri nets is concerned with the
theory of Petri nets, the relation of nets to logic circuits
and asynchronous modular systems, and the use of Petri nets as
a model for the behavior of systems of interacting parts,
including systems within and outside the domain of computer
science.

Timed Petri Nets

mode
(8,
beca
easi
ship
term
even
the
info

Chander Rarachandani is investi
Is in the performance analysis
5) are an attractive model for
use the important interactions
ly represented. Petri nets rep
of events in a system that mar

inacion of activities, but do n
ts or durations of activities.
Petri-net model of a system mus
rmation.

gating the use of Petri net
of systems. Petri nets
studies of system performance
between system parts are
resent the ordering relation-
k the initiation and
ot represent the timing of
For performance analysis

t be augmented with timing

In a Pevn net (Figure 1), the firing of a transition may
represent an interval of activity by some system part. If the
transition is enabled (at least one token in each of its input
pxaces) it means that activity of the system part may begin
We associate initiation of activity with picking up one token
from each input place, and termination of activity with adding
one token to each output place. This corresponds to consider-
ing the transition to be two transitions and a place p as in
Figure 2. r r-

Figure 3 shows a timed Petri net obtained by asyociatinq
time parameters with certain transITTons of the net in Figure
1. In a timed net transitions without time paramete-s repre-
sent sequencing constraints on activities as in a conventional
Petri net. Action of a timed transition may be explained in
terms of Figure 2, where the time parameter T(t) is associated
with place p. Transition f may fire immediately when enabled
or any time later (providing it remains enabled). Then trans-
ition t" becomes enabled and fires exactly i(t) time units
after the firing of f. Thus the firing of transitions f and
t represents initiation and termination of one instance of the
activity represented by transition t. It is possible for a
transition t in a timed net to be re-enabled before a
previously initiated instance of the associated activity has
terminated. In fact, many instances of the activity may be in

Preceding page blank

COMPUTATION STRUCTURES

-ex
tronsition

place

token

Figure I. A Pefri net.

^C O

Figure 2. Meaning of a timed transition.

10

•

-r--..:-« jnmi

COMPUTATION STRUCTURES

T(O) = 5
r(b) « 2

Figure 3. A timed Petri net.

(o) a timed marked graph (b) periodic schedule

T(a) = 3 T{b)-2 T(C)=4

transition 0:2-5, 8-11, 14-17, .

b:0-2, 6-8, 12-14,.

c: 2-6, 8-12,14-18,.

transition

♦• place

place witn token

Figure 4 Periodic schedule for a timed marked graph.

11

■ -•

.

■ ■

COMPUTATION STRUCTURES

progress simultaneously, as we shall see in later examples.
The number of tokens in place p is tiie current number of
simultaneous instances of the activity.

A schedule for a timed Petri net is a set of sequences of
initiation and termination times for the timed transitions of
the net. A schedule is feasible if the timed net can exhibit
the behavior specified by the schedule. A schedule is not
feasible if it calls for initiation of an activity earlier
than allowed by terminations of other activities. A feasible
schedule is said to be prompt if each activity always initiates
as early as possible. Here are examples of feasible and prompt
schedules for the timed net and initial token distribution
shown in Figure 3:

(a) a feasible schedule
transition a: 0-5, 8-13, 13-18

b: 2-4, 4-6, 9-11, 11-13, 15-17

(b) a prompt schedule
transition a: 0-5, 5-10, 10-15

b: 0-2, 2-4, 5-7, 7-9, 10-12
|

Every timed net for which the underlying Petri net is persistent
(no transition ceases being enabled except by firing) has a
unique prompt schedule.

We have studied the class of Petri nets known as marked
graphs. In a marked graph, each place is an input place of at
most one transition, and an output place of at most one trans-
ition. All transitions of a marked graph fire equally many
times in any behavior that returns the net to its original
configuration. In consequence, a prompt schedule for a timed
graph is periodic in that each timed transition initiates at
regular intervals. The example in Figure 4 has a periodic
prompt schedule with period six. In this case, the rate of
firing is determined by the circuit containing transitions b
and c.

Figure 5 illustrates a situation where several instances
of an activity represented by transition b may proceed con-
currently. Instances of the activity represented by transition
a are forced to occur strictly in sequence by the one-token
self loop. The prompt schedule shown has a period of eight.

The computation rate of a timed marked graph is the average
rate of firing for any transition of the graph in a prompt
schedule. For the example in Figure 4 the rate is 1/6; for
Figure 5, the rate is 1/4.

A = {al a)

There is a simple algorithm for determining the computation
rate of a timed marked graph. Let the vertices (transitions)
and arcs (places) of a strongly connected marked graph be

12

I , , . ■ . ■ ■ ■ ■. ■ . ■•■■

:

COMPUTATION STRUCTURES

where an arc a (vi, v^) is directed from transition v. to

V.j, and let Ti be the time associated with transition v. (T. =

0 if v. is not a timed transition). For any strongly connected

marked graph one can find a set of simple circuits C .,,, c

that cover all arcs of the graph (5). Let M. , be the number m

of tokens on arc (v^ v.) in the initial marking of the net.

Then the computation rate p of the timed marked graph is given
by

where

Lnk ' »'in {ijr | k = 1, ..., m

E '.
v.eck

is the sum of the times associated with transitions of circuit
C, and

(v.,v.)Eck

M. .
11

is the number of tokens on arcs of circuit C
k"

Figure 6 shows a "PERT" chart with activities a,b,c,dfe
and the corresponding timed marked graph. Application of the
foregoing procedure shows that the computation -ate is 1/8
the reciprocal of the time for the critical path. We may ask
what happens to the computation rate if Np processors are

permitted to perform activities concurrently. The correspond-
ing marked graph is shown in Figure 7, where it is assumed
that only NR instances of activity e are permitted at one

time, but arbitrarily many instances are possible for the other

valieTofrL Ind ^ ^ ^ ^^^n rates for several
P R

Work is continuing on performance analysis of systems
represented by more general classes of Petri nets. Also, the
properties of Petri nets having time bounds or statistical

13

■ .

, ■ ■"■""■■. ■,..:■

41

COMPUTATION STRUCTURES

(a)

(b)

transition a: 0-2, 2-4, 8-10, 10-12,.,

b:2-8. 4-10,10-16,12-18,..

Figure 5. Marked graph with concurrent instances of an
activity,

14

. .. _ ._u^l

■ . ■ ■

COMPUTATION STRUCTURES

(a) "PERT" chart

BEGIN Jr
 »-«^

(b) marked graph

c5

T(a) -- 1
END T(b) = 5

T(C) = 3
T(d) = 1

T-(e) = 6

■♦■•,

circuit

ab

cd

aed

I

1

6

4

8

Figure 6, Computation rate of a timed marked graph

15

■

COMPUTATION STRUCTURES

distributions associated with transitions are being studied.

Canonic Fornm for Petri Nets

We have begun investigation of notions of equivalence and
canonxc forms for Petri nets. For the special case of marked
graphs, Henry Baker (2) has shown how to reduce any marked
graph to a simple form which is the same for all marked graphs
equivalent to the given marked graph. S^apna

Suppose G is a marked graph and N is some subset of the
transitions of G. Then if w is a firing sequence of G, the
corresponding derived firing sequence u>N is obtained from OJ by

erasing all elements that are not members of N. Let G and G"
be maiked graphs and let N = {^, ..., tn} be a set of n trans-

itions that appear in both G and G'. We say that G and G■ are
equivalent with respect to N if for each firing sequence u of
G there is a firing sequence u' of G' such that wN and u' are

identical, and vice versa. The two marked graphs in Figure 8
are equivalent with respect to N = {a,b} since in each case the
set of derived firing sequences is (ab U ba)*.

First we give two rules which when applied to any marked
graph will give a simpler marked graph equivalent to the
original with respect to all of its transitions:

Rule 1: If an arc originates and terminates on the same
transition, and has at least one token, it may
be deleted.

Rule 2: Let a and b be any two distinct transitions, and
let x be an arc from a to Jj. if the number of
tokens on arc x is greater than or equal to the
total number of tokens on the arcs of any other
simple, directed path from a to b, then arc x
may be deleted.

Use of the two rules is illustrated in Figure 9. Rule 1
f-n^d top

remove
K
a^ 1. and rule 2 is used to delete arcs 2,

3 and 4. For each of the three marked graphs, the firing
sequences are all prefixes of the infinite string (abc)00 A
marked graph for which no applications of the two rules are
possible is called a minimal-arc marked graph.

The minimal arc form of a marked graph always has the
same set of firing sequences as the original marked graph
Furthermore, any pair of marked graphs that are equivalent
with respect to a one-to-one correspondence of their transitions
have the samo minimal-arc form. Thus the minimal arc form is
canonic for these marked graphs.

16

Now suppose N is a set of n transitions common to two
marked graphs G and G'. How can we tell whether G and G' are
equivalent with respect to N? It turns out that if G is a live

eauiva^nf^' ^ ftl be reduced to an n-transition marked graoh
equivalent to G with respect to N. This is done by carrying

COMPUTATION STRUCTURED

out the steps below for each transition t of G that is not a
member of N:

Step It Delete any arcs that originate and terminate at
transition t. If any such arc has no token, the
marked qraph is not live.

Step 2: Let X = fx,, ..., X^ be the set of input arcs

and Y = fy,, ..., y 1 the set of output arcs of

transition t. Let M. be the number of tokens on

arc x. and let N. be the number of tokens on arc

yj-

Step 2: Replace transition t and the arcs in X U Y with
' the arcs

{z..ii = l, ...,ni; j = 1, ... , n}

where z.. originates on the same transition as

x. and terminates on the same transition as y..
1 J

Put M + N tokens on arc z
i j ii

Applying this procedure to either marked graph in Figure 8
gives the canonic form in Figure 10. This example shows that
the canonical form for a safe marked graph (5) is not
necessarily safe.

B. Arbiters

Arbiters are fundamental units of digital systems that are
required whenever two or more asynchronous activities compete
for access to a shared unit or resource. A basic form of
arbiter known as an elementary arbiter is illustrated in Figure
11. It controls access to a shared resource by two users —
user 1 and user 2. A 0-to-l transition on either one of the
request wires is a signal thrt the corresponding user desires
access_to the shared resource. in the absence of a competing
request from the other user the arbiter must promptly produce
a 0-to-l transition on the corresponding grant wire. The user
signals completion of his use of the resource by a l-to-0
transition on the request wire, whereupon the arbiter must
respond with a l-to-0 transition on the grant wire. If requests
arrive nearly simultaneously from both users, the arbiter must
promptly and unambiguously gran1-, either one of the requests
and delay granting the second request until the resource is
freed. Correct operation of an elementary arbiter must satisfy
these conditions:

1. It must never occur that both grant wires are simul-
taneously at level 1.

2. If both grant wires are at 0 and at least one of the
request wires is at 1, the arbiter must grant one of
requests.

17

\ jt

COMPUTATION STRUCTURES

C~)

NH - R \ 2

3

Ve Ve

Ve 'A
V8 'A

% Ve
Vi 'A
% V2

Figure 7 Timed marked graph representing several
processors and limited throughput of
one activity.

18

■

■

■

■

■ - '. .

(a)

(o)

COMPUTATION STRUCTURES

(b)

/~N O

Figure 8. Two equivalent marked graphs.

a (b) (c)

®. ® A
firing sequences; (obc)* (X Ua Uab)

Figure 9. Simplification of a marked graph.

Figure 10. Canonic form for the marked graphs in Figure 8.

lequest
wires EA grant

wires

■*- 2'

Figure II. The elementary arbiter.

19

.

COMPUTATION STRUCTURES

We have found that any requirement for arbitration in
asynchronous digital systems can be met by a modular subsystem
using elementary arbiters. For example, an arbiter that over-
sees sharing of a resource by n users can be built using a
binary tree of elementary arbiters (14). The case of n users
and m servers has been studied thoroughly by Patil, and he has
recently devised an improved solution based on n-user and
m-usor arbiters (13).

Designing an elementary arbiter that functions correctly and
always acts within a specified time interval is a difficult
problem. When the two request wires make 0-to-l transitions
nearly simultaneously, the arbiter may make an arbitrary choice,
but it must do F- without hesitation, and without the appear-
ance of spurious signals on the grant wires.

Suhas Patil has devised an elegant scheme for building an
elementary arbiter that will operate correctly in a fixed time
with extremely small probability of error. This scheme makes
use of a subunit called finite resolution arbiter (FlvA) and
illustrated in Figure 12. An FRA can fail to operate
correctly only if two request signals arrive with a separation
of i time units or less. If an FRA fails, the result is that
both grant wires switch to 1.

Now consider a pair of FRA's connected in cascade as in
Figure 13a. If two requests arrive at FRA-1 separated by more
than & time units, only one of the request signals will reach
FRA-2 and operation will be completed correctly. If requests
arrive at FRA-1 with less than 6 time units separation, then
FRA-1 will transmit both grant signals. Assume for the moment
that the two request signals are delayed equally by FRA-1.
Then, so long as A > 26, the requests arriving at FRA-2 will be
separated by more than 6 time units and FRA-2 will grant one
and only one of the requests.

One of several possible cricuits for a finite resolution
arbiter is shown in Figure 14. Each pair of NAND gates forms
a set-reset flip flop which is forced into its 1 state by the
presence of a request on the associated input wire. The setting
of one flip flop prevents the other flip flop from being set,
thereby blocking its associated request. If two requests
arrive at nearly the same instant, both flip flops will be set
since neither will be fast enough to block the other.

The time interval 6 is the time separation of request
signals such that a request signal and a block signal arrive
simultaneously at one of the flip flops. In this circumstance
the flip flop may be placed in a metastable state in which it
may remain for an arbitrarily long time (with decreasing
probability). The existence of metastable states, and the
certainty that failures caused by circuits persisting in meta-
stable states have been problematic in computer systems has
been nicely explained by Ornstein (4).

20

COMPUTATION STRUCTURES

It is reasonable to model flir, fi^ K U
input timing as follows- If thf »L 5 behavior for critical
with time separation Te^s than Llt™^^3^ inputs become 1
flop flop enters its me astabL st^te and thf 'T?^ '' the

commxtment to one of the stable Ä T.tin^a^Interim^

tcltlitltrtLl^ Int^l; (1inT,e"T/Tdt Whe- T is ^ char-
tion P(T) is used because we Jxpectth!tP?hent1^ dCnSity func-
commitment during any interval oflnfn I ProbaDility of

occurred earlier? is'inde'Sent^rthe^Lps^rS! *** ^

not perlLt^itMn Tanlt^ the CaSCade of tw° ^'s is
erated by rauest 1 occur si^— ' fd a ^ signal gen-
failure is-TFiTT^maU if ,' . 2' f^H ^ TH^:Fobability of
as i is made larger. Moreover ^2 de"^fes exponentially
be mas as small as toed bv ^n P™bfbllity of failure may
as in Figure 13b. aeSlred oy adding further FRA's in cascade,

elemenLVarbitS^hat'aKfo imp°SSible t0 deSi^ a P^
one can modify the m circuit so th^ W^h^a tixed time'
spond with grant and block ^nn^?=^ eauh fllp floP wil1 ^
a stable stltüT^ ?n tHlf^av fnlrf^^ f^ ^ is committed to
be constructed whiCh maj rSuirfan arbUrarilv^ arbiter may

(exponentially distributed)^« respond y ^ tlme

c- Computation Schemata

identifying conc»r«„tlv exHSbAT ™0^»<> »de, or tor

are clbinid !n a Sngle Sraph ' T^tC^Z^1 specifNations
of Rodriguez has led ?o the studv of St. ^r OPTnt 0f the ideaS

results from these two^Soction^ o rtTe^^^lTaltel ^^
schemata are reviewed below. researcn on parallel

Productivity in Parallel Schemata

In a computation schema it may be that certain ann^=

gn a perfect

21

■

COMPUTATION STRUCTURES

■

1 »-

FRA

t| = arrival time
of request I

tg - arrival time
of request 2

region of
incorrect
operation

Figure 12, The finite resolution arbiter.

(a)

1 — — «
"1

DELAY

A
FRA

1
FRA
2

L. _J

(b)

DELAY

A
FRA

1

*
FRA
2

FRA
3

-»
DELAY

A

Figure 13, Finite resolution arbiters
connected in cascade.

22

■

■■'■■■

COMPUTATION STRUCTURES

request

Figure 14. Circuit for finite resolution orbiter.

request 2
eorlier
region A)

probability of
failure given
(t„t2)inA

request I
earlier
(region B)

Figure 15. Failure analysis for two FRA's in cascade.

23

COMPUTATION STRUCTURES

these actions are not productive. We have found there is a
trade-off in parallel schemata between productivity and degree
of concurrency. That is, to achieve maximum parallelism, it is
necessary that the possibility of nonproductive actions be
introduced. John Linderman has studied this matter for a class
of computation schemata closely related to the parallel program
schemata of Karp and Miller (9), and the flow-graph schemata of
Slutz (17).

These schemata have separate parts, to represent the com-
munication paths for data and -ehe sequencing of actions by
operators and decision elements. Since the distinction between
"transformations" and "tests" is so pervasive in programming,
we feel they should be modeled as different fundamental actions
in computation schemata. For this reason, our data flow graphs
contain both operators, which model elements that transform
values, and deciders, which perform tests with true/false
outcomes. Associated with each operator is a function letter,
and with each decider a predicate letter. Specific functions
and predicates are assigned to the function and predicate
letters by an interpretation of the schema. In this way,
several operators may be required to perform the same trans-
formation — or several deciders, the same predicate — in any
interpretation of the schema. This departure from the Karp-
Miller model permits treatment of determinacy and equivalence
for a broader range of programs and systems.

Each operator and decider has associated initiation and
termination events. When an operator or decider initiates,
values are read from its ordered set of input memory cells
and this vector of values is, in effect, entered into ^ first-
in-first-out queue. Thus multiple initiations of an operator
or decider may occur without intervening terminations. When
an operator terminates, it writes into its output memory cells
the values obtained by applying the function denoted by its
function letter to the vector of values taken from the head of
the queue. For each decider there are two termination events
corresponding to the true and false outcomes of applying the
predicate denoted by its predicate letter to the vector of
values at the head of its queue.

When and if these events can happen is specified by the
control of the schema. A variety of explicit mechanisms have
been used to represent the control, including finite state
machines, precedence graphs, and Petri nets. These mechanisms
share the property that they specify which sequences of events
are allowed and which are not allowed as possible behaviors of
a schema. The allowed sequences of events are called the
control sequences of the schema. Study of various control
mechanisms has shown that certain properties of control
sequences — persistence, commutativity, conflict freedom, and
repetition freedom — are central to the study of equivalence,
determinacy, parallelism and productivity, regardless of the
mechanism used to specify the set of control sequences.
For this reason we have studied these properties of schemata
without regard to the mechanism used to specify the set of
control sequences.

24

r- ■ ■ ■

"!

V^-^v. ,-:

COMPUTATION STRUCTURES

Consider the program below in which w and x are input
variables and y and z are output variables:

begin

end

y := f(g(w))
if p(w,x) then z := g(f (w)) else z := h(f(w))

Two schemata for this program are shown in Figure 16, To be
definitive, the control sets have been specified by Petri nets,
Examples of control sequences :or S, include

atacHt bcTdc

t b t babaceec

in which overbars and underbars indicate initiation and ter-
mination, and the superscript T or F refers to the outcome of a
decider.

We identify certain memory cells of a schema as an ordered
set of input cells and an ordered set of output cells. Then we
may discuss equivalence of two schemata in terms of producing
the same output values when given identical inputs. In Figure
16, w and x are the input, cells and y and z the output cells
of both Sj^and E2. It is easy to see that, in either schema,

any allowed sequence will assign the same values to cells y
and z as are produced by the program. Hence both schemata are
"functionally determinate" and are equivalent with respect to
the specified input and output cells.

In these schemata, an issue arises that is not present
when every termination event puts a value in some memory cell
and all cell histories affect the question of equivalence, as
in the Karp-Miller theory. It is now possible for operators
and deciders to be invloved in "useless activity." For
example, if y were not an output cell of schema S, or S ,

operators a and c would not be productive. Similarly if the
same sequence of actions followed either outcome of a decider,
then that action of the decider would not be productive.

The precise formulation of this notion of productivity
requires formalisms we do not wish to develop here, but the
central idea is fairly straightforward. A use of an operator
in a control sequence is productive if subsequent actions by
operators "carry its result" to a schema output cell or to a
productive decider. Since an action by a decider does not
directly affect contents of memory cells, determining its
productivity is not as easy. We consider a use of a decider to
be productive if the schema has two control sequences that
define inequivalent computations, and sre in "disagreement
about decider outcomes" only at the given decider use. For
example, consider the program

25

■
■.

COMPUTATION STRUCTURES

(a) schema S

data flow graph

w K

control

aa

c c

®beg

Figure 16, Two equivalent computation schemata.

26

■ •
■

COMPUTATION STRUCTURES

(b) schemo S2 :

dofa flow graph

w

control

a a

c c

Figure 16. (Continued).

27

■

■ . ■

COMPUTATION STRUCTURES

begin

if p(x) then

if q(x) then y := f(x) else y := g(x)

else

if q(x) then y := f(x) else y := g(x)

end

Since output y may be set to f(x) if p(x) is false, and g(x) if
ll*l "Htrue, one might conclude that this usi"^ is produc-
tive. However, both possibilities exist in either case ?he
trluJ^^ determi^d by q?*); hence p(x) is not really pro- ductive, in agreement with our definition. reany pro

Much of this research has been directed toward identifvino
the most appropriate definitions for "productive control
of^Tnll-. A seern?ly desi"ble condition Jthat every use
Snfortunatelvr ^.de"der in a c°ntrol sequence be productivl!
degree of naralletf^^h"? Prc^ctivity condition limits the □egree ot parallelism that can be realized. Suppose a

^irrrTsuTt:^0^ if either 0f tWO tes^ P-d-es

begin

if p(x) or q(x) then y := f(x) else y := g(x)

end

of ^ fn either :,(X) 0r q(x) is found ^ ^ true, evaluation
p(x) and af/5-^'0^^1^- ThUS P^llel e^TTTation of
wi i.n,qi l11 vlolate the strong productivity conditioi
We are studying a weaker form of productivity which does
not clash with parallelism. Y 0es

l>.ta Flow Schemata

. ^ example of a data flow schema is shown in Figure 17
It is a directed graph having two kinds of nodes- actor nnd««
-d ii^i nodes- The arcs of a data flow schem^rel^s^2^
through which data and control values flow from actor nodes
to link nodes and from link nodes to actor nodes T ink n^L«

trLnV^dl^rT t0 —ral^r^odes and^re^of' two kinds -- data links drawn as small solid circles for da4-a
values and controTTInks drawn as small open circles for
control values Certain data link nodes are the input nodes of

28

^d

.-■....

COMPUTATION STRUCTURES

There are five kinds of actor nodes:

operator square box with a function
letter written inside.

decider diamond box with a predicate
letter written inside.

true gate/false gate circle with T or F written
inside.

merge ellipse with T and F written
inside.

Boolean square box with one of the sym-
bols A, V, -i written inside.

Each arc leaving a link node acts like a first-in-first-out
queue for values waiting for use by the actor on which the arc
terminates. A value arriving at a link node is replicated as
required and entered in the queues of the emanating arcs. In
most cases, each queue will either be empty or hole, one value.
However, permitting unbounded queues permits operation of a
data flow schemata to achieve a kind of maximum parallelism
we shall illustrate by a later example.

