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INTRODUCTION

The az:niversary conference, celebrating the 100th anniversary of

V. I. Len'in's birth, devoted to the topic "Adaptive Systems" took

place at the Moscow Aviation Institute on March 26 - 27, 1970. The

conference was organized by the Chair of "Aircraft Automatic Control

Systems" at the Institute.

The conference attracted a large number of specialists in the

area of adaptive systems. It was attcnded by professors, graduate

students, engineers associated with the Laboratory Chair, and repre-

sentatives of a number of scientific research organizations.

The present edition contains lectures and communications that

were delivered at the conference. They deal with various aspects of

tle rybernetics of aircraft.

Zh. S. Ageyev, B. V. Viktorov, B. V. Kirsanov, N. A. Shokolo

took part, in the preparation and the editing of the present volume.

FTD-HC-23-1018-72 V



INTRODUCTORY GREETING

Academician B. N. Petrov

Comrades!

Our country celebrates a momentous anniversary. One hundred years

have passed from the birth of V. I. Lenin, the founder of our party,
the creator of the world's first soulalist nation.

V. I. Lenin made an enormous contribution to the development of

Marxism, and to the development of social and natural sciences. A
clear illustration of Lenin's deep foresight Is included in his
famous statement: "The electron is also inexhaustible like the atom,

nature is infinite."*

Lenin blilt the foundation for the scientific management of
government and social development. He devoted a great deal of atten-
tion to scientific and technological progress, and to the scientific

organization of work. He emphas:zed that the proletariat should take

advantage of bhe best elements in what has been created during the
centuries of the development of man's civilization: " . . . Everything
that has been conquered by science, technology, all the improvements,

the entire knowledge of specialists, all this should serve the united

proletariat. "0#

'V. I. Lenin, Complete works, Vol. 38, p. 26.

"V. I. Lenin, Complete works, Vol. 18, p. 275.
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In an outline of the plan of scientific and technological

development, written by Lenin in April of 1918, he placed a whole

series of the most important tasks before the members of the Academy

of Sciences.

Lenin's GOELRO plan was born in a difficult period for the young

Soviet state. It was, however, not only the first state economic plan

designed for a number of years, but also the first state plan of scien-

tific research. The plan was full of optimism. It was based on a

deep belief in the primary role of electrification as a basis of

technological progress and development of the national economy.

Our nation, guided by the Communist Party, has been following

Lenin's path for over 50 years already. The first socialist state

created a powerful industry, leading technology, and advanced agri-

culture. Soviet science has flourished as never before, and in a

number of important fields it has taken the leading role in the world.

The Soviet people made a great contribution to the progress of modern

science and technology. Our nation showed man the way to the universe,

* and the way to a peaceful use of atomic energy. Our country is a

leading power in aviation. i

The development of aerospace technology in recent years has

introduced a whole series of completely new problems in the theory

and technology of aircraft control. The traditional methods of automatic

flight and attitude control of aircraft are no longer sufficient to

satisfy the increasing demands on control systems. In order to solve

the control problems arising in that area, it is necessary to use ideas

and methods that one can call "cybernetic" in the f'll sense of the

word. The development of microelectronics and computers, the creation

of control devices enables us to realize effective control algorithms

and to create automatic control systems capable of controlling both an

individual aircraft and their complicated combinations.

The wide range of flight conditions, the great range of effectiveness

of control surfaces, and the increasingly corplicated tasks facing air-

craft, gave rise to the emergence of a new class of control systems,

*Translators' Note: This designates State Commission for Electrification
of Russia.
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namely adaptive systems. The latter are capable of providing the

required control quality under changing flight conditions, with the

parameters of the controlled objects varying within a wide range.

Such systems, as we know, include self-adjusting automatic pilots,

systems of variable structure, parametrically invariant systems, and

others. The theory of terminal control has progressed a great deal.

The foundations of the theory of a new class of systems, systems of

coordinate-parametric control, are being created. Control theory makes

effective use of the methods of game theory and statistical decision

making, operations research, theory of mass servicing, methods of

linear and nonlinear programming, and many other theories included in

modern theory of large systems.

The theory of optizwil control has developed to a great extent.

The idea of optimization is the fundamental and decisive concept in

the design of aircraft and power plant control systems.

This conference was arranged in order to provide a comprehensive

view of some aspects of the work being done in the area of the theory

and methods of design of adaptive contro.. systems, and to outline the

fundamental objectives in further development of this important class

of modern aircraft control systems.

It is my pleasure now to open this anniversary conference of the
Chair of Automatic Control Systems associated with the Moscow S.
Ordzhonikidze Aviation Institute, devoted to the theory and methods

of adaptive control, and dedicated to the 100th anniversary of V. I.

Lenin's birth.

FTD-HC-23-1018-72



IMPLEMENTATION OF ADAPTIVE CONTROL ALGORITHMS

BY MEANS OF ON-BOARD DIGITAL COMPUTERS

Alekseyev, K. B.; Teryayev, Ye. D.;

and Ukolov, I. S.

