AD-756 689

PROJECT MAC PROGRESS REPORT IX,
JULY 1971 TO JULY 1972

Edward Fredkin

Massachusetts Institute of Technology

Prepared for:

Office of Naval Research

Advanced Research Projects Agency
Defense Supply Service Administration
Rome Air Development Center

National Science Foundation

February 1973

DISTRIBUTED BY.

g
P
§
.

AU A

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

i’ N S s i e 4 e

- I A e A S o P e

e

2

/

¢

The work reported herein was carried out within Project MAC, an

interdepartmental laboratory. Support was provided by:

The Advanced Research Projects Agency
of the Department of Defense, under
Office of Naval Research Contracts:
N00014-70-A-0362-0051, and
N00014-70-A-0362-0004;

The Office of Naval Research, under
contract N00014-69-A-0276-0002;

The National Science Foundation, under
contract GJ00432;

The Defense Supply Service Administration,
under contract DAHC-15-69-C-0347;

Rome Air Development Center, under
contract F30602-72-C-0001.

The Lover igd an excerpt of the pronf of

he main ., ¥ Meyer and Stockmeyer's

~papér, "The Equivalence Problem for Regular
Expressions with Squaring Requires Exponential
Space",

The equations reveal how certain notations
from automata theory (called reqular expressions)
can describe the behavior of Turing machines,
from which it follows that the equivalence
problem for regular expressions is inherently
difficult to decide, no matter what procedure
is used to decide equivalence.

g ST >¢W'Ww?){ (TR PR g Y

A

10

FD ZSE E PP

b ey [S ; [

PERSONNEL

- Mt
WOFEE e W
L or g AUTOMATIC PROGRAMMING

PROJECT MAC

PROGRESS REPORT IX COMPUTATION STRUCTURES
JULY 1971 to

JULY 1972
COMPUTER SYSTEMS RESEARCH

DYNAMIC MODELING, COMPUTER GRAPHICS,
AND COMPUTER NETWORKS

EDUCATIONAL COMPUTER SYSTEMS

MATHLAB

PLANNER

Reproduced by SIMPL

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Deportment of Commerce
Soringfield VA 22151
THEORY OF AUTOMATA

PUBLICATI1ONS

=

=

=

e~

s chmtoes o

TABLE OF CONTENTS

PERSONNEL
PREFACE
I AUTOMATIC PROGRAMMING
11 COMPUTATION STRUCTURES
A. Petri Nets
B. Arbiters
C. Computation Schemata
D. Inductive Proofs of Program Properties
E. A Computer for General Data Types
IIT COMPUTER SYSTEMS RESEARCH
A, Progress Report)
1. Introduction
2. Multilevel Storago tlinagement
3 ARPA Network
4, Performance Model
5r Protection of Programs and Data
6. Follow-On Hardware
ir Maintenance of Multics
8. MPM Upgrade
9. Programming Languages
B. Future Plans

v DYNAMIC MODELINf, COMPUTER GRAPHICS, AND
COMPUTER NETWORKS

A. Introduction

B. Motivation

&k Over-All Plan of the Dynamic Modeling
System

D. Opposition and Confluence of Two
Philosophies

E. MUDDLE

F. CALICO

G. Documentation

H. Modeling

A" EDUCATIONAL COMPUTER SYSTEMS
A. Present Work
B. Future Work
VI MATHLAB

A, The Hardware and Time-Sharing System

B. Consolidation of MACSYMA Software

C. New Subsystems

D. The New LISP Ccmpiler

E. CONNIVER

F. The MACSYMA Experience

G. Future Directions
1. Improvements to the Current System
2. Subsystems for Important Areas of

Application

3 Research on New Algorithms

H. SIGSAM

17
21
36
40

47

49
49

51
51
52
53

53
54

57
59
59

60

UNCLASS T IED e ? 7
Seeunty Classifioaty on 0 m
DOCUMENT CONTROL DATA-R& D ©

'y dasaifi atoan ol bitfe p gy f ol L it ey NP TOTATE B st by erterid W e 11 Svetadl peporr oy

o ihed
AN, AT vy P ATAte authye, L HEE G g ST Akt i "
SMASSACHUSE TS ENSTITUTE OF TECHMOLOGY ('N(ZI,ASiﬁ FIED
26 GG T

NONE

PROJECT MAC

S
SomEMORT i)

PROGRESS REPORT IX, JULY 1971 to JULy 1972

b—
4L ONCINBE Y E NOTES Type ol report and i tusia e dates)

ANNUAL SCIENTIFIC REPORT

Y AUTHCR.L I Frrst neme, middie il tast name,

Collection of reports from Project MAC rarticipants, editeq by
Prof. Edward Fredkin, Director of Project MaC

BT CENRT 'S TOT AL WO DF RagGES |.--'\- W3 aF miey
FEHHURRT, 1873 137 | 148

- TTERAL Y mE QA T 1o — 98 DRIGNATOR'S NE‘-'ONTN\MBLH(sl
N00014—70—A—0362—0001 (ARPA)
N00014—70—A—0362~0004 (ARPA) MAC PR IX
N00014—69—A—0276—0002 (ONR)
GJ00432 (NSF) [+r 3,,'.:‘,',:‘,75”"' MOUSI (Any other nunbers that may e sesigned
DAHC-15-69-C-0347 (DssA) NONE
F30602-72-C-0001 (RADC) .

1L CISTRIBUTION STATEMERNT

DISTRIBUTION OF 1118 DOCEMENT IS UNLIMITED

fALPPLLMENTARY NOTES 12 SPONSORING MILI TANY AC TIVITY

ADAVNCED RESEARCH PROJECTS AGENCY;
OFFICE CF NAVAL RESEARCIH; NATTONAL
SCIENCE FOUNDATION; DEFENSE SUPPLY

T oApsTRaCT

SERVICE ADMINISTRATION; ROME AIR
DEVELOPMENT CENTER

The broad goal of Project MAC is investigation of new ways in

which computers can aid people in their individual work.

This is the ninth annual Progress Report summnarizing the research
carried out under the sponsorship of Project MAC. Details of
this research may be found in the publications listed at the end
of each section and at the end of this report.

DD "%.1473 vaot 1) UNCLASS [FIED

S CIE2 014 6 h00 R Secunty Classification

Ib

UNCLASSIFIED

‘Security Clanaification

KEY WOROS

LINK &

LiNk B

LINK ¢

HOLE

ROLE

wT

ROLE

wT

Artificial Intelligence
Computer Networks
Computation Structures
Dynamic Modeling
Graphics

Hybrid Circuits
Information Systems
Inte.active Management
Machine-Aided Cognition
Multiple-Access Computers
On-Line Computers
Programming Linguistics
Real-Time Computers
Taeory of Automata
Time-Sharing

D

Fove1473 (8ack)

(PAGE 2)

UNCLASSIFIED

Security Classification

VII

VIII

€
TABLE OF CONTENTS (continued)
’

PLANNER

ERsRRe R -]

G.
I,
I.
J.
K.

SIMPL
A.
B.

THEORY
A,
B.
©F.

Adding Knowledge

Monitors

Ports

Data Structure Definitions
Generator

Process

Pattern Matching

Pattern Directed Retrieval
Pattern Directed Invocation
Simultaneous Goals

The Fire in the Warchouse

Summary
Review of the Past Year

OF AUTOMATA

Inherently Complex Decision Problems
Combinatorial Algorithms

Computation by Automata

1. Grammatical Transformations

2. Fault Detection

gk Linear Machines

4. Schemas for Programs

53 Complexity of Boolean Functions

Project MAC Publications

iii

95
98
98
98
98
99
100
100
100
100
100
101

105
107
107

109
111
113
116
116
117
117
118
119

125

o

PROJECT MAC PERSONNEL

JULY 1971 to JuLy 1972

Administration .

Prof. E. Fredkin Director

D. C. Scanlon Administrative Officer

G. B. Walker Business Manager

A. E. Egendorf Director of Information Services
B. H. Kohl Librarian

Academic Staff

Prof. F. J. Corbato Prof. J. C. R. Licklider
Proi. J. B. Dennis Prof. C. L. Liu

Prof. M, L. Dertouzos Prof. W. A. Martin

Prof. J. J. Donovan Prof. A. R. Meyer

Prof. P. M. Fano Prof. J. Moses

Prof. E. Fredkin Prof. N. p. Negrcponte
Prof. G. a. Gorry Prof. S. s, Patil

Prof. F. C. Hennie Prof, J. H. saltzer
Prof. C. Hewitt Prof. J. Weizenbaum

Prof. M., M. Jones

Instructors, Research Associates, Research Assistants and Others

J. Aiello R. G. Bratt R. Cohen

P. M. Allaman D. Bricklin B. K. Daniels

N. Amerasinghe D. J. Brown T. L. Pavenport
Y. S. Auyang G. P. Brown T. M. Demchock
A. Bagchi K. M. Brown J. D. DeTreville
H. G. Baker R. H. Brown D. R. Dick

R. Barquin S. S. Brown A. R. Downing

C. G. Benedict B. Carlson A. C. England

P. B. Bishop D. D. Clark J. F, Farrell

Preceding page blank v

Inst-uctors,

Research Associates,

Research

Assistants

J. Fateman

and Others (cont,)

D.

Ferrante P,
J. Fleischer D.
Folger P.
Forsdick D.
Fosseen J.
J. Fox R.
M. Fox J.
M. Frankston P.
Furtck D.
M. Gearing P.
R. Genesereth M.
Godfrey D.
I. Goodman J.
S. Greenberg Sk
Gregory S.
Greif R.
E. Guertin P.
A. Gumpertz R.
M. Haas B.
Hack J.
M. Hammer W.
V. Harrington J.
Harris N.
T. Hawryszkiewycz C.
A. Henderson S.
F. Hossley S.
W. Hughett C.

H. Hunt

M. Hutchins
L. Isaman
Jessel
Johnson

W. Johnson
Johnston
Kaplan

A. Karger
J. Kfoury
A. King
Knaur
Koenig

Kok

Kruger

Kuo

S. Lamson
D. Lebling
Lefkowitz
Lester

P. Linderman
J. Long

B. Lotspiech
A. Lynch
Lynn

M. Macrakis
E. Madnick

Mah

vi

W.
H.

L.

Mandl

Manning

A.

A.

McCray
Meldman
Miller
Miller
Moll
Montes
Moon
Moore
Morgenstern
Morton
Nortiwup
Okr >nt
Perrin
Peskin

Pfister

Piggins

T.

E.

Pogran

Qualitz

Rackoff

Ramchandani

P.

Reed
Rhoads
Rosen
Rosenberg
Rotenberg

Rumbaugh

Instructors, Research Associates, Re

search Assistants

Ruth

Sabath

E. Saunders

J. Scheffler
D. Schroeder

I. Seiferas

Sekino

S. feriff
G. Shaw

M. Seigel
R. Sloan
J. Smith
J. Steiger

J. Ablowitz

L. Alter
C. Amyot
R. Banks
K. Bhushan
H. Black
A. Bogen

F. Brescia
D. Bressler
S. Broos

L. Brown

and Others (cont.)
J. A. Stern cC.
R. A. Stern i
J. R. Stinger S.
L. Stockmeyer R.
S. M. Stoney J.
J. R. Taggart R.
S. Tepper F.
R. {. Thurber cC.
B. M. Trager L.
E. Tsiang S.
L. Tsien cC.
S. R. Umarii R.
B. Vilfan
DSR Staff

B. Byer R.
H. 0. Capps J.
M. A. Cohen R.
D. G. Cressey P.
J. S. D'Aversa R.
M. 5. Draper J.
A. D. Egendorf J.
R. J. Feiertag R.
S. W. Galley F.
C. C. Garman B.
M. J. Ginzberg M.

vii

M. Vogt
S-H. Wang
A. Ward

W. Weissberg
Wish

T. Wong

T. Yao
Ying

Yun
Zaborowski
Ziering

s Zippel

P. Goldberg
P. Golden
C. Goldstein
M. Gunkel
J. Harman
' Havert
P. Jarvis

K. Kanodia

Y. Knight
H. Kohl
Lenot

I. Levin

F. Mabee

J. Martin

M. Metcalfe
W. Meyer, Jr.
C. Mighener
I. Morris
Nieveréelt

B, Nilés

C. Owens

A. Padlipsky

H. Alpert
S. Auvang
G. Bajoria
G. Benedict
G. Bratt
Bricklin
R. Brodie
L. Brooks
M. Brown
H. Brown
S. Brown
L. Caruso
Y. Chan

J. Chang
S. Cohen

C. Conklin

Staff (cont.)

Undergraduate Students

G. Pant:_.oune
G. Peltan
Phillips

L. Reeve

P. Rothschild
C. Scanlon
Schroeppel
Skinner

Spall

J. Spier

G. Curley

E. Cutler

L. Davenport
M. Demchock
R. Dick

R. Downing
Elkin

A. Freedman
E. Geer

R. Genesereth
Godfrey

A. Green

A. Guida

H. Guldberg
H. Gumpertz

A. Hannah

viii

J. Strnad
Sunguroff
Vezza

L. Voydock
B. Walker
C. Watson
B. Weaver
H. Webber
M. Wells

L. White

V. Harrington
Harris

H. Harris

D. Horowitz
F. Hui

Kant

A. Karger

M. Katz

A. Kessel

J. Kim

N. King

V. Kohn

Kok

M. Krackhardt
S. Lamson

K. Leung

Undergraduate Students (cont.)

S. M. Macrakis R. L. Prakken H. J. Seigel
W. S. Mark D. P. Reed S. M. Stoney
D. Misunas K. G. Rhoads R, Swift
D. A. Moon E. C. Rosen J. D. Sybalsky
W. Y. Ng L. M. Rubin C. D. Tavares
B. Niamir N. D. Ryan B. M. Trager
G. Favel S. Sadeq E. Tsiang
L. S. Perrin S. E. Saunders M. E. Wolfe
G. L. Peskin J. C. Schaffert R. E. Zippel
J. Phillips R. M. Seigel

Support Staff
M. E, Baker C. P, Doyle E. F. Nangle
5. A. Bankole-Wright C. T. Falls K. W. Pierce
M. A. Bizot L. L. Gammell S. Pitkin
M. S. Broos A. M. Garrity N. J. Robinson
G. W. Brown J. A. Haley E. M. Roderick
0. D. Carey L. J. Haron A. Rubin
L. S. Cavallarc A. J. Hicks A. C. Simmons
M. T. Cheney R. F., Hill K. K. Simpson
S. J. Cohn D. L. Jones A. H. Speare
M. J. Connell D. Kontrimus A, G. Testa
M. Cummings J. S. Lague M. F. Webber
S. Daise E. Y. Lewis L. E. Yaple
J. A. Darcy E. T. Moore
B. Doyle B. A. Morneault
P. Azema A. Endo M. Miyazaki
Prof. J. Berger Prof. M. Greenberger L. Priese
Prof. J. I. Elkind Prof. K. Ikeda

ix

PREFACE

Project MAC was established in 1963 as an interdepartmental
laboratory a‘ the Massachusetts Institute of Technology, to
do research in Multiple Access Computer Systems and Machine
Aided Coonition. This effort resulted in the development
of the CISS and Multics Systems, Project MAC is currently
movinc toward a major effort in Automatic Programming.

During the year ending June 30, 1972, there were 325
persons associated with Project MAC. They included: 21 faculty
members, mainly from the Department of Electrical Engineering,
Department of Mathematics and from the Alfred P. Sloan School
of Management; 103 staff members, (DSR Staff and Support Staff),
195 students, (both Undergraduate and Graduate), and 8 quests.

This year, through extensive discussions and consultations
both within and outside of M.I.T., Project MAC arrived at
its new focus on Automatic Programming. One effort in Automatic
Programming involves a system, which has embedded in it, extensive
knowledge of the subject for which the programming is being
automated. The other effort is based on making it easier
to build large programs from simplier programs. The first
effort is being carried out in the newly formed Automatic
Programming Group while the second approach is being carried
out in the Dynamic Modeling Group.

The Automatic Programming Group plans to construct Proto-
systems of increasing complexity to gain experience in embedding
knowledge into systems. This task requires new programming
techniques and languages. Two new languages called PLANNER
and CONNIVER, which have come cut of the Artificial Intelligence
efforts at M.I.T., seem the most promising languages for embedding
knowledge into systens. Development and implementation of
these languages is in progress.

The Mathematical Laboratory System, MACSYMA, can now
carry out many symbolic manipulatiens previously considered
very difficult. It can, for example, factor polynomials in
several variables and do so very efficiently.

As the Multics development effort has tapered off, the
Computer Systems Research Group has shifted its attention
to security and protection in Computer Systems. In conjunction
with Honeywell, Inc., new follow-on hardware for Multics was
specified, which is especially tailored to make Multics secure
and efficicnt., This will be in operation early in 1973,

The Computation Structures Group has continued its investi-
gation into base languages, varallel processing schemata and
the means for description and realization of digital systems.
The Automata Theory Group has now focused its attention toward
investigating the complexity of algorithms.

X1

Preceding page blank

o L

Duriny the past year, the basic program of Project MAC
was supported by the Information Processing Techniques Directorate
of the Advanced Research Projects Agency (ARPA). Individual
projects were funded by several other agencies; Dynamic Modeling
by the Behavioral Sciences Directorate of ARPA; Programming
Generality by the National Science Foundation; and the implemen-
tation of PLANNER by the Office of Naval Researcnh.

Xii

AUTOMATIC PROGRAMMING

Prof. W. A. Martin

Instructors, Research Associates, PResearch Assistants and Others

J. D. DeTreville W. D. Northup
A. C. England J. L. Rosenberg
L. I. Goodman G. Ruth
M. L. Morgenstern

Undergraduate Students
W. S. Mark B. Niamir

DSR Staff
S. L. Alter M. J. Ginzberg
E. R. Banks J. P. Jarvis
J. 8. D'Aversa A. Sunguroff
Support Staff

B. Doyle J. S. Lague

Ao

R TRY TR TIR] Y SO R SMSRT | (N T R) U — g, TORgy | pm—— -

'y R N —

AUTCMATIC PROGRAMMING

The automatic programming group has been formed to investigate
the generation of programs from descriptions of the actions
the programs are to perform, rather than from a description

of how these actions are to be performed. To do this, pro-
gram generating programs must have a knowledge of possible
methods which could be used to perform the actions. They
must also know how to select methods appropriate to a given
prroblem.

Current day compilers are examples of program generating pro-
grams. hey have a knowledge of machine Structure and they
attempt tco find the best series of register operations to per-
form a desired result such as the multiplication of a series
of numbers., To do this requires some search, but primarily

it is a matter of incorporating into the compilers good tech-
niques for the situations which are known to occur.

In order to extend the program writing capabilities of pro-
groms beyond what current compilers can do, it will be neces-
sary to incorporate into them knowledge about specific pro-
blem areas. As with compilers, che problem is to represent
this knowledge in the machine iu a way that it can be employed
witl, very little search.

The group has choscn to center its initial investigation in
the area of management-information systems. This is because
a) the automation of programming in this area would be of
great practical importance, b) much can be done by solvinu
problems of data and file structures, searching, sorting, and
scheduling which are quasi-universal in programming c) the
area provides a good spectrum of problems of increasing
difficulty. A prototype system is being constructed and
should be yielding initial results in a few months. The sys~-
tem contains two major components; the first is for the inter-
active specification of what logical information processing
is to be done, the second is for the automatic realization of
this processing on a specific ccmputing system.

Automatic realization of the processing requires the design

of a series of data files and programs which do the specified
processing at minimum cost. Two methods of measuring cost

seem plausible for investigation: the charging scheme supplied
with the IBM 0S/360 MVT operating system and the evaluation
prcocedure used by the SCERT computer systems simulation pack~
age. The IBM scheme is simpler and is being incorporated into
the initial prototype system,

Generation of the files and programs has been broken into two
phases. The first phase constrains the files and programs to
a specific design. The second phase generates PL/I and JCL

to realize this desiyn on an IBM/370 computer. Three methods
of implementing the first phase are under investigation. The
first method is to provide a series of commands so that a user
can design the files and programs interactively and then es-
timate the cost of competing designs. The system checks that
all of the user's design decisions arc feasible anda consistent.
The user is also able to ask questions about a partial design.
The second method involves the use of search and heuristics to
generate a design automatically. The heuristics satisfy the
high —olume processing requirements first and rely on the

3

Preceding page blank

AUTOMATIC PROGKRAMMING

assumption that a costly partial design does not often lead

to the best total design. The third method is to formulate
the problem as an integer programming problem and to seek an
optimal solution through sophisticated integer programming
techniques. It is possible that optional solutions will take
much longer to find than good solutions, without being appre-
ciably better. However, optimal solutions to carefully chosen
problems should Lelp us to understand the performance of our
heuristic routines.

Our current thoughts are that the interactive design of the
processing to be done will proceed in two phases. The first
phase will be the discusson with knowledgeable routines of the
particular ways certain standard problems such as inventory
control are to be handled. 1In the second phase the system
will apply these methods to generate an information system for
a particular configuration of physical assets operating with

a specified corporate plan. During this phase specific pro-
blems may require further interactive design.

In addition to this central thrust, the group is also explor-
ing related questions such as the analysis of programs and
sponsoring the development of LISP on MULTICS.

iy

T

AUTOMATIC PROGRAMMING

Publications

1.

10.

Fateman, R. J., Essays in Algebraic Simplification,
Project MAC, M.I.T., MAC-TR-G5, April 1972, AD 740-
132.

Fateman, R. J., "Rationally Simpli{yinq Non-Rational
Expressions", SIGSAM Bulletin, No. 23, July 1972,
pp. 8-9.

Martin, W. A., "Determining the Equivalence of
Algebraic Expressions by Hash Coding", Journal of the
ACM, Vol. 8, No. 4, October 1971, pp. 549-558.

Martin, W. A., "Sorting", Computing Surveys, Vol. 3,
No. 4, December 1971, pp. 147-174.

Martin, W. A., and D. N. Ness, "Optimizing Binary
Trees Grown with a Sorting Algorithm", Communications
of the ACM, vol. 15, No. 2, 1972, pp. 88-93.

Moses, J., "Algebraic Simplification: A Guide for the
Perplexed", Communications of the ACM, Vol. 14, No. 8,
August 1971, pp. 527-537.

Moses, J., "Symbolic Inteqration: The Stormy Decade",
Communications of the ACM, Vol. 14, No. 8, August 1971,
pp. 548-560.

Moses, J., "Toward a General Theory of Special Func-
tions", Communicatiors of the ACM, Vol. 15, No. 7,
July 1972, pp. 550-534.

Wang, P. €., Evaluation of Definite Integrals by
Symbolic Maripulation, Ph.D. Thesis, Department of
Mathematies, M.I.T., 1971; also MAC-TR-92, Octnber
1971, AD 732-005.

Wang, P. S., "Application of MACSYMA to an Asymptotic
Expansion Problem", Proceedings of the ACM 25th
Annual Conference, Auqust 1972, pp. 844-850.

Publications In Progress

Fateman, R. J., and J. Moses, "Canonical Forms for
First Order Exponential Expressions",

Fateman, R. J., "Comments on Problem 2".
Fateman, R. J., "On the Computation of Powers of
Polynomials".

Wang, P. S., "Factoring Multivariate Polynomials Over
the Integers".

Yun, D. Y. Y., "An Application of MACSYMA to Proving

the Achievability of the | Q%L 1M for Evaluation of

AUTOMATIC PROGRAMMING

Publications f1n Progress (continued;

General Non-monic Polynomials of Degree n*,

Yun, D, v. Y., "On the Efficiency of the Dijkstra
Algorithm",

Yun, D. v. v,, v“on Symbolic Solutions of Systems of
Algebraic Equations",)

Moses, 7., "Algebraic Manipulation", a set of lectures
given at the Computer Science Seminar, Bonn, Germany,
Augusv 1971,

Moses, 7., "Algebraic Manipulation", given at the

Joint Colloquium of the Departments of Mathematics

ard Computers g Communications, University of Michigan,
Ann Arbor, Michigan, November 1971,

Prof. R. M. Fano

COMPUTATION STRUCTURES

Prof. J. B. Dennis

Academic Staff

Prof. S, S. pPatil

Instructors, Research Associates, Research Assistants and Others

N.

HE2HHEMY G um

Amerasinghe
G. Baker
Barquin

B. Bishop
Cohen
Fosseen

J. Fox
Furtek

M. Gearing
Greif

Hack

T. Hawryszkiewycz

G. Bajoria
J. Kim

K. Leung
Misunas

Nievergelt

A. Morneault

A. Henderson
Lecster

P. Linderman
B. Lotspiech
A. Meldman
E. Qualitz
Ramchandani
J. Rotenberg
E. Rumbaugh
J. Steiger
R. Umarji

hryvagrnugaggwo

Undergraduate Students

J. Phillips

S. Sadeq

J. C. Schaffert
R. Swift

DSR Staff

SuEEort Staff

A, Rubin

COMPUTATION STRUCTURES

The Computation Structures Group is concerned with the
analysis of fundamental issues arising in the design and
construction of general-purpose computer systems through the
formulation and study of appropriate abstract models. The past
year has seen new developments in the theory and application
of Petri nets as a model of systems of interacting parts,
improved techniques for realizing digital systems with assur-
ance of correct operation, development of the theory of data
flow schemata, and contributions to the study of program
correctness and programming gencrality.

A. Petri Nets

Our research relating to Petri nets is concerned with the
theory of Petri nets, the relation of nets to logic circuits
and asynchronous modular systems, and the use of Petri nets as
a model for the behavior of systems of interacting parts,
including systems within and outside the domain of computer
science.

Timed Petri Nets

Chander Ramchandani is investigating the use of Petri net
models in the performance analysis of systems. Petri nets
(8, 5) are an attractive model for studies of system performance
because the important interactions between system parts are
easily represented. Petri nets represent the ordering relation-
ship of events in a system that mark the initiation and
teriinacion of activities, but do not represent the timing of
events or durations of activities. For performance analysis
the Petri-net model of a system must be augmented with timing
information.

In a Pevri net (Figure 1), the firing of a transition may
represent an interval of activity by some system part. If the
transition is enabled (at least one token in each of its input
places) it means that activity of the system part may begin.
We associate initiation of activity with picking up one token
from each input place, and termination of activity with adding
one token to each output place. This corresponds to consider-
ing the transition to be two transitions and a place p as in
Figure 2.

Figure 3 shows a timed Petri net obtained by associating
time parameters with certain transitions of the net in Fiqure
1. In a timed net transitions without time parameters repre-
sent sequencing constraints on activities as in a conventional
Petri net. Action of a timed transition may be explained in
terms of Figure 2, where the time parameter T(t) is associated
with place p. Transition t' may fire immediately when enabled
or any time later (providing it remains enabled). Then trans-
ition t" becomes enabled and fires exactly 1(t) time units
after the firing of t'. Thus the firing of transitions t' and
t" represents initiation and termination of one instance of the
activity represented by transition t. It is possible for a
transition t in a timed net to be re-enabled before a
previously initiated instance of the associated activity has
terminated. 1In fact, many instances of the activity may be in

Preceding page blank 2

COMPUTATION STRUCTURES

tronsition

place

token

Figure I. A Petri net.

