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EDITORIAL COMMITTEE

S. I. Samoylenko (Chairman),

S. S. Maschan (Vice Chairman),
Ye. S. Geller (Responsible Sacretary),

G. G. Vorob'yev, I. S. Ukolov

INTRODUCTION

The ainiversary conference, celebrating the 100th anniversary of
V. I. Lenin's birth, devoted to the topic "Adaptive Systems" took
place at the Moscow Aviation Institute on March 26 - 27, 1970. The
conference was organized by the Chair of "Aircrait Automatic Control
Systems" at the Institute.

The conference attracted a large number of speclalists in the
area of adaptive systems. It was attcnded by professors, graduate
students, engineers associated with the Luborstory Chair, and repre-
sentatives of a number of scientific research organizations.

The present edition contains lectures and communications that
were delivered at the conference. They deal with various aspects of
tre rybernetics of aircraft.

Zh. S. Aguyev, B. V. Viktorov, B. V. Kirsanov, N. A. Shokolo
took pert in the preparation and the editing of the present volume.
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INTRODUCTORY GREETING
Academician B. N, Petrov
Comrades!

Our country celebrates a momentous anniversary. One hundred years
have passed from the birthof V. I. Lenin, the founder of our party,
the creator uf the world's first socialist nation.

V. I. Lenin made an enormous contribution to the development of
Marxism, and to the development of social and natural sciences. A
clear illustration of Lenin's deep foresight is included in his
famous statement: "The electron 1s also inexhaustible like the atom,
nature is infinite."®

Lenin bailt the foundation for the scientific management of
government and social development. He devoted a great deal of atten-
tion to scientific and technological progress, and to the scientific
organization of work. He emphacized that the proletariat should take
advantage of the best elements in what has been created during the
centuries of the development of man's civilization: " . . . Everything
that has been conquered by science, technology, all the improvements,
the entire knowledge of specialists, all this should serve the united
proletariat,'*#

%V, I. Lenin, Complete works, Vol. 38, p. 26.
#%y, I. Lenin, Complete works, Vol. 18, p. 275.
FTD-HC~23~1018-72 1
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In an outline of the plan of scientific and technological
development, written by Lenin in April of 1918, he placed a whole ]
series of the most important tasks before the members of the Academy |
of Sciences. i

Lenin's GOELRO'plan was born in a difficult period for the young

Soviet state. It was, however, not only the first state economic plan -
designed for a number of years, but also the first state plan of scien-
tiflic research. The plan was full of optimism. It was based on a »

deep belief in the primary role of electrification as a basis of
technological progress and development of the national economy.

Our nation, guided by the Communist Party, has been following
Lenin's path for over 50 years already. The first soclalist state
created a powerful industry, leading technology, and advanced agri-
culture. Soviet science has flourished as never before, and in a
number of important fields it has taken the leading role in the world.
The Soviet people made a great contribution to the progress of modern
science and technology. Our nation showed man the way to the universe,
and the way to a peaceful use of atomic energy. Our country is a
leading power in aviation.

The development of aerospace technology in recent years has
introduced a whole series of completely new problems in the theory
and technology of aircraft control. The traditional methods of automatic ]
flight and attitude control of aircraft are no longer sufficient to
satisfy the increasing demands on control systems. In order to solve
the control problems arising in that area, it is necessary to use ideas
and methods that one can call "cybernetic" in the 1.1l sense of the
word. The development of microelectronics and computves, the creation
of control devices enables us to realize effective control algorithms
and to create automatic control systems capable of controlling both an
individueal aircraft and their complicated combinations.

The wide range of flight conditions, the great range of effectivenecs
of control surfaces, and the increasingly corplicated tasks facing air-
craft, gave rise to the emergence of a new class of control systems,

#Tpranslators' Note: This designates‘State Commission for Electrification
of Russia.
FTD-HC-23-1018-~72 2




namely adaptive systemo. The latter are capable of providing the
required control quality under changing flight conditions, with the
parameters of the controlled obJects varying within a wide range.

Such systems, as we know, include self-adjusting automatic pilots,
systems of variable structure, parametrically invariant systems, and
others. The theory of terminal control has progressed a great deal.
The foundations of the theory of a new class of systems, systems of
coordinate-parametric control, are being created. Control theory makes
effective use of the methods of game theory and statistical decision
making, operations research, theory of mass servicing, methods of
linear and nonlinear programming, and many other theories included in
modern theory of large systems.

The theory of optimil control has developed to a great extent.
The idea of optimization is the fundamental and decisive concept in
the design of alrcraft and power plant control systems.

This conference was arranged in order to provide a comprehensive
view of some aspects of the work being done in the area of the theory
and methods of design of adaptive contro.. systems, and to outline the
fundamental objectives in further development of this important class
of modern aircraft control systems.

It is my pleasure now to open this anniversary conference of the
Chair of Automatic Control Systems assoclated with the Moscow S.
Ordzhonikidze Aviation Institute, devoted to the theory and methods
of adaptive control, and dedicated to the 100th anniversary of V. I.
Lenin's birth.

FTD-HC-23-1018-72 3
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IMPLEMENTATION OF ADAPTIVE CONTROL ALGORITHMS
BY MEANS OF ON-BOARD DIGITAL COMPUTERS

Alekseyev, K. B.; Teryayev, Ye. D.;
and Ukolov, I. S.

The solution of present-day control problems requires the use of
digital computers in control systems. At the present time the problem
can be solved if digital computers are used.

The use of computers in control systems assumes particular
importance and timeliness in connection with the technical execution
of adaptive (self-adjusting) control systems. In this area one is
faced with the specific problems of studying the dynamics of automatic
control systems that include computers, the problem of determining the
basic characteristics of on-board digital computers, and their inter-
action with the dynamic characteristics of alrcraft.

In the present report, we discuss certain problems that arise with
adaptive control algorithms in automatic control systems.

An adaptive control algorithm will be defined as a changing
program of operations that takes into account the actual state of tie
surrounding medium, the parameters of tiie input and output coordinates
of the object, and optimizes in & certain sense the value of a given
functional of the gquality of the control system.

.
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Similarly, an adaptive control system will be defined as a system
that realizes an adaptive algorithm in the sense described above.

On-board digital computers offer a great deal of promise as far
as their application in aircraft control systems is concerned. The
effectiveress of using on-board computers in control systems depends
on whether it will be possible to use radically new methods of solving
the control problems, methods that would result in better performance
parameters for a control system as a whole.

The use of on-board digital computers is based on the following
considerations:

a. Great logic and computational capabllities, permitting the
solution of diverse and complicated problems with practically unlimited
accuracy;

b. Stability of operation within a wide range of working
conditions;

c. High speed, permitting the simultaneous solution of several
control problems;

d. High level of adaptation and self-control of the control
systems.

On-board digital computers offer great possibilities to the
designers of control systems when they are involved in designing com-
plicated adaptive control algorithms. The reliability of control
systems is always improved both as a result of a programmed correction
of errors in the operation of certaln reserved elements of the control
systems, and by controlling the apparatus directly during its operation,

In the design of control systems involving on-~-board digital
computers, we are faced with the following technical tasks:
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1. Analysis of the structure of control systems for the purpose
of finding those versions that possess highest reliability and are
least costly;

2. Determination of rational requirements on the on-board
computers;

3. Organization of efficient parallel programming of individual
problems solved with the aid of an on~board computer;

b, Execution of the on=board computer programs in real time,
while satisfying the requirement that different levels of reliability
be achieved when solving problems of various degrees of importance
(1.e., various degrees of influence on flight safety), and while
satisfying the time requirements of various computer users;

5. Taking advantage of the multichannel structure of a control
system and an on-=board computer in order to use programming to increase
the reliability of the most important control algorithms;

6. Debugging computer programs using general-purpose digital
computers and simulation programs;

7. Debugging computer programs using an analog-digital (hybrid)
unit.

An on-board digital computer used as a component of aircraft
control systems must perform a large number of operations needed to
solve the following functional problems:

1, Navigation and control of aircraft in various stages of
flight;

2- Collectio. and processing of information about the
surrounding medium;




3. Solution of auxiliary problems; control of the operating
conditions of individual units, selection of optimal flight conditions,
etc,

The basic feature of control systems and control based on the
use of on-board computers is the possibility of flexible, adaptive and
automatic changes to the control program and the possibility of making
lecislons based on an assessment of the flight situation.

On-board digital computers may be classified according to
different basic characteristics which assign them to a given class.

One possible classification is based on the location and purpose
of the on-board digital computer within the control system:

a. Command computers, performing strict control according to
a preset program, and independently of the course of the controlled
process;

b. Compensating computers, used in loops of strict load control;

c. Information computers, where the information avout the state
of a system is processed, received by man, and finally used to control
the system;

d. Control computers, used in a closed control loop. This
form of application is basic and most promising. Their location in
the control system and their tasks may be quite diverse.

The use of on~board digital computers in control systems poses
particularly great demands on such parameters of a computing system
as weight, volume, reliability, required power, range of operating
temperatures, radiation re-istance, transmission of vibrations, etc.
In addition, the on-board computers must satisfy a number of specific
demands. A computerized control system should: 1) operate reliably
without preventive maintenance and servicing during the entire perlod
of effective service, i.e., during the flight of an aircraft. This

“d




means that an on~board computer, consisting of thousands of components,
must have an acceptable service life (in the case of an on-board com-
puter which cannot self-repair, it is equal to the time interval up to
the first failure), 2) the range of problems solved by the computer
will usually remain the same during the entire service life of the
machine, 3) input and output operations must be carried out in real
time, and the time intervals must be strictly specified. An on-board
computer must be capable of being used for a wide range of problems,
since it may become necessary to change the scale of the telemetry
data, change the calculations needed to prepare the initial data, etc.

When synthesigzing a computerized control system, the following
parameters are given:

1. Program running time;

2. Speed, defined as the time needed to perform a short
operation;

3. System of commands;

4, Bit size of numbers;

5. Storage capacity.

Program running time is determined by the maximum permissible
length of the elementary tiae interval for the most dynamic control
algorithm realized using the on-board computer.

Programs for on-board computers have a complicated structure and
consist of subprograms that perform individual control tasks, and
of standard subprograms that perform typical algorithms used in control
and processing of numerical information; a subprogram which adjusts
the special and the standard subprograms in accordance with data
(obtained from the outaide) on the working conditions, the time, and
external control signals, and an initializing subprogram that reads
the initial codes into the operative memory.

. e ety
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The type of on~board digital computer is determined by:

1. Complexity of algorithms;

2. Speed;

3. Accuracy required in algorithms;

k. Allowable weight and size;

5. Ease of adjustment, so that other problems can be solved;
6. Freedom from interference;

7. Possibility of controlling the control system.

The demands placed on on-board computers, as well as on their
structure and the structure of the input and output units, depend on
the specific problem and algorithm.

Depending on the type and purpose of an aircraft, an on-board
comprier may perform the following tasks:
1. Data processing;
2. Computation of coatrolled quantities;
3. Generation of control signals;
4, Control functions.
The tasks in this group, in particular the navigational algorithms,
require a higher accuracy of calculations. In this case, the computer j
word length should be no less than 20 - 24 bits, and the speed — at
least 5 - 8 thousand operations per second.

Centrol of the on-board equipment by means of a computer consists
of the ilgorithms of automatic control and those for predicting defects
“' .t eai, occur while the basic problems are being solved. In order to
solve the control problems, one needs increased capacity of the fixed
and operative computer memories.

Certain characteristics of foreign on-board third-generation
computers are given in the table on the following page.

Normally, an on-board computer should guarantee the realization
of a large number of algorithms, and thus it is important to first
consider those algorithms that constitute the largest computational
load (n):
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where A and L are the numbers of simple arithmetical and logical
operations.

Those algorithms include primarily the algorithms used in data
processing and the computation of controlled quantities.

The structure of the on-board computer should be maximally adapted
to the composition of the on-board systems, the problems being solved,
and should be optimal in the sense defined in the design criterion.

It 18 clear that it is necessary to have a certain number of possible
structural versions.

Unfortunately, at the present time we do not know of an established
procedure for solving this problem, even though there are some
approaches that permit us to formalize the problem.

The increasing demands as to the minimization of energy losses
incurred in orlenting flight vehicles on trajectories with a long
flight time on the order of one year) force us to seek new, more
economical methods of controlling the motion of the vehicle about its
center of mass. One of these methods involves extensive control of
the attitude, and can be reallzed by using a computerized control
system. The method consists of selecting the moments applied to the
vehicle relative vo the axes attached to it in such a way that the
vehicle is set in mction about the axis of equivalent rotation (the
Euler axis).

As compared with existing methods, the method of extensive control
enables us, other conditions being equal, to solve the basic problems
of orientation with much smaller energy losses (~ by a factor of 2)
and much more rapidly (-~ by a factor of 2 - 3). However, extensive
control involves a relatively large number of computations, which
assumes that an on-board computer is used. It 1s characteristic that
the use of an on-board computer in systems of extensive control is a
necessary condition for their technical implementation. Moreover, the
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! advisability of the use of an on-board computer is Jjustified by
significant energy gains and higher speed, which permits us to lengthen
the active life of a vehicle, and improve its tactical and engineering
characteristics without additional expenditures.

Let us consider the principal problems involved in the construction
of computerized systems of extensive control, focussing our attention
on the physical content of the problem and the computer functions
resulting from it.

The formulation of the control problem is as follows. Suppose
we are given the initial (t = 0) and the final (t = T) angular atti-
’ . tudes of a vehicle, determined by means of modified Euler angles ¥, v
and y, subject to a given set of constraints.

' We must determine a program of the time dependence on the bounded

" control moments M;, M;, M; applied to the vehicle relative to the axes
attached to it, which are such that the vehicle is taken from its
initial attitude to the final one during:

i 1. a minimum time Th,

: 2. a given time T with minimum energy. losses.

We assume that the vehicle is an ideal rigid body, and the effect
o' external perturbations on the angular motion of the vehicle in the
course of control is negligibly small.

e e e o At

Figure 1"2 . !
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Without giving detailed calculations, we shall only state that
the problem of extensive control has an exact analytic solution.
This fact 1s of great importance in constructing the computer functions.

Let us analyze the sequence of operations performed by the on-
board computer. The geometry of the problem is shown in Figure 2.
We shall give the computational operations necessary to determine the
resulting angle of turn ¢, direction of the Euler axis Z¢ = v, v2, V3]
(in the system 0x;, X2, X3 and 0X;, X2, X3), and the sign of the angle
of turn, sgn ¢. Using the initial measured values of ¢, ¢ and y, we
determine the matrix of direction cosines a -IIay =|l; £, a' =1, 2, 3,
which we then use to calculate

q;-urccos;-(d;|+¢a+¢a;-1)

. “ltt.lgt—“gﬂdﬂ
sine

a; b| V1 ¢+'
"0—«3. (2)

ay by vy
ay by v

Sgn ¢ = sgn

The last operation sgn ¢ involves the largest amount of labor.

>

Fole ¥y

Axis of the
gyroscopic moment.

Figure 3.
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Knowledge of the direction of the Euler ax!s glives us the
direction of the kinetic moment vector and tle &xls of the gyroscopic
moment (Figure 3).

The directlons of these vectors can be found from
3

- VsV
h=27t, (3)
If
|l‘00
I" 07 0;
ook (4)

then

/ 2.2 (5)

l.- ",’ 2' I,v,

where

3
Iy = 1/2 (e = 1) Vi34
. )]

Here 18 are the unit vectors of the attached coordinate system. We

L)
note that the unit vector of the Euler axis 1is ly= 3 v,
Gl

Knowledge of the orientation of l., lk’ and lr enables us to
specify the direction of l,.-Ep,..i, of the axis of the resultant
moment vector M, and write 1mp11cit expressions (in terms of the
angle 0) for its direction cosines (Figure ).

Ba = (@, + 5, tg6) cos @
Iavy .
an= =3 la.l-aJ
5;: o (’nu;‘,nn) ~ (6 )

»
?‘ - | ?n 'mu
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Figure 4.

Denoting the maximum allowable value of the moment applied to

the vehicle along an attached axis by Mms and the maximum value of a
direction cosine by Bs, we find that the maximum length of the vector
M is equal to "

| M |y = =22

{ Imx. B‘ (7)
Then the equations of motion of the vehicle can be written using the
ronditjon that the dynamic veszsction of the vehicle to the applied
rontroi moment be compensated: The equations of motion are:

- M My
?uncosen/klalths'lel (8)

v M, Mms g ©
§= 7,50 = I e (9)

Tne subsequent computational procedure used to synthesize the system
is glven without explanations.

Synthesis of the System
T
n)I-‘Sdt-mln (10)

_ (11)
t,=-i';arc th}/th-’-ﬁ"ﬁ;‘-’ for 1)
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or f=- % arcth / thi’%ﬁi

y % [nrcth]/th—n——““’::"‘+ arc th/ thL‘ﬁ‘-;l’i"

For 0 <t < t; and 1)

M,-M,,,%,L

(4

-~ ~ @
dseit Bt shnt

Moy = My =i

and 2)

;;“'"s'“.[ gl! lll\"“
Mppy= My, Qg COA{

For t; <t < T and 2)

Brat b G0l (0= 101}

MrH - Mm

and 2) M‘-M“‘i&'
(]

Moy =M, iagl*l'-’msh']x—n(l—f!)]!

g Ch¥{x — n (t —4)]

l=1,2 x==arctgthnat,
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(12)

(13)

(14)

(15)

(16)

a7

(18)

(19)
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(22)
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T
b) I-=_£21K,,]M,|dt=mln (23)
P :,-7‘-'[1-]/1-5;-;;;,—7"";: (24)

. t,-§[1+1/1-§.’.7"‘,'—;g (25)

For t; : t < 6, + ¢t
, M-%"L'th"ut, (26)

M,-"’T:'-'zhw..b, 1=1,2,3

(27)

Figure 5,

The existence of the analytic solution of the problem involving
the control of a spatial turn maneuver makes it possible to use an
on-board computer as a command computing unit (Figure 5). Such a use
of the computer excludes any feedback (rigid program). However, this
does not mean that feedback coupling will occur in the controlling
part of the system and when eliminating small angular deviations.

17




%mil ] _}_:2 sys. comp. part

BCKP BCDP BCCM

BCKP = block computing kinematic parameters of rotion

BCDP - block computing the dynamic parameters of motion

BCCM -~ block computing the programmed values of the
control moments

Figure 6. Structure of command on-board digital computer.

Functions of BCKP
~ 300 addition operations
~200 multiplication operations
~a division operat ons -

transfers to menmory (commands)
Yo [, =cyev, % ] e s
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ST CY 75505y 23
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When performing a turn by ¢ = 180° the effect of the eiternal
disturbances may result in an inadmissibly large error in the final
attitude of the vehicle. Therefore, it becomes necessary to introduce
a correction, which can be effectud by maintaining a programmed angular
velocity of the vehicle (Figure 6). Then the computer functions are
somewhat widened, but the purpose of the computer remains the same.
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Figure 8. BCDP function.

As for its structure, an nn-board computer containing arithmetic

and logic units may be subdivided into three blocks which are designed
to compute:

1. Kinematic parameters;
2. Dynamic parameters;
3. Programmed values of controlled moments.

A general characteristic of one of these blocks is shown in
Figure 7. We can see that extensive control using simple computing
devices is impossible. The functions performed by the other blocks
are shown in Figures 8 and 9.
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An impnrtant question arises in the control of the attitude with
adaptation. This type of control occurs when the moments of inertia
] of a vehicle eilther change :ignificantly or are to be determined in
the course of the flight. A study of this problem shows that in this
case 1t is also advisable to retain the above-mentioned function of
the on~board computer that ensures optimal control. However, there
appears a new computer function which involves the problem of identi-
fying the object. It is characteristic that this function 1s performed
by the computer in a closed control loop.
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ELEMENTS OF ADAPTIVE AUTOMATIC CONTROL SYSTEMS
Braslavskiy, D. A. and Yakubovich, A. M.

Adaptive control systems are constructed using both general- and
special-purpose elements. The general-purpose elements, used to con-
struct both the adaptive and linear controi systems, are in the form
of linear converters. They include data sensors (angle-angular
velocity, altitude sensors, etc.) and amplifying converters (operation
amplifiers, power amplifiers, differentiators, integrators, etc.).
The special-purpose elements are mainly used in adaptive control
systems. They include the following basic elements:

- test pulse generators,
narrow-band filters, which select signals in a given narrow
frequency band,
multipliers,
integro-multipliers,
functional multipliers,
quorum elements.

The besic requiremehts placed on the above elements are given in
the table.

Pulse generators and narrow-band filters can be constructed using

electronic amplifiers and threshold elements in combination with RC
networks. Pulse generatoré and narrow~band filters having a higher
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No. Element Basic Requirements

Frequency range 2 - 30 Hz
1 Pulse Generator Frequency stability 2 - 5%
Amplitude stability 5 - 10%

Resonance frequency 2 - 30 Hz
2 Narrow-band filter Frequency stability 2 - 5%
Amplitude stability 5 - 10%

Null level accuracy 0.2 - 0.5%
3 Multipliers Multiplication accuracy 3 - 5% .
3 dB level frequency band 100 - 200 Hz

Integration time constant 5 - 50 sec
b Integro-multiplier Null level accuracy of input 0.2 - 0.5%
Multiplication accuracy 15 - 20%

Null level accuracy 0.2 - 0.5%
5 Functional multiplier Accuracy of functional conversion 5 - 10%
3 dB level frequency band 100 - 200 Hz

\ Accuracy of conversion 1 -~ 2%
6 Guorum element Threshold accuracy 5 - 10%

stability of characteristics (1 - 3% as to frequency, 3 - 6% as to
amplitude) are constructed using electromechanical devices with
mechanical moving systems.

The multipliers are constructed using various techniques which
involve both direct and indirect transformation of signals. It should
be noted that the multipliers for closed adaptive systems can be
constructed more simply than others, since the requirements on the
accuracy of multiplication can be much lower. Integro-multipliers
which perform the operation z(t) = y(t) * [x(t)dt, where y(t), x(t)
are input coordinates, are used in systems used with a standard model.
The integro-multipliers may be constructed according to various
principles. As an example we can mention an electrochemical integro-
multiplier which is called a ministor. Low temperature stability is
the ministor's basic drawback. We shall consider two important and
promising elements in more detall: the functional multiplier and
the quorum element.
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Functional Multipliers

~ The functional multipliers form the product of the input coordinates y
Yiee.¥y entering through N channels and of the functions f;(x)...fN(x) §
of the coordinate x, so that the output coordinates of the channels,

Zy...2y, are equal to
a=Yfi(X)...o 2v= yn-fn () (1)

The most common functions used in automatic control systems include
algebraic and transcendental functions of the forms xa, e-ax’ in x,

1l - x“, (1 - x)“, where a is an integral or fractional positive number.

One of the most promising versions of the functional multiplier
is the discrete dynamic version [1, 2] with analog input and output,
and pulse signals used in all intermediate transformations.

A functional multiplier (Figures 1 and 2) consists of a control
channel and N channels. x 1s the input to the control channel, and ]
vy is the input to the ith channel. The unit consists of the following
subunits: 1linear dynamic network, comparator, pulse keys, delay lines,
and memory capacitors. Let us analyze the operation of the unit.
Suppose that in the control tract in a linear dynamic network the ;
process y“)..m;¥ occurs involving a discharge of the capacitor C,
charged by the standard voltage ug > %x. At a time '1‘n when the

equality m;¥p-x is satisfled, the comparator sends a fixing pulse.