The solution of present-day control problems requires the use of

digital computers in control systems. At the present time the problem

can be solved If digital computers are used.

The use of computers in control systems assumes particular

importance and timeliness in connection with the technical execution

of adaptive (self-adjusting) control systems. In this area one is

faced with the specific problems of studying the dynamics of automatic

control systems that include computers, the problem of determining the

basic characteristics of on-board digital computers, and their inter-

action with the dynamic characteristics of aircraft.

In the present report, we discuss certain problems that arise with

adaptive control algorithms in automatic control Eystems.

An adaptive control algorithm will be defined as a changing

program of operations that takes into account the actual state of the

surrounding medium, the parameters of the input and output coordinates

of the object, and optimizes in a certain sense the value of a given

functional of the quality of the control system.
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Similarly, an adaptive control system will be defined as a system

that realizes an adaptive algorithm in the sense described above.

On-board digital computers offer a great deal of promise as far

as their application in aircraft control systems is concerned. The

effectiveness of using on-board computers in control systems depends

on whether it will be possible to use radically new methods of solving

the control problems, methods that would result in better performance

parameters for a control system as a whole.

The use of on-board digital cowputers is based on the following

considerations:

a. Great logic and computational capabilities, permitting the

solution of diverse and complicated problems with practically unlimited

accuracy;

b. Stability of operation within a wide range of working

conditions;

c. High speed, permitting the simultaneous solution of several

control problems;

d. High level of adaptation and self-control of the control

systems.

On-board digital computers offer great possibilities to the

designers of control systems when they are involved in designing com-

plicated adaptive control algorithms. The reliability of control

systems is always improved both as a result of a programmed correction

of errors in the operation of certain reserved elements of the control

systems, and by controlling the apparatus directly during its operation.

In the design of control systems involving on-board digital

computers, we are faced with the following technical tasks:

5!



1. Analysis of the structure of control systems for the purpose
of finding those versions that possess highest reliability and are

least costly;

2. Determination of rational requirements on the on-board

computers;

3. Organization of efficient parallel programming of Individual

problems solved with the aid of an on-board computer;

4. Execution of the on-board computer programs in real time,

while satisfying the requirement that different levels of reliability

be achieved when solving problems of various degrees of importance

(i.e., various degrees of influence on flight safety), and while

satisfying; the time requirements of various computer users;

5. Taking advantage of the multichannel structure of a control

system and an on-board computer In order to use programming to increase

the reliability of the most important control algorithms;

6. Debugging computer programs using general-purpose digital

computers and simulation programs;

7. Debugging computer programs using an analog-digital (hybrid)

unit.

An on-board digital computer used as a component of aircraft

control systems must perform a large number of operations needed to

solve the following functional problems:

1. Navigation and control of aircraft in various stages of

flight;

2, Collectioa end processing of information about the

surrounding medium;

6



3. Solution of auxiliary problems; control of the operating

conditions of individual units, selection of optimal flight conditions,

etc.

The basic feature of control systems and control based on the

use of on-board computers is the possibility of flexible, adaptive and

automatic changes to the control program and the possibility of making

lecisions based on an assessment of the flight situation.

On-board digital computers may be classified according to

different basic characteristics which assign them to a given class.

One possible classification is based on the location and purpose
of the on-board digital computer within the control system:

a. Command computers, performing strict control according to

a preset program, and independently of the course of the controlled

process;

b. Compensating computers, uset in loops of strict load control;

c. Information computers, where the information about the state

of a system is processed, received by man, and finally used to control

the system;

d. Control computers, used in a closed control loop. This

form of application is basic and most promising. Their location in

the control system and their tasks may be quite diverbe.

The use of on-board digital computers in control systems poses

particularly great demands on such parameters of a computing system

as weight, volume, reliability, required power, range of operating

temperatures, radiation resistance, transmission of vibrations, etc.

In addition, the on-board computers must satisfy a number of specific

demands. A computerized control system should: 1) operate reliably

without preventive maintenance and servicing during the entire period

of effective service, i.e., during the flight of an aircraft. This

7



means that an on-board computer, consisting of thousands of components,

must have an acceptable service life (in the case of an on-board com-

puter which cannot self-repair, It Is equal to the time interval up to

the first failure), 2) the range of problems solved by the computer

will usually remain the same during the entire service life of the

machine, 3) input and output operations must be carried out in real

time, and the time intervals must be itrictly specified. An on-board

computer must be capable of being used for a wide range of problems,

since it may become necessary to change the scale of the telemetry

data, change the calculations needed to prepare the initial data, etc.

When synthesizing a computerized control system, the following

parameters are given:

1. Program running time;

2. Speed, defined as the time needed to perform a short

operation;

3. System of commands;
4. Bit size of numbers;

5. Storage capacity.

Program running time is determined by the maximum permissible

length of the elementary tiae interval for the most dynamic control

algorithm realized using the on-board computer.