Given a data flow schema and an interpretation of its
function and predicate letters, computations by the schema are
described by sequences of actions by the actor nodes, analogous
to the firing sequences of a Petri net. An operator, decider,
or Boolean node is enabled to act when at least one value is
available from each of its input arcs. When enabled, one of
these actors may "fire" by removing one value from each input
queue, applying the specified function, predicate or Boolean
operator, and sending the results to its output data or control
link. A true gate is enabled by the availability of a data
value and a control value from its input arcs. The gate fires
by removing these values from their queues., Then, if the
control value is true the data value is sent to the output data
link; if the control value is false no further action takes
place. The false gate acts in an analogous manner. A merge
node acts by transmitting a value from its F-input arc if the
control input value is false, or a value from its T-input arc
if the control value is true. The filled-in arrows on certain
control links indicate that a false value is entered in their
queues in the initial configuration of the schema. This
arrangement is needed to initiate action by a portion of a
data flow schema that performs an iteration.

According to these rules of behavior, every actor of a
data flow schema is persistent: once enabled an actor becomes
not enabled only by firing. From this fact and the discipline
by which actor and link nodes interact, a result of Patil (12)
shows that any data flow schema is a determinate system.

Study of the schema in Figure 17 reveals that it is
equivalent to the following "while scnema":

29

COMPUTATION STRUCTURES

Figure 17 A well-formed data flow schema.

Figure 18. A data flo* schema that is not free

30

■

COMPUTATION STRUCTURES

Oc^

Figure 19 A dato flow schema requiring unbounded queues.

31

A

■

COMPUTATION STRUCTURES

begin

while p(x) do

if q(x) then w := f (x) else w := q(x)

x := h(w)

end

y := x

end

Just as in a while schema, the data flow schema has a nested
structure indicated by the c'ashed lines, and uses specific
configurations of gate, merge and decider nodes to form condi-
tional and iteration subschemas. ^ data flow schema having
this structure is said to be well formed. Any well forir^
data flow schema will generate exactly one value at each output
node for each set of values presented at the input nodes.
Because it is determinate, any well-formed data flow schema
determines a functional dependence of output values on input
values. We consider two Schemas to be equivalent if both
define the same functional dependence of outputs on inputs,
and this is true regardless of the interpretation chosen for
the function and predicate letters.

On the basis of work by Ashcroft and Manna (1) one can
construct a well-formed data flow schema equivalent to any
"goto program" or any program schema of the type studied by
Paterson (11), Hence the general equivalence problem for data
flow schemata is unsolvable.

It has been found that the theory of "free" schemata is
more rewarding in terms of positive results than the study of
unrestricted schemata. A data-flow schema is said to be free
if no two actions by deciders apply the same predicate to the
same value. Figure 18 illustrates a schema that is not free
because the first two uses of decider d both apply predicate
p to the result of applying f to the schema input value. Hence
there is no way for the iteration subschema to perform exactly
one execution of its body.

John Fosseen (6) has found it possible to transform free
data flow schemata in such a way that any pair of data arcs
may be tested for equivalence. (Two arcs are equivalent if
they pass the same sequence of data values in any computation.)
We hope the concepts developed to obtain this result will
provide further insight into the equivalence problem for free
data flow schemata.

We remarked earlier that treating the input arcs of actors
as unbounded queues permits greater concurrency. The data flow
schema in Figure 19 illustrates such a case and is based on an
example of Keller (10). The right-hand portion of the schema
may run arbitrarily ahead of the left-hand portion, a true value
being entered in the queues of arcs a, b, and c for each cycle.

32

■

COMPUTATION STRUCTURES

The left-hand part may operate as fast as it can until the
queues are emptied, whereupon (to be strongly productive)
operation must wait for further decisions to be made.

Any data flow schema is inherently maximally parallel in
the sense that each operator and decider is at work whenever
values are available for some productive use of the operator or

Weakly Productive Computations

In a data flow schema, actions are initiated when the
required input values are present and the action (in most cases)
is known to be productive. As an interesting exploratory study
we have studied properties of parallel computations in which
every operation is initiated as soon as its input values have
been computed, so long as some possible continuation of the
computation makes productive use of the result. Consider the
data flow schema in Figure 20, which represents the followinq
program with input variable x and output variable y:

begin

while p(x) do

if q(x) then x := f(x) else x := g(x)

y := x

end

If execution of this schema is performed according to the rules
given earlier, then every action by the operators (a and b) and
deciders (d and e) is productive. Let us consider what happens
if we allow all weakly productive actions to initiate. Suppose
termination of the first uses of deciders d and e is arbitrarily
fh«Tf^ f1"0? thVirst

uUses of operators a and b require only
the initial value of x, these uses are immediately initiated.
Their terminations produce values that are inputs to further
weakly productive uses of operators a and b, and so on. These
actions define the unbounded tree of values illustrated in

Iv+lt I1*' the tr,T haS a node for each value any computation
by the schema could generate. As outcomes of decider actions
become known, portions of the tree of values become useless
and may be deleted, since the operator uses that produce these
values become known to be nonproductive. For example, if the
first use of decider d yields false, the tree of possibly useful
values is as in Figure 21b, and-TT-deciders d and e have
fW6?!! P? OUtc°I?es F'T and T'T'F' respectively, the tree becomes
that in Figure 21c, and represents a completed computation.

Joseph Qualitz (15) has studied the bookeeping requirements
for weakly productive computations, and has devised execution
structures in terms of which the detailed progress of such
computations may be studied. Clearly it is necessary to tag each
value produced by a schema operator with the assumptions made

33

-,■->; '

COMPUTATION STRUCTURES

Figure 20. Data 'low schema.

34

COMPUTATION STRUCTURES

f(fU)) g(f(x)) f{g(x)) g(g(x))

A Ä A A
/ \ / \ / \ / \

/ \ / \ / \ / \

(b) (c)

riT
f(g(x))

ITT

Figure 21. Value trees from a weakly productive
computation.

35

■

■

COMPUTATION STRUCTURES

about decider outcomes. We let each value carry a color which

is a set of sequences of the symbols {T, F, f, F}, one seauence

denotTw ^^^f 0f the SChema- The le"e" without ovlrbars denote known outcomes, whereas letters with overbars denote
value OUtCOmeS- In Fi^,res 21b, 21c, colors arfshown for each

valna«
AL,anK Stage in a weakly Productive computation, many

values maj be associated with certain value nodes of a schema
It is not useful to order these sets of values blcause SnUkä

values arrive'?" 0f.a data flOW SChen,a' the order in"hich
used ?n^ V ^ nefessarily the order in which they are
used Instead each value node is regarded as holding a pool

^or^^'The'reforl^wh:^11 ^ aPPrOPriate COlor' anI liable <n„„^ f.'i Therffcre' when an operator or decider has several
input value nodes, some means must be provided for identifyina
^o,n^lnatl?nS.,0f Values to which a function or predicate 9

- i^thKf ^ist^cti d0ne h
bY a-OCiati^ wi'h each^alue dn inaex tnat is distinct for each cycle of any loon in the

iTeTets andnS^herh!nitdfCiSi^ iS made' -rtain^alues^become
must be tnhibiteS! lnitlatl0n of actlons that ^ these values

We have devised rules of execution for weakly productive
computations and have shown that these rules correct!? simulate
the computations of any well-behaved data flow schema! mUlate

D. Inductive Proofs of Program Properties

nrr,™™^ ? Purposes of studying schemata or simplified
programming languages is to isolate aspects of programs which
must be encompassed by any approach to the construction of
formal proofs about the functions computed by programs. Recursion
rSesuTt5

S^\P.rOPertY- TO prOVe equivalence or^orrectAesI results about recursive programs, some form of argument by
induction must be made. This has been recognized by many peoole
and several of them have formulated induction rules to be used
for particular classes of programr. Generally, a program can
be viewed as falling in several of these classes. By examinina
a single program and proofs about it from differ^ntviewpointl
we have been able to clarify the relationships among these
various proof techniques. By means of a simple example wl
shall illustrate the work of Irene Greif (7) on relating the
different ways of interpreting a recursive definition and the
corresponding proof techniques.

Consider the following definition of a function f over
the nonnegative integers: uver

f(m,n) : if n = 0 then m else f(m + 1, n 1)

(The reader should convince himself that f(m, n) = m + n) The
first and most obvious interpretation of the definition is
that it describes an algorithm for computing f. The algorithm
is to test for n = 0; if n = o then f(m, n) = m; otherwise
apply the same algorithm in computing f(m + 1, n - 1) to obtain
the result. A second interpretation depends on the existence
of an ordering on the domain of the function. In this case

36

COMPUTATION STRUCTURES

the pairs of integers (m,n) ran be ordered as follows:

(m^, n^ Qy (m2, n2)

if and only if

n1 < n2.

Then the definition of f is an inductive definition. The base
of the definition is:

For all m f(m, 0) = m.

The induction step is:

f(m, n) = f(m + 1, n - 1) .

The third interpretation of f is as the minimal fixpoint of
the following functional:

^(X) z Xm.Xn. if n = 0 then m else X(m + 1, n - 1)

It can be shown that the minimal fixpoint of W is M £ [Q)

where :. is the function that is everywhere undefined and (X)
means the function produced by i applications of Ä to X.
Notice that ^(:i) = Xm.Xn. if n = 0 then m else ;ä(m + 1, n - 1)
is the function which is m for (m, 0T and undefined for all
other ordered pairs. ÄJ(^) has the value m for the ordered
pair (m, 0) and m + 1 for the ordered pair (m, 1) and is
otherwise undefined. Proceeding in this manner, the function
f which we are expecting will be generated.

The last interpretation is that the function f represents
the agreement of its "truncations." These truncations are the
partial functions defined as follows:

f.(m, n)=i_fn = 0 then m else fi_1(
m + li n " D •

The reader should note that in this case

f. (m, n) = £x id) (m, n).

Now we will give four different proofs of the following
simple fact:

f(m + 1, n) = f(m, n) + 1.

The first, by recursive induction, corresponds to the notion of
definition by algorithm. We show that f (m + 1, n) and f(m, n)+l
can be computed by exactly the same algorithm by showing that
they can be expressed in the same form, namely:

37

COMPUTATION STRUCTURES

X(m, n)

1. g^m, n)

if n = 0 then m + 1 else X(m + 1, n - 1)

f(m + 1, n)

»» if n ■ 0 t/.en m » 1 else f (m + 2, n - 1)

»> if n ■« 0 then m + 1 else g. (m + 1, n - 1)

2. gjCm, n) = f{m, n) + 1

= (i^f n = 0 then m else f (m + 1, n - 1)) +1

= i^f n = 0 then m + 1 else f(m+l, n-l)+l

= i_f n = 0 then m + 1 else g,, (m + 1, n - 1)

This shows that g, = g, on the domain of X. If we are trying

to prove g, = g- for the pairs of nonnegative integers, a separ-

ate proof about the domain of X will be required.

Another proof can be written, utilizing the partial order-
ing on the domain of these functions, and the inductive defin-
ition. The basis of this proof by structural induction is:

for all m

f(m + 1, 0) ■ if 0 ■ 0 then m + 1 else f(m +2,0-1)

= m + 1

f(m, 0) + 1 ■ if 0 « 0 then m + 1 else f(m+1, 0-1) + 1

= m + 1

Therefore, for the minimal element in the domain,
f(m + 1, n) = f(m, n) + 1. The induction step, for (m, n),
n ^ 0 is:

Assume for (m, n), n < N that f(m + 1, n) = f(m. n) + 1

1. f(m + 1, N) = f(m + 2, N - 1)

2. f(m, N) + 1 = f(m + 1, N - 1) + 1

= f(m+ 2, N - 1) by induction since N-l < N.

The initial assumption, based on the means of definition of the
function is that f in total on the ordered pairs, partially

ordered by \<J- From this fact and the above proof, we know

that f(m + 1, n) = f(m, n) + 1 for all pairs of nonnegative
integers,

38

COMPUTATION STRUCTURES

The third proof is actually simple induction on the depth
of recursion of a computation. In terms of the definition of
the minimal fixpoint

f - U tfi(").

computational (or yi-rule) induction is simple induction on i.

1. for i = 0 we must show

^(m + 1, n) = rj(m, n) + 1

Obviously both are totally undefined.

2. Assume X(m + 1, n) = X(m, n) + 1

then prove ^(X) (m + 1, N) = tf(X) (m, n) + 1

^(X)(m + 1, n) = if n = 0 then m+1 else X(m+2, n-1)

= if n = 0 then m+1 else X(m+1, n-1) + 1

(by induction)

= (if n = 0 then m+1 else X(m+1/ n-1))+l

= tf (X) (m, n) + 1

This proves that f(m, n) = f(m, n) +1 are totally equivalent,
i.e., either both are undefined or both are defined and have the
same value.

A separate argument can easily be given to show that both
functions are defined for all pairs of nonnegative integers.

The last proof technique is very similar to computational
induction, being course-of-values induction on the index i of
the truncations of a function. This amounts to doing course-of
values induction on the depth of recursion. For our particular
example, in which equivalence depends only or>e one step in the
computation of the fixpoint, the difference ;I ween the two
proofs is strictly a matter of formalism. Wr ,. rove that for
i = 0, f0(m + 1, n) = f0(m, n) + 1.

Then for i / 0:

assume for j < i, f.(m + 1, n) f . (m, n) + 1

f.(m + 1, n) » if n « 0 than m+1 else f._1(m+2, n-1)

= if^ n = 0 then m+1 else fi_1(m+l, n-l)+l

= (if n = 0 then m+1 else fi_1(m+l, n-1))+l

fi(m, n) + 1

39

.i

.

COMPUTATION STRUCTURES

As in the last proof, this shows stronq equivalence, this time
by truncation induction.

Generally, any method can be used for a proof. If the
programmer had ore of these interpretations in mind in writing
his program, then the corresponding proof technique will
probably seem most natural. Ideally an automatic program
verifier would be flexible with respect to choice of induction
rule. It is unlikely, however, that all of these will be
equivalently useful in mechanical proofs, even though there seems
to be no real difference in scope of application among them.

E. A Computer for General Data Types

One goal in the design of programming systems is to retain
the generality of an algorithm when it is encoded into the
language of the programming system. A serious limitation on the
generality readily achieved in contemporary computer systems is
imposed by the fixed word length and finite size of computer
memories.

In preparing a program for execution by a computer system,
the programmer first imagines the abstract function the program
is to implement. Simple examples might be to implement the
scalar product of any two n-component vectors of real numbers,
or to obtain the greatest common divisor of two integers. As
in these examples, the abstract function almost always has an
infinite domain. Then the programmer conceives o£ an algorithm
for the function — a step-by-step process for obtaining the value
of the function through the use of idealized primitive operations
such as the arithmetic operations on integers and reals. The
next step is to express the algorithm in the language of some
practical programming system. Usually the actual data types
of the programming system have their idealized counterparts,
and, if the language is suited to the needs of the algorithm,
the algorithm may be converted into a program with little
difficulty. Our problem of generality would be solved if the
task of the programmer were completed at this point. However,
he must now check whether the word size and finite memory size
of the computer system, as reflected in defects of the primitive
operations of the programming language, may prevent correct
operation of his program. In many cases, the program will
operate correctly for a large (but finite) number of points in
the domain of the abstract function, and will fail (often with-
out any hint to the user) for the remaining (infinite) set of
domain points. In other cases the programmer will find that
the number of cases for which the program will work correctly
is too small to be of interest and a new approach, using a
language less suited to expressing the algorithm, or less
efficient in execution, must be adopted.

The ability of a programming system to correctly execute
programs expressed in terms of idealized data types is called
»jenerality with respect to domain. Most programming systems
fail to be general with respect to domain by limiting the
amount of storage that may be allocated to one data value to
less than the available memory of the computer on which the

40

■
■

COMPUTATION STRUCTURES

programming system runs. For instance, integers are usually
liiiiited in value by the number of bits in one memory word, and
the maximum range of an array subscript must often be specified
at the moment the array is created.

Since the memory of any practical computer system is, in
face, finite we cannot expect any program to obtain the value of
the prograimner's abstract function for any point in its domain.
However, we should expect a programming system to produce the
correct result unless the computer system runs out of memory
in trying. (If the computer system runs out of memory, should
one blame the program for the absence of sufficient memory to
compute the function ?) This consideration is the basis for
the following definitions:

(xl' •••' xm)

y), computes a function

Definition: A program p, with input variables x

and output variables y = (y, , ..

f over domain D if and only if for each point x in D either
1. program p produces output y from input x where

y = f(x), or
2. for inpu*- x program p fails to complete due to an

unsatisfied request for additional storage.

Thus a program that computes a function must obtain the correct
result whenever it is given sufficient resources to operate.

Definition; A programming system that implements a language L
is general with respect to domain if and only if for any
algorithm that defines^-Function f on domain D, the
corresponding program in L computes f on D.

The heart of the problem of implementing programming
systems having generality with respect to domain is machine
instructions which themselves are programs not general with
respeit to domain. The basic arithmetic instructions, for
example, usually operate on representations that occupy a
single register. Since conventional programmed multiple length
arithmetic introduces a high cost in time consumed, even for
quantities that require only single-length representation,
achieving generality for these data types in a conventional
computer system is unattractive.

Peter Bishop (3) has designed an abstract computer in
which generality with respect to domain is achieved for a large
class of data types including integers, floating point numbers,
strings and arrays, as well as more elaborate structures. In
the abstract computer, each data value is represented by a
pointer-linked tree structure having as many elements as
necessary to represent the value. The representation of any
quantity may expand arbitrarily as required until available
memory is exhausted.

41

COMPUTATION STRUCTURES

References

1. Ashcroft, E., and Manna, Z., The translation of 'go
to" programs to 'while' programs. Information
Processing 71, Ljubljana, 1971, ~

2. Baker, H., Petri Nets and Languages. Computation
Structures Group Memo 68, Project MAC, M.I.T.,
May 1972.

3. Bishop, P. B., Data Types for Programming Generality.
S.B. and S.M, Thesis, Department or Electrical
Engineering, M.I.T., June 1972.

4. Chaney, T. J., Ornstein, S. M. and Littleficld, W. J.,
Beware the synchronizer. Proceedings of the Sixth
Annual lEF!: compute gociety InternationaT
Conference, San Francrsco, September 1972, pp 317-319.

5. Commoner, F., Holt, A. W., Even, S., and Pnueli, A.
Marked directed graohs. J. of Computer and System
Sciences, Vol. 5 (1971), pp 5T1-523.

6. Fosseen, J. B., Representation of Algorithms by
Maximally Parallel Schemata. S.M. Thesis, Department
of Electrical Engineering, M.I.T., June 1972.

7. Greif, I. G., Induction in Proofs About Programs.
S.M. Thesis, Department 57 Electrical Engineering,
M.I.T., December 1971.

8. Holt, A. W. and Commoner, F. Events and Conditions.
(In three parts), Applied Data ResearcFT New York
1970. (Chapters I, II, IV and VI appear in Record
of the Project MAC ConTerence on Concurrent Systems
and Pärallel~Computätion, ACM, New York 1970, pp 3-52.)

9. Karp, R. M., and Miller, R. E., Parallel program
schemata. J. of Computer and System Sciences, Vol. 3,
No. 2 (May 19697, pp 147-19^

10. Keller, R. M., On maximally parallel schemata. IEEE
Conference Record. Eleventh Annual Symposivm on
Switching and Automata Theory, 1970, pp 32-S"0.

11. Luckham, D. C., Park, D. M. R., and Paterson, M. S.
On formalized computer programs. J. of Computer and
System Sciences, Vol. 4, No. 3 (June 1970) , pp 22Ö::2i9.

12. Patil, S. S., Closure properties of interconnections
of determinate systems. Record of the Project MAC
Conference on Concurrent Systems and Parallel
Computation, ACM, New York 1970, pp 107-116.

42

I

■

■ . • ,•

■ ■ ■

COMPUTATION STRUCTURES

References (continued)

14. Plununer, W. W., Asynchronous A-biters TPPP *
on Computers,, Vol. c-21, N«: l" (January llfl)1^-

15- ScheL^/'S'B' S^M^^^^i mutation
^HFal KAg

Bine^in
S^-„!^-'^f^f^^

16.

17.

43

COMP-ITATION STRUCTURES

Publications

1. Ba^r, H., "Petri Nets and Languages", Computation
Structures Group Memo 68, May 1972.

2. tennis, J. B. , "Management of Names in a Computer
syste^, - Computation Structures Group Memo 63
November 19 71. '——' '

3. Dennis, J. B., "Concurrency in Software Systems",
Computation Structures Group Memo 65-1. June 1972.

41 wÜ-1*' *• B.-.' 7he Design and Construction of Soft-
ware Systems", Computation Structures Group Memo 69
June 1972. " '

5. Dennis J. B., "Modularity", Computation Structures
Group Memo 70. June 1972. &

6. Dennis, J. B., On the Design and Specification of a

S2^fffÄ§ä7f^ff7.l'r0]eCt mr' M-1-T" ^ TR-101'
7. Fano, R. M., "On the Number of Bits Required to

Implement an Associative Memory", Computation Struc-
tures Group Memo 61. August 19 71. ~~^ "

8. Flinker, E., "Translation of a Block Structured
language Into the Common Base Language", Computation
Structures Group Memo J[6. January 1972. — -

9" lOX'^\J" "A L00k at "rhe Controlled Execution of
Parallel Programs Operating on Structured Data' by
Ian Campbell-Grant", Computation Structures Group
Memo 62, October 1971"; ~ —— -

1C .

13,

Greif, I. G., Induction in Proofs about Programs
AD0737-7SC' M-I-T-' mC TR-y3, February 1972, '

U. Hack, M. H. T., Analysis of Production Schemata by

rfrf: ^740-320!^ ' M•I•T•, ^ TR~94' February

12. Lester, B. P., Cost Analysis of Debugging Syatems,
P^^ect MAC, M.I.T., MAC TR-9U, September 1971,
AD 730—521.

Patil, S. S., "Forward Acting n x m Arbiter"
Computation Structures Group Memo 67. June 1972.

44

■

COMPUTATION STRUCTURES

Talks

university. Las Cruces, New Mexico, January 3-5, 19 72

4. Dennis, J. B., "On the Design and Specification of s
Common Base Language", talk at the General ElectrL
Co., Schenectady, New York, July 15, 1972. -äCtrlc

Theses Completed

1. Bishop, P B., Data Types for Programmina Generality
S.B. and S.M. Tnesis, Department ot Klectrical T-ni^'
eermg, M.I.T., June 1972. ^ectncal Engm-

txectncal Engineering, M.I.T., June 1972.