This pulse goes through the delay line and forms the tact pulse. The

tact pulse at a time t closes the pulse switch through which C, 1is

then charged by the standard voltage Uo. The process is then repeated.

The interval between the tact pulse and the fixing pulse 1s

(2) |

m-—rm%

Simultaneously with the charging of C, by the tact pulses through
the pulse switches, the capacitors Ci in the linear dynamic networks
LNz, become charged (or discharged). The amplitude to vhich the capa-
citor in the ith channel is charged is proportional to Yyo The
transient processes W (f)=y,-u,({) in the channels are periodic. Their
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start coincides with the start of the process u,e” in the control

channel. At a time Tn the fixing pulses connect the output capacitors
Cn to LNg;...LNzN, through the switches PS;, ..., LSN, storing the
signal from the output of LN2; in the ith channel equal to

_z‘_w‘('['n),.y‘.u‘(’ru)-y,.u,(-—Tln-T':-) (3)

where ’ .
u;\"'“"_'é‘;)-h(x) ()

- 1 - I

X & '
=
Y, o] 7&##%&4 5 -
) 7] st 2
IJ

o e amp

TH

22,

~#2

Figure 1.

1. control channel; 2, channel 1; 3. channel N;
4, fixing pulse; 5. comparator; 6. LDN%;
7. pulse switch; 8. tact pulse; 9. delay line.

Using various transient processes u,(t) in the channels, we
-t
obtain various f,(x). For example, if y (f)mer” , then fl(x) = X,
{
= - X
and zy = ¥y (%), £Or et —eT, fl=1- 7, 't-ya("‘v.)‘

*LDN designates linear dynamic network
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Quorum Element

The quorum element [3] is an analog logic unit with N inputs y,

oo ¥y (where N 1s odd), and one output y equals

yzlll"'yi“f'm---'*‘ym' (5)

for|y—wl<4, i=1,..m [y=wI>8; jem<1,...N, , where m>-§.A, and

A, are threshold values. In the special case when AN“A/““v,
yemed(y ... yn)

l.e., 1s a median of the signals Yi...¥y. According to (4], Equation

(5) represents an algorithm which is close to being optimal for adap-

tive systems. A diagram of the quorum element for N electric signals

is given in Figure 3.
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The basic unit of the quorum element is in the form of a current
clipper. The volt-ampere characteristic of the current clipper 1is
shown in Flgure 4. Let us analyze the operation of the device for
N = 3, assuming for simplicity that the load resistance 1is RL = o,
Three modes of operation are possible: averaging, blocking the circuit
of one of the signals, and generation of a median.

If the input voltages u;, uz, us are such that
m—tkiatl oy 1,3,
then the balancing currents in the circuits, I, I, Is, &ve smaller
f than the limiting current Io. In this case the current clippers are

linear resistances, and
u:.ﬂiigiiﬁ,

i Let us consider the mode in which circult 1 is blocked. Let

m>u>u , and
fy —ul> u, (6)

[y — | < uys |y —w| < uo. (1)

! When the inequality (6) is satisfled, the current in the circuit
1 attalns the maximum value Io. This c?rrent splits into 1?entical
currents in circuits 2 and 3, equal to 3 . In addition to 7, the
channels 2 and 3 carry an additional current due to the fact that u:
is different from us. If the condition (7) is satisfied, then the
resultant currents in the circuits 2 and 3 will not reach the maximum
value Io. The dynamic resistance of the nonlinear current clipper CC,
is practically infinite, and the operating currents in the elements
CCa, CCy remain in the region of small linear resistances. The cir-

cuit 1 1s blocked. The device averages the signals u: and us, 1.e.,

Ug

B =
2

The mode in which a median is generated will occur for I —u > u,
y—uy>ug 4ty — w|>uy. Suppose that “i>i>u; . Then the balancing
current I0 is shunted through the c;rcuits land 3, and /|=—~1/,. In
the second circuit there i1s no current. Since CC, and CC; are
saturated, the dynamic resistance in those circuits will be close to
infinity. Since the resistances in the circuit 2 are small, u = u,.

26
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It will be noted that the quorum element has been constructed according

to a generalized structural diagram given in [3]. [3] discusses
circults of quorum elements for the case when input signals are in
the form of displacements and pressures.

In conclusion, we note that a gquorum element is a new basic
element of adaptive automatic control systems that enables one to
solve several independent problems, including:

- realization of the above~mentloned majorizing function,

- construction of adaptive systems of variable structure,

- construction of low-frequency filters with small phase

distortions (quorum filters).

Fundamental Problems and Prospects for the Further
Development of Elements of Automatic Control Systems

The prinecipal trends in the work in progress are:

1. The use of new physical principles enabling one to simplify
elements and to increase their reliability. 1In particular, the use
of optical-electronic and electrochemical converters in the construc-
tion of multipliers and integro-multipliers seems to offer promise.

2. Unit miniaturization of the elements of automatic control
systems.

The miniaturization has two aspects:

a. A reduction of the weight of the on-board equipment in
order to improve tlie performance parameters of flight vehicles;

k. An increuase of the capacity in order to apply the metiod
of functional reduindancy to a greater extent.

The miniaturization of purely electrnnic elements 1s based on
the use of integral monocrystal and hybrid-film microelectronic
circuits,
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The miniaturization of the electromechanical elements is in some
cases based on th: use of new technological processes without changing
the construction of the element itself. In other cases, one has to
develop new designs of the elements, and sometimes even switch to new
physical principles.

3. Transition from analog control systems to discrete ones with
the maximum use of universal or speclalized computers.

As digital computers become more sophisticated, and as thelr
speed and reliabllity increase while the size becomes smaller, 1t
seems that analog systems will be replaced by discrete ones. With
a transition to digital computess, the nomenclature of the converting
elements used in automatic control systems will be greatly reduced,
tut in all cases we shall have to retain the data sensors and the
I/0 units.
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CERTAIN PROBLEMS OF THE ADAPTIVE BANK
CONTROL OF A FLIGHT VEHICLE

Ageyev, Zh. C.; Viktorov, B. V. and Ukolov, I. S.

The bank control of the effective aerodynamic quality of a flight
vehicle as we know presupposes & flight with a constant value of the
equilibrium angle of attack which is achieved by proper centering.

The control of the effective aerodynamic lift-to-drag ratio 1s
achieved by turning the vehicle about the air velocity vector by a
glven bank angle. In an emergency situation it is advisable to change
the bank angle of the vehicle with an angular velocity on the order

of 15 1/sec.

However, & number of studies (for example, [1]), have shown that
it 1s advisable to control flights by simultaneously changing the
angle of attack and the bank angle. In such a system, a change in
the angle of attack substantially modifies the effectiveness of the
bank regulator. In addition, there are several well-known dynamic
problems of controlled lateral motion, for example, due to the fact
that the air velocity vector and the vector of the controlling mnment
of bank nozzles do not coincide. These circumstances may necessitate
the introduction of additicnal (including also adaptive) structural
couplings in the control system.

This article is devoted to certain aspects of this problenm,
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Figure 1.

Figure 1 is a dlagram of an aircraft. The aerodynamics of flow
over an axisymmetric body includes the peculiarity that in any motion
of the aircraft relative to its center of mass, due to the symmetry
of the field of aerodynamic forces, an instantaneous plane of aero-
dynamic symmetry appears. This plane includes the linear velocity
vector V, the geometric axis of symmetry, and the total aerodynamic
force vector R. It should be noted that the control cf the attitude
of the aerodynamic symmetry plane is the basic objective of controlling
the aerodynamic 1ift-drag ratio of aircraft, by varying the bank angle.

The flight trajectory in the atmosphere of vehicles of this type
is characterized by very small angular velocities of the linear
velocity vector V. Therefore, in the study of the angular motion of
the vehicle it is convenient to use the semi-velocity system XYZ as
the reference system for measurement.

Let us determine the attitude of a vehicle (or in other words, the
attitude of the attached syste:; X,Y:2,) relative to the following semi-
velocity system of the Euler snfles «, a and ¢ (Figure 2). For this
combination of angles, we cleaiiv have the following kinematic
relations

(1)

: 1
x ==y, $i 1 —wy, COS G);

ey, —Clg @ (0, $I0 g wy, COS ¢); (2)
&-:w,, cbs p4-w,, sine,

(3)
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In writing the dynamic equations of angular motion, we make the
following assumptions:

- the inertia ellipsoid of the vehicle 1s sufficlently close
to a sphere, i.e,, it is permissible to consider the centrifugal
moments of inertia and the differences of the axial moments of lnertia
to be of first order of smallness in the axlal ones;

- the characteristics of the servo engines do not have any
delay and are linear; their firing does not disturb the dynamics of
flow over the vehicle;

- the direction of the linear alr velocity vector and the
magnitude of the ram pressure do not change in the process of a
command turn;

- the vehlcle is symmetric in weight and aerodynamics;
- the hypothesls of stationarity 1s valid;

- specific damping of the vehlcle is negligibly small.
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In accordance with these assumptions and the location of the
servo units (see Figure 2) the approximate dynamic equations for the
vehicle become

I, =—C,(a) Yr-qSesing + My, + M, (4)

I”‘I»y‘ = Cy(2)[Cyl?) — X1]qSesiny + Mynp, (5)
!y, = [Ca(0) [C, (0) <R3] cos 9 —C, () P} gSe + A, (6)

where
I, , I .2 Izl are the morents of inertia of the fuselage in the
X1Y12,8ysten;
C. (a) 1s a coefficient of the normal component of the
aerodynamlc force;
' C. (a) is a coefficient of the tangential component of
‘ the aerodyramic force;
p are the dimensionless coordinates of the center
of mass;
a is the dimensionless coordinate of the center of
pressure;
¢ is the ram pressure;
1 is the length of the vehicle;
S 18 the area of the midsection;
M_ are the components of the control moments in the
X1Y,2, system axis.

(¢]

Equations (1 - 6) describe the total angular motion of the
vehicle. An analysis of this system of equations shows that a
statically stable attitude of the vehicle 1s characterized by o =
—Qpag and ¢ = 0 for any x. Tkis means that the bank motion of the
vehicle for a = ~Cpaq and ¢ = 0 is similar to the rotation of a rigid
body in a vacuum

¥ Sy (7

sinagl,,
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From the condition of ideal turn (performing obvious transfor-
mations of (* - 6) for a = ~0p a1 and ¢ = 0) we can determine the
magnitude of the angle of placemeut of Jjet engines needed {or bank

control

7
ig Cyer= 'f_’:l,i' tgas.

(8
The structure of the bank control unit in the simplest case should
contaln the self-équalizing and angular bank velocity signals, i.e.,
Mynp = £y (1 — %) — k.";- (9)
However, & realization of the signal x 1s difficult in practice.
Instead of x one normally uses a signal from the PS oriented properly
relative to the fuselage. In thls case, the instrument signal 1s

Wypus = (éCOS aycr + ; cos (1)," — af,). ( 10 )

The dynamic propertles of the channels o and ¢ in accordance with
the ideas of bank turn require the introduction of active damping

M, = —ko, (11)
and
M= — ks (12)
It should be noted that for ¢ = 0 from (3) it follows that
O, = &, (13)

The information about the rate of change of the angle ¢ may to a
first approximation be obtalned by differentiating the ratio of
lateral loads

n
o=z~ (14)
U
or the ratio of the angular readings of a pendulum suspended at the

center of gravity at the axls of rotation, the collinear geometric
axils of symmetry of the vehicle.

It should be noted that the effectiveness of damping in the ¢
channel (the location of the servo units is shown in Figure 2) does

not depend on the value of the angle of attack.

A study of the controlled angular motion of aircraft [system cof

equations (1 - 6)] shows that the latter can be decomposed into "longi-

tudinal," described by Equations (3) and (6), and "lateral," described
by Equations (1 - 2) and (4 - 5).
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Let us consider the lateral motion of aircraft. For this purpose,
let us represent the motion in the form of a system of differential
equations solved for the higher derivatives % and §,*

;as A? + B (k| ("k - .‘) - k‘) l?. Cos aycr + icos (1’," - uﬁ)i}' (15 )
o= — 0 +C{k1 (Xg"")'"k;[?t:osayct.'- (16)
+ %05 (8, = ag)]) — 7o
s

where

A= S [Ca@)—Xnigse
{ ”‘-sin tg '

sina
B
0
Ce= CosGycy _ Sintyep-cigds ,
&1 l”l !
o s O (@) Y1qSe + Ca (@) cigas ((IJ,, (@) —X1) ¢Se )
1 [

When condition (8) is satisfied, the ¢ mction does not depend on the
bank motion since

Cw= (cos Qyer __ ctgao'lsmaycr ) -0,

L h

Therefore when Opal is constant, it 1s necessary in practice to
make sure that the vector ﬁé follows V, so that Equation (8) can
be satisfied. Then, as we know, the effectiveness of the bank

regulator remains constant.

Otherwise the motion of the channels becomes coupled in both
directions. The character of the motion becomes very complicated,
and the easlly visualized physical considerations used in the construc-
tion of the structure of regulators and a selection of their parameters
become invalid.

In addition, the peculiarities of the partial motions of the
system, including the well-known effect of the bank regulator on the
dynamics of the ¢ channel for Mx = 0, can be clearly explained by the

#System (1 - 6) is solved for ¥ and § und~r the assumption that
@ = -y g O 0, ¢ is small (i.e., 8in ¢ = ¢ and cosé¢ = 1), and

Mx’ Mz, Mc are determined from (9), (11), and (12).
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the-ry of differential equations with small parameters which multiply
the derivatives [#4]. We shall limit ourselves to the explanation of
this effect, setting for simplicity ¢=z.

Considering the relatively high frequency of the elgen motion with
respect to ¢, it is permissible to assume that w is "large." Therefore,
9=% is below always considered a small parameter. Let us represent
Equation (1€) in the form of the system: ¢ = z,

pz= ":T P+ 8C {—yx—hy [A €OS (45 —01g) 42 COS ayer]), (17)
where ;A .
System (17) contains a small parameter u which multiplles the
derivative of z. In addition, the system also contains a small para-
meter on the right-hand side of the second equation, where 1t enters
in an irregular fashion: at p = 0 the right-hand side is ‘discontinuous.
Following the procedure used in [3],the substitution of the variables

_«&?=u 1s performed, and then System (17) becomes pl=2,

p2 ===l pC {—kyt— g [A COS (@yer—5)+2 COS a4, ] (18)
In turn it is advisable to write Equation (15) in normal form. Thus
X = & . . '
A= Apu+B (—Fyn—Fk, [A €OS (2yer—06) + 2 €08 251]} (19)
Let us consider the dynamics of the coupled system (18 - 19), con-
sisting of two "fast" (18) and two "slow) (19) equations. In this
we shall confine our attention to just the "fast" partial motion,
generated by System (18), considering the fact that it 1s coupled

with (19).

Let us introduce a new independent variable ("fgst" time) t = t/u
]
and make the substitution in (18) and (19). We get 7=%

S’zi':" ""u'i'P'C (""kl*"'k'l lA cos (a)‘t‘t—a(m.‘l)'*'z'cos 3)\1]) (18 ' )

dx__
and &T‘-- PA|

(29")
z—? — A+ By (—ky2— kg [A €08 (3yes—250) F2CUS 2, ]}
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The report [3] gives and justifies a procedure for an approximate
analysis of the "fast" phase of the solution of systems such as (18' -
19'). With certain improvements the "slow" system (19'’) is replaced
by another one which can be obtained from (19') by performing the
following iterations:

1. "Slow" variables x and A on the right-hand side of (19')
are set equal to their initial values (here — zeroes), i.e., (19')
is replaced by ggiao,

9 e Apu—Bpky €O 8yy-2. (20)

Therefore, taking into account the null 1q}tial conditions and
the first equation in (18’), u»(x)=0 and A,(z)-nA;s?t!'u(&)da—Bpk,cosaw,-u () .

i 2. "Slow" variables z and A on the right-hand side of (19')
are set equal to () and A,(x) , i.e., System (19') is replaced by
N .
2—-—:’=Ap"§u(€) dt—Byhy 08 aycr 4 (3),
A :
T Avtu—Bp by {008 (2, —25)- [Ap? { u(t)dt—

—Bipky €08 aycr (1))} —Bp+ COS By -2 «

(21)

In essence we use here Picard's method of successive approximations,
but only in application to the "slow" system.

Let us stop after, for example, the second iteration and neglect
the integral components in (21), since they are proportional to ud.
Then, System (19') is replaced by

‘;—:- ~Bly COS ay - poltn
dA .
Tz = Attt B} €0 (ayer—as,,) COS @y i — (22)

~Bhky oS aypop 2
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The system of equations composed of (18') and (22) is structurally
equivalent to the scheme shown in Figure 3: 1t describes the dynamics
of an oscillating circult enclosed by a series of feedback couplings.

With null initial conditions, the integral feedbacks reduce to
a single feedback with a resultant amplification coefficient. It is
important to note that the amplification coefflclents for all feedback
couplings are small. In this case the effect of each feedback
coupling on the dynamics of the oscillating loop can be taken into
account independently of one another (this follows from the theory
of small parameters).

The effect of the feedback couplings I and II (Figure 3) is
obvious: depending on the sign of C they respectively damp the
oscillating link and increase its frequency (or conversely). Let us
consider the effect ¢f the resultant integral feedback coupling.

The characteristic polynomial (upon disconnecting the loops I and II)
in terms of the time 1 becomes

(P+1) p+CF, (23)
where Cf is the resultant amplification coefficient of the integral
couplings (small quantity).

For £ = 0 one .of the oscillating roo?s of the polynomial (23) p
p1 = é. For f ¥ 0 the same root is p; = s + Ap,. Below, f and Ap;
are assumed to be small. Substitution of the new value of p; 1nto
(23) and a retention of the terms of the first order of smallness
yield Ap, = £C/2. Thus, the oscillating root of the system moves to
the left or to the right depending on the sign of C, but its imaglnary
part remeins the same *)., Therefore, from the point of view of the
oscillatory paréial motion, the integrating feedback coupling with
the amplification coefficient "Cf" is equivalent co a differentiating
feedback coupling with the amplification coefficient "-Cf."

#
) With the aid of the Rouche theorem [5], one can prove the
admissibility of the calculations as the first approximation 1in 1.
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The resulting effect (damping or anti-damping) of the circuit is
determined by the mutual relationship of the "weight" coefficients of
the feedbacks II or III.

In particular, for the apparatus shown in Figure 2, the resulting
effect for “pl > Gyai will be, as we know, in the form of damping (and

conversely).
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Figure 3.

It is clearly advisable (in order to retain the working capacity
of the system in case of a malfunction of the damper in the "¢" channel)
to make sure that in a steady-state motion “pl"“bal i1s positive and
equal to several degrees (up to 10°). The latter should be taken into
account in the design of the tracking system used to place ﬁﬁl in the
same direction as V for the adaptive channel of a system for controlling
the lateral motion.

REFERENCES

I.Pritchard E. and Holloway P. Application of the Pitch Alodufation Ma-
neuver in the Region of the «Limitings Entry Velocuy. «AIAA Pupers, 1965,
M 65—=317. 10 p,

2, fgc:;)unucvxnﬂ ennapat @ arsocpepe 3enan. Aspannn o1 kocuomavrira N 7,

3. Buxropos B. B, Ocoeiutocty 108eACHNS ClICTeM YRPABACHIN C PC3KO Of-
.'l:ggl;unn TCMAAMH COCTABIRIOMWINX AOHKCHNA, TexnHueckan xnGepneritka Ne 5,
r.

4. Taxonon A H, Bacuasess A B, Bunocos B. U Anddepenus-
AJbNEIC YDARNCIHA, COROPMaHe Maauf Napanerp, (Cuunnsityy 110 iteamncit-
nust koacannan). Wexanue [ucriryra sarenavkn All YCCP Kuew, 190) ¢

o Mpusasvn Ho M Bucgowne o 1copmo ¢yuxing KOMRANCEOrY acpeven
noro, M--/T1, 1945 r.

38




gy

CONTROL OF THE FLIGHT OF SPACECRAFT DURING ATMOSPHERIC
RE-ENTRY BY MEANS OF ON-BOARD COMPUTERS

Ukolov, I. S.; Mitroshin, E. I.; Krayzman, V. Ye.; i
and Oleynichenko, L. G. ‘

Formulation of the Problem

During atmospheric re-entry at parabolic velocity and a flight
range on the order of 7,000 - 10,000 km, the flight of a re-entering
vehicle must be organized in such a way that its trajectory outside
the atmosphere [1] is as shown in Figure 1. The altitude of 100 km P
is taken as the upper boundary of the atmosphere. P

The most important segment, from
the point of view of maximum accele-
rations and its effect on the
longitudinal range, 1s that of the

0 W0 w00 800

Loew first immersion. Therefore, below
Figure 1. the control system operation will be

considered only within that segment,
and the accuracy of the system will be determined with respect to the
total range of the first immersion and the elliptical path outside
the atmosphere.
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The system of the equations of motion for a re-entry vehicle in
the longitudinal plane, written in the velocity coordinate system,
has the following form

%- - ux-g-:gslno
2 o (= )eos0 1o e

.‘%’.;.: Vt;ino
dL (1)
T =Y cosd
= poa=Bl - R ). Ny == ! V‘cxs
P=rt™"" & Ebﬁgpy » Bxs= g pVior

The basic task of the control system considered in the present paper
consists of bringing the re-entry vehicle to the point with a given
value of the longitudinal range L;,, irrespective of the large scatter
of the initial conditions and the existing disturbances. The motion

is controlled by changing the effective aerodynamic lift-to-drag ratio

of the vehicle

c
Kyp= c:‘ cos g (2)

where vy is the bank angle.

One of the possible methods of determining the free fall portion
of the trajectory consists of successive refinement of the lift-to-
drag ratio of the vehicle by predicting the longitudinal flight range
using an on-board computer to solve System (1). Thus, for example,
if we take the simplest flight program in which the lift-to-drag ratio
is constant on the entire trajectory, then the iteration process used
to calculate the required lift-to-drag ratio of the vehicle in the
(1 + 1)th step is done using the following relation

Ksp.1y1m= Kypoi - ——’i:—__:: : : (3)

Koo 1= Kyp 1oa

Another method for computing the program of lift-to-drag ratio
variation is proposed in [1].
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When the motion is predicted by integrating System (1), it is
necessary to somehow determine the actual value of the atmospheric
density p(H) and the correction

P

actual a
€ (4) = EiouThat " 5. (4)

In addition, due to the strong dependence of the exit (from the
atmosphere) parameters on the variation of the density Py (H, L), it
is necessary to extrapolate £(t) and somehow predict its behavior over
the entire remaining portion o, the first immersion.

The limited possibilitlies of modern on-board computers require
a very thorough study of the methods of solving the boundary problem,
and a thorough analysls of the equations used to predict the flight
with a view toward their simplification.

In order to lessen the demands on the storage capacity and speed
of the on-board computer, it 1s advisable to construct a control
system that combines the principles of flight prediction with the feed-
back principle. In this case during the time interval needed by the
computer to calculate a new programmed motion, the object 1s controlled
not by an open system, but instead by a feedback principle with the
advantage that the motion becomes stabilized even in the presence of
various perturbatibns. This enables us to eliminate the unpleasant
situation when the parameters of motion at the end of the interval
needed to culiculate the control command differ significantly from the
calculater values due to perturbations and using an open system. This
results in an instability of the control process and in a sharp change
of the controlling action in the consecutive control intervals.