Figure 2. Meaning of a timed transition.

10

COMPUTATION STRUCTURES

a
(o) = 5
(b)) = 2
Figure 3. A timed Petri net.
{a) a timed marked graph (b) periadic schedule
n/-r""'.""\\b c
] [] transition a:2-5, 8-il, 14-17,
\‘""—""/““"-) b: 0-2, 6-8, I2-14,
1{a)=3 T(b)-2 t{c) =4 c: 2-6, 8-12,14-18,

® transitian

—— place

—— ploce witn taken

Figure 4. Periadic schedule far a timed marked graph.

11

S

COMPUTATION STRUCTURES

proqress simultaneously, as we shall see in later examples.
The number of tokens in place p is the current number of
simultaneous instances of the activity.

A schedule for a timed Petri net is a set of sequences of
initiation and termination times for the timed transitions of
the net. A schedule is feasible if the timed net can exhibit
the behavior specified by the schedule. A schedule is not
feasible if it calls for initiation of an activity earlier
than allowed by terminations of other activities. A feasible
schedule is said to be prompt if each activity always initiates
as early as possible. Here are examples of feasible and prompt
schedules for the timed net and initial token distribution
shown in Figure 3:

(a) a feasible schedule
transition a: 0-5, 8-13, 13-18
b: 2-4, 4-6, 9-11, 11-13, 15-17

(b) a prompt schedule
transition a: 0-5, 5-10, 10-15
b: 0-2, 2-4, 5-7, 7-9, 10-12

Every timed net for which the underlying Petri net is persistent
(no transition ceases being enabled except by firing) has a
unique prompt schedule.

We have studied the class of Petri nets known as marked
graphis. 1In a marked graph, each place is an input place of at
most one transition, and an output place of at most one trans-
ition. All transitions of a marked graph fire equally many
times in any behavior that returns the net to its original
configuration. 1In consequence, a prompt schedule for a timed
graph is periodic in that each timed transition initiates at
regular intervals. The example ir Figure 4 has a periodic
prompt schedule with period six. 1In this case, the rate of
firing is determined by the circuit containing transitions b
and c,

Figure 5 illustrates a situation where several instances
of an activity represented by transition b may proceed con-
currently. Instances of the activity represented by transition
a are forced to occur strictly in sequence by the one-token
self loop. The prompt schedule shown has a period of eight.

The computation rate of a timed marked graph is the average
rate of firing for any transition of the graph in a prompt
schedule. For the example in Figure 4 the rate is 1/6; for
Figure 5, the rate is 1/4.

There is a simple algorithm for determining the computation
rate of a tined marked graph. Let the vertices (transitions)
and arcs {places) of a strongly connected marked graph be

V= (vl, X vzl

A= (al, Ny ap)

12

R ST g Y PSS A = D S

COMPUTATION STRUCTURES

where an arc ay = (vi, vj) is directed from transition v; to
Vj' and let T be the time associated with transition \ (Ti =
0 if vy is not a timed transition). For any strongly cornected
marked graph one can find a set of simple circuits Cl' o 4N Cm
that cover all arcs of the graph (5). Let Mij be the number

of tokens on arc (vi, vj) in the initial marking of the net.
Then the computation rate p of the timed marked graph is given

by

where = 2
Ty T

is the sum of the times associated with transitions of circuit
Ck and

is the number of tokens on arcs of circuit Ck'

Figure 6 shows a "PERT" chart with activities a,b,c,d,e
and the corresponding timed marked graph. Application of the
foregoing procedure shows that the computation rate is 1/8, ¢
the reciprocal of the time for the critical path. We may ask
what happens to the computation rate if Np processors are

permitted to perform activities concurrently. The correspond-
ing marked graph is shown in Figure 7, where it is assumed
that only NR instances of activity e are permitted at one

time, but arbitrarily many instances are possible for the other
activities. The figure gives the computation rates for several

values of Np and NR’

Work is continuing on performance analysis of systems

represented by more general classes of Petri nets. Also, the
properties of Petri nets having time bounds or statistical

13

COMPUTATION STRUCTURES

(0)
—O 90— e &
a b
tla) = 2 ribl = 6
(b)

transition 0: 0-2, 2-4, 8-10, 10-12,...
b: 2~8, 4-10,10-6, 12-18,...

Figure 5. Moarked graph with cancurrent instances of an
activity,

14

el

A

COMPUTATION STRUCTURES

(@) "PERT" chart

b
™ t(a)

a
BEGIN ./ 4 N END z (b)

|

— =95

_)f’/ i

- d T{d) = |

t{e) = 6
{b) marked graph 5 b
o—— o

—— e
c d
*
circuit Ny T
ab i 6
cd i 4
aed i 8

Figure 6. Computation rate of a timed marked graph

15

Ll

COMPUTATION STRUCTURES

distributions associated with transitions are being studied.

Canonic Forms for Petri Nets

We have begun investigation of notions of equivalence and
canonic forms for Petri nets. For the special case of marked
graphs, Henry Raker (2) has shown how to reduce any marked
graph to a simple form which is the same for all marked graphs
equivalent to the given marked graph,

Suppose G is a marked graph and N is some subset of the
transitions of G. Then if o is a firing sequence of G, the
corresponding derived firing sequence Uy is obtained from w by

erasing all elements that are not members of N. Let G and G'
be ma:ked graphs and let N = {tl, ST tn} be a set of n trans-

itions that appear in both G and G'. We say that G and G' are
equivalent with respect to N if for each firing sequence w of

G there is a firing sequence w' of G' such that wy and w& are

identical, and vice versa. The two marked graphs in Figure 8
are equivalent with respect to N = {a,b} since in each case the
set of derived firing sequences is (ab U ba) *,

First we give two rules which when applied to any marked
graph will give a simpler marked graph equivalent to the
original with respect to all of its transitions:

Rule 1: If an arc originates and terminates on the same
transition, and has at least one token, it may
be deleted.

Rule 2: Let a and b be any two distinct transitions, and
- let x be an arc from a to L. If the number of
tokens on arc x is greater than or equal tc the
total number of tokens on the arcs of any other
simple, directed path from a to b, then arc x
may be deleted.

Use of the two rules is illustrated in Figure 9. Rule 1
is used to remove arc 1, and rule 2 is used to delete arcs 2,
3 and 4. Four each of the three marked graphs, the firing
Sequences are all prefixes of the infinite string (abe)®. A
marked graph for which no applications of the two rules are
possible is called a minimal-arc marked graph.

The minimal arc form of a marked graph always has the
same set of firing sequences as the original marked graph.
Furthermore, any pair of marked graphs that are equivalent
with respect to a one-to-one correspondence of their transitions
have the same minimal-arc form. Thus the minimal arc form is
canonic for these marked graphs,

Now suppose N is a set of n transitions common to two
marked graphs G and G'. How can we tell whether G and G' are
equivalent with respect to N? It turns out that if G is a live
marked graph, it may be reduced to an n-transition marked graph
equivaient to G with respect to N. This is done by carrying

16

it

e

COMPUTATION STRUCTURLE

out the steps below for each transition t of G that is not a
member of N:

Step 1: Delete any arcs that originate and terminate at
transition t. If any such arc has no token, the
marked graph is not live.

ep 2: Let X = {xl, o B xm} be the set of input arcs
and Y = {yl, Y yn} the set of output arcs of
transition t. Let M, be the number of tokens on

arc x; and let Nj be the number of tokens on arc

Yj-

Step 3: Replace transition t and the arcs in X U Y with
the arcs

{zijli =1, vv., m; j =1, ..., n}

where zij originates on the same transition as

X4 and terminates on the same traansition as yj.

Put M + N tokens on arc z .
i 3 ij

Applying this procedure to either marked graph in Figure 8
gives the canonic form in Figure 10. This example shows that
the canonical form for a safe marked graph (5) is not
necessarily safe.

B. Arbiters

Arbiters are fundamental units of digital systems that are
required whenever two or more asynchronous activities compete
for access to a shared unit cr resonurce. A basic form of
arbiter known as an elementary arbiter is illustrated in Figure
11. It controls access to a shared resource by two users --
user 1 and user 2. A 0-to-1 transition on either one of the
request wires is a signal thrt the corresponding user desires
access to the shared resource. in the absence of a competing
request from the other user the arbiter must promptly produce
a O-to-1 transition on the corresponding grant wire. The user
signals completion of his use of the resource by a 1-to-0
transition on the request wire, whereupon the arbiter must
respond with a 1-to-0 transition on the grant wire. If reguests
arrive nearly simultaneously from both users, the arbiter must
promptly and unambiguously grant either one of the requests
and delay granting the second reguest until the resource is
freed. Correct operation of an elementary arbiter must satisfy
these conditions:

1. It must never occur that both grant wires are simul-
taneously at level 1.

2. If both grant wires are at 0 and at least one of the

request wires is at 1, the arbiter wust grant one of
requests.

17

COMPUTATION STRUCTURES

@ 9
Ne
Np
7 2 TN
] 2 3 4

Figure 7 Timed marked graph representing several
processors and limited throughput of
one activity.

18

o

COMPUTATION STRUCTURES

()] (b)

Figure B. Two equivolent marked grophs.

(0) | (b) (c)

firing sequences: (abc)™ (A Uo Uo b)

Figure 9. Simplificotion of a morked groph.

e

Figure 10. Canonic form far the marked graphs in Figure 8.

| ——— I
1equest gront
wires EA wires
2 - f— 2'

Figure II. The elementory orbiter.

19

%

COMPUTATION STRUCTURES

We have found that any requirement for arbitration in
asynchronous digital systems can be met by a modular subsystem
using elementary arbiters. For example, an arbiter that over-
sees sharing of a rescurce by n users can be built using a
binary tree of elementary arbiters (14). The case of n users
and m servers has been studied thoroughly by Patil, and he has
recently devised an improved solution based on n-user and
m-user arbiters (13).

Designing an elementary arbiter that functions correctly and
always acts within a specified time interval is a difficult
problem. When the two request wires make 0O-to-1 transitions
nearly simultaneously, the arbiter may make an arbitrary choice,
but it must do s without hesitation, and without the appear-
ance of spurious signals on the grant wires.

Suhas Patil has devised an elegant scheme for kuilding an
elementary arbiter that will operate correctly in a fixed time
with extremely small probability of error. This scheme makes
use of a subunit called finite resolution arbiter (FLA) and
illustrated in Figure 12, An FRA can fail to operate
correctly only if two request signals arrive with a separation
of ¢ time units or less. If an FRA fails, the result is that
both grant wires switch to 1.

Now consider a pair of FRA's connected in cascade as in
Figure l13a. If two requests arrive at FRA-1 separated by more
than § time units, only one of the request signals will reach
FRA-2 and operation will be completed correctly. If requests
arrive at FRA-1 with less than & time units separation, then
FRA-1 will transmit both grant signals. Assume for the moment
that the two request signals are delayed equally by FRA-1.
Then, so long as A > 2§, the requests arriving at FRA-2 will be
separated by more than ¢ time units and FRA-2 will grant one
and only one of the requests.

One of several possible cricuits for a finite resolution
arbiter is shown in Figure 14. Each pair of NAND gates forms
a set-reset flip flop which is forced into its 1 state by the
presence of a request on the associated input wire. The setting
of one flip flop prevents the other flip flop from being set,
thereby blocking its associated request., If two requests
arrive at nearly the same instant, both flip flops will be set
since neither will be fast enough to block the other.

The time interval § is the time separation of request
signals such that a request signal and a block signal arrive
simultaneously at oné of the flip flops. ~In this circumstance
the flip flop may be placed in a metastable state in which it
may remain for an arbitrarily long time (with decreasing
probability). The existence of metastable states, and the
certainty that failures caused by circuits persisting in meta-
stable states have been problematic in computer systems has
beeinn nicely explained by Ornstein (4).

20

COMPUTATION STRUCTURES

It is reasonable to model flip flop behavior for critical
input timing as follows: If the set and reset inputs become 1
with time separation less than some small fixed interval £, the
f10p.f10p enters its metastable state, and the probability of
commitment to one of the stable states during an interval dt

after elapsed time 1 is P(v)dt = (l/T)e-T/Tdt where T is a char-
acteristic time of the flip flop. an exponential density func-
tion P(t) is used because we expect that the probability of
commitment during any interval, given that commitment has not
occurred earlier, is independent of the elapsed time.

From Figure 15 we see that the cascade of two FRA's is
not perfect; it can fail if request 2 and a block signal gen-
erated by request 1 occur simuItaneously. The probability of
failure is very small if 4 >> 24 ang decreases exponentially
as A is made larger. Moreover, the probability of failure may
be mas as small as desired by adding further FRA's in cascade,
as in Figure 13b.

Note that, while it appears impossible to design a perfect
elementary arbiter that always operates within a fixed time,
one can modify the FRA circuit so that each flip flop will re-

identifying ¢oncurrently executable parts; schemes of represen-
tation for which the meaning is readily apparent to the
programmer.

We have studied two sorts of parallel computation schemata
that model programs and systems involving concurrent transfor-
mations and tests on unstructured values., On one hand we have
developed a refinement of the parallel program schemata of
Karp and Miller (9) and have investigated issues raised by the
refined model. 1In this model the flow of data in a program or
Ssystem is modeled separately from the sequencing or control.

On the other hand are models like tke program g-aphs studied by
Rodriguez (16) in which the data flow and contr.l specifications
are combined in a single graph. Further development of the ideas
of Rodriguez has led to the study of data flow schemata. Recent
results from these two directions of research on parallel
schemata are reviewed below,

Productivity in Parallel Schemata

In a computation schema it may be that certain actions
occurring during a computation have no effect on any output
value produced by the computation. In this case we say that

21

COMPUTATION STRUCTURES

t, = arrival time f2
of request |

] to = arrival time
| — e f—p | of request 2

region of
incorrect
operation

FRA

(a)

[T S e T s]
SN DELAY - g
I A I
FRA FRA | |
|
]! 21
2 —1—»2
L M|
(b)

, DELAY .
| ——] A ™ & [
FRA FRA FRA
| 2 3
5 ELAY .
— ~ 1 .

Figure 13, Finite resolution arbiters
connected in cascade.

22

request
| —m—m]

]

COMPUTATION STRUCTURES

reques WAND)
2 —'—g;_..l___/"

,@%g

Figure 14. Circuit for finite resolution orbiter.

request 2
eorlier
{region A)

]

request |
eorlier
{region B)

Figure I5. Foiture anolysis

probobility of
failure given
Pi) (t,15)in A

for two FRA's in cascode.

L

COMPUTATION STRUCTURES

these actions are not productive. We have found there is a
trade-off in parallel schemata between productivity and degree
of concurrency. That is, to achieve maximum parallelism, it is
necessary that the possibility of nonproductive actions be
introduced. John Linderman has studied this matter for a class
of computation schemata closely related to the parallel program
schemata of Karp and Miller (9), and the flow-graph schemata of
Slutz (17).

These schemata have separate part: to represent the com-
munication paths for data and the sequencing of actions by
operators and decision elements. Since the distinction between
"transformations" and "tests" is so pervasive in programming,
we feel they should be modeled as different fundamental actions
in computation schemata. For this reason, our data flow graphs
contain both operators, which model elements that transform
values, and deciders, which perform tests with true/false
outcomes. Assoclated with each operator is a function letter,
and with each decider a predicate letter. Specific functions
and predicates are assigned to the function and predicate

letters by an interpretation of the schema. In this way,
several operators may be required to perform the same trans-
formation -- or several deciders, the same predicate -- ir any

interpretation of the schema. This departure from the Karp-
Miller model permits treatment of determinacy and equivalence
for a broader range of programs and systems.

Each operator and decider has associated initiation and
termination events. When an operator or decidér initlates,
values are read from its ordered set of input memory cells
and this vector of values is, in effect, entered into ~ first-
in-first-out queue. Thus multiple initiations of an operator
or de:ider may occur without intervening terminations. When
an operator terminates, it writes into its output memory cells
the values obtained by applying the function denoted by its
function letter to the vector of values taken from the head of
the queue. For each decider there are two termination events
corresponding to the true and false outcomes of applying the
predicate denoted by its predicate letter to the vector of
values at the head of its queue.

When and if these events can happen is specified by the
control of the schema. A variety of explicit mechanisms have
been used to represent the control, including finite state
machines, precedence graphs, and Petri nets. These mechanisms
share the property that they specify which sequences of events
are allowed and which are not allowed as possible behaviors of
a schema. The allowed sequences of events are called the
control sequences of the schema. Study of various control
mechanisms has shown that certain properties of control
sequences -- persistence, commutativity, conflict freedom, and
repetition freedom -- are central to the study of equivalence,
determinacy, parallelism and productivity, regardless of the
mechanism used to specify the set of control sequences.

For this reason we have studied these properties of schemata
without regard to the mechanism used to specify the set of
control sequences.

24

COMPUTATION STRUCTURES

Consider the program below in which w and x are input
variables and y and z are output variables:

begin

y = f(g(w))

if p(w,x) then z := g(f(w)) else z := h(f(w))
end - —

Two schemata for this program are shown in Figure 16, To be
definitive, the control sets have been specified by Petri nets.
Examples of control sequences Jor S1 include

atacbt bddc

tbtfbabaceec

in which overbars and underbars indicate initiation and ter-
mination, and the superscript T or F refers to the outcome of a
decider. :

We identify certain memory cells of a schema as an ordered
set of input cells and an ordered set of output cells. Then we
may discuss equivalence of two schemata in terms of producing
the same output values when given identical inputs. In Figure
16, w and x are the input cells and y and z the output cells
of both Sland 82. It is easy to see that, in either schema,

any allowed sequence will assign the same values to cells y
and z as are produced by the program. Hence both schemata are
“functionally determinate" and are equivalent with respect to
the specified input and output cells.

In these schemata, an issue arises that is not present
when every termination event puts a value in some memory cell
and all cell histories affect the question of equivalence, as
in the Karp-Miller theory. It is now possible for operators
and deciders to be invloved in "useless activity." For
example, if y were not an output cell of schema S1 or 52'

operators a and ¢ would not be productive. Similarly if the
same sequence of actions follcwed either outcome of a decider,
then that action of the decider would not be productive.

The precise formulation of this notion of productivity
requires formalisms we do not wish to develop here, but the
central idea is fairly straightforward. A use of an operator
in a control sequence is productive if subsequent actions by
operators "carry its result" to a schema output cell or to a
productive decider. Since an action by a decider does not
directly affect contents of memory cells, determining its
productivity is not as easy. We consider a use of a decider to
be productive if the schema has two control sequences that
define inequivalent computations. and sre in "disagreement
about decider outcomes" orly at the given decider use. For
example, consider the program

25

COMPUTATION STRUCTURES

(a) schema S, :

data fiaw graph

contral [] .big_iﬂ

Figure I6. Twa equivalent camputation schemata,

26

e

N

skl Ll TR

e od 2

BRI RN e

(b) schema S, :

rpem

data flow graph

control

Figure 16.

(Continued).

27

e S B A S T T T Y

COMPUTATION STRUCTURES

Sl

i T v

CRSEE i R Y

N

st

TN o

o

COMPUTATION STRUCTURES

begin
if p(x) then
if q(x) then y := f(x) else y := g(x)
else
if q(x) then y := f(x) else y := g(x)

end

Since output y may be set to f(x) if p(x) is false, and g(x) if
o(x) is true, one might conclude that this use of P is produc-
tive. However, both possibilities exist in either case, the
choice being determined by q{x); hence p(x) is not really pro-
ductive, in agreement with our definition.

Much of this research has been directed toward identifying
the most appropriate definitions for "productive control
Sequences". A seemingly desirable condition is that every use
of an operator or decider in a control sequence be productive.
Unfortunately, this strong prcductivity condition limits the
degree of parallelism that can be realized. Suppose a
Séquence must be performed if either of two tests produces
true as a result:

begin
if p(x) or g(x) then y := f(x) else Yy = g(x)
end

As soon as either n(x) or q(x) is found to be true, evaluation
of the other is unp-oductive. Thus parallel evaluation of
p(x) and q(x) will violate the strong productivity condition.
We are studying a weaker form of productivity which does

not clash with parallelism.

Lata Flow Schemata

An example of a data flow schema is shown in Figure 17.
It is a directed graph having two kinds of nodes: actor nodes
and link nodes. The arcs of a data flow schem: are paths
through which data and control values flow from actor nodes
to link nodes and from link nodes to actor nodes. Link nodes
serve to distribute values to several actor ncdes and are of
two kinds -- data links drawn as small solid circles for data
values,; and control Iinks drawn as small open circles for
control values. Certain data link nodes are the input nodes of
the schema, and certain data link nodes are the oUtput nodes
of the sch=ma. Each link node, except the input nodes, has
exactly one incident arc, =nd all but the output nodes have at
least one emanating arc.

28

COMPUTATION STRUCTURES

There are five kinds of actor nodes:

operator square box with a function
letter written inside.
decider diamond box with a predicate

letter written inside.
true gate/false gate circle with T or F written

inside.

merge ellipse with T and F written
inside.

Boolean square box with one of the sym=~

bols A, vV, = written inside.

Each arc leaving a link node acts like a first-in-first-out
queue for values waiting for use by the actor on which the arc
terminates. A value arriving at a link node is replicated as
required and entered in the queues of the emanating arcs. 1In
most cases, each queue will either be empty or holé one value.
However, permitting unbounded queues permits operation of a
data flow schemata to achieve a kind of maximum parallelism
we shall illustrate by a later example.

Given a data flow schema and an interpretation of its
function and predicate letters, computations by the schema are
described by sequences of actions by the actor nodes, analogous
to the firing sequences of a Petri net. An operator, decider,
or Boolean node is enabled to act when at least one value 1s
available from each of its input arcs. When enabled, one of
these actors may "fire" by removing one value from each input
queue, applying the specified function, predicate or Booclean
operator, and sending the results to its output data or control
link. A true gate is enabled by the availability of a data
value and a control value from its input arcs. The gate fires
by removing these values from their queuex. Then, if the
control value is true the data value is sent to the output data
link; if the control value is false no further action takes
place. The false gate acts in an analogous manner. A merge
node acts by transmitting a value from its F-input arc 1If the
control input value is false, or a value from its T-input arc
if the control value is true. The filled-in arrows on certain
control links indicate that a false value is entered in their
queues in the initial configuration of the schema. This
arrangement is needed to initiate action by a portion of a
data flow schema that performs an iteration.

According to these rules of behavior, every actor of a
data flow schema is persistent: once enabled an actor becomes
not enabled only by firing. From this fact and the discipline
by which actor and link nodes interact, a result of Patil (12)
shows that any data flow schema is a determinate system.

Study of the schema in Figure 17 reveals that it is
equivalent to the following "while schema":

29

COMPUTATION STRUCTURES

Figure 17. A well-formed data flow schema.

Figure 18, A data flow schema that is not free.

30

COMPUTATION STRUCTURES

Figure I9. A data flaw schema requiring unbounded queues.

31

COMPUTATION STRUCTURES

begin
while p(x) do
if gq(x) then w := f(x) else w := g(x)
x := h(w)
end
y = X

end

Just as in a while schema, the data flow schema has a nested
structure indicated by the cashed lines, and uses specific
configurations of gate, merge and decider nodes to form condi=~
tional and iteration subschemas. 7 data flow schema having
this structure iz said to be well furmed. Any well formed
data flow schema will generate exactly one value at each output
node for each set of values presented at the input nodes.
Because it is determinate, any well-formed data flow schema
determines a functional dependence of output values on input
values. We consider two schemas to be equivalent if both
define the same functional dependence of outputs on inputs,
and this is true regardless of the interpretation chosen for
the function and predicate letters.

On the basis of work by Ashcroft and Manna (1) one can
construct a well-formed data flow schema equivalent tc any
"goto program" or any program schema of the type studied by
Paterson (11). Hence the general equivalence problem for data
flow schemata is unsolvable.

It has been found that the theory of "free" schemata is
more rewarding in terms of positive results than the study of
unrestricted schemata. A data-flow schema is said to be free
if no two actions by deciders apply the same predicate to the
same value. Figure 18 illustrates a schema that is not free
because the first two uses of decider d both apply predicate
p to the result of applying f to the schema input value. Hence
there is no way for the iteration subschema to perform exactly
one execution of its body.

John Fosseen (6) has found it possible to transform free
data flow schemata in such a way that any pair of data arcs
may be tested for equivalence. (Two arcs are equivalent if
they pass the same sequence of data values in any computation.)
We hope the concepts developed to obtain this result will
provide further insight into the equivalence problem for free
data flow schemata.

We remarked earlier that treating the input arcs of actors
as unbounded queues permits greater concurrency. The data flow
schema in Figure 19 illustrates such a case and is based on an
example of Keller (10). The right-hand portion of the schema
may run arbitrarily ahead of the left-hand portion, a true value
being entered in the queues of arcs a, b, and ¢ for each cycle.

32

COMPUTATION STRUCTURES

The left-hand part may operate as fast as it can until the
queues are emptied, whereupon (to be strongly productive)}
operation must wait for further decisions to be made.

Any data flow schema is inherently maximally parallel in
the sense that each operator and decider is at work whenever
values are available for some productive use of the operator or
decider.

Weakly Productive Computations

In a data flow schema, actions are initiated when the
required input values are present and the action (in most cases)
is known to be productive. As an interesting exploratory study,
we have studied properties of parallel computations in which
every operation is initiated as soon as its input values have
been computed, so long as some possible continuation of the
computation makes productive use of the result. Consider the
data flow schema in Figure 20, which represents the following
program with input variable x and output variable y:

while p(x) do
if q(x) then x := £(x) else x := g(x)
Yy = a

If execution of this schema is performed according to the rules
given earlier, then every action by the operators (a and b) and
deciders (d and e) is productive. Let us consider what happens
if we allow all weakly productive actions to initiate. Suppose
termination of the first uses of deciders d and e is arbitrarily
delayed. Since the first uses of operators a and b require only
the initial value of X, these uses are immediately initiated.
Their terminations produce values that are inputs to further
weakly productive uses of operators a and b, and so on. These
actions define the unbounded tree of values illustrated in
Figure 2la; the tree has a node for each value any computation
by the schema could generate. Aas outcomes of decider actions
become known, portions of the tree of values become useless

and may be deleted, since the operator uses that produce these
values become known to be nonproductive. For example, if the
first use of decider d yields false, the tree of possibly useful
values is as in Figure 21b, and if deciders d and e have
successive outcomes F,T and T,T,F, respectively, the tree becomes
that in Figure 2lc, and represents a completed computation.