5' ^'IL" ^^y313 of Production Schema by Petri Nets

^ Thesis E|i:i|
Werklyl

Pr0dUCtive SSglEutatior; Schemata
M.?:^ ^'1972^

Theses in Progress

45

COMPUTATION STRUCTURES

Theses in Progress (continued)

4' PhÜTThesJ;' "Sm00th InterProcess Communication-,

5. Lotspiech, J., "Reliability of Speed-Independent
Asynchronous Systems", S.M. Thesis.

6- ZTe^k.iy^Ts1.5 ^ ^ AnalySiS 0f ^-hronous

7' Phthisis! J" "Making Computers KeeP Secrets",

46

■

■ ' . .■ ,

COMPUTER SYSTEMS RESEARCH

Prof. F. J. Corbatö

Academic Staff

Prof. j. H. Saltzer

In
structors, Research Associates, Research MglstantsandOthers

Y. S. Auyang
R. G. Bratt
D. Br icklin
S. S. Brown
D. D. Clark
T. L. Davenport
T. M. Demchock
D. R. Dick
A. R. Downing
H. M. Frankston
B. S. Greenberg
K. A. Gumpertz
K. M. Haas
G. Harris

R. J. Feiertag
C. C. Garman
R. K. Kanodia
R. F. Mabee
K. J. Martin
E. W. Meyer, Jr.
N. I. Morris

0. D. Carey
S. Daise
C. P. Doyle
L. J. Haron

Prof. K. Ikeda

D . H . Hunt
P . A . Karger
S . Kuo
R S . Lamson
D A Moon

S Perrin
K T Pogran
D F. Reed
K. O • Rhoads
L J. Scheffler
M. D. Schroeder
A. Sekino
■T. A. Stern
C, M. Vogt

DSR St äff

M. A. Padlipsky
M. J. Spier
V. L. Voydock
M. B. Weaver
s. H. Webber
D. M. Wells

Support Staff

D. L. Jones
A. G. Testa
M. F. Webber

Guests

M. Miyazaki

47

COMPUTER SYSTEMS RESEARCH

A. Progress Report

1- Introduction

more methodical. Its approach ?f comPlex information systems
to the more theoreticafat^aS fol?^TK8

"^
1
 ' in ^"trast

Structures Group. Continuing ^f^ bY the ComP"tation
as a laboratory! significant^/^ the ^l'Tl Multics Wem
memory management, networkina no.f performed ^ multi-level
tection mecLnisms.^AnotS^^^^^-^eling, and pro-
ing to move the system t-n m^ u 5 attentlon was prepar-

ment, operatSn, ^Saintenfnce ol't^f .ROUtine ^^loP-

nX^f! the M-I-T- ^--on^r^Ss-nr^eS 1*^

tional control of others mimt** ^T Came under the «Pera-
students, have becomehearbIemtf ^ress^hem^^' ^^ areas as models of Qwo4-»m ^ aaaress themselves to such
the like. in the CompSer'Nelworr06' instru^ntation, and
with making use of the existfno VreVS wel1' concern
mentation has arisen althouah9^?^1"8 f0r stu^ and experi-
completely satisfactory ?his Sr^^H0" is sti11 ^t
and building of systems" toward lUt *"** 5r0m the ^^
also seen in the Group's ^rM.^S1S.and exPl°itation is
Programming. Here tL f^cus L^on'the1" ^^ 0i automatic
"hospitable" environments? * rapld ^i^ering of

ai:rtedd^onkg in\iTiaiZ'*ihorvaao pubi\shed the io^-
which describes the intPrLi 5" L 0^anl^ ■ The book
should be of m^or^L-^Cn e

S n^d^in^t^na thi^ HSyStem issues. An effort ia =ic„ J "Köeminating the key design
publish the book in Japanese" ^^ ^ Japan t0 ^^llate Ind

2- Multilevel Storage Management

As discussed in some detail la^t voar- =
the Group is the instrumentatfon It '** maDOr lnterest of
the multilevel memory svstemnfM!. experimentation with
ties were introduce^into the Lit,v'"' SeVeral new facili-
experimentation. , major step in th^T^3^ t0 SUPPort

with the installation of I muUileve? Lo'"0^0" WaS taken
in addition to the usual ^n^^ Paging strategy which,
ments between core and drum autoirana??ment 0f page move-
tion of pages between d^nd disk PL^ managCS the mi^-
disk to drum on dctiv-.M™ ana,dlsk- pages are moved from
migration from drum to disk an?n

a" ^U^^orithm governs the

kind of associative memor^ The interactSn tT beCOmeS a

SnrLudSln^t^!?^^ ^ -"-- -SfL^ow^

palinntra^gl1^^^ S^fTr T** by the multil-el
management which trades space^ for tfm"^ 3trfegy in drum

latency, multiple copies^T^el al^ri^^t^ Z^.

Preceding page blank

■*

COMPUTER SYSTEMS RESEARCH

Currently, two copies are written, giving rise to the name
"2-fold drum manager", but further experiments are possible
with the existing software tc - tigate the characteristics
of a 4-fold — or for that ma-, n-fold drum manager. As
with multilevel paging, 2-fold manager has proven to be
a practical success in increasing system effectiveness, in
addition to its experimental interest.

Another new strategy of practical as well
interest was proposed and implemented, al
stalled, in disk management. Referred to
this strategy entails having the disk DIM
the seek-portions of pending requests can
data transfers. This work evolved from M
resoarch on the modeling of algorithms fo
storage devices. Although pre-seeking is
write type file systems, we view it as th
exploitation of single strategies matched
environments.

as experimental
though not yet in-
as "pre-seeking",
determine whether
be overlapped with

aster's thesis
r moveable-head
an old idea in rerd-

e next step in the
to demand paginq

Neither the n-fold drum manager nor the disk pre-seek strategy
is thought to be a unique approach, but in conjunction with
multilevel paging strategy they offer a rich environment for
further experimentation in the area of multilevel storage
management. To offer a standard of comparison for experimpnts
a benchmark load is being developed. Although one might
have expected a benchmark load to be among the earlier of pro-
jects, in fact it is only now that enough information has
been collected about the ways a Multics-type system is used-
thus construction of a realistic benchmark can now proceed.

A paper by Prof. J. H. Saltzer (still in draft) has been
written on a simple model of demand paging, which is based on
the experimental observation that over a wide region, the
mean number of memory references between paging exceptions
roughly increases linearly with the size of the paging memory.
The resulting model is easy to manipulate, and is applicable
to such diverse problems as choosing an optimum size for a
paging memory, arranging for reproducible memory usage charges
and estimating the amount of core memory sharing. The model
has already served as the basis for an implementation on
Multics of an accounting scheme which allows for charging
memory utilization independent of system configuration and
system load.

3. ARPA Network

ConsiderabJe progress has been made in the Multics ARPA Net-
work implementation. At the beginning of the reporting per-
iod, it was possible on a demonstration basis to login to
Multics from Multics over the Network. By the end of the
reporting period, the Network was a standard feature of
Multics. Network logins on a supported, "samplina" project
were on the order of half a dozen a day, and there was at
least one paying customer of the system on the West Coast and
one at the National Bureau of Standards. The originally high
cost of Network use of Multics has been coming down drastically

50

J

.

COMPUTER SYSTEMS RESEARCH

The target is for use of Multics via the Network to bo no more
expensive than from local teletypewriters. As the basic
machinery comes under control, the Group's Network team will
pay greater attention to participating in the design of Net-
work Graphics and File Transfer protocols.

4. Performance Model

The doctoral thesis mentioned in last year's report is being
completed. In this thesis, a set of hierarcMcally organized
analytical models has been developed to evaluate the perfor-
mance of multiprogrammed time-shared computer systems using
demand paging. These models are capable of p"^dieting the
throughput and response time characteristics of such systems,
as a function of system hardware/software configuration as
well as of the characteristics of terminal users and their
programs. These models are then used in optimizing the sys-
tem performance and deriving the best system configuration.
The system performance predicted by thece models is compared
with that of an actual computer system, i.e., Multics, in
order to examine the usability of these models as a design
aid.

5. Protection of Programs and Data

With the opportunity for use, it has become apparent that the
original Multics access control mechanism present an inter-
face which is too complex and confusing even for expert users.
Since confusion leads to misuse, and misuse to lack of the
desired control of access, we have here a significant defect.

As a result, a minor interface redesign was undertaken. The
changes, when implementation is completed shortly, will simpli-
fy and clarify the use of these mechanisms, making their
application to user protection problems more apparent to users.
The potentially more far-reaching step was the evolution of a
detailed plan for allowing all users to define protected sub-
systems and share them with one another. The proposed
facility would allow groups of programs and data segments to
be encapsulated and shared, potentially with any system user,
in such a way that access of the borrowing user would be re-
stricted to calling "gate" entry points. This scheme seems
to utilize the full functional capabilities of the ring pro-
tection hardware in the follow-on processor. The plan will
be reported on in greater detail when it is implemented.

Finally, a thesis on protection referred to in last year's
report is almost completed. Thif. thesis describes practical
projection mechanisms that allow mutually suspicious subsys-
tem.'., to cooperate in a single computation, a case which is be-
yond the functional capability of protection rings. The mech-
anisms are based on an extension of the domain model of pro-
tection. This extension makes explicit provision for communi-
cating arguments between domains when the execution point of
a computation passes from one domain to another. The extended
domain model serves as the basis for the design of a hardware
processor which automatically enforces the complex access
constraints associated with general multi-domain computations.

51

COMPUTER SYSTEMS RESEARCH

matically con^unicatfn"cross-Sinncan
r9UmentS are 'Uto-

domams that normally have no L™ „ ^f." even between
The processor, when supported bv aul%^?fbil^leB in colmon-
specifying the protection r«!,^ su}-table software for
cooperating, mutually'suspxcxoussuEs^/0 b! enf°^' allows
efficiently and naturallv in ^J f7 emS t0 be implemented
points out a direction ^ which a multf l^11^' The thesis

evolve to support apolieaflnn« u multl-ilke system could
straints are required than c2n "here

f
more complex access con-

^ased on concen^ricling's^of^^e^"^-0 ^ a Nanism
6- Follow-On Hardware

stable equipment led to the alanlna ^ mlticS 0n mod«n,
the M.i.T. information ProcelsinaL^ a co*tract between
the reporting period for ?o?^, 9 M ^er and Honeyweli during
be based upon the Honeywell eonn 2 MUlti" hardware which will
follow-on machine wil^bear essenUallv ^Chno10^- The
the Honeywell 6080 as the 645 S to L! fi«^."1*"0" to

primary differences arP *hl the 635' where the
hardware and In associatiS ^eSenCe 0f address appending
(The 6080 is roughly three UmefL^ th^Multics ^chine.
Although some pieces of nL h ^ faster than the 635.)

of the equipme^t'is cSrrentl^scSlert^H6^,0""31^' "*>**
the Fall of 19 72. The intend ^n both h S be delive^d during
is to minimize differences bstwl^^ hardware and software
however, certain new le^uresarfn^! n^-and old sterns;
which will carry a hioh n*v^ £ planned ln both areas
tion. m the hLdaware9' IZtllflZ oofnl*^ Sma11 alte—
supports the Multics protection rin«^^ re^s^r structure
performance drum is replaced bv h.n? mt'chanism'- the high
of general registers^long^t to beT^i and the nwnber

current machine) will be increased in th«Str^nt 0n the

more efficient call-save-r^,,^ the software, new,
response to the metering 0^™^°^^^ intr°duced'in
routine calls on Multics is^ ? u at the nuinber of sub-
software which manages the protectiof''- the bUlk 0f the

removed, in view of the harder! ring mechanism will be
compiler will take advantage cfthfLBn?POrt; and the PL/1
instruction Set to perform chaL^! T S new Extended
efficiently. Rough^stimates indicatf^^ rnipUlation ™™
effects of new hardware and Lf^.f that tnc combined
an overall performance improvementlaclor^3 ShOUld reSUlt ^ three to seven. -"provement factor of anywhere from

Although Honeywell is leading t-h^
the lessons learned in workincrSfth^11 transition effort,
prototype) machine were of orLf ,«i. \PreSent (essentially
Group in their participation ?n^Ue t0 members of the y

ware and, to at leasfan adv<«« /e ^^^^ of both soft-
ware. During the year the strate^"?6^^ ■ eXtent' hard-
from the old system to'the neTwaHlfnned^ the tra"sition
was begun. Indeed, for aroCnd ha!f tho lnJeta^ and work
development system has been runnSa nof pe"od' the current
the service system does) bSt^S^^U'c^ntro'lLr6100 (aS

52

r

1

■ ■

COMPUTER SYSTEMS RESEARCH

and communications computer of the follow-on.

7. Maintenance of Multics

As noted above, normal development, operation, and maintenance
of Multics have devolved upon the M.l.T. Information Process-
ing Center and Honeywell, it is significant that a new
Multics site was brought into existence during the year by
Honeywell personnel in Paris, France. Compaigne Honeywell
Bull is using this system as a 'software laboratory", in
conjunction with a similar facility in Waltham, Massachusetts.
(The fourth 645-based Multics site is at Rome Air Development
Center, New York.) Although occasional bursts of help from
CSR personnel are required on very hard problems in certain
areas, the successful day-to-day operation of four separate
Multics si is speaks well of the successful transfer of
expertise as well as responsibility to Honeywell.

8. MPM Upgrade

Experience with the ARPA Network has strongly underscored the
importance of user documentation. Both our experience with
attempting to learn to use other systems and reports
by Network participants from other sites on their attempts to
learn to use Multics suggest that the problem of teaching-at-
a-cistance is far from solved. The necessity of furnishing a
solid foundation for learning in the form of documentation
appears to be inescapable. A concerted effort to both upgrade
the quality and complete the contents of the Multics Program-
mers' Manual was, then, probably the most important con-
tribution of the Group to making the system easy to use during
the reporting period. As the MPM is the primary source for
disseminating knowledge about the system, improvements in its
quality serve a useful purpose for both users and students of
the system. Particularly noteworthy from the user's point of
view are the additions of a rather extensive "Beginners' Guide"
and an index. Several new Reference Data Sections have been
produced, as well as many new command and subroutine writeups.

9. Programming Languages

Significant work on several programming languages was also
performed. Although only initial steps were taken during the
reporting period, an upgrade of the LISP implementation is of
particular interest because of its impact on the implementa-
tion of the Automatic Programming project. (See Future Plans
for more information on this project.) The effort is being
performed jointly with Automatic Programming personnel, and
is the first: step taken in the Group's collaboration in that
area.

An experimental version of APL was developed by Honeywell with
assistance from a Computer Systems Research Group student.
Although it is only an initial implementation, it has created
considerable interest in the ARPA Network community as it is
the only APL known to be available on the Network. Its inter-
face to the user has been constructed to be exactly the same

b3

I

1

COMPUTER SYSTEMS RESEARCH

as the IBM APL — a construction which most APL enthusiasts
consider essential. A plan for improving its performance has
been evolved, which it is hoped will be implemented this
summer.

Work at Honeywell is nearly complete on "Version II" PL/I and
FORTRAN. The PL/I is ANSI standard, and offers superior per-
formance as well as ability to make use of the capabilities of
the follow-on hardware (which contains an extended instruction
set to facilitate character manipulation). It is interesting
to note that the Fortran compiler shares the code generator
of the new PL/I compiler.

An XPL compiler implementation was completed as part of a
Bachelor's thesis. This language is of interest since it is
the vehicle for SPL, a PL/I subset language which is used in
the M.I.T. introductory programming course. The languages
are based on the work of McKeeman, Horning and Wortman at
Stanford University and the University of California at Santa
Cruz.

B. Future Plans

In the next twelve months, the following major projects are
planned:

- Continued support of Honeywell's conversion of Multics
to the 645F hardware system. This activity will reach
a peak in Fall, 1972, at the time of delivery of the
645F processor and memory, and continue through Spring
of 1973, when the conversion is scheduled for comple-
tion. Project MAC is currently providing about 1/4
of the manpower for the conversion activity. Develop-
ment, with the Automatic Programming group, of a LISP
interpreter and compiler system on Multics. This work
has two goals :

1. A language essentially identical to the LISP used on
the MAC and Artificial Intelligence Laboratory's
PDP-10's.

2. A compiler which produces the highest quality object
code possible for the 645 follow-on processor. The
combination of an instruction execution rate in
excess of 10° instructions/second, a 384K word core
memory, and a virtual memory, should make this com-
piler a very potent tool.

- Completion of the Multics Programmers' Manual (MPM) and
the System Programmers' Supplement (SPS) to the MPM.
These two books are both about 3/4 complete, and a con-
certed effort to finish them is underway. Arrangements
have been made with Honeywell's publications office to
take over editing, updating, and publication of these
two manuals as soon as they are substantially com-
plete. Current schedules call for the MPM to be avail-
able from Honeywell in first quarter of 1973. The SPS
will come later.

54

^

■

■ . .■ ■ * ■

COMPUTER SYSTEMS RESEARCH

Publications

1. Bensoussan, A. C., C. T. Clingen, and R. C. Daley,
"The Multics Virtual Memory: Concepts jnd Design",
Cominunications of the ACM, Vol. 15, No. 5, pp. 30 8-
TUT ~~

2. Corbato, F. J., C. T. Clingen, and J. H. Saltzer,
"Multics: The First Seven Years", AFIPS Conference
Proceedings, Vol. 40, 1972 Spring Joint Computer
Conference, pp. 571-583.

3. Feiertag, R. J., and E. I. Oxganick, "The Multics
Input/Output System", Third Symposium on Operating
Systems Principles, October 18-20, 1971, pp. 35-41.

4. Multics Programmers' Manual, Revision 10, M.I.T.
Information Processing Center Publications Office,
May 4, 19 72.

5. Organick, E. I., The Multics System: An Examination
of its Structure, M.I.T. Press, Cambridge. Massachu-
setts, and London, England, 19 72.

6. Saltzer, J. H. , "Some Observations about Decentraliza-
tion of File Systems", Proceedings of the 1971 IEEE
International Computer Society Conference, September
22-24, 1971, pp. 163-164. [

7. Schroeder, M. D., and J. H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings",
Communications of the ACM, Vol. 15, No. 3, pp. 157-
TTT.

8. Sekino, A., "Response Time Distribution of Multi-
programmed Time-Shared Computer Systems", Proceedings
of the Sixth Annual Princeton Conference on Intormat:on
Sciences and Systems, March 23-24, 1972, pp. 613-619.

9. Sekino, A., "Discussion of Section VI", in Statistical
Computer Performance Evaluation, Walter Freiberger,
Editor, Academic Press, New York, 1972, pp. 461-462.

Talks

1. Corbato, F. J., "The Multics System: Steps Toward A
Computer Utility", presented at the conference on
Time-Sharing and Multi-Access Computing in the 70^
by ONR/SDC, November 9, 1971, Santa Monica, California.

2. Padlipsky, M. A., "ARPA Network Users Experience",
panel at SHARE, New York, August, 1971,

3. Saltzer, J. H. , "Current Research in Computer Operating
Systems at M.I.T.", talk given at Stanford University,
October 20, 19 71; Princeton University, November 18,
1971; and University of Pittsburgh, February 18, 1972.

55

. . , ,

COMPUTER SYSTEMS RESEARCH

Talks (continued)

4. Saltzer, J. H. , "Large Scale Computing Systems in the
U.S. Today", talk at Kansai Inctitute of Information
Systems, January 24, 1972.

5. Saltzer, J. H. , "System Resources required for Support-
ing Interactive Terminal Use", given at USIB Symposium
on Terminals, Washington, D. C., May 23, 1972.

6. Schroeder, M. D., "Cooperating Mutually Suspicious
Subsystems", given at University of California at
Berkeley, Stanford University and Washington State
University, January, 1972.

7. Schroeder, M. D., "A Hardware Architecture for Imple-
menting Independent Domains", Palo Alto Research Center,
Xerox Corporation, February, 1972.

8. Sekino, A., Discussant for a session on Systems
Management at the Conference on Statistical Methods
for the Evaluation of Computer Systems Performance,
Brown University, November 22-23, 1971.

Thesis Completed

1. Karger, Paul, An Implementation of XPL for Multics,
S.B. Thesis, Department of Electrical Engineering,
M.I.T., 1972.

Doctoral Theses in Progress

1. Clark, D. D., "The Input/Output in a Virtual Memory
Computer System".

2. Schroeder, M. D. , "Allowing Cooperation of Mutually
Suspicious Subsystems in a Computer Utility".

3. Sekino, A., "Performance Evaluation of Multiprogrammed
Time-Shared Computer Systems".

56

■■'■■■

■ . ■ ■

DYNAMIC MODELING, COMPUTER GRAPHICS,

AND COMPUTER NETWORKS

Prof. J. C. R. Licklider

Academic Staff

Prof. J. J. Donovan Prof. N. P. Negroponte

Instructors, Research Associates, Research Assistants and Others

J. Aiello
P. M. Allaman
B. K. Dciniels
J. F. Farrell
R. J. Fleischer
D. Folger
H. Porsdick.
R. M. Fox
W. Godfrey
L. I. Goodman
S. Gregory
F. E. Guertin

M. H. Alpert
H. R. Brodie
J. L. Caruso
A. Y. Chan
C. C. Conklin
R. G. Curley
S. E. Cutler
R. A. Freedman
D. E. Geer
R. A. Guida
J. H. Harris
W. F. Hui

A. K. Bhuahan
E. H. Black
M. F. Brescia
R. D. Bressler
A. L. Brown
M. A. Cohen
D. G. Cressey
M. S. Draper
S. W. Galley

P. W. Hughett
J. W. Johnson
M. Knaur
D. Koenig
S. Kruger
P. D. Lebling
W. J. Long
S. E. Madnick
W. A. McCray
M. S. Miller
S. G. Morton
H. F. Okrent

Undergraduate Students

E. Kant
R. M. Katz
C. A. Kessel
R. N. King
N. V. Kohn
C. K. Leung
G. Pavel
R. L. Prakken
L. M. Pubin
N. D. Ryan
J. D. Sybalsky
M. E. Wolfe

DSR Staff

R. P. Goldberg
J. F. Haverty
F. Y. Knight
R. M. Metcalfe
J. C. Miebener
L. G. Pantalone
3. G. Peltan
C. L. Rseve
A. Vezza

Support Staff

G. F. Pfister
J. Piggins
J. Sabath
M. S. Seriff
W. G. Shaw
R. A. Stern
J. R. Taggart
S. Tepper
R. W. Heissberg
S. Zaborowski
C. Ziering

M. A. Bizot
M. S. Broos
M. T. Cheney
M. Cummings
C. T. Falls

J.
A.
R.
E.

Haley
Hicks
Hill
Nangle

A.
J.
F.
F.
Pitkin

57

L

DYNAMIC MODELING, COMPUTER GRAPHICS,

AND COMPUTER NETWORKS

A. INTRODUCTION

This year has brought almost to culmination the ioin<-
oomputer-system research and development effort of the Dynamic
Modeling Group, the Computer Graphics Group, and the part of
the Computer Networks Group based on the PDP-10 computer!
The effort has brought into being a rapidly responsive, highly
interactive time-sharing system with sophisticated graphic
display, good connection to the ARPA Network, and unusually
well developed facilities for using and augmenting through use
the twn^ f s*a"ble procedures and data sets. This summer,
the two-and-a-half groups are beginning a transition from
computer system building to research in automatic programming
that will exploit the computer system. Final integration of
several parts of the system and the shift into automatic-
programmir? research will confirm through the fall, and most
of the reporting of ideas tested and experience qainsd in the
system-building effort will be done during the fall and winter
It is possible now, nevertheless, to present a description of
the computer system and to relate several aspects of its design
to the aims and aspirations that motivated the project.

nv "n ,rh« ^S^em haS been called the "Dynamic Modeling Sys .em"
or DynaMod despite efforts to promote use of names that
retlec the participation of Computer Graphics and Computer
Networks as well as Dynamic Modeling. The name "Dynamic
Modeling System" will be used in this report.