Selection of Equations Describing the
Process of Spacecraft Re-entry

In order to select the mathematical model which will then be used
by the on-board computer to predict the re-entry process, it is
desirable to simplify the equations describing the dynamics of space-
craft descent, or if possible, to use approximate analytic solutions

41

RN AR s




m e et A —y

of the eguations of motion. The wide range of variation of the initial
conditions and the required range, the large values of the perturbations,
and the strong dependence of the elliptical range on the parameters of
motion at the point of departure from the atmosphere complicate the
application of approximate analytic solutions.

Let us replace the system of differential equations (1) with a
simpler system (5), using the flight velocity V as the independent -
variable, replacing the equations for the variation of altitude with \
the equation for the variation of the acceleration, and assumiig ;
€ = &,, * const [2].

| . “[ik{ﬂ)‘i‘t"]““’"%‘w

(axFonG)
dllx ﬁnszan 28x
W= gty TV (5)

. __ R V cos0
W= R Tix FG

[

The transition from System (1) to System (5) has been made using the

i
§
following relation %
1 CxS 1 CxS
Bx =g o~V Ve
%-2¥g(nx+sin0)-—nxwaln0, (6) %

Let us consider the effect of various variations of the density 3
p=p,* £ on Systems (1) and (5).

For £ = 1 we obtain the standard type of variation of the actual
density o, = ¢,. Both Systems (1) and (5) are equivalent in this case.
For £ = 0.5 = const or § = 1.5 = const Equations (6) imply that per-
turbations of this type in no way affect the accuracy of System (5).

In general for any § = const it is only necessary to state correctly
the initial conditions for System (5), since when the initial condi-
tions on n, are given exactly, & is automatically taken into account.
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For perturbations of the type § = e , using Equation (6) we

obtain
d.f.’_‘.==2.'2‘. “nx (BxR)Vsing
VTV T gy Hsing) (7)

For k = + 0.5 » 10°% [%J the relative variatlon of the density at the

altitude H = 100 km is

£ e208 s {é..gs; and for k=1 {=ctlm {5‘:

i.e, the density changes more than by a factor of two in either
direction from the nominal value. When the basic system (1) is used
with such perturbations, the right-hand sides of System (1) change

by factors 1.5 - 2.7, respectively. When System (5) is used with
analogous perturbations, only one of the terms in the second equation

changas by %-%ﬂz 3.5—7%.

When the density perturbation changes according to the law
assumed in [1]

tes [1 - ebHt [A + Dsin (%EH + -?u)]}e (8)

the coincidence of the solutions of Systems (1) and (5) without the
use of information about the character of the perturbations is some-
what disturbed. Figure 2 shows the plot of one of the coordinates
(altitude) corresponding to the exact
solution of System (1), assuming that
we know the character of the density
periurbation (solid lines), and the
corresponding solution of System (5)
with an additional third equation

im/sec,
from System (1) (dotted lines), Figure 2.

obtained without using any informatior about the character of
perturbations. In Equation (8) we set ¢ = :1; o = :%.

Thus the use of System (5) instead of System (1) permits us in
certain cases to avold direct measurement of the flight altitude and
the atmospheric density, and use only the information about the

acceleration, which considerably simplifies the necessary calculations.
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It should be noted that recently other simplified forms were proposed
for the description of the center of mass of the spacecraft [L].

The Solution of the Boundary Value Problem

The problem of bringing a spacecraft to a given point 1is a
boundary value problem whose solution involves great computational
difficulties. In addition, in a number of cases various additional
requirements are imposed on the selected control functions which
complicates the solution of such problems even more.

As we know, when solving optimigzation problems in accordance with
the classical methods of variational calculus or the method based on
the Pontryagin maximum principle, it becomes necessary to solve a
system of differential equations whose order is twice that of the
system describing the physical process, and includes two boundary
conditions.

When solving such problems numerically, one needs to supplement
the incomplete boundary conditions at the initial point, then to
numerically integrate the differential equations up to the final
point, to see to what extent the boundary conditions at the final
point thus obtained correspond to the given conditions, and finally
to improve the inaccurate initial conditions. This process must be
repeated until all final conditions are satisfied.

These methods are of little use if one wants to obtain numerical
solutions in real time using an on-dboard computer.

Since the problem must be solved within a short period of time,
it is desirable to use the most rapidly converging procedures. For
this purpose, we use a method which is analogous to the procedure
of the A-matrix control [5, 6]. This permits us to improve the con-
vergence of the iterative process and thus reduce the number of
iterations, since when integrating the system in the forward direction
one uses the information about the current deviations of the phase
coordinates of the actual motion of the object from the intermediate

reference trajectory.
44
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If System (5) is written in a general form
G =LKWV, (9)

where x 1s the state vector of the system, then the equations of
motion in variations with respect to the reference trajectory have the
form

dAx
=B{V)Ax + ¢ (V)-AK.
v =B (V)Ax +e(V)-AK (10)
Adding the conjugate system of equations to System (10)
‘%a —~B' (V) (11)

one can obtain the fundamental Bliss formula [3, 4], and take into
account the change in the final point

Ve
(0 ARy = 5 (e} aK)av + Q' ax)y (12)
A

(the prime symbnlizes the operation of transposition). We impose on
the scalar product (»'-Ax) the condition

(N AX)ypeay = ALy (13)
Taking this condition into account, the initial conditions for System
(11) are determined in the following way

0Ly dLy (dx*\~1 ox*
M= [~ (F) 5 ()
where x* is che phase coordinate defining the endpoint of the control
interval, %%’ and %§ are partial derivatives with respect to the

corresponding coordinates, %ﬁ? and 5% are total derivatives determined

by the corresponding equations of System (5).

In connection with the fact that the 1lift-to-drag ratio at our
disposal 1s small, it appears advisable to choose the control functions
such that the required change in the range AL;; will be achieved by
ninimizing the change in the control program (in the mean-square sense).

Thus we arrive at a variational problem involving a conditional
extremum. We are required to determine the law of variation of the

control action (AK) such that the following expression will be minimized
Va
}mKﬁdV (15)
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subject to the constraints (12) and (13). This type of problem involv-
ing a conditional extremum subject to constraints in an integral form
is called isoperimetric.

An isoperimetric problem can be reduced to the Lagrange problem,
i.e., to the minimization of V'(AK),W
) 5)

subject to the condition ¢, (ALy), =(\-¢)AK . In order to minimize the

expression in (15), we construct the intermediate function

H = (AKY 4 p (Nf§y — (' -¢) 3K] (16)
and solve the corresponding Euler equation
H d dH .
dBRY T av 3 (aky) =0 Qn

H_d o _ _ o
WV o(w)
From Equations (17), we obtain
2(8K) = p (V)N :c)m 0 (18)
0~a‘é-|&(V)-°
The second equation in (18) implies that u does not depend on V, i.e.,
u = const, and from the first we obtain
K e p (N 0) e gy () (19)
where u, is a constant to be determined.

Using (19), (12), and (13), we obtain

Va (20)
dLm “w § Pl ()\' . c)’dV + 0' . AX)V.
whence *
. dLyy—(N -Bx)
- —r—"'—""; Y
Jovarav (21)

The obtained expression (19) for the variation of the control (&K)

has a definite physical meaning. The variation of the functional (20),
when (AK) is selected in accordance with relation (19), always has the
same sign as the sign of the variation of control AK.

Equation (19) gives the direction of the gradient, i.e., the
direction of the maximum effect of (AK) on AL,s.
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VWie introduce a function X(V) by means of the equation

~

=0y (22)

for which the boundary condition is AV = 0.
k

Using (19), (21), and (22), we finally obtain
AK (V)= — My (V) [ALys + (V-Ax)y ] (23)
where
av) =22
Equation (23) determines the control law for a closed system, which
takes into account the effect of the input AL,; and the deviations of
the actual motion from the reference trajectory.

The difference between this method of solving the boundary-value
problem and the methods discussed in [1], is that in solving the
boundary-value problem we use the information about the deviation of
the actual motion from the nominal motion, and in forming the control
AK we only use a single integration of the fundamental nonlinear
system (5). Instead of a second integration of the nonlinear system
describing the dynamies of a descending vehicle, we integrate the
associated linear system (11) and Equation (22) in order to determine
new control coefficients.

A block dlagram of the control system realizing this control
algorithm is shown in Figure 3.

Kap

Figure 3: 1 - object; 2 - data sensors;
3 - information conversion block; 4 -
prediction block; 5 - automatic pilot,
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The information about the parameters of motion, obtained by means
of the data sensors, is fed through the data conversion block to the
parameters of motion prediction block of the spacecraft and to the
automatic pilot wihich determine the command value of the effective
aerodynamic lift-to--drag ratio.

Conclusion

The system discussed here which inyolves an on-board computer
connected into the control loop can be applied to various objects
subject to large perturbing forces and a large area of scatter of the
initial conditions, where the presently known systems using a fixed
nominal trajectory do not meet our rcquifements, In addition, such
control systems may be uged in such important cases as when, during
the operation of the system, it 1s necessary to change the trajectory
of motion in a direction unknown beforehand — for example, when
guiding a spacecraft toward a moving point. Similar control systems
can also be applied in spacecraft returning from other planets. A
characteristic feature of interplanetary flights is the fact that
spacecraft re-enter the atmosphere at a very large speed which is
much larger than the parabolic speed. This places high requirements
on the accuracy of the necessary spacecraft maneuvers in the atmosphere.

At superparabolic speeds, the operation of the control system
subject to large density perturbations is greatly improved if the
control system includeg au on-board digital computer that can calculate
in real time the maneuver required when perturbations are present.
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PARAMETRICALLY INVARIANT AUTOMATIC CONTROL SYSTEMS
WITH A LINEAR PHYSICALLY REALIZABLE REGULATOR

Sokolov, N. I.; Makovlev, V. I.;
and Lipatov, A. V.

When synthesizing adaptive control systems, we are usually faced
with the problem of maintaining a system's performance indicators
constant or changing them in a desired direction with a change in the
parameters of the object. !

There are papers avallable in which the solution of the problem
is attempted by using systems of variable structure, self-adjusting
systems of various types, and systems with an infinitely large ampli-
fication coefficient (for example, 1, 2, 3,).

In this paper we show that 1t is possible to construct linear ;
physically realizable regulators with a rigid structure and constant
parameters in order to control objects whose parameters change within
a wide range. It is shown that such regulators are capable of keeping
the performance indicators of a dynamic system constant within any
finite range of the parameters of the controlled object.

It 1s assumed that the object is controlled by means of some

linear actuator. Suppose that the object 1s described by a differential
equation of mth order
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m=-1

™+ Fat) £ = ay()Koolt) 74 (1)

jm=0

and that the actuator is described by a differential equation of the
(n - m)th order

n~m=~1

¢ ™ 4 :?o by = by, 2) " ]
where x 1s the controlled coordinate;
¢ 1s the actuator output;
u is the control;
ai(t) are the variable parameters of the object, varying within
finite limits;
Kob(t) is the variable transfer coefficlent of the object

0 < Koy < Koo () € Koo

b, are constant parameters of the actuator.

The problem is to control the object in such a way that the
performance indicators of the system will remain constant while the
parameters of the object are changing.

The control must be effected using the input coordinate of the
system and the sighals generated by physically realizable correctors
that transform the output coordinate of the system and a number of
measurable intermediate coordinates of the system.

In the case of complete observability, i.e., when 1t 1is possible
to use n - 1 derivatives of the output coordinate of the system, one
can obtain the required dynamic properties within any range of the
object parameters [1, 3, 4].

Under the actual conditions, it 1s not possible to obtain and
use "pure" derivatives, particularly those of high order. Therefore,
it is of interest to consider the possibllities inherent in linear
systems with physically realizable correctors. Physlcally realizable
correctors will be defined as correctors for which the order of the
numerator of the transfer function does not exceed the order of the

denominator.
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Figure 1.

Figure 1 is a diagram of the control system for which the
controlled object and the actuator are described by Equations (1) and
(2), and the physically realizable correctors Co, Ci1, C2, Cs are
described by the differential equations

rel

Y+ D ey = ch; (3)
fme]
re=l r=t
W+ Doy = 2 puh; (4)
] im0
el r
WO+ Doy = Fe (5)
j=0 o
r=1 4
W+ eyl = B dx, (6)
10 i=0

The corrector Co, described by Equation (3), is introduced to
eliminate the derivatives on the right-hand side of the differential
equation for the closed system [5]. The motion of the closed system
is then described by the equation

Fot(p) x = cKK sy, (7
(p) is a differential operator of the form
npre=\
Fusi(p) = p*+ 4 E Apl=

n+£‘-l wminl/, a) min(l, m) 8
-ptrt XY 2 Bibi=ileymy + Kity=r) 0/ + (8)
Juol oninax(0, Jer] lesmax{0, l=n i)
mEr mln_[l. )

+ 2 2 Kbapy o+ KK sabdip! + KK oetibots
Job tmmas(0, jor] I=0 '

where F'n+r
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Depending on the degree J of the operator p, the form in which
the selected parameters ¢+ Kp, M d; enter into the coefficients A.j
of the characteristic polynomial (8) changes. Three forms of the
coefficients AJ of the characteristic polynomial are pnssible

aym+r+l<j<ntr
min(f, #) min (4. m})
A
/ l-nux‘ﬁ!‘. J=1) immax {0, {—~nt-m)

b)r+ligj<m4tr

8,014 (¢p=1 + Kisy-1) (9) .

min [/, #} min {{, m} ’ K
A= ab-i(c)-y + Kpj-)) +
! 104 [~} isetaax {0, §~n--m]
Sy (10)
Kboah -,

{mmax (U, J-r} °

Ve rm——n e oot o

e)0<j<r
min [1‘ n} min “1' m) 5 X .
- 8014 (¢)-y + Kiny-
! """%3- J=r] tmmax (6 tnbm) | ¢ 1641 Bs=1

i min [/, m)
' 3 ’]Kboallj-t + KKostbod . (11)

e an e mnene

{mmax |0, J—

Let us find the relationship between the smallest necessary order
of the correctors and the orders of the equations describing the
object and the actuator. In order to uniquely construct the coeffici-
ents AJ of the characteristic polynomial (8), it is necessary that
each coefficient of the characteristic polynomial, starting with the
coefficlent An+r-;’ contain successively a new para..2ter out of the
set of the selected parameters s Al, dz' The number of the arbi-
trerily selected parameters ¢y is equal to r. The number of the
arbitrarily selected parameters Az is equal to (r+l), and the number
of the parameters dz is equal to (r+l). Since the parameter AZ enters
the coefficient A first, the value of r must be chosen such that

o

Py s e

m+y
the parameters cz will form the coefficients of the characteristic
polynomial from A .. ‘%o Apars, inclusive, i.e., .
or re@4r=1)—(m+r+1)+1 (12)

neen—m—1,
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Since the parameter dl enters the coefficient Ar first, the r
parameters 12} together with the (r+l) parameters Az must form the
coefficients of the characteristic polynomial from An+r-; to A
inclusive, i.e,,

r+)

rt(rt)=(ntr——(+)+1
or

n—2 (13)

fgﬂ 2 .

We obtain two possible values of r: r, and r. The larger 1s
taken as the required value of r. If the number is a fraction, which
occurs when n is odd, then the value of r is rounded off to the
nearest higher integer

n-;2 ]. (14)

rnmax[n—m—l.
We shall give an example of how to select the order of the
correctors. Suppose that the order of the equation of the object 1is
m = 2, and that the actuator has the order n - m = 3, (n = 5),

Then from (12)
I’1=3——l-=2,

and from (13)

re=22% =15

2
and re=max|r, r=2.

If the order r of the corrector is selected properly, then it
becomes possible to obtain any desired performance for any possible
mode of operation of the system described by Equation (7). However,
due to the variation of the parameters of the object — in particular
the component Kobao in the case of other operating modes — it is
possible for the dynamic properties of the system to deteriorate all
the way to a loss of stability.

In order to obtain a system which 1s operational in the entire
range of the admissible operating conditions, we suggest the following
approach to the formulation of the variable characteristic polynomial
(8). Each of the coefficients AJ of this polynomial contains both
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constant terms (due to the fact that a, = 1), and varisble terms.

By properly selecting the value of K, we can achieve a situation in
which the constant terms will be larger by an order of magnitude than
the sum of the variable terms in each coefficient AJ for J > r. Since
the terms containing the component Kobao usually vary the most, 1t is
advisable to write the characteristic polynomial (8) in an approximate
form reflecting the variabllity of this component.

Fm!-r (P) hind P"*' + An-h-lp”'H-‘ o ‘*’A,«HP'"" +

+A+ANP +. .+ (A + Ap) (15)
where YR E
ob**’/min
and changes from 1 to (Koba°)ma7

Y =
max tKoba°’min

Ai, A; are constants.

From the structure of the characteristic polynomial (15), we
can see that a change in y may result in a displacement of its roots
to the right half-plane of the root plane even assuming that the
system has a sufficlent stability margin for any y. The effect of
Y on the roots of the characteristic polynomial can be controlled to
suit our purposes by writing the polynomial (15) in the form of a
product of two polynomials: one of order n - 1 and the other of
order r + 1l:

Fn-}-r(p)"F‘n-l(l’)f:rﬂ(m""(I’"-l +Bn.zp"-!+ s +Bo)x (16)
X@PH+Cop 4+ +Cy)

If the natural frequency of the polynomial Fn-;(p) is greater
than the natural frequency of the polynomial Fr+1(p) by approximately
one order, i.e., e b

VB, » VG a7
then the polynomials Fn_l(p) and Fr+;(p) may be approximately
expressed in terms of the coefficients of the polynomial (15) in

the following way [6]:
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FaalB)= P 4 Angpap™ + oo o + Apgap + Ay (18)
Freilp)~ ﬁ:T, AP+ (A + AD P+ -0 + (A + 1AL (19)

If the condition (17) is satisfied for all y (and this can always be
achieved by properly choosing ¢y + Kui’ Ai, d1 for any finite range
of the object parameters and any finite speed), then the performance
indicators of the system are completely determined by the polynomial
(19), and a; can be selected such that the inequality A; « Al is
satisfied, and then the polynomial (19) becomes

Fﬁx(ﬂ)z];l:“mrhp"“ +AP + o+ A (20)

One can always achleve a situation in which for vy = 1 one of
the roots of the polynomial (20) is so far from the imaginary axis
that it will have little influence on the dynamic propertles of the
system. According to [6], the value of this root a 1s approximately
azn—é%%, and as y increases the root will affect the dynamic¢ proper-
ties of the system even less. However, the remaining roots of the
polynomial (20), determining the performance indicators of the system,

can be obtained from the polynomial Fr(p) with constant coefficients

Frp)m g A0 + A oo + 4] (21)

14 2]

If the absolute value of the increasing root o of the polynomial
(20) approaches the average absolute value of the roots of the poly-
nomial Fn-;(p)’ then the group of roots with the largest modulus will
be determined by a polynomial of degree n with a free term dependent
on y. As y 1ucreases, the system may become unstable (for n > 2) as
a result of an increase of the free term in the polynomial.

Thus, on one hand, the variable root o must be greater than the
roots of the polynomial Fr(p) which mainly determines the performance
indicators of the system, and on the other hand, it must not approach
the roots of the polynomial Fn_l(P). i.e., thus for all y we must
have the inequalities

ey .
V &<« Vi (22)
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The inequalities in (22) are a sufficient condition (but not
necessary!) for the stability and constancy of the performance
indicators of the system for any finite range of the parameters of
the controlled object.

-

In practice, a similar result can be obtalned with less
restricting inequalities. It is not necessary to require that for
any y the right-hand inequality in (22) be satisfled. We may assume
that for large values of y the root a reach the region of the roots
with the largest modulus, corresponding to the polynomial (18). As
Y increases further a palr of complex conjugate roots appears of the
polynomial of degree n with a free term dependent on y, and the pair
moves toward the imaginary axis of the root plane. The absolute
value of this pair of roots remains quite large, and as a result
these roots have hardly any effect on the performance indicators of
the system, even if they move all the way to the imaginary axis in
vhe root plane. The character of motion of the roots as y changes
is shown in Figures 2 and 3.

Amge

) Frafp) ; . Smin )
0 Qe

H Gl

Figure 2.

The polynomial Fr+l(p) (20) can be constructed in such a way
that — as y increases — not just one but two, three, or more roots
become larger. The condition for the separation of the absolute
values of the roots (17) of the polynomials (Fn_‘(p) and Fr+;(p) then
changes. For example, in the case when two roots of the polynomial
Fr+l(p) increase with an lncrease in y, we write

=V 0 Ay S R T p—
Vi<V Fr <V (23)
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Figure 3.
which is a less restricting condition than Condition (22).

Finally, if the polynomial Fr+;(p) is constructed in such a
way that as y increases sc do all of its (r + 1) roots, then the
performance indlcators of the system do not remain constant, but
instead vary within a certain range.

Thus linear systems w»ith a finlite amplification coefficilent with
physically realizable correctors can 1in principle satisfy the
requirements on the dynamic properties of a system for a finite range
of the parameters of the controlled object. Moreover, the structure
and the parameters of the regulator remain constant.
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APPLICATION OF "APPROXIMATE" STABILITY CRITERIA
TO THE SYNTHESIS OF ADAPTIVE SYSTEMS

Sokolov, N. I. and Lipatov, A. V.

When synthesizing adaptive systems, we usually deal wicth a set
of systems with "frozen" coefficients. Usually it is required that
the entire set of systems as a whole or some of its subsets satisfy
certain performance criteria. In the analysis and synthesis of
systems, one has to know the relationships between the performance
on one hand, and the variable parameters of the object or parameters
of the regulator (constant or variable), on the other. In particular,
1t may become necessary to establish such relations between the
varying parameters of the object and the varied (or constant) para-~
meters of the regulator such that the performance remains constant
or changes according to a certain law.

In this paper, we attempt to supply the means for establishing
this type of relationship for one of the partial performance
criteria of a system — namely, stabllity. The application of
existing stability criteria to establish such relationships is
possible, but in practice this 1is impossible for systems of high
order.

There is a need for approximate but simpler stabllity conditions
which could eliminate this drawback. The epproximate stability
conditions will be defined as either only necessary conditions for
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stability or only sufficient conditions. Geometrically this
corresponds to replacement of the stability region in a k-dimensional
space of "k" parameters that are of interest to us, and for which the
equation of 1its boundary is too complicated, with another region
inscribed into the exact stability region, or described around it,
for which the equation of the boundary has a simpler form.

One of such "approximate" simple stability conditions involves
the necessary condition requiring that all the coefficients of the
characterlistic polynomial of a system be positive. This condition
also specifies a certain region in parameter space, but it differs
too much from the exact stibility region for systems of order higher
than two. This makes it impossible to use this condition by itself.

Let us formulate two theorems about the necessary conditions
of stabllity.

Theorem 1. In order that the polynomial
F@)=az'+az+...+a, ;>0 (1)
have ail roots lying in the left half-plane, it is necessary that the
following inequalities be satisfied
S0 5 1 fex1,2,..., B—2. (2)

@-10143

Theorem 2. In order that the polynomial (1) have all roots
lying in the left half-plane, it is necessary that the following
inequalities be satisfied

%S0 (=23, n—2, (3)

Gi-13142

where

(n-—i-i- (-—l):+:+3)(i+ (—l¥+3) ()

C‘—(n—-i-i-(—”’::‘—l )(H- (-—-1;:-—1 ) .
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The values of Ci for each n and i1 can be calculated and listed
in a table.