Programs for on-board computers have a complicated structure and

consist of subprograms that perform individual control tasks, and

of standard subprograms that perform typical algorithms used in control

and processing of numerical information; a subprogram which adjusts

the special and the standard subprograms In accordance with data

(obtained from the outaide) on the working conditions, the time, and

external control signals, and an Initializing subprogram that reads

the initial codes into the operative memory.
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The type of on-board digital computer is determined by:

1. Complexity of algorithms;

2. Speed;

3. Accuracy required in algorithms;

4. Allowable weight and size;

5. Ease of adjustment, so that other problems can be solved;

6. Freedom from interference;

7. Possibility of controlling the control system.

The demands placed on on-board computers, as well as on their

structure and the structure of the input and output units, depend on

the specific problem and algorithm.

Depending on the type and purpose of an aircraft, an on-board

comp,,ter may perform the following tasks:

1. Data processing;

2. Computation of controlled quantities;

3. Generation of control signals;

4. Control functions.

The tasks in this group, in particular the navigational algorithms,

require a higher accuracy of calculations. In this case, the computer

word length should be no less than 20 - 24 bits, and the speed - at

least 5 - 8 thousand operations per second.

Crntrol of the on-board equipment by means of a computer consists

of the Algorithms of automatic control and those for predicting defects

"' .t cat. occur while the basic problems are being solved. In order to

solve the control problems, one needs increased capacity of the fixed

and operative computer memories.

Certain characteristics of foreign on-board third-generation

computers are given in the table on the following page.

Normally, an on-board computer should guarantee the realization

of a large number of algorithms, and thus it is important to first

consider those algorithms that constitute the largest computational
load (n):

9
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A
" A+ (1)

where A and L are the numbers of simple arithmetical and logical

operations.

Those algorithms include primarily the algorithms used in data
processing and the computation of controlled quantities.

The structure of the on-board computer should be maximally adapted

to the composition of the on-board systems, the problems being solved,

and should be optimal in the sense defined in the design criterion.

It is clear that it is necessary to have a certain number of possible

structural versions.

Unfortunately, at the present time we do not know of an established

procedure for solving this problem, even though there are some

approaches that permit us to formalize the problem.

The increasing demands as to the minimization of energy losses

Incurred in orienting flight vehicles on trajectories with a long

flight time (n the order of one year) force us to seek new, more

economical methods of controlling the motion of the vehicle about its

center of mass. One of these methods involves extensive control of

the attitude, and can be realized by using a computerized control

system. The method consists of selecting the moments applied to the

vehicle relative to the axes attached to it in such a way that the

vehicle is set in mction about the axis of equivalent rotation (the

Euler axis).

As compared with existing methods. the method of extensive control

enables us, other conditions being equal, to solve the basic problems

of orientation with much smaller energy losses (_ by a factor of 2)

and much more rapidly (_ by a factor of 2 - 3). However, extensive

control involves a relatively large number of computations, which

assumes that an on-board computer is used. It Is characteristic that

the use of an on-board computer in systems of extensive control is a

necessary condition for their technical implementation. Moreover, the
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advisability of the use of an on-board computer is justified by

significant energy gains and higher speed, which permits us to lengthen

the active life of a vehicle, and improve its tactical and engineering

characteristics without additional expenditures.

Let us consider the principal problems involved in the construction

of computerized systems of extensive control, focussing ou'r attention

on the physical content of the problem and the computer functions

resulting from it.

The formulation of the control problem is as follows. Suppose

we are given the initial (t a 0) and the final (t - T) angular atti-

tudes of a vehicle, determined by means of modified Euler angles T, v

and y, subject to a given set of constraints.

We must determine a program of the time dependence on the bounded

control moments MI, Ma, Ma applied to the vehicle relative to the axes

attached to It, which are such that the vehicle is taken from its

initial attitude to the final one during:

1. a minimum time Tmp

2. a given time T with minimum energy losses.

We assume that the vehicle is an ideal rigid body, and the effect

of" external perturbations on the angular motion of the vehicle in the

course of control is negligibly small.

I

Figure 1-2.
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Without giving detailed calculations, we shall only state that

the problem of extensive control has an exact analytic solution.

This fact is of great importance in constructing the computer functions.

Let us analyze the sequence of operations performed by the on-

board computer. The geometry of the problem is shown in Figure 2.

We shall give the computational operations necessary to determine the

resulting angle of turn *, direction of the Euler axis Z V [vi, VZ, vS]

(in the system Ox1 , x2, x3 and OXI, Xz, Xs), and the sign of the angle

of turn, sgn *. Using the initial measured values of p, e and y, we
determine the matrix of direction cosines a a faiy II; i, *' a 1, 2, 3,
Iy

which we then use to calculate

?-arc cos (ai,+ u.+E - 1)I ' I
a, 6:v: al

Sgn Psgn , , (2)a, b ' wai

The last operation sgn * involves the largest amount of labor.