B. MOTIVATION

The motivation benind the Dynamic Modeling System had
(and has) several components. In a general way, of course,
they all stemmed from the drive for machine-aided cognition
that motivated so much of computer research and development
during the 1960's. When the Dynamic Modeling System was
undertaken, however, there was a widespread feeling that the
thrust of the 1960's had fallen short in several ways. Most
time-sharing systems were slow to respond — not "hiqhlv
interactive'. None (we know or know of) had good facilities
tor general-purpose graphical interaction. The most
responsive systems and the ones most convenient to use were
threr^r^T396 systems . ^.g. , APL) or systems with two or
three essentially noncommumcating language subsystems. And
most importantly, nowhere was there a time-sharing system tha^
had amassed or seemed on the threshold of amassing a large, '
sharable, consistent, coherent collection of procedures and
sets of data that could be retrieved on-line by users and
conveniently incorporated into their own programs. The concept
ot a large and coherent run-time library had been about for
several years as a gleam or a dream, but it had not been
approached at all closely in actuality.

Many of the features that we considered desiderata for
the Dynamic Modeling System had been implemented in one time-
sharing system or another by the time the Dynamic Modeling

Preceding page blank

MODELING, GRAPHICS, NETWORKS

System was undertaken. (Work on the Dynamic Modeling System
began, effectively, in October, 1969, when a used PDP-6
computer with 32K words of memory was delivered to Project MAC.)
The designers of Multics had solved most of the problems that
were important to us in the software-technical area of
controlled sharing of procedures and data. The Artificial
Intelligence Laboratory's PDP-10/ITS system was providing
fast and convenient interaction (mainly alphanumeric) and the
myriad benefits of the LISP language with its options of
interpretation and compilation. IBM's APL was demonstrating
most of the advantages (and some of the disadvantages) of
working interpretively in a neatly designed language and
compact notation. The Lincoln Laboratory's TX-2/Apex Time-
Sharing System was operating with time-shared graphics and
was testing out an approach (the Reckoner) to coherence in
programming and systematic sharing of programs. In the
Augmentation Research Center of Stanford Research Institute,
Engelbart's On-Line System was showing how effectively a well
organized multi-access file system can correlate and integrate
the activities of the members of a design team. And there
were, indeed, several other time-shared computer systems that
demonstrated effectively one or more of the features that we
considered essential, but none demonstrated all the features.
The aspiration for the Dynamic Modeling System was to put all
the desiderata together in one reasonably efficient system.
Aaain, the most important design desiderata were:

1. Fast response
2. Convenient interaction
3. Well developed graphic display
4. Where and when needed, the flexibility provided

by interpretation; where and when needed, the
efficiency provided by compilation or assembly

5. Large, coherent run-time library of sharable
procedures and data — augmented by application-
oriented users as well as system programmers

C. OVER-ALL PLAN OF THE DYNAMIC MODELING SYSTEM

The general plan of the Dynamic Modeling System is shown
in Fig. 1. The figure shows only the largest features of the
landscape. They consist, of course, of hardware and software
— of consoles, central software, central hardware, and
interconnections.

CONSOLES

The consoles are Imlac PDS-l's, Adage Advanced Remote
Display Stations (ARDSs), and Adage-built vector generators
and displays that are part of the Evans and Sutherland LDS-1
Line Drawing System. For graphical input, there are "mice",
"joysticks", and one stylus tablet. (More stylus tablets are
on order.) The only software in the consoles is in the Imlac
consoles, which include minicomputers. Most of the software
that operates in the Imlacs was provided by the manufacturer,
but we have augmented it and, on a larger scale, prepared
PDP-10 software that takes advantage of the Imlac's impressive

60

MODELING, GRAPHICS, NETWORKS

capabilities in editing and graphic display.

CENTRAL SOFTWARE

The great preponderance of our effort has been devnt^d

sJsSr w" f19- l'<t0* WOrk at lRVels above th' operating system. We have tried to develop a system of facilities

LTintö'thTreairof011^3^ ff- the ^"ting^Jste^toward ana into the realm of user applications. It may holo to

K^ff 0Ur fOCUS f,:0m those of the PrimarJYdevelopers of
Multics if we say that we adopted an already developed

ne'ce"^ ZlTur^ ^^t ^ ^ inSOfL - Cutely
T,Jll 7 i purpose, whereas they created an operatina
system de novo devoting most of their resources to it! and left
in large part to various subsystem developers in the MuUics

"d-uta^nT^ ^ taSk 0f creati"g the extensions and adaptations that have primarily concerned us. m this

Arulici^'int??-"0"16^3 great debt to membe" of the Artificial Intelligence Laboratory who developed the ITS
operating system and were extremely helpful in transferrina it
to as and tutoring us in its maintenance and use g

i„.-o f.Th0 U?Per tier of central software (Fig. I) is divided
into two mam parts and an interface. The main oarts ar^

gu fd Sct"anSdi:"U
e1
C0'\ ^ T -Pa^te^ecLsTtwo Ljuice aiotinct and largely antagonistic philosophies have

influenced our work. They are interfaced, and we are doim
our best to meld the two into a functional unity? because J

may deL'r th" T^ ^ " the beSt of both worlds! But we may defer the philosophies. Lot us first complete our
examination of the over-all plan. ""Piere our

/'"POLE is the part of the Dynamic Modeling System that im

Tdeas and to 1° t It**™ ^ WantS t0 ^rmulate^nd explore
trrendoH . ^ OUt ivickly ^d conveniently. it is
intended to become m addition, for many applications the

SSP is liSLff/th* 0f ^ T^ M°de^ Syrern,' Whereas ijisk is limited to the single data structure LIST, MUDDLE
offers several data structures. MUDD E has, indeed several
other areas of advantage over LISP ar appears Ukely to serve
as a follow-on to LISP and as a basis, for higher-level
languages such as PLANNER and CONNIVER.

The design and implementation of MUDDLE have been (and
are being carried out as a joint undertaking of the MI T
Artificial Intelligence Laboratory and Project MAC

, "The CALICO World" is a system of programs intended to
provide users with ronvenient ways of carrying out most of the

has been prepared in the assembly language MIDAS. it is
consistent with a subset of PL/1. it emphasizes a small set
of data types and structures compatible with those of MUDDLE

61

MODELING, GRAPHICS, NETWORKS

3 VZA \&Ä

's V/ CO
Q
cr
<

if)
Q

<

CQ
EPS

ARDS

ESS a
ARDS

mi
im
i11
f

LISP SAIL TFCOI

PEEK LOCK

DDT

INFO TJ-6

Inter-
face

DEC Software
Incl. FORTRAN

a' o

PDP-10
Computer

♦-*> Tapes

Ea s
Display
System

Discs

Pr
 ^Z to Network, ^
nters U-». ^Consoles, Printers^

ARPANET

Fig. 1
General Plan of the DM System ;

The heavy lines and cross-hatching indicate the main investments of effort
m the system on the parts of the Dynamic Modeling, Computer Graphics,
and Computer Networks Groups. See text and other figures for explication'

62

■ ■
■

MODELING, GRAPHICS, NETWORKS

CONSOLE NETWORK

r
COMMAND

INTERPRETATION

 ?

CONSOLE
ALPHANUMERICS

 ?

CONSGLE-GRAPHICS

MANAGEMENT

~ ? _J

CALL-RETURN
MEDIATION

 ?

NTER-CONSOLE
COMMNICATION

 ?

CHARACTER
RECOGNITION

 ?
-J

INFORMATION
RETRIEVAL

 ?

DATA
MANAGEMENT
 ?—

DEBUGGING

INPUT-
OUTPUT

—r-
INTERRUPT
HANDLING

 ?

"UUO"
HANDLING

" *
. _J

COMPILING

~~?
MODELING DYNAMIC

LOADING

 ^

SZ

LIBRARY

Fig. 2

"The CALICO World" and its major subsystems

63

MODELING, GRAPHICS, NETWORKS

but admits a wider range, laying down conventions and
procedures for registering data types and structures. It
defines several classes of subroutines and a preferred
calling-and-returning sequence format, but it is hospitable
to subroutines written in any language if they have been
translated into loadable, callable, and executable PDP-10 code.

CALICO subsumes a set of facility programs and a library
of modular subprograms. The facility programs handle the
functions shown in Fig. 2. The library consists of about 500
subroutines (callable entries), each with documentation
available (but vide infra) on-line through the consoles as well
as in print-out form in files near the consoles Most of the
effort of the two-and-a-half groups has go-ie into CALICO, and
it must be said at the present time to be tne main part of the
Dynamic Modeling System created by the effort.

HYDRA: As shown in Fig. 1, MUDDLE and CALICO are inter-
connected. MUODLE functions can call subroutines from
CALICO'S library and have them operate on data that have been
processed by MUDDLE, and — although this is less useful
CALICO subroutines can call MUJDLE functions and (if the data
types and structures are among those dealt with by MUDDLE)
have them operate on data that have been processed by CALICO.
The interaction between MUDDLE and CALICO is at present
rather inefficient and constrained, but it is rapidly being
made more efficient and less constrained. We are hopeful
that, within a few months, we shall have in operation a true
realization of what three years ago we envisioned in a nebulous
way but did not know quite how to achieve: a computer system
providing both (a) the convenience and flexibility of
interpretive execution in the upper echelons of program
hierarchies and in any other areas in which procedures need
to be readily modifiable and (b) the power and efficiency of
assembly or compilation in all those parts of the programs in
which off-the-shelf (i.e., out-of-the-library) subprograms
can be used.

ITS: The operating system ITS, developed over a period
of years by members of the Artificial Intelligence Laboratory,
has proven to be excellent for our purposes. We have modified
it only insofar as necessary to accommodate our hardware, to
permit shared use of pure procedures and data, and to support
operation of the Dynamic Modeling System's PDP-10 as part of
the ARPA Network. It is important to note that ITS permits
each user to have several processes, organized in a
hierarchy, working for him concurrently. That is often a
great convenience: the one-thing-at-a-time work style forced
by single-process operating systems is not natural to most
people, and there is great advantage (as in debugging a faulty
program with a debugging aid such as DDT) in having programs
able to communicate with each other yet not able to destroy
each other.

Network Control Program: Partly under this headin.; and
partly under "CALICO" there are several related program, that
connect the Dynamic Modeling System into the ARPA Network.
The Network Control Program proper, the Logger, the

64

-

MODELING, GRAPHICS, NETWORKS

implementation of the TELNET protocol, and an implementation
of the new Data und File Transfer protocols have now been
brought into line with the conventions of CALICO, and they
consist mainly of library subprograms. The Network Daemon
(independent ITS process), which earlier had to remain active
continuously, now "wakes up" whenever it is called and "goes
back to sleep" when it is finished.

Independent Modules; Not integrated with CALICO or
MUDDLE but nevertheless of great value to users of the Dynamic
Modeling System are the text editor TECO, the debugging aid
DDT, and such utility programs as PEEK, LOCK, INFO, and TJ-6
borrowed with appreciation from the M.I.T. Artificial
Intelligence Laboratory, Noc integrated, and of less value to
users because of it, are the language and compiler LISP,
borrowed with appreciation from the VJ.I.T. Artificial
Intelligence Laboratory, and the language and compiler SAIL,
borrowed with appreciation from the Stanford Artificial
Intelligence Laboratory. It will be very difficult to merge
either LISP or SAIL into the MUDDLE-CALICO complex. We do
not see much to be gained from merging LISP, but the idea of
merging SAIL refuses to die because SAIL would bring with it
access to a host of published ALGOL algorithms,

DEC Software: Last year, a joint MAC-AI effort developed
a program that makes the ITS EJstem look to the Digital
Equipment Corporation's software like the DEC PDP-10 operating
system. That program makes available to us the whole collection
of DEC software, including FORTRAN, but does not, of course,
make it coherent with MUDDLE or CALICO.

CENTRAL HARDWARE

The hardware base of the Dynamic Modeling System was
described in the Annual Report of 1970-71 and will, therefore,
be described only briefly here. The hardware base includes:

1 DEC PDP-10 main processor
1 E&S LDS-1 display processor
8 Blocks of core memory (20 8K words)
3 DEC RPjlf2 disk drives (15M words)
1 DEC TU20 magnetic-tape unit (9-track)
8 DEC 555 microtape units
2 Bright BI1215 line printers
1 Interface to ARPANET IMP
1 Interface to consoles and printers

together with the necessary ports, channels, and interconnec-
tions. Most of the hardware was purchased from the Digital
Equipment Corporation. Some was purchased from other
manufacturers. The ports for about half the core memory and
the interfaces to the IMP, the consoles, and the printers were
constructed in the laboratory,

D. OPPOSITION AND CONFLUENCE OF TWO PHILOSOPHIES

In the preceding section, we mentioned that there are

65

MODELING, GRAPHICS, NETWORKS

two partly antagonistic philosophies in the world into which
we are bringing the Dynamic Modeling System. It is to a large
extent the product of their attractions and counter attractions,
their pullings and haulings.

The one philosophy, embodied in various degrees in LISP,
APL, BASIC, and now MUDDLE*, prizes the power and convenience
that one can achieve by using a single, internally consistent
language that provides the basic operators for working with a
restricted set of basic data typos and a way of composing
higher-level operators — procedures, functions, or subroutines
— and accumulating them within the system. Associated with
this philosophy, but not an integral part of it, is the idea
that each programmer-user should or will create his own,
personal system of procedures, data and techniques, and that
there is more to be gained through facilitation of such
individual efforts than through attempting to organize one
over-all system replete with standards, conventions, and a
central software library, for use by, and to be contributed to
by, an entire community of users.

The other philosophy, which we think has never yet been
fully and successfully embodied in any actual computer system,
focuses upon an image (which may be quixotic, yet must surely
contain the germ of the fundamental plan of distant-future
computer systems) in which most of the procedures that users
need have already been written, tested, debugged, documented,
and cataloged — and in which users engage themselves more
often, and more productively, in retrieving and using
procedures than in creating (or recreating) them.** This
philosophy was strong among developers and users of the
Compatible Time-Sharing System, the files of which at one
point contained one to two million words of public programs
and 20 to 30 million words of private but to some extent
sharable programs. However, no way of tightly organizing the
CTSS user community was ever worked out, and although there
were many cross-linkages among CTS3 files, it must be said
that CTSS only defined and clarified the philosophy and did
not fully realize it. The philosophy of the community-wide
coherent system has been strong in Multics, also, but — as
already noted — most of the resources for Multics
development went into providing an operational basis for
sharing rather than into such things as or line facilities for
retrieving library software. At present, ehe main thrust in
the Multics world toward community-wide coherence is that of
the Cambridge Project, which is developing a Consistent System

*It is dangerous to put these names into such proximity.
The four languages/systems are different from one another in
many ways, and proponents emphasize differences. Nevertheless,
there is a strong common theme. Perhaps it is embodied more
in the proponents than in the languages themselves.

**In the distant future, of course, users may describe the
programs they want to a program-writing program rather than to
a program-retrieving program. Automatic programming is to
program retrieval as the calculation of functions of arguments
is to table look-up.

66

1
1

MODELING, GRAPHICS, NETWORKS

for research and applications in ^he behavioral and social
sciences.

Any effort to achieve community-wide coherence ;s sure to
bring more than one lanyuago into the picture. It is more
difficult to achieve coherence across languages than within
one language. It is even more difficult to convert a BASIC
fan to APL (or vice versa) or to get an old-time FORTRAN user
out of FORTRAN and into the more modern world of PL/1 (or even
ALGOL) . Thus there are partly antagonistic technical and
social forces at work as weil as partly antagonistic
philosophies. We have tried, as mentioned, to achieve the
best of both worlds, but of course we have had to compromise
— for system engineering is almost always as much compromise
as breakthrough.

To keep the problem within reasonable bounds, we defined
a community of programmer-users much smaller than the Multics
user community — considerably smaller than the Cambridge
Project's behavioral and social-science community within
Multics. Sixty users have permanent files in the Dynamic
Modeling System. Although the group includes representatives
from physics, microbiology, neurophysiology, political science,
urban planning, and nuclear engineering, most of the members
are primarily computer scientists and speak the same languages.
Almost all the participants have desks or offices in the same
laboratory. Intercommunication is easy and there has been
much of it. For an example, this spring there were 12 Special
Interest Groups — actually, planning-design-implementation
task forces -- and one over-all Central Coordinating Committee.
For another example, the working documents of the Dynamic
Modeling System come to approximately 2,000 typewritten pages.

Even with the problem of achieving coherence thus scaled
down, the difficulties have seemed very great. From the very
beginning, the "managers" preached coherence, generality,
documentation, and modularity-in-the-small while the creative
drives of the "progranmers" and the joyous positive reinforce-
ment achieved through successful erection of ever-larger-and-
more-elegant software castles swept the project in the opposite
direction. (We put "managers" and "programmers" in quotes
because they are roles, not people. A group leader alone at a
console is a programmer and creates his own castle. A software
specialist on the library "SIG" is a manager — until he gets
back to a console.)

The coherence and systematization that we have achieved
was won at the cost of great effort, mainly group rather than
individual effort, and always through several iterations that
discarded much or most or all of the initial schema in order
to adjust to new ideas or to concurrent interacting
developmsnts. The process has been hard on several proponents
of initial schemata, and it has given the Dynamic Modeling
System some of the nature of a patchwork quilt. Nevertheless,
the process has brought the system close enouch to the
initial "dream" to let the dreamers feel that it is what they
envisioned, and has come close enough to melding the partly

67

MODELING, GRAPHICS, NETWORKS

antagonistic philosophies thai- ^u ■
disruptive factor. hat thelr an^gonism is no longer

E. MUDDLE

PLAN OP THE DYNAMIC MODELING ^S^M^n^^3 in the OVER-ALL
powerful and convenient enviroSJ'for ^f^PrOVides a very
can create a fairly complex proar^ l1"*3 OUt ideas • One
is wrong with it, Ld modify^^'retLt ft ^ right and what

it away and begin over - relativelv on u,^ "" 0r even throw
person with almost zero previnn« 2 y ^Ulckly- For example, a
LISP, to which MUDDLE LPmortcloseier^?Cf ^ MUD^E (and
deougged a descriptor-basod fnf ^ related) prepared and
10 hours at the cSe"^ ^"^^-n-retrieval system in
hours at the console he r^proa™^ I S desk- In 10 more
ways. The best versior is no,^ K lt ln two 1uite different
MUDDLE retrieval system (sonewh^1"9 Combined ^ith another
a more e:,periencedyprogr™r?n one^ft0^1^' P^^ammed by

too demanding of memory space to han^f?" ln ^ration and
practical way. Even under those circnL. rge~SCale tasks ^ a
- the preferred environment Tot try^^^^nd S^Ing'id^a^

an^deve'rop^t^of^UD^I a^G^Suff ^^ t0 ^ d-ign
Hin. ana Drew McDermott O- the IrM f^fT^ Carl Hewitt' Jeff
Laboratory and Reeve, Daniels r^f31 Intelligence
Darnels is developing a MIDDLE comnf?7' a^. "Äscher*.
increase efficiency of execution PTt'■ W^Ch Wl11 ^^V
form, and it functions, but it will nnt^3 "5" in "dimentary
use until late fall. MUDDLE's vnlL e ready for widespread
space will become tolerable in tea^t ^0nsumPtion of memory
Paging subsystem of the ^t-to co^Sr L^insJalL^?6^^

The present MUDDir i *K

subroutines and 300 MDDLE functions"^ 0f 150 basic MÜDDM
the confluence of the personal JSL^ f^6 la^ter are simPly
Pfister, Broos, Metcalfe, Stern m^vn68 0f Reevo' DanielS,
and Licklider, and the collection con^'^33^' Ryan' R^in
It is a mere beginning because MUDDLE^iff3/ mere ginning,
of the Dynamic Modeling System rath^ ?T lnt0 the Panning
ease with which one ran Droar^m f^ late and because the
dependence upon a librar^MUDDLE S^t ^t* t0 d—Phasize
nevertheless, as very ^ort^^^JlheX^ic^Xl^'

MEDDLE^fisS! thafjreltl'ffaciut^f and debu«ing aid.
There is, also, a dynamic loader ?PffS USe 0f MUDDLE.

functions that retrieves thlf |r
ro^fL\tefileTK^h%^r

*For full names, see lisi-s r,f L u
Computer Graphics, and Co^ll^l^Vrouls^^ ^^'

68

■ ■ - .- ■ , ■ -

■ ■ ■' ■ ■ ■ ■ ■ ■ ■

MODELING, GRAPHICS, NETWORKS

called by other MUDDLE functions. Graphics capabilities are

Ev^s i^0^at?d rt0 MUDDLE in tWO "^ 0"e exploits the
"P^vv^fon" mrlan? Pr°ce^or and * graphics subsystem called
d^n I (Daniels, Mxchener, Black, Broos) ; the other uses
display programs that operate in the Imlac consoles (Ryan,
Rubxn and Brodie).

F. CALICO

with ^mo=r IWK
19

-
2•■ CALIC0 includes subsystems concerned

with almost all the various aspects on interactive computing.
All the subsystems are built out of library subroutines, and
the subsystems share subroutines insofar as possible. The

seofr^J^n^11163 "! either entirely P"re procedures or are
n™^ ^ t0 PUre and lmpure Parts- 0nly one copy of a pure
procedure (or pure part) is held in core memory, but there is!

proces^Tthe^of?1* ^ ^ ^^^ Part f0r e-h ^ ^

MEDIATION OF INTERACTION

and thi
nrlr.aCtfi0.nKbetWefn the user-Prograimner at the console

and the rest of the system is mediated mainly by the command
interpreter (Seriff), the console alphanumeric subsysteHcohen
Brescia Peltan) , and several console-graphics subsystems '
The latter, more complex than shown in Fig. 2, include a
display-management subsystem for the Evans and Sutherland
display processor (Michener, Black, Geer and Curley), a sub-
system for stylus-tablet input (Hui, Guertin, Broos Niles), a
subsystem for composing two-dimensjonal and three-dimensionaJ
graphs and charts (Black, Pangaro, Cutler, Siegel) , and Hub-
system for Imlac and ARDS graphics (Peltan, Conklin, Rubin,

SUBROUTINE MEDIATION OF CALLING AND RETURNING

There are no "main routines" in CALICO — only subroutines
Either a MUDDLE function or the mediator's initialiser serves '
as the top-level routine. The subroutines of CALICO are of
several kinds. On one dimension of variation are "fullv
mediated", "lightly mediated", and "unmediated". On a second

LronT^re/l0Ca!:i0n"Sensitive" and "location-insensitive",
and on a third are "internal" and "external". The mediator ^RE
(Reeve, Harris, Hughett, Brodie, Licklider) handles the calling
and returning of fully and lightly mediated subroutines
assuming control at times of calling and returning, performina
several housekeeping functions on behalf of the filing *
called, returning, and receiving subroutines, and affordina
the user-programmer an opportunity to intervene. Only low-
level, inner-loop subroutines are unmediated, and only such
routines (and only a few of them) are internal — i.e. built

cal?. ?n?erVhi9her_ieTel.rOUtineS- The governing philosophy
rnnffnf f extr^e modularity, for independence of each sub-
routine from all others except through calling and returning
sequences, and for purity and location-inse.isitivitv insofar
as possible. Every fully mediated subroutine and ever? data
set has a header that permits other software entitiPs to
discover its pertinent properties. The mediator is'set up to

69

■

MODELING, GRAPHICS, NETWORKS

go into effect [oJln Tplfonll bL^sf Tortly* ' ^ ^ Wil1

COMMUNICATION

inherent^Tthe'lTS^sterand" ^ ^ 0n CaP^intie8
purposes (Cohe^/ßresLa! Peltan?^ »tvl^ au?rnted ^ our
and user-to-user messages are dlLlaved a^r^ ar'nouncements
in- If the intended recipient's on ^1 e tlme 0f l°^ir.g is enabled, one user can tv^V on llns conmunication function

project descSpt^"""^';^?"0 "U■*"8• "'"eato.