Both conditions involve a certain parameter Ai, defined as

. 18141 =
R (%)

In terms of this parameter conditions (2) and (3) can be
rewritten as:

N> i=1,2,....0—2 (6)

and

)“ll+l>cl; i-2'3o IREY) """2. (7)

Each characteristic polynomial of order "n" is characterized oy
n - 2 parameters A. The number of the parameters, Ai, is smaller by
one than the number of the coefficients determining the characteris-
tic polynomial in a normalized form. Nevertheless, it can be shown
that the stability of the system describing this polynomial depends
only on the parameters xi.

Suppose that we have a polynomial of degree n with a given system
of parameters Ai. Since for a complete description of the polynomial
in this case we need two or more parameters, they will be assigned
arbitrary values. Let us write the polynomial in the form

Fo(2)=2° + A"t + Be =* +.’.;:?zn—3+£%_§,.-|+

o AB s B ety . (8)
4 m‘hz + 2"t 4

AR,




Here A and B are arbitrary parameters which define a set of
polynomlials having the same system of parameters Ai. The only con-
ditions on A and B are that they must be greater than zero. We know
that, i1f the initial polynomial has all roots in the left half-plane,
then they remain there upon the substitution z = z'k (by the scaling
theorem), and when all even or odd coefficients are multiplied (or
divided) by the same positive number, the roots also remain in the
left half-plane (by Mikhaylov's stability test). Therefore, without
changing the character of stability of the polynoﬁial in (8), we
make the following transformations. We make the substitution z = z!/vB.
Then we divide the even coefficlents of the polynomial thus obtainec
by (/B)?, and the odd ones by A(V/E)™™!, We obtain the polynomial
(dropping the primes):

F, (z)=='z"+z"-"-i-z"'*?-;-,rf-z"-3 +X%X;z""+ (9)

Pl
T i

e I
A3,

=6 4

Thus, 1t is clear that any polynomial in the set of possible
polynomials having the same system of parameters Ai can be reduced
to a polynomlial whose coefficients depend on Ai alone by means of |
transformations that do not affect its stabllity. Since the stability |
of a system described by this polynomial depends only on the para-
meters Ai, the stabllity of a system describing the original poly-
nomial also depends on the parameters Ai'

The system of parameters Ai completely describes the stability
of the system but hardly characterizes its quality. For example, the
two characteristic polynomials:

Fg (2) = 284524 + 1024+ 102° + 52 +1 (10)
Fi.(2) = 2845024+ 102+ 100224+ 52 + 10

are described by the same system of parameters Ai’ and are factored

as follows:
Fg ()= (z 41
Fr(2) = (2 + 49.84) (2* + 0,047z +- 0,105) (2* -+ 0,112 + 1,89) (11) ‘
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The character of roots from the point of view of oscillations
is different, but from the point of view of stability, these two
polynomials are equivalent. The systems described by these pcly-
nomials will also have the same stabllity margin in any of the para-
meters entering the coefficients of the characteristic polynomial in
identical fashion. We shall assume that any parameter enters the
coefficlents of polynomials in identical fashion if it produces iden-
tical fractions in identical coefficlents. Thus, the free term in
both equations can be increased until instability occurs the same
number of times. This example shows that it 1s incorrect to judge
the stability margln of a system on the baslis of the oscillatory
character of the roots of its characteristie polynomial.

Since the system of parameters Ai determines completely the
stability of a system, it is natural to construct the regions of
stabllity of the system in the (n - 2)-dimensional space of the
parameters. Then the necessary conditions for stebility (2) and
{3) will also yleld a certain region which comprises the exact region
of stability and may serve as an "approximate" reglon of stability.

From the point of view of the regulator synthesis, it would be
more useful to have ,ome simple sufficlent conditions for stabillty
that would guarantee the stability of a system. It turns out that
such conditions may be obtained also by using the parameters Ai.

We can prove the following theorem about the sufficient condi-
tions for the stability of a system having the characteristic
polynomial (1).

Theorem 3. If all roots of all possible polynomials of fifth
degree, formed out of six consecutive coefficlents of the polynomial
(1), 1lile in the left hclf-plane, then all the roots of the polynomial
(1) also lie in the left half-plane.
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Thus, one can obtain a stable system of nth order by achieving
the stability of n - 4 systems of fifth degree, which is much simpler
to do. The stability conditions for a system of fifth degree,
expressed in terms of the parameters A, have the form

y>1

(12)
NS o+ 2hhg 4+ Ahgdg — Adghd = Mk — ADE — 1 > 0

As we can see from Equation (12), these conditions are also quite
complicated which will hinder their use in practice when investigating
the stability of systems of nth degree. But this expression can be
considerably simplified. We can use the "approximate" sufficient
conditions instead of the exact, necessary and sufficient, conditions
for the stability of a system of fifth degree. By investigating the
second inequality in (12) graphically or analytically, one can show
that it is valid if all A, > 2.144 .., (41 =1, 2, 3) or if all

7\'1‘ + X-l— <0.89 ... (1 =1, 2). Using this and Theorem 3, we can

i i
formulate the following two theorems about the sufficient conditions

for the stablility of linear stationary systems.
Theorem 4. If the polynomial in (1) satisfies
NSO ., =1, 2., n—2, (13)
then all 1ts roots lie in the left half-plane.

Theorem 5. If the polynomial in (1) satisfies

1 ! i=1, 2, ..., -3, 14
A‘4.53<:Q89..n i=1,2, n (14)

then all its roots 122 in the left half-plane.
Conditions (13) and (14) determine a certain region in the space

of the parameters Ai’ which is inscribed into the exact stability
region, determined using the exact necessary and sufficient conditions
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for stability. This region may also be used as an approximate region
of stability.

Let us consider several examples showing how “approximate"
conditions for stablility are used.

Example 1. Suppose we are glven the characteristic equation of
a system

28 - 1229 4 472 4 1082° - 1222° + Kyz - Ky = 0 (15)

We are required to find the "approximate" regions of stability
in the space of the parameters K; and Ka.

In this case, we have selected a simple polynomial, so that for
comparison we can obtain the "exact" boundary of stability using the
method of D-decomposition,

The necessary conditions for stabllity of (2) and (3) and the
requirement that the coefficlents of the polynomlal be positive inpose
on the parameters K, and K, the following conditions:

0< K, < 105
Ky <242 (16)

If even one of these conditions 13 not gsatisfied, the system
becomes unstable. On the other hand, if all the conditions are
satisfied, this still does not guarantee stability.

The sufficlent conditions for stability (13) and the requirement
that the coefficients be positive impose on the parameters K; and K,
the following conditions:

0< K, < 052K,
Ky <130 (17)
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If these two conditions are satisfled, the stability of a system
is guaranteed.

And, finally, the sufficient conditions in (14) yield

0< K, < Ky —0,004K3 (18)
K, <169

If both of these conditions are satisfiled, independently of the
validity of the inequalities in (17), the system is also guaranteed
to be stable.

The inequalities (16) ~ (18) determine certain regions in the
space of the parameters K; and K;. In the same space we can also
construct the exact boundary of the region of stabllity by using the
method of D-decomposition. Three regions, constructed using the suf-
ficient, necessary, and exact conditions for stabllity, respectively,
are shown in Figure 1. The sufficient conditions for stability deter-
mine a region, lying completely inside the exact region of stability,
and the boundary of the reglon obtained using the necessary conditions
for stability, encompasses the exact region of stability.

Example 2. In the preceding example, the approximate tests for
stability were used to solve a problem that can also be solved using
the exact methods (D-decomposition). Let us make the problem a little
more complicated. Suppose we are given the following characteristic
control function

28 4 1225 4 4724 4 1082° + 12227 + KKz + KK, = 0, (19)

where i is a variable parameter of the object, ard K, and K2 are the
unknown parameters of the regulator. The method of D-composition is
difficult toc use here, since first of all the problem is three-
dimensional which makes 1t hard to visualize the solution. Secondly,
it does not reduce *o a system of three linear equations with three
unknowns. However, the use of the "approximate" conditions for
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stability gives simple inequalities

that do not require geometrical

b interpretation. Thus, the use of
the necessary conditions for

! stability (2) and (3) yields:

e

L]

0<Ki< T

(20)
KG<(2%;

TTCTCTCTTTNFCTTTC]ETY,

1 w
5 K 3 > 00891( 1}

Figure 1. Exact and "approximate"

regions of stability. The sufficlent stability con-

1 — region of stability obtained ditions (13) yield

using the sufficient conditions 0 < K, < 0,52K,
for stability (17) and (18); 2 — < '<'”' ' (21)
exact boundary of stability, K’<T ot

obtained using the method of

D-decomposition; 3 — boundary of

stability obtained using the

necessary conditions for stabi- Finally, the sufficient con-

1ity (16). ditions (14) yield

0 < K, < Ky —0,004K3R-
9, - (22)
K<y

For any given range of change in the parameter K, we may find the
values of the parameters K, and K; necessary for stability.

Thus, it may be seen that the "approximate" stability criteria
may successfully replace the "precise" stability criteria for high order
systems. The use of the "approximate" stability criteria yields simple
relationships between the system parameters, which makes it possible to
synthesize the regulator simultaneously for a certain set of values for
individual parameters of the system. The use of "approximate" stabi-
lity criteria greatly increases the productivity of the engineer-
designer.
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CERTAIN PROBLEMS OF THE CONSTRUCTION OF PARAMETRICALLY
INVARIANT AUTOMATIC CONTROL SYSTEMS

N. I. Sokolov
The control of nonstationary objects with thelr parameters
changing within wide limits is in principle possible with the aid of

adaptive automatic control systems and systems equivalent to them.

Here adaptive regulators will be definecd as regulators in which
certain (adjustable) parameters are functions of the corresponding

variable parameters of a nonstationary controlled object. Consequently,

the operation of such a regulator requires, in principle, that infor-
mation be glven about the variable parameters of the controlled object.
Technically the variation of the regulator parameters 1s achleved with
the 2ald of parametric couplings. A parametric coupling is a necessary
(but not sufficient) trait of an adaptive system. The basic problem
in the construction of adaptive automatic control systems is to organ-~
ize the information about the variation of the parameters of the non-

stationary controlled object.

In adaptive control systems with open loops for the adjustment
of the regulator parameters, the information about the change of the
parameters of the nonstationary object 1s obtained directly by meas-
uring the external conditions that result in the nonstationarity of
the object, or 1n certain cases by using a speclally programmed unit.
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In both cases the accuracy with which the problem is solved is
small,

Adaptive control systems with closed loops for the adjustment of
the regulator parameters offer much greater possibilities. The infor-
mation about the changes in the parameters of a nonstationary object
i1s obtained from the signals circulating in a closed system. However,
a signal, circulating in a system, has no natural characteristics
that would lead in a technically simple fashion to information about
changes in the parameters of an object.

On the other hand, we cannot exclude the theoretical pwssibility
of building such characteristics into a signal by selecting structures
and parameters of the basic contour of a control system.

The best known methods of extracting information about changes
in the parameters of an object are the correlation methods with the
method of the energy balance as one of their forms. These methods
have become widespread in solving engineering problems. However, the
energy balance method is applicable only in the case when the para-
meters of an object change very little during the transition process.
The technique in which the effect of changing parameters (parameter)
is translated into a high-frequency signal by proverly selecting the
structure and parameters of the basic circult can theoretically be
used to extract information about changes in a certailn parameter of
an object. This is the so=-called indirect method of determining
parameters of an obJect.

The equivalent adaptive regulators will be defined as those
regulators in which the information about the variable parameters of
an object 1s not used and is not needed to provide a given type of
control.

The usual dynamic and static properties of the equivalent adaptive

regulators are achieved by introducing proper coordinate links. It
is also thecretically possible to use parametric links 1n such regu-
lators. However, the parametric linkage, in contrast to adaptive
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systems, changes the parameters of a regulator depending on the
instantaneous value of certain phase coordinates of the control system.

The equivalent adaptive control systems may be subdivided in
two classes:

1) parametrically invariant systems are characterized by the
fact that, when the parameters of a control object change, the output
coordinates of the performance indicators of the system remain the
same or change in a desired direction within given limits;

2) ultra-coarse systems, characterized by the fact that -— as
the parameters of an object vary — the stability of a control system
is preserved, and the performance indicators are not subject to control.

These classes in turn may be subdivided into groups that differ
from one another in design, and naturally, in their capacity.

Figure 1 shows the classification table.

The definitions given here and the classification table do not
pretend to be complete, have purely utilitarian objectives, and are
used in the further discussion of the material.

Let us briefly discuss the basic differences and capabilities of
the structures in question.

The parametrically invariant control systems can be subdlvided
into the following groups:

a) parametrically invariant compensating systems are linear
within a limited range. In order to assure stabllity and independence
of the performance indicators when the parameters of an object undergo
a change, one introduces inversely parallel correcting devices which
comprise the object and certain elements of the regulator, and are
in the form of physically realizable filters. In order to compensate
for the lag introduced by physically realizable filters, a low fre-
quency filter—whose poles are equal to the poles of the inversely
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parallel correcting devices
- 1is introduced in the direct
c¢ircult between the measuring
element and the adder.

The structural dlagram of
the parametrically invariant
compensating systems in their
general form is given in
Figure 2, where W,(p) is the
measuring element; Wa(p) is
the amplifier; Wy(p) 1s the drive, Wo(t, p) is the control object;
and Wki(p) are the correcting devices.

Figure 2.

The poles of the transfer function wko(p) are identical with the
poles of the functions Wkk(p), Wk’(p), sz(p). Wkl(p) (or at
least identical with the smallest ones among them).

A differential equation for parametrically invariant compensating
systems c¢an in general be written as

n+m / ntm-3 , ] o m ) ] .
2 A5 B COGHE + BKoK O G = .
- KoK (8) %3,

where n is the order of the differential equation for an uncorrected
system, m is the order of the differential equation describing the
processes in the correcting devices, C,(t) are the coefficients which
contain the variable parameters of the object and their derivatives,
K(t) is the product of the amplification factor and tbe natural fre-

quency of the nonstationary object. The introduction of a compensating

filter minimizes the coefficients multiplying the derivatives in the
equation. By the same token, assuming there is interference and non-
linearities of the saturation type, it keeps the control system
operational when the parameters of the object vary within a wide range.
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b) Systems of variable structure with internal feedbacks
linking the control object and certain elements of the regulator,
technically based on the y=cells involving sufficiently small lags in
tie correcting devices. Also theoretically assure parametric invari-
ance when the parameters of an obJect vary within a certain range.

A diagram of a system of variable structure is shown in Figure 3,
where F is the unit in which the switching functions are formed, bJ !
is the coefficlent of action with respect to the derivatives.

Taking into account the real lag involved in the formation of i
the derivative signals, the differential equation for a system of !
variable structure, shown in Figure 3, may be written as

n+_;n dlx n4m-1 dl m
2 ATt BGOSR+ 3 KK )b X
B (2)

d¥nux d"MXaux

dliyy _ '
X (e T L )-ﬁ';—l‘-gol(m(oa,%;—‘,_,

b
where b, = {bJ‘, Since here we deal with systems of variable

J J2
structure which are characterized by sliding regimes, when a sliding
regime does occur, the above equation may be replaced with a linear . l ‘

one, where the coefficients are equal to the averages @:agﬂﬁ#ﬂ.
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The linear equation thus obtained will describe the motion in a
hyperplane. Fast movements relative to the hyperplane are not repre-
sented by this equation. HLowever, since the frequency of a sliding
regime in systems of variable structure of this type 1s much higher
than the band of the working frequencies of the system, these fast
oscillations will have practically no effect on the output coordinate.
Consequently, the systems of varilable structure with physically reali-
zable correcting devices may in this case be investigated using linear
equations.

The occurrence of an uncompensated lag, introduced by physically
realizable correcting drf sices, interferes with the minimization of
the coefficlents of the differential equation for the system. There-
fore, when there 1s interference and a system involves additional non-
linearities, its capacity 1s less than that of a parametrically in-
variant compensating system. In addition, the nonlinear control part
(the control part might be said to have a source of internal inter-
ference) also results in a higher sensitivity to interference than
in the case of parametrically invariant compensating systems.

A system of variable structure may serve as an example of a
parametrically invariant system widely utilizing parametric links in
the phase coordinates due to which the system acquires certain non-
linear properties. In general, the presence of parametric links does
not necessarily result in nonlinear properties, which can be directly
seen in Figures U4 and 5. Figure 5 shows an equivalent model of the
control portion of a system of variable structure [2]. A system of
variable structure 1s characterized by the parametric links in the
coordinates x, X, X..., resulting in a change of the "bank" of relays.

Figure 4 shows the control portion which is fairly close to the
control portion of a system of variable structure, with the exception
that here the modulus is taken of the total signal "q." The parametric
linkage does not disturb the linear properties of the system. Thus,
in the case of Figure U4, we have a technical realization of a linear
system composed of nonlinear elements,
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c) Systems involving a special nonlinear filter. These systems
are ccnceptually similar to systems cf variable structure. They
differ from the latter in that a signal entering & relay element is
formed by one operator, whereas a signal entering modulus-type non-
linear elements is formed by another operator. In the case of a
single frequency input signal, one can form any amplitude and phase
frequency characteristics (in the first harmonic). However, in the
case of a mixed signal, in view of the invalidity of the superposition
principle, these characteristics do not hold. If in such a system
high frequency sliding regimes occur, then processes in the system,
Just as in a system of variable structure, are approximately described
by linear equations. The capabilities of such systems in the case
of a nonstationary automatic control are simllar to those of systems
of variable structure.

d) Auto-oscillatory control systems (with a passive self-
adjustment). These systcms perform harmonic linearization.

For a certain structure¢ of the regulator with respect to slow
actions, the system will operate as & linear and statlonary system,
independently of the variable parameters of the control object. The
amplitude of the auto~oscillations will vary depending on the changes
in the parameters of the object.

The amplitude of the auto-oscillations must for technical reasons
lie within a certain range, which consideradbly limits the capabiiities
of cuch systems.

The systems in question are also more sensitive to neoise than
linear systems.

e) Nonlinear systems with high-frequency external signals.
Such systems perform linearization at the expense of external high-
frequency signals. The system has quasilinear properties with respect
to slowly varying signals. The capabilities of such systems approxi-
mate those of the auto-oscillatory systems.
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We have in mind the following systems: i

a) parametrically invariant compensating systems;
b) systems of variable structure;

¢) systems with special nonlinear filters.

We can formally construct a combined system of the form linear-
variable structure auto-osclllatcry. However, this type of system
is of no technical interest, since all problems are solved more com-
pletely by a combined system: parametrically invarlant compensating-
; auto-oscillatory (optimality at large deviations and stability, as
' well as given values of performance indicators at small deviations).

. To 1llustrate the parametrically invariant systems and ultra-
] coarse control systems, we shall use an example from [3] (Kokhenburger's
‘ system). The equation of the control object will be

"y

Jwx K, (1) 5000
| o= oy Yhere 01<K()<10 @

The regulator elements were assumed to be inertia-free W;(p) = K,
3

Wa2(p) = Ka Ws(pjsfor simplicity we azsume that K; = 1, Ky = 1.

The control system to be designed must satisfy the following
technical requirements:

a) static error no greater than 5%;

b) maximum regulation time no greater than tp = 0,28 sec (the
! process 1s considered to be over when the dynamic error is less than

5%);

¢) over-regulation is no greater than 15%.
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A Paremetrically Invariant Compensating System E

1) Excluding the static error, we include an integral link in
the adder (See Figure 3.).

Then Wy,ip)=W.,{p) 3.

. Ay, .
In a general form W, (p)nﬁ%; ll'/,c,(p)az—:%%; WN,(”)‘B/':'.%SS'

The transfer function for che sysuem will be

(P+5)* (p+200) B (p) £ +Ret000K, (¢) +

+ Ksér (p)p(p+5)‘(p+2(;9)+Ka5\"00K. Ao p )

In case of correcting devices of the Lype ‘ i
| va- S © |
; (includes the object, power drive, amplifier),

t
' Wanl0) = 3 ooy G e (M
(includes amplifier), §
W o (p)=Wio (p) %’ =¥ 150)(;?233?(,,4.40,0 (8)

(Jhe last correcting dv¢-ice was put bevween the measuring element
ané the adder) sud K, = 2140, ...1 technical requirements are satisfien,

Let us consider the operational ability o: the system 1i: the
presence of interference and saturation-type nonlineuritles in the
drive. .

Suppose that the drive becomes saturated by an input signal Xip =
16 V. Consider X3p with noise of the form 0.00) sin 2000 tin'
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a) The noise X4non = 0.001 sin 2000 tin acts on the input of
the system. The object has a sufficlent inertila and does not pass a
signal of frequency w = 2000. Therefore, at that frequency the system
might be sald to be open with respect to the principal feedback, and

we can write approxlmately

_Xup 80 000 2140
Tor. (p+150,\p+80)(p+40) L 10,135p" - 0,84p F 252) 2140
(p -+ 150)(p +-80)(p +-40) (9)
480 000-2140

= “(P"+ 500p" - 23000p +- 1020000) p

apl 0,001 - o L220 <=0,0000000615 V (10)

The noise at the input to the drive will be greatly weakened.

b) The noise Xout.n = 0.001 sin 2000 t enters the input of the

correcting device W, 4 4 (p).

Znp 0,383p* - 29p* - 3850p - 78 000 2140
Fourn, o PEIS)PFR)FA0) 0. 13557 F0.89p + 252 2110
I+ 150} + 80P +40) (11)
0,383p° 4 29p* - 3850p 4 76 000) 2140
PV G0UpT 23 000p - 1020000
|ap] 20,001 -0,368.2140=0,785 V (12)

The system will be operational with this type of noise.
2) Correcting devices may be chosen to be simpler.

For example, the above dynamic requirements are satisfied for

. 0.054p 45,38 0.0204, A5
Wa(p) —7;7,5"’—- Wi (p)== >¥5 Ww(p)=(p+455)p (13)
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The opcratinngl capacity of the system in the presence of noise is

45.36 500 5
8) Fare ™ PN il ¥0.001-0,380-0,00038 ¥ (1)

OSSN UT - DP U  R e Y

x (1900p -} 196 000)(p 5
b) e S G R Vel %0001 177 101,77 (15)

In the second version, the scheme is also operational, but its y
resistance to noise 1is lower than in the first version.

Systems of variable structure and the system with nonlinear
filters without compensating filters will have a lower resistance to
! interference than the above structure,

Control Systems with Passive Self-Adjustment,

Auto-Oscillatory Control Systems)

Auto-oscillstory control systems are also parametrically invari-
ant but their operational regimes differ from the preceding ones.

o ;
I I : ]
Figure 6. '

Let us consider Kokhenburger's solution (Figure 6). .

The equation of the oscillatory locp for X, = 300,000 will be

Ky (p)=
_ 5000K K, (9" 4-Gldp® -+ 165 110p* -+ 18,28- 10%p + 760- 1 *
[P Frap 171775 p 5 132- 10 1047 - 103p* 3 8160-10°p + 19030 10°](p F200) (16)
!
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Under those conditions, the loop becomes unstable. Due to the ;
saturation of the amplifier (or the drive) the system will be auto-
osclllatory. The expression in the brackets can be factored into a ‘ .
product of two polynomials

(74667 p*+ 167 046 p+130,8 108)(p34-7,2p*+-61 p+145) (17)

The first polynomial hae roots with positive real parts. The
Instabllity will occur at the frequency w = 510, If, just as before,
the saturation occurs at 16 V, then the amplitude of the auto-oscil-
lations of the object will be less than the amplitude of the nolse
xout.dr = 0,001 V. The system will not be operational. One can
increase the amplitude of the auto-oscillations at the output from ,
the object by introducing an amplifier after the nonlinear element, i
and a divider before the nonlinear element. However, the result will ;
be that the amplitude of the auto-oscillatlions at the input to the
obJect will be very high, which is not permissible under real conditions.