Joseph Qualitz (15) has studied the bookeeping requirements
for weakly productive computations, and has devised execution
structures in terms of which the detailed progress of such
computations may be studied. Clearly it is necessary to tag each
value produced by a schema operator with the assumptions made

33

COMPUTATION STRUCTURES

Figure 20.Data ‘low schema.

34

£

/iK /q{:}\
f(f{x)) g(f(x)) f{g(x)) glg(x)
A
/A\ /A\ /A\ /7 N
/ \ ’ \ / \ / \
(b) T (c)
glx} F
AT
figlx}) glglx})
® .
\ FT \{FE
o T

COMPUTATION STRUCTURES

— >

Figure 2I. Value trees fram a weakly praduciive

camputation.

35

COMPUTATION STRUCTURES

avout decider outcomes. We let each value carry a color which

is a set of sequences of the symbols {r, ¥, T, F}, one sequence
for each decider of the schema. The letters without overbars
denote known outcomes, whereas letters with overbars denote
asfumed outcomes. In Figures 21b, 2lc, colors are shown for each
value,

At any stage in a weakly productive computation, many
values may be associated with certain value nodes of a schema.
It is not useful to order these sets of values because, unlike
hormal execution of a data flow schema, the order in which
values arrive is not hecessarily the order in which they are
used. Instead, each value node is regarded as holding a pool
of values, each tagged with the appropriate color, and available
for use. Therefore, when an operator or decider has several
input value nodes, some means must be provided for identifying
the combinations of values to which a function or predicate
should be applied. This is done by associating with each value
an index that is distinct for each cycle of any loop in the
schema. Finally, when a decision is made, certain values become
useless and further initiation of actions that use these values
must be inhibited.

We have devised rules of execution for weakly productive
computations and have shown that these rules correctly simulate
the computations of any well-behaved data flow schema.

D. Inductive Proofs of Program Preperties

One oL the purposes of studying schemata or simplified
programming languages is to isolate aspects of nrograms which
must be encompassed by any approach to the construction of
formal proofs about the functions computed by programs. Recursion
is one such property. To Prove equivalence or correctness
results about recursive programs, some form of argument by
induction must be made. This has been recognized by many people
and several of them have formulated induction rules to be used
for particular classes of programe. Generally, a program can
be viewed as falling in several of these classes. By examining
a single program and proofs about it from different viewpoints
we have been able to clarify the relationsiips among these
various proof techniques. By means of a simple example we
shall illustrate the work of Irene Greif (7) on relating the
different ways of interpreting a recursive definition and the
corresponding proof techniques.

Consider the following definition of a function f over
the nonnegative integers:

f(m,n) = if n = 0 then m else fm+ 1, n - 1)
(The reader should convince himself that f(m, n) = m + n.) The

first and most obvious interpretation of the definition is

that it describes an algorithm for computing f. The algorithm
is to test for n = 0; if n = 0 then f(m, n) = m; otherwise
apply the same algorithm in computing £(m + 1, n - 1) to obtain
the result. A second interpretation depends on the existence
of an ordering on the domain of the function. In this case

36

COMPUTATION STRUCTURES

the pairs of integers (m,n) can be ordered as follows:
mye) (D (mge ny)
if and only if
ny < nj.
Then the definition of f is an inductive definition. The base
of the definition is:
For all m f(m, 0) = m.
The induction step is:

f(m, n) = f(m+ 1, n-1).

The third interpretation of f is as the minimal fixpoint of
the following functional:

C:(X) Z iam.in. if n = 0 then m else X(m + 1, n - 1)
s g 3 . © i
It can be shown that the minimal fixpoint of ¢: is LJ ¢: ()
i=0

where 7 is the function that is everywhere undefined and L x)
means the function produced by i applications of to X.
Netice that C:(J) = dm.’n. if n = 0 then m else Q(m + 1, n - 1)
is the function which is m for (m, 0} and undefined for all
other ordered pairs. 2(2) has the value m for the ordered
pair (m, 0) and m + 1 for the ordered pair (m, 1) and is
otherwise undefined. Proceeding in this manner, the function
f which we are expecting will be generated.

The last interpretation is that the function f represents
the agreement of its "truncations." These truncations are the
partial functions defined as follows:

fi(m, n) = if n = 0 then m else fi_l(m + 1, n - 1),

The reader should note that in this case

£.m,) = €5 (m, n).

Now we will give four different proofs of the following
simple fact:

f(m+ 1, n) = f(m, n) + 1.

The first, by recursive induction, corresponds to the notion of
definition by algorithm. We show that f(m + 1, n) and f(m, n)+1
can be computed by exactly the same algorithm by showing that
they can be expressed in the same form, namely:

37

COMPUTATION STRUCTURES

X(m, n) = if n =0 thenm + 1 else X(m + 1, n - 1)

1. gl(m, n) = £f(m + 1, n)
=if n=0tienm+ 1else f(m+ 2, n - 1)
=if n =0 thenm + 1 else g;(m + 1, n = 1)

2. gz(m, n) = f(m, n) +1

= (if n =0 then melse f(m+ 1, n -1)) +1
= if n =0 thenm + 1 else f(m + 1, n - 1) +1
=if n =0 thenm + 1 else g, (m + 1, n - 1)

This shows that g; = g on the domain of X. If we are trying
to prove g, = g, for the pairs of nonnegative integers, a separ-
ate proof about the domain of X will be required.

Another proof can be written, utilizing the partial order-

ing on the domain of these functions, and the inductive defin-
ition. The basis of this proof by structural induction is:

for all m

f(m +1, 0) = if 0 = 0 thenm + 1 else f(m+ 2, 0 - 1)
=m+ 1
f(m, 0) + 1 = if 0 = 0 then m + 1 else f(m+l, 0-1) + 1

=m+ 1

Therefore, for the minimal element in the domain,

f(m + 1, n) = f(m, n) + 1. The induction step, for (m, n),
n # 0 is:
Assume for (m, n), n < N that f(m + 1, n) = f(m. n) + 1

1. f(m+ 1, N) = f(m+ 2, N - 1)

2. f(m, N) +1

fm+ 1, N-1) +1

f(m + 2, N - 1) by induction since N-1 < N.
The initial assumption, based on the means of definition of the
function is that f is total on the ordered pairs, partially
ordered by (:). From this fact and the above proof, we know

that f(m + 1, n) = £f(m, n) + 1 for all pairs of nonnegative
integers.

38

COMPUTATION STRUCTURES

The third proof is actually simple induction on the depth
of recursion of a computation. In terms of the definition of
the minimal fixpoint

£= U €W,

1=

computational (or u-rule) induction is simple induction on 1i.

1. for i = 0 we must show
Q(m + 1, n) = &(m, n) + 1

Obviously both are totally undefined.

2., Assume X(m + 1, n) = X(m, n) + 1
then prove G(X) (m + 1, N) = G(X) (m, n) +1
€(X)(m + 1, n) = if n = 0 then m+l else X(m+2, n-1)
= if n = 0 then m+l else X(m+l, n-1) +1

(by induction)
= (if n = 0 then m+l else X(m+l, n-1))+l
C(x)(m, n) +1
This proves that f(m, n) = f(m, n) + 1 are totally equivalent,

i.e., either both are undefined or both are defined and have the
same value.

A separate argument can easily be given to show that both
functions are defined for all pairs of nonnegative integers.

The last proof technique is very similar to computational
induction, being course-of-values induction on the index i of
the truncations of a function. This amounts to doing course-of
values induction on the depth of recursion., For our particular
example, in which equivalence depends only ore one step in the
computation of the fixpoint, the difference =:tween the two
proofs is strictly a matter of formalism. Wr yrove that for
i=20, fo(m + 1, n) = fo(m, n) + 1.

Then for i # 0:

assume for j < i, fj(m + 1, n) = fj(m, n) +1

|
-

fi(m + 1, n) fn=0 then m+l else fi-l(m+2' n-1)

]
-
L]

n = 0 then m+l else fi_l(m+l, n-1)+1

-

=

f n=0 then m+l else fi_l(m+l, n-1))+1

fi(m, n) + 1

39

COMPUTATION STRULTURES

As in the last proof, this shows strong equivalence, this time
by truncation induction.

Generally, any method can be used for a proof. If the
programmer had ore of these interpretations in mind in writing
his program, then the corresponding proof technique will
probably seem most natural. Ideally an automatic program
verifier would be flexible with respect to choice of induction
rule. It is unlikely, however, that all of these will be
equivalently useful in mechanical proofs, even though there seens
to be no real difference in scope of application among them.

E. A Computer for General Data Types

One goal in the design of programming systems is to retain
the generality of an algorithm when it is encoded into the
language of the programming system. A serious limitation on the
generality readily achieved in contemporary computer systems is
imposed by the fixed word length and finite size of computer
memeories.

In preparing a program for execution by a computer system,
the programmer first imagines the abstract function the program
is to implement. Simple examples might be to implement the
scalar product of any two n-component vectors of real numbers,
or tu obtain the greatest common divisor of two integers. As
in these examples, the abstract function almost always has an
infinite domain. Then the programmer conceives of an algorithm
for the function -- a step-by-step process for obtaining the value
of the function through the use of idealized primitive operations
such as the arithmetic operations on integers and reals. The
next step is to express the algorithm in the language of some
practical programming system. Usually the actual data types
of the programming system have their idealized counterparts,
and, if the language is suited to the needs of the algorithm,
the algorithm may be converted into a projram with little
difficulty. Our problem of generality would be solved if the
task of the programmer were completed at this point. However,
he must now check whether the word size and finite memory size
of the computer system, as reflected in defects of the primitive
operations of the programming language, may prevent correct
operation of his program. In many cases, the program will
operate correctly for a large (but finite) number of points in
the domain of the abstract function, and will fail {(often with-
out any hint to the user) for the remaining (infinite) set of
domain points. In other cases the programmer will find that
the number of cases for which the program will work correctly
is too small to be of interest and a new approach, using a
language less suited to expressing the algorithm, or less
efficient in execution, must be adopted.

The ability of a programming system to correctly execute
programs expressed in terms of idealized data types is called
yenerality with respect to domain. Most programming systems
fail to be general with respect to domain by limiting the
amount of storage that may be allocated to one data value to

less than the available memory of the computer on which the

40

COMPUTATION STRUCTURES

programming system runs. For instance, integers are usually
limited in value by the number of bits in one memory word, and
the maximum range of an array subscript must often be specified
at the moment the array is created.

Since the memory of any practical computer system is, in
facc, finite we cannot expect any program tc obtain the value of
the programmer's abstract function for any point in its domain.
However, we should expect a programming system to produce the
correct result unless the computer system runs out of memory
in trying. (If the computer system runs out of memory, should
one blame the program for the absence of sufficient memory to
compute the function ?) This ccnsideration 1s the basis for
the following definitions:

Definition: A program p, with input variables x = (xl, ceey xm)
and output variables y = (yl, 50) yn), computes a function

f over domain D if and only if for each point x in D either
1. program p produces output y from input x where
y = f(x), or
2. for input X program p fails to complete due to an
unsatisfied request for additional storage.

Thus a program that computes a functior must obtain the correct
result whenever it is given sufficient resources to operate.

Definition: A programming system that implements a language L
1s general with respect to domain if and only if for any
algorithm that defines a function f on domain D, the
corresponding program in L computes f on D.

The heart of the problem of implementing programming
systems having generality with respect to domain is machine
instructions which themselves are programs not general with
respe.t to domain., The basic arithmetic instructions, for
example, usvally operate on representations that occupy a
single register. Since conventional programmed multiple length
arithmetic introduces a high cost in time consumed, even for
quantities that require only single-length representation,
achieving generality for these data types in a conventional
computer system is unattractive.

Peter Bishop (3) has designed an abstract computer in
which generality with respect to domain is achieved for a larae
class of data types including integers, floating point numbers,
strings and arrays, as well as more elaborate structures. 1In
the abstract computer, each data value is represented by a
pointer-linked tree structure having as many elements as
necessary to represent the value. The representation of any
quantity may expand arbitrarily as required until available
memory is exhausted.

41

COMPUTATION STRUCTURES

Referernces

1.

10.

11.

12,

Ashcroft, E., and Manna, Z., The translation of 'go
o' programs to 'while' programs. Information
Processing 71, Ljubljana, 1971,

Baker, H., Petri Nets and Languages. Computation
Structures Group Memo 68, Project MAC, “.I.T.,
May 1972,

Bishop, P. B., Data Types for Programming Generality.
S.B. and S.M. Thesis, Department of Electrical
Engineering, M.I.T., June 1972,

Chaney, T. J., Ornstein, S. M. and Littlefield, W. J.,
Beware the synchronizer. Proceedings of the Sixth
Annual IEFT computcr Society International

Conferenc:, San Francisco, September 1972, pp 317-319.

Commoner, F., Holt, A, W., Even, S., and Pnueli, A.
Marked directed gravhs. J. of Computer and System
Sciences, Vol. 5 (1971), pp 511-523.

Fosseen, J. B., Representation of Algorithms by
Maximallx Parallel Schemata. S.M. Thesis, Department
of Electrical Engineering, M.I.T., June 1972.

Greif, I. G., Induction in Proofs About Programs.
S.M. Thesis, Department of Electrical Engineering,
M.I.T., December 1971.

Holt, A. W. and Commoner, F. Events and Conditions.
(In three parts), Applied Data Research, New York
1970. (Chapters I, I, IV and VI appear in Record

of the Project MAC Conlerence on Concurrent Systems
and Parallel Computation, ACM, New York 1970, pp 3-52.)

Karp, R. M., and Miller, R. E., Parallel program
schemata. J. of Computer and System Sciences, Vol. 3,
No. 2 (May T9637, pp 147-135. ™

Keller, R. M., On maximally parallel schemata. IEEE
Conference Record. Eleventh Annual Symposivm on
Switching and Automata Theory, 1970, pp 32-50.

Luckham, D. C., Park, D. M. R., and Paterson, M. S.
On formalized computer programs. J. of Computer and
System Sciences, Vol. 4, No. 3 (June 1970), pp 220-249.

Patil, S. S., Closure properties of interconnections
of determinate systems. Record of the Project MAC
Conference on Concurrent Systems and Parallel

Computation, ACM, New York 1970, pp 107-116.

42

i W o i

References
——=rehces

13.

14.

15.

16.

17.

COMPUTATION STRUCTURES

(continued)

Patil, S. s., Forward Acting n x m Arbiter.
Computation Structures Group Memo 67, Project MAC,
M.I.T., June 1972,

Plummer, W. W., Asynchronous Arbiters. IEEE Trans,
on Computers, Vol, c-21, No. 1 (Janvary T972)

Qualitz, J. E., Weakly Productive Computation
Schemata. S.B. ang S.M. Thesis, Department of
Electrical Fngineering, M.I.T.. May 1972.

———

Computations. TechnIca Report TR-67, Project Mac,
M.I.T., September 1969.

Rodriguez, J. E., AG agh Model for Parallel

Siutz, D, R., The Flow Graph Schemata Model of

Parallel Computation. Technical Report TR-53, Project

MAC, M.I.T., September 1968.

43

e

COMPIITATION STRUCTURES

Publications

1.

2.

1C.

11.

12,

13.

Baker, H,, "Petri Nets and Languages", Computation
Structures Group Memo 68, May 1972.

Dennis, J. B., "Management of Names in a Computer
System", Computation Structures Group Memo 63,
November 1971.

Cennis, J. B., "Concurrency in Software Systems",
Computation Structures Group Memo 65-1, June 1972.

Dennis, J. B., "The Design and Construction of Soft-
ware Systems", Computation Structures Group Memo 69,
June 1972,

Dennis, J. B., "Modularity", Computation Structures

Group Memo 70, June 1972.
Dennis, J. B., On the Design and Specification of a
Common Base Language, Project MAC, M.I.T., MAC TR-101

June 1972, AD 744-307.

’

Fano, R. M., "On the Number of Bits Required to
Implement an Associative Memory", Computation Struc-
tures Group Memo 61, August 1971.

Flinker, E., "Translation of a Block Structured
language Into the Common Base Language", Computation
Structures Group Memo 66, January 1972.

Fox, P. J., "A Look at 'The Controlled Execution of
Parallel Programs Operating on Structured Data' by
lan Campbell-Grant", Computation Structures Group
Memo 62, October 1971

Greif, I. G., Induction in Proofs about Programs,
Project MAC, MTI.T., MAC TR-93, February 1972,
AD 737-701.

Hack, M. H, T., Analysis of Production Schemata by
Petri Nets, Project MAC, M.I.T., MAC TR-94, February
1972, AD 740-320.

Lester, B. P., Cost Analysis of Debugging Systems,
Project MAC, M.I.T., MAC TR-90, September 1971,
AD 730-521,

Patil, 8. S., "Forward Acting n x m Arbiter",
Computation Structures Group Memo 67, June 1972.

44

COMPUTATION STRUCTURES

Dennis, J. B., and s. s. Patil, "Systematic Realization
of Asynchronous Systems", IEEE Seminar, Boston,
September 8, 1971.

Dennis, J. B., "Design of a Common Base Language"; and
"A Data Flow Model of Computation", Tutorial Symposium
on Semantic Models of Computation, New Mexico State

University, Las Cruces, New Mexico, January 3-5, 1972.

Dennis, J. B., "The Design and Construction of Scoft-
ware Systems"; "Modularity"; and "Concurrency in
Software Systems", Advanced Course on Software Engin~
eering, Technical University of Munich, Munich, Germany,
February 21 - March 4, 1972,

Dennis, J. B., "On the Design and Specification of a
Common Base Language", talk at the General Electric
Co., Schenectady, New York, July 15, 1972,

Theses Completed

1.

Bishop, P. B., Data Types for Programming Generality,
S.B. and S.M. Tnesis, Department of Electrical Engin-
eering, M.I.T., June 1972.

Fosseen, J. B., Representation of Algorith@§ by Maxi-
mally Parallel SgG emata, S.M. T €s1s, Department cf
Flectrical Engineering, M.I.T., June 1972,

Furtek, F. c., Modular Implementa:ion of Petri Nets,
S.M. Thesis, Department of Electrical Engineering,
M.I.T., September 1971,

Greif, I. G., Induction in Proofs about Programs, S.M.
Thesis, Department OF Electrical Engineering, M.I.T.,
February 1972.

Hack, M., Analysis of Production Schemata by Petri Nets,

S.M. Thesis, Department of Electrical Engineering,
M.I.T., February 1972.

Qualitz, J. E., Weakly Productive Computation Schemata,
S.M. Thesis, Department of Electrical Engineering,
M.I.T., May 1972.

Theses in Progress

1.

2.

Amerasinghe, §. N., "The Handling of Procedure Variables
in a Base Language", S.M. Thesis.,

Fox, P. 7., "Representation of Parallel Computation on
Data Structures", S.M. and E.E. Thesis.

Hawryszkiewycz, I T., "The Semantics of Data Base
Systems", Ph.D. Thesis.

45

COMPUTATION STRUCTURES

Theses in Progress (continued)

4.

5.

Lester, B. P., "Smooth Interprocess Communication®,
Ph.D. Thesis.

Lotspiech, J., "Reliability of Speed-Independent
Asynchronous Systems", S.M. Thesis.

Ramchandani, C., "Models for the Analysis of Asynchronous
Systems", Ph.D. Thesis.

Rotenberg, L. J., "Making Computers Keep Secrets",
Ph.D. Thesis.

46

COMPUTER SYSTEMS RESEARCH

Prof. F. J. Corbatd

Academic Staff

Prof. J. H. Saltzer

Instructors, Research Associates, Research Assistants and Others

Y. S. Auyang D. H. Hunt
R. G. Bratt P. A. Karger
D. Bricklin S. Kuo
S. S. Brown R. S. Lamson
D. D. Clark 1« A. Moon
T. L. Davenport . 8. Perrin
T. M. Demchock k. T. Pogran 4
D. R. Dick D. F. Reed -
A. R. Downing K. G. Rhoads
R. M., Frankston L. J. Scheffler
B. S. Greenberg M. D.. Schroeder
R. A. Gumpertz A. Sekino
R. M. Haas T. A. Stern
G. Harrics C. M. Vogt
DSR Staff

R. J. Feiertag M. A. Padlipsky
C. C. Garman M. J. Spier
R. K. Kanodia V. L. Voydock
R. F. Mabee M. B. Weaver
K. J. Martin S. H. Webber
E. W. Meyer, Jr. D. M. Wells
N. I. Morris

Support Staff
0. D. Carey D. L. Jones
S. Daise A. G. Testa
C. P. Doyle M. F. Webber

L. J. Haron
Guests

Prof. K. Ikeda M. Miyazaki

47

COMPUTER SYSTEMS RESEAKCH

A. Progress Report

l. Introduction
——-duction

The Computer Systems Research Group concentrates upon discov-
ering ways to make engineering of complex information systens
more methodical. Itg approach is experimental, in contrast

to the more theoretical attack followed by the Computation
Structures Group. Continuing to use the M.I.T. Multics system
as a laboratory, significant work was performed in multi-level
memory management, networking, performance modeling, and pro~
tection mechanisms, Another focus of attention was prepar-
ing to move the System to modern hardware. Routine develop-
ment, operation, and maintenance of the' system were largely
handled by the M.1.T. Information Processing Center ang
Honeywell.

The year has seen less development and more experimentation
than previously. as the Multics system came under the opera-
tional control of others, members of the Group, especially
students, have become able to address themselves to such
areas as models of system performance, instrumentation, and
the like. 1In the Computer Networks area as well, concern
with making use of the existing systems for study and experi-
mentation has arisen, although implementaticn is still not
completely satisfactory. This trend away from the design

and building of systems toward analysis and exploitation is
also seen in the Group's participation in support of Automatic
Programming. Here, the focus is on the rapid engineering of
"hospitable" environments.

Also, during the last year, there was published the long-
awaited book on Multics by Prof. E. Organick. The book

which describes the internal structure of the Multics system
issues. An effort ig also underway in Japan to translate and
publish the book in Japanese.

2. Multilevel Sterage Management

As discussed in some detail last year, a major interest of
the Group is the instrumentation of and experimentation with
the multilevel memory system of Multics. Several new facili-
ties were introduced into the Multics supervisor to support
experimentation. 2 major step in this direction was taken
with the installation of a multilevel paging strategy which,
in addition to the usual automatic management of page move-
ments between core angd drum, autcmatically manages the migra-
tion of pages between drum and disk. Pages are moved from
disk to drum on activation, and an LRU algorithm governs the
migration from drum to disk. 1In effect, the drum becomes a
kind of associative memory. The interaction between the two
loosely coupled LRU algorithms at different levels is now
being studied in detail.

The more effective use oI the drum made by the multilevel
paging strategy opened the way for a new strategy in drum
management which trades space for time. To decrease read
latency, multiple copies of pages are written on the drum.

Preceding page blank 49

_z

COMPUTER SYSTEMS RESEARCH

Currently, two copies are written, giving rise to the name
"2-fold drum manager", but further experiments are possible

with the existing software tc tigate the characteristics
of a 4-fold -- or for that ma. * n-fold drum manager. As
with multilevel paging, 2-folg . manager has proven to be

a practical success in increasing system effectiveness, in
addition to its experimental interest.

Ancther new strategy of practical as well as experimental
interest was proposed and implemented, although not yet in-
stalled, in disk management. Referred to as "pre-seeking",
this strategy entails having the disk DIM detcrmine whether
the seek-portions of pending requests can be overlapped with
data transfers. This work evolved from Master's thesis
reszarch on the modeling of algorithms for moveable-head
storage devices. Although prc-seeking is an old idca in reed-~
write type file systems, we view it as the next step in the
exploitation of single strategies matched to demand pagina
environments.

Neither the n-fold drum manager nor the disk pre-seek strategy
is thought to be a unique approach, but in conjunction with
multilevel paging strategy they offer a rich environment for
further experimentation in the area of multilevel storage
management. To offer a standard of comparison for experiments
a benchmark load is being developed. Although one might

have expected a benchmark load to be among the earlier of pro-
jects, in fact it is only now that enough information has

been collected about the ways a Multics-type system is used;
thus construction of a realistic benchmark can now proceed.

A paper by Prof. J. H. Saltzer (still in draft) has been
written on a simple model of demand paging, which is based on
the experimental observation that over a wide region, the

mean number of memory references between paging exceptions
roughly increases linearly with the size of the pPaging memory.
The resulting model is easy to manipulate, and is applicable
to such diverse problems as choosing an optimum sizc for a
paging memory, arranging for reproducible memory usage charges
and estimating the amount of core memory sharing. The model
has already served as the basis for an implementation on
Multics of an accounting scheme which allows for charging
memory utilization independent of system configuration and
system load.

3. ARPA Network

Considerable progress has been made in the Multics ARPA Net-
work implementation. At the beginning of the reporting per-
iod, it was possiblc on a demonstration basis to login to
Multics from Multics over the Network. By the end cf the
reporting period, the Network was a standard feature of
Multics. Network logins on a supported, "sampling” project
were on the order of half a dozen a day, and there was at

least one paying customer of the system on the West Coast and
one at the National Burcau of Standards. The originally high
cost of Network use of Multics has been coming down drastically

50

COMPUTER SYSTEMS RESEARCH

The target is for use of Multics via the Network to be no more
expensive than from local teletypewriters. As the basic
machinery comes under control, the Group's Network team wi!l
pay greater attention to participating in the design of Net-
work Graphics and File Transfer protocols.

4, Performance Model

The doctoral thesis mentioned in last ynar's report is being
completed. 1In this thesis, a set of hierarchically organized
analytical models has been developed to evaluate the perfor-
mance of multiprogrammed time-shared computer systems using
demand paging. These models are capable of p- .dicting the
throughput and response time characteristics of such systems,
as a function of system hardware/software configuration as
well as of the characteristics of terminal users and their
programs. These models are then used in optimizing the sys-
tem performance and deriving the best system configuration.
The system performance predicted by thece models is compared
with that of an actual computer system, i.e., Multics, in
order to examine the usability of these models as a design
aid.

5. Protection of >rograms and Data

With the opportunity for use, it has become apparent that the
original Multics access control mechanism pr<¢sent an inter-
face which is too complex and confusing even for expert users.
Since confusion leads to misuse, and misuse to lack of the
desired control of access, we have here a significant defect.

As a result, a minor interface redesign was undertaken. The
changes, when implementation is completed shortly, will simpli-
fy and clarify the use of these mechanisms, making their
application to user protection problems more apparent to users.
The potentially more far-reaching step was the evolution of a
detailed plan for allowing all users to define protected sub-
systems and share them with one another. The proposed

facility would allow groups of programs and data segments to

be encapsulated and shared, potentially with any system user,
in such a way that access of the borrowing user would be re-
stricted to calling "gate" entry points. This scheme seems

to utilize the full functional capabilities of the ring pro-
tection hardware in the follow-on processor. 'The plan will

be reported on in greater detail when it is implemented.