Xt

Axis of the
gyroscopic moment.

Figure 3.
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Knowledge of the direction of the Euler axis gives us the
direction of the kinetic moment vector and t."ie axis of the gyroscopic
moment (Figure 3).

The directions of these vectors can be found from

S

If

/tlool
I~moioJ,1 (4)

then

]; (5)

where

Here is are the unit vectors of the attached coordinate system. We

xclte that the unit vector of the Euler axis is 1,- AV

Knowledge of the orientation of 1 tk, and Zr enables us to

specify the direction of I"jpmi, of the axis of the resultant

moment vector M, and write implicito expressions (in terms of the

angle 0) for its direction cosines (Figure 4).

Pa (a, + 6a tg 0) cos 9

a47-; I IZ,-(.)

((1
I " Ina
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Figure 4.

Denoting the maximum allowable value of the moment applied to
the vehicle along an attached axis by Mms and the maximum value of a
direction cosine by B., we find that the maximum length of the vector
M is equal to

- Mon

Then the equations of motion of the vehicle can be written using the

conditJon that the dynamic 'eaction of the vehicle to the applied

.-ontrol montent be compensated: The equations of motion are:

Jf asCbStg'M (8)III , t Ios -,, I g a I,,

sill . M,, -", sA 7(9)

Tne subsequent computational procedure used to synthesize the system

is given without explanations.

Synthesis of the System

0) 1- dt-nin (10)

J are t~iJ for1)()

15



or Jm-~ arc th (12)

T.- act h .El+ arc thythi--V'J ror 2) (3

For 0 <t < tj and 1)

(14)

aln

and 2)

*am m + as SIfft (7

For t, t < T and 2)

uapa (18)

r~s~l+bg+j assin'jx (I - 11)1)
Ml- Ail, V.a'(-~t*J (19)

arnd 2)MAftM.db. (20)

r- ~ t a, hix - a(1 t) (21)

1- 1.2 x -arc tgthns, (22)
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b) Iva= ndmin (23)

(24)

LII f, - (25)
i2

For t, t < tI + t2
M M "L Mh2nt (26)",2  thFl

MI MO. thnt.b 1-1,2,3 (27)

Xe

oble
*9 conro

-cn "Y

comp. comp. ,

compmp RS--4 .

Figure 5. 
I

The existence of the analytic solution of the problem involving

the control of a spatial turn maneuver makes it possible to use an

on-board computer as a command computing unit (Figure 5). Such a use

of the computer excludes any feedback (rigid program). However, this

does not mean that feedback coupling will occur in the controlling
part of the system and when eliminating small angular deviations.

17



BCK~bDPBC t sye. comp. part

BCKPBCK -D blc cmutn knMai prmerso 'to
BCDP - block computing themdyaic parameters of motion
BCC?! - block computing the programmed values of the

control moments

Figure 6. Structure of command on-board digital computer.

Functions of BCKP
VJPO addition opeorations( fnmultiplioat~ozio eiations

transfers to memory (commandts))

r

4, Z Jftty,

4 1 171-
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When performing a turn by 4 = 1800 the effect of the external

disturbances may result in an inadmissibly large error in the final

attitude of the vehicle. Therefore, it becomes necessary to introduce

a correction, which can be effectvd by maintaining a programmed angular

velocity of the vehicle (Figure 6). Then the computer functions are

somewhat widened, bt the purpose of the computer rentains the same.

, al isHm

Figure 8. BCDP function.

As for its structure, an on-board computer containing arithmetic

and logic units may be subdivided into three blocks which are designedfto compute:

1. Kinematic parterrs;

2. Dynamic parameters;

3. Programmed values of controlled moments.

A general characteristic of one of these blocks is shown in
Figure 7. We can see that extensive control using simple computing

devices is impossible. The functions performed by the other blocks

are shown in Figures 8 and 9.

19
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Figure 9. Functions of BCCM.

An imprnrtant question arises in the control of the attitude with
adaptation. This type of control occurs when the moments of inertia
or a vehicle either change 'tignificantly or are to be determined in
the course of the flight. A stL.dy of this problem shows that in this
case it is also advisable to retain the above-mentioned function of
the on-board computer that ensures optimal control. However, there
appears a new computer function which involves the problem of identi-
fying the object. It Is characteristic that this function is performed
by the computer in a closed control loop.
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ELEMENTS OF ADAPTIVE AUTOMATIC CONTROL SYSTEMS

Braslavskiy, D. A. and Yakubovich, A. M.

Adaptive control systems are constructed using both general- and

special-purpose elements. The general-purpose elements, used to con-

struct both the adaptive and linear control systems, are in the form

of linear converters. They include data sensors (angle-angular

velocity, altitude sensors, etc.) and amplifying converters (operation
amplifiers, power amplifiers, differentiators, integrators, etc.).