Ultra-Coarse Control Systems. A Structure that Remalns
Stable for K + «

The system has tp = 0.28 sec for Ko = 0.1; for K¢ = 10 the system
has tp =09.02 sec. The over-regulation for X, = 0.1 is 15%.

The operational ability k
in the presence of noise. §

L Hm,uhihﬁ

o

Here the effect of the
nolse X4n.n and Xout.n is 3
equivalent and similar to

Flgure 7. what was used earlier

T

Xop 2003 (p+100)° |
ﬂi;z (pF20100)* (18)

Wol=0,007 - 80060+ 8y 7

<o
-t
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At 16 V the drive will become saturated due to nolse, For this
type of noise, vibrational linearization will occur, the effective
amplification coefficient of the drive will be reduced several times, ‘
t_ will increase, and in this case the process will become more
osclllatory.
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CERTAIN PROBLEMS OF STATISTICAL ESTIMATION IN CONTROL THEORY

A. S. Golubkov

The desire to satisfy the increasing requirements placed on
technical systems leads in a majority of cases to the use of optimal
design methods in the construction of control systems.

When one solves applied problems in that area, there always
arises the problem of obtalning reliable information that would be
sufficient for the construction of optimal systems. Attempts to
solve this problem also encounter certain speciflc theoretical diffi-
culties, particularly when the problem is statistically formulated.

As a rule, problems of that type cannot be tackled by a single theory.
They require the use of probability theory, mathematical statistics,
and theory of optimal processes.

The results obtained in those areas Indicate that to construct
high-quality systems 1t 1s absolutely imperative that messurements be
made. If this is impossible, the values of the parameters character-
izing the state of the processes investigated must be calculated with
high accuracy and with no substential delay. The occurrence of various
random disturbances and measurement errors, and changes in the para-
meters and characteristics within a wide range in a way impossible to
predict, force us to use the statistical approach in the evaluation
of processes. As always, the estimates are a result of certain opera-
tions on the measurement date, permitting us to estimate the state
of the process.
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The state of a process can, as we know, be described by a stochas-
tic model to any degree of accuracy. Moreover, the correspondence
between the model and the real process occurs only if the model is
statistically sufficlent. Considering only one class of processes
— namely, the class of controlled Markov processes -— we shall assume
below that their space~time behavior 1is described by the trajectory

x(t) satisfying a model written in the form of a stochastic differential
equation

k== F () +9(x Ha(h) (1)

where w(t) is a random process of the type of white nolse with the
parameters E{w(t)} and E{w(t)w(t)} (E is a symbol denoting the aver-
aging operation).

Information about the state of the coordinate x(t) can be obtained
by measuring a certain y(t) which is related to the original x by
equations of the type

y(&)=H(x. 1) (2)

or
9= H (1., (3)
and is given as a solution of the stochastic differential equation
2= At + B0V (4)

where v(t) is a random process of the type of white noise with the
parameters:

ity -0 and L{v{)v(x))
This type of description allows us to take into consideration

the peculiarity cf the measuring process which includes the dynamic
properties and the additive nolse of measurements.
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Assuming for simplicity that x, y, and z are scalar processes
and H(x, t) = X, the equation of measurements (l) becomes

2(t) = A(x, 2.8+ B(x, H)v () (5)

Lccording to the terminology accepted in theory of controlled
random processes [1], the set {x(t); z(t)}, where x(t) is the unob-
served coordinate, and z(t) 1s the observable, came to be called par-
tially observable, and the procedures based on the use of the second
coordinate z(t) alone came to be called the procedures based on
incomplete data.

In our case, the set {x(t); z(t)} satisfying (1) and (5), repre-
sents a two-dimensional Markov process in which the first coordinates

x(t), z(t), being fixed, form the so-called conditional Markov process.

The problem as applied to a conditional Markov process belongs
to the class of problems of mathematical statistics, and reduces to
the question of how one can best estimate the component x(t) on the
basis of measurements of z(t). The technical solution of the problem
involves processing large amounts of data, and acceptable solutions
can be obtained only if one extracts "sufficient statistics" based on
the tet of the measurement data y(z), that are the central question
in those problems [2].

One of the principal difficulties in this approach is the volume
of measurement data, which increases as time goes on, and whouse
processing in real cime and in full is difficult using the computers
avallable today.

In a majority of problems of sequential analysis, where the

present estimate problem also belongs, the a posteriori probabilities
turn out to be sufficient statistics.
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Referring to [3], we can state that the use of the Markov
properties of the set {x(t); z(t)} enables us to considerably reduce
the volume of data required to obtailn sufflicient statistics. In the
case of a finite observation interval, the a posterlori probkability
is a Markov sufficlent statistic if the following conditions are
satisfied:

1) unobserved process x{(t) is a Markov process;

2) observed process consists of a sequance of condltionally
independent random variables;

3) optimality test 1is additive;

4) preceding measurements and estimates do not impose any
restrictions on the following estimates.

If the conditions (3) [3] and (4) [4] are satisfied, we can con-
sider the synthesis of optimal estimates as an extremal problem of
mathematical statistics in relation to a conditional Markov process
subject to conditions (1) [1] and (5) [5].

"he problem will consist of making decisions, ia)u=7u(q)£6£‘
constructed out of known data z(r), 2zEZ, 0 < v < T, which must be
optimal in the sense that they must give the best estimate of the
parameter x(t), xEX, t - T.

When the Bayesian approach is used, such an estimate (here we
have in mind a point estimate) must minimize the mean risk [4]

R (%) o=\ lo (2, %, () p(x, 2) d.sdlz (6)
where 1o [z, x, v (2)] is a loss function.

To satisfy (6), it is sufficient to minimize the conditional risk

rxizj - S’o @ x)plria)dy (7)
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at each point individually.

The conditions (1) and (5) on the set {x(t); z(t)} require that
one consider additional conditions in the extremal problem, in parti-
cular, that one introduce a new loss function L(x, z, x)

a-1

L(x, 2, %) = ly(x, 2, X) +12 My (%, 2, %) (8)
]

and minimize the mean risk R(x) under the condition that

(9)

S (2% %) p(x,dedz=¢

In view of (8) and (9), we assume that the estimate has the
form x = y(z, A), where the parameter AZ = Az(cz) is determined by

Vit 2 1) pix 2 dedz=c, (10)

If System (10) has a solution, then the estimate x = y(z, A(c))
is optimal for the loss function (8) and is the desired solution of
the extremal probiem. Next, assuming that the measurement interval
is bounded 0 = < 1 £ T < », and the process in which we obtain and
process the data is sequential in time, the introduction of time in
the problem leads to the following relations for the loss function L
and the estimate x

~

L2, )= \L(x () 200 X () dt + L7 (xr, 20, 3r) b
[

x(=1r(z() 03T (37)

respectively. The optimal solution, satisfying (11) and (12) for
fixed T, can be found from the minimum condition

re(x()/z{x) = S L{x(x), 2(z) x(9)) plelz)= () dx (13)
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The conditional risk (13) depends on z(1) 0 £ © £ T through the
a poctericri distribution p(x(t)/z(t)) 0 < t £ T, which contains the
entire necessary information about the structure of the optimal
estlinates.

Since {x(t); z(t)} is a conditional Markov process, p(x(t)/z(1))
may be found for all 1 £ T by applying the theory of conditional Markov
processes [5]. The evolution of the a posteriori probability p(x/z)
is cbtained as a solution of the stochastic differential equation,
and for the model (1) and (5) 1t is characterized by the solution of
an infinite-dimensional system of stochastic differential equations

Pua(f) == pusa (8) ‘—A-‘—‘-’-’{;’,,L"-’l [2)— Azt ©

14
+{= 3 e ) pa ] + 5 5 192 (5. 8) purs (1] -

Ax,t)y= [ A 2.8) poa(t) dx

Suppose that p;/z(t) i1s a solution of (14). Then we shall assume
that the estimate of x(t) will have the form x(z, t) = y'(p;/z(t).

We know that in the case when the probability density px/z(t) is
unimodal and symmetric in lts expectation, and the loss function is
symmetric, i.e., L(x, x) = L(x, x), then the conditional expectation

is the best estimate. Therefore, the optimal estimate willl always be
chosen as

- xp(x) plaix)de
x=1(2)= S.vp (xi2)dx= S‘ > (x))p o dx (15)

Such an estimate being asymptotically unblased represents an
efficient estimate in the sense that the deviation is minimized [2, &].
The above expression for the a posteriorl probabllity clearly

shows that the process of finding estimates requires a solution of
parabolic partial differential equations, which 1is very difficult.
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Since Equation (1l4) is infinite-dimensional, we are actually not
interested in it as much as in the fact that from it one can obtain
equations of certain characteristics of the process px/z(t), for
example moments, characteristic functions, and semi~invariants.

However, even with this simplification, the equations for the
first two moments can be obtalned and solved only for an exponential

family of Markov process distributions, and then only in the case when

it is possible to establish a one-~to-one correspondence among the
sets X, X and 2.

As an example, let us consider a Markov process described by
the equation

X = ¢+ o) (1E)

xo = x{0) is a Gaussian random variable with the parameters E{x} and
E{x%)}. w(t) is a random process of the white noise type with the
paraneters E{w} = 0; E{w?}.

The process x(t) 1s observed in the presence of white noise by
a system of measurements described by the equation

2e=x(1) + bu(t) (2E)

v(t) is a random process of the white nolse type with the parameters
E{v} = 0 and E{v?}.

The processes w(t) and v(t) are statistically independent. On
the basis of the measurements z(t), 0 £ 1T £ T, we are required to
obtain optimal estimates of the coordinates x(t), which are optimal
in the sense that they minimize

L (x, x)=|le () =x (| (2Ea)
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Fer this purpose, we have to determine the first and second

moment of the a posteriori density px/z(x, t).
The first moment
2= xp My dx (2Eb)
1s an optimal estimate, and tue second
D(t)=  (x(t) = Z(O) P,y dx (2Ec)

is ites minimum deviation.

The a posteriori probability according to (14) satisfies, in the
case of Example lE and 2E, the stochastic differential equation

apa(0) 3pyglt) a2\ ps(l) - . .
LD o o L0y o) 2o o RODX Gl (3E)

with the initial conditions pu.(x, 0/0)=7__2_'_raexp! (L‘:.fc_)’}.

T

The first term on the right-hand side of (3E) is the right-hand

side of the direct Kolmogorov eguation, and the second is a result of
measurements,

Equation (3E) for p_,. (t) yields an equation for x(t) and D(t)

x/2

X =ct+DOEW—£W) (4E)

D(l)=a'~'-—-[—)—;-sﬁ (%E)
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The solution of the problem is thus given by a system of nonlinear
differential equations whose analytic soluticn in closed form may be
obtained only in certain particular cases. Nevertheless, analog and
digital computers can be used without too great difficulty in conjunc-~
tion with an algorithm for the processing of data. Using digital
computers the operations on the data are in the form of recursive
computational procedures, using at each step only the current data,
which means that the required estimates can be obtained with a delay
equal to the machine time of computation for one measurement.
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AN ANALYSIS OF A TYPICAL STRUCTURE OF AN AUTOMATIC CONTROL
SYSTEM AND A METHOD OF SELECTING THE TRANSFER FUNCTION
FOR A STANDARD MODEL OF A SELF-ADJUSTING SYSTEM
N. A. Shokalo

In designing a self-adjusting control system, one has to analyze

the original) control system to discover the possibilities of satis-
fying the T. T. 2.% with respect to the performance indicators of

the

than

with
than

than

transfer process, which may be in the form of:

1. Maximum over-regulation of the bank angle (y) no greater

+15% of Ygiv'

2. The length of the transfer process no greater than 2 - 3 sec
a deviation of the bank angle from its steady value by no more
£5%.

3. Maximum over-regulation of the bank rate (wx) no greater
+50%.

Methods of the theory of sensitivity can be used to solve this

problem for a system of any order, but the solution is hindered by the
necessity of choosing a reference transfer function for the control
system (1, 3].

* Translator's Note: Expansion unknown.
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“.e ruvpose of this paper is to select a reference transfer
function for a control system. For this, it 1s necessary to establlish
a relation between the performance indicators for the transfer process
with 2 distribution of the poles and zeros, and the coefficients of
the transter function for a typical control system of fifth degree in
the denominator and third degree in the numerator.

. AP+ A+ Ap+A;
‘ - (] 4 3 l
Ve AP A+ Apt + Ap+ Ay )

To solve the problem, we have to vary simultaneously from 5 to
8 coefficients of the transfer function. The second problem to be
solved consists of selecting the optimal coefficlents of the control
system's regulator and the reference model such that certain quality
tests will be minimized.

Mutual Relationship among the Coefficients of the Transfer
Function on the Boundary of the Region of Transfer
Processes of Given Quality

The transfer function is studied using the method of mathematical
models. The problem to be solved can be simplified by fixing coeffi=-
clents in the denominator A,, A2, As, which contain only the time con-
stants of the object and the director, or by fixing the coefficients
A, and As, containing the typical regulator and control surface
efficiency coefficients. The coefficlents are varied successively
from the average value in both directions, and the variation 1is limited
by tolerances in the given quality characteristics. Experiments serve
to establish the range of the coefficients of a normalized and unnor-
malized tranfer function of the system, and thus we could construct
the grids of the reglons of transfer processes of glven quality in
the coordinates of any two denominator coefficients. The effect of
each numerator coefficlent on the dimensions of the regions was
determined, and the restrictions on the coefficlents were selected.
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Figure 1. Figure 2.
The relationships thus obtained permit us to claim that:

1. The transfer processes satisfy & given performance level
for a wide range of the first three coefficients A,, A, Ay (Figures
1 and 2). For comparison, we plotted the volumes "1% and "2," which
define the maximum possible variations of the coefficients A;, A2, As
depending on the time constant of a real director.

2. The "lower" boundary
of the region with the two
last coefficients in the deno-
minator A, and Ag being fixed
is determined by the high fre-
quency oscillation. In order
to assure a given level of
performance, the coefficients
Ay, Az, Ay must be selected
such that the boundary of the
high frequency instability
will shift beyond the area
determined by the performance
indicators, since for values close to those on the boundary the region
of performance shifts toward the origin and has small dimensions as
compared with the stability region.
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3. The region of
transfer processes of given
performance may be widened in
two ways:

a) by increasing all
three coefficients A;, A,,
A, simultaneously (Figure 3);

b) by fixing the first
coefficient A, and simultan-
eously increasing the ccef-
ficients A2, Ay (Figure 5).

4, It is found that an
increase of the coefficient
Ay in the coordinates A,, As
wldens the region of transfer
processes of given performance
only in the direction of the
coefficlent As, and a corre:-
tion to increase the coefti-
clent A2 is necessary (Figure
6).

5. When analyzing the
functional relationship along
the boundary of the high-
frequency oscillation between
the coefficients A; - A, and
Ay - As, we find a relaticnship
vhich 1s close to lineer. By
expressing this relationship
as a formula, one can reduce
the number of the independently
veried coefficlents of the
equation. The modeling ccheme
is shown in Figure 7.
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An Investigation of the Distribution of the 2oles of the Transfer
Function Inside the Region of Given Performance

On the grids of the seiected regions of transfer processes of
gliven performance, we have plotted the regions where the roots are
located and constructed the boundary curves that separate them (Figures
3 and 4). In constructing the regions with the roots, we have used a
procedure described in [2]. The classes of the roots were determined
as proposed by A. A, Fel'dbaum: 2A is a class with one real root and
two pairs of complex roots, the nearest complex roots with respect
to the imaginary axis. 2B 1s a class with the real root nearest to
the imaginary axis and two pairs of complex roots. O, is a class with
three real roots and one pair of complex roots, as well as the real
root nearest to the imaginary axis; O is a class in which all five
roots are real.

The method 18 essentially as follows. If the characteristic
equation of a closed system has the form

N A=t = U, where A, .= | (2)
ke

then each set of coefficients Ak (k= 1, 2 ... n) is assoclated with

a single class of distribution of roots of Equaticr (2). We know from
higher algebra that the necessary and sufficient condition for Equatior
(2) to have r identical roots is that the polynomiel in (2) and its
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(r ~ l)th derivative vanish simultaneously when the multiple root is
rubstituted in the~. To simplify the problem, we s¢t r = 2., Thus,
when tre multiple root is substituted, both the pclynomial in {2) and
its first derivative should vanish, Thus, we have two equations

n (]
2 At = 0; 3 Ay (n— k)t =0, (3)
k=0 k=0

vhere Ay = 1.

Letting yo take on values from 0 to .= we obttaln varlous sets of

the values of coefficients satisfying System (3) when uy is substituted

in the latter. Each of the sets 1s, in tke hyperspace of parameteors,
a figurative point lying on the boundary separating the subregions
with a different combination of roots. The boundary of the subregion
withh a different combination of roots is constructed in the plane of
any two parameters, where the remaining parameters are fixed, 1.e.,
one intersects the hyperspace of parameters by a plane of two para-
meters A, and Am. One derives an expression for the boundary curve
(4] separating the subregions with a different combination of roots
in the canonical form, and its behavior 1s considered by studying the
derivative of the boundary curve, The shading of the bou.dary curve
from p¢ = 0 to e = == 1s done from the left if (m - 1) is even, and
fror the right if (m - 1) i8 odd in case the "m" coefficient lies on
the axis of ordinates.

The distribution of the zones of roots in the coordinates of aay
two ncrmallzed coefficients permits us to establish that the coeffi-
cients Az, Ay, A, have the greatest effect on the redistribution of
the cones of the curve inside the selected region. It is found that
in the coordinates A,, As, which may first of all include the para-
meters of the regulator, a wide performance region can be obtained
in two ways:

1. If the director has a large tine constant and the values of
A, Az, A3 are close to the boundary of the high-frequency cscillation,

then fixing the coefficient A, one can correct the coefflclents A,
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end A; in such a way that the boundary of the high-frequency ouscile-
lation will mcve beyond the region of transient processes of given
performance. In this case, the values of the coefflclents A, and 4,
should be equal to A2 = 2000, Ay = 30,000. The region of the transient
processes 1is here filled with roots of the 2B type (with the real

root rearest to the imaginary axis and two pairs of complex conjugate
roots). The region of the roots O, is small and is ciose to the
coordinate origin (Figure 6).

2. A wide region of transient processes of given performance
can be obtained by simultaneously increasing the values of three
coefficients Ay, Az, Ay, 1.e., by bringing their values closer to the
values corresponding to the drive constani '1‘dr = 0,03 sec and the
booster constant Tb = 0,015 sec. In this case the entire region of
given performance, with the exception of a narrow lower strip, is
filled with roots of type O; (where the real root turns out to be
nearest to the imaginary axis, followed by a pair of complex ccrnjugate
roots, ard by two real roots). It is important to know that by varying
the valucs of Ay, A2, As one can superpose the regions of the distri-
tution of O; roots on the region of transient processes of given
rerformance (Figure 5). Thus, having the grids of transient processes
of a given performance, and given the aerodynamics and parameters of
the real director of an aircraft, one can determine in each case the
values of the nominal coefficients of the transfer function, the
nominal distribution of roots, and thus the nominal transfer functicn
of the fundamental system, which may be used as the transfer function
of the reference model of a self-adjusting system,.

Tests of the Optimization of the Coefficients of a Control
Systemn Regulator and a Reference Model

The optlmization of the coefficients of the control system regu-
lators and the reference model of self-adjusting systems 1s accomplished
by calculating the partial derivatives of the phase coordinates in
rerms of the parameters of the regulator in the two basic regimes of
the con‘rol syster: damping (pilot's manual control) and stabiliza-
tion. Partlol derivatives can be best calculated by using the method
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of the sensitivity function models whlch may be linear or nonlinear.
The advantage of the method is that the extremal values of the coef-
ficients are obtzined fast, and it is not necessary to vary those para-
meters by trial and error. The regulator coefficients are optimized

in the presence of two actions: control Ygiv’ Xr and wing (fw). As
the optimizaticn test, we propose a square integral test determining
the minlmum lcop error in the stabllized regime

;
1,.§E',‘(g, u, i)dt, Where Ejmy g (b)

¥ is the regulator coefficient in the damping loop, 1 is the regulator
coefficient in the stabilization contour. The gradients will be

T
v/ =2 B 0T e (5)
r 'y
vil = A8 WG el (6)

The extremal values of the coefficients u® and i* for equal values

of integral estimates (Figure 8) correspond to the values of u, lying
in the selected region of transient processes of given quality, and
the values of i* lie beyond the performance region — for example, in
the middle of the stability ragion. With wind disturbances (of the
same spectrum as the contril ones) the optimal values of u*, 1% 1lie
at the upper boundary of the stability region (Filgure 12). Thus, the
test 1;-S:$dgdeterm1nes the minimun of the stabilization error. For
a flight’in a turbulent atmosphere, this test may result in consider-
able overloads acting on the pllot and lavrge values of vane deflections.
For aircraft, the damping loop may usually be considered to be auto-~
nomous by using its integral performance test to optimize its coef-
ficient p. This 1s advisable 1if one wants to adjust the coefficient
W independently of the adjustment of the stabilization loop coeffici-
ent 1.
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In this case, we can take the following integral tests:

T
[ = § EidtwhereE =X, —3 (1)

T T
[= }zé’,c, dt = §(u3,)=dt

The phase coordinate Eu characterizes the loop error for manual
control, the second phase coordinate 6b characterizes the deflection
of vanes, and 1s of practical interest since it can be measured when
forming the integral estimate. The third phase coordinate Wy charac-
terizes the minimum overloads acting on the pilot. In the case of a
sufficiently fast director (f‘dr - 4 - 5 Hz), these estimates turn out
to be close (Figures 9, 11). The values of u* and i* for the tests
being minimized 1ie within the region of transient processes of given
performance. In addition, the value of u* is inversely proportional
to the effectiveness of the vanes as the flight regimes change.

r
The advantages of the practical test lu§6g dt are as follows:

1, Independence of the adjustment of coefficients u and i.

2. Sufficient stabllity margins relative to y and 1, corres-
ponding to the desires of the pilot ‘in the linear regime),

100

e a MR e nn ®




e —— L o

—

\
d \
¥
6
3}
1
Figure 11.

M’ 8 Ll )
"
‘ b
021
0‘ Jé‘(‘«f
0% 45
' [3
Figure 12. Figure 13.

3. Constancy of the stability margins as the regimes of flight
change for both the control (Ygiv’ Xf) and wind disturbances (of the
same spectrum). (Figures 9, 10, and 12).

L, The possibility of realizing a fairly simple self-adjusting
scheme (when adjusting the coefficients p and 1 by different tests).

5. The average deflection of vanes is minimized, which is
implied by the test itself.

The shortcomings of the test include a lower accuracy of regu-

lation in the stabilized regime, and a higher necessary value of the
coefficient u in the nonlinear regime (Figure 13).
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Thus, from the point of view of satisfylng the requirements on
the processes of given performance, cf minimizing the loads acting on
the pilot, and the deflections of the vanes, we see that the efficient
test involves optimizing the coefficlents of the automatic pilot

T s
1='§E?p.dt or /= éagm‘(,lg (8)
4
In the stabilized regime during bombing, thne test ;=§l:dt is efficient

0
or (in the case of wind disturbances or nonlinear control systems) its
modified version is

T
1=§(E, + <E,J*dt. (9)

To achieve independent adjustment of the coefficlent of the damping
loop regulator, it 1s advisable to use different performance tests in
the stabllized regime for the adjustment of the coefficients u and 1.
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AN PPPROXIMATE PROCEDURE FOR DESIGNING A SEARCHLESS SELF-ADJUSTING
SYSTEM SENSITIVE TO THE PROPER FREQUENCIES OF THE BASIC
CONTROL LOOP

B. V. Vilitorov, G. N. Izmaylov, B. V. Kirsanov, V. A. Pokhvalenskily

The analysis and synthesis of complicated control systems 1s more
often than not extremely laborious or completely intractable analyt-
ically. For this reason, 1t 1s of great practdcal importance to
develop approximate procedures based on permissible simplifications.