INFORMATION RETRTEVAI,

about^r^gr^fand^data'sets'fK^ ^ fffievi^ information
Multics and is used «^hf^ fu(^?n' Martln) operates in

a Multics console d (It^as SlvefSoSVfA r,etWOrk or th™^
had disk files.) It has "rned oC? not'to'h ^ PDP"10 SySt'm
because of log-in delays and process?nJ co^ ^ ^actic^'
subsystem as an aid in nn ,. Fiocessing costs, to use that

reprogra^ning the^eTon'tL^U-lT^k. ** f^S therefore,
versions (Broos Lickl-irwV Two Preliminary

design of ^hrcom^nd1 nteipr
aertern0:nd0PLrning.in MUDDLE- The

make it possible to stop at^ny poin? Whf6^" mfdiator
program, explore the librarv L^ K t the execution of a
subprogram for one that [s In line^n'h1^'?. a.neWly ^eiected
substitute a newly selected data L^^6 Called " or to

be processed. We hope to refn L ^ f0r 0ne that ls in ^^ to
this fall. P t0 reallze that capability in operation

DATA MANAGEMENT

■'Keyed'Ljf.CS^ave^tv^S,?0^13^ at present of the
(Haverty) . The former provides a ieani T" "^-^text-
retrieval labels (kevs) «7'h \ .. for associating
filing and retrievlnrihe data a'a^if^'8 05 data a"d then
The latter provides a means f^f \uniform ^ efficient way.
basic lexical unitl usually ^gUs^ad^anff'^ ^^ 0'
structured concatenations (phraies sentfnLf3 hlerarchically
chapters) of them. It is mnnh ^ sfntences, paragraphs,
efficient to process LexicontL^ straightforward and
it is to prodsHtriSs |fncharlcters "B represe"tatives than
Modeling System was conceived of as a ^ener^1136 ^ Dynamic

we have not developed a conter^-orientld ^f. PUrpOSe SyStem'
system. Even as our interest now are f data-management
automatic programming and debuaoino ?/°CUSln?.P" the field of
shall want to keep the datT^ g 9' Seems llkely that we
rather than field-speci??c and^T^ Subsystem general,
upon processing pr^rams bitten ii'such lanauf Sensit-ity in such languages as PLANNER

70

■ • .

MODELING, GRAPHICS, NETWORKS

and CONNIVER.

DEBUGGING

The principal debugging aid is still DDT, which operates
as a process separate from (superior to) the one that is being
debugged. DDT is not a part of CALICO. We have augmented it
somewhat (Cutler), but we have not tried to modularize and in-
tegrate it.

In an effort to aid the programmer in visualizing the
execution of his programs and in seeing their flaws as the
flaws are encountered, we have developed a PDP-10 simulator
(Galley, Hughett) and a graphical debugging aid (Galley, Liu).
Together, they display the flow of control through selected
parts of a procedure and, at the Sc.me time, the flow and trans-
formation of the data operated upon by the procedure.

A second graphical debugging aid is nearing completion
(Hughett). It records the execution history of a program and
then organizes and traces "trees of influence", working back-
wards, into the past, to check each operation that contributed
to the shaping of an incorrect value.

Work is under way on other debugging aids that check the
values of selected variables during the course of execution
(Stern) . Plans call for the integration of all these debug-
ging tools (except DDT) and for their correlation with the
mediator, which will make it possible for the programmer to turn
them on and off at call and retrieve points during the execution
of a program.

INPUT/OUTPUT, INTERRUPT HANDLING, AND UUO HANDLING

The input/output, interrupt-handling, and UUO handling
subsytems include sets of CALICO macros and subroutines that
are invoked by application programs and that, in turn,
communicate with ITS. They include, also, the code required
to handle certain common interrupt situations and to ac-repc new
UUOs. ("UUO" stands for "Unimplemented User Operations", which
are codes that resemble PDP-10 instruction codes but are left
for us^rs to define.) These subsystems allocate resources
dynamically, insulate application routines from such absolute
qualities as channel numbers, and generally facilitate
applications programming. They were designed and implemented
by Haverty, Broos, Reeve, Seriff. Long, Lebling, and Hughett.

COMPILING

The only compiler that we have thus far made consistent
with CALICO is the PL/1 subset compiler mentioned earlier
(Okrent, Sybalski). It translates statements from the subset
of PL/1 into MIDAS source language and accepts all the macros
and respects all the conventions of CALICO.

SPECIAL TOOLS FOR MODELING

In the philosophy of modeling that we have tried to

71

.

'

MODELING, GRAPHICS, NETWORKS

implement, it is not held desirable to restrict oneself a
priori to the context or "world view" of any single modeling
or simulation language such as SIMSCRTPT, GPSS, SIMULA, or
DYNAMO. Ideally, we would like to have the good features of
many such languages brought together within one consistent
framework (such as MUDDLE or PL/1). In fact, vie have devoted
our energies mainly to erection of the framework, and we have
not completed a kit of tools of the kind (e.g., event schedulers,
queue managers) that are features of the simulation languages
mentioned. Work on several such tools is being done by
Okrent, Fox, and Weissberg. A major aim in this work is to
facilitate the construction of models that include both
continuous-process and discrete-event components.

DYNAMIC LOADING

In CALICO, the top-level subroutine is called through the
mediator either by a MUDDLE function or by the user at his
console. If it is already in core memory, the subroutine is
executed; if it is not already in core memory, it is loaded by
DYNAL (Reeve, Erodie) and then executed. Thereafter, each
called subroutine that is not in core is loaded dynamically
and then executed. The called routines are sought by DYNAL
first in the user's files, then in a recent-accessions file,
and finally in the main library.

THE LIBRARY

The part of the Dynamic Modeling System into which the
greatest amount of effort has been put — and the part on which
the success or failure of the "community" philosophy rides —
is the library. At present, there are about 500 subroutines in
the library. They range from simple, low-level subroutines
thc.t "get" and "put" characters or symbols to complex, high-
level subroutines that translate programs or display three-
dimensional graphs of hand-printed functions. Corresponding
to each executable library subroutine there is a source-
language listing that includes an abstract that can be retrieved
on-line and contains all the information required by a program-
mer-user to use the subroutine successfully.

G. DOCUMENTATION

An over- all view of the Dynamic Modeling System and infor-
mation about how to get started are provided by Galley's "A
Novice's Introduction to the System". It deals with CALICO,
ITS, the utilities, and the hardware rather fully but leaves to
another document a comparable introduction to MUDDLE. That
document is Pfister's "A MUDDLE Primer", which permits anyone
with basic knowledge of programming to move very quickly into
MUDDLE programming.

Essential technical information about the PDP-10 computer
is collected in the manufacturer's System Reference Manual.
Full descriptions of the JTS operating system, the MIDAS
assembler, and several utility programs are contained in reports
of the M.I.T. Artificial Intelligence Laboratory. The DEC and
AI Laboratory sources cover the foundations of the Dynamic

72

i

MODELING, GRAPHICS, NETWORKS

Modeling System. The superstructure is described in

the basis of these documents/

The set of documents is subdivided into several classes:

GA General and Administrative
SYS Basic System
SR Subroutines
MCR Macros
UUO "Unimpleraented User Operations"
DTCS Data Types, Classes, and Sets
FA Form Abstracts
LA Listing Abstracts

Convention II:

r!Mi f,1^66" 0f.the 2J General and Administrative documents
ca^Pd "r^ SYt ?!,(

standa^' protocols, and conventions
called Convention II". it sets forth rules intended to foster
uniformity and coherence in those areas of software system
development in which many minor decisions must be made among
alternatives that differ only slightly in utility. Decisions
about format are often of that kind: it doesn't matter much
which format is adopted for bibliographic references for
coStent w^ is,co^iderate of the reader to make things
consistent. We note, however, that the subject of software

tZ^l^f13 0n1 in Which pe0ple have deeP ego-involvements,
ance oftte isisue!Vement bein9 related inversely ^ the import-

TT JH ^0k mar}yu
hours of argumentation to define Convention

ii, and it would have taken many more hours of policing to

on ^ ^ ^ ^/^f n0t f0r 0ne fact: th- documentation is
on-lme, and uniformity of format makes it possible for comouter
programs to deal with documents. There is now quite a coUec-
tioa.of subroutines and macros that extract the titles, one-
line descriptions, descriptor sets, and so on from listing
abstracts. Broos• TECC macros run through the library of
source programs and update the Listing Abstract Book at
regular intervals. Lebling's macros count each user's files
and measure the disk space they occupy, and the poster! results
apply strong moral pressure on "disk hogs" to delete the least
active items. And so on. it is obvious now that it is very
important for programs to be able to know a lot about programs
and we want to move toward having programs understand
documentation. Format is of course only one of many facets of
software that programs should know about, but it holds some of
the Keys to learning about the other facets.

Subroutines: For most low-level subroutines, the listing
abstract -- usually about two typewritten pages in length --
provides adequate documentation. For high-level subroutines
however, the problem is different because each hiah-level
subroutine organizes the work of several or many low-level

73

MODELING, GRAPHICS, NETWORKS

callTfor^ ^n' ^ effect'.is a complex subsystem. Protocol
calls for a full program write-up for each such subsystem?

discuS lh
rl^

in^le Zysten of the type under

Name Function author Identification

PARSE General parser K. Brown SR i? en
OBDIS Object display SR.12.01

handler Hui c0 i r «,
CHAREG Character recognizer Hui qp l^
GRAPH Cartesian graphs, SR.15.05

ESKBD Character strings ^^ SR-15^6

PENGET stJlusfäbLt input Signer ^Jl^
MATTER Display of 2D & 3D SR.15.13

graphs corresponding
to hand-printed
functions Guertin CD IC I,

PREORD Binary trees QkrSt tl'll'a,
ATTACH Compression of SR.16.01

machine-language

DATPGE ofta'paging for DanielS SR.lB.Vl
disk files Haverty SR 18 «T

KDM File manager HavertJ SR"""^
OLDS On-Line document faR.i9.0r2

SR.21.00

File manager Haverty
^n-Line document
system Bryan

and Martin SR.21.12

Other Categories; Macros, UUOs, and other categories of
rcuSS "but thTff^/r ^--^tely the same wl^as suC- rcutines, but the effort to get them and keep them under

of the source-language listing of each subrouting or data set

mainstay. listing abstracts have become the

H. MODELING

^-SÄss„r^"^:! "siif .ssr ,^: ih"r
neuron.l network (Bingham, Jarvi., Reeve, Balln" m fL-

74

■ ■

MODELING, GRAPHICS, NETWORKS
■

■

■

traffic-control simulation (McMillan), a simulation of airport
air traffic (Dosett), an urban development simulation (Professor
Aaron Fleischer, Allaman), a political science simulation
(Lebling) , a model of a neural time-to-place transformation
(Professor Jerome Lettvin, Paul Pangaro), and a model of the
protein-building process that involves RNA (Professor Alex
Roch, Siemeus) . The last-mentioned effort, just getting under
way, involves an IBM 360-91 computer at UCLA as well as the
Dynamic Modeling System; the 91 will handle the "number
crunching" and the Dynamic Modeling System the interactive part
of the work, which will exploit quasi-3D graphic display.

75

MODELING, GRAPHICS, NETWORKS

Publications

1. Brescia, M, F., Time-Sharing a Display Processor for
a Time-Shared Computer System, S.B. Thesis. Department
of Electrical Engineering, M.I.T., February 1972,

2. DeTreville, J. D., Design and Implementation of an
Example Operating System, S.M. Thesis. Department of
Electrical Engineering, M.I.T., 1972.

3. Donovan, J. J., Systems Programming, McGraw-Hill,
New York, 19 72.

4. Donovan, J. J., Teacher's Manual to Accompany Systems
Programming, McGraw-Hill, New York, 1972. '

5. Fleischer, R. J., Computer-Aided Visual Analysis of
Statistical Data, S.M. and S.B. Thesis, Department of
Electrical Engineering, M.I.T., August 1971.

6. Galley, S. W., A Novice's Introduction to the System,
DM/CG/CN Group Memo, SYS.00.00, Project MAC, M.I T—
March 19 72.

7. Haverty, J. F., Lexicontext A Dictionary-Based Text
Processing System, S.M. and S.B. Thesis. Department
of Electrical Engineering, M.I.T., August 1971.

8. Hui, W. F., An Algorithm for Detecting the Inter-
section of Arbitrary Computer-Displayed Figures, S.B.
Thesis, Department of Electrical Engineering, M.I.T.,
June 1972.

9. König, D., Evaluation of PL/I as an Interactive
Language, S.M. Thesis, Department of Electrical Engin-
eering, M.I.T., 1972.

10. Licklider, J. C. R., "Criteria for Design and Evalua-
tion of Information Networks", SIGIR, ACM, Las Vegas,
Nevada, November 19 72.

11. Madnick, S. E., "Program Parallelism Based upon Compu-
tation Schemata", Sixth International Congress on
Cybernetics, 1972, pp. 48Ö-494.

12. Madnick, S. E., Storage Hierarchy Systems, Ph.D. Thesis,
Department of Electrical Engineering, M.I.T., 1972.

13. Metcalfe, R. M. , Anderson, et al., "The Data Recor.~
figuration Service — An Experiment in Process/Prot ess
Communication", Proceedings of the Second Symposium
on Problems in the Optimi^ation of Data Communications
Systems, Stanford University, October 1971.

14. Metcalfe, R. M., S. Crocker, et al., "Function-Oriented
Protocols for the ARPA Network", SJCC, 19 72.

76

MODELING, GRAPHICS, NETWORKS

Publications (continued)

15. Metcalfe, R. M., "Strategies for Interprocess Communi-
cation in Distributed Computing Systems", Conference
on Computer Communication and Teletraffic, April 1972.

16. McCray, W. A., SIM360: A S/360 Simulator, S.B. Thesis,
Department of Electrical Engineering, M.I.T., 1972;
also MAC TM-30, May 1972, AD 749-365.

17. Okrent, II. F., Design of the Dynamic Modeling Manager,
S.H. Thesis, Department of Electrical Engineering,
M.I.T., June 19 72.

18. Pfister, G., A MEDDLE Manual, DM/CG/CN Group Memo,
SYS.11.02, Project MAC, M.I.T,, January 1972.

19. Pfister, G., A MUDDLE Primer, DM/CG/CN Group Memo,
3YS.11.01, Project MAC, M.I.T., July 1972.

20. -Soiferas, J. I., Observational Complexity of Character
Strings, S.B. Thesis, Department of Electrical Engin-
eenng, M. I.T. , 1972.

21. Zaborowski, S., Monitoring Student Programs — A Case
Study in Software Reliability, S.B. Thesis, Department
of Electrical Engineering, M.'l.T., 1972.

Talks

1. Donovan, J. J., "Memory Management", presented as
part of the Yale Fall Lectures in Computer Science,
1971.

2. Donovan, J. J., a series of 8 lectures presented at
the University of Pittsburgh, Spring 1972,

3. Licklider, J. C. R., "The Concept of an Interactive
Technical Journal", Annual Symposium on Information
Retrieval, May 1972.

4. Licklider, J. C. R., "ADP Technology", Department of
Defense Computer Institute, June 1972.

5. Licklider, J, C, R,, "Future of Library and Informa-
tion Systems", National Academy of Sciences, June
1972,

6. Metcalfe, R, M. , "The ARPANET', ACM/SIGREAL, Cambridge,
Mass,, March 19 72,

7. Metcalfe, R, M, , "The ARPANET", Stanford Digital
E,-stems Seminar, May 19 72.

77

MODELING, GRAPHICS, NETWORKS

Publications in ProarP**

1.

2.

3.

4.

5.

pübllcaaöf'pUnned for"972 ge' Mas^h^ett:s,

^T-kuXTVr* ^uJlic1?' 5P££atin2_JlsteIns, , iMew York, publication planned for 1973.

inTsyste^-f- ^ S- E- Madnick' "^els of Operat-

Sperlting'sys^e^f ^ E- Madnick' "Crashing in an

anT^aluaüo^ ^ ^ MadniCk' "S^t- Perforn.ance

78

■ ■ ■ ■ ■ :.■

.,

EDUCATIONAL COMPUTING SYSTEMS

Prof. J. Weizenbaum

Academic Staff

Prof. M. L. Dertouzos

Instructors, Research Associates, Research Assistants and Others

R. H. Brown
D. L. Isaman
P. Jessel
P. A. King
C. Lynn

M. J. Connell
A. M. Garrity

Prof. J. Berger

C. Mah
J. R. Stinger
L. Tsien
S. A. Ward

Support Staff

N. J. Robinson
L. E. Yaple

Guest

79

EDUCATIONAL COMPUTER SYSTEMS

A. Present Work

During the period July 19 71 to May 19 72, the group continued
several research activities which were initiated before this
period, and are discussed below. Halfway through this period.
Prof. M. L. Der*-.ouzos and his students came from the Elec-
tronic Systems Laboratory to Project MAC and joined the group.
During that time, relatively few new activities were initiated
partly because of extensive involvement of the faculty in the
development of 6.252 and partly because, w^th the departure
of Prof. J. Weizenbaum for a twc-year period starting in the
Fall of 1972, the group intends to re-orient its objectives
and scope of research.

Continuing research entailed the following:

1. Study of means for making possible the animation of dyna-
mic processes for educational purposes. In particular,
several approaches were investigated for the interconnection
of a simulated process (a simple two address machine) to a
graphical process (e.g., representations of registers and a
processor stack) . It is intended that this interconnection
be flexible ei.ough to allow on-line editing of the graphical
representations independently of the simulated machine. Super-
vision of this work was initially under Prof. J. Weizenbaum
and has shifted to Prof. M. L. Dertouzos a few months ago.

2. An associative memory higher-level interpreter. This
workTnvolves exploration of the use of an associative memory
with a higher-level language hardware interpreter. The
objective is to match the hardware memory and processor to the
environment and interpreter structures of a higher-level lan-
guage such as LISP. Such a match which appears to be econo-
mically feasible with current technology, eliminates the need
for the typical machine language and numerical memory loca-
tion issues which are quite distinct from the user's language.
This, in turn, means the absence of assembly, compilation,
relocation, storage allocacion, ana address computation tasks
in their traditional sense. The elimination or reduction of
these problems, in turn, frees us to study more fundamental
notions concerning procedure semantics and computing environ-
ments. This work is supervised by Prof. M. L. Dertouzos.

3. Two Ph.D theses being completed June 19 72 and September
1972 are carry-overs from the research of Prof. M. L.
Dertouzos in Computer-Aided Design. One thesis involves the
study of exact-inexact machines for the solution of large sys-
tems of equatiCi.-.. These machines consist of a digital
relatively accurate exact part and an analog or coarser digi-
tal inexact part. Programming the machines entails decompos-
ing the problem into a part, which checks a proposed solution
with a computing time that grows relatively slowly with pro-
blem size — this is handled by the exact part of the machine;
and another part which proposes a new solution on the basis
of the above check — this part which would normally require
a large amount of computing time is done rapidly by virtue of
the inexactness of the subsystem that handles it. The overall
solution is as exact as the exact part of the machine.

This research has resulted in many interesting results which

Preceding page blank 81

EDUCATIONAL COMPUTER SYSTEMS

arc documented by Jim Stinger's Ph.D. Thesis. The work is
supervised by Trof. M. L. Dertouzos.

4. The other Ph.D. thesis (P. Jossel) involves the develop-
ment of a "language" which describes existing and hopefully
new circuit analysis programs. Expressing a circuit analysis
program in this language leads to the ability of measuring
with acceptable accuracy the power of that program, e.g., the
computing time it will require for various classes and various
sizes of circuits, the amount of storage used and so on.
These measurements, in turn, make possible a comparison of
the (many) existing and p.oposed circuit analysis programs in
a systematic way. Several interesting results have been ob-
tained to date and more are expected during the summer. This
work is supervised by Prof. M. L. Dertouzos.

5. A thesis completed under the supsrvision of Prof. J.
Weizenbavm involves the development of simple primitive
functions for natural language. Those arc based on a lay-word
transformational grammar distinguishing English function
words and a canonical representation of English sentences.
Vhe functions provide the general capability for saving infor-
mation for answering questions, for executing commands, and
for doing elementary deductions. They are designed to facili-
tate the constructnn of special-purpose computer natural lan-
guage systems, with Lhe particular application to a program
for generating computer graphic displays for piano geometry.

B. Future Work

1. The 6.252 Computer System

Academic activities will continue to occupy a substantial
part of the time spent by several members of the group. These
activities involve continuation of the development of 6.252
and the development of a 6.252 time-shared system. The latter,
based on a PDP-11/45 CPU, is a limited-objective 8-user sys-
tem (no swapping, one file per user) which will offer to stu-
dents a subset of the PDP-11 assembly language and several
LISP interpreters with progressively mere complex environment
and control structures. This system, /hich was purchased by
the Electrical Engineering Department, will be used exclusively
by 6.252 students who will be expected to use it for an average
of 2 (console) hours per week.

It is also expected that the system will be used to implement
the on-going research work on graphics (1 above), for the
purpose of demonstrating to students either on-line or through
movies, several dynamic processes, e.g., (i) stack operations
during execution of recursive procedures, (ii) implementation
and consequences of global labels and free variables, and
(iii) garbage collection algorithms.

2. Continuation of Present Work

Of the present work, it is expected that items A.l. and A.2.
above will be continued.

82

,

tDUCATIONAL COMPUTER SY TEMS

3. Exploration of New Areas

the^-ea^f ^'^ aCti"ities' the group wishes to explore

As , nrfL ? execution of engineering-3rientod tasks
As a prime example, consider the current (and oast) ar«* Af

oSt "»v<i,ue""' "ith the 1-0 technique, dceljped J^the

In addition
to explore
eering robo
to use some
Artificial
phi.losophy,
principles"
?.s a result
one or more
to the cone
direction

to exploring this problem, the group would like
other possible applications areas, where engin-
of%ufn be ?tudied and developed. Our intent is
of the excellent results obtained to date by the
Intelligence people, but with an engineering
i.e., to some extent., subordin?tion of "first
to the expediency of achieving specific tasks,
of this exploration, we would like to arrive at
applications areas that deserve further work, or

lusion that we should not continue work in this

83

*

.

EDUCATIONAL COMPUTER SYSTEMS

Publications

Dertouzos, M. L., "Time Bounds on Space Comu.ca.ion"
OCeedlnqS..0f l

the Switchin(J_and Automata Theory ' symposium, Octöbvt lj-lb, 1971, PP. liJ2-l(i7. '-

?EEE0T^n:i;-L-' ~ a1---' "lnsi^ VS. Algorithms",
^ lÜl-xor S ^ Ed'lna<"inn Vul- E-14, No. 4,

AeF^oZvS' M; L-'."Ele^nts, System', and Computation-
A Five Year Experiment in Combining networks Diaital
Systems and Numerical Techniques in the First Course"
ggE_Ty.ansactions on gducation, Vol. E-14, No. 4? '

Dertouzos, M L., G. P. Jessel and J. R. stinger,
Circal-2: General-Purpose On-Line Circuit Desiän"

Proceedings of the IEEE. Vol. 60, No. 1, pp. 39-48.'

Dertouzos, M. L., M. Athans, R. N. Spann and S Mason

84

.