The special-purpose elements are mainly used in adaptive control

systems. They Include the following basic elements:
- test pulse generators,

- narrow-band filters, which select signals in a given narrow

frequency band,

- multipliers,

- integro-multipliers,

- functional multipliers,

- quorum elements.

The basic requirements placed on the above elements are given in

the table.

Pulse generators and narrow-band filters can be constructed using

electronic amplifiers and threshold elements in combination with RC

networks. Pulse generators and narrow-band filters having a higher

21
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No. Element Basic Requirements

Frequency range 2 - 30 Hz
1 Pulse Generator Frequency stability 2 - 5%

Amplitude stability 5 - 10%

Resonance frequency 2 - 30 Hz
2 Narrow-band filter Frequency stability 2 - 5%

Amplitude stability 5 - 10%

Null level accuracy 0.2 - 0.5%
3 Multipliers Multiplication accuracy 3 - 5%

3 dB level frequency band 100 - 200 Hz

Integration time constant 5 - 50 sec
4 Integro-multiplier Null level accuracy of input 0.2 - 0.5%

Multiplication accuracy 15 - 20%

Null level accuracy 0.2 - 0.5%
5 Functional multiplier Accuracy of functional conversion 5 - 10%

3 dB level frequency band 100 - 200 Hz

Accuracy of conversion 1 - 2%
Quorum element Threshold accuracy 5 - 10%

stability of characteristics (1 - 3% as to frequency, 3 - 6% as to

amplitude) are constructed using electromechanical devices with

mechanical moving systems.

The multipliers are constructed using various techniques which

involve both direct and indirect transformation of signals. It should

be noted that the multipliers for closed adaptive systems can be

constructed more simply than others, since the requirements on the

accuracy of multiplication can be much lower. Integro-multipliers

which perform the operation z(t) a y(t) * fx(t)dt, where y(t), x(t)

are input coordinates, are used in systems used with a standard model.

The integro-multipliers may be constructed according to various

principles. As an example we can mention an electrochemical integro-

multiplier which is called a ministor. Low temperature stability is

the ministor's basic drawback. We shall consider two important and

promising elements in more detail: the functional multiplier and

the quorum element.
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Functional Multipliers

The functional multipliers form the product of the input coordinates

Yi...Y entering through N channels and of the functions f,(x)...fN(x)

of the coordinate x, so that the output coordinates of the channels,

z ... Z, are equal to
Z, -Yl. fI(X) .... ,Z.=yN..fg) (1)

The most common functions used in automatic control systems include

algebraic and transcendental functions of the forms x I e-x, ln x,

1 - xa , (1 - x)a , where a is an integral or fractional positive number.

One of the most promising versions of the functional multiplier

is the discrete dynamic version El, 2] with analog input and output,

and pulse signals used in all intermediate transformations.

A functional multiplier (Figures 1 and 2) consists of a control

channel and N channels. x is the input to the control channel, and

Yi is the input to the ith channel. The unit consists of the following

subunits: linear dynamic network, comparator, pulse keys, delay lines,

and memory capacitors. Let us analyze the operation of the unit.

Suppose that in the control tract in a linear dynamic network the

process y(), U occurs involving a discharge of the capacitor C,

charged by the standard voltage u0 > x. At a time Tn when the

equality _-'- is satisfied, the comparator sends a fixing pulse.

This pulse goes through the delay line and forms the tact pulse. The

tact pulse at a time T closes the pulse switch through which C, is

then charged by the standard voltage U0. The process is then repeated.

The interval between the tact pulse and the fixing pulse is

r In (2)74 -- T in -

Simultaneously with the charging of C, by the tact pulses through
the pulse switches, the capacitors Ci in the linear dynamic networks

LN21 become charged (or discharged). The amplitude to which the capa-

citor in the ith channel is charged is proportion&l to yi. The

transient processes ( in the channels are periodic. Their
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start coincides with the start of Phe process tu0*ef in the control

channel. At a time T n the fixing pulses connect the output capacitors
C r to LN21...LN 2N' through the switches PSI, ... 0 LSN, storing the

signal from the output of LN21 in the i th channel equal to

where 48 - aICTJ wYIs us(T 1)= y8.u at n4.

IIIT In ~- m/I(X) (4)

X-

IZIP

TOi

P8 CRI

Figure 1.

1. control channel; 2. channel 1; 3. channel N;
4. fixing pulse; 5. comparator; 6. LDN*;
7. pulse switch; 8. tact pulse; 9. delay line.

Using various transient processes ui(t) in the channels, we
-1

o)btain various f 1 x). For example, if *a1,t)u.erT thenl f I(x) - x

and z i(W, for 7~i X1- ,f(~si-,t ~ -2)

*LDN designates linear dynamic network
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Figure 2.

Quorum Element

The quorum element [3J is an analog logic unit with N inputs yj
.. Y (where N is odd), and one output y equals

forjY-YI<A&1 -im1 ... m Iy-yjI>Aj; w m+ 1,...NV, , where in>-L,A, and
jare threshold values. In the special case when Ai-jm)

y - med (y, .yNv),
i.e., is a median of the signals Y1...yN. According to [4i), Equation
(5) represents an algorithm which is close to being optimal for adap-
tive systems. A diagram of the quorum element for N electric signals
is given in Figure 3.