One of the possible ways of investigating nonperiodic processes
in complex systems is the method of separation of composite motion.
It is based on the theory of differential equaiions with a small
parameter multiplying the derivatives. Its application enables us
to lower the order of the original system of equations and estimate
the accuracy of the approximate solution [5].

The system under investigation is shown in Figure 1. This system,
known in the literature as the Marx system [1], was studied in quite
a few papers [ 2,3,4 ], and is used at the present time in aircraft.

In this paper, we do not investigate the dynamics of the system,
its stabllity, or the performance of the adjustment processes. We
shall only be interested in the possible ways of obtaining the analytie
relationship

o= 1T, S0 T T T &0 T & 7) (1)
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where “adJ is the adjusted value of the amplification coefficlent,

To’ Tdr’ Tup’ Tlow’ T are the time constants of the object, drive,
upper filter, lower fllter, and forming filter, respectively; Eo’ Edr’
Eup’ Elow are the damping coefficlients of the objecty drive, lower
filter, and upper filter, respectively.

To solve the problem, we propose to make a number of simplifica-
tions that reduce to the following:

1, As shown by simulation, stand, and flight tests of this
type of system, wind disturbances have hardly any effect on the adjust-
ment processes and on the steady-state values of the coefficlient u
(with the possible exception of the takeoff and landing regimes).
Therefore, the pilot's signal in the course of plloting was taken as
the test signal.

P ————

2. The disturbance used as the input into the control system
was taken in the form of a single function. Stand tests showed the
correctness of tals simplification. The error in the adjusted value
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of the coefficierit under various actions (also including manual
piloting) did not exceed 10%.

3. The dynamics of darnping loops of present-day aircraft is
such that one can distinguish two qualitatively different types of
flight regimes:

a) regimes with a fairly large scatter of the roots of the
drive and the aircraft. The root hodograph, illustrating this type
of regimes, is shown in Figure 2. In this case, the control law
assumed here 1s satisfied with sufficient accuracy;

b) regimes with a small scatter of the roots of the drive and
the aircraft. In this case, the control law § = pw might be said to
change to § # pa, Here & is the angle of deflection of the control
surfaces of the object, w is the angular velocity, a is the angle of
attack. This type of regimes is illustrated by the root hodograph
in Figure 3. :

Regimes of this type do not satisfy the basic requirement on

the control system — namely, that the drive should act faster than
the control obj.ct.
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Recently there has been a tendency to increase the speed of
operation of the drives. In view of this fact, we shall conslder
only the "slow" regimes or "fast" ones in which filters or special
control laws are used to obtain differences in motion.

The procedure we propose is based on extracting from the general
transfer function (of fifth degree) two component second-degree
functions which reflect the characteristic types of motion: aircraft
("slow" and drive ("fast").

Strictly speaking, three types of motion occur in the loop under
consideration. In the order of speed of action, we have the aircraft,
drive, and booster motions.

The fastest motion (booster motion) 1s not taken into account
when considering the aircraft motion. When considering the drive
motion, the booster motion may be taken into account in the form of
several terms in the expansion of the transfer function.

The zero-order approximation is used as the transfer function
generating the "slow" component of composite motion. Structure 1 in
Figure 4 1llustrates how this approximation is odtained. 1In principle,
one could also take the first-order approximation in which the drive
is represented by the expansion (which does not iacrease the order
of the system)

W, (p)=1 — 2E||Tnp (2)
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of aircraft roots with
real and inertialess
drives is shown in
Figure 5. The transfer
function, generating the "slow" motion, is written as

7'30‘+2§o7'on+l 3)

W, -
WP = T kT M P 1T

The "fast" component of the composite motion is conveniently taken
in the form of the first-order approximation. Then the drive (the
unit generating this type of motion) is closed through the object
taken in the form of an integrating unit. The root hodographs of the
drive roots in real and idealized schemes, confirming this approxima-
tion, are shown in Figure 6. .

The formation of the "drive" transfer function is shown in Figure

7. Loop 4 does the "generation," and loop 5 extracts the desired
motion.
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Analytically thls has the following form. We assume that thre
transfer function of loop 4

B (Ti0 LT up+1)
14 (p) = p: [ !
! P) v (7ﬁﬁc+2§lnrlzﬂ+‘)+k!" (“ )

consists of a sum of the desired wb and the transfer .function of loop
5, which i1s the image of the "slow" motion

W, (p) = ,,—Jr”—-,m (5)

The denominator of the unknown transfer function is determined by
the expansion of the function

p(Tor 28 Top )ik o »
( pEaT L+ =Top + (2T — Tip) p +

© (6)
41— p (2,70 = oT3) + D) apt

. fre}
in a Laurent series. Equation (6) can be obtained by dividing the
denominator of the transfer function W.(p) by the denominator of Ws(p).

Neglecting the remainder in (6), we obtain an approximate expres-
sion for the denominator of the unknown transfer function. An analysis
of the transient error processes for the system in Figure 1 shows that,
taking into account the transfer function for the "slow" component,
wb(p) should have the form

kp
T,’.p' + (25,,7'"...7‘3;;) pAl—p (25:7'::*1‘7.:) ("

where k; & 2£d!';‘ ar is obtained using the method of indeterminate
coefficients and the condition that the original W,(p) 1s approximately

equal to the sum of the approximate transfer functions in (5) and (7).
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Thus, the reaction of the original system has been decomposed
into two superimposed components, given by the transfer functions in
(3) and (7).

4, Next, we assume that both components of the composite motion
are sufficlently different in speeds of action. This assumption
enables us to direct each one of them to the "lower" and "upper"
filters, respectively of the spectral analyzer.

The forming filters are considered as follows:

The value of the root corresponding to Loop 1 in Figure 1 1s
chosen so that its modulus lies between the roots of the drive and
the aircraft, and the value of the root corresponding to Loop 2 is
much greater than the modulus of the drive root.

In view of the above, in the case of a "slow" signal, the

" forming filters 1, 2 in Figure 1 may be accounted for by the differ-
ential loop Tp, 2 in Figure 4. In fact, a "slow" signal is a sum of

a stepwise component and a component that increases from 0 [see
Equation (3)]. The stepwise signal 1s separated at the input to the
low-frequency filter 2 in Figure 4 in the form of a short (as compared
with the time of the transient process in the low-frequency filter)
pulse, whose effect on filter 2 will be practically identical with

the effect of a delta function (since the areas of the delta function
and the real pulse are identical and equal to T). However, the "flat"
part of the zignal, in view of 1its small slope, will practically be
differentiuted by Loop 1 (Figure 1) and passed without distortions

by Loop 2.

The "fast" signals, due to its high "speed of action," will be
passed by either filter with hardly any distortion.

The above 1is reflected in the structural schemes in Figures 4

and 7, showing two separate channels along which the input signal
proceeds,
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In addition, to account for the effect of the stepwise component
cf the "slow" signal [see Equation (3)] on the high-frequency filter
7 in Figure 7, we introduced an additional single connectlon 6.

5. To make an analytic calculation of the possible scheme, the
moduli were replaced by quadratures 3 in Figure 4, and 8 in Figure 7.

A simulation of the complete Figure 1 and the separated Figure 4y
and 7 showed a good agreement between the results with respect to
the adjusted value of the coefficient "adJ'

An error in the value of "adJ was no greater than 10% in various
regimes.

It is important that, when the convolution integral 1s applied
(in a complex domain), the order of the original integrand in the
exact scheme (Figure 1) is nine. When the procedure proposed here is
used, the order is lowered to four.

6. The subsequent design of the system can be made by finding
the gquadratic estimate at the output from each of the channels. This
permits us to obtain an analytic expression which relates the basic
parameters of the system.
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AN INVESTIGATION OF ADAPTIVE CONTROL SYSTEMS
FOR RANDOM ACTIONS

M. F. Rosin and V. I. Ul'yanov )

At the present time, adaptive control systems are studied 3 i
statistically by using the interpolation method [3], the method of
equivalent perturbations [4]), and the method of coefficients [1].
Among the methods in which the output signal 1s represented by poly-
nomians, the interpolation method has the highest accuracy. 1In this
method, the interpolation points are taken to coincide with the roots
of the orthogonal polynomials, with the weights equal to the coeffi-
cient distribution densities in the canonical expansion of the input
signal to the contrecl system.

The accuracy of the probabilistic characteristics obtained by
the interpolation method is checked by comparing the results for
various degrees q of the approximating polynomial. The entire compu-
tational procedure is repeated again for a new value of q, since the
optimal interpolation points change. In contrast with the interpola-
tion method, the method of coefficients uses the results of previous
simulations. This lowers substantially the amount of work involved
in the calculation of the probabilistic characteristics of the adaptive
control system. For example, for ¢ = 4 and p = 7 in the interpolation
method and the method of coefficients, one has to carry out 2187 and
113 simulations of the control system, respectively.
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However, due to the nonoptimal seleciion of the approximating
proints, the methcd of coefficients is inferior in accuracy to the
interpolaticn method. One can increase ihe accuracy of the coefficient
method by taking into account different effects of the coefficlents in
the canonical expansion of the input signal, and by combiring the
ccefficient method with the interpolation method.

Determination of the Probabilisitic Characteristics of a Control
System by Taking into Account Various Effects that the

Coefficients in the Canonical Expansion of the
Input Signal Have on the Output Signal

The selection of the degree 3 in each random coefficient in the
coefficient method is achieved by improving the accuracy of the proba-
bilistic characteristics of the control system, aind does not require
any additional simulations of the control system. Let us select
Chebyshev-type points in such 2 way that their number will be suffi-
clent to determine the coefficients in the expansion of the output
signal in a Maclaurin serles. These points satisfy the requirements
cf the coefficient method: they lie within the ranges of the real
values of the random coefficients in the canonical expansion of the
input signal, and the output signals for them are not very small.

Let us consider the procedure in which the variance of the output
signal from an adaptive control system is calculated taking into
account different effects of the random expansion coefficients.

We have

D (6)=M ¥ @ X Xow ooy X)) (1)

Here

‘P(l. 4\'" 4\'-_.. veny l\’p)f‘:[Y (l. 4\’] (\.“_'n vy & ',) "'I"). (l)l'. (2 )
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X1y X2y ooy Xp are¢ the random coefficients of the canonical expansion
¢f the input signal with the variances

M X3 =i, M[Xi|==d}, ... M[X}=25 (3)

The expansion coefficients will be assumed to be distributed
normally. The degrees Qi, Qa, s+, qp of the expansion coefficients
X1 X2, coey xp in the polynomial approximating the function
¥(t, X1, X2y 0oy xp) are unknown. To a first approximation, we
assume

s -”.=':==2,
q1=q, ¢ (n)
According to the coefficient method, we find the first approximation

to the variance of the output signal from the control system

4 2
DO (4,0,0,....0+ 3 } 10y (6 xyt s (-l (5)
L3 e

Hare

\y‘_‘o 0- on cooy 0)-\!'(‘. X1y L2 00s x9)=3Ao (t)

(6)
for A=, , mxp"o
By (8, xp)=W, (¢, %)= (£,0,0,...,0)
\y‘(t. x.)-‘l’(f. .fl. x-_-. ....x‘,) (7)
for xi=xp= ... mxy =y =, =x,=0 angd x,+0 (8)

Chebyshev-type points are chosen as the concrete values of the random
coefficients {3].
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We increase the degree q in the expansion of the function ¥(t, X1y veey
Xys veey xp) in a Maclaurin series in only one ("large") random coe:-
ficlent X,» 80 that the highest degree of the approximating polynomial
of the function ¥(t, x1, Xz, ..., xp) does not exceed four.
The algorithm in which the random coefficlents are divided into "large"
and "small" is given in Section 2.

- . . " 0‘
ottt de ) 152 Ay 50

oy (9]
iy Y Ve (8, 0) %, o v
4 T )y Xy
Firvhkeow
Ah o= A (6)+ AT (Ot g A5 (1)t

5 AS 0 £ A% () 58 (10)
Al 2) = A O+ (1) ot A;§ (), A::'\- (&) 3 (11)
Auns e K= Ay O+ A%, 0 ek A5, (1)1 (12)
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Substituting Equations (10), (11), (12) in Equation (9), we have

Wit x oo X oo X)=4y (t)‘l‘-“:v ® x\"l‘;— A;s' (¢) Xo

1]
g AP Ak 43O B A O+ 470 504

(X
(13)
+ A* V() s 5 Aw(z).c,,]x,,+2 2 2 [Are O+
k;lvz:;v
hk.(”x\"*'g A"' (‘)-M Ctie
Applying the expectation operator to Equation (13), we obtaln
Dy (£)=D} (1) +AD V(f)=-Ao(¢)+—A‘V(¢)~M (va- A'v(t) M (i)
(14)

+5 A% (M {x)+) 2. (Aun (O0+F A ()M (] M ()
.AV'V
The coefflcients Hk kl(t) are determined from the known formulas ty
[/
using the results of the previous simulations of the control system.
The coefficlents AﬁLU)are salculated using the formulas

A,k ( ) Gx 3 3 { [Av.l. (t. Xvy xp.)""Av.k. (to "“xv"'xkl)'f‘

']'Av,k. (t xv""'x“) l'ttv'..(t xv_“xkl IA\' (’ \\) ‘ ( 1 5)
+hy (8, —~xy)] "5; [Ay, (8 xp)+4y, (2, —x)]

The number of simulations of the control system for one "large" random

coefficient as compared with the first approximation to the variance
D;(t) is increased by

I\';llonx“’4(9—l). (16)

Since the Chebyshev-type optimal polnts were chosen as the
approximation points, some of the terms in the varilance (14) can be
calculated using the interpoclation method
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MOF(,0,0, o1 ur o0 O)= A ()5 AT () M {65+
+LAROM =T E 0, .. Op+ T (0, ... 173204 .o Ot (17)
+¥ (0, ..., ~1T320y....0)p;

Here pg, P15, P2 are the Christoffel numbers used in the normal distri-
bution of the random coefficient with the following values [3]

0==0,666; p,=0,166; p,=0,166. (18)

A partial application of the interpolation method permits us to reduce
the number of simulations of the control system by 2-Kz; Kz is the
number of "large" coefficients in the expansion. If the increase in
the variance of the control system AD;V(t), caused by an increase of
the degree q, relative to the "large" random coefficient X, does not
exceed K-D;(t), then in the case of the random coefficlent x , we
limit ourselves to the obtained value of q,

The coefficient K characterizes the accuracy to which the variance
is determined. It can be, for example, taken as equal to K = 0.05.
If AD;v(t) 2 KD;(t), then one should consider — in the expansion of
the output signal — terns of a higher degree q, in the random coef-
ficient X, Upon finding AD;v(t). we proceed to consider two "large"
random variables X, and xu. For this case, in the formula for the
variance of the output signal )

D} (6)=D} (1)+AD]* )+ AD’» (1) (19)

we add the terms
LAt M), L A% (MM 3
H % x")’.i' k,‘;,(’) (X} M {a7)

whose coefficients are determined using the formulas similar tc
Equations (7) and (8).

116

ey AL




— ~ -

The number of additicnal simulations of the control system in
order to calculate the variance D;(t) as compared with the varilance
Dé(t) is increased by

I\'iou =4(p—2) (20)

The increase in the variance AD*u(t) due to the random coefficient

Xu is compared with the value of K-D;(t). If AD;u(t) < KDg(t), we

limit ourselves to the value ay = U; otherwise the degree yu in the
random coefficlent xu is increased to six.

The increases ADy(t) and degrees q needed to take into account
the successlve random coefficients are calculated in the same order.
For p = 5, p = 10 and q = 4, we give below the necessary number of
simulations of the control system.

Number of simulations using the ] Coefficient method
coefficient method considering without considering
different effects of the expan- different effects
sion coefficlents of the expansion
coefficients

(=]
(=}
-3
o
;-
=]

KLt 1| 2})3/]4

p=5]27 | 30 | 47|51 | 5 61

p==10] 57 | 69 { 117 | 141 | 161 | 177 1 189 | 197 | 201 | 20! 221

Thus, the number of simulations of the control system, taking into
account diff'erent effects of the random coefficients in the canonical
expansion of the input signal, 1s much lower than the number of simu-
lations as compared with the usual coefficient method; or, for the
same number of simulations, the accuracy of the coefficlent method
taking into account different effects of the coefficients is higher
than the accuracy of the ordinary coefficient method.

2. The algorithm for dividing the random coefficients into
"large" and "small,"
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Let us consider the algorithm in which two cvefficients in the
canonical expansion X; and X;, normally distributed, are divided into
"large" and "small."

Using the coefficlent method for Chebyshev-type points
£ )
0,000 0,000

+1732 0, +1732 0
- 1'732 S - l»732 N

we find the components of the first approximation to the variance of
the output signal.

MW, i O W(E, O, 0) 3 A, (6-M () (21)
. - l .

MAPE, O 1)) = W O, 0)+g 4404 {3 (22)

Using the same results o" a simulation of the control system,
we use the interpolation method to find the expectation of the
functions y!(t, x,, 0), ¥*(t, 0, xa) for q, = q2 = U

MEQEE (x5 O) = W (L, 0, 0) oy AL, M () + G0 (0 M )~ 23)
=0, 09, -+ ¥V(f 1,7320, 0)p; + ¥ (2, ~1,7326,, 0)p,

N )= I} ! -
MAWH, 0, xo)y = Y (¢, 0, 0) + 7 A.lrg(‘) M{l+ i A_: é(l)M{_\-_!;-. (24)
= W(t,0,0)p,+ ¥ (4 0, 1,732a))0, + ¥ (£, 0, —1,7324,)p,

We calcuiate the differences

MU, 3, 0)) = A IO, 1, 0) = gy, (25)
AP 0, 50) — MO, 0, x)) ~a s,
(2€)
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characterize the effect of the fourth-degree

axz

The coefficlents a
terms

Xy?

1 |
A O M A0 M )

on the value of the variance of the output signal from the control
system.

The random coefficient with the largest value of a, is taken as
the "large" random coefficient when going from the first approximation
D;(t) to D;(t). The transition from "small" to "large" random

variables 1s done in the descending order of a, -
\Y

The transition from q, = 4 and q, = 6 is done similarly.
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EQUATIONS OF MOTION OF A SYSTEM OF BODIES
OF VARIABLE MASS AS A CONTROL OBJECT

Zh. S. Agayev, B. V. Viktorov, and I. S. Ukolov

A majority of objects in aircraft, missile, and space technology
are mechanical systems that can be represented, if one neglects the
elasticity of their construction, as ensembles of a number of 1ldeally
rigid bodies of variable mass whose relative motion and the variation
of mass are assumed to be known.') Such objects include, for example,
spacecraft with cosmonauts or other movable mechanical masses moving
in them, aircraft of variable geometry, and a number of other objects.

Due to the shifting of the centers of mass of the component bodies,
the gyroscopic linkage between rotating bodies, the shifting of the
axes of inertia, the change of the moments of inertia of the ensemble
in its entirety, etc., the dynamics of the above mechanical system
differ substantially from the {ynamics of an isolated rigid body of
variable mass. Numerically this difference is greater if the mass of
the moving bodies is greater compared to the mass of the main body,
and i1f the movements of the masses are faster.

#The term has the following meaning: the relative kinematics of
bodies and the character of mass variation of each one of them are
known functions of time or, in a more complicated case, are the
phase cocrdinates of another more complicated dynamic system.
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It 1s important to note that, for the particular case of bodies
of constant mass, the equations of this type (only for rotational
motion) were obtained in [1].

The mechanical system considered here has of course six degrees
of freedom. Therefore, it is necessary and sufficlent to set up six
independent dynamic equations of first order, with the variables in
the form of the components of the linear velocity vector of an arbi-
trary instantaneous center of mass and the components of the angular
velocity relative to that center,

In the present paper, the center of reduction is the instantaneous
center of inertia of the system. The scalar equations for transla-
tional and rotational motion are written relative to the instantaneous
central axes.

The hypothesis of near-action [2] 1s used as the initial assump-
tion, as is done in a majority of papers on the mechanics of variable

masses.

The Coordinate System and Kinematic Relations

Let us consider the case when the system consists of the main
body "0" and a number of movable bodies "i" (Figure 1). We shall use
the following coordinate systems:

¢tné — inertial;
XoYoZo — attached to the main body "O0";
xiyizi - attached to body "i";
XYZ -— movable system whose origin coincides with the
instantaneous center of inertia.

Since the relative motions of bodies and the change in their mass
characteristics are considered to be given, the foliowing quantities
are also assumed to be given: ps which is the radius vector gilving
the position of the origin of the XYZ system relative to XoYoeZe; the
Euler angles giving the relative orlentation of the XYZ and X¢YeZo
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axes; W, is the angular velccity
vector of the system xiyizi rela-
tive to X¢YeZ¢; Poy is the radlus
vector giving the origin cf the
system X,¥,2, (1 =1, 2, ...,

n) relative to X¢Y¢Zy; the LEuler
angles giving the relative
orientation of the xiyizi ana
XoYe2y axes; ¢ 1s the angular
velocity vector of the system
XYZ relative to XeYeZ,¥; 2, is
the angular velocity vector of
the system XYZ relative to
xiyizig moreover

p-on(“‘-"“-!‘ (lcl)

Figure 1.
are the Euler angles coordinating the orientation of X1Y121 and XoYoZo.
0f course, a knowledge of the orientation of XYZ and X¢YeZ, xiv‘z*

-

and XYZ uniquely determines the orientation of XeYeZp and xiyizi.

Py is the radius vector giving the location of the origin of XYZ
relative to xiyizi (1=1, 2 ... n); A00 is the radius vector giving
the position of the instantaneous center of inertia "O" relative to
XYz; Aci iIs the radius vector giving the position of the instantaneous
center of inertia of a body "i" relative to XYZ; Poc is the radius
vector giving the position of the instantaneous center of inertia of
the body "0" relative to Xe¢¥eZs; Pic is the radius vector giving the
position of the instantaneous center of inertia of a body "i" relative
to X1Y121‘ m, and m, are the instantaneous masses of the body "0" and
"{," where by assumption

]
1o +,2lm.Au—0 (1.2)

¥Translator's note: Incorrectly given as "Y" in foreign text.
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andg

n
m=my- 3 m; (1.3}
I

mJn and mJi are instantaneous masses of "current points J" forming

the bodies "0" and "i," respectively, where

u
2'"/0“ . Em,-,=m,; sz,,w m. {1.4)
; I im0 §

.