■

■.■■■■■

Prof. W. A. Martin

MATHLAB

Prof. J. Moses

Instructors, Rese^rrh ftssociates. Research Assistants an^ others

R. J. Fateitian
M. R. Genesereth
J. Kok
S. M. Macrakis
E. C. Rosen
S. E. Saunders

M. J. Ablowitz
R. A. Bogen
H. 0. Capps
J. P. Golden

R. M. Seigel
B. M. Trager
E. Tsiang
P. S-H Wang
D. Yun
R. E. Zippel

DSR Staff

L. P. Rothschild
R. Schroeppel
D. C. Watson
J. L. White

85

MATHLAB

The past year has been a year devoted mostly to consolidating
our previous work. The "Mathlab" PDP-10 arrived during the
year and became operational in February 1972. Scores of
casual sessions with the MACSYMA system have been held. Users
were increasingly satisfied with MACSYMA as more capabilities
were integrated into it and as the system, now approaching
150K words, became better debugged.

A. The Hardware and Time-Sharing System

The basic PDP-10 processor and one half its memory (i.e. 128K)
arrived in October 1971. Richard Greenblatt and Thomas Knight
made an heroic effort to bring up an ITS time-sharing system
compatible with that on the Artificial Intelligence Group's
machine. The new file system they created was given to the
Dynamic Modeling group and tripled their effective disk utili-
zation.

The remainder of the memory arrived in December. In January
Systems Concepts installed a pager compatible with the one on
the Artificial Intelligence machine. As a result, the Mathlab
machine is able to use the latest versions of the Artificial
Intelligence time-sharing systems. Some tnrashing originally
encountered when three or more MACSYMA's were being run on
the Mathlab machine caused a redesign of the scheduler. As
a result of the compatibility of the software, the new sched-
uler has been used on the Artificial Intelligence machine as
well.

B. Consolidation of MACSYMA Software

The past year was spent mostly in debugging and consolidating
existing code into the MACSYMA system. The presence of the
new machine meant that more users were available to report on
bugs, and two or more versions of MACSYMA could be run and de-
bugged at the same time.

While MACSYMA was on the Artificial Intelligence machine, we
were restricted to a system of about 90K words. This meant
that several subsystems of MACSYMA were left on the disk.

The latest versions of MACSYMA contain almost all of the code
and a little larger working storage. These versions approach
150K in size. Over 60% of the system is pure and is shareable
by several users. Recently we have run five simultaneous
versions of MACSYMA.

We decided to avoid having separate user and experimental ver-
sions for a while longer. The current version of the system
has a great number of debugging aids, in particular the ability
to trace any function in the system. The effect of the ease
of debugging is a slowdown of the system of a factor of about
four. We have started to create a first "release" version of
the system which would not have the debugging aids. The timing
studies attempted thus far for the release version have un-
covered a number of surprises, as seems to be common in systems
of this size. One common style of LISP programming is to call
a function indirectly through its name which is kept on the
property list of an atom. This technique seems to slow

Preceding page blank

w^mmmm**** mmmmmmfim ■■■■■IIIVI.IJ «lipi

MATHLAB

down a function call by a factor of at least 50. With the
present maturity of the system the modularity of the indirect
call is not required, and we expect an increase in speed in
subsystems which rely on thir ^-.pchnique. Another effect of
the shift in coding style will be that the amount of impure
data in the system will be decreased noticeably.

C. New Subsystems

Paul Wang completed his doctoral research on definite integra-
tion last summer. This subsystem together with the limit
routines comprise 15% of all of our code. It is being inte-
grated into MACSYMA at the present time.

During the past year, we completed work on a polynomial
factorization program based on Berlekamp's method for factori-
zation modulo a prime. Drs. Linda Rothschild and Paul Wang
did the bulk of the coding with some help from Dr. Richard
Fateman. The present program is the only one which can fac-
tor polynomials in several variables efficiently. Special
case techniques, such as for polynomials of the form Xn + 1,
have been implemented in the program,

Richard Zippel, a sophomore in mathematic-, has almost com-
pleted a subsystem for the manipulation of power series.
The representation of power series is different from that of
polynomials in that the coefficients are rational functions
rather than polynomials. „The subsystem allows the use»- to
declare cutoffs such as X -♦• 0 so that powers of a variable
higher than a given degree ate neglected. This Ls a desirable
capability because it keeps the intermediate expression swell
down in certain applications.

D. The New LISP Compiler

Eric Rosen, with the help of Jeffrey Golden and Jon White,
completed a new version of the LISP compiler which compiles
purely arithmetic code better than the cun^nt DEC PDP-10
FORTRAN compiler. A new version of LISP whicl: hariles arith-
metic function efficiently was designed by William Martin,
Jon White and Eric Rosen. MACSYMA will begin using the new
LISP system and the new compiler in the coming year.

E. CONNIVER

A new language, called CONNIVER, has been implemented in LISP
by Gerald Sussman and Drew McDermott of the Artificial
Intelligence Laboratory. The central features of this language
were suggested by Joel Moses. This language is intended for
use in Artificial Intelligence applications and also in the
Mathlab group's automatic programming efforts. The language
has the capability of handling local data bases which are
erased after function returns. The language has some of the
features of PLANNER such as pattern matching, but lacks the
automatic backup which PLANNER utilizes. We believe it to be
superior to PLANNER for most applications.

88

MATHLAB

F- ^e MACSYMA (maximus?, maximuni?) Experience

Successful use of MACSYMA has increased markedly during the

versionTs uTll'ta^16 ^ bUgS Sti11 **^ *"* thl ScSYMA „„lü® I llable to change from moment to moment, the fre-
quency of complaints about bugs has decreased to the point that
of use?" * SeS310ns do not «bouncer bugs in several hours

A console connected to the Mathlab machine is operatinq in the
Mathematics department. Richard Fateman has used the console
facSr aT"

umbe,r.of Priems for the Applied Mathematics
faculty, m particular, he solved certain integration oro-
ll^f; T.^ 0J f1"6" equatj°n= with parameters and non-
linear differential equations. We believe that at the Present
time successful use of MACSYMA is best achieved by a "hand-
holding operation in which someone familiar with MACSYMA
solves the problem on the computer. Should the sysJem S
sufficiently attractive to the Mathematics faculty, then thev
^ V3^ 1° inVeSt the time to learn how to use it thlmsSves
It should be noted that much of the faculty does not know

himself^th SS! at a11- 0ne haS alrea^ familiarized

MAr^UP ? thtJet pf0Pulsion Laboratory has been using
MACSYMA by making calls through the Federal Telecommunications
tl^Tl TS8 line qUality throu5h PTS is quite po™ This
group is howevet, too impatient to wait for the ASPA connec-
tion, which should occur in the summer. The group has a con-

thev hon^rT^^69"18 0f hyPer^o^tric9functions which they hope to do with MACSYMA.

A doctoral student of Prof. G. C. Rota has been using MACSYMA
to investigate simplification properties of linear oLrators
^ailor^L'pnnv"96 SiZe ? his exP"ssions, he hafused I" tailor-made 200K version of the system.

Many members of Project MAC and the Artificial Intelligence
Laboratory have made casual use of MACSYMA for solvin^homl-
work problems and the like. At present, we do not kelp track

nLd^n6?3'^ USagei bUt We tend to be quickly infoS of the need to fix bugs and improve certain aspects of the system.

G. Future Directions

Future efforts of the group will be concentrated in three
directions. -••»«»

1. Improvements to the Current System

The current system was written in less than 3 years bv
essentially 4 people (Fateman, Martin, Moses, Wang). This has
led to a system in which a number of useful featured were
ignored in order to concentrate on others which were deemed

TncludIsS?ntial " the t0tal eff0rt- The list of i-Prov^enfs

a) A better representation of matrices -

89

■

MATHLAB

1^LrtPreSent^0nS exist at Present. Paul Wang is trying to consolidate them.

b) A more efficient input parser -

The current parser is an LR{1) parser. An operator
precedence parser is being designed by Steve Saunders.

c) Better storage mechanisms for intermediate results -

Several schemes for storing intermediate results of a
long session have been attempted in the past without
much success. Jeffrey Golden is working on this project.

nL^Vi30 interested ^ integrating into MACSYMA significant
^P

a i^ ^ avaiUble in other algebraic manipulation systems
(e.g. the physics package in REDUCE-2 and Laplace transform package In MATHLAB) . f-^a^e transrorm

It is clear that the large number of users of MACSYMA which we

^tff^ Se6 Ä year Wil1 SUggeSt ^ Vari^ ot^Pro™

2. Subsystems for Important Areas of Applicftion

fL«^"9 to.cfeate a. general-purpose system, we have largely
ignored special capabilities desirable in only one or two y

areas. Areas which we have been examining are:

a) Numberical Analysis -

One important use of an algebraic manipulation system is
as a front end to numerical analysis programs. David
Yun has used MACSYMA to set up an efficient numerical
o?1^« ?4^iP?rtfal differential equations for members
or the Civil Engineering and Mathematics departments.

b) Optimization and Control

David Yur. has also explored the use of MACSYMA in problems
in optimization and control which involve parameters and
hence cannot be easily solved by numerical ieSquls.

t) Psrturbation Theory

Jeffrey Golden has been examining the possibility of
JÄMA \n-?1-^

hniqUeS fr0m Pe^urbatior theory in
MACSYMA. With Dr. Mark Ablowitz he studied the stability
of a classical problem in applied mathematics last su^msr.

d) Astronomy

VtLTJ, sPectacuiar achievements of algebraic manipula-
tion have occurred in astronomy. Dr. Andre Deprit
a?v!n iy ltCetVtd the only awavd in computer science
given by the National Academy of Science for a recalcu-
lation of the moon's orbit. This calculation originally

90

T^ ■ ■":^

MATHLAB

believe a more qenerL ^h i1360 a tailor-made system, we
ten for doing suchfcalcSatfnn 0'mCS^ couidbe w^it!
reasonable efficiency? and many others with

a) Number Theory and Combinatorics

^tT.zz^tint^tr^ si9ned to be - - to
of users interested in'pure math^3 S^nific^ number
number theory , and co^^^tor^^^ould"!^^0111^
tend our capabilities in these areas. t0 eX"

3- Research on New Alanri t-h^

Algebraic manipulati
user to provide a me
rare cases, such as
approach far differe
approach of people,
obtain a new set of
which will solve the
ticians.

^hJ^ S ^aVe up to now relied on the
thod for solving his problem, only in
integration, have these systems used an

WeSie^e* fhafit^ '^ ™*t*ncil»
algori^J^e^^^^-^e1^-.
traditional problems of applied mathemL

tions and then ask the aulstfon« H
Gn^al 0r dif^rence egua-

traditional approach hafbeen to Jrv'to L?v ^ a0ä91' ?he

closed form in terms of a claaa of -J^ f1^ the system *■*
exponentials, Bessel °nn^^ f ! sPecxal functions (e.g.
stability) of thnilutio'n "^ is' well f' the question9 e.g.
possess closed form solutionJ LJtll knOW"' few syste^
been to get an approximation to the SoluK ^ apProach ^s special functions ^nrf t-hJ~ solution in terms of
tion. This method f^L^ly^^e^ ^ ^ W'**^- linear. ^ ^'"-^y raiis when the system is non-

erence equatio.is. Recent result^ fnfiKerentlal or diff-
combinatorics have shed qrlat Jfaht nn 9ebralC.ge0,netry and

integration and identities M l9^ on properties such as
is some hope that "sultfon at^ilK f10*^0" rUles) " The« well. The current situation ft^111^ are forthcoming as
forthcoming pajefin the 2l2h fn«f8Cribed in Joel Hos^' y V per m the 25th Anniversary Issue of CACM.
H. SIGSAM

ChaSaV^d1 SelsSr SpS^ *' T^ ™* *^*
Group on Sympolic and Algeb^ic S' ? ^he Special ^terest
will serve in these pos^Sntil S^m^ ^ ACM- They

91

; ■■

i

:

MATHLAB

Publications

3.

4.

Fateman, R. J., Essays in Algebraic Simplificatinn .
Probet MAC. M.l.T./MAC-TR-gs, April 1972, AD 740-

Fateman, R. J., "Rationally Simplifying Non-Rational
Expressions", SIGSAM Bulletin. No. 23, July 1972,

Martin, W. A. , "Determining the Equivalence of
Algebraic Expressions by Hash Coding", Journal of the
ACM, Vol. 8, No. 4, October 1971, pp. 549-558.

Moses, J., "Algebraic Simplification: A Guide for the
Perplexed", Communications of the ACM, Vol. 14. No 8
August 19 71, pp. 527-537.

Moses, J., "Symbolic Integration: The Stormy Decade",
Conununications of the ACM. Vol. 14, No. 8, August 1971,
pp. 548-560.

Moses, J., "Toward a General Theory of Special Func-
tions", Communications of the ACM, Vol. 15. No 7
July 1971; pp. 55Ö-554.

Wang, P. s.. Evaluation of Definite Integrals by
Symbolic Manipulation, Ph.D. Thesis. Department nf
Mathematics, M.I.T., 1971; also MAC-TR-92, October
1971, AD 732-005.

Wang, P. s., "Application of MACSYMA to an Asymptotic
Expansion Problem", Proceedings of the ACM 25th
Annual Conference, August 19V2, pp. 844-S5Ö.

Publications In Progress

1.

2.

3.

4.

5.

6.

7.

Fateman, R. J, , and J. Moses, "Canonical Forms for
First Order Exponential Expressions".

Fateman, R. J., "Comments on Problem 2".

Fateman, R. j. , "On the Computation of Powers of
Polynomials".

Wang, P. s., "Factorirg Multivariate Polynomials Over
the Integers".

Yun, D. Y. Y., "An Application of MACSYMA to Proving

the Achievability of the f —^]M for Evaluation of

General Non-monic Polynomials of Degree n".

Yun, D. Y. Y., "On the Efficiency of the Dijkstra
Algorithm".

Yun, D, Y. Y., "On Symbolic Solutions of Systems of
Algebraic Equations".

92

■■■■■■■■■ü «mm

Talks

MATHLAB

Moses, J., "Algebraic Manipulation", a set of lectures
given at the Computer Science Seminar, Bonn, Germany,
August 1971.

Moses, J., "Algebraic Manipulation", given at the
Joint Colloquium of the Departments of Mathematics
and Computers & Communications, University of Michigan,
Ann Arbor, Michigan, November 1971.

Wang, P., "Factoring Multivariate Polynomials", given
at the Department of Applied Mathematics, Taiwan
National Chung Hsing University at Taichung, Taiwan.
June 1972.

93

mm**r~****mmimmm

PLANNER

Prof. C. Hewitt

Instructors, Research Associates, Research Assistants and Others

C. G. Benedict G. L. Peskin
P. B. Bishop

m

Preceding page blank 95

PLANNER

The PLANNER project is implementing a high-level goal-oriented
language on Multics, The aim is to have a clean implementation
of a procedural foundation for problem solving. The founda-
tion attempts to be a matrix in which real world problem-solving
knowledge can be efficiently and naturally embedded. As a
first step, we are implementing the basics of the control
structure and data structure.

The fundamental data structure of PLANNER is the directed graph
with named links and nodes. Any data element can be used as
the name of a link. Furthermore, any data element can have
links associated with it. The actual linkage can be mechanized
by hash coding, indirect addressing, indexing, or by a proce-
dure call.

Processes are the active elements in the model. Instantan-
eously, a process is a data structure in its own right con-
sisting of a pseudo-stack of activations of procedures. The
actions of processes are caused by executing a general kind of
CALL statement. There are two actions for each CALL: control
leaving a procedure and control returning to the procedure.
Control can leave a procedure of a process P by calling ou*- to
any of the following:

an ordinary function.

a label function L which is a function <■ \at returns to
the block in which L is defined instead of to the point
at which L is called.

3. a port which is a communication channel between processes,

4. some combination of the above.

Control can be resumed in the process P by one of the fo^low-
ing :

1.

2.

an ordinary function return.

receiving a container of values on a port in which the
process P is waitirg.

3. some combination of the above such as simultaneously
waiting on several ports or waiting for any of a number
of ports.

Our goal is to procedurally embed problem-solving knowledge
in the data and control structurü so that it can be effectively
used. The overhead of a mechanism should scale in proportion
to the use of the mechanism. In terms of control structure
we are implementing some ideas of Landau, Bobrow, and Weqbreit
for a pseudo-stack for processes. The efficiency of thepseudo-
stack falls off linearly in proportion to the degree that
stack discipline is violated. We have implemented a hash cod-
ing scheme which scales properly with respect to large data
bases.

Preceding page blank 97

■■

I

PLANNER

A. Adding Knowledge

In constructing models we need the ability to embed more know-
ledge in the model without having to totally rewrite it.
Certain kinds of additions can be easily encompassed by'de-
clarative formalisms such as the quantificational calculus by
simply adding more axioms. However, declarative calculi do
not allow new deductive procedures to be added. We are imple-
menting mechanisms that allow a great deal of flexibility in
adding new procedural knowledge. The data structures of
PLANNER can be bound to the control structure through a variety
of mechanisms. The mechanisms provide the following abilities:

They provide the means by which knowledge can easily
and naturally be embedded.

They enable new knowledge to be added without rewriting
everything.

They make it possible to reorganize the connections
between the pieces of knowledge.

PLANNER must provide interfaces so that the bindings can be
controlled by knowledge of the domain of the problem. The
right kind of interface promotes modularity because the pro-
cedures on the other side of the interface are not affected
so long as the conventions of the interface are not changed.
These interfaces aid in debugging since traps and Checkpoints
are conveniently placed there. More generally, formal condi-
tions can be stated for the interfaces and verified once and
for all.

B. Monitors

The mechanism of monitoring allows the attachment of an
arbitrary procedure (called a monitor) to a location so that
whenever the contents of the location are read, changed, 01
executed the monitor will be invoked. Monitors allow pro-esses
to be dynamically bound to read, write, and execute operations
on particular structures. In general, whenever data is examined
or modified, there must be a mechanism for a process to mediate
the action.

C. Ports

Ports act as communication channels between processes. They
allow the output of some processes to be fed to others without
the processes having to know each others names. Thus the
connections can be dynamically reconfigured without affecting
the processes. The simplest kind of port consists of two
queues. The first queue consists of containers of values wait-
ing in the port to be given to processes. The second queue
consists of processes waiting for containers of values. Typic-
ally either or both queues are empty.

D. Data Structure Definitions

A data structure definition binds the operational properties

98

f

PLANNER

of a data type to a concrete physical representation. For
example, sequences can be physically realized in a variety of
ways.

Consider the following methods for realizing the sequence: A,
B, C.

LIST

B k c
/

F

VECTOR

NODE

E. Generator

A generator is a function of no arguments which can be
called repeatedly to produce the elements of a sequence
Thus the first call to a generator for the sequence would
return A, the second ci.ll Bf and the third C. Generators
work from side-effects since they are always entered from the
top with no arguments.

99

• :

-V~-. •—••MH-Wv-.,. <<-...

PLANNER

Process

A process (co-routine) has the capability of being resumed
from the place where it produced its last value. Thus, unlike
a generator, it does not always have to start over from the
top.

G. Pattern Matching

Pattern matching is a natural way to conditionally recognize
and bind the substructures of a particular data structure.
Pattern matching procedures preserve visual fidelity since
they "look like" the object they match. Pattern matching
exhibits controlled binding by allowing a whole class of data
structures to be specified.

H. Pattern Directed Retrieval

Pattern-directed retrieval enables data structures to be re-
trieved by a pattern of what they look like. For example,
the pattern (AT NAUTILUS 7PLACE) can be used to bind the
identifier PLACE to the location of the NAUTILUS if it appears
in the data base.

I. Pattern Directed Invocation

Pattern-directed invocation enables processes to be invoked
by triggering patterns. It is a convenient way to bind the
processes that propagate the implications of updates to a
model. Recommendations can be used to further control the
binding of which processes will actually be invoked. Pattern-
directed invocation is often used as a kind of data base
monitor or "demon". Demons are more powerful (but less
efficient) than ordinary monitors since they watch for changes
to a whole class of data instead of just a single location.

J. Sinultaneous Goals

Often we need to be able to achieve more than one goal at
once. For example, we might want to have Joe, Fred, and
Martha at the airport at three o'clock. We might be tempted
to express the problem as follows:

<achieve (at Joe airport 3:00)>
<achieve (at Fred airport 3:00)>
<achieve (at Martha airport 3:00)>

However because of complicated travel arrangements, we might
not know beforehand the order in which to try to get the
people to the airport. For example, some of the people might
have to chauffer others. If this is the case, then we don't
want to bind the order in which a problem solver attempts the
goals. We would prefer to write:

Simultaneous
(at Joe airport 3:00)
(at Fred airport 3:00)
(at Martha airport 3:00)>

100

I

;^:, f. ■■ I.-,.;. mm&mm'mmmimm

PLANNER

K. The Fire in the Warehouse

In this section we present an example to Illustrate the opera-
tion of PLANNER'S tree-structured data bases. PLANNER allows
facts and procedures to be stored in data bases where they
can be conveniently retrieved. The data bases are indexed
using hash coding so that the time to retrieve an element is
almost independent of the size of the data base. Suppose that
warehousel has S5000 worth of plywood, $1000 of bricks and
$4000 of tractors. Tractors and plywood are flammable. We
can express this more formally as:

<assert (in warehousel plywood $5000)>
<assert (in warehousel bricks $1000)>
<assert (in warehousel tractors $4000)>
<assert (flammable plywood)>
<assert (flammable tractors)>

If the warehouse burns down, then everything inside of it which
is flammable will be burned up.

<define burn
.•"define burn to be the following procedure"

<if-asserted
(burn-down :PLACE)
;"if (burn-down :PLACE) is

asserted then bind PLACE
to tht actual location and
execute the following"

for "current" (in .PLACE :THING <?>)
;"for each thing that is
currently in the place
execute the following"

<if <current? (flammable .THING)>
;"if THING is flammable then"
<erase (in .PLACE .THING <?>)>
;"erase the fact that THING is in PLACE">>>>

Now let us suppose that warehousel burns down.

<new-world ((WORLD2 <world>))
;"we go down inside a new-world (which we name

WORLD2) to construct our experiment"
;"this new world starts out identical

to the world from which we have just
come but changes made in here will
not affect the outside"

<assert (burn-down warehousel)>
;"the assertion will trigger the burn 'demon' which

will erase
(in warehousel plywood $5000) and
(in warehousel tractors $4000)">

Now we can compare and contrast the initial world with W0RLD2
in which the fire took place. For example, we can ask the
value of the conten ,s of the warehouse destroyed by the fire.

101

.

