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ABSTRACT 

This is a report of an analytical study of free-molecule, hyper- 
velocity air inlet configurations which might be used to supply gas for 
ion engines aboard satellites.   The basic equations for the inlet are 
developed based upon gas-surface interactions.    These equations are 
numerically solved for various gas-surface interaction parameters. 
Based upon these inlets,  ion rocket performance is determined for 
various efficiencies. 
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SECTION I 
INTRODUCTION 

This report presents an analytical study of free-molecule hyper- 
velocity molecular inlets for use in conjunction with an ion rocket 
aboard an artificial satellite.   For altitudes above approximately 150 
km, where the mean free path is greater than 40 m, the flow may be 
considered free-molecule for satellites with a characteristic dimen- 
sion on the order of a few meters.   Taking into consideration the 
effects of the interaction between an atmospheric molecule and the 
inlet surface, an analytic expression is obtained for the optimum 
inlet shape. 

SECTION II 
THEORETICAL ANALYSIS 

The optimum inlet shape for maximum molecule collection would 
be one which would "focus" the molecules to a point.   In a monodirec- 
tional free-molecular flow field, the optimum geometrical form of a 
perfectly (i. e.,  specular) inlet is a paraboloid,  since all molecules upon 
reflection are directed toward the focus.   However, in reality there are 
no specular surfaces, and thus the angle of reflection of an incident 
molecule depends upon the physics of the gas-surface interaction.    An 
example of the interaction of an argon molecular beam whose incident 
energy is typical of orbital flight (12 eV) and a silver surface is shown 
in Fig.  1, Appendix I (Ref.  1).    The spatial distribution is quite lobular 
and supraspecular.    For high-speed ratios,  Sw (e. g.,  if the vehicle has 
a typical velocity of 8 km/sec and surface temperature of 300°K, then 
Sw * 20), the relation between the local zenith angles of the incident 
molecular flux,  0^,  and that of the maximum reflected molecular flux, 
0m,  is given by Ref.  2,  as follows: 

—                            — 

0m   =   tan"1 l/l—. 
ian v • 

m \/l -a *              n 

S..   »   1 (1) 

where a^ and an = tangential and normal energy accommodation coeffi- 
cients.    Using Fig. 2, the following geometrical relations may be 
derived: 

tan 6-   =   dx/dr (2) 
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and 

tan [Ö. + 0n - (fr/2)]   =  f (3) 

tan 0. - cot 0 
tan [0. + 0m -(IT/2)]   =  ■: —2 ^-   =  - >        m 1 + tan 0. cot 0 r 

From Eq.  (1), 

\/l-at 
tan 0m  =   z tan 0j, where z  = 

\/l-a 

or 

cot 0m  = 

Thus 

m z tan 0. 

1 
tan 0. - 

•       ztanÖ. x 

or 

z tan' 

1 + X/i r 

0, -   1 -  (1 + 1) -  tan 0, 1 r ' 

dv 
Substituting tan 0J = ^ yields 

or 

zgi\2 _ (i+z)i  <i _ 1 = 0 
\dr/ r    dx 

\dx/ r   dx (4) 

Equation 4 is a first-order, second-degree differential equation which 
can be solved analytically by placing the equation in parametric form. 
The solution of an equation of this form, i. e., 

KrO    +  axr' -   br =  0 
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is given by 

x"2(a+b)  =   const t2a(t2
+b)-2(a+b)(t2

+a+b)a+2b 

(t2 + b) r =  -  axt 

For the case at hand, a = 1 + z, b = -z, and a + b = 1. 

Thus, substituting, the solution to Eq.  (4) becomes 

x-2   =   const t2(1+zkt2-z)-V tl)1"2 

(t2 _ z) r  =  -(1+ z) x t 

Now, at x = 0, r = rQ, and thus the constant may be evaluated as 

const  =   r^2 z_z(z + 1)*" (1 + z)2 

Rearranging terms, one arrives at the parametric solution to Eq. (4), 

z-t2r 
x = 

■£ +   1     t 

1-z 

t-m 
2        z  z/2 

For the case of z = 1 (i. e.,  a specular surface), the equations reduce 
to the following forms: 

and 

..ia-rti 

_L - I 
r t 

Then 

which is simply the equation of a paraboloid symmetrical about the 
x-axis. 
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The parametric equations were numerically solved with the inlet 
shapes for various z's presented in Fig. 3.   Notice that for a fixed 
value of x, the area, irr*, increases as z increases.    Thus, the inlet 
would be a more efficient molecule collector if it were constructed 
from a material with a large z-value for atmospheric gases.   It has 
been shown in Ref. 2, based upon the theory of reciprocity of gas- 
surface interaction, that z can be a function only of the surface 
material and the incident gas and not of incident velocity or direction. 
Typical values of z determined from a theoretical analysis (Ref. 2) 
using experimental data are 1. 23 for argon reflected from silver 
(Ref.  3) and 1. 71 for platinum reflecting argon (Ref.  4). 