The above points are referred to XYZ using the radius vectors
AJo and Aji’ respectively, where

Spy=xpt+ypud +zn(i=1...0) (1.5)

IXXi’ IYYi’ IZZi’ IXYi’ IYZi’ IZXi are the instantaneougs moments of
inertia of a body "i" in the central axes XYZ. IXX' IVY’ IZZ’ IKY’
Iyzs 1., are the instantaneous moments of inertia of the ensemble
relative to the central axes XYZ.

go 1s the local derivative of py in the XoY¢Z, system, and it
characterizes the velocity of the origin of XYZ relative to the boun-
daries cf the body "0,", a1 is the local derivative of p, in the
xiyizi system, and it characterizes the ve%ocity of the origin of XYZ
relative to the boundaries o{ a body "i"; qo is the local derivative
of qo in the X¢YoZo system; 9y is the local derivative of q; in the
xiYiZ1 system; Qoy is the local derivative of Poy in the X3Y92, system;
Qoy is the local derivative of q.i in the XY2 system; Ro is the radius
vector giving the origin of the XYZ system relative to gng; V = d/dtR0
is the derivative of Ro in the Zng system; d/dt V is the derivative
of V in the fn& system; I, d, n are the unit ve.tors along the XYZ

axes. From the vector triangle in Figure 1, we can write

By == by -+ 0y (1.6)
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Then the local derivative of pp in the XeYoeZo system is
Qo= qu+ @+ %X (1.7)
and
Qo= s+ 0y X py - 0y X (00 3K ) 2 Q4 s (1.5)

%
where Wy is the local derivative of wy in the XoYeZo system equa’ ‘~
the local derivative or‘wi in the XiYiz1 system. Clearly,

dideV =V + (0 + L)XV (1.9)
and
V=Vxl+Vyd + Vzn, (1.10)
where V 1s the local derivative of V in the XYZ system.

The total angular velocity of a body "i" and its angular accel-
eration are equal

wlu"“’u'i‘""[ (loll)

didtwg = d/dt vy + d!dtw, (1.12)
respectively, where wo is the angular velocity vector of the X,YoZ,y

system;

didlwg = o+ 0y X W,
(1.13)

Furthermore,

dldt wy = vy + (o -+ Q)< o, (1.1%)
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where éo is the local derivative of wge in the XYZ system. Finally

(1/(1!(00-74:00'%-901\(‘":- (1.15)

It will be noted that
o, = “.’0-\'1 4= 0.).,)'(1 - ""m:”. (1.16)

where weX, weY, weZ are the projections of we on the XYZ axes. By
analogy, we can also write

d/fdt opp = ayy + QX 0y -+ 0 + (wy = ) X o, (1.17)

where 61 is the local derivative of wy in the XYZ system.

The Force Equation

In accordance with Equation (22) from [3] and the notation used
here, the vector equation of the translational motion of a body of
variable mass, written for the body "0," has the form

M d AtV = F 4 R, v mg|—=d'dtw, £ 3, — (04dey) wy
(2.1)

. ") hd ..
" wGACO 1- ‘Il) .l' 2‘”0 ,:’\:llul.

where Fo 1s the resultant of all the external forces acting on the

body "0." This may include forces which are internal relative to .le

ensemble. K¢ is the resultant of all the external (with respect tc
the body "0") reaction forces. It may also include forces that are
internal »clative to the ensemble.

The suvructure of the expression in (2.1) remains the same for a

body "i." One must only change the indices and write out the totsl
angular acceleration and velocity vectors in mere detail.
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In view of (1.13), (1.14), and (1.15) after a number of trans-
formations, we obtain

mdidtV = Fy+ Ry + my [—dldtag XAy — (wyBe) g + widyf +
+ my f—w X By — (@B wy i Byy] + 2y (wgm)) By —

L ] ( 2 . 2)
— 2m, (wgByg) oy + 1y (Q; + 206X g, - 20,Xq)).

Adding Equations (2.1) and (2.2), we obtain in view of (1.2) and
(1.3)

8
md/dtV = F + R 4 3} m,1—a, XA, — (0,A)w, + wid,,] +

il
L] L]
+2 ’2:, mt(“’o'“l)%-2'2lmt(“‘o"3u) + (2.3)
[ ] : . »
+ (moqo +2 mm) + 205 X (mc«ao +2 "h‘h) +
+2 2 my(w; X q),

Ieel
where

FeFy+ ) F, and R-Ro+‘2}|R,.

fml

It should be noted that F and R do not now contain any components
internal to the ensemble.

Equation (2.35) is a vector equation determining the motion of
the instantaneous center of inertia of the system. If another pcint
is caken as the center of reduction, the structure of the right-hand
side of (2.3) will turn out to be mu:h more complicated.
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Let us project the vector Equation (2.3) onto the axes of the
moving system XYZ. Here in order to simplify the structure of the
scalar equations, we shall represent only the principle terms from
(2.3) in the projection onto the XYZ axes. They characterize the
dynamics of the translational motion of an instantaneously "fixeu"
system. The remaining terms in an expanded form will be written
separately, outside of the equations.

Thus, denoting the additional terms in (2.3) by a vector @, and
taking Equations (1.9) and (1.10) into account, we find

MV ¢ + (0 LIV 5 = (g + 2p2) Vil = Fy b Ry 4@y
MV y (0, + L) Ve = o FQuIV ol = Fyp ot R A Qg (2.4)
MV gt (g + L) Vy = (o T8I Vil = Fypt R+

where woX, WoY, weZ, BoX, RoY, Noz are the components of wo and £y In
the XYZ system; FX’ Fy, Fz, Rx, Ry, RZ’ Q;x, Qly, Q‘Z are cthe compon-
ents of F, R, and Q;, respectively, in the XYZ system.

Let us write the expanded scalar expressions for the vector Q,
in the form of separate groups of terms.

The first term is

n
D=0, X Ay — (0B 0 +ufdy]
jm)

(2.5)
In view of
0y = 0, O X, (2.6)
Equation (2.6), considering (2.1), becomes
0y = i, + 2, X, (2.7)

Substituting (2.7) and (2.5), and considering that
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A,y xl +y dtz,en,

we get .
Z;x m, l("‘“’:y =0y, tw, Qp— ¥z 2t
Flogz =@y Lty @y — i) ycl'*'""?v"'“’fz) L} I+

n
* :2 ' Myl 0y =0y Ryt Q0 0, ) Ky +

(2.8)

b —— .o 2 2
+(w g —wyy 2,ptw,8, — Wy 0,2) 2y F(w)p + ) Yol d+
n
“ .
+ ,2'!‘ Y (O L Qy—uwzuy) Yt
b - o ) ] 2
Hogy =0 Qtuy, ), — W, 2O p) Xy (0} Fapy) 2] 2.

The second term is

L "
2 ?_“ my(wg-w)) By — 2 3 m, (g B)) w, ==
. l=s)
-2 E;l 1 [(0gy 0y F0g g0, 1) Koy — Wop *WyxYer — Wz W,y 2,] I+
]
g 2.
+2 1_2‘41 L O NI B Wog* Wy et == Wy Wy Xpy| Aot (2.9)
)
+2 ) my [(gy gy + g0, x) 2 — Wy 0y Kt —
{os}

— gy @ )y Yer) e
The third term is
8
m',q,,+,2‘ m;.

In view of (1.1) and the 2calar expressions for the local derivatives
of qo and q1 in XYZ

G0 *= ox!+Qoyd +4,2n,
:7: -- é‘xl+ é,yd""},gﬂ.

we ottain the following scalar expression for the third term
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{Mo Gy + Gz Loy — oy 202+
+ él my {?I,x+(90y — )Gz = (R — i) Gy 1+
{1ty (Gop+ox * Ro 2 =0z Cox)+
"
+ :2«:}1 my 3+ @oz — ©,2) 41 — (@, — wyx) Gusl Y+
+ {0 (302 + Goy Gox — Gox - Sop) +

n
* /Ex m [li:z +(Zox = 9x) iy — Loy — i) Quxl} 2.

~

The fourth term is

n n
20y X (”'o% + ,@, mygy) = 209 X g}o gy =
n n
=2 E, My (0y Gz — g+ qyy)d + 2‘2“’”5("’02“70( — e, ) d +
a
+2 2 my (g Gy = By +4,4) 2.
)

The fifth term is

n [
2 ‘2' my(o X ql)"' 2‘21 ml("’ly'q[z—“’lz‘qu)l +

n
o
+2 :}3; My (7Gx — 0,0 q,2) d +
. .
+2 = (@ qpy — Oy Gix) 1.

(2.10)

(2.11)

(2.12)

Using Equations (2.8), (2.9), (2.10), (2.11) and (2.12), one can
mzke a numerical estimate of each additional term in Equation (2.3).
In addition, these expressions can be combined with the corresponding
equations in (2.4) in order to obtain a more exact solution for VX’

Vys Vg
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The Moment Equation

According to Equation (42) in [3] and the notation used here,
the vector equation of the rotational motion of a body of varieble
mass, set up for the body "0" relative to the origin of XYZ, has the
form

;”‘ioA/o X [dldtuy X 810 + (048 0) 09 — uFA ] = My, + Mg, +

+ mo [@/d1V X By + By X Qo+ 29 X (g X )]s (3.1)

where MF. is the moment of all external (relative to "0") forces;

MR° is the moment of all external (relative to "O0") reaction forces.
MF° and MRo may include components which are internal relative to the
ensemble.

The structure of (3.1) remains the same for a body "i." One
must merely change the indices and write the total angular accelera-
tion and velocity vectors in more detail [see (1.11), (1.12), and
(1.13)]. After a number of transformations, the torque equation for
a body "i" will become

‘?.m 70 ity X Agy o (A )0y — wid ] == My, + Mg, +
o+ itV < By - 3y X &l 285 K (wy X )] -+ 28y K
X (o X 40 =2 3y vy (3 X o) — (3.2)
]

— & ’ 2
%‘m 8 X [ X Ag + (wid ) 0 — wih

Adding Equations (3.1) and (3.2), we obtain in view of (1.2)

" n
> q+2) S
ta M3 X q; + 2 ‘%0 Moy X (g X q)) + 2 ’Em Moy X (9, X q) —

" " ‘ (3.3)
-2 lEl 2}} ey (o ) (Agy X wp) = 3} Byl X [y 32 Ayt
£t {wal] I

+ (w3 ) 0 — wid, ],
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7 n
where 2=1202 Mp== Mr, and MR=§”‘J Mg, * The vectors My and My do not
=0 1=0

im0

contain components internal to the ensemble.

Equation (3.3) is a vector relation determining the rotation of
a mechanical system about the center of reduction, in this case the
instantaneous center of inertia. Just as in the case of Equation (2.3),
the structure of the right-hand side of Equation (3.3) will be more
complicated if another point 1s taken as the center of reduction. 1In
particular, it is precisely for this reason that Equation (3.3) does
not contain parameters of the translational motion.

Thus, if MF and MR are functions of time and parameters of rota-
tional motlon alone, Equation (3.3) may be integrated independently
of (2.3). Thus, the total system of equations, composed of Equations
(2.3) and (3.3) and determining the total motion of the mechanical
system, in view of the remarks with respect to the functional depen-
dence of F, R, MF and MR’ is connected ir only one direction. It
should be noted that Equations (2.3) and (3.3) are not total time
derivatives of the momentum and angular'momentum vectors, respectively.
This 1s the pecullarity of the mechanics of bodies of variable mass.

Let us project the vector Equation (3.3) onto the axes of the
moving system XY2Z. In so doing, we shall give the components in the
XYZ system of only the basic terms i (3.3). They characterize the
dynamics of the angular motion of an instantaneously "fixed" system.

T x (00x -+ Qoywoz — Lozony) — (Iyy — 2z) onpwey ~ Iyp (woy —
— wxinz -+ Luganyx — Qoxwez) — Lxz (woz -+ moxmny -+Loxopp —
= Qopwgx) + lyz (0, — v},) = M¢ ¢+ Mey + Qux,

Tyy (or + Syzonx — Qoxunz) — (/22 — [xx) wozoox —

— Iyz (woz — woywox -+ Soxwy — Sopwnx) — Iy (wox +worwoz + (3.4)
+ Qorwoz — Loguvy) + Lzx (03 — wip) = Mry + Mr, + Qur,

122 (w2 + Soxwoy — Qoyoox) — (xx = Lry) woxwsy —
— 12 (wox — wyzupp + Qywoz — Qozooy) = Iz (wor + wozwyy +
+ Lozwy — Qoxwoz) + Ixy (03 ~ wiy) = Mp, + Mp, -+ Q:z,

131




SN e R TR e AP A AL A SIS e &

where MFX, MF s M Z’ MRX, MRY’ MRZ, Q24 Q2y» Qa7 are the components

Y
of the vectors MF’ MR and Q2 In the XYZ system.

The vector Q2, similarly as Q; in( 2.4), includes the additional
components, and expresses the specific features of the mechanical
system under conaideration.

Let us write the scalar expressions for the vector Q2 in the form

of individual groups of terms. The first term 1s

f ] i N3
g}o mybey X gy ‘20 ey X (@ +Q X g)) =

a
"‘Z‘Eom, 1@iz + Quxir — v qix) Yer — @ir + Luzqrx — Qixqiz)2,) L+ (3.5)

n
+ 1)30 my [(qix + Qv qiz — Qzqiv) 2, ~ (‘{lz + Quxquiy —Qurqix)x,} d+4-

n
+ :Z-‘omz [ + Liaqix — Quxqiz) 2es — (@ix + Qivgiz — Quzqir) y) 1.

In (3.5), it is possible to make a change of variables with the
help of Equations (1.1) and (1.7) - (1.8). The second term is

n
2§mwxmxm-
"m0

n
=2 ’20 iy [(ooxqry — worqix) Yey + (0oxgiz = warqux) 2] { +
n ) ( 3 . 6 )
-2 ‘Eo iy [{wer iz — wozqiy) 2er + (woyQix — woxquy) Xgf] d +

"

"
+2 423 1y [(Wozgix = woxquz) ¥ey - (WogQuy — »1qu2) Yei] 1.

If it 1is necessary, one can make a change of variables also in (3.6).
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The third term is

n
2 ‘21 mbe; X (9 X gy
. By analogy with (3.6), we obtain

n
2 Z_,-“ m; [(oixqiy — ©1yqix) Yoy + (wixgiz — W2q1x) 2] | +
n
-+ 2’2l m, [(GNYqIZ bt “’IZqIY) 2+ ((D[yqlx _“’lqul’) x“] d 4

n
+2 lEl My [(izQux — wixqiz) xe, + (wr2qiy — Wirqiz) Yl .

The fourth term is

"
-2 gx ? my, (wh;)) (BpuXw)=—2 él Uxywoxwz + Iyz (wozwiz —
= woywiy) = Lzxivoxory ++ 0.5 (I 221 + L xxy = Lyys) woyorz —
=05 xx1 + Irvi = L2z wozopy) 1 — 2é rzimogyox + Izx; X
X (Woxeix — wozwiz) — I xypavywz + 0,5 (1 xl.;ll-l- Tyyi = lz2) wyzuny —
= 05(Iyvi + 221 — I xx;) woxwig) d — 2 é‘ Uzximzury + Ixpi X

) -

X (woyany — woxwix) — Jyz,0070;x -+ 0.5(Iyvi + Iz = Iy x) onxugy —
= 0.5z + Ixxi — Iyyi) woyar) n.

The fifth term is

n
L
- IZl ; By X fw XA, + (0,8))0; — wih ] =
n

== — 3 [Txxe(onx -k Cipwiz — Qiqoiy) = (Lyys = Lzz)) wipw,z —

ln.

— Lxya(ory — wixoz -+ Qzx — Quxwiz) + Tyz (wly — o?,) --
a
- /zxr(w/z + vty 4 Qo — Q)] 1= ) [y (ory -~ Qzory—

let

- -I\’“’:Z) = ez = Lxxi)onzonx — lyzi (012 — wpywry + Qiyoy—
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=Qiyurx) -+ 125 (w2 — b)) = Iy (0rx+opywiz+ Ly wiz—Ligeony )il —
ix =Yz

n
- 2 Mzalwiz + @50y — DQiywyx) = (Lxxi— {yvi)orxory —1 250 X
R}

X (wix — ooy |- Qywz = Qizwiy) + Ly (0, — wiy) —

= Ivzi (o + ozox + Qizw,x — Qi x0;2)] n.

By summing the terms (1) - (5) [see Equations (3.5) - (3.9)] using
the same unit vectors 1, d, n, and by including them in (3.4), we

obtain a system of three differential scalar equations determinirng
the rotational motion of the system under consideration.

Using Equations (3.5) - (3.9), we can make a numerical estimate
of each additional term in Equation (3.4). In order to obtain a more
accurate solution for Jey, woy and wegy, the above expressions should
be complemented by the expressions in (3.4).

If the scalar equations are set up with respect to the principal
central axes of inertia, then of course the structure of the equations
will become simplified. The transition from the éomponents of the
vector wo in one coordinate system to another can be made using the
matrices of direction cosines.

Supplement: The orientation of the XYZ system relative to the
stationary g¢nf system is given by the vector Rs which determines
the origin of XYZ relative to Zn§, and by the Euler angles y, ¢, and

Y.

The relationship between variables Vx, Vy, Vz and the components
of V in the ¢n¢{ system is the usual one: it is formed by means of
the directlon cosines expressed in terms of the angles ¢, v, y, and
yields three equations. Since the projections of the total angular

velocity vector of the frame XYZ are (wy + Qo)x, (wo + Ro)Y, (wo + o)y,

respectively, the variables y, ¢ and y must be expressed in terms of
these projections using well-known relations. This shows the differ-
ence between the structure of the given kinematic angular Euler equa-
tions and the analogous Euler equations used in the mechanics of
bodies of constant mass: 1in the latter the projects are equal to

Woys Wey, Wez.
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It will be noted that by recalculating the projections Woys Woys
woy 1n the Xo¥oZo system (attached to the body "0"), one can use the
ordinary kinematic angular equations. 1In this case, one of course
assumes that the angles ¢, ¥ and y specify the orientation of the X
XoYoZo axes (and not XYZ). Any of these approaches will determine
the last three deficlent equations.

In obtaining Equations (2.3), (3.3), and thsir gcalar analogs,
the vector quantities pq, Pys dge» Aic’ 9, Qs qo, Q4 etc. were
used as parameters. However, pocs Poys Wys Pyos and their derivatives
are of course the starting vector quantities which are determined by
the specific relative kinematics of the bodies, distribution of mass
in them, rate of change of the mass, and other design factors. Similar
remarks can be made also with respect to the moments of lnertia of the
bodies, It is more natural to consider the latter as given functions
of time relative to the XoYoZo system (for "0") and xiYiZ1 system (for
bodies "1i"), but not relative to XYZ. These quantities can be easily
converted using well-known relations.

Conclusions

As a result of the present study carried out in a fairly complete
form (consldering the dynamics of the variability of mass characteris-
tics and configurations), we obtained a mathematical model, in parti-
cular, of a flight vehicle as a control system which can be used in
the syntheslis and development of control systems.

We have shown the fundamental difference between the dynamics of
systems of variable geometry and mass and the dynamics of bodies of
constant mass, and this must be taken into account when designing a
number of objects.
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ON THE PROBLEM OF SYNTHESIZING SEARCHLESS SELF-ADJUSTING
CONTROL SYSTEMS FOR AIRCRAFT

V. D. Yeliseyev

It is advisable to design self-adjusting control systems by
minimizing a certain statistical performance index. The performance
index for aircraft should usuclly include the error determining the
accuracy of the system, and the coordinates characterizing the energy
losses and the accelerations acting on the craft.

The control system may contailn the following adaptive blocks:
blocks of identification, blocks of self-adjustment, and blocks of
learning. After the system is used many times, the blocks of learning
make 1t possible to establish and use the average functional relation-
ships between the adjusted coefficlents and the readings of the flight
regime sensors.

In practical applications, the control system may be considerably
simplified. Thus, the learning block may be absent, and the functional
relationship between the adjustable coefficients and the regime sensor
readings may be fixed in the design stage. To reduce the level of
complexity, the identification blocks may also be removed. However,
the self-adjusting blocks can be realized quite easily if one uses

the gradient method in conjunction with simplified models of sensitivity

(1l.
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Thus, in the case of a
single-loop system, in a num-
ber of cases the sensitivity
model may be taken to have the
form of a stationary filter
maintaining an energy balance
between the high and low error
signal frequencies, which is
proper for an optimal system.
The possibility of using a

. ) stationary filter is related
igure 1. A scheme for optimizing the

error produced by the angular velo- to the stability of the

c¢ity circult for the aircraft system’'s pass band or adjusted

fuselage. values of the regulator
wd — drive operator with a rigid coefficients.

feedback; wa — aircraft operator;

wang — operator of the angular

velocity sensor; L — operator of -
transforming filter; W, — operator  Self-adjusting system, using

of the correcting filter; f — wind a statlonary fllter as a

disturbance resulting in a deflection sensitivity model, shows that

of a control surface; dotted lines —

links necessary in designing a non-  Uhe adjusted value of the
amplification coefficient

linear sensitivity model.
depends less on the spectral
composition of the input signals than in the case of an optimal system.

A study of a single-locp

We shall give a simplifled procedure for designing a single~loop
self-adjusting system with one adjustable coefficient assuming that
the basic loop operates quasilinearly. First, we find the structure
of the optimization scheme (Figure 1) to calculate the current value
of the gradient %% of the performance index I, taken, for example, in
the form of the absolute value of the transformed error signal

ol ‘)21 .
a,&"o—;i signe,,
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where I = €,;; p is the adjusted parameter; €, = L(p)e; L(p) is the
transfer function (operator) of the transforming filter; € = x - y is
the error signal, where x is the input, and y is the output from the
system; %ﬁ} is the sensitivity function of the signal €, to the vari-
ation of the parameter u, obtained using the sensitivity model.

For a given type of random or determined signals, the optimal
values of the adjustable parameter u are calculated in all flight
regimes using the adjJustment law %% = -A%%, where A 1s a sufficlently
small parameter.

By properly choosing the transforming filter, we can eliminate
the low-frequency components (if the system is non-astatic), change
the optimal value of the coefficient u (stabllity margin), and reduce
the effect of noilse.

A part of the optimization scheme consisting of the transforming
filter, sensitivity model, and the multiplication unit may be called
the spectral analyzer, since the signal produced by it depends on the
ratlio of the power of high and low frequencies.

When constructing a real self-adjusting system, the nonstationary
model of sensitivity may be in many cases "frozen" at an adjusted
value of u in a certain average regime of flight, 1l.e., 1t may be
taken in the form of a stationary linear filter. If the accuracy of
adjustment is insufficient ia certain regimes that differ greatly
from the chosen selected regime, 1t 1s possible to use nonstationary
filters by introducing a readjustment of the filter parameters in the
function u (for example, in the sensitivity model, one can change the
analog of the coefficient p and simultaneously the analog of the con-
trol surface efficiency coefficient which is proportional to it).
Thus, the structure of a self-adjusting system 1s similar to the
structure of the optimization scheme (Figure 2).
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Figure 2. A scheme of a self-adjusting system controlling the
angular velocity of an aircraft.

1 -— transforming fllter; 2 —— a model fillter of an optimal basic
loop; 3 — multiplication unit; 4 — filter-amplifier; 5 —
integrating unit.

{%y}

Figure 3. An example of a multi-loop self-adjusting system
involving an adjustment of the coefficient of each loop.

W1 — operator of the open drive depending, for example, on

the hinge moment of the control surface; W2 — angular velocity
cperator of the aircraft; Wy — operator which transforms the
angular velocity into either an angular deflection or a linear
acceleration; wan -— operator of the angle or linear acceleration
sensor; 1, 2, 3 1§ self-adjustment blocks,

After selecting the parameters of the analyzer of the self-
adjusting system, one must assure the desired dynamics of the self-
adjusting circuit, in particular, one must select a coefficient A
which can be adjusted depending on u and on the average value of the
signal meodulus €;.