I r

PLANNER

'S "current"'■'('S1!"1;26 the ™* to 0"
> "«X.Ouii\hfrf??8eJ

1 :THING :VALUE) . execute the following for each THTM^ ^ *.
<lf originally in warehousel"

G that WaS

!" Är:Är'houMi —
<dif "--•-->"W0RLD2 th-ftB
. add the VALUE OF THING into LOSS"»

After the above is executed <.»,-.
which is the value of tha flJ^V*1^8 0f L0SS will be S9000
-rid and WORLDS^re^bo'fh KKÄ^0

"'
0ur '«ituS

cation, when we have finished our « lnspection and ir.odifi-
save the resulting worlds or dl scar IST^' We can ei^er
the pertinent information. aiscard them having abstracted

102

PLANNER

Publications

Hewitt, C,
PLANNER", 'i.WiP P- -ennrH T ^ Enibedding of Knowledge
.-^f^'§f^:d international Joint Conferglge

in
on

also AI-TR-258, April 1972, AD 744-620 " 71''

Publications In Proor^ss

Talks

4.

cedires"C-in"^rOCe^ral Semant^s: Models of Pro- D„„üff i,f" Some Current VIPU«
ärsity Press, New York Rustin, Editor, New^rrüirlver-0"-1'-"^^' Randa11

Spies-;'pr^entS'atltfnfTn^ Pr0grams fr«n
California,PJunem2! Stanford diversity, Palo Alto,

the Courant Instn-nt-a ^2 "^ ^rüce°ures , presented at
York Univer^Sjrie^^o^^^-J^ciences, New

103

SIMPL

Prof. M. M. Jones

Instructors, Research Associates, Research Assistants and Others

R. V. Harrington
S. M. Stoney

R. C. Thurber

Preceding page blank 105

I

SIMPL

A. Summary

The Simpl group has completed its implementation of the Simpl
interactive simulation language on Multics, and has completed
the documentation for the system. The completed system is
being submitted to the Multics Author-Maintained Library for
general use on Multics.

B. Review of the Pant Year

By July, 197., an efficient version of the Simpl translator
and run-time system (known as System III) had been implemented.
Since then, the system has undergone five additional major
evolutions, described below:

System IV The Simpl statistical features (tables, histograms,
time-plots, and queueing statistics) and tracing
facilities were added.

System V The Simpl Monitor, which enables on-iine interac-
tion with a Simpl model, was completed.

System VI External activities and connector variables were
implemented, and a central error handler was in-
stalled for the translator and run-time system.

System VII The system was modified to handle storage alloca-
tion more efficiently, and the files in the process
directory were reorganized.

System VIII Reactivation labels (in the translated program) and
internal static label variables (in the translator
and run-time system) were eliminated.

We had hoped to recompile the entire system — translator,
run-time package and monitor — with the new version II PL/1
compiler. However, even by late in May it was still not
sufficiently bug-free to allow us to make this final step.

During the last few months, all documentation of the Simpl
system was completed. The "Simpl Primer" and "Simpl Refer-
ence Manual" were updated to be consistent with System VIII,
and the "Simpl Implementation Manual" was written, which des-
cribes the internal workings of the entire system. All three
of these documents will be published as MAC TR's.

There are no future plans for the Simpl Group.

Preceding page blank 107

. A

BS.»!SW

THEORY OF AUTOMATA

Prof. F. c. Hennie

Academic Staff

Prof. C. L. Liu T> ^
• L1U Prof. A. R. Meyer

instructors, Reso.rrh associates. ReSearch ^<^ts and othprg

A. Bagchi
D. J. Brown
K. M, Brown
J. Fe»-rante
M. M. 1,'aimner
R. F. Hossley
D. Johnson
R. Johnston
D. J. Kfoury

M. D. Horowitz

M. E. Baker

N. A. Lynch
R. Mandl
R. N. Moll
C. Rackoff
J- I. Seiferas
B. J. Smith
L. Stockmeyer
B. Vilfan

Undergraduate Students

Support Staff

S. J. Cohn

Preceding page blank 109

«

 .. _

■',->. .r

THEORY OF AUTOMATA

The Automata Theory Group is concerned with the structure and
complexity of computational models and algorithms. In recent
years, major interest within the group has centered on the
study of algorithms and decision procedures. This study has
as its goals: i) The analysis and design of optimal algorithms
for basic computational tasks, such as graph "'-'nipulation,
sorting, scheduling, and various arithmetic calculations; and
ii) The development of methods for proving that ce.-tain com-
putational tasks are inherently difficult to perform. In
addition to this emphasis on algorithms, the group also retails
an interest in some of the more traditional problems of auto-
mata and complexity theory, such as the relationships between
the structure and efficiency of various computational models,
and the abstract theory of the complexity of recursive func-
tions.

The major accomplishments of the last year are outlined in
four section«? below. The first section, titled Inherently
Complex Decision Problems, describes some new results that
provide, for the first time, examples of "natural" computation
problems that can be shown to be inherently difficult. The
second section. Combinatorial Algorithms, describes progress
made in the investigation of various packing, scheduling, and
sorting problems. The lasL two sections present results in
several more "classical" areas. That labelled Computation by
Automata includes work on grammatical transformations, fault
detection, machine decomposition, complexity of Boolean func-
tions, and the theory of program Schemas. The final section
describes continuing work in abstract complexity theory.

A. Inherently Complex Decision Problems

Godel's celebrated theoic^.c reveal that no computer program
can verify all the true statements of elementary arithmetic.
Nevertheless, decision procedures have been developed for a
number of more restricted classes of mathematical statements.
Four years ago Rabin succeeded in proving that there is an
algorithmic procedure, for determining the truth or falsity of
an arbitrary sentence of what is called the monadic second
order theory of two successors (S2S) . This discovery is re-
markable because S2S is one of the few decidable theories in
which it is possible to phrase interesting mathematical state-
ments .

Unfortunately, Rabin's decision procedure for S2S is impossibly
slow, as is Buchi's decision procedure for the weak monadic
second order theory of one successor (WS1S), a precursor of
Rabin's work. Attempts have been made to reduce the enormous
computations involved in the known decision procedures for
WS1S, but as a consequence of a new result of Prof. A. R. Meyer,
we now know that any decision procedures for WS1S, S2S, and
several related theories must involve impractically long
computations.

Meyer's results apply equally well to certain first oraer
logical theories. As a specific example, consider the first
order theory of nr.tural number addition together with the two-
place predicate P, where r(x(y) s [x is a power of 2 that
divides yl. The formula? of this theory are obtained in the

Preceding page blank in

THEORY OF AUTOMATA

usual way from atomic formulas of the form P(x,y) and x+y = z
by means of the logical connectives and quantifiers. Thus

Vx3y(P(y,y) A gz(x+z = y))
is a (true) sentence which asserts that there are arbitrarily
large powers of two.

Let J denote the set of all sentences of this theory. Then
there exists an algorithmic procedurr for determining whether
an arbitrarily specified member of ja represents a true asser-
tion about the natural numbers. The idea behind th^s proce-
dure is that for ?ny formula F(x) in the theory, it is possi-
ble to construct a finite automaton '■hat accepts pr cisely
the binary representations of thost aitural numb^-s n for
which F(n) is true. Carrying out tnis construction for a given
sentence in J therefore yields an automaton that accepts every
string of O's and I's if the sentence is true and accepts no
string if the sentence is false. Since it is relatively easy
to determine whether an automaton accepts all input strings,
one can effectively decide whether a given sentence in J is
true.

The difficulty with this approach is that sentences of length
n yield automata having on the order of e(n) states, where

a(n) =2

The number of steps neeued to determine whether such an auto-
maton accepts every input string is therefore of the same
order. Thus although it is in theory possible to determine
the true sentences of «3 , the procedure outlined above is
totally impractical. Meyer's result shows th^ in fact every
procedure which determines the true sentences Oi. ä must use
the same exorbitant number cf steps. Specifically:

There exists a number ?>0 such that for üny Turing
machine that decides the truth of sentences ir AJ ,
there is an integer n0 such that for all n i n0 there
is a sentence of length n in ^ on which the given
machine requires at least 9(fn) steps.

Although this result is phrased in terms of Turing machine
computations, essentially the same result holds for more real-
istic computational models, since even the most powerful model
can be simulated by a Turing machine in an amount of time that
is very small compared to 9(n).

This does not necessarily mean that no progress can be made in
the development of decision procedures for the theories men-
tioned above. It might be that there are fast ad hoc

112

•»»•»e»™,:.

THEORY OF AUTOMATA

procedures for all sentences of length less than (say) 10
letters, or that moot sentences of a given üength are easy to
decide, or that all "interesting" sentences are easy to decide.
Nevertheless, our results strongly suggest that there is little
hope for practical application of many decision procedures in
logic.

Another interesting conrequence of these results is that we
now have examples of procedures that exhibit the Blum ,=: 2ed-
up property. Earlier work in abstract complexity theory, some
of which was carried out in this group, established the exis-
tence of computable functions with speed-up, but it did not
appear that any natural mathematical problem had this property.
We now know that given any decision procedure for J , one can
effectively construct another procedure requiring less than
the logarithm of the number of steps of the given procedure
for infinitely many sufficiently long sentences. Th'is there
is no optimal decision procedure for ^1, and no exact computa-
tional complexity that can be assigned to the problem of
deciding ,j .

Meyer's results are derived in part from the work of several
other members of the group. One of the key ideas in Meyer's
proof comes from Larry Stockmeyer's study of the complexity
of. a problem in automata theory. Stockmeyer has shown that
the problem of deciding whether two nondeterministic finite
automat?, are equivalent requires an amount of time that grows
faster than any polynomial function of the size of the automata.
Robert Ilossley and Charles Rackoff have significantly improved
a portion of the proof tl.at S2S is decidable. Hossley, Rackoff,
and Jeanne Ferrante also obtained corollaries establishing the
inherent computational coir^lexity of various theories related
to WS1S. Efforts are now being made to extend our techniques
to the first order theory of addition, and to the subcase of
existential statements about addition. Success in the latter
subcase would yield lower bounds on the complexity of integer
programming and related combinatorial problems of widespread
interest.

B. Combinatorial Algorithm.-.

The area of combinatorial algorithms, which at first sight
seems to consist of many unrelated problems, is beginning to
show some coherence. Within the last year. Cook and Karp have
proved that the following problems are computationally equiv-
alent:

i) Solving a zero-one valued travelling salesman problem
ii) Finding a maximal size clique in an undirected graph

iii) Finding a minimal covering of a family of sets
iv) Determining whether a Boolean function is identically

equal to 1.
These problems are "equivalent" in the sense that a fast

113

' .

» , ■ , .- ■ ■ 1

THEORY OF AUTOMATA

algorithm for solving any one of them can be used as the basis
for constructing a fast, algorithm for solving any one of the
others. (Here a "fast algorithm" is ons whose computation time
is bounded by at most a polynomial function of the size of the
inputs.) At present, all known algorithms for solving these
problems require an amount of time that grows exponentially
with the size of the input. Thus these four problems, as well
as many other familiar combinatorial problems, are hard for
the same reason—assuming that they really are hard, which
remains to be shown. In particular, a proof that any one of
them is inherently time consuming to solve would automatically
establish that they all are.

Several members of the group have been investigating extensions
of the Cook and Karp classification. As already noted, Larry
Stockmeyer's efforts to classify the equivalence problem for
nondeterministic finite automata led to Meyer's results on
decision problems. And David Johnson, working with Professors
Meyer and Fischer, has shown the following problem to be equiv-
alent to the Cook-Karp problems: Given a sequence of rational
numbers rj ,. . . ,1^, , where 0 < r^ si, find the smallest number of
unit-sized "bins" into which the given rational numbers can be
"packed" subject to the constraints that each r^ is assigned
to exactly one bin and that the sum of the numbers in any bin
is at most one.

This packing problem differs from the problems of Cook and Karp
in on<: important respect. Although finding an optimal packing
appears to require an amount of time that grows exponentially
in n, there are very efficient packing algorithms that give
nearly optimal results. Extending earlier work of Garey,
Graham and Ullman, David Johnson has discovered a packing
algorithm that is guaranteed to operate in time proportional
to n and that never uses more than 11/9 the optimal number of
bins. Moreover, it has been shown that this bound of 11/9
is the best possible one for the class of fast algorithms under
consideration. Johnson is now trying to extend his techniques
to various covering problems, where it also appears that effi-
cient methods yielding near optimal results C'in be found.

In a related area. Prof. C. L. Liu has been investigating the
efficiency of various algorithms for scheduling -jobs in a
multi-processor computing system. Typical of the problems
studied is the following. A set of tasks (^,T2,...,Tr' are
to be scheduled on a two-processor system, where the execution
time of each task is known. Tie order in which the tasks may
be performed is constrained by a specified partial order ~ so
that if T^* Tj the execution of Tj must not begin until the
execution of Ti has been completed. How is the total elapsed
time for the execution of all the tasks affected by the nature
of the algorithm used to schedule the tasks?

One of the major results obtained is a quantification of the
relative efficiencies of preemptive and non-preemptive sched-
uling algorithms. (A preemptive schedule is one in which the
execution of one task may be interrupted to begin another task.)
Let u denote the total elapsed time required for the execution
of a given set of tasks when an optimal non-preemptive schedule
is usßd, and let u" denote the corresponding time when an

114

f

THEORY OF AUTOMATA

optimal preemptive schedule is used. Clearly,

However, Liu has shown that

for any set of tasks and any specified partial order i . This
result can be extended to the case of n processors, where

ui' S
n+1
2n

Moreoever, these bounds have been shown to be the tightest
possible ones.

Liu's results may be interpreted as follows. The introduction
of a high-speed drum so as to make possible the use of preemp-
tive schedules can increase the speed of a two-processor com-
puting system by at most 25%, and that of an n-processor sys-
tem by at nst 50%.

Burton Smith and Prof. C. L. Liu have been investigating Hie
behavior of sorting networks made up of two-input, two-output
comparators. Although general methods for designing n-input,
n-output sorting networks are known, the problem of designing
networks that use as few comparators as possible is very
difficult. One of the best networks of modest size known to
date, due to M. W. Green, uses 60 comparators to sort 16 in-
puts. Liu has recently found a 61-comparator, 16-input network,
as well as a new four-way merge technique that yields a 4n

input sorting network using (n2 - 2 +10)un- 1° comparators
for any n. 12n 9 T

The difficulty of designing efficient sorting networks is due
in part to the difficulty of determining whether or not a given
network of comparators actually sorts its inputs. One cri-
terion for making this determination is Knuth's zero-one prin-
ciple: A comparator network sorts if it correctly sorts all
possible zero-one valued input patterns. Smith has shown that
this criterion is sharp, in that for any given zero-one input
pattern (other than the all-zero or all-one patterns) there
exists a network that correctly sorts every zero-one input
pattern except the one in question.

Another criterion for deciding whether a network sorts is
based on the fact that many sorting networks are formed by
combining several sorting networks with fewer inputs. Indeed,
every sorting network can be viewed as a cascade combination
of two-input sorting networks. Liu has developed a procedure
for analyzing certain composite networks of this type which is
useful both in designing sorting networks and in proving that
a given network operates correctly. Smith has extended Liu's
work to apply to arbitrary networks of comparators, and has
developed several techniques for succinctly characterizing the
patcerns that can appear at the output of a given comparator
network. Such characterizations are useful in designing
networks as cascades of simpler ones.

115

L

■^

THEORY OF AUTOMAT

In some cases, the set of possible outputs cf a comparator net-
work consists of precisely those patterns of va)ues that are
consistent with a particular partial order on the output ter-
minals. Smith has shown that if this is true when the network
inputs are restricted to patterns of distinct values, it must
also be true when the inputs are zero-one valued. In the case
of arbitrary real-valued inputs, the set of possible outputs
will be those consistent with a singl partial order if and only
if the outputs form a convex set in uu Iidean n-space. This
case is interesting because it results n a very compact des-
cription of the output behavior of a ne Lork. However, if an
n-input sorting network is designed so this condition obtains
at every point within the network, the network will necessarily
require (5) comparators and hence will bu very inefficient.

C. Computation by Automata

Automata and formal linguistic models have many applications
in the study of computers and computation, ranging from logi-
cal design to compiler construction to complexity theory.
During the past year, several members of the group have ex-
plored computational issues arising from such models. Their
results are outlined below.

1. Grammatical Transformations

One of the most fruitful developments in automata theory in
recent years has been the application of automata theoretic
ideas to problems in the theory of languages and compilers.
Substantial progress in this area has recently been made by
Michael Hamitier, who has been investigating grammatical trans-
formations that are capable of converting given programming
language grammars into equivalent but more useful grammars.
In particular, he has found a class of transformations yield-
ing grammars whose languages can be parsed top-down.

While top-down parsing has a number of advantages over bottom-up
parsing, the grammars that admit top-down parses (the so-
called LL grammars) constitute a small subset of those that
admit bottom-up parses (the LR grammmars). Hammer has been
working with a subclass of the LR grammars known as minimally
predictive (MP) grammars. These grammars can be parsed in a
hybrid fashion that is basically a bottom-up parse with
occasional judi-ious predictions. A procedure has been found
for transforming any MP(k) grammar into an LL(k) grammar that
generates the same language. Moreover, this transformation
preserves the semantic capabilities of the original grammar,
in the sense that any translations supported by the original
grammar are also supported by the new one.

The transformation itself is based on the s
finite-state machine that directs the progr
parse for ehe given LR grammar- The first
the states of this machine in such a way as
kindü of loops in the machine's state diagr
been done, the new grammar can be "read off
the altered machine. Transformed grammars
way can be shown to have a number of intere

tructure of the
ess of a bottom-up
step is to split
to break certain

am. Once this has
directly from

obtained in this
sting properties:

116

. ■

THEORY OF AUTOMATA

they are frequently LR(0),they support a wide range of trans-
lations, and they can be parsed quickly. The same kind of
transformation can also be applied to certain non-LR grammars
so as to yield equivalent deterministic grammars.

Results obtained so far have provided new insight into the
nature of LL and LR grammars and the relationship between top-
down and bottom-up parsing. Moreover, this work promises to
have applications to the derivation of optimal grammars for
use in practical compilers.

2. Fault Detection

It is of considerable practical importance to be able to deter-
mine experimentally whether a given piece of hardware is
operating cc-rectly. Although a variety of fault detection
and diagnosis techniques are available for use in practical
situations, the essential complexity of the detection and
diagnosis problems is still poorly understood. In particular,
realistic upper and lower bounds on the lengths of general
fault-detection experiments for sequential circuits have yet
to be established. In the case of lower bounds, for example,
it is easy to see that a valid fault detection experiment must
cause the correctly operating circuit to traverse each of its
state transitions at least once, an observation that leads to
a lower bound of mn for the length of a fault detection exper-
iment for an m-input.. n-state circuit. However, no circuit
admits a detection experiment of this short a length.

Some progress in this ^irea has been made by Ken Brown in work
done for his SB thesis. He has shown that every fault detec-
tion experiment for a two-input circuit must cause the circuit
to traverse each transition at least once and half of the
transitions at least twije. This result provides a lower bound
of 3n for the length of detection experiments for n-state,
two-input machines. There exist circuits for which this
bound is attainable, and there exists a class of circuits for
which the argument leading to the lower bound provides a simple
set of necessary ai.d sufficient conditions for an input
sequence to be a fault-checking sequence,. Thus we now have
examples of circuits that are easy to test and an accurate
assessment of the complexity of the experiments needed to test
them. We expect that this work can be extended so as to yield
more accurate bounds for more general classes of circuits.

3. Linear Machines

In the course of investigating some fault-detection questions
for linear sequential machines, Robert Johnston discovered a
new approach to the decomposition of a broad class of linear
systpms.

The usual notion of a linear machine as one whose input and
state spaces are vector spaces over some field was extended to
that of a machine whose input and state spaces are modules
over an arbitrary ring. The development of this more general
class of machines parallels that described in Kaiman, ralb,
and Arbib. Johnston next derived cert-.in conditions that are

117

'

A

. ;'-■ *
„ -1

THEORY OF AUTOMATA

g
Senfr«JS' «"^la'SS 'J« ""-»P«™ »^l. 1. flnlt.lv

PIUäS^^X'ä r^^Siaon;^1»5 hr
(ideal) is properly contained In ihfi' in.whlch each submodule

gations will be carried out jointly wiS tS^n^V^68^" Laboratory. jomciy with the Electronic Systems

technique for answprinrr ^h■ie „,, J. • • .^ ^ri^^. ine usual
finite-state machine aIsociIted^Jhn.HnVOlVeS constructing the
then determining Whether in fact that ^1VeneX?reSSion and

that impulse response ?t X'n UCt the linear machine h^i"g
the machine actual"^ rerÜnizes th^a?3 0nly ^ decide wheth"
plans to try to extend hi! Jf^ f giVeü ^S»1^ set. Horowitz
inputs, rnu^e^S^^TÄ^y0 Sn^rSeS!^16

4. Schemas for Programs

rel^nn iS f sentially a program in which some or all of the relations and operations arp Taft- „„^„c- j _ •L-L or the

118

■ '

■MMMMM

THEORY OF AUTOMATA

what must be required of the flow-structure of programs in
order to achieve a certain level of computational power?

Different classes of Schemas have different expressive powers.
The first objective of Kfoury's thesis is to find a "univer-
sal" class S of schemas which, when interpreted I« any alge-
braic structure, yield the set of all effective procedures
over the domain of that structure — effective relative to the
underlying relations and operations of the structure. Given
an arbitrary class S' of schemas, Kfoury investigates condi-
tions on an algebraic structure CL that will ensure the equi-
valen :e of S' to the universal class S, in which case S" will
capture the notion of effectiveness in CL . In particuJar, he
considers the class of flow-chart schemas, and shows that they
are sufficient to "apture the notion of effectiveness in many
of the algebraic structures encountered in practice, including
rings, fields, and ordered fields,.

A second objective of the thesis is to compare algebraic
structures in terras of their "algorithmic behavior" — i.e.,
in terms of the properties of schemas interpreted in those
structures. Kfoury gives special attention to conditions
under which this algorithmic behavior is the same for related
structures, such as two groups or two fields. As a by-product
of this investigation, he has shown that over sorae familiar
structures, such as the complex number field, an effective
procedure is tot.^l only if it is equivalent to a loop-free pro-
cedure.

5. Complexity of Boolean Functions

In order to explore the role of information-theoretic
arguments concerning the complexity of functions, Bostjan
Vilfan has been studying the sizes of expressions needed to
represent certain Boolean functions. In particular, he has
considered expressions built up from variables and symbols
for the Boolean operations of and, or, not and exclusive or,
for such functions as the n-variable function wEose vaTue-is
1 if and only if the number of arguments equal to 1 is
divisible by 3. Using some rather deep combinatorial argu-
ments, Vilfan has shown that expressions for this "divisible
by three" function of n variables must grow nonlinearly with
n no matter what finite set of basic operations are allowed
in expressions. This lower bound is close to being the best
possible, since for anyp > 0 there is a finite set of opera-
tions in terms of which the "divisible by three" functions
have expressions of length at most n1+f .

119

- . ,■■

MM """i ' rii'iiniiiiiiiiwiiiiiimniiiir iiiiiiir " iiii.iMUimiiiiijiaiiinntu. S^HSISiSS

THEORY OP AUTOMATA

Abstract Complexity Theory

As noted in our last progress report, the development of ab-
stract complexity theory no longer constitutes a dominant part
of the group's activity. Nevertheless, the results on the in-
herent complexity of decision problems cited above illustrate
the relationship between theoretical work in complexity and
computational problems of more practical interest. Ve expect,
therefore, to maintain a small research effort in the area of
abstract complexity theory.

During the last year, Amitava Bagchi, Nancy Lynch, and Robert
Moll have all made valuable contributions to complexity theory.
In these contributions, some of the highly developed methods
of recursive function theory have been brought to bear on
questions of complexity. In particular, several of Lynch"s
and Moll's results make use of the priority-injury arc,iments
of recursion theory.