Finally, a thesis on protection referred to in last year's
report is almost completed. This thesis describes practical
protection mechanisms that allow mutually suspicious subsys-
tem: to cooperate in a single computation, a case which is be-
yond the functional capability of protection rings. The mech-
anisms are based on an extension of the domain model of pro-
tection. This extension makes explicit provision for communi-
cating arguments between domains when the execution point of

a computation passes from one domain to another. The extended
domain model serves as the basis for the design of a hardware
processor which automatically enforces the complex access
constraints associated with general multi-domain computations.

51

COMPUTER SYSTEMS RESEARCH

This processor allows a standard subroutine call with argu-
ments to change the domain of execution. Arquments are auto-

efficiently and naturally in a computer utility. The thesis
points out a direction in which a multi-like system could
evolve to Support applications where more complex access con-
straints are required than can be enforced by a mechanism
based on concentric rings of protection.

6. Follow-0On Hardware

the M.I.T. Information Processing Center ang Honeywell during
the reporting period for follow-on Multics hardware which will
be based upon the Honeywell 6000 series technology. The
follow-on machine will bear essentially the same relation to

of the equipment is currently scheduled to be delivered during
the Fall of 1972, The intent in both hardware and software
is to minimize differences Letween the new and old systems;
however, certain new features are planned in both areas

which will carry a high payoff for a relatively small altera-
tion. 1In the hardware, a modified pointer register structure
Supports the Multics protection ring mechanism; the high
performance drum is replaced by bulk storage; and the number
of general registers (long felt to be a constraint on the
current machine) will be increased. 1n the software, new,
more efficient call-save-return macros will be introduced in
response to the metering observation that the number of sub-
routine calls on Multics is quite high; the bulk of the

removed, in view of the hardware ring support; and the PL/1
compiler will take advantage cf the 6080's new Extended
Instruction Set to perform character string manipulation more
efficiently, Rough estimatesg indicate that tne combined
effects of new hardware ang software features should result in
an overall performance improvement factor of anywhere from
three to seven.

Although Honeywell is leading the overall transition effort,
the lessons learned in working with the present (essentially
prototype) machine were of great value to members of the

Group in their participation in the engineering of both soft-
ware and, to at least ap advisory/conceptual extent, hard-
ware. During the year, the strategy for making the transition
from the old system to the new was Planned in detail ang work
was begun. Indeed, for around half the period, the current
development system has been running not with a 645 GIOC (as
the Service System does) but with the 1/0 controller

52

COMPUTER SYSTEMS RESEARCH

and communications computer of the follow-on.

7. Maintenance of Multics

As noted above, normal development, operation, and maintenance
of Multics have devolved upon the M.1.T. Information Process-
ing Center and Honeywell. It is significant that a new
Multics site was brought into exirtence during the year by
Honeywell personnel in Paris, Friunce. Compaigne Honeywell
Bull is using this system as a 'software laboratory", in
conjunction with a similar facility in Waltham, Massachusetts.
(The fourth 645-based Multics site is at Rome Air Development
Center, New York.) Although occasional bursts of help from
CSR personnel are required on very hard problems in certain
areas, the successful day-to-day operation of four separate
Multics si 2s speaks well of the successful transfer of
expertise as well as responsibility to Honeywell.

8. MPM Upgrade

Experience with the ARPA Network has strongly underscored the
importance of user documentation. Both our experience with
attempting to learn to use other systems and reports

by Network participants from other sites on their attempts to
learn to use Multics suggest that the problem of teaching-at-
a-distance is far from solved. The necessity of furnishing a
solid foundation for learning in the form of documentation
appears to be inescapable. A concerted effort to both upgrade
the quality and complete the contents of the Multics Program-
mers' Manual was, then, probably the most important con-
tribution of the Group to naking the system easy to use during
the reporting period. As the MPM is the primary source for
disseminating knowledge about the system, improvements in its
quality serve a useful purpose for both users and students of
the system. Particularly noteworthy from the user's point of
view are the additions of a rather extensive "Beginners' Guide"
and an index. Several new Reference Data Sections have been
produced, as well as many new command and subroutine writeups.

9. Programming Languages

Significant work on several programming languages was also
performed. Although only initial steps were taken during the
reporting period, an upyrade of the LISP implementation is of
particular interest because of its impact on the implementa-
tion of the Automatic Programming project. (See Future Plans
for more information on this project.) The effort is being
performed jointly with Automatic Programming personnel, and
is the first step taken in the Group's collaboration in that
area.

An experimental version of APL was developed by Heneywell with
assistance from a Computer Systems Research Group student.
Although it is only an initial implementation, it has created
considerable interest in the ARPA Network community as it is
the only APL known to be available on the Network. Its inter-
face to the user has been constructed to be exactly the same

53

COMPUTER SYSTEMS RESEARCIH

as the IBM APL -- a construction which most APL enthusiasts
consider essential. A plan for improving its performance has
been evolved, which it is hoped will be implemented this
summer.

Work at Honeywell is nearly complete on "Version II" PL/I and
FORTRAN. The PL/I is ANSI standard, and offers superior per-
fermance as well as ability to make use of the capabilities of
the follow-on hardware (which contains an extended instruction
set to facilitate character manipulation). It is interesting
to note that the Fortran compiler shares the code generator

of the new PL/I compiler.

An XPL compiler implementation was completed as part of a
Bachelor's thesis. This language is of interest since it is
the vehicle for SPL, a PL/I subset language which is used in
the M.I.T. introductory programming course. The languages
are based on the work of McKeeman, Horning and Wortman at
Stanford University and the Universitv of California at Santa
Cruz.

B. Future Plans

In the next twelve months, the following major projects are
planned:

- Continued support of Honeywell's conversion of Multics
to the 645F hardware system. This activity will reach
a peak in Fall, 1972, at the time of delivery of the
645F processor and memory, and continue through Spring
of 1973, when the conversion is scheduled for comple-
tion. Project MAC is currently providing about 1/4
of the manpower for the conversion activity. Develop-
ment, with the Automatic Programming group, of a LISP
interpreter and compiler system on Multics. This work
has two goals:

1. A language essentially identical to the LISP used on
the MAC and Artificial Intelligence Laboratory's
PCP-10's.

2. A compiler which produces the highest quality object
code possible for the 645 follow-on processor. The
combination of an instruction execution rate in
excess of 106 instructions/second, a 384K word core
memory, and a virtual memory, should make this com-
piler a very potent tool.

- Completion of the Multics Programmers' Manual (MPM) and
the System Programmers' Supplement (SPS) to the MPM.
These two books are both about 3/4 complete, and a con-
certed effort to finish them is underway. Arrangements
have been made with Honeywell's publications office to
take over editing, updating, and publication of these
two manuals as soon as they are substantially com-
plete. Current schedules call for the MPM to be avail-
able from Honeywell in first quarter of 1973. The SPS
will come later.

54

COMPUTER SYSTEMS RESEARCH

Publications

1.

Bensoussan, A. C., C. T. Clingen, and R. C. Daley,
"The Multics Virtual Memory: Concepts and Design",
Communications of the ACM, Vol. 15, No. 5, pp. 308-
318.

Corbaté, F. J., C. T. Clingen, and J. H. Saltzer,
"Multics: The First Seven Years", AFIPS Conference
Proceedings, Vol. 40, 1972 Spring .Joint Computer
Conference, pp. 5371-583.

Feiertag, R. J., and E. I. Organick, "The Multics
Input/Output System", Third Sympesium on Operating
Systems Principles, October 18-20, 1971, pp. 35-41.

Multics Programmers' Manual, Revision 10, M,I.T.
Informaticn Processing Center Publications Office,
May 4, 1972,

Organick, E. I., The Multics System: An Examination
of its Structure, M.I.T. Press, Cambridge, Massachu-
setts, and London, England, 1972.

Saltzer, J. H., "Some Observations about Decentraliza-
tion of File Systems", Proceedings of the 1971 IEEE
International Computer Society Conference, September
22-24, 1971, pp. 163-164.

Schroeder, M. D., and J. H. Saltzer, "A Hardware
Architecture for Implementing Protection Rings",
Communications of the ACM, Vol., 15, No. 3, pp. 157-
170.

Sekino, A., "Response Time Distribution of Multi-

programmed Time-Shared Computer Systems", Proceedings
of the Sixth Annual Princeton Conference on Informatron

Sciences and Systems, March 23-24, 1972, pp. 613-6109.

Sekino, A., "Discussion of Section VI", in Statistical
Computer Performance Evaluation, Walter Frelberger,
Editor, Academic Press, New York, 1972, pp. 461-462.

Corbaté, F. J., "The Multics System: Steps Toward A
Computer Utility", presented at the conference on
Time-Sharing and Multi-Access Computing in the 70's

by ONR/SDC, November 9, 1971, Sarnta Monica, California.

Padlipsky, M. A., "ARPA Network Users Experience",
panel at SHARE, New York, August, 1971.

Saltzer, J. H., "Current Research in Computer Operating
Systems at M.I.T.", talk given at Stanford University,
October 20, 1971; Princeton University, November 18,
1971; and University of Pittsburgh, February 18, 1972.

55

COMPUTER SYSTEMS RESEARCH

Talks (continued)

4.

Saltzer, J. H., "Large Scale Computing Systems in the
U.S. Today", talk at Kansai Inctitute of Information
Systems, January 24, 1972.

Saltzer, J. H., "System Resources required for Support-
ing Interactive Terminal Use", given at USIB Symposium
on Terminals, Washington, D, C., May 23, 1972.

Schroeder, M. D., "Ccoperating Mutually Suspicious
Subsystems", given at University of California at
Berkeley, Stanford University and Washington State
University, January, 1972.

Schroeder, M. D., "A Hardware Architecture for Imple-
menting Independent Domains", Palo Aito Research Center,
Xerox Corpnration, February, 1972.

Sekino, A., Discussanrt for a session on Systems
Management at the Conference on Statistical Methods
for the Evaluation of Computer Systems Performance,
Brown University, November 22-23, 1971.

Thesis Completed

1.

Karger, Paul, An Implementation of XPL for Multics,
S.B. Thesis, Department of Electrical Engineering,
M.I.T., 1972.

Doctoral Theses in Progress

1.

2.

Clark, D. D., "The Input/Output in a Virtual Memory
Computer System".

Schroeder, M. D., "Allowing Cooperation of Mutually
Suspicious Subsystems in a Computer Utility".

Sekino, A., "Performance Evaluation of Multiprogrammed
Time-Shared Computer fystems".

56

TR e - o < v Ll

e

DYNAMIC MODELING, COMPUTER GRAPHICS,
AND COMPUTER NETWORKS

Prof. J. C. R. Licklider

Academic Staff i

Prof. J. J. Donovan Prof. N. P. Negroponte

Instructors, Research Associates, Research Assistants and Others

J. Aiello P. W. Hughett G. F. Pfister
P. M. Allaman J. W. Johnson J. Piggins
B. K. Daniels M. Knaur J. Sabath
J. F. Farrell D. Koenig M. S. Seriff
R. J. Fleischer S. Kruger . W. G. Shaw
D. Folger P. D. Lebling R. A. Stern
H. Forsdick W. J. Long J. R. Taggart
R. M. Fox S. E. Madnick S. Tepper
W. Godfrey W. A. McCray R. W. Weissberg
L. I. Goodman M. S. Miller S. Zaborowski 5
S. Gregory S. G. Morton C. Ziering g
F. E. Guertin H. F. Okrent

Undergraduate Students -5
M. H. Alpert E. Kant
H. R. Brodie R. M. Katz
J. L. Caruso C. A. Kessel
A. Y. Chan R. N. King
C. C. Conklin N. V. Kohn
R. G. Curley C. K. Leung
S. E. Cutler G. Pavel
R. A. Freedman R. L. Prakken
D. E. Geer L. M. Rubin
R. A. Guida N. D. Ryan
J. H. Harris J. D. Sybalsky
W. F. Hui M. E. Wolfe

DSR Staff

A. K. Bhusiun R. P. Goldberg
E. H. Black J. F. Haverty
M. F. Brescia F. Y. Knight
R. D. Bressler R. M. Metcalfe
A. L. Brown J. C. Michener
M. A. Cohen L. G. Pantalone
D. G. Cressey S. G. Peltan
M. S. Draper C. L. Rzeve
S. W. Galley A. Vezza

Support Staff

M. A. Bizot J. A. Haley
M. S. Broos A. J. Hicks
M. T. Cheney R. F. Hill
M. Cummings E. F. Nangle
C. T. Falls 5. Pitkin

57

DYNAMIC MOLDELING, COMPUTER GRAPHICS,

AND COMPUTER NETWORKS

A. INTRODUCTION

This year has brought almost to culmination the joint
conmputer-system research and development effort of the Dynamic
Modeling Group, the Computer Graphics Group, and the part of
the Computer Networks Group based on the PDP-10 computer,

The effort has brought into being a rapidly responsive, highly
interactive time-sharing system with sophisticated graphic
display, good connection to the ARPA Network, and unusually
well developed facilities for usingy and augmenting through use
a library of sharable procedures and data sets. This summer,
the two-and-a-half groups are beginning a transition from
computer system building to research in automatic programming
that will exploit the computer system. Final integration of
several parts of the system and the shift into automatic-
programmiry research will contirus through the fall, and most
of the reporting of idcas tested and experience gainad in the
system-building cffort will be done during the fall and winter.
It is possible now, neverthelesis, to present a description of
the computer system and to relate several aspects of its design
to the aims and aspirations thuat motivated the project.

The system has been called the "Dynamic Modeling Sys .em"
or "DynaMod" despite efforts to promote use of names that
reflect the participation of Computer Graphics and Computer
Networks as well as Dynamic Modeling. The name "Dynamic
Modeling System" will be used in this report.

B. MOTIVATION

The motivation behind the Dynamic Modeling System had
(and has) several components. In & general way, of course,
they all stemmed from the drive for machine-aided cognition
that motivated so much of computer research and development
during the 1969's. When the Dynamic Modeling System was
undertaken, however, therc was a widespread fecling that the
thrust of the 1560's had fallen short in several ways. Most
time-sharing systems were slow to respond -- not "highly
interactive™. None (we know or know of) had good facilitiec
for general-purpose graphical interaction. The most
responsive systems and the ones most convenient to use were
either one-language systems (e.g., APL) or systems with two or
three essentially noncommunicating language subsystems. And,
most importantly, nowhere was there a time-sharing system that
had amassed or seemed on the threshold of amassing a large,
sharable, consistent, coherent collection of procedures and
sets of data that could be retrieved on-line by users and
conveniently incorporated into their own programs. The concept
of a large and coherent run-time library had been about for
several years as a gleam or a dream, but it had not been
approached at all closely in actuality,

Many of the features that we considered desiderata for

the Dynamic Modeling System had been implemented in one time-~
sharing system or another by the time the Dynamic Modeling

Preceding page blank 59

F
.

o

MODELING, GRAPHICS, NETWORKS

System was undertaken. (Work on the Dynamic Modeling System
began, effectively, in October, 1969, when a used PDP-6
computer with 32K words of mcmory was delivered to Project MAC.)
The designers of Multics had solved most of tle problems that
were important toc us in the software-technical area of
controlled sharing of procedures and data. The Artificial
Intelligence Laboratory's PDP-10/ITS system was providing
fast and convenient interaction (mainly alphanumeric) and the
myriad benefits of the LISP language with its options of
interpretation and compilation. IBM's APL was demonstrating
most of the advantages (and some of tlie disadvantages) of
working interpretively in a neatly designed language and
compact notation. The Lincoln Laboratory's TX-Z/Apex Time-
Shariny System was operating with time-shared graphics and
was testing out an approach (the Reckoner) to coherence in
programming and systematic sharing of programs. 1In the
Augmentation Research Center of Stanford Research Institute,
Engelbart's On-Line System was showing how eftectively a well
organized multi-access file system can correlate and integrate
the activities of the members of a design team. And there
were, indeed, several other time-shared computer systems that
demonstrated effectively one or more of the features that we
considered essential, but none demonstrated all the features.
The aspiraticn for the Dynamic Modeling System was to put all
the desiderata together in one reasonably efficient system.
A7ain, the most important design desiderata were:

l. Fast response

2., Convenient interaction

3. Well developed graphic display

4., Where and when needed, the flexibility provided
by interpretation; where and when needed, the
efficiency provided by compilation or assembly

5. Large, coherent run-time library of sharable
procedures and data -- augmented by application-
oriented users as well as system programmers

C. OVER-ALL PLAN OF THE DYNAMIC MODELING SYSTEM

The general plan of the Dynamic Modeling System is shown
in Fig. 1. The figure shows only the largest features of the
landscape. They consist, of course, of hardware and software
-- of consoles, central software, central hardware, and
interconnections,

CONSOLES

The consoles are Imlac PDS-1's, Adage Advanced Remote
Display Stations (ARDSs), and Adage-built vector generators
and displays that are part of the Evans and Sutherland LDS-1
Line Drawing System. For graphical input there are "mice",
"joysticks", and one stylus tablet. (More stylus tablets are
on order.) The only software in the consoles iy in the Imlac
consoles, which include minicomputers. Most of the software
that operates in the Imlacs was provided by the manufacturer,
but we have augmented it and, on a larger scale, prepared
PDP-10 software that takes advantage of the Imlac's impressive

60

MODELING, GRAPHIICS, NETWORKS

capabilities in editing and graphic display.

CENTRAL SOFTWARE

The great preponderance of our effort has Leen devoted,
as shown in Fig. 1, to work at levels akove the operating
system. We have tried to develop a system of facilities
extending upward and outward from the operating system toward
and into the realm of user applications. It may help to
distinguish our focus from those of the primary developers of
Multics if we say that we adopted an already developed
operating system and modified it only insofar as absolutely
necessary for our purpose, whereas they created an operating
€ystem de novo devoting most of their resources to it, and left
in largé part to various subsystem developers in the Multics
user community the task of creating the extensions and
adaptations that have primarily concern>d us. In this
connection, we acknowledge a great debt to members of the
Artificial Intelligence Laboratory who developed the ITS
Operating system and were extremely helpful in transferring it
to us and tutoring us in its maintenance and use.

The upper tier of central software (Fig. 1) is divided
into two main parts and an interface. The main parts are
called "MUDDLE" and "CALICO". They are separate because two
quite distinct and largely antagonistic philosophies have
influenced our work. They are interfaced, and we are doing
our best to meld the two into a functional unity, because
users need -- and we want -- the best of both worlds. But we
may defer the philosophies. Let us first commplete our
examination of the over-all plan.

MUDDLE is the part of the Dynamic Modeling System that is
mest helpful to a person who wants to formulate and explore
ideas and to test them out quickly and conveniently. It is
irtended to become in addition, for many applications, the
door into all the rest of the Dynamic Modeling System, Whereas
LISP is limited io the single data structure LIST, MUDDLE
offers several data Structures. MUDD has, indeed, several
octher areas of advantage over LISP ar appears likely to serve
as a follow-on to LISP and as a basic for higher-level
languages such as PLANNER and CONNIVER,

The design and implementation of MUDDLE have been (and
are being) carried out as a joint undertaking of the M.I.T.
Artificial Intelligence Laboratory and Prcject MAC.

basic information»processing tasks that arise frequently in
interactive computing and, at the same time, with proven and
documented building bhlocks for use in constructing application
programs. "CALICO" is derived from the hames of three of its
main subsystems: the call-and-return mediator CARE, the
library LIB, and the command interpreter COIN. Most of CALICO
has been prepared in the assembly language MIDAS., Tt is
consistent with a subset of PL/1. 1t emphasizes a small set
of data types and structures compatible with those of MUDDLE

61

MODELING, GRAPHICS, NETWORKS

i i y i 4 ; i I
SAVAA s] [eos] [ees
V] VE7 EA FE] | ¢ S | | ards | | asbs
8 'L /// /A ez ~

7 e, /7
7HUDI}ILE 7 Zg é
/Lnngunge / =0 8
%Interureter,% %/S é‘é " The
/CDMDHEFI / ‘/L:J ;/ /'EHUC?
/Lubmry, / %SE% /Wnrld
%Ed-mr, / %% % /
]
= Debugger =
S Wrn22r . % /////
% 1 3
: |
5 1
=]
= % LISF‘iI SAIL TECO DDT
o / |]
o
L 1TS 7 4 4
/Dper.; PEEK LOCK INFO TJ-6
. Svs, 4
7
y/_ .| Inter- N DEC Software
.,‘://A face Incl. FORTRAN
g > E8S
E Disploy
g » Topes System
= Computer = . A T LTI
2 Discs l //f, Interfaces 2/
5 7 ta Network, 7
O Prififers _,/ Consgles, Printers /

b

ARPANET

Fig. 1
General Plon of the DM System:
The heavy lines and cross-hotching indicate the moin investments of effart
in the system on the ports af the Dynamic Madeling, Computer Graphics,
and Camputer Networks Groups. See text ond other figures for explication.

62

MODELING, GRAPHICS, NETWORKS

i

CONSOLE NETWORK ¢
I
| f 1 (
COMMAND CONSOLE | _|CONSGLE-GRAPHICS |
INTERPRETATION ALPHANUMERICS ("1 MANAGEMENT |
] T ¥
[L____{___l__._.__l
7
i |
CALL- RETURN INTER-CONSOLE| { | CHARACTER '
MEDIATION COMMNICATION RECOGNITION |
4)
t _____ = e 5. = aps 1
|
y y
INFORMATION DATA | I SEBUEGING | |
RETRIEVAL MANAGEMENT [1 v | |
T 3 L |
[FH QECCICCN— WO W S R— _____1_____.]
INPUT- INTERRUPT I "uuo” '
OUTPUT HANDLING { HANDLING |
4)) |
By = o] s o e L L
{ r
|
DYNAMIC
JMPI
COMPILING MODELING R !
4 4 4
[H S
LIBRARY
Fig. 2

“The CALICO World" and its major subsystems

63

MODELING, GRAPHICS, NETWORKS

but admits a wider range, laying down conventions and
procedures for registering data types and structures. It
defines several classes of subroutines and a preferred
calling-and-returning sequence format, but it is hospitable

to subroutines written in any language if they have been
translated into loadable, callable, and execut:able PDP-10 code.

CALICO subsumes a set of facility programs and a library
of modular subprograms. The facility programs handle the
functions shown in Fig. 2, The library corsists of about 500
subroutines (callable entries), each with documentation
available (but vide infra) on-line through the consoles as well
as in print-out form in files near the consoles Most of the
effort of the two-and-a-half groups has goue intc CALICO, and
it must be said at the present time tou be the main part of the
Dynamic Modeling System created by the effort.

HYDRA: As shown in Fig. 1, MUDDLE and CALICO are inter-
connected. MUDDLE functions can call subroutines from
CALICO's library and have them operate on data that have been
processed by MUDDLE, and -- although this is less useful --
CALICO subroutines can call MUDDLE functions and (if the data
types and structures are among thouse dealt with by MUDDLE)
have them operate on data that have been processed by CALICO.
The interaction between MUDDLE and CALICO is at present
rather inefficient and constrained, but it is rapidly being
made more efficient and less constrained. We are hopeful
that, within a few months, we shall have in operation a true
realization of what three years ago we envisioned in a nebulous
way but did not know quite how to achieve: a computer system
providing both (a) the convenience and flexibility of
interpretive execution in the upper echelons of program
hierarchies and in any other areas in which procedures need
to be readily modifiable and (b) the power and efficiency of
assembly or compilation in all those parts of the programs in
which off-the-shelf (i.e., out-of-the-library) subprograms
can be used.

ITS: The operating system ITS, developed over a period
of years by members of the Artificial Intelligence Laboratory,
has provern to be excellent for our purposes. We have modified
it only insofar as necessary to accommodate our hardware, to
permit shared use of pure procedures and cdata, and to support
operation of the Dynamic Modeling System's PDP-10 as part of
the ARPA Network. It is important to note that ITS permits
each user to have several processes, organized in a
hierarchy, working for him concurrently. That is often a
great convenience: the one-thing-at-a-time work style forced
by single-process operating systems is not natural to most
people, and there is great advantage (as in debugging a faulty
program with a debugging aid such as DDT) in having programs
able to communicate with each other yet not able to destroy
each other.

Network Control Program: Partly under this heading and
partly under "CALICO"™ there are several related program+ that
connect the Dynamic Modeling System into the ARPA Netwcrk.
The Network Control Program prop=r, the Logger, the

64

MODELING, GRAPHICS, NETWORKS

implementation of the TELNET protocol, and an implementation
of the new Data and File Transfer protocols have now been
brought into line with the conventions of CALICO, and they
consist mainly of library subprograms. The Network Daemon
(independent ITS process), which earlier had to remain active
continuously, now "wakes up" whenever it is called and "goes
back to sleep" when it is finished.

Independent Modules: Not integrated with CALICO or
MUDDLE but nevertheless of great value to users of the Dynamic
Modeling System are the text editor TECO, the debugging aid
DDT, and such utility programs as PEEK, LOCK, INFO, and TJ-6
borrowed with appreciation from the M.I.T. Artificial
Intelligence Laboratory. Not integrated, and of less value +o
users because of it, are the language and compiler LISP,
borrowed with appreciation from the M.I.T. Artificial
Intelligence Laboratory, and the language and compiler SAIL,
borrowed with appreciation from the Stanford Artificial
Intelligence Laboratory. It will be very difficult to merge
either LISP or SAIL into the MUDDLE-CALICO complex. We do
not see much to be gained from merging LISP, but the idea of
merging SAIL refuses to die because SAIL would bring with it
access to a host of published ALGOL algorithms.

DEC Software: Last year, a joint MAC-AI effort developed
a program that makes the ITS e,stem look to the Digital
Equipment Corporation's software like the DEC PDP-10 operating
system. That program makes available to us the whole collection
of DEC software, including FORTRAN, but does not, of course,
make it coherent with MUDDLE or CALICO.

CENTRAL HARDWARE

The hardware base of the Dynamic Modeling System was
described in the Annual Report of 1970-71 and will, therefore,
be described only briefly here. The hardware base includes:

DEC PDP-10 main processor

E&S LDS-1 display processor

Blocks of core memory (208K words)
DEC RP@2 disk drives (15M words)

DEC TU2@ magnetic-tape unit (9-track)
DEC 555 microtape units

Bright BI1215 line printers

Interface to ARPANET IMP

Interface to consoles and printers

HHN®KMW®H

together with the necessary ports, channels, and interconnec-
tions. Most of the hardware was purchased from the Digital
Equipment Corporation. Some was purchased from other
manufacturers. The ports for about half the core memory and
the interfaces to the IMP, the consolass, and the printers were
constructed in the laboratory.