It will be noted that, to simplify the system, one may sometines
use the control surface deflection signal, for example, instead of
the error signal.
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Figure 4. An example of a two-loop self-adjusting system with
the adjustment of the damping loop coefficient and a functional
readjustment of the outer aircraft control loop coefficient.

1 — nonlinear converter; 2 — inner loop self-adjustment block.

This procedure may be extended to the case of multi-loop control
systems for which 1t is advisable to use a separate self-adjusting
circuit for each loop (Figure 3). Here the self-adjusting circuit of
each loop uses the error of its loop and contains a simplified model
of the sensitivity of this loop. Calculutions of a two-loop system
controlling the angular motions of an aircraft show that the adjusted
value of the internal circuit coefficlient is in many cases practically
irdependent of the value of the outer circult coefficient. In addi-
tion, often the outer circuit ccoefficient may be readjusted depending
on the inner circult coefficient, which requires only one self-
adjusting circuit (Figure §4).

Thus, the design of a searchless self-adjusting system may be
based on the property of optimal systems which maintain the energy
balance of the frequency components in the error signal and can be
carried out using the gradient method with simplified sensitivity

models.
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A CRITERION FOR COMPARING ADAPTIVE CONTROL SYSTEMS

V. I. Kozlov and N. I. Savkin

Recently there have appeared many different schemes of adaptive
control systems, which sooner or later have to be compared.

As we know, a comparison of systems reveals the advantages of
some and shortcomings of others. The work done to eliminate those
shortcomings may bring the systems being compared to the same level.
For example, historically the systems with constant adjJustments of
the regulator ceased to satisfy the technical requirements, and were
replaced by parametrically lnvariant adaptive systems. Due to the
method for designing high-accuracy structures, developed by Professor
Meyerov, M. V., and the rational physically realizable structures,
developed by Professor Sokolov, N. I., systems with constant adjust-
ments have acquired "coarse" properties with respect to the change in
the parameters of an object. In this connection, it would be inter-
esting to compare the above adaptive systems with constant adjustments
with the self-adjusting systems.

Unfortunately, the experience accumulated thus far in the area
of the appraisal of adaptive control systems 1s grossly inadequate,
due to the complexity of the systems themselves and the existing
criteria for their comparison.
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SKB-3 MAY* madea comparison of such systems when designing an
adaptive stabilization network for controlling the aircraft bank
channel:

1K
Yan V=g io1= 5 T Ty (1)

Here K = const (2) and the time constant is T = 0.1 - 1.5 sec,
depending on the regime. The desirable low-frequency transfer function
of the system corresponded in all regimes to the aperiodic tlock 7;%;7
with the time constant Tc = 0,15 sec.

The system was designed in the constant-adjustment and self-

adjustment versions using the frequency characteristics of the elements. ‘
Simultaneously, an attempt was made to find a criterion for comparing i
adaptive systems that would be simultaneously fairly simple and !
objective. During the design, a comparison was made of: a system
with constant adjustment and a relay auto-oscillatory self-adjusting
system; a relay system operating in the forced oscillatory regime,
and a system on the boundary of stabllity.

The designed adaptive systems in various versions satisfled the
requirements placed on them. However, it turned out that the infor-
mation about the frequency characteristics of an object (aircraft,
drive, and sensors), which 1s necessary in designing the systems,
varies from system to system, and i1s as follows:

o
1

100 Hz — for systems with constant adjustment;

o
'

30 Hz — for a relay self-adjusting system in a forced
oscillatory regime;

e e ——— o ———— i e %

o
{

25 Hz - for a relay auto-oscillatory self-adjusting o
system;

0 - 15 Hz -~ for a self-adjusting system on the boundary of
stability.

*Translator's note: This designates the Special Design
office-3 of the Moscow Aviation Institute. !
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The slightly larger amount of information needed by a self-
adjusting system in the forced regime, as compared with a relay auto-
oscillatory system, 1s due to the fact that the frequency of forced
oscillations Wy of the first system is chosen to be larger than the
frequency of the auto-~oscillations wa of the second system. This is
how one achieves the greater stability under interference in the
relay system.

These results lead us to conclude that the amount of information
about an object that is needed for its deslgn may be utilized as a
criterion in comparing adaptive control systems. This eriterion will
enable us to find systems whose design (design of correcting blocks)
requires information in the frequency range in which the specific
features of an object begin to exert influence. We are talking about
features that were not taken into account by the differential equa-
tlons describing the elements of the system.

For example, at high frequencies the bending oscillations of an
alrcraft become important, and the transfer functions for the object
as an "ideally rigid body" cease to be valid.

At bigh frequencies also, the transfer functions of the system
drive may turn out to be invalid due to additional lags introduced by
parameters of the drive that were not considered before.

Finally, there are frequency bands in which the frequency charac-
teristics of the drive — obtalned for example by means of experiments
-— may no longer be utilized in the design of the correcting devices
using the ordinary methods, since the real drive may exhibit nonlinear
behavior. Of course, a system — for which the design of the correc=-
ting devices was made in the frequency range for which one has no
reliable information about the frequency characteristics of the drive
— may in practice turn out to be very sensitive to the neglected
small parameters of the drive.
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Thus, we propose a criterion for comparing adaptive control
systems in the form of the frequency range in which the information
about an object, necessary for the design of correcting devices, 1s
concentrated.

This criterion permits us in the design stage to exclude those
systems which require information about the control object in the
frequency region in which that information 1s practically inaccessible.

The criterion enables us to see if it is necessary to consider
certain small parameters of an object, and gives limits within which

the effect of those parameters must be conside. ..,
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DESIGN OF THE STRUCTURE OF A DIGITAL SELF-ADJUSTING SYSTEM
WITH A MODEL FOR AN AIRCRAFT AND ITS IMPLEMENTATION IN AN
ON-BOARD DIGITAL COMPUTER

N. D. Litvinov

Design of the Structure of the Control Program
for the On-Board Computer

Let us consider a control system consisting of a continuous part
(composite object) and an on-board digital computer.

The continuous part will include an interpolator, usually of
zero order, an amplifier with the actuator (control surface machine),

and the control object which has varying parameters.

It will be assumed that the control object is linear and has a
given structure,

Diglital sensors will be used as th- sensors of the data cn the
coordinates of the object and the control signals.

The control signals involve specific and random inputs.

The continuous part or the composite object may be described by
a linear difference equation with time-dependent coefficients.
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We shall consider quasi-stationary
processes for the cases when the para-

nﬂQLmu I 1 glnl meters (coefficients of the equation)
It of the composite object change con-
~ &in) tinuously and slowly or stepwise,
ané then remain constant.
X (i~ yinl

It 1s required to design a

Figure 1, A »lock diagram of searchless adaptive control program
the control program.

1l — control program; 2 —-
composite control object;

§ -~ program representing
the model of the desired

closed system. teristics of the closed system.

We shall reoresent the control program in the form of a control
program — generating the control signal in the on-board computer,
and the optimization program — which optimizes the closed system by
minimizing the index used to evaluate the performance of the entire
system by adjusting the coefficients of the control program.

The control program may be represented in the form of a block
diagram (Figure 1).

Let us determine the structure of the control program.

The equation of the control object may be written as

k=1 =
ylntkyt Magnyy (ati) = 3bj (nyu (n k), (1)
h "

where Yn is the output from the control object, u, is the control
signal generated by the on-board computer.

For the basic regime of operation of the control object, we can

assume that the control coefficlents ai(n) and bi(n) are constant
and given,
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applied to the composite linear non-
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Let us determine the structure of the ccntrol program using a
variational method [1]. For this purpose, we obtain a difference
equaticn of the control program from the conditions:

a) stability of the closed system;

b) astatism of first order relative to external inputs, i.e.,
exact generation of a step Input in a steady state motion;

c) optimality of the system in the sense that the quadratic
estimate of the transient error process is minimized.

For this purpose, we write Equation (1) for the error in the
closed system, and take the first difference of both sides of the
equation. Setting x(n) = x¢l(n), we obtain the following equation:

I.g‘i ;5\:1
‘_',)-l.’:t ('¥+$)=-‘~—I_‘._;,b,u (n+j), (2)

where

Gi=0s =0, (Ar=l, Gppy=20.,=0) (s=1,2, ..., k1) (3)

Au (n)==u, (n), (4)

in which the initial conditions of Equation (1) are replaced with
certain new conditions corresponding to the action of the perturbation

k
p ()= Y ayx,0 (n4144),
¢ (n) z‘r'f'oa‘xo {140 (5)

vhere

o (n+Y)e=Al (1Y) (6)
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We represent Equation (2) in the form of an equivalent system of
first-order difference equations in generalized coordinates in terms
of the error with certain new initial conditions

e, O==epty (=01, ... k1) (1)

Now we can formulate the variational problem stating that it is
necessary to determine the structure of the control program for which
the closed sy3tem, described by the system of first-order difference
equations, moves from point 7 to the origin

e, (0)=0 (8)
while minimizing the functional

o fh+l
Fu)=3 ( PR AGE (n))- (e, f=const), (9)

#1200 \ Pl

which represents a generalized quadratic estimate of thc error
transient process.

The problem is variational and involves a conditional extremum.
However, 1t can be easily reduced to finding an unconditional extremum,
which -—— when solved employing the usual methods — will lead us to
an optimal control law in the form

ktl

uy (n)= E\'"e“ (n), (10)
sl

where vu are fully determined coefficients expressed in terms of the

coefficlents of the equation for the composite control object in the

coefficients “u and 8, which in turn are determined using the method

of the standard difference equations [1], starting with a given per-

formance index of the transient error process in the closed system.
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Substituting in (10) the expressions for eu(n) and u;(n) in
terms of e(n) and u(n), we obtain a difference equation which will
determine the structure of the control program. The structure is
stable, since it was determined from the condition in (8).

The coefficients 1n the difference equation of the control
program will be adjusted by the gradient method with the aid of the
optimization program.

In order to estimate the approximation of the desired process,
glven by the model, as compared with the real process, we Introduce
a performance index of the adjustment in the form of the functional

1=2P (E)-p(2)s (11)

where P(E) is a certain difference operator, E is the forward shift
operator, ¢(e) is the differentiated function of the quadratic form
in the deviation €(n).

Fo. the gradient method of adjustment, the variation of the
coefficlents of the control program is giver by

cr et Deey (o) 4-h 2, (12)

where 1 specifies the adjusted parameter, Ai are coefficients which
generally depend on the deviation of the position of extremum and
gradient components [2].

It will be assumed that the coefficients Ai have been selected
in such a way that a steady adjustment process is obtained.

We obtain the followlng expression for the gradient for the case
of the above block diagram (Figure 2)*

il ( d } aw, (£,
“h—-_‘_i’.-.-mm-"gé—"ww. a,0) (1= (F, @, O)] ey o2 ). (13)

- —— .

¥Translator's note: Foreign text has no Figure 2.
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where ¢(E, a, ¢) is the operator of transformation of the closed
system, dependent on the adjusted coelficients of the control pro-
gram, Cy, and the time-dependent coefficients of the control object

o, wn (E, ¢) is the operator of transformation for the control program,
wob(E, a) is the operator of transformation for the composite object.

Since for the deviations €(n) equal to zero we have ¢(E, a, c) =
¢(E), where OM(E) is the operator of transformation for the model,
the algorithm for adjusting the coefficients cy of the control program

may be written as

d
i (4 D=t (=1 (8) 0, (BY 11— 0 (BN iy (10}

dW, (2, ¢
:<—4%;—lxmy

The algorithm in (14) represents an optimization program, and
is described by a nonlinear difference equation.

To form the algorithm in (14), we can use the intermediate
coordinates of the closed system., For this, we use the relation

(=& o, ) 5 (=e (), = eie (15)

Thus, the control program, the optimization program, which
adjusts ccefficien:s of the control program, and the program with a
model of the desired closed system will altogether constitute a
searchless adaptive control program for the on-board digital computer.

A Method of Implementing the Control Program

In those cases where a composite control object is described
by a high-order difference equation, the structure of the control
program is also of high order. From the equation of thc optimization
program, we can see that 1ts order will be determined by the orders
of the equations of the model and the control program. Of course,
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for a given computer speed the elementary time interval of the control
program will be very high, which will affect the accuracy and quality
of control. On the other hand, for a given elementary time interval
cf the control program, we need an on-board digital computer of very
high speed in order to realize the program, and this is usually
impossible to achieve in practice. Therefore, other ways of realizing
the control program are necessary.

As one of the possible ways of realizing the control program,
one can use the following method.

Due to the fact that one considers quasi-stationary processes in
which the coefficlents of the equation for a composite control object
change continuously and slowly or stepwise, and then remain constant,
by analogy with continuous self-adjusting systems one can assume that
the rate of the process in a real closed system is higher than the
rate of the process of adjustment of the control program coefficlents,
which will be determined by the length of the range in which the para-
meters of the composite control obJect stay constant. Therefore, one
can organlze the operation of the closed loop which includes the con-
trol program and the composite control object, using the length of
the elementary time interval selected from the conditions determined
by the requirements on the accuracy of control, by the dynamic proper-
tles of the composite control object, and the frequency properties of
external inputs. The operation of the optimization program and the
program of the model of the desirable closed system may be organized
for the length of the elementary time interval determined by the
length of the interval in which the parameters of the composite con-
trol object stay constant. Of course, we have to impose the condition
that time intervals be multiples of the elementary time interval thus
obtained, due to the discreteness in the deviation e(n).

When the operation of the control program is as described above,
one will meet the requirements for accuracy of control, and will

obtain lower requirements on the speed of an on-board digital computer.
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Conclusion

In designing a searchless adaptive control program for an on-board
digital computer as applied to a linear nonstationary object, the
design must be such that the requirements on accuracy and quality of
control will be met. The above method of realizing the control pro-
gram for multiples of the elementary time interval enables us to
meet the requirements for accuracy and quality of control in a wide
range of the control object parameters.

References

1. Kpyroxo IL Jl. Bapnaunonnsie smetoast ciiTesn cnerem ¢ Lidpontistn pery-
antopasn, Hsn-no «Conerexoe patios, M.,.1967 r.

2. Kpaconcxuft A A Junamuxa nenpepsininsx CamMOHACTPAURGIOUINXCA Cli-
ctem. Quamorrus, 1963 r.

152

PPy e




A DESIGN OF A SELF-ADJUSTING AUTOMATIC PILOT
A. A. Kotenko and V. A. Serdyukov

The behavior of the rigid fuselage of an object may be approxi-
mately described by the equation

;‘.o’*'aol'\'o"‘anvo‘:"ao:ﬁ (1)

The blocks characterizing the elastic oscillations of the fuselage
are represented by equations of the type

Viapvta=and (=12 0 (2)
where
n
V::E\". (3)

We assume that the dynamics of the control organ is described by the
equation

b b5 -9,
(4)
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In Equations (1), (2), (3), (4) we used the following notation:
v 1s the pitch angle of the elastic object; vy is a component of the
angle v characterizing the pitch deflection of the rigid fuselage of
the object; vy (1 =1, 2, ..., n) are components of the angle v charac-
terizing the elastic oscillations of the object; a4 (1=1,1, ...,
n, J =0, 1, 2) are time-dependent coefficients; 6§ is the output of
the control organ; 6c is the input of the control organ; b is a con-
stant coefficient.

It is assumed that: 1) during flight the dynamic characteristics
of the elastic object undergo changes (coefficients aiJ change arbi-
trarily with time, but slowly enough so that within a given time inter-
val one can take aiJ = const, which is the condition of quasi-station-
arity); 2) measuring apparatus has zerc inertia; 3) the coordinates
Vys i=0,1, ..., n may be measured.

It is required to design a self-adjusting autopilot that will

compensate for the effect of the changing parameters of a rigid object
and the elastic oscillations of the fuselage.

The control law is as follows
n
b= (D+4-b) [k=c— 120 (%), D+ky,) \'/] (5)

Here D = é%, g 1s the control signal, kJo’ kJn’ ks are adjustable ]
coefficients.

We substitute (5) in (1) end (2), taking (3) and (4) into account,
and obtain

n n
N N IR kzaug—Eankh \'I"‘E @k (i==0,1, ...y 1) (6)
im0 jro .

We approximate the desired dynamic characteristics of the basic loop
of the system "object-autopilot" by a standard filter (model) of the
form
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Here ay (1 = 0, 1, 2) are constant coefficients of the model.
We set

”
tmyev, = Nyj—y
M 7:;01 M (8)

We shall sum Equations (6) and subtract (7) from this sum. In vicw
of (8), we obtain

. - -— n -— L 1 -
& -0, efuye= (E kaa,,—-a,)g—_\:, S (aiy—ap+naghyg)y +i0 (9)
a0 im0 4220

We assume that the coefficients of the control law (5) are adjusted
by the algorithm

ﬁumwu.hsmh.unuj=0J. (10)

1=~ Ps.

We represented (9) and (10) in matrix form

e =Ae—B,

k =2y, (11)

where

SRR

" 1 a
(2} kaal:—a))g— 2‘, x (ann—ay4napky)) \'w"
i) |20 w0

A (12)
e A R

l Ry Vns

ks | P2

The adaptation algorithm (10) will be formed using the condition of
the existence of the Lyapunov function for System (11). The Lyapunov
function is assumed to have the form

1 n : “n .
Vemne'Ped B N ay—a;F naggh)? \ o
I:JUI%‘O 11— dy -+ najkyp) +7~:%o(01:k: ay) (12)
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Here Kk, A2 and X are certain coefficients, and P is a square positive
symmetric 2 x 2 matrix; €’ 1s a transposed matrix.

In view of Equations (11) and the condition that the coefficients
ai‘1 (1=0,1, ..., n; J =0, 1, 2) be quasi-stationary, the derivative
of (13) will be

a
V = ue' Me -2 (Py -+ Pyst) [(2 altkr—;t) g~

i=0
{ a N .

1 =x n
2 -0, k .
+ ff:‘,o‘,zjo(au aj-nyy :1)(§0Ml-)'v,1<0
Here M is a 2 x 2 negative matrix. The elements of the matrix M which
are specified arbitrarily are related to the elements of the matrix P
in (13) by the equation

A'P4+PA=M. (15)

If the real parts of the roots of the characteristic equation
1A=AE =0 (16)

are negative, then according to [2] to the definite negative form
€'Me in (14) there always corresponds a definite positive form €'Pe
in (13). Consequently, in order for the adaptation process in the
"object~autopilot" system to be stable, it is sufficient that the
following conditions be satisfied

] - ¢ / -
% (Pyye+ Pyyt) [(I};]oauk.—a.) R— )20 ;__‘,D(au—a,-+nauku) of”] +

n - ] 1 » - (1 )
+ 2%z ) (B1ky—ay) (T’San) ¥, +20 Y, 3 (a—ap+nokp) X 7
=0 . 0 310 frr)
[
¥<0
x(,%""") <
Since changes in the devlations of the coefficients are independent
-— n -~
(@17 —aj—naj:ky)), (},‘, al:"':"‘aa). (=0, 8, ...ny j=0, 1)
. 120
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we have the following sufficient conditions for the inequality in
(17) to be satisfied

n
% (Pn2t Put) g=—hs (}:{,an)"ﬂ
{==

* (Pyye+ Prt) off =3 (};n@u)_‘l’l_l-_ L (18)
‘-0. l' veey I8} lﬂo' lo

We take

A,—

Eige]_

Aom ommeme—— |

s
Eﬂ nap

Then the algorithms for the adjustment of the coefficients of the
control law (5) become

Ky=—x (Pye4 Pyst) g,

Kipme (Pyg Pty ofl), =0, 1,...,8 [=0, 1. (20)

In (20) the factor « may be arbitrary (including equal to infinity).
In this case with the coordinate KiJ or K, restricted in absolute value,
we obtaln a relay switching of the coefficlents of the control law

Ky= —Bsgn (Pye+Pyt) sgn g

. (21)
Kij=Bsgn (Pyye+ P} sgnuf® i=0, 1, ...om; j=0, 1.

According to the design of the algorithms (20) and (21), the self-
adjusting loops for the system "object-autopilot," designed according
to (20) or (21), assure the stability of motion of the output relative
to the output of the standard model, and consequently, assure the
invariance to within € of the dynamic characteristics of the system
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"object-autopilot" with respect to the changlng parameters of the
object and the elastic oscillations of the fuselage.
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ADAPTATION OF SYSTEMS WITH CONSTANT ADJUSTMENTS
M. I. Savkin

We know of adaptive systems in which a change in the parameters
of the control object is compensated for by a corresponding change
in the adjustment of the regulator. If a system contalns a nonsta-~
tionary object and it includes special correcting devices with con-
stant parameters, one can reduce the range of its performance indices.
As a result, such systems with constant adjustment acquire properties
that are analogous to adaptation.

This will be shown using an example of a simple system. Here,
we assume that conditions are satisfled so that the system may be
regarded as quasi-stationary.

Suppose we are given the transfer function of the object

Kl." Kl'"
W’“*’_7F%;IT’ the amplification coefficient "¢, and the time counstant

Té"that satisfy the following inequalities in the design regimes (1, II)

K5 KRG ThoT

Suppose that we must select the structure and parameters of a
sequential correcting device wx(p), such that the cutoff frequency
wI’ I of the system oI' II(p) closed by a single negative feedback,
will be greater than or equal to a certain desired value wys where
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Ky Ky
<O <=
T, SRS

' K-K}
if wK(p) = K is taken such that —7f5- wys then we obtain
0',"( )“ 1
IS T (1)
where
¢ 1
s LW
ng 1. KK

® -'FT-_:!{" »(0‘.

In this case

1 Il 1
o' Ky T

i (2)

Here the performance indices of system (1) will differ greatly depen-

ding on the design regime.

K(Tp+1), KK

However, 1if Wlp)= =gt 7 = Ty=og
0

1 i
Taa —7:;—. >,

then
len . ol KKy -~
=0, O =T T

w T
0
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By properly selecting the value of a (for example, based on the per-
missible stability margin), one can bring the cutoff frequencies wI
and wII closer by a factor of a, and thus achlieve the same effect in
the range of the performance indices of the system. This effect may
be amplified if one takes a "closing" correcting device

(T30 2kaTop -+ )
Wkip)= (Tf[" 28, T\p- 1) ( b )

The example considered above 1is illustrated in Figure 1. In conclu-
sion, we note that, if at the input to the system one places 2 low-
frequency filter with constant para-

a.d3,¢(deg.) meters
'YAQ . o7
___;{70‘\\: 1 J/ ' \
—7@}ﬁ\ ~ﬂt?%n,/ ¥y (P)=TmTessT (5)
m. \\“ x
7j§§t“¢\§W W1 /sechere T 2 (2 - 5)uwg™", then the
~ ‘ﬁ?“\ \\\\* system thus obtained will have
\\w \\ \‘\:> AN approximately constant dynamic
;f\\ y \\ O\ characteristics. It is important to
" \;:Jl__ Ttssoe note (see the preceding article)
" *~'\\~__/’ that such a system with "closing"
10 alop correcting devices requires an
150 identification of the object Wo(n)
180 in a smaller frequency range than a

Figure 1. Logarlthmic frequency
response characteristic of the such devices.
system.
Thus we have considered a way of designing a single~loop system
with constant adjustments that possesses a property similar to

adaptation. This method can be applied to stabillize the dynamlc

161

system with fixed adjustments without

-_—e e -




o

properties of multi-loop systems with constant adjustments. In this
case, the "closing" correcting devices must be put in each loop of
the system that includes given elements with variable parameters.
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control
network
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input
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object

upper filter
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