Figure 4J.
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I
The basic unit of the quorum element is in the form of a current

clipper. The volt-ampere characteristic of the current clipper is

shown in Figure 4. Let us analyze the operation of the device for

N = 3, assuming for simplicity that the load resistance is RL n 0.

Three modes of operation are possible: averaging, blocking the circuit

of one of the signals, and generation of a median.

If the input voltages ul, u2, us are such that

Ui+U-+Ua I<uo, 1- 1,2,3,
then the balancing currents in the circuits, I, 12, Is, at.e smaller

than the limiting current I0. In this case the current clippers are

linear resistances, and

3

Let us consider the mode In which circuit 1 is blocked. Let

U1 >112> U3 and

Un - it I> UO (6)

I"2-nul<; lu-uo< . (7)

When the inequality (6) is satisfied, the current in the circuit

1 attains the maximum value I0. This current splits into identical

currents in circuits 2 and 3, equal to y • In addition to , the
channels 2 and 3 carry an additional current due to the fact that u2
is different from us. If the condition (7) is satisfied, then the
resultant currents in the circuits 2 and 3 will not reach the maximum
value I00 The dynamic resistance of the nonlinear current clipper CCI
is practically infinite, and the operating currents in the elements
CC2, CC3 remain in the region of small linear resistances. The cir-
cuit 1 is blocked. The device averages the signals ua and us, i.e.,

U swU+u

The mode in which a median is generated will occur for'ltjI- 1> "u,
jU - 1 >,40 ; ni-ui>t0 . Suppose that 14>1 2 >u 3 . Then the balancing

current 10 is shunted through the circuits 1 and 3, and /,. --]. In
the second circuit there is no current. Since CC, and CC, are

saturated, the dynamic resistance in those circuits will be close to
infinity. Since the resistances in the circuit 2 are small, u = u2.
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It will be noted that the quorum element has been constructed according

to a generalized structural diagram given in [3). [3] discusses

circuits of quorum elements for the case when input signals are in

the form of displacements and pressures.

In conclusion, we note that a quorum element is a new basic

element of adaptive automatic control systems that enables one to

solve several independent problems, including:

- realization of the above-mentioned majorizing function,

- construction of adaptive systems of variable structure,

- construction of low-frequency filters with small phase

distortions (quorum filters).

Fundamental Problems and Prospects for the Further

Development of Elements of Automatic Control Systems

The principal trends in the work in progress are:

1. The use of new physical principles enabling one to simplify

elements and to increase their reliability. In particular, the use

of optical-electronic and electrochemical converters in the construc-
tion of multipliers and integro-multipliers seems to offer promise.

2. Unit miniaturization of the elements of automatic control

systems.

The miniaturization has two aspects:

a. A reduction of the weight of the on-board equipment in

order to improve the performance parameters of flight vehicles;

b. An increase of the capacity in order to apply the method

of functional redundancy to a greater extent.

The miniaturization of purely electronic elements is based on

the use of integral monocrystal and hybrid-film microelectronic

circuits.
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The miniaturization of the electromechanical elements is in some

cases based on thv use of new technological processes without changing

the construction of the element itself. In other cases, one has to

develop new designs of the elements, and sometimes even switch to new

physical principles.

3. Transition from analog control systems to discrete ones with

the maximum use of universal or specialized computers.

As digital computers become more sophisticated, and as their

speed and reliability increase while the size becomes smaller, it

seems that analog systems will be replaced by discrete ones. With

a transition to digital computev0s, the nomenclature of the converting

elements used in automatic control systems will be greatly reduced,

but in all cases we shall have to retain the data sensors and the

I/O units.
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CERTAIN PROBLEMS OF THE ADAPTIVE BANK
CONTROL OF A FLIGHT VEHICLE

Ageyev, Zh. C.; Viktorov, B. V. and Ukolov, I. S.

The bank control of the effective aerodynamic quality of a flight

vehicle as we know presupposes a flight with a constant value of the

equilibrium angle of attack which is achieved by proper centering.

The control of the effective aerodynamic lift-to-drag ratio is

achieved by turning the vehicle about the air velocity vector by a

given bank angle. In an emergency situation it is advisable to change

the bank angle of the vehicle with an angular velocity on the order

of 15 1/sec.

However, a number of studies (for example, [1]), have shown that

it is advisable to control flights by simultaneously changing the

angle of attack and the bank angle. In such a system, a change in

the angle of attack substantially modifies the effectiveness of the

bank regulator. In addition, there are several well-known dynamic

problems of controlled lateral motion, for example, due to the fact

that the air velocity vector and the vector of the controlling moment

of bank nozzles do not coincide. These circumstances may necessitate

the introduction of additional (including also adaptive) structural

couplings in the control system.