D. OPPOSITION AND CONFLUENCE OF TWO PHILOSOPHIES

In the preceding section, we mentioned that there are

65

MODELING, GRAPHICS, NETWORKS

two partly antagonistic philosophies in the world into which

we are bringing the Dynamic Modeling System. It is to a large
extent the product of their attractions and counter attractions,
their pullings and haulings.

The one philosophy, embodied in various degrees in LISP,
APL, BASIC, and now MUDDLE*, prizes the power and convenience
that one can achieve by using a single, internally consistent
language that provides the basic omerators for working with a
restricted set of basic data types and a way of composing
higher-level operators -- procedures, functions, or subroutines
-- and accumulating them within the system. Associated with
this philosophy, but not an integral part of it, is the idea
that each programmer-user should or will create his own,
personal system of procedures, data and technigques, and that
there is more to be gained through facilitation of such
individual efforts than through attempting to organize one
over-all system replete with standards, conventions, and a
central software library, for use by, and to be contributed to
by, an entire community of users.

The other philosophy, which we think has never yet been
fully and successfully embodied in any actual computer system,
focuses upon an image (which may be quixotic, yet must surely
contain the germ of the fundamental plan of distant-future
computer systems) in which most of the procedures that users
need have already been written, tested, debugged, documented,
and cataloged -- and in which users engage themselves more
often, and more productively, in retrieving and using
procedures than in creating (or recreating) them.** This
philosophy was strong among developers and users of the
Compatible Time-Sharing System, the files of which at one
point contained one to two million words of public programs
and 20 to 30 million words of private but to some extent
sharable programs. However, no way of tightly organizing the
CTSS user community was ever worked out, and although there
were many cross-linkages among CTS3 files, it must be said
that CTSS only defined and clarified the philosophy and did
not fully realize it. The philosophy of the community-wide
coherent system has been strong in Multics, also, but -- as
already noted -- most of the resources for Multics
development went into providing an operational basis for
sharing rather than into such things as or line facilities for
retrieving library software. At present, cthe main thrust in
the Multics world toward community-wide coherence is that of
the Cambridge Project, which is developing a (onsistent System

* * * * %

*It is dangerous to put these names into such proximity.
The four languages/systems are different from one another in
many ways, and proponents emphasize differences. Nevertheless,
there is a strong common theme. Perhaps it is embodied more
in the proponents than in the languages themselves.

**Tn the distant future, of course, users may describe the
programs they want to a program-writing program rather than to
a program-retrieving program. Automatic programming is to
program retrieval as the calculation of functions of arguments
is to table look-up.

66

MODELING, GRAPHICS, NETWORKS

for research and applications in che behavioral and social
sciences,

Any effort to achieve community-wide coherence is sure to
bring more than one lanyuage into the picture. It is more
difficult to achieve coherence across languagcs than within
onc language. It is cven more difficult to convert a BASIC
fan to APL (or vice versa) or to get an old-timc FORTRAN user
out of FORTRAN and into the more modern world of PL/1 (or even
ALGOL) . Thus there arc partly antagonistic technical and
social forces at work as wcil as partly antagonistic
philosophies. We havc tricd, as mentioned, to achicvc the
becst of both worlds, but of course we have had to compromise
-- for systcm engineering is almost always as much compromise
as breakthrough.

To keep the problem within reasonable bounds, we defined
a community of programmcr-users much smaller than the Multics
user community -- considerably smaller than the Cambridge
Project's behavioral and social-science community within
Multics. Sixty uscrs have permanent files in the Dynamic
Modeling System. Although the group includes representatives
from physics, microbiology, neurophysiology, political sciencc,
urban planning, and nuclear engineering, most of the members
are primarily computer scientists and speak the same languages.
Almost all the participants have desks or offices in the same
laboratory. Intercommunication is easy and there has been
much of it, For an example, this spring there were 12 Special
Interest Groups -- actually, planning-design-implementation
task forces -- and one over-all Central Coordinating Committee.
For another example, the working documcnts of the Dynamic
Modeling System come to approximately 2,000 typewritten pages.

Even with the problem of achieving coherence thus scaled
down, the difficulties have seemcd vcry great. From the very
beginning, the "managers" preached cohercnce, generality,
documentation, and modularity-in-the-small while the creative
drives of the "programmers" and the joyous positive reinforce-
ment achieved through successful erection of ever-larger-and-
more-elegant software castles swept the project in the opposite
direction. (We put “"managers" and "programmers" in quotes
because they are roles, not peoplc. A group leader alone at a
console is a programmer and creates his own castle. A software
specialist on the library "SIG" is a manager -- until he gets
back to a console.)

The coherence and systematization that we have achieved
was won at the cost of grcat effort, mainly group rather than
individual effort, and always through several iterations that
discarded much or most or all of the initial schema in order
to adjust to new ideas or to concurrent interacting
developrants. The process has been hard on several proponents
of initial schemata, and it has given the Dynamic Modeling
System somc of the nature of a patchwork quilt. Nevertheless,
the process has brought the system close enouch to the
initial "dream” to let thc dreamers feel that it is what they
envisicred, and has come close enough to melding thc partly

67

MODELING, GRAPHICS, NETWORKS

antagonistic philosophies that their antagonism isg no loager a
disruptive factor,

E. MUDDLE

AS mentioned in the introductory comments in the OVER-ALL
PLAN OF THE DYNAMTC MODELING SYSTEM, MUDDLE provides a very
bowerful and convenient environment for trying out ideas. One
€an create a fairly tomplex program, see what is right ang what
is wrong with it, and modify it and retest it -- or even throw
it away and begin over -- relatively quickly. For example, a
Person with almost zero Previous experience with MUDDLE (and
LISP, to which MUDDLE is most closely related) Prepared and
debugged a descriptor-based informatlon-retrieval system in
10 hours at the console plus 2 hours at his desk. 7In 10 more

MUDDLE retrieval system (somewhat more complex, programmed by
a more experienced Programmer in one thernoon), and the whole
will then be redone in assembly or cempiler code to operate
efficiently under CALICO.

At present, MUDDLE is used almost exclusively as an
interpreter, and at present it ig too slow in Operation ang
too demanding of memory space to handle large-scale tasks in a
practical way. Even under those circumstances, however:, MUDDLE
is the preferred environment for trying out and testing ideas,

The people who have contributed intensicely to the design
and development of MUDDLE are Gerry Sussman, Carl Hewitt, Jeff
Hill, and Drew McDermott ¢¢ the Artificial Intelligence
Laboratory and Reeve, Daniels, Cressey, and Fleischer*,

Daniels ig developing a MUDDLE compiler, which will greatly
increase efficiency of eXecution. It exists now in rudimentary
form, and it functions, but it will not be ready for widespread
use until late fall], MUDDLE's voracious consumption of memory
space will become tolerable in December when the projected
Paging subsystem of the PDP-10 computer is installed.

The present MUDDLE library consists of 150 basic MUDDLE
subroutines and 309 MUDDLE functions, The latter are Simply
the confluence of the personal MUDDLE files of Reeve, Paniels,
Pfister, Broos, Metcalfe, Stern, Black, Cressey, Ryan, Rubin
and Licklider, and the collection constitutes a mere beginning.
It is a mere beginning because MuDDLE came into the planning
of the Dynamic Modeling System rather late and because the
ease with which one €an program in MUDDLE tends to de-emphasi zp
dependence upon a library. MUDDLE and its library are regarded,
nevertheless, as very important parts of the Dynanmic Modeling
System.

MEDDLE (Pfister), that greatly facilitates use of MUDDLE.
There is, also, a dynamic loader (Pfister, Cressey) of MUDDLE
functions that retrieves them from disk files when they are

* ok ok % R

*For full hames, see lists of members of Dynamic Modeling,
Computer Graphics, and Computer Networks Groups.

A8

MODELING, GRAPHICS, NETWORKS

called by other MUDDLE functions. Graphics capabilities are
being incorporated into MUDDLE in two ways: one exploits the
Evans and Sutherland processor and a graphics subsystem called
"Polyvision" (Daniels, Michener, Black, Broos); the other uses
display programs that operate in the Imlac consoles (Ryan,
Rubin and Brodie).

F. CALICO

As shown in Fig. 2, CALICO includes subsystems concerned
with almost all the various aspects on interactive computing.
All the subsystems are built out of library subroutines, and
the subsystems share subrouctines insofar as possible. The
library subroutines are either entirely pure procedures or are
separated into pure and impure parts. Only one copy of a pure
procedure (or pure part) is held in core memory, but there is,
of course, one copy of each impure part for each user (using
process) thereof.

MEDIATION OF INTERACTION

Interaction between the user-programmer at the console
and the rest of the system is mediated mainly by the command
interpreter (Seriff), the console alphanumeric subsystem (Cohen,
Brescia, Peltan), and several console-graphics subsystems.

The latter, more complex than shown in Fig. 2, include a
display-management subsystem for the Evans and Sutherland
display processor (Michener, Black, Geer and Curley), a sub-
system for stylus-tablet input (Hui, Guertin, Broos, Niles), a
subsystem for composing two-dimensional and three-dimensional.
graphs and charts (Black, Pangaro, Cutler, Siegel), and a sub-
system for Imlac and ARDS graphics (Peltan, Conklin, Rubin,
Ryan) .

SUBROUTINE MEDIATION OF CALLING AND RETURNING

There are no "main routines" in CALICO -- only subroutines.
Either a MUDDLE function or the mediator's initializer serves
as the top-level rovkine. The subroutines of CALICO are of
several kinds. On one dimension of variation are "fully

mediated", "lightly mediated", and "unmediated". On a second
dimension are "location-sensitive" and "location-insensitive",
and on a third are "internal" and "external". The mediator CARE

(Reeve, Harris, Hughett, Brodie, Licklider) handles the calling
and returning of fully and lightly mediated subroutines,
assuming control at times of calling and returning, performing
several housekeeping functions on behalf of the calling,
called, returning, and receiving subroutines, and affording
the user-programmer an opportunity to intervene. Only low-
level, inner-loop subroutines are unmediated, and only such
routines (and only a few of them) are internal -- i.e., built
into larger, higher-level routines. The governing philosophy
calls for extreme modularity, for independence of each sub-
routine from all others except through calling and returning
sequences, and for purity and location-insensitivity insofar
as possible. Every fully mediated subroutin-= and every data
set has a header that permits other software entities to
discover its pertinent properties. The mediator is set up to

69

MODELING, GRAPHICS, NETWORKS

check the types of arguments at times of call and results at
times of return; type checking is not vet in effect, but it will
go into effect (on an optional basis) shortly.

COMMUNICATION
S LUN

Interconsole communication is based on capabilities
inherent in the 178 system and only slightly augmented for our
purposes (Cohen, Brescia, Peltan), "System-mail" announcements

is enabled, one user can type messages directly onto another
user's display. an administrative file area and directory are
used as a communication medium. And there is a users'
directory and information—retrieval system (Guida) that
contains names, addresses, telephone numbers, interests,
Project description ang the like.

INFORMATION RETRIEVAL

At present, the main subsystem for retrieving information
about programs and data sets (Bryan, Martin) operates in
Multics and is used either through *he ARPA Network or through
a Multics console. (It was developed before the PDP-10 system
had disk files.) It has turned out not to be very practical,
because of log-in delays and Processing costs, to use that
subsystem as an aid in on-line Programming. Wwe are, therefore,
reprogramming the system on the PDP-10. 1Two preliminary
versions (Broos, Licklider) are now operating in MUDDLE., The
design of the command interpreter and call-return mediator
make it possible to stop at any point in the execution of a
program, explors the library, and substitute a newly selected
subprogram for one that is in line to be called -- or to
substitute a newly selected data set for one that is in line to
be processed. We hope to realize that capability in operation
this fall.

DATA MANAGEMENT

The data-management subsystem consists at present of the
"Keyed Data Manager" (Haverty, Lebling) and "Lexicontext"
(Haverty). The former provides a means for associating
retrieval labels (keys) with arbitrary units of data and then
filing and retrieving the data in a uniform and efficient way.
The latter provides a means for working with text in terms of
basic lexical units (usually English words) and hierarchically
structured concatenations (phrases, sentences, paragraphs,
chapters) of them. It is much more straightforward and
efficient to process Lexicontext's uniform representatives than
it is to process etrings of characters, Because the Dynamic
Modeling System was conceived of as a general-purpose system,
we have not developed a contert-oriented data-management
system. Even as our interests now are focusing on the field of
automatic pProgramming and debugging, it seems likely that we
shall want to keep the data-management subsystem general,
rather than field-specific, and rely for content sensitivity
upon processing programs written in such languages as PLANNER

70

MODELING, GRAPHICS, NETWORKS

and CONNIVER.
DEBUGGING

The principal debugging aid is still DDT, which operates
4s a process separate from (superior to) the one that is being
debugged. DDT is not a part of CALICO. We have augmented it
somewhat (Cutler), but we have not tried to modularize and in-
tegrate it.

In an effort to aid the programmer in visualizing the
execution of his programs and in seeing their flaws as the
flaws are encountered, we have developed a PDP-10 simulator
(Galley, Hughett) and a graphical debugging aid (Galley, Liu).
Together, they display the flow of control through selected
parts of a procedure and, at the same time, the flow and trans-
formation of the data operated upon by the procedure.

A second graphical debugging aid is nearing completion
(Hughett). It records the execution history of a program and
then organizes and traces "trees of influence", working back-
wards, into the past, to check each overation that contributed
to the shaping of an incorrect value.

Work is under way on other debugging aids that check the
values of selected variables during the coirse of execution
(Stern). Plans call for the integration of all these debug-
ging tools (except DDY) and for their correlation with the
mediator, which will make it possible for the programmer to turn
them on and off at call and retrieve points during the execution
of a program.

INPUT/OUTPUT, INTERRUPT HANDLING, AND UUO HANDLING

The input/output, interrupt-handling, and UUO handling
subsytems include sets of CALICO macros and subroutines that
are invoked by application grograms and that, in turn,
communicate with ITS. They include, also, the code required
to handle certain common interrupt situations and to ac-ept new
UUOs. ("UUO" stands for "Unimplemented User Operations", which
are codes that resemble PDP-10 instruction codes but are left
for us=rs to define.) These subsystems allocate resources
dynamically, insulate application routines from such absolute
qualities as channel numbers, and generally facilitate
applications programming. They were designed and implemented
by Haverty, Broos, Reeve, Seriff, Long, Lebling, and Hughett.

COMPILING

The only compiler that we have thus far made consistent
with CALICO is the PL/l1 subset compiler mentioned earlier
(Okreat, Sybalski). It translates s*tatements frcm the subset
of PL/1 into MIDAS source language and accepts all the macros
and respects all the conventions of CALICO.

SPECIAL TOOLS FOR MODELING

In the philosophy of modeling that we have tried to

71

o ﬂ‘

MODELING, GRAPHICS, NETWORKS

implement, it is not held desirable to restrict oneself a
riori to the context or "world view" of any single modeling
or simulation language such as SIMSCRIPT, GPSS, SIMULA, or
DYNAMO. 1Ideally, we would like to have the good features of
many such languages brought together within one consistent
framework (such as MUDDLE or PL/1l). 1In fact, we have devoted
our energies mainly to erection of the framework, and we have
not completed a kit of tools of the kind (e.g., event schedulers,
queue managers) that are features of the simulation languages
mentioned. Work on several such tools is being done by
Okrent, Fox, and Weissberg. A major aim in this work is to
facilitate the construction of models that include both
continuous-process and discrete-event components.

DYNAMIC LOADING

In CALICO, the top-level subroutine is called through the
mediator either by a MUDDLE function or by the user at his
console. If it is already in core memory, the subroutine is
executed; if it is not already in core memory, it is loaded by
DYNAL (Reeve, Brodie) and then executed. Thereafter, each
called subroutine that is not in core is loaded dynamically
and then executed. The called routines are sought by DYNAL
first in the user's files, then in a recent-accessions file,
and finally in the main library.

THE LIBRARY

The part of the Dynamic Modeling System into which the
greatest amount of effort has been put -- and the part on which
the success or failure of the "community" philosophy rides --
is the library. At present, there are about 500 subroutines in
the library. They range from simple, low-level subroutines
that "get" and "put” characters or symbols to complex, high-
level subroutines that translate programs or display three-
dimensional graphs of hand-printed functions. Corresponding
to each executable library subroutine there is a source-
language listing that includes an abstract that can be retrieved
on-line and contains all the infcormation required by a program-
mer-user to use the subroutine successfully.

G. DOCUMENTATION

An over- all view of the Dynamic Modeling System and infor-
mation about how to get started are provided by Galley's "A
Novice's Introduction to the System". It deals with CALICO,
ITS, the utilities, and the hardware rather fully kut leaves to
another document a ccmparable introduction to MUDDLE. That
document is Pfister's "A MUDDLE Primer", which permits anyone
with basic knowledge of programming to move very quickly into
MUDDLE programming.

Essential technical information about the PDP-10 computer
is collected in the manufacturer's System Reference Manual.
Full descriptions of the ITS operating system, the MIDAS
assembler, and several utility programs are contained in reports
of the M.I.T. Artificial Intelligence lLaboratory. The DEC and
AI Laboratory sources cover the foundations of the Dynamic

72

MODELING, GRAPHICS, NETWORKS

Modeling System. The superstructure is described in a rather
voluminous set of documents prepared by members of the Dynamic
Modeling, Computer Graphics, and Computer Networks Groups. At
present, a Dynamic Modeling System Manual is being prepared on
the basis of these documents.

The set of documents is subdivided into several classes:

GA General and Administrative

SYS Basic System

SR Subroutines

MCR Macros

UUO "Unimplemented User Operations"
DTCS Data Types, Classes, and Sets
FA Form Abstracts

LA Listing Abstracts

Convention II:

Sixteen of the 23 General and Administrative documents
deal with a system of standards, protocols, and conventions
called "Convention II". It sets forth rules intended to foster
uniformity and coherence in those areas of software system
development in which many minor decisions must be made among
alternatives that differ only slightly in utility. Decisions
about format are often of that kind: it doesn't matter much
which format is adopted for bibliographic references, for
example, but it is considerate of the reader to make things
consistent. We note, however. that the subject of software
conventions is one in which people have deep ego-involvements,
the depth of involvement being related inversely to the import-
ance of the issue.

It took many hours of argumentztion to define Convention
II, and it would have taken Maiiy more hours of policing to
enforce it if it were not for one fact: the documentation is
on-line, and uniformity of format makes it possible for computer
programs tc deal with documents. There is now quite a collec-
tion.-ef subroutines and macros that extract the titles, one-
~1ine descriptions, descriptor sets, and so on from listing
abstracts. Broos' TECC macros run through the library of
Source programs and update the Listing Abstract Book at
regular intervals. Lebling's macros count each user's files
and measure the disk space they occupy, and the posted results
apply strong moral pressure on "disk hogs" to delete the least
active items. And so on. It is obvious now that it is very
important for programs to be ahle to know a lot about programs
and we want to move toward having programs understand
documentation. Format is of course only one of many facets of
software that programs should know about, but it holds some of
the keys to learning about the other facets.

Subroutines: For most low-level subroutines, the listing
abstract -- usually about two typewritten pages in length -~
provides adequate documentation. For high-level subroutines,
however, the problem is different because each high-level
subroutine organizes the work of several Oor many low-level

73

MODELING, GRAPHICS, NETWORKS

subroutines and, in effect, is a complex subsystem. Protocol
calls for a full program write-up for each such subsystem.

Among the principle subsystem of the type under
discussion are:

Name Function Author Identification
PARSE General parser K. Brown SR.12.21
OBDIS Object display

handler Hui SR.15.901
CHAREG Character recognizer Hui SR.15.g85
GRAPH Cartesian graphs,

2D & 3D Black SR.15.86
ESKBD Character strings

on display Broos SR.15.49
PENGET Stylus-tablet input Michener SR.15.13

MATTER Display of 2D & 3D
graphs corresponding
to hand-printed

functions Guertin SR.15.14
PREORD Binary trees Okrent SR.16.91
ATTACH Compression of

machine-language

files Daniels SR.18.21
DATPGE Data paging for

disk files Haverty SR.18.g1
KDM File manager Haverty SR.19.g92
OLDS On-Line document

system Bryan SR.21.g8¢ -~

and Martin SR.21.12

Other Categories: Macros, UUOs, and other categories of
software are documented in approximately the same way as sub-
rcutines, but the effort to get them and keep them under
bibliographic control has not been as strenuous. Documents
describing macro and uuo subsystems are listed in a period-
ically updated Table of Contents of the Dynamic Modeling
Documentation Series.

Abstracts: The most important item in the documentation
system has turned oiu: to be the listing abstract. 1It is part
of the source-language listing of each subroutine or data set,
and no subroutine or data set can get into the library without
a listing abstract. There are also other abstracts, called
"form abstracts", that a programmer prepares on printed forms
when he begins to work on a program. Because they are available
on line (as well as off), listing abstracts have become the
mainstay.

H. MODELING

Although the main effort of the past three years has been
to build a system to facilitate modeling, we have engaged (and
are engaging) with colleagues outside Project MAC in several
Substantive modeling efforts., These include a model of a
neuronal network (Bingham, Jarvis, Reeve, Balin), an air-

74

MODELING, GRAPHICS, NETWORKS

traffic-control simulation (McMillan), a simulation of airport
air traffic (Dosett), an urban development simulation (Professor
Aaron Fleischer, Allaman), a political science simulation
(Lebling), a model of a neural time-to-place transformation
(Prcfessor Jerome Lettvin, Paul Pangaro), and a model of the
protein-building process that involves RNA (Professor Alex
Roch, Siemeus). The last-mentioned effort, just getting under
way, involves an IBM 360-91 computer at UCLA as well as the
Dynamic Modeling System; the 91 will handle the "number
crunching” and the Dynamic Modeling System the interactive part
of the work, which will exploit quasi-3D graphic display.

75

MODELING, GRAPHICS, NETWORKS

Publications

1.

10.

11.

12.

13.

14.

Brescia, M. F., Time-Sharing a Display Processor for
a Time-Shared Computer System, S.B. Thesis, Department
of Electrical Engineering, M.I.T., February 1972.

DeTreville, J. D., Design and Implementation of an
Example Operating System, 5.M. Thesis, Department of
Electrical Engineering, M.I.T., 1972.

Donovan, J. J., Systems Programming, McGraw-Hill,
New York, 1872.

Donovan, J. J., Teacher's Manual to Accompany Systems
Programming, McGraw-HI1IIl, New York, 1972.

Fleischer, R. J., Computer-Aided Visual Analysis of
Statistical Data, S.M. and S.B. Thesis, Department of
Electrical Engineering, M.I.T., August 1971.

Galley, S. W., A Novice's Introduction to the System,
DM/CG/CN Group Memo, S5YS.00.00, Eroject MAC, M.I.T.,
March 1972.

Haverty, J. F., Lexicontext A Dictionary-Based Text
Processing System, S.M. and S.B. Thesis, Department
of Electrical Engineering, M.I.T., August 1971.

Hui, W. F., An Algorithm for Detecting the Inter-
section of Arbitrary Computer-Displayed Figures, S.B.
Thesls, Department of Electrical Engineering, M.I.T.,
June 1972,

Konig, D., Evaluation of PL/I as an Interactive
Language, S.M. Thesis, Department of Electrical Engin-
eering, M.I.T., 1972.

Licklider, J. C. R., "Criteria for Design and Evalua-
tion of Information Networks", SIGIR, ACM, Las Vegas,
Nevada, November 1972.

Madnick, S. E., "Program Parallelism Based upon Compu-
tation Schemata", Sixth International Congress on
Cybernetics, 1972, pp. 480-494,

Madnick, S. E., Storage Hierarchy Systems, Ph.D. Thesis,
Department of Electrical Engineering, M.I.T., 1972.

Metcalfe, R. M., Anderson, et al., "The Data Recor-
figuration Service -- An Experiment in Process/Process
Communication", Proceedings of the Second Symposium

on Problems in the Optimization of Data Communications
Systems, Stanford University, October 1971.

Metcalfe, R. M., S. Crocker, et al., "Function-Oriented
Protocols for the ARPA Network", SJCC, 1972.

76

MODELING, GRAPHICS, NETWORKS

Publications (continued)

15.

le.

17.

18.

19.

20, -

21.

Metcalfe, R. M., "Strategies for Interprocess Communi-
cation in Distributed Computing Systems", Conference
on Computer Communication and Teletraffic, April 1972,

McCray, W. A., SIM360: A S/360 Simulator, S.B. Thesis,
Department of Electrical Engineering, M.I.T., 1972;
also MAC TM=-30, May 1972, AD 749-365,

Okrent, H. F., Design of the Dynamic Modeling Manager,
S.M. Thesis, Department of Electrical Engineering,
M.I.T., June 1972.

Pfister, G., A MEDDLE Manual, DM/CG/CN Group Memo,
5YS5.11.02, Project MAC, M.I.T., January 1972.

pPfister, G., A MUDDLE Primer, DM/CG/CN Group Memo,
5Y5.11.01, Prnject MAC, M.I.T., July 1972.

Seiferas, J. I., Observational Complexity of Character
Strings, S.B. Thesls, Department of Electrical Engin-
eering, M,I.T., 1972,

Zaborowski, S., Monitoring Student Programs -- A Case
Study in Software Rellability, S.B. Thesis, Departmen:
of ElectriIcal Engineering, M.I.T., 1972.

Donovan, J. J., "Memory Management", presented as
part of the Yale Fall Lectures in Computer Science,
1971.

Donovan, J. J., a series of 8 lectures presented at
the University of Pittsburgh, Spring 1972,

Licklider, J. C. R., "The Concept of an Interactive
Technical Journal", Annual Symposium on Information
Retrieval, May 1972.

Licklider, J. C. R., "ADP Technelogy", Department of
Defense Computer Institute, June 1972,

Licklider, J. C. R., "Future of Library and Informa-
tion Systems", National Academy of Sciences, June
1972,

Metcalfe, R. M., "The ARPANET', ACM/SIGREAL, Camburidge,
Mass., March 1972,

Metcalfe, R. M., "The ARPANET", Stanford Digital
Systems Seminar, May 1972.