These numerical results for the inlet shape will now be applied to 
the calculation of ion rocket performance.   The net thrust, 'S, of the 
vehicle may be estimated for various ion engine efficiencies and inlet 
shapes by considering the momentum equation, 

g-=  (M2V2)  - (M,Vj) 

where Vi is the entrance velocity, typically 8 km/sec (2. 6 x 10   fps), 
V2 is the exit ion velocity, M^ is the mass entering inlet, and M2 is 
the accelerated exiting mass.   The momentum of the exiting unacceler- 
ated particles is neglected.    The ion engine efficiency, r\, will be de- 
fined as that fraction of captured gas that is ionized and accelerated to 
velocity VV,,  i. e., 

'■■; 

Therefore, the expression for the thrust becomes 

5" = M^Vj-V,)  = pjA^OfXj-V,) 

where p^ is the ambient density and Ai is the inlet entrance area. 
Thus, a thrust coefficient may be defined as 

CT.A 
-■^v?"^'-1) (5) 

4 



AEDC-TR-73-25 

The variation of Crp A   with n is presented in Fig. 4 for V2 = 120 

km/sec (4. 2 x 10   fps).    Also, one may define a thrust coefficient 
based on AOJ the inlet exit area,  as follows: 

"T.A "^7 -(?)'(£-} 
where rj is the inlet entrance radius and r0 is the inlet exit radius. 
Figure 5 presents the variation of C-j. ^   with z for various efficiencies, 
n, at an x/rQ value of 3. 0 for the same values of V2 and Vi as given 
above, with r\lrQ being determined from Fig. 3. 

The fundamental purpose of an ion engine on an orbiting vehicle is to 
overcome atmospheric drag and provide orbit control.   In order to offset 
drag of the inlet, it is necessary that the net thrust be zero,  and from 
Eq.  (5) it can be seen that this condition is achieved for rj = 6. 7 percent 
for the values of Vj and V2 previously assumed. 

If the total drag of a satellite is caused by components other than 
the inlet, then a higher ion engine efficiency is required.   In order to 
illustrate the results for the case of a satellite with drag other than in- 
let drag, the following simple example will be considered. 

Assume a satellite configuration as shown below: 

Additional 
Drag Area Ion 

Engine 
Exhaust 

Inlet 

Inlet Shadow 
Direction 
of Motion 

Let AD be the drag in excess of the inlet drag.   The expression for AD 
is 

AD = ff(D
2-d2)p,v2 cD/8 (6) 
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where Cj) is the drag coefficient of the satellite minus the inlet. 

For the ion engine to overcome the atmospheric drag of the satel- 
lite, it is necessary that 

jr = AD (7) 

From Eq.  (5) and the definition of Aj it can be seen that 

5" = C
T„A1   Piv?   "&* (8) 

Substituting Eqs.  (8) and (6) into Eq.   (7) yields 

(D2-d2)CD = 2CT>Ai 

Notice that the effect of the static density and orbital velocity has 
vanished.   Using an estimated value for Crj of 2. 11 and solving for D/d 
gives 

D/d = \/0.946 CTA    VT 

Thus for the previously stated values of Vj and V"2 and using 
Fig. 4, Eq.  (9) becomes 

(9) 

D/d  =   3.77v? (10) 

Now, if the ion rocket engine efficiency is assumed to be approximately 
30 percent (rj = 0. 3), then Eq. (10) yields D/d = 2.06 for zero net force 
on the satellite. 

SECTION III 
CONCLUDING REMARKS 

In conclusion it can be stated that, based upon Fig.  3,  a material 
that has a larger value of >/l - a^ /yj 1 - a-q when reflecting atmospheric 
gases (i. e., with high normal and low tangential accommodation) per- 
mits shorter inlets for the same inlet area.    A shorter inlet is advan- 
tageous for several reasons.    First, it requires less material and 
therefore less weight for its construction.   Second, the flight path of 
molecules between the encounter with the inlet surface and entering 
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into the ion engine is shorter, which will permit operations at lower 
altitudes before intermolecular scattering decreases efficiency.    Third, 
a shorter inlet will increase the solid angle subtended by the inlet exit 
as seen from a point on the inlet surface and thus decrease "spillage" 
from the ion engine inlet due to the finite size of the scattering lobe 
(see (Fig.  1). 
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APPENDIX 
ILLUSTRATIONS 



Incident Beam, 
12.0 eV Argon 

O Ref.   1 

Fig. 1   Spatial Distribution of a High-Energy Argon Molecular Beam 
Reflected from a Silver Surface 
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