This article is devoted to certain aspects of this problem.
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Figure 1.

Figure 1 is a diagram of an aircraft. The aerodynamics of flow

over an axisymmetric body includes the peculiarity that in any motion

of the aircraft relative to its center of mass, due to the symmetry

of the field of aerodynamic forces, an instantaneous plane of aero-

dynamic symmetry appears. This plane includes the linear velocity

vector V, the geometric axis of symmetry, and the total aerodynamic

force vector R. It should be noted that the control of the attitude

of the aerodynamic symmetry plane is the basic objective of controlling

the aerodynamic lift-drag ratio of aircraft, by varying the bank angle.

The flight trajectory in the atmosphere of vehicles of this type

is characterized by very small angular velocities of the linear

velocity vector V. Therefore, in the study of the angular motion of

the vehicle it is convenient to use the semi-velocity system XYZ as

the reference system for measurement.

Let us determine the attitude of a vehicle (or in other words, the

attitude of the attached systed' XIY1 Z1 ) relative to the following semi-
velocity system of the Euler tnrles K, a and * (Figure 2). For this

combination of angles, we cleariy have the following kinematic

relations

-L (U), sin 'i -WS" Cos ;(i

- Cg S in T- WV Cos T); (2)

-wz, cbs ?+w,, sin T.

(3)
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Figure 2.

In writing the dynamic equations of angular motion, we make the

following assumptions:

- the inertia elli.psoid of the vehicle is sufficiently close

to a sphere, i.e., it is permissible to consider the centrifugal
moments of inertia and the differences of the axial moments of inertia
to be of first order of smallness in the axial ones;

- the characteristics of the servo engines do not have any

delay and are linear; their firing does not disturb the dynamics of

flow over the vehicle;

- the direction of the linear air velocity vector and the

magnitude of the ram pressure do not change in the process of a
command turn;

- the vehicle is symmetric in weight and aerodynamics;

- the hypothesis of stationarity is valid;

- specific damping of the vehicle is negligibly small.
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In accordance with these assumptions and the location of the
servo units (see Figure 2) the approximate dynamic equations for the

vehicle become

I, = - C,, (a) .YT'qSe sin y + VIrp. + bI, (14)

C (a) [Cd N)- r sin + , (5)

(C. (a) [Cd ( -W c os- C, (7) FT) qSe + AIf, (6)

.here

IX1, Yi, Iz are the moments of inertia of the fuselage in the

XYZsystem;

Cn (a) is a coefficient of the normal component of the

aerodynamic force;

CI (a) is a coefficient of the tangential component of

the aerodynamic force;

XT, YT are the dimensionless coordinates of the center

of mass;

Cd is the dimensionless coordinate of the center of

pressure;

q is the ram pressure;

I is the length of the vehicle;

S Is the area of the midsection;

.. c'M are the components of the control moments in the
Yx X1Y1 Z1 system axis.

Equations (1 - 6) describe the total anqular motion of the

vehicle. An analysis of this system of equations shows that a
statically stable attitude of the vehicle is characterized by a =

-0ba and € * 0 for any x. This means that the bank motion of the

vehicle for a -a bal and 0 a 0 is similar to the rotation of a rigid

body in a vacuum
= : y,,(7)
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From the condition of ideal turn (performing obvious transfor-

mations of (I - 6) for a = -abal and 0 = 0) we can determine the

magnitude of the angle of placement of Jet engines needed for bank

control tg"c = L.tg 6. (8,

The structure of the bank control unit in the simplest case should

contain the self-equalizing and angular bank velocity signals, i.e.,

MY* = , ( -(Y.,(9)
However, a realization of the signal x is difficult in practice.

Instead of x one normally uses a signal from the PS oriented properly

relative to the fuselage. In this case, the instrument signal is

e=cosay + 1cos(_yc? -a). (10)

The dynamic properties of the channels a and 0 in accordance with

the ideas of bank turn require the introduction of active damping

M--k 4w2  (11)

and MX = y (12)
It should be noted that for € = 0 from (3) it follows that

(13)

The information about the rate of change of the angle € may to a

first approximation be obtained by differentiating the ratio of

lateral loads
tv? To= (14)

or the ratio of the angular readings of a pendulum suspended at the

center of gravity at the axis of rotation, the collinear geometric

axis of symmetry of the vehicle.

It should be noted that the effectiveness of damping in the €

channel (the location of the servo units is shown in Figure 2) does

not depend on the value of the angle of attack.

A study of the controlled angular motion of aircraft (system of

equations (1 - 6)] shows that the latter can be decomposed into "longi-

tudinal," described by Equations (3) and (6), and "lateral," described

by Equations (I - 2) and (4 - 5).