77

MODELING, GRAPHICS, NETWORKS

Publications In Progress

1. Donovan, J. J., Research & Peda

gogical Aids for

Programming, M.I.T. Press,
publication planned for 197

2. Donovan, J. J. and S.
McGraw-Hill, New York,

3. Donovan, J. J. and S.

ing Systems",

4, Donovan, J. J. and s,
Operating System".
5. Donovan, J. 7, and S,

and Evaluation®,

78

Cambridge, Massachusetts,

E. Madnick, Operating s
publication planned Ffg

E. Madnick, "Models of Operat-
E. Madnick, "Thrashing in an

E. Madnick, "System Performance

4

EDUCATIONAL COMPUTING SYSTEMS

Prof. J. Weizenbaum

Academic Staff

Prof. M. L. Dertouzos

Instructors, Research Associates, Research Assistants and Others

R. H. Brown C. Mah

D. L. Isaman J. R. Stinger
P. Jessel L. Tsien

P. A. King S. A. Ward

C. Lynn

Support Staff

M. J. Connell N. J. Robinson
A. M. Garrity L. E. Yaple
Guest

Prof. J. Berger

79

FDUCATIONAL COMPUTER SYSTEMS

A. Present Work

During the period July 1971 to May 1972, the group continued
several research activities which were initiated before this
period, and are discussed below. Halfway through this period,
Prof. M. L. Dertouzos and his students came from the Elec-
tronic Systems Laboratory to Project MAC and joined the group.
During that time, relatively few new activities were injtiated
partly because of extensive involvement of the faculty in the
development of 6.252 and partly because, with the departure

of Prof. J. Weizenbaum for a twc-year period starting in the
Fall of 1972, the group intends to re-orient its objectives
and scope of research.

Continuing research entailed the following:

1. Study of means for making possible the animation of dyna-
mic processes for educational purposes. In particular,

several approaches were investigated for the interconnection

of a simulated process (a simple two address machine) to a
graphical process (e.g., representations of registers and a
processor stack). It is intended that this interconnection

be flexible enough to allow on-line editing of the graphical
representations independently of the simulated machine. Super-
vision of this work was initially under Prof. J. Weizenbaum

and has shifted to Prof. M. L. Dertouzos a few months ago.

2. An associative memory higher-level interpreter. This
work involves exploration of the use of an associative memory
with a higher-level language hardware interpreter. The
objective is to match the hardware memory and processor to the
environment and interpreter structures of a higher-level lan-
guage such as LISP. Such a match which appears to be econo-
mically feasible with current technology, eliminates the need
for the typical machine language and numerical memory loca-
tion issues which are quite distinct from the user's language.
This, in turn, means the absence of assembly, compilation,
relocation, storage allocation, and address computation tasks
in their traditional sense. The elimination or reduction of
these problems, in turn, frees us to study more fundamental
notions concerning procedure semantics and computing environ-
ments. This work is supervised by Prof. M. L. Dertouzos.

3. Two Ph.D theses being completed June 1972 and September
1972 are carry-overs from the research of Prof. M. L.
Dertouzos in Computer-Aided Design. One thesis involves the
study of exact-inexact machines for the solution of large sys-
tems of equaticu.. These machines consist of a digital
relatively accurate exact part and an analog or coarser digi-
tal inexact part. Programming the machines entails decompos-
ing the problem into a part, which checks a proposed solution
with a computing time that grows relatively slowly with pro-

blem size -- this is handled by the exact part of the machine;
and enother part which proposes a new solution on the basis
of the above check -- this part which would normally require

a large amount of computing time is done rapidly by virtue of
the inexactness of the subsystem that handles it. The overall
solution is as exact as the exact part of the machine.

This research has resulted in many interesting results which

Preceding page blank -

LDUCATIONAL COMPUTER SYSTEMS

are documented by Jim Stinger's Ph.D. Thesis. The work is
supervised by Prof. M. L. Dertouzos.

4, The other Ph.D. thesis (P. Jessel) involves the develop-
ment of a "language" which describes cxisting and hopefully
new circuit analysis programs. Expressing a circuit analysis
program in this languuge leads to the ability of measuring
with acceptable accuracy the power of that program, e.g., the
computing time it will require for various classes and various
sizes of circuits, the amount of storage used and so on.
These measurcments, in turn, make possible a comparison of
the (many) ecxisting and p.oposed circuit analysis programs in
a systematic way. Severai inteir=sting results have been ob-
tained to date and more arc expected during the summer. This
work is supervised by Prof. M. L. Dertouzos.

5. A thesis completed under the sup2rvision of Prof. J.
Weizenbatm involves the development of simple prirmditive
funections for natural language. These are based on a lay-word
transformational grammar distinguishing English function
words and a canonical representation of Englisn sentences.

“he functions provide the general capability for saving infor-
mation for answering questions, for executing commands, and
for doing clementary deductions. They are designed to faeili-
tate the construction of special-purpose computer natural lan-
guage systems, with the particular appliecation to a program
for generating computer graphic displays for plane geometry.

B. Future Work

1. The 6.252 Computer System

Academic activities will continue to cccupy a substantial

part of the time spent by several members of the group. These
activities involve continuation of the development of 6.252
and the development of a 6.252 time-shared system. The latter,
based on a PDP-11/45 CPU, is a limited-objective 8-user sys-
tem (no swapping, one file per user) which will offer to stu-
dents a subset of the PDP-11 assembly language and scveral
LISP interpreters with progressively mcre complex environment
and control structures. This system, which was purchased by
the Electrical Engineering Department, will be used exelusively
by 6.252 students who will be cxpected to use it for an average
of 2 (consocle) hours per week.

It is also expected that the system will be used to implement
the on-going research work on graphics (1 above), for the
purposce of demonstrating to students either on-line or through
movies, several dynamic processes, e.g., (i) stack operations
during execution of recursive procedures, (ii) implementation
and consequences of global labels and free variabl=s, and
(iii) garbage collection algorithms.

2. Continuation of Present Work

Of the present work, it is expected that items A.l. and A.2.
above will be continued.

82

LDUCATIONAL COMPUTER SY TEMS

3. Exploration of New Areas

As part of next year's activities, the group wishes to explore
the area of "engineering-robotics", By that term we mean the
use of computers in connection with several sensors and
actuators for the execution of engineering-s>rien+-d tasks.

As a prime example, consider the current (and past) area of
automatic control where the principal "processor" is an elec-~
tronic circuit -- the so-called servo. We believe that in

the foreseeable future, the majority of servos will be imple-
mented by programmable chips, and the task (f control engin-
eers will be to write appropriate prccedures. An example of
work that has to be done in this area involves the computer-
physical world interface, e.g., the development of an approach
(a language and a hardware organization) for handling the de-
mands imposed by the interaction of the machine and the outside
world. Specifically, the simultaneous handling of synchroncusly
and asynchronously serviced sensors and actuators cannot be
done conveniently with the I-0 techniques developed in the

past (e.g., interrupts), which were motivated and developed in
the context of a man-machine interface.

In addition to exploring this problem, the group would like
to explore other possible applications areas, where engin-
eering robotics can be studied and developed. Our intent is
to use some of the excellent results obtained to date by the
Artificial Intelligence people, but with an engineering
philosophy, i.e., to some extent, subordinetion of "first
principles" to the expediency of achieving specific tasks.
s a result of this exploration, we would like to arrive at
one or more applications arcas that deserve further work, or
to the conclusion that we should not continue work in this
direction.

83

&4

EDUCATIONAL COMPUTER SYSTEMS

Publications

14

Dertouzos, M. L., "Time Bounds on Space Comp .cacion",
Proceedings of the Switching and Automata Theory
Symposium, October 13=-15,719771, pp. 182-T87.

Dertouzos, M. L., et al., "Insight vs. Algcrithms",
IEEE Transactions on Education, Vol. E-14, No. 4,
pp. 164-169,

Dertouzos, M. L., "Elements, System ', and Computation:
A Five Year Experiment in Combining wetworks, Digital
Systems and Numberical Techniques in the First Course”,
IEEE Transactions on Education, Vol. E-14, No. 4,

pp. 197-207,

Dertouzos, M. L., G. p. Jessel and J. R. Stinger,
"Circal-2: General-Purpose On-Line Circuit Design",
Proceedings of the IEEE, Vel. 60, No. 1, pp. 39-48,

Dertouzos, M. L., M, Athans, R, N. Spann and S. Mason,
Systems, Networks, and Computation, McGraw-Hill, New
York, May 1972.

84

MATHLAB

Prof. W. A. Martin Prof. J. Moses

Instructors, Research Associates,

Research Assistants and Others

R. J. Fateran R.
M. R. Genesereth B
J. Kok E
S. M. Macrakis P.
E. C. Rosen D
S. E. Saunders R

M. Seigel
M. Trager
Tsiang
S-H Wang
Yun

E. Zippel

DSR Staff

M. J. Ablowitz L.
R. A. Bogen R.
H. 0. Capps D.
J. P. Golden J.

85

P. Rothschild
Schroeppel

C. Watson

L. White

MATHLAB

The past year has been a year devoted nostly to consolidating
our previous work. The "Mathlab" PDP-10 arrived during the
year and became operational in February 1972. Scores of
casual sessions with the MACSYMA system have been held. Users
were increasingly satisfied with MACSYMA as more capabilities
were integrated into it and as the system, now approaching
150K words, became better debugged.

A. The Hardware and Time-Sharing System

The basic PDP-10 processcr and one half its memory (i.e. 128K)
arrived in October 1971. Richard Greenblatt and Thomas Knight
made an heroic effort to bring up an ITS time-sharing system
compatible with that on the Artificial Intelligence Group's
machine. The new file system they created was given to the
Dynamic Modeling group and tripled their effective disk utili-
zation.

The remainder of the memory arrived in December. 1In January
Systems Concepts installed a pager compatible with the one on
the Artificial Intelligence machine. As a result, the Mathlab
machine is able to use the latest versions of the Artificial
Intelligence time-sharing systems. Some thrashing originally
encountered when three or more MACSYMA's were being run on

the Mathlab machine caused a redesign of the scheduler. As

a result of the compatibility of the software, the new sched-
uler has been used on the Artificial Intelligence machine as
well.

B. Consolidation of MACSYMA Software

The past year was spent mostly in debugging and consolidating
existing code into the MACSYMA system. The presence of the
new machine meant that more users were available to report on
bugs, and two or more versions of MACSYMA could be run and de-
bugged at the same time.

While MACSYMA was on the Artificial Intelligence iachine, we
were restricted to a system of about 90K words. This meant
that several subsystems of MACSYMA were left on the disk,

The latest versions of MACSYMA contain almost all of the code
and a little larger working storage. These versions approach
150K in size. Over 60% of the system is pure and is shareable
by several users. Recently we have run five simultaneous
versions of MACSYMA.

We decided to avoid having separate user and experimental ver-
sions for a while longer. The current version of the system
has a great number of debugging aids, in particular the ability
to trace any function in the system. The effect of the ease

of debugging is a slowdown of the system of a factor of about
four. We have started to create a first "release" version of
the system which would not have the debugging aids. The timing
studies attempted thus far for the release version have un-
covered a number of surprises, as seems to be common in systems
of this size. One common style of LISP programming is to call
a function indirectly through its name which is kept on the
property list of an atom. This technique seems to slow

Preceding page blank &

O e et e, S L L pAken caut

MATHLAB

down a function call by a factor of at least 50. With the
present maturity of the system the modularity of the indirect
call is not required, and we expect an increase in speed in
subsystems which rely on thiz iefchnique. Another effect of
the shift in coding style will be that the awcunt of impure
data in the system will be decreased noticeably.

C. New Subsystems

Paul Wang completed his doctoral research on definite integra-
tion last summer. This subsystem together with the limit
routines comprise 15% of all of our code. It is being inte~-
grated into MACSYMA at the present time.

During the past year, we completed work on a polynomial
factorization program based on Berlekamp's method for factori-
zation modulo a prime. Drs. Linda Rothschild and Paul Wang
did the bulk of the coding with some help from Dr. Richard
Fateman. The present program is the only one which can fac-
tor polynomials in several variables efficiently. Special
case techniques, such as for polynomials of the form X2 + 1,
have been implemented in the program.

Richard Zippel, a sophomore in mathematics, has almost com-
pleted a subsystem for the manipulation of power series.

The representation of power series is different from that of
polynomials in that the coefficients are rational functions
rather than polynomials. 9The subsystem allows the user to
declare cutoffs such as X% 0 so that powers of a variable
higher than a given degree are neglected. This /s a desirable
capability because it keeps the intermediate expression swell
down in certain applications.

D. The New LISP Compiler

Eric Rosen, with the help of Jeffrey Golden and Jon White,
completed a new version of the LISP compiler which compiles
purely arithmetic code better than the curi~nt NEC PDP-10
FORTRAN compiler. A new version of LISP whiclh han-iles arith-
metic function efficiently was designed by William Martin,
Jon White and Eric Rosen. MACSYMA will begin using the new
LISP system and the new compiler in the coming year.

E. CONNIVER

A new language, called CONNIVER, has been implemented in LISP
by Gerald Sussman and Drew McDermott of the Artificial
Intelligence Laboratory. The central features of this language
were suggested by Joel Moses. This language is intended for
use in Artificial Intelligence applications and also in the
Mathlab group's automatic programming efforts. The language
has the capability of handling local data bases which are
erased after function returns. The language has some of the
features of PLANNER such as pattern matching, but lacks the
automatic backup which PLANNER utilizes. We believe it to be
superior to PLANNER for most applications.

88

MATHLAB

F. The MACSYMA (maximus?, maximum?) Experience

Successful use of MACSYMA has increased markedly during the
past three months. While many bugs still exist and the MACSYMA
version is liable to change from moment to moment, the fre-
qicncy of complaints about bugs has decreased to the point that
some console sessions do not encounter bugs in several hours

of use.

A console connected to the Mathlab machine is operating in the
Mathematics department. Richard Fateman has used the console
to solve a number of problems for the Applied Mathematics
faculty. In particular, he solved certain integration pro-
blems, systems of linear equations with parameters and non-
linear differential equations., We believe that at the present
time successful use of MACSYMA is best achieved by a "hand-
holding" operation in which someone familiar with MACSYMA
solves the problem on the computer. Should the system be
sufficiently attractive to the Mathematics faculty, then they
will want to invest the time to learn how to use it themselves.
It should be noted that much of the faculty does not know

how to use a computer at all. One has already familiarized
himself with MACSYMA.

A group at the Jet Propulsion Laboratory has been using
MACSYra by making calls through the Federal Telecommunications
System. The line quality through FTS is quite poor. This
group is, however, too impatient to wait for the ARPA connec-
tion, which should occur in the summer. The group has a con-
tract to generate integrals of hypergeometric functions which
they hope to do with MACSYMA.

A doctoral student of Prof. G. C. Rota has been using MACSYMA
to investigate simplification properties of linear operators.
Because of the large size of his expressions, he has used a
tailor-made 200K version of the system.

Many members of Project MAC and the Artificial Intelligence
Laboratory have made casual use of MACSYMA for solving home-
work problems and the like. At present, we do not keep track
of successful usage, but we tend to be quickly informed of the
need to fix bugs and improve certain aspects of the system.

G. Future Directions

Future efforts of the group will be concentrated in three
directions.

l. Improvements to the Current System

The current system was written in less than 3 years by
essentially 4 people (Fateman, Martin, Moses, Wang). This has
led to a system in which a number of useful features were
ignored in order to concentrate on others which were deemed
more essential to the total effort. The list of improvenents
includes:

a) A better representation of matrices -

89

e

¥

MATHLAB

Three representations exist at present. Paul Wang is
trying to consolidate them.

b) A more efficient input parser -

The current parser is an LR(l) parser. An operator
precedence parser is being designed by Steve Saunders.

c) Better stoerage mechanisms for intermediate results -

Several schemes for storing intermediate results of a
long session have been attempted in the past without
much success. Juffrey Golden is working on this project.

We are also interested in integrating into MACSYMA significant
capabilities available in other algebraic manipulation sstems
(e.g. the physics package in REDUCE-2 and Laplace transform
package in MATHLAB) .

It is clear that the large number of users of MACSYMA which we
expect in the coming year will suggest a variety of new pro-~
jects for the group.

2. Subsystems for Important Areas of Applicetion

In trying to create a general-purpose system, we have largely
ignored special capabilities desirable in only one or two
areas. Areas which we have been examining are:

a) Numberical Analysis -

One important use of an algebraic manipulation system is
as a front end to numerical analysis programs. David
Yun has used MACSYMA to set up an efficient numerical
solution to partial differential equations for members
of the Civil Engineering and Mathematics departments.

b) Optimization and Control

David Yun has also explored the use of MACSYMA in problems
in optimization and control which involve parameters and
hence cannot be easily solved by numerical techniques.

¢) Perturbation Theory

Jeffrey Golden has been examining the possibility of
implementing techniques from perturbation theory in
MACSYMA., With Dr. Mark Ablowitz he studied the stability
of a classical problem in applied mathematics last susmar.

d) Astronomy

The most spectacular achievements of algebraic manipula-
tion have occurred in astronomy. Dr. Andre Deprit
recently received the only award in computer science
given by the National Academy of Science for a recalcu-
lation of the moon's orbit. This calculation originally

90

MATHLAB

»

teok 20 years in the 19th century, Deprit found one 4
mistake in it. While Deprit used a tailor-made system, we

believe a more general subsystem of MACSYMA could be writ-

ten for doing such a calculation and many others with

reasonable efficiency.

€) Number Theory and Combinatorics

Although MACSYMA was originally designed to be of use to
applied mathematicians, we have had a significant number
of users interested in pure mathematics, in particular
number theory.and combinatorics. We would like to ex-
tend our capabilities in these areas.

3. Research on New Algorithms

user to provide a method for sclving his problem. Only in
rare cases, such ag integration, have these systems used &n
approach far different from the traditional "paper and pencil"
approach of people. We believe that it may be possible tn
obtain a new set of algorithms of great power and generality
which will solve the traditional problems of applied mathema-

ticians.

The approach we have in mind is to start with the original
model of a system in terms of differentjal or difference equa-
tions and then ask the questions directly of this model., The
traditional approach has been to try to solve ‘the system in
closed form in terms of a class of special functions (e.gq.
exponentials, Bessel funtions) and then ask the question (e.q.
stability) of the solution. As is well known, few systems
possess closed form solutions. Another popular approach has
been to get an approximation to the solution in terms of
special functions, and then an answer based on the approxima-
tion. This method frequently fails when the system is non-
linear. ’

We are very optimistic about the possibility for a theory or
theories about important properties of differential or diff-
erence equatiouas. PRecent results in algebraic geometry and
combinatorics have shed great light on properties such as
integration and identities (i.e. simplification rules). There
is some hope that results on stability are forthcoming as
well. The current situation is described in Joel Moses'!
forthcoming paper in the 25th Anniversary Issue of CACM.

H. SIGSAM
In June 1971 Joel Moses and William A. Martin were elected
Chairman and Treasurer, respectively, of the Special Interest

Group on Sympolic and Algebraic Manipulation of ACM. They
will serve in these Posts until July 1973,

91

- £:j

MATHILAB

Publications

1.

Fateman, R. J., Essaws in Algebraic Simplification,

Project MAC, M.1.T., MAC-TR-95, April 1972, AD 740-
132, .

Fateman, R. J., "Rationally Sihplifying Non-Rational
Expressions", SIGSAM Bulletin, No. 23, July 1972,
pp. 8-9. S

Martin, W. A., “Determining the Equivalence of
Algebraic Expressions by Hash Coding”, Journal of the
ACM, Vol. 8, No. 4, October 1971, pp. 549-558.

Moses, J., "Algebraic Simplification: A Guide for the
Perplexed", Communications of the ACM, Vol. 14, No. 8,
August 1971, pp. 527-537.

Yioses, J., "Symbolic Integratisn: The Stormy Decade",
Communications of the ACM, Vol. 14, No. 8, August 1971,
pp. 548-560.

Moses, J., "Toward a General Theory of Special Func-
tions", Communications of the ACM, Vol. 15, No. 7,
July 1972, pp. 550-554.

Wang, P. S., Evaluation of Definite Integrals by
Symbolic Manipulation, Ph.D. Thesis, Department of
Mathematics, M.I.T., 1971; also MAC-TR-92, October
1971, ab 722-005.

Wang, P. S., "Application of MACSYMA to an Asymptotic

Expansion Problem", Proceedings of the ACM 25th
Annual Conference, August 1973, pp. 8441-850.

Publications In Progress

Fateman, R. J., and J. Moses, "Canonical Forms for
First Order Exponential Expressions".

Fateman, R. J., "Comments on Problem 2".

Fateman, R. J., "On the Computation of Powers of
Polynomials".

Wang, P. S., "Factorirg Multivariate Polynomials Over
the Integers".

Yun, D. Y. Y., "An Application of MACSYMA to Proving
the Achievability of the | E%l 1M for Evaluation of
General Non-monic Polynomials of Degree n".

Yun, D. Y. Y., "On the Efficiency of the Dijkstra
Algorithm".

Yun, D. Y. Y., "On Symbolic Solutions of Systems of
Algebraic Equations”.

92

By

St e T SRR R T

%5

Talks

1.

MATHLAB

Moses, J., "Algebraic Manipulation", a set of lectures
given at the Computer Science Seminar, Bonn, Germany,
August 1971.

Moses, J., "Algebraic Manipulation", given at the
Joint Colloquium of the Departments of Mathematics

and Computers & Communications, University of Michigan,
Ann Arbor, Michigan, November 1971.

Wang, P., "Factoring Multivariate Pclynomials", given
at the Department of Applied Mathematics, Taiwan
National Chung Hsing University at Taichung, Taiwan,
June 1972.

93

S AR

A

PLANNER

Prof. C. Hewitt

Instructors, Research Associates, Research Assistants and Others

C. G. Benedict G. L. Peskin
P. B. Bishop

Preceding page blank o5

F

T R AT R At A D s b i i

PLANNER

The PLANNER project is implementing a high-level goal-oriented
language on Multics. The aim is to have a clean implementation
of a procedural foundation for problem solving. The founda-
tion attempts to be a matrix in which real world problem-solving
knowledge can be efficiently and naturally embedded. As a
first step, we are implementing the basics of the control
structure and data structure.

The fundamental data structure of PLANNER is the directed graph
with named links and nodes. Any data element car be used as
the name of a link. Furthermore, any data element can have
links associated with it. The actual linkage can be mechanized
by hash coding, indirect addressing, indexing, or by a proce-
dure call.

Processes are the active elements in the model. lnstantan-
eously, a process is a data structure in its own right con-
sisting of a pseudo-stack of activations of procedures. The
actions of processes are caused by executing a general kind of
CALL statement. There are two actions for each CALL: control
leaving a procedure and contrcl returning to the procedure.
Control can leave a procedure of a process P by calling out to
any of the following:

1. an ordinary function.

2. a label function L which is a function *hat returns to
the block in which L is defined instead of to the point
at which L is ~alled.

3. a port which is a communication channel between processes.
4. some combination of the above.

Control can be resumed in the process P by one of the foll:-w-
ing:

1. an ordinary function return.

2. receiving a container of vaiues on a port in which the
process P is waitirg.

3. some combination of the above such as simultaneously
waiting on several ports or waiting for any of a number
of ports.

Our goal is to procedurally embed problem-solving knowledge

in the data and control structur: so that it can be effectively
used. The overhead of a mechanism should scale in proportion

to the use of the mechanism. In terms of control structure

we are implementing some ideas of Landau, Bobrow, and Wegbreit
for a pseudo-stack for processes. The efficiency of the pseudo-
stack falls off linearly in proportion to the degree that

stack discipline is violated. We have implemented a hash cod-
ing scheme which scales properly with respect to large data
bases.

Preceding page blank 97

S5 E 'KE

s

BTG

RN

e

% TS A R

Jivers bl BT

s

i

o

PLANNER

A. Adding Knowledge

In constructing models we reed the ability to embed more know-
ledge in the model without having to totally rewrite it.
Certain kinds of additions can be easily encompassed by de-
clarative formalisms such as the quantificational calculus by
simply adding more axioms. However, declarative calculi do

not allow new deductive procedures to bz added. We are imple-
menting mechanisms that allow a great deal of flexibility in
adding new procedural knowledge. The data structures of
PLANNER can be bound to the control structure through a variety
of mechanisms. The mechanisms provide the following abilities:

They provide the means by which knowledge can easily
and naturally be embedded.

They enable new knowledge to be added without rewriting
everything.

They make it possible to reorganize the connections
between the pieces of knowledge.

PLANNER must provide interfaces so that the bindings can be
controlled by knowledge of the domain of the probhlem. The
right kind of interface promotes modularity because the pro-
cedures on the other side of the interface are not affected
so long as the conventions of the interface are not changed.
These interfaces aid in debugging since traps and checkpoints
are conveniently placed there. More generally, foirmdl condi-
tions can be stated for the interfaces and verified once and
for all.

B. Monitors

The mechanism of monitoring allows the attachment of an
arbitrary procedure (called a monitor) to a location so thit
whenever the contents of the location are read, changed, o:
executed the monitor will be invoked. Monitors allow pro.esses
to be dynamically bound to read, write, and execute operations
on particular structures. In general, whenever data is examined
or modified, there must be a mechanism for a process to mediate
the action.

C. Ports

Ports act as communication channels between processes. They
allow the output of some processes to be fed to others without
the processes having to know each others names. Thus the
connections can be dynamically reconfigured without affecting
the processes. The simplest kind of port consists of two
queues. The first queue consists of containers of values wait-
ing in the port to be given to processes. The second queue
consists of processes waiting for containers of values. Typic-
ally either or both queues are empty.

D. Data Structure Definitions

A data structure definition binds the operational properties

98

i

e T L

Sl s

PLANNER

of a data type to a concrete physical representation. For
example, sequences can be physically realized in a variety of
ways .

Consider the following methods for realizing the sequence: A,
B, C.

LIST

VECTOR
1 A
2 B
3 c
NODE
3
A B c

E. Generator

A generator is a function of no arguments which can be
called repeatedly to produce the elements of a sequence.
Thus the first call to a generator for the sequence would
return A, the second c&ll B, and the third C. Generators

work from side-~effects since they are always entered from the
top with no arguments.

99

A et e

e wrvae:

e P

e B i

PLANNER

F. Process

A process (co-routine) has the capability of being resumed
from the place where it produced its last value. Thus, unlike
a generator, it does not always have to start over from the
top.

G. Pattern Matching

Pattern matching is a natural way to conditionally recognize
and bind the substructures of a particular data structurc.
Pattern matching procedures preserve visual fidelity since
they "look like" the object they match. Pattern matching
exhibits controlled binding by allowing a whole class of data
structures to be specified.

H. Pattern Directed Re*trieval

Pattern-directed retrieval =naliles data structures to be re-
trieved by a pattern of what they look like. For example,

the pattern (AT NAUTILUS ?PLACE) can be used to bind the
identifier PLACE to the location of the NAUTILUS if it appesrs
in the data base.

I. Pattern Directed Invocation

Pattern-directed invocation enables processes to be invoked

by triggering patterns. It is a convenient way to bind the
processes that propagate the implications of updates to a
model. Recommendations can be used to further control the
binding of which processes will actually be invoked. Pattern-
directed invocation is often used as a kind of data base
monitor or "demcn". Demons are more powerful (but less
efficient) than ordinary monitors since they watch for changes
to a whole class of data instead of just a single location.