The main theorem of Lynch's thesis illustrates the nature of
these results. This theorem is motivated by the Cook-Xarp
result noted earlier in which a class of familiar problems
are shown to be computationally equivalent. Computationally
equivalent problems have solutions that are equally hard to
calculate. Is the converse true? That is, if two decision
problems are known to require the same (large) amount of time
to solve, does it follow that the ability to solve one pro-
blem in no time at all (as by means of an instantaneous
oracle) would provide a way of solving the other problem
quickly? Lynch has shown that for any decision problem wdth a
known lower bound on the time required for solution, there are
arbitrarily complex decision problems that do not help in the
solution of the given problem. This result gives mathematical
meaning to the intuitive assertion that while the Cook-Karp
problems are hard for the same reason, other equally hard
problems are hard for different reasons.

120

■

-*■

 ■■ »mi iMWiiWWilWIWIillillllMiM

THEORY OF AUTOMATA

References

1.

2.

3.

4.

5.

6.

Büchi R. weak Second-Order Arithmetic and Finite

ITlTtO*'sÜfe '• Math- Loqik und Gru^- I «*&'.
Cook S.A., The Complexity of Theorem-Proving
Procedures,Jrd ACM SvmP. on Theory of Computing.

Sv^ = "R;'M
R'L- Gr?ha,n and J-D- OH«««, Worst-Case

Analg^of^Memor^Algorithms, jth^CM Symp. on Theory

Kaiman, R.E., Falb, P.L.. and M.A. Arbib, Topics in
Mathematical Systems Theory. McGraw-Hill, 1H\

Tech' ^oA-'/f Un;tbility ^^ Co">binatorial Problems,
lecn. Repo.t 3. Department of Computer Science
University-ST-California, Berkeley, 1972?

Knuth, D.E., The Art of Computer Programming, vol 3
Addison-WesleTi; (To be published 1972) ' •' 3'

Rabin, M.O., Decidability of Second-Order Theories

121

.

~ • ,

THEORY 0'' AUTOMATA

Publications

1. Bagchi, A., Economy o: Descriptions and Minimal
Indices, Ph.D. Thesis, uepartment of Electrical
Engineering, M.I.T., 1972; also MAC-TM-27, January
19-72, AD 736-960.

2. Brown, K., Lower Bounds for Finite State Machine
Checking Experiments, S.B. Thesis. Department of
Electrical Engineering, M.I.T., 1972.

3. Fischer, M. J. and A. R. Meyer, "Boolean Matrix
Multiplication and Transitive Closure", Conference
Record 1971 12th Annua] Symposium on Switching and
Automata Theory, pp. 129-131.

Horowitz, M. D., Linear Finite Automata and Their
Regular Expressions, S.B. Thesis. Department r»f
Electrical Engineering, M.I.T., 1972.

4.

5. Hossley, R., Finite Tree Automata and M-Automata.
S.M. Thesis, Department of Electrical Engineering,
M.I.T., 1972; also MAC-TR-102, September 1972,
AD 749-367.

6. Kfoury, D., Effective Procedures in Arbitrary
Structures, Ph.D. Thesis, Department of Electrical
Engineering, M.I.T., 1972.

7. Liu, C. L., "Construction of Sorting Plan", Theory
of Machines and Computations, Academic Press, New
York, 1971, pp. 87-9 8.

8. Liu, C. L., "Analysis of Sorting Algorithms", Confer-
ence Record 1^71 12th Annual Symposium on Switching
and Automata Theory, pp. 207-215. ' "

9. Lynch, N. A., Relativization of the Theory of Compu-
tational Complexity, Ph.D". Thesis, Department of
Mathematics, M.I.T., 1972; also MAC-TR-99, June 1972,
AD 744-032.

10. Meyer, A. R. and A. Bagchi, "Program Size and Economy
of Description", Conference Record of 4th ACM Symposium
on Theory of Computing, 1972, pp. 1^3-187.

11.

12,

Meyer, A. R. and E. M. McCreight, "Computationally
Complex and Pseudo-Random Zero-One Valued Functions",
Theory of Machines and Computations, Academic Press,
New York, 1971, pp. 10-42.

Paterson, M. and L. Stockmeyer, "Bounds on Evaluation
Time for Rational Polynomials", Conference Record
1971 12ch Annual Symposium on Switching and Automata
Theory, pp. 132-139.

122

■«*iiriy**frr«[iwP!»i(H»«BM«

THEORY OF AUTOMATA

Publicf.tj.ons (continued)

13. Stockmeyer, L., Bounds on Polynomial Evaluation
Algorithms, S.M, Thesis, Department of Electrical
Engineering, M.I.T., 1972; also MAC-TR-98, April 1972,

14,

AD 740-328.

Vilfan, B., The Complexity of Finite Functions, Ph.D.
Thesis, Department of Electrical Engineering, M.I.T.,
1972; also MAC-TR-87, June 1971, AD 726-049.

123

._. . . ^

flr«,-;«/»M,^^«»«n*st«m*3«WWtaMWewWl«BI

PROJECT MAC PUBLICATIONS

TECHNICAL REPORTS

* TR-1 Bobrow, Daniel G,
Natural Language Input for a Computer

Problem Solving System, Ph.D. Thesis,
Math. Dept.

September 1964 AD 604-730

* TR-2 Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval, Ph.D. Thesis,
Math. Dept.

June 1964 AD 608-499

TR-3 Corbato, Fernando J.
Systam Requirements for Multiple-Access,

Time-Shared Computers
May 1964 AD 608-501

* TR-4 Ross, Douglas T., and Clarence G. Feldman
Verbal and Graphical Language for the

AED System: A Progress Report
May 1964 AD 604-678

TR-6 Biggs, John M. , and Robert D. Logcher
STRESS: A Problem-Oriented Language

for Structural Engineering
May 1964 AD 604-679

TR-7 Weizenbaum, Joseph
OPL-1: An Open Ended Programming

System within CTSS
April 1964 AD 604-680

TR-8 Greenberger, Martin
The OPS-1 Manual
May 1964 AD 604-681

* TR-11 Dennis, Jack B.
Program Structure in a Multi-Access

Computer
May 1964 AD 608-500

TR-12 Fano, Robert M.
The MAC System: A Progress Report
October 1964 AD 609-296

* TR-13 Greenberger, Martin
A New Methodology for Computer Simulation
October 1964 AD 609-288

TR-14 Roos, Daniel
Use of CTSS in a Teaching Environment
November 1964 AD 661-807

Preceding page blank 125

..-.-■.-

• ■

1

PUBLICATIONS

TR-16 Saltzer, Jerome H.
CTSS Technical Notes
March 1965

TR-17 Samuel, Arthur L.
Time-Sharing on a Multiconsole Computer
March 1965

* TR-18 Scherr, Allan Lee
An Analysis of Time-Shared Computer

Systems, Ph.D. Thesis, EE Dept.
June 19G5

TR-19 Russo, Francis John
A Heuristic Approach to Alternate

Routing in a Job Shop, S.B. & S.M.
Thesis, Sloan School

June 1965

TR-20 Wantman, Mayer Elihu
CALCULAID: An On-Line System for

Algebraic Computation and Analysis,
S.M. Thesis, Sloan School
September 1965

TR-21 Denning, Peter James
Queueing Models for File Memory Operation,

S.M. Thesis, EE Dept.
October 1965

* TR-22 Greenberger, M.,rtin
The Priority Problem
November 1965

TR-23 Dennis, Jack B. , and Earl C. Van Horn
Programming Semantics for Multi-

programmed Computations
December 1965

* TR-i4 Kaplow, Roy, Stephen Strong and
John Brackett

MAP: A System for On-Line Mathematical
Analysis

January 1966

TR-25 Stratton, William David
Investigation of an Analog Technique

to Decrease Pen-Tracking Time in
Computer Displays, S.M. Thesis, EE
Dept.

March 1966

TR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character
Generator for Remote Computer Displays
S.M. Thesis, EE Dept.

March 1966

AD 612-702

AD 462-158

AD 470-715

AD 474-018

AD 474-019

AD 624-943

AD 625-728

AD 627-537

AD 476-443

AD 631-396

AD 631-269

126

.'

TR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid

System, S,M. Thesis, EE Dept.
May 1966

TR-28 Smith, Artnur Anshel
Input/Output in Time-Shared, Segmented,
Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1956

TR-29 Ivie, Evan Leon
Search Procedures Based on Measures

of Relatedness between Documents,
Ph.D. Thesis, EE Dept.

June 1966

* TR-30 Saltzer, Jerome Howard
Traffic Control in a Multiplexed

Computer System, Sc.D. Thesis,
EE Dept.

July 1966

TR-31 Smith, Donald L.
Models and Data Structures for Digital

Logic Simulation, S.M. Thesis,
EE Dept.

August 1966

Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis, Ph.D. Thesis, Math. Dept.
September 1966

Norton, Lewis M.
ADEPT - A Heuristic Program for

Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.

October 1966

Van Horn, Earl C., Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing, Ph.D.
Thesis, EE Dept.

November 1966

* r, TR-32

TR-33

TR-34

* TR-35

* TR-36

PUBLICATIONS

AD 633-678

AD 6 37-215

AD 636-275

AD 635-966

AD 637-192

AD 638-446

AD 645-660

AD 650-407

Fenichel, Robert R.
An On-Line System for Algebraic Manipulation,

Ph.D. Thesis, Appl. Math. (Harvard)
December 1966

Martin, William A.
Symbolic Mathematical Laboratory

Ph.D. Thesis, EE Dept.
January 1967

AD 657-282

AD 657-283

127

■

mlmlmlmm J.,,...

PUBLICATIONS

* TR-37 Guzman-Arenas, Adolfo
Some Aspects of Pattern Recognition by

Computer, S.M. Thesis, EE Dept.
February 1967

Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal for Time-
Shared Computers

March 1967

Forte, Allen
Syntax-Based Analytic Reading of
Musical Scores

April 1967

Miller, James R.
On-Line Analysis for Social Scientists
May 1967

Coons, Steven A.
Surfaces for Computer-Aided Design

of Space Forms
June 1967

Liu, Chung L., Gabriel D. Chang
and Richard E. Marks

Design and Implementation of a Table-
Driven Compiler System

July 19S7

Wilde, Daniel U.
Program Analysis by Digital Computer,

Ph.D. Thesis, EE Dept.
August 1967

Gorry, G. Anthony
A System for Computer-Aided Diagnosis,

Ph.D. Thesis, Sloan School
September 196 7

Leal-Cantu, Nestor
On the Simulation of Dynamic Cvstems
with Lumped Parameters and T„me
Delays, S.M. Thesis, ME Dept.

October 1967

Alsop, Joseph W.
A Canonic Translator, S.B. Thesis,

EE Dept.
November 1967

Moses, Joel
Symbolic Integration, Ph.D. Thesis,

Math. Dept.
December 19C7

TR-38

* TR-39

TR-40

TR-41

TR-42

TR-43

TR-44

TR-45

TR-46

* TR-47

AD 656-041

AD 662-027

AD 661-806

AD 668-009

AD 663-504

AD 668-960

AD 662-224

AD 662-665

AD 663-502

AD 6C3-503

AD 662-666

128

wwwwwwwawr^, irfflwSWIKP^WWTO^s^''^^^^^^'''?

PUBLICATIONS

TR-48 Jones, Malcolm M.
Incremental Simulation on a Time-
Shared Computer, Ph.D. Thesis,
Sloan School

January 1968 AD 662-225

TR-49 Luconi, Fred L.
Asynchronous Computational Structures,

Ph.D. Thesis, EE Dept.
February 1968 AD 677-602

* TR-50 Denning, Peter J.
Resource Allocation in Multiprocess
Computer Systems, Ph.D. Thesis,
EE Dept.

May 196 8 AD 6 75-5 •■',

* TR-51 Charniak, Eugene
CARPS, A Program which Solves Calculus

Word Problems, S.M. Thesis, EE Dept.
July 1968 AD 673-670

TR-52 Deitel. Harvey M.
Absentee Computations in a Multi-

Access Computer System, S.M. Thesis,
EE Dept.

August 1968 AD 684-738

* TR-53 Slutz, Donald R.
The Flow Graph Schemata Model of

Parallel Computation, Ph.D. Thesis,
EE Dept.

September 1968 AD 683-393

TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the

Monitoring of a Time-Shared Computer
System, S.M. Thesis, EE Dept.

October 1968 AD 689-468

* TR-55 Rappaport, Robert L.
Implementing Multi-Process Primitives

in a Multiplexed Computer System,
S.M. Thesis, EE Dept.

November 1968 AD 689-469

TR-56

* TR-57

Thornhill, D. E., R. H. Stotz, D. T. Ross
and J. E. Ward (ESL-R-356)

An Integrated "ardware-Software System
for Computer Graphics in Time-Sharing

December 1968 AD 685-202

Morris, James H.
Lambda-Calculus Models of Programming

Languages, Ph.D. Thesis, Sloan School
December 1968 AD 683-394

129

■

■

PUBLICATIONS

TR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive

I'sers to Drive a Time-Shared
computer System, S.M. Thesis,
EE Dept.

January 1969

* TR-59 Guzman, Adolfo
Computer Recognition of Three-
Dimensional Objects in a Visual
Scene, Ph.D. Thesis, EE Dept.

December 1968

* TR-60 Ledgard, Henry F.
A Formal System for Defining the

Syntax and Semantics of Computer
Languages, Ph.D. Thesis, EE Dept.

April 1969

TR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation,

Ph.D. T.iesis, EE Dept.
June 1969

TR-62 Tillman, Coyt C., Jr. (ESL-R-395)
EPS: An Irteractive System for

Solving Elliptic Boundary-Value
Problems dth Facilities for Data
Manipulat: on and General-Purpose
Computation

June 1969

TR-63 Brackett, John W., Michael Hammer,
and Daniel E. Thornhill

Case Study in Interactive Graphics
Programming: A Circuit Drawing
and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969

TR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,

Sc.D. Thesis, EE Dept.
September 1969

* TR-65 DeRemer, Franklin L.
Practical Translators for LR(k)

Languages, Ph.D. Thesis, EE Dept.
October 1969

* TR-66 Beyer, Wendell T.
Recognition of Topological Invariants
by Iterative Arrays, Ph.D. Thesis,
Math, Dept.

October 1969

AD 686-988

AD 692-200

AD 689-305

AD 690-887

AD 692-462

AD 699-930

AD 697-759

AD 699-501

AD 699-502

130

T
tmtmumi) *•»■ "MtmmmmtmmmMr^amiwwmmmma

PUBLICATIONS

* TR-67 Vanderbilt, Dean H.
Controlled Information Sharing in

a Computer Utility, Ph.D. Thesis,
EE Dept.

October 1969

* TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use:

Initial Tests and Implications for
the Computer Utility, Ph.D. Thesis,
Sloan School

June 1970

* TR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories

for Parallel Computation, Ph.D.
Thesis, EE Dept.

June 1970

* TR-70 Fillat, Andrew I., and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations, S.B. &
S.M. Thesis, EE Dept.

June 1970

* TR-71 Fiasconaro, James G.
A Computer-Controlled Graphical

Display Processor, S.M. Thesis,
EE Dept.

June 1970

TR-72 Patil, Suhas S.
Coordination of Asynchronous Events,

Ph.D. Thesis, EE Dept.
June 1970

* TR-73 Griffith, Arnold K.
Computer Recognition of Prismatic

Solids, Ph.D. Thesis, Math. Dept.
August 1970

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to Integral!zation,
Sc.D. Thesis, EE Dept.

August 1970

TR-75 Hftbalkar, Prakash G.
Deadlock-Free Shari.g of Resources

in Asynchronous Systems, Sc.D.
Thesis, EE Dept.

September 1970

AD 699-503

AD 710-011

AD 711-091

AD 711-060

AD 710-479

AD 711-763

AD 712-069

AD 712-070

AD 713-139

131

iWSIIIIIWtWBMWWM^aWBWMWMMMMWMMi

PUBLICATIONS

* TR-76 Winston, Patrick H.
Learning Structural Descriptions

from Examples, Ph.D. Thesis, EE
September 1970

TR-77 riaggerty, Joseph P.
Complexity Measures for Language

Recognition by Canonic Systems,
S.M. Thesis, EE Dept.

October 1970

Dept:.
AD 713-988

AD 715-134

TR-78 Madnick, Stuart E.
Design Strategies for i'ile Systems,

S.M. Thesis, EE Dept. & Sloan School
October 1970

1R-79 Horn, Berthold K.
Shape from Shading: A Method for

Obtaining the Shape of a Smooth
Opaque Object from One View,
Ph.D. Thfesis, EE Dept.

November 1*70

TR-80 Clark, David D., Robert M. Graham,

* TR-81

* TR-82

TR-83

* TR-84

AD 714-269

AD 717-i36

Jerome H.iSaltzer and Michael D. Schroeder
The Classroom Information and Computing

Service
January 1971i

Banks, Edwin R.
Information Processing and Transmission

in Cellular Automata, Ph.D. Thesis,
ME Dept.

January 1971

Krakauer, Lawrence J.
Computer Analysis of Visual Properties

of Curved Objects, I'h.D. Thesis,
EE Dept.

May 1971

Lewin, Donald E.
In-Process Manufacturing Quality

Control, Ph.D. Thesis, Sloan School
January 1971

Winograd, Terry
Procedures as a Representation for

Data in a Computer Program for
Understanding Natural Language,
Ph.D. Thesis, Math. Dept.

February 1971

AD 717-857

AD 717-951

AD 723-647

AD 720-098

AD 721-399

132

PL3LICATI0NS

TR-85 Miller, Perry L.
Automatic Creation of a Code Generator

from a Machine Description, Elec. E.
Decrree, EE Dept.

May 1971

TR-86 Schell, Roger R.
Dynamic Reconfiguration in a Modular
Computer System, Ph.D. Thesis,
EE Dept.

June 1971

TR-87 Thomas, Robert H.
A Model for Process Representation

and Synthesis, Ph.D. Thesis, EE Dept.
June 1971

TR-88 Welch, Terry A.
Bounds on Information Retrieval

Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept.

June 1971

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-

scale Time-Shared Decision
Systems, S.M. Thesis, Sloan School

July 1971

TR-90 Lester, Bruce P.
Cost Analysis ot Debugging Systems,

S.M. & S.B. Thesis, EE Dept.
September 1971

* TR-91 Smoliar, Stephen W.
A Parallel Processing Model of

Musical Structures, Ph.D. Thesis,
Math. Dept.

September 1971

TR-92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation, Ph.D.
Thesis, Math. Dept.

October 1971

TR-9 3 Greif, Irene Gloria
Induction in Proofs about Programs

S.M. Thesis, EE Dept.
February 1972

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata

by Petri Nets, P.M. Thesis, EE Dept.
February 1972

AD 724-730

AD 725-859

AD 726-049

AD 725-429

AD 728-036

AD 730-521

AD 731-690

AD 732-005

AD 737-701

AD 740-320

133

. ■

T

PUBLICATIONS

TR-95 Fateman, Uichard J.
Essays in Algebraic Simplification,

(A revision of a Harvard Ph.D. Thesis)
April 1972

TR-95 Manning, Frank
Autonomous, Synchronous Counters

Constructed Only of J-K Flip-Flops,
S.M. Thesis, EE Dept.

May 1972

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions,

Ph.D. Thesis, EE Dept.
March 1972

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation

Algorithms, S.M. Thesis, EE Dept.
April 1972

'rR-99 Lynch, Nancy Ann
Relativization of the Theory of
Computational Complexity, Ph.D. Thesis,
Math. Dept.

June 1972

TR-100 Mandl, Robert
Further Results on Hierarchies

of Canonic Systems, S.M. Thesis,
EE Dept.

June 19 72

TR-101 Dennis, Jack B.
On the Design and Specification of

a Common Base Language
June 1972

AD 740-132

AD 744-030

AD 739-678

AD 740-328

AD 744-032

AD 744-206

AD 744-207

********i,****i,*i,*i,i,i,*i,i,i,i,i,i,i,*ti,i,i,i,i,i,i,i,i,1,i,il

TR's 5, 9, 10, 15 were never issued

134

TECHNICAL MEMORANDA

PUBLICATIONS

TM-10 Jackson, James N.
Interactive Design Coordination for

the Building Industry
June 1970

* TM-11 ward, Philip w.
Description and Flow Chart of the

JulyP1970 Communications Package

* TM-12 Graham, Robert M.
File Management and Related Topics

(Formerly Programming Linguistics
Group Memo No.6, June 12, 1970)

September 19 70

* TM-13 Graham, Robert M.
Use of High Level Languages for
Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

September 1970 *'»»;

* TM-14 Vogt, Carla M.
Suspension of Processes in a Multi-
processing Computer System
(Based on S.M. Thesis, EE Dept..
February 1970)

Septembar 1970

Zilles, Stephen N.
An Expansion of the Data Structurvm

Capabilities of PAL
(Based on S.M. Thesis, EE Dept ,
June 1970)

Ocw^her 1970

TM-15

* TM-16 Bruere-Dawson, Gerard
Pseudo-Random Sequences

(Based on S.M. Thesis,
June 1970)

October 1970

EE Dept.,

TM-17 Goodman, Leonard I.
Complexity Measures for Programming

Languages, (Based on S.M. Thesis,
EE Dept., September 1971)

September 1971

* TM-18 Reprinted as TR-85

* TM-19 Fenichel, Robert R.
A New List-Tracing Algorithm
October 19 70

AD 708-400

AD 711-379

AD 712-068

AD 711-965

AD 713-989

AD 720-761

AD 713-852

AD 729-011

AD 714-522

135

mmmmmmmHmic*,«****..***^.**^^.. jmwm

PUBLICATIONS

* TM-20 Jones, Thomas L.
A Computer Model of Simple Forms

of Learning, (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971

* TM-21 Goldstein, Robert C.
The Substantive Use of Computers

for Intellectual Activities
April 1971

TM-22 Wells, Douglas M.
Transmission of Information Between

a Man-Machine Decision System and
Its Environment

April 1971

TM-23 Strnad, Alois J.
The Relational Approach to the

Management of Data Base."
April 1971

* TM-24 Goldstßin, Robert C. and Alois J. Strnad
The MacAIMS Data Management System
April 1971

* TM-25 Goldstein, Robert C.
Helping People Think
April 1971

TM-26 lazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation

June 19 71

TM-27 Bagchi, Amitava
Economy of Descriptions and

Minimal Indices
January 1972

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972

TM-29 Hossley, Robert and Charles Rackoff
The Emptiness Problem for Automata

on Infinite Trees
Spring 1972

AD 720-337

AD 721-618

AD 722-837

AD 721-619

AD 721-620

AD 721-998

AD 733-965

AD 736-960

AD 743-487

AD 747-250

t************************-******************

TM's 1-9 were never issued

136

.

■■»■■M«PBI
WHI»',I»JIUWW

PUBLICATIONS

Project MAC Progress Report I
to July 1964

Project MAC Progress Report II
July 1964-July 1965

Project MAC Progress Report III
July 1965-July 1966

Project MAC Progress Report IV
July 1966-July 1967

Project MAC Progress Report V
July 1967-July 1968

Project MAC Progress Report VI
July 1968-July 1969

Project MAC Progress Report VII
July 1969-July 1970

Project MAC Progress Report VIII
July jp/O-July 1971

Project MAC P.agress Report IX
July lS71-July 1972

AD 465-088

AD 629-494

AD 648-346

AD 681-342

AD 687-770

AD 705-434

AD 732-767

AD 735-148

ar^rcrSlo6^' H'T"^ 22151- The ^2"rams
yelrs old S6 nn $«i? L?ard ^P1!81 sports more than two
«T-« ec «A9 mu' a11 others are $3.00 except TR-83 which is
also $6.00. The AD number must be supplied with the request.

»Out-of-print, may be obtained from NTIS (see above).

137

. .