J. Sirultaneous Goals

Often we need to be able to achieve more than one goal at
once. For example, we might want to have Joe, Fred, and
Martha at che airport at three o'clock. We might be tempted
to express the problem as follows:

<achieve (at Joe airport 3:00)>
{achieve (at Fred airport 3:00)>
<achieve (at Martha airport 3:00)>

However because of complicated travel arrangements, we might
not know beforehand the order in which to try to get the
people to the airport. For example, some of the people might
have to chauffer others. 1If this is the case, then we don't
want to bind the order in which a problem solver attempts the
goals. We would prefer to write:

{simultaneous
(at Joe airport 3:00)
(at Fred airport 3:00)
(at Martha airport 3:00)>

100

B

o 4 AN

=3

H

ST TER

re2

Bl i et s T T T RN R R ey R i gnl i e ik

PLANNER

k. The Fife in the Warehouse

In this section we present an example to :llustrate the opera-
tion of PLANNER's tree-structured data bases. PLANNER allows
facts and procedures to be stored in data bases where they

can be conveniently retrieved. The data bases are indexed
using hash coding so that the time to retrieve an element is
almost independent of the size of the data base. Suppose that
warehousel has $5000 worth of plywood, $1000 of bricks and
$4000 of tractors. Tractors and plywocd are flammable. We
can express this more formally as:

|

{assert (in warehovsel plywood $5000)>
{assert (in warehousel bricks $1000)>
(assert (in warehousel tractors $4000)>
{assert (flammable plywood)>
{assert (flammable tractors)>

S

e SO

If the warehouse burns down, then everything inside of it which
is flammable will be burned up.

{define burn :
:"define burn to be the following procedure"
(if-asserted
(burn-down :PLACE)
;"if (burn-down :PLACE) is
asserted then bind PLACE
to the actual location and
execute the following"
for "current" (in .PLACE :THING <(?))
;"for each thing that is
currently in the place
execute the following"
<{if <current? (flammable .THING))>
;"if THING is flammable then"
{erase (in .PLACE .THING <?>)>

;"erase the fact that THING is in PLACE")>>>>

RS RE

2L e SRR

Now let us suppose that warehousel burns down.

{new-world ((WORLD2 <world)))
:"we go down inside a new-world (which we name
WORLD2) to construct our experiment"
;"this new world starts out identical
to the world from which we have just
come but changes made in here will
not affect the outside"
(assert (burn-down warehousel)>
;"the assertion will tricger the burn 'demon' which
will erase
(in warehousel plywood $5000) and
(in warehousel tractors $4000)")

e N G A i AR S Ao SN A e E L% GG RS P

A L
i e

Now we can compare and contrast the initial world with WORLD2
in which the fire tonk place. For example, we can ask the
value of the conten“s of the warehouse destroyed by the fire.

101

.

— iy

PLANNER

<{set LOSS 0> i"initialize the LOSS to o
<for "current" (in warehousel :THING :VALUE)
i"execute the following for each THING that was
originally in warehousel "
{if
<{not <current? (in -warehousel .THING
.VALUE) -WORLD2)>>
;"if THING does nNot exist in WORLD2 then"
{set LOSS ¢+ .LOSS .VALUE>>
;"add the VALUE oF THING into Loss">>

save the resulting worlds or discard them having abstracteq
the pertinent information,

102

PLANNER

Publications
————-tations

1.

Hewitt, C., "Procedural Embedding of Knowledge in

PLANNELR", Secord International Joint Conference on
Artificial Tntell: ence, September I-3, 19771,
——s=-x1a. Intelligence

PE. 167-182,

Hewitt, C., Description and Theoretical Analysis
(Using Schemata) of PLANNER: & Language for Proving
Theorems an Manlgu ating Models in a ko ot, Ph.D.
Thesis, Department o Mathematics, M.I.T.,71971;

also AI-TR-258, April 1972, ap 744-620,

Publications In Progress

1.

Hewitt, C., "Procedural Semantics: Models of Pro-

cedures", in Some Current Views on Language, Randall
Rustin, Editor, New York University Press, New York.

Hewitt, cC., "Automatic Generation of Programs from
Examples", presented at Stanford University, Palo Alto,
California, June 1972.

Hewitt, C., "Current State of Planner", presented to
the Stanford Research Institute, Palo Alto, California,
June 1972,

Hewitt, C., "Procedural Embedding", presented at the
University of Michigan, Ann Arbor, Michigan, June 1972,

Hewitt, C., "Procedural Semantics: Models of Pro-
cedures and the Teaching of Procedures", presented at
the Courant Institute of Mathematical Sciences, New
York University, New York, December 12, 1972,

103

SIMPL

Prof. M. M. Jones

Instructors, Research Associates, Research Assistants and Others

R. V. Harrington R. C. Thurber
S. M. Stoney

AR R SRS

Preceding page blank 105

AR S U -

SIMIL

A. Summary

The Simpl group has completed its implementation of the Simpl
interactive simulation language on Multics, and has completed
the documentation for the system. The completed system is
being submitted to the Multics Author-Maintained Library for
general use on Multics,

B. Review of the Past Year

By July, 197., an efficient version of the Simpl translator
and run-time system (known as System III) had been implemented.
Since then, the system has undergone five additional major
evolutions, described below:

System IV The Simpl statistical features (tables, histograms,
time-plots, and queueing statistics) and tracing
facilities were added.

System V The Simpl Monitor, which enables on-iine interac-
tion with a Simpl model, was completed.

System VI External activities and connector variables were
implemented, and a central error handler was in-
stalled for the translator and run-time system.

System VII The system was modified to handle storage alloca-
tion more efficiently, and the files in the process
directory were reorganized.

System VIII Reactivation lakels (in the translated program) and
internal static label variables (in the translator
and run-time system) were eliminated,

We had hoped to recompile the entire system -- translator,
run-time package and monitor -- with the new version II PL/1
compiler. However, even by late in May it was still not
sufficiently bug-free to allow us to make this final step.

During the last few months, all documentation of the Simpl
system was completed. The "Simpl Primer" and "Simpl Refe--
ence Manual" were updated to be consistent with System VIII,
and the "Simpl Implementation Manual" was written, which des-
cribes the internal workings of the entire system. All three
of these documents will be published as MAC TR's.

There are no future plans for the Simpl Group.

Preceding page blank 107

e M o ST

=

TN Do,

S

Frof. C. L. Liu

THEORY OF AJTOMATA

Prof., F. C.

Hennie

Academic Staff

Prof. A. R. Meyer

Instructors, Research Associates,

Research Assistants and Others

A.
D.
K.
J.
M.
R.
D.
R.
D.

Bagchi

J. Brown
M. Brown
Ferrante
M. Fammer
F. Hossley
Johnson
Johnston
J. Kfoury

D. Horowitz

E. Baker

N.

WHwynNow

Undergraduate

A. Lynch
Mandl

N. Moll
Rackoff

I. Seiferas
J. Smith
Stockmeyer
Vilfan

Students

Suggort Staff

S.

Preceding page blank 109

J. Cohn

R b

THEORY OF AUTOMATA

The Automata Theory Group is concerned with the structure and
complexity of computational models and algorithms. 1In recent
years, major interest within the group has centered on the
study of algorithms and decision procedures. This study has

as its goals: i) The analysis and design of optimal algorithms
for basic computational tasks, such as graph m-nipulation,
sorting, scheduling, and various arithmetic calculations; and
ii) The development of methods for proving that ce.tain com-
putational tasks are inherently difficult to perform. 1In
addition to this emphasis on algorithms, the grcup also retais
an interest in some of the more traditional problems of aut.o-
mata and complexity theovy, such as the relationships between
the structure and efficiency of various computational models,
and the abstract theory of the complexity of recursive func-
tions.

The major accomplishments of the last year are outlined in
four sections below. The first section, titled Inherently
Complex Decision Problems, describes scme new results that
provide, for the first time, examples of "natural” computation
problems that can be shown to be inherently difficult. The
second section, Combinatorial Algorithms, describes progress
made in the investigation of various packing, scheduling, and
sorting problems. The last two sections present results in
several more "classical” areas. That labelled Computation by
Automata includes work on grammatical transformations, fault
detection, machine decomposition, complexity of Boolean func-
tions, and the theory of program schemas. The final section
describes continuing work in abstract complexity th-ory.

A. Inherently Complex Decision Problems

Gédel's celebrated theorciic reveal that no computer program
can verify all the true statements of clementary arithmetic.
Nevertheless, decision procedures have been developed for a
number of more restricted classes of mathematical statements.
Four years ago Rabin succeeded in proving that there is an
algorithmic procedure for determining the truth or falsity of
an arbitrary sentence of what is called the monadic second
order theory of two successors (52S). This discovery is re-
markable because 5§25 is one of the few decidable theories in
which it is possible to phrase interesting mathematical state-
ments.

Unfortunately, Rabin's decision procedure for S2S is impossibly
slow, as is Buchi's decisioui procedure for the weak monadic
second order theory of one successor (WS1S), a precursor of
Rabin's work. Attempts have been made to reduce the enormous
computations involved in the known decision procedures for
Wsls, but as a consequence of a new result of Prof. A. R. Meyer,
we now know that any decision proceduves for WS1S, S2S, and
several related theories must involve impractically long
computations.

Meyer's results apply equally well to certain first oruer
logical theories. As a sperific example, consider the first
order theory of natural number addition together with the two-
place predicate P, where T(x,y) = [x is a power of 2 that
divides yl. The formulas of this thkeory are obtained in the

Preceding page blank 111

e

Bt o0 o A e MY BRI VE g A ¥

THEORY OF AUTOMATA

2
¢
usual way from atomic formulas of the form P(x,y) and x+y = 2z
by means of the logical connectives and quantifiers. Thus
YxTy (P(y,y) A Tz (x+z = y))
is a (true) sentence which asserts that there are arbitrarily
large powers of two. 3

Let J denote the set of all sentenzes of this theory. Then
there exists an algorithmic procedure for determining whether
an arbitrarily specified member of 4 represents a true asser-
tion about the natural numbers. The idea behind th.s proce-
dure is that for eny formula F(x) in the theory, it is possi-
ble to construct a finite automaton that accepts pr:cisely

the binary representations of those¢ nitural numbers n for
which F(n) is true. Carrying out tnis construction for a given
sentence in J therefore yields an automaton that accepts every
string of 0's and 1's if the sentence is true and accepts no
string if the sentence is false. Since it is relatively easy
tu determine whether an automaton accepts all input strings,
one can effectively decide whether a given sentence in d is
true.

The difficulty with this approach is that sentences of lengih
n yield automata having on the order of 6(n) states, where

2

i}f n
2
9(n) = 2~

The number of steps neeued to determine whether such an auto-
maton accepts every input string is therefore of the same
order. Thus although it is in theory possible to determine
*he true sentences of 4 , the procedure outlined above is
totally impractical. Meyer's result shows tho’ in fact every
procedure which determines the true sentences oir » must use
the same exorbitant number cf steps. Specifically:

There exists a number € >0 such that for zny Turing
machine that decides the truth of sentences ir o,
there is an integer ng such that for all n 2 ng there
is a sentence of length n in 4 on which the given
machine requires at least 8(€n) steps.

Although this result is phrased in terms of Turing machine
computations, essentially the same result holds for more real-
istic computational models, since even the most powerful model
can be simulated by a Turing machine in an amount of time that
is very small compared to 6(n).

This does not necessarily mean that no progress can be made in

the development of decision procedures for the theories men-
tioned above. It might be that there are fast ad hoc

112

T Yy

THEORY OF AUTOMATA

procedures for all sentences of length less than (say) 100
letters, or that most sentences of a given length are easy to
decide, or that all "interesting" sentences are easy to decide.
Nevertheless, our results strongly suggest that there is little
hope for practical application of many decision procedures in
logic.

Another interesting conrequence of these results is that we
now have examples of procedures that exhibit the Blum er.2ed-
up property. Earlier work in abstract complexity theory, some
of which was carried out in this group, established the exis-
tence of computable functions with speed-up, but it did not
appear that any natural mathematical problem had this property.
We now know that given any decision procedure for .4, one can
effectively construct another procedure requiring less than
the logarithm of the number of steps of the given procedure
for infinitely many sufficiently long sentences. Thus there
is no optimal decision procedure for .J, and no exact computa-
tionsl complexity that can be assigned to the problem of
deciding .! .

Meyer's results are derived in part from the work of several
other members of the group. One of the key ideas in Meyer's
proof comes from Larry Stockmeyer's study of the complexity

of a problem in automata theory. Stockmeyer has shown that

the problem of deciding whether two nondeterministic finite
automata are equivalent requires an amount of time that grows
faster than any polynomial function of the size of the automata.
Robert Lossley and Charles Rackoff have significantly improved
a portion of the proof tlhat S2S is decidable. Hossley, Rackoff,
and Jeanne Ferrante also obtained corollaries establishing the
inherent computational complexity of various theories related
to WS1S. Efforts are now being made to extend our techniques

to the first order theory of addition, and to the subcase of
existential statements about addition. Success in the latter
subcase would yield lower bounds nn the complexity of integer
programming and related combinatorial problems of widespread
interest.

B. Combinatorial Algorithms

The area of combinatorial algorithms, which at first sight
seems to consist of many unrelated problems, is beginning to
show some coherence. Within the last year, Cook and Karp have
proved that the following problems are computationally equiv-
alent:

i) Solving a zero-one valued travelling salesman problem
ii) Findirg a maximal size clique in an undirected graph
iii) Finding a minimal covering of a family of sets
iv) Determining whether a Boolean function is identically
equal to 1.
These problems are "equivalent" in the sense that a fast

113

= F]

-

THEORY OF AUTOMATA

algorithm for solving any one of them can be used as the basis
for constructing a fast algorithm for solving any one of the
others. (Here a "fast algorithm" is one whose computation time
is bounded by at most a polynomial function of the size of the
inputs.) At present, all known algorithms for solving these
problems require an amount of time that grows exponentially
with the size of the input. Thus these four problems, as well
as many other familiar combinatorial prcblems, are hard for
the same reason--assuming that they really are hard, which
remains to be shown. 1In particular, a proof that any one of
them is inherently time consuming to solve would automatically
establish that they all are.

Several members of the group have been investigating extensions
of the Cook and Karp classification. As already noted, Larry
Stockmeyer's efforts to classify the equivalence problem for
nondeterministic finite automata led to Meyer's results on
decision problems. And David Johnson, working with Professors
Meyer and Fischer, has shown the following problem to be equiv-
alent to the Cook-Karp problems: Given a sequence of rational
numbers ry ,...,r,, where 0<r; <1, find the smallest number of
unit-sized "bins" into which the given rational numbers can be
"packed" subject to the constraints that each ri is assigned

to exactly one bin and that the sum of the numbers in any bin
is at most one.

This packing problem differs from the problems of Cook and Karp
in one important respect. Although finding an optimal packing
appears to require an amount of time that grows exponentiaily
in n, there are very efficient packing algorithms that give
nearly optimal results. Extending earlier work of Garey,
Graham and Ullman, David Johnson has discovered a packing
algorithm that is guaranteed to operate in time proportional

to n and that never uses more than 11/9 the optimal number of
bins. Moreover, it has been shown that this bound of 11/9

is the best possible one for the class of fast algorithms under
consideration. Johnscn is now trying to extend his techniques
to various covering problems, where it also appears that effi-
cient methods yielding near optimal results can be found.

In a related area, Prof. C. L. Liu has been investigating the
efficiency of various algorithms for scheduling -jobs in a
multi-processor computing system. Typical of the problems
studied is the following. A set of tasks (T;,T,,...,T,’ are
to be scheduled on a two-processor system, where the execution
time of each task is known. The order in which the tasks may
be performed is constrained by a specified partial order < so
that if Ty < Tj the execution of T; must not begin until the
execution of Ti has been completed. How is the total elapsed
time for the execution of all the tasks affected by the nature
of the algnrithm used to schedule the tasks?

One of the major results obtained is a quantification of the
relative efficiencies of preemptive and non-preemptive sched-
uling algorithms. (A preemptive schedule is one in which the
execution of one task may be interrupted to begin another task.)
Let w denote the total elapsed time required for the execution
of a given set of tasks when an optimal non-preemptive schedule
is used, and let w' denote the corresponding time when an

114

el Lo TR s L N 0 S Y T AP B SN AR 5 ol B BT VARSI

THEORY OF AUTOMATA

optimal preemptive schedule is used. Clearly,

w2y
liowever, Liu has shown that

wt 2 % w
for any set of tasks and any specified partial order X . This
result can be extended to the case of n processors, where

w' 2 %% W

Moreoever, these bounds have been shown to be the tightest
possible ones.

Liu's results may be interpreted as follows. The introduction
of a high-speed drum so as to make possilbile the use of preemp~
tive schedules can increase the speed of a two-processor com-

puting system by at most 25%, and that of an n-processor sys-

tem by =L rost 50%.

Burton Smith and Prof. C. L. Liu have been investigating the
behavior of sorting networks made up of two-input, two-output
comparators. Although general methods for designing n-input,
n-output sorting networks are known, the problem of designing
networks that use as few comparators as possible is very
difficult. One of the best networks of modest size known to
date, due to M. W. Green, uses 60 comparators to sort 16 in-
puts. Liu has recently found a 6l-comparator, l6-input network,
as well as a new fcur-way merge technigue that yields a 4
input sorting network using (n? -1 +10y4n. 10 comparators
for any n. 2n 9 9

The difficulty of designing efficient sorting networks is due
in part to the difficulty of determining whether or not a given
network of comparators actually sorts its inputs. One cri-
terion for making this determination is Knuth's zero-one prin-
ciple: A comparator network sorts if it correctly sorts all
possible zero-one valued input patterns. Smith has shown that
this criterion is sharp, in that for any given zero-one input
pattern (other than the all-zero or all-one patterns) there
exists a network that correctly sorts every uzero-one input
pattern except the one in question.

Another criterion for deciding whether a network sorts is
based on the fact that many sorting networks are formed by
combining several sorting networks with fewer inputs. 1Indeed,
every sorting network can be viewed as a cascade combination
of two-input sorting networks. Liu has developed a procedure
for analyzing certain composite networks of this type which is
useful both in designing sorting networks and in proving that
a given network operates correctly. Smith has extended Liu's
work to apply to arbitrary networks of comparators, and has
developed several techniques for succinctly characterizing the
patterns that can appear at the output of a given comparator
network. Such characterizations are useful in designing
networks as cascades of simpler ones.

115

o

=

1 R

THEORY OF AUTOMATA

e B etk

In some cases, the seiL of possible outputs cf a comparator net- ;
work consists of precisely those patterns of values that are £
consistent with a particular partial order on the output ter- 4
minals. Smith hLas shown that if this is true when the network

inputs are restricted to patterns of distinct values, it must

also be true when the inputs are zero-one valued. 1In the case

of arbitrary real-valued inputs, the set of possible outputs]
will be those consistent with a singl: partial order if and only

if the outputs form a convex set in ru tidean n-srace This i
case is interesting because it results .n a very compact des-
cription of the output behavior of a ne tork. However, if an

n-input sorting network is designed so this condition obtains

at every point within the network, the natwork will necessarily
require (g) comparators and hence will be very inefficient.

C. Computation by Automata

Automata and formal linguistic models have many applications
in the study of computers and computation, ranging from logi-
cal design to compiler construction to complexity theory.
During the past year, several members of the group have ex-
plored computational issues arising from such models. Their
results are outlined below.

1. Grammatical Transformations

One of the most fruitful developments in automata theory in

recent years has been the application of automata theoretic

ideas to problems in the theory of languages and compilers.
Substantial progress in this area has recently been made by

Michael Hammer, who has been investigating grammatical trans-
formations that are capable of converting given programming

language grammars 1nto equivalent but more useful grammars.

In particular, he has found a class of transformations yield- i
ing grammars whose 1anguage° can be parsed top-down. :

While top-down parsing has a number of advantages over hottom-up
parsing, the grammars that admit top-down parses (the so-
called LL grammars) constitute a small subset of those that
admit bottom-up parses (the LR grammmars). Hammer has been
working with a subclass of the LR grammars known as minimally
predictive (MP) gramrars. These grammars can be parsed in a
hybrid fashion that is basically a bottom-up parse with {
occasional judi.ious predictions. A procedure has been found
for transforming any MP(k) grammar into an LL(k) grammar that
generates the same language. Moreover, this transformation
preserves the semantic capabilities of the original grammar,
in the sense that any translations supported by the original
grammar are also supported by the new one.

The transformation itself is based on the structure of the
finite-state machine that directs the progress of a bottom-up
parse for che given LR grammar. The first step is to split
the states of this machine in such a way as to break certain
kinds of loops ir. the machine's state diagram. Once this has
been done, the new grammar can be "read off" directly from
the altered machine. Transformed grammars obtained in this
way can be shown to have a number of interesting properties:

116

PR TYE T A - " « ’ p ey rion ALV LY

THEORY OF AUTOMATA

R S

they are frequently LR(0),they support a wide range of trans-
lations, and they can be parsed quickly. The same kind of
transformation can also be applied to certain non-LR grammars £
so as to yield equivalent deterministic c¢rammars.

Results obtained so far have provided new insight into the

nature of LL and LR grammars and the relationship between top-

down and bottom-up parsing. Moreover, this work promises to %
have applications to the derivation of optimal grammars for

use in practical compilers.

2. Fault Detection

It is of considerable practical importance to be able to deter-
mine experimentally whether a given piece of hardware is
operating cc-rectly. Although a variety of fault detection

and diagnosis techniques are availakle for use in practical
situations, the essential complexity of the detection and
diagnosis problems is still poorly understood. In particular,
realistic upper and lower bounds on the lengths of general
fault-detectior experiments for sequential circuits have yet

to be established. In the case of lower bounds, for example,
it is easy to see that a valid fault detection experiment must
cause the correctly operating circuit to traverse each of its H
state transitions at least once, an observation that leads to

a lower bound of mn for the length of a fault detection exper-

iment for an m-input; n-state circuit., However, no circuit

admits a detection experiment of this short a length.

Some progress in this irea has been made by Ken Brown in work i
done for his SB thesis. He has shown that every fault detec-
tion exveriment for a two-input circuit must cause the circuit
to traverse each transi.ion at least once and half of the
transiticns at least twize, This result provides a lower bound
of 3n for the length of detection experiments for n-state,
two-input machines. There exist circuits for which this

bound is attainable, and there exists a class of circuits for
which the argument leading to the lower bound provides a simple
set of necessary ard sufficient conditions for an input
sequence to be a fault-checking sequence. Thus we now have
examples of circuits that are easy to test and an accurate
assessment of the complexity of the experiments needed to test
them. We expect that this work can be extended so as to yield
more accurate bounds for more general classes of circuits.

3. Linear Machines

In the course of investigating some fault-detection questions
for linear sequential machines, Robert Johnston discovered a
new approach to the decomposition of a broad class of linear
systems.

The usual notion of a linear machine as one whose input and

state spaces are vector spaces over some field was extendad to 4
that of a machine whose input and state spaces are modules

over an arbitrary ring. The development of this more general

class of machines parallels that described in Kalman, {alb,

and Arbib, Johnston next derived certuin conditions that are

117

THEORY OF AUTOMATA

sufficient to ensure that the state~space module is finitely
generated. It turned out that thesc conditions are also
sufficient to ensure that the homomorphisms used to define

the machine's next-state and output functions can ke described
by matrices of a convenient (companion) form.

The basic decomposition result was obtained by requiring the
input module and ring involved in the definition of a machine
to satisfy an ascending chain condition. Specifically, any
Sequence of submodules (or left ideals) in which each submodule
(ideal) is properly contained in the last is required to be of
finite length. Johnston has shown that any machine satisfy-
ing this condition can be simulated by a cascade combination
of simpler machines, most of which are reset machines (machines
whose next state does not depend on the current state).

Work in this area is now directed towards (i) investigating
the relationship between the decomposition described here and
the Zeiger decomposition for finite-state machines; (ii) ex-
ploring other forms of decomposition; and (iii) studying the
control theoretic applications of the approach described akove.

questions raised by this work, we expect that further investi-
Laboratory.

One of the classic problems associated with linear sequential
machines is that of determining whether a specified terminal
behavior is realizable by a linear machine. 1In particular,

one can ask whether a given regular expression on the alphabet
(0,1' is recognized by a linear machine over GF(2). The usual
technique for answering this question involves constructing the
finite-state machine associated witch the given expression and
then determining whether in fact that machine is linear. 1In
his bachelsor's thesis, Mark Horowitz sets forth a method that
more fully exploits tte property of linearity. The first step
is to determine the hecessary impulse response from the given
regular expression and to construct the linear machine having
that impulse response. It then remains only to decide whether
the machine actually recognizes the given regular set. Horowitz
plans to try to extend his technique to deal with multiple
inputs, multiple outputs, and arbitrary finite fields.

4. Schemas for Programs

A schena is essentially a program in which some or all of the
relations and operations are left undefined. One of the
motivations for the study of schemas is to determine how much
of the computing power of a program is inherent in its flow
Structure, rather than in the semantics of its instructions.
From a practical point of view, this corresponds to determining

recent doctoral thesis, Denis Kfoury has applied some of the
techniques of first-order logic and model theory to investi-
gate program schemas. His work was motivated by the following
kind of question: When restrictions are placed on the possible
interpretations of the relations and operations of programs,

118

.

F

A o OISR Ao TN DA P S A G 4D SO 2 S A A A Y RV T ST VT DT S S AP AN T

THEORY OF AUTOMATA

what must be required of the flow-structure of programs in
order to achieve a certain level of computational power?

Different classes of schemas have different expressive powers.
The first objective of Kfoury's thesis is to find a "univer-
sal" class S of schemas which, when interpreted 1. any alge-
braic structure, yield the set of all effective procedures
over the domain of that structure -- effective relative to the
underlying relations and operations of the structure. Given
an arbitrary class S' of schemas, Kfoury investigates condi-
tions on an algebraic structure & that will ensure the equi-
valen:e of S' to the universal class S, in which case S' will
capture the notion of effectiveness in @ . In particular, he
considers the class of flow-chart schemas, and shows that they
are sufficient to ~apture the notion of effectiveness in many
of the algebraic structures encountered in practice, including
rings, fields, and ordered fields.

A second objective of the thesis is to compare algebroic
structures in terms of their "algorithmic behavior" -- i.e.,

in terms of the properties of schemas interpreted in those
structures. Kfoury gives special attention to conditions

under which this algorithmic behavior is the same for related
structures, such as two groups or two fields. As a by-product
of this investigation, he has shown that over scme familiar
structures, such as the complex number field, an effective
procedure is totrl only if it is equivalent to a loop-free pro-
cedure.

5. Complexity of Boolean Functions

In order to explore the role of information-theoretic
arguments concerning the complexity of functions, Bostjan
Vilfan has been studying the sizes of expressions needed to
represent certain Boolean functions. In particular, he has
considered expressions built up from variables and symbols
for the Boolean operations of and, or, not and exclusive or,
for such functions as the n-variable function whose value 1is
1l if and only if the number of arguments equal to 1 is
divisible by 3. Using some rather deep combinatorial argu-
ments, Vilfan has shown that expressions for this "divisible
by three" function of n variables must grow nonlinearly with
n no matter what finite set of basic operations are allowed
in expressions. This lower bound is close to being the best
possible, since for any € > 0 there is a finite set of opera-
tions in terms of which the "divisible by three" functions
have expressions of length at most n

119

AT s

I

-

x4

SRR R

R

S

T

e

P s e

THEQRY OF AUTOMATA

Abstract Complexity Theory

As noted in our last progress report, the development of ab-
stract complexity theory no longer constitutes a dominant part
of the group's activity. Nevertheless, the results on the in-
herent complexity of decision problems cited above illustrate
the relationship between theoretical work in complexity and
computational problems of more practical interest. Ve expect,
therefore, to maintain a small research effort in the area of
abstract complexity theory.

During the last year, Amitava Bagchi, Nancy Lynch, and Robert
Moll have all made valuable contributions to complexity theory.
In these contributions, some of the highly developed methods
of recursive function theory have been brought to bear on
questions of compiexity. In particular, several of Lynch's

and Moll's results make use of the priority-injury arguments
of recursion theory.

The main theorem of Lynch's thesis illustrates the nature of
these results. This theorem iz motivated by the Cook-ZXarp
result noted earlier in which a class of familiar problems

are shown to be computationally equivalent. Computationally
equivalent problems have solutions that are equally hard to
calculate. Is the converse true? That is, if two decision
problems are known to require the same (large) amount of time
to solve, does it follow that the ability to solve one pro-
blem in no time at all (as by means of an instantaneous
oracle) would provide a way of solving the other problem
quickly? Lynch has shown that for any decision problem with a
known lower bound on the time required for solution, there are
arbitrarily complex decision problems that do not help in the
solution of the given problem. This result gives mathematical
meaning to the intuitive assertion that while the Cook-Karp
problems are hard for the same reason, other equally hard
problems are hard for different reasons.

120

g

N R T T M S Y R A

Akt G S e
THEORY OF AUTOMATA
References %
1. Biichi, R., Weak Second-Order Arithmetic and Finite §
Automata, Zeit. f. Math, Logik und Grund. 4. Math., a2
6, 1960, 66-92,]
2. Cook, S.A., The Complexity of Theorem-Proving %
Procedures, 3rd ACM Symp. on Theory of Computing,
1971, 151-15%, 3
3. Garey, M.R., R.L. Graham and J.D. Ullman, Worst-Case ;
Analysis of Memory Algorithms, 4th ACM Symp. on Theory &
of Computing, 1972.
4. Kalman, R.E., Falb, P.L., and M.A. Arbib, Topics in ?

Mathematical Systems Theory, McGraw-Hill, 1969.

]

5. Karp, R.M., Reducibility Among Combinatorial Problems, 4
Tech. Repo.t 3, Department of Computer Science,]
University of California, Berkeley, 1972,

6. Knuth, D.E., The Art of Com uter Pro ramming, Vol. 3, i
Addison-Wesley, (To be published 1972) :
7. Rabin, M.O., Decidability of Second-Order Theories §

and Automata on Infinite Trees, Trans. Amer. Math.
Soc., 141, July 1969, 1-35.

AV

RIS R

SRR s S S RS

121

THEORY Or' AUTOMATA

Publications

1.

10.

11.

12.

Bagchi, A., Economy of Descriptions and Minimal
Indices, Ph.D. Thesi:t, Department of Electrical
Engineering, M.I.T., 1972; also MAC-TM-27, January
1972, AD 736~-960.

Brown, K., Lower Bounds for Finite State Machine
Checking Experiments, S.B, Thesis, Department of
Electrical Engineering, M.I.T., 1972,

Fischer, M. J. and A. R. Meyer, "Boolean Matrix
Multiplication and Transitive Closure", Conference
Record 1971 12th Annual Symposium on Switching and
Automata Theory, pp. 129-131.

Horowitz, M. D., Linear Finite Automata and Their
Regular Expressions, S.B. Thesis, Department of
Electrical Engineering, M.I.T., 1972.

Hossley, R., Finite Tree Automata and w-Automata,
S.M. Thesis, Department of Electrical Engineering,
M.1.T., 1972; also MAC-TR-102, September 1972,

AD 749-367.

Kfoury, D., Effective Procedures in Arbitrary
Structures, Ph.D. Thesis, Department of Electrical
Engineering, M.I.T., 1972,

Liu, C. L., "Construction of Sorting Plan", Theor
of Machines and Computations, Académic Press, New
York, 1971, pp. 87-98.

Liu, C. L., "Analysis of Sorting Algorithms", Confer-
ence Record 1£71 12th Annual Symposium on Swit&hing
and Automata Theory, pp. 207-215.

Lynch, N. A., Relativization of the Theory of Compu--
tational Complexity, Ph.D. 1hesis, Department oOF
Mathematics, M.I.T., 1972; also MAC-TR-99, June 1972,
AD 744-032.

Meyer, A. R. and A. Bagchi, "Program Size and Economy
of Description", Conference Record of 4th ACM Sympos ium

on Theory of Computing, 1972, pp. 183-187.

Meyer, A. R. and E. M. McCreight, "Computationally
Complex and Pseudo-Random Zero-One Valued Functions",

Theory of Machines and Computations, Academic Press,
New York, 1971, pp. 19-42.

Paterson, M. and L. Stockmeyer, "Bounds on Evaluation
Time for Rational Polynomials", Conference Record
1971 12th Annual Symposium on Switching and Automata

Theory, pp. 132-139,

122

Bt

THEORY OF AUTOMATA

Publications (continued)

12.

14.

Stockmeyer, L., Bounds on Polynomial Evaluation
Algorithms, S.M, Thesis, Department of Electrical
Engineering, M.I.T., 1972; also MAC-TR-98, April 1972,
AD 740-328.

Vilfan, B., The Complexity of Finite Functious, Ph.D.
Thesis, Department of Electrical Engineering, M.I.T.,
1972; also MAC-TR-87, June 1971, AD 726-049.

123

&is

e

RTINS

* TR-1

* TR-2

TR-3

* TR-4

TR-6

TR-7

TR-8

* TR-11

TR-12

* TR-13

TR-14

Preceding page blank

PROJECT MAC PUBLICATIONS

TECHNICAL REPORTS

Bobrow, Daniel G.

Natural Language Input for a Computer
Problem Solving System, Ph.[). Thesis,
Math. Dept.

September 1964

Raphael, Bertram

SIR: A Computer Program for Semantic
Information Retrieval, Ph.D. Thesis,
Math. Dept.

June 1964

Corbaté, Fernando J.

System Requirements for Multiple-Access,
Time-Shared Computers

May 1964

Ross, Douglas T., and Clarence G. Feldman

Verbal and Graphical Language for the
AED System: A Progress Report

May 1964

Biggs, John M., and Robert D. Logcher

STRESS: A Problem-Oriented Language
for Structural Engineering

May 1964

Weizenbaum, Joseph

OPL-1: An Upen Ended Programming
System within CTSS

April 1964

Greenberger, Martin
The OPS-1 Manual
May 1964

Dennis, Jack B.

Program Structure in a Multi-Access
Computer

May 1964

Fano, Robert M.
The MAC System: A Progress Report
October 1964

Greenberger, Martin
A New Methodology for Computer Simulation
October 1964

Roos, Daniel

Use of CTSS in a Teaching Environment
November 1964

125

N e i i G i e

AD

AD

AD

AD

AD

AD

AD

AD

604-730

608-499

608-501

604-678

604-679

604-€80

604-681

608-500

609-296

609-288

661-807

i

SEREE

e T

oo

il

=

R e R T

PUBLICATIONS

TR-16

TR~17

* TR-18

TR~19

TR-20

TR-21

* TR~22

* TR-23

* TR~14

TR-25

TR~26

Saltzer, Jerome H.
CTSS Technical Notes
March 1965

Samuel, Arthur L.
Time~Sharing on a Multiconsole Computer
March 1965

Scherr, Allan Lee

An Analysis of Time~Shared Computer
Systems, Ph.D. Thesis, EE Dept.

June 1965

Russo, Francis John

A Heuristic Approach to Alternate
Routing in a Job Shop, S.B. & S.M.
Thesis, Sloan School

June 1965

Wantman, Mayer Elihu

CALCULAID: An On-Line System for
Algebraic Computation and Analysis,
S.M. Thesis, Sloan School
September 1965

Denning, Peter James

Queueing Models for File Mcmory Operation,
S.M. Thesis, EE Dept.
October 1965

Greenberger, M.rtin
The Priority Problem
November 1965

Dennis, Jack B., and Earl C. Van Horn

Programming Semantics for Multi-
programmed Computatinns

December 1965

Kaplow, Roy, Stephen Strong and
John Brackett

MAP: A System for On-Line Mathematical
Analysis

January 1966

Stratton, William David
Investigation of an Analog Technique
to Decrease Pen-Tracking Time in

Computer Displays, S.M. Thesis, EE
Dept.
March 1966

Cheek, Thomas Burrell

Design of a Low~-Cost Character
Generator for Remote Computer Displays,
S.M. Thesis, EE Dept.

March 1966

126

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

612-702

462-158

470-715

474-018

474-019

624-943

625-728

627-537

476-443

631-396

631-269

3 o3

bl st T R

TR-27

TR-28

TR-29

* TR-30

TR-31

* TR-32

* TR-33

TR-34

* TR-35

* TR-36

PUBLICATIONS

Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid
System, S.M. Thesis, EE Dept.
May 1966 AD

Smith, Arthur Anshel

Input/Output in Time-Shared, Segmented,
Multiprocessor Systems, S.M. Thesis,
EE Dept.

June 1946 AD

Ivie, Evan Leon
Search Procedires Based on Measures
of Relatedness between Documents,
Ph.D. Thesis, EE Dept.
June 1966 AD

Saltzer, Jerome Howard
Traffic Control in a Multiplexed
Computer System, Sc.D. Thesis,
EE Dept.
July 1966 AD

Smith, Donald L.
Models and Data Structures for Digital
Logic Simulation, S.M. Thesis,
EE Dept.
August 1966 AD

Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis, Ph.D. Thesis, Math. Dept.
September 1966 AD

Norton, Lewis M.
ADEPT - A lleuristic Program for
Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.
October 1966 AD

Van Horn, Earl C., Jr.

Computer Design for Asynchronously
Reproducible Multiprocessing, Ph.D.
Thesis, EE Dept.

November 1966 AD

Fenichel, Robert R,

An On-Line System for Algebraic Manipulation,
Ph.D. Thesis, Appl. Math. (Ilarvard)

December 1966 AD

Martin, William A,
Symbolic Mathematical Laboratory
Ph.D. Thesis, EE Dept.
January 1967 AD

127

633-678

637-215

636-275

635-966

637-192

638-446

645-660

650-407

657-282

657-283

L

R ST e

PUBLICATIONS

* TR-37

TR-38

* TR-39

TR-40

TR-41

TR-42

TR-43

TR-44

TR-45

TR-46

* TR-47

Guzman-Arenas, Adolfo

Some Aspects of Pattern Recognition by
Computer, S.M. Thesis, EE Dept.

February 1967

Rosenberg, Ronald C., Daniel W. Kennedy
and Roger A. Humphrey

A Low-Cost Output Terminal for Time-
Shared Computers

March 1967

Forte, Allen

Syntax-Based Analytic Reading of
Musical Scores

April 1967

Miller, James R.
On-Line Analysis for Social Scientists
May 1967

Coons, Steven A.

Surfaces for Computer-Aided Design
of Space Forms

June 1967

Liu, Chung L., Gabriel D. Chang
and Richard E. Marks

Design and Implementation of a Table-
Driven Compiler System

July 1967

Wilde, Daniel U.

Program Analysis by Digital Computer,
Ph.D. Thesis, EE Dept.

August 1967

Gorry, G. Anthony

A System for Computer-Aided Diagnousis,
Ph.D. Thesis, Sloan School

September 1967

Leal-Cantu, Nestor

On the Simulation of Dynamic Cvstems
with Lumped Parameters and 1.me
Delays, S.M. Thesis, ME Dept.

October 1967

Alsop, Joseph W.

A Canonic Translator, S.B. Thesis,
EE Dept.

November 1967

Moses, Joel

Symbolic Integration, Ph.D. Thesis,
Math. Dept.

December 1467

128

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

YRR DALY

656-041

662-027

661-806

668-009

663-504

668-960

662-224

662-665

663-502

663-503

662-666

e

SUEIN

., 4
et

A AT N T TR e

Y RN

=

SO RRET

TR-48

TR-49

* TR-50

* TR-51

TR-52

* TR-53

TR-54

* TR-55

* TR-56

* TR-57

Jones, Malcolm M.

Incremental Simulation on a Time-
Shared Computer, Ph.D. Thesis,
Sloan School

January 1968

Luconi, Fred L.

Asynchronous Computational Structures,
Ph.D. Thesis, EE Dept.

February 1968

Denning, Peter J.

Resource Allocation in Multiprocess
Computer Systems, Ph.D. Thesis,
EE Dept.

May 1968

Charniak, Eugene

CARPS, A Program which Solves Calculus
Word Problems, S.M. Thesis, EE Dept.

July 1968

Deitel. Harvey M.

Absentee Ccmputations in a Multi-
Access Computer System, S.M. Thesis,
EE Dept.

Augusti 1968

Slutz, Donald R.

The Flow Graph Schemata Model of
Parallel Computation, Ph.D. Thesis,
EE Dept.

September 1968

Grochow, Jerrold M.

The Graphic Display as an Aid in the
Monitoring of a Time-Shared Computer
System, S.M. Thesis, EE Dept.

October 1968

Rappaport, Robert L.

Implementing Multi-Process Primitives
in a Multiplexed Computer System,
S.M. Thesis, EE Dept.

November 1968

Thornhill, D. E., R. H. Stotz, D. T. Ross

and J. E. Ward (ESL-R-356)
An Integrated "ardware-Software System
for Computer Graphics in Time-Sharing
December 1968

Morris, James H.

Lambda-Calculus Models of Programming
Languages, Ph.D. Thesis, Sloan School

December 1968

129

PUBLICATIONS

AD 662-225

AD 677-602

AD 675-5%34%

AD 673-670

AD 684-738

AD 683-393

AD 689-468

AD 689-469

AD 685-202

AD 683-394

Heh

PUBLICATIONS

TR-58

* PR-59

* TR-60

TR-61

TR-62

TR-63

TR-64

* TR~65

* PR-66

Greenbaum, Howard J.

A Simulator of Multiple Interactive
Users to Drive a Time-Shared
~omputer System, S.M. Thesis,

EE Dept.

January 1969

Guzman, Adolfo

Computer Recognition of Three-
Dimensional Objects in a Visual
Scene, Ph.D. Thesis, EE Dept.

December 1968

Ledgard, Henry F.

A Formal System for Defining the
Syntax and Semantics of Computer
Languages, Ph.D. Thesis, EE Dept.

April 1969

Baecker, Ronald M.

Interactive Computer-Mediated Animation,
Ph.D. Tnesis, EE Dept.

June 1969

Tillman, Coyt C., Jr. (ESL-R-395)

EPS: An Interactive System for
Solving Elliptic Boundary-value
Problems with Facilities for Data
Manipulat:on and General-Purpose
Computaticn

June 1969

Brackett, John W., Michael Hammer,
and Daniel E. Thornhill

Case Study in Interactive Graphics
Programming: A Circuit Drawing
and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969

Rodriguez, Jorge E. (ESL-R-398)

A Graph Model for Parallel Computatiocns,
Sc.D. Thesis, EE Dept.

September 1969

DeRemer, Franklin L.

Practical Translators for LR(k)
Languages, Ph.D. Thesis, EE Dept.

October 1969

Beyer, Wendell T.

Recognition of Topological Invariants
by Iterative Arrays, Ph.D. Thesis,
Math. Dept.

October 1969

130

AD

AD

AD

AD

AD

AD

AD

AD

AD

686-988

692-200

689-305

690-887

692-462

699-930

697-759

699-501

699-502

—_—

i

—

W -

WEPHISD AR AN

* TR-67

* TR-68

* TR-69

* TR-70

* TR-71

TR-72

* TR-73

TR-74

TR-75

vanderbilt, Dean H.

Controlled Information Sharing in
a Computer Utility, Ph.D. Thesis,
EE Dept.

October 1969

Selwyn, Lee L.

Econcimies of Scale in Computer Use:
Initial Tests and Implications for
the Computer Utility, Ph.D. Thesis,
Sloan School

June 1970

Gertz, Jeffrey L.

Hierarchical Associative Memories
for Parallel Computation, Ph.D.
Thesis, EE Dept.

June 1970

Fillat, Andrew I., and Leslie A. Kraning
Generalized Organization of Large
Data-Bases: A Set-Theoretic
Approach to Relations, S.B. &
S.M. Thesis, EE Dept.
June 1970

Fiasconaro, James G.

A Computer-Controlled Graphical
Display Processor, S.M. Thesis,
EE Dept.

June 1970

Patil, Suhas S.

Coordination of Asynchronous Events,
Ph.D. Thesis, EE Dept.

June 1970

Griffith, Arnold K.

Computer Recognition of Prismatic
Solids, Ph.D. Thesis, Math. Cept.

August 1970

Edelberg, Murray

Integral Convex Polyhedra and an
Approach to Integralization,
Sc.D. Thesis, EE Dept.

August 1970

Hebalkar, Prakash G.

Deadlock-Free Shari-.g of Resources
in Asynchronous Systems, Sc.D.
Thesis, EE Dept.

September 1970

131

PUBLICATIONS

AD

AD

AD

AD

AD

AD

AD

AD

699-503

710-011

711-091

711-060

710-479

711-763

712-069

712-070

713-139

PR

O T N, R VSR AR

*

TR-76

TR-77

TR-78

TR-79

TR-80

TR-81

TR-82

TR-83

TR-84

% PUBLICATIONS

Winston, Patrick H.
Learning Structural Descriptions

from Examples, Ph.D. Thesis, EE Dept.
September 1970 AD

Haggerty, Joseph P.
Complexity Measures for Language
Recognition by Canonic Systems,
S.M. Thesis, EE Dept.
October 1970 AD

Madnick, Stuart E.
Design Strategies for rile Systems,

S.M. Thesis, EE Dept. & Sloan School
October 1970 AD

Horn, Berthold K.
Shape from Shading: A Method for
Obtaining the Shape of a Smooth
Opaque ject from One View,
Ph.D. Thesis, EE Dept.
November 1370 AD

Clark, David D., Robert M. Graham,
Jercome H.|Saltzer and Michael D. Schroeder
The Classrodm Information and Computing
Service
January 1971\ AD

Banks, Edwin R.
Information Processing and Transmission
in Cellular Automata, Ph.D. Thesis,
ME Dept.
January 1971 AD

Krakauer, Lawrence J.
Computer Analysis of Visual Properties
of Curved Objects, Yh.D. Thesis,
EE Dept.
May 1971 AD

Lewin, Donald E.
In-Process Manufacturing Quality

control, Ph.D. Thesis, Sloan School
January 1971 AD

Winograd, Terry

Procedures as a Representation for
Data in a Computer Program for
Understanding Natural Language,
Ph.D. Thesis, Math. Dept.

February 1971 AD

132

713-988

715-134

714-269

717-536

717-857

717-951

723-647

720-098

721-399

ERE

7

A R T P R S

TR-85

TR-86

TR-87

TR-88

TR-89

TR-90

* TR-91

TR-92

TR-93

TR-94

Miller, Perry L.

Automatic Creation of a Code Generator
from a Machine Description, Elec. L.
Deuree, EE Dept.

May 1971

Schell, Roger R.

Dynamic Reconfiguration in a Modular
Compu:zer System, Ph.D. Thesis,
EE Dept.

June 1971

Thomas, Robert H.
A Model for Process Representation

and Synthesis, Ph.D. Thesis, EE Dept.
June 1971

Welch, Terry A.

Bounds on Information Retrieval
Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept.

June 1971

owens, Richard C., Jr.

Primary Access Control in Large-
Scale Time-Shared Decision
Systems, S.M. Thesis, Sloan School

July 1971

Lester, Bruce P.

Cost Analysis of Debugging Systems,
S.M. & S.B. Thesis, EE Dept.

September 1971

Smoliar, Stephen W.

A Parallel Processing Model of
Musical Structures, Ph.D. Thesis,
Math. Dept.

September 1971

Wang, Paul S.

Evaluation of Definite Integrals
by Symbolic Manipulation, Ph.D.
Thesis, Math. Dept.

October 1971

Greif, Irene Gloria

Induction in Proofs about Programs
S.M. Thesis, EE Dept.

Fe.'ruary 1972

Hack, Michel Henri Theodore
Analysis of Production Schemata

by Petri Nets, §.M. Thesis, EE Dept.
February 1972

133

PU3LICATIONS

AD

AD

AD

AD

AD

AD

AD

AD

AD

AD

724-730

725-859

726-049

725-429

728-036

730-521

731-690

732-005

737-701

740-320

"

4

3

i R R A I B R e R

PUBLICATIONS
i TR-95 Fateman, Richard J.
Essays in Algebraic Simplification,
(A revision of a Harvard Ph.D. Thesis)
April 1972
TR-95 Manning, Frank
Autonomous, Synchronous Counters
Constructed Only of J-K Flip-Flops,
S.M. Thesis, EE Dept.
May 1972
TR-97 Vilfan, Bostjan
The Complexity of Finite Functions,
Ph.D. Thesis, EE Dept.
March 1972
TR-98 Stockmeyer, Larry Joseph
Bounds nn Polynomial Evaluation
Algorithms, S.M. Thesis, EE Dept.
i April 1972
’ TR-99 Lynch, Nancy Ann
Relativization of the Theory of
Computational Complexity, Ph.D. Thesis,
Math. Dept.
June 1972
TR-100 Mandl, Robert
Further Results on Hierarchies
of Canonic Syst=ms, S.M. Thesis,
EE Dept.
June 1972
TR-101 Dennis, Jack B.

On the Design and Specification of
a Common Base Language
June 1972

KRR AR KAIR KKK ARRARRRRRKARRR AR R AR AR AR R AR AN

TR's 5, 9, 10, 15 were never issued

134

AD

AD

AD

AD

AD

AD

AD

740-132

744-030

739-678

740-328

744-032

744-206

744-207

ot v

g -

e S
o mnbiang

s

* T™M-10

* TM-11

* TM-12

* TM-13

* TM-14

* TM-15

* TM~16

T™-17

* TM~18

* TM-19

T A LR S et

TECHNICAL MEMORANDA

Jackson, James N.

Interactive Design Coordination for
the Building Industry

June 1970

Ward, Philip w,

Description and Flow Chart of the
PDP-7/9 Communications Package

July 1970

Graham, Robert M.

File Management and Related Topics
(Formerly Programming Linguistics
Group Memo No.6, June 12, 1970)

September 1970

Graham, Robert M.

Use of High Level Languages for
Systems Programming
(Formerly Programming Linguistics
Group Memo No.2, November 20, 1969)

September 1970

Vogt, Carla M.

Suspension of Processes in a Multi-
processing Computer System
(Based on S.M. Thesis, EE Dept.,
February 1970)

Septembar 1970

Zilles, Stephen N.

Ar. Expansion of the Data Structuring
Capabilities of par,
(Based on S.M. Thesis, EE Dept.,
June 1970)

“eooher 1970

Bruere-Dawson, Gerard
Pseudo-Random Sequences
(Based on S.M, Thesis, EE Dept.,
June 1970)
Qctober 1970

Goodman, Leonard TI.

Complexity Measures for Programming
Languages, (Based on S.M, Thesis,
EE Dept., September 1971)

September 1971

Reprinted as TR-~85
Fenichel, Robert R,

A New List-Tracing Algorithm
October 1970

135 [

PUBLICATIONS

AD

AD

AD

AD

AD

AD

AD

AD

AD

708-400

711-379

712-068

711-965

713-989

720-761

713-852

729-011

714-522

o
5
:
.
9
¥

R

i b

i

AT

O e

R i A A R e

T

R A T R PPt sty

PUBLICATIONS

* TM-20

* TM-21

T™M-22

TM-23

* TM-24

* TM-25

TM-26

TM=-27

TM-28

TM-29

Jones, Thomas L.

A Computer Model of Simple Forms
of Learning, (Based on Ph.D. Thesis,
EE Dept., September 1970)

January 1971

Goldstein, Robert C.

The Substantive Use of Computers
for Intellectual Activities

April 1971

Wells, Douglas M.

Transmission of Information Between
a Man-Machine Decision System and
Tts Environment

April 1971

Strnad, Alois J.

The Relational Approach to the
Management of Data Bases

April 1971

Goldstein, Robert C. and Alois J. Strnad
The Mac:AIMS Data Management System
April 1971

Goldstein, Robert C.

' Helping People Think
© April 1971

Tazeolla, Giuseppe G.

Modeling and Decomposition of
Information Systems for Performanrce
Evaluation

June 1971

Bagchi, Amitava

Economy of Descriptions and
Minimal Indices

January 1972

Wong, Richard

Construction Heuristics for Geometry
and a Vector Algekra Representation
of Geometry

June 1972

Hossley, Robert and Charles Rackoff

The Emptiness Problem for Automata
on Infinite Trees

Spring 1972

TM's 1-9 were never issued

136

AD

AD

AD

AD

AD

AD

AD

Gl L e e 01 T]

720-~-337

721-618

722-837

721-619

721-620

721-998

733-965

736-960

743-487

747-250

i N AR e S AN

AN

o

W T Lo

e

DA Y-a P bt ST W

o

2

Project MAaC

Progress Report I

to July 1964

Project MAC
July

Project MAC
July

Project MAC
July

Project MAC
July

Project MaC
July

Project Mac
July

Project Mac
July

Project MAC
July

Progress Report II
1964—Jg1y 1965

Progress Report III
1965-July 1966

Progress Report IV
1966-July 1967

Progress Report Vv
196 7~-July 1968

Progress Report vI
1968-July 1969

Progress Report VII
1969-July 1970

Progress Report VIIT
1970~-July 1971

P.ogress Report IXx
1¢71-July 1972

PUBLICATIONS

AD

AD

AD

AD

AD

AD

AD

AD

*****************'k*'k'k'k********************

Copies of all MAC re
from the National Te
Division, Springfield, Virginia,
are: microfilm $0.95; hard copies:

years old $6.00, all others are $3.00
The AD number must be sup

also $6.00.

*Out-of-print, may be obtained from NTIS

137

ports listed in Publicat
chnical Informat
22151,

(see above) .

465-088

629-494

648-346

681-342

687-770

705-434

732-767

735-148

ions may be secured
ion Service, Operations
The prices from NTIS
reports more than two
except TR-83 which is
plied with the request.,