33



Let us consider the lateral motion of aircraft. For this purpose,

let us represent the motion in the form of a system of differential

equations solved for the higher derivatives R and ,*

-A + B (k, ( - - 4 Cos a,, + ; COS (a., - (15)

- + C (k (xt - k2 f cosz , + (16)

+ COS ay" - a6)1} -

where
A Cs()lCd()"-XIqSe

I1,n et8 .

iM
, s~~~~ ~~ #I sin ,/• t ,c, - ,i

SCa (GfYTqS¢ + Cn () Ct9 C96 [Cd,(4) -- XT] qSe |

When condition (8) is satisfied, the * motion does not depend on the
bank motion since
iC - .-. ay _ et .6sinay, . O.

Therefore when abal is constant, it is necessary in practice to

make sure that the vector Re follows V, so that Equation (8) can

be satisfied. Then, as we know, the effectiveness of the bank

regulator remains constant.

Otherwise the motion of the channels becomes coupled in both

directions. The character of the motion becomes very complicated,

and the easily visualized physical considerations used in the construc-

tion of the structure of regulators and a selection of their parameters

become invalid.

In addition, the peculiarities of the partial motions of the

system, including the well-known effect of the bank regulator on the

dynamics of the * channel for M. a 0, can be clearly explained by the

*System (1 - 6) is solved for R and under the assumption that
X bal' a a 0, 0 is small (i.e., sin * * and coso 1), and

Mx , Mz, Me are determined from (9), (11), and (12).
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the--y of differential equations with small parameters which multiply

the derivatives [4]. We shall limit ourselves to the explanation of

this effect, setting for simplicity ?=z.

Considering the relatively high frequency of the eigen motion with

respect to €, it is permissible to assume that w is "large." Therefore,

:=- is below always considered a small parameter. Let us represent

Equation (16) in the form of the system: $ =z,
( kz= -- C+tOSC {-C-k 2 y- )+zcos], (17)
where ==A.

System (17) contains a small parameter V which multiplies the

derivative of z. In addition, the system also contains a small para-

meter on the right-hand side of the second equation, where it enters

in an irregular fashion: at p = 0 the right-hand side is'discontinuous.

Following the procedure used in [3],the substitution of the variables
I.T=u is performed, and then System (17) becomes V4z,

pz =-u+C {-k-A-k 2 [Acos (a).c- a)+Z cos *]). (18)

In turn it is advisable to write Equation (15) in normal form. Thus

A= AIu+B( kj -k2 [ACos (*C1--)+z Cos 2YC)• (19)

Let us consider the dynamics of the coupled system (18 - 19), con-

sisting of two "fast" (18) and two "slow) (19) equations. In this

we shall confine our attention to Just the "fast" partial motion,

generated by System (18), considering the fact that it is coupled

with (19).

Let us introduce a new independent variable ("fast" time) T - t/P
du

and make the substitution in (18) and (19). We get ji z

dz(18'
dz= -u+ vC {-k,-A-k 2 [A COS --~a)zCOS 2.'lI) (18')

and dn

-Aliu+B± {-k,'-k 2 lACos(YT-20.)+z.Cus2),,}. (19')
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The report [31 gives and justifies a procedure for an approximate

analysis of the "fast" phase of the solution of systems such as (18' -

19'). With certain improvements the "slow" system (19') is replaced

by another one which can be obtained from (19') by performing the

following iterations:

1. "Slow" variables x and t on the right-hand side of (19')

are set equal to their initial values (here - zeroes), i.e., (19')

is replaced by dx=0,

rdA

dr Asu-B k2.cos?.mZ. (20)

Therefore, taking into account the null initial conditions and

the first equation in (18'), A,()-0 and A,(,)Apu(E)dZ-Bpk~cos=¢ ,.,(:)Ib

2. "Slow" variables z and A on the right-hand side of (19')

are set equal to x;(,) and A,() , i.e., System (19') is replaced by
dx, j ea-=, 1 A u (t) A-B 2 COS a, U (T),

' ==dA' Aalu-BF. k3 (cos (a,,-26). [lk = uf(f)dlA 2_
WT,

-0142= cos =t,,, (,]-Bu -COS Q,. -.

In essence we use here Picard's method of successive approximations,

but only in application to the "slow" system.

Let us stop after, for example, the second iteration and neglect

the integral components in (21), since they are proportional to Us.

Then, System (19') is replaced by

d _a- -Bk2 COS *Y,1" .u

=A,,+B k, cos (aC-=.=) cosa,.u - (22)

-Bk 2 cos a,,. z
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The system of equations composed of (18') and (22) is structurally

equivalent to the scheme shown in Figure 3: it describes the dynamics

of an oscillating circuit enclosed by a series of feedback couplings.

With null initial conditions, the integral feedbacks reduce to

a single feedback with a resultant amplification coefficient. It is

important to note that the amplification coefficients for all feedback

couplings are small. In this case the effect of each feedback

coupling on the dynamics of the oscillating loop can be taken into

account independently of one another (this follows from the theory

of small parameters).

The effect of the feedback couplings I and II (Figure 3) is

obvious: depending on the sign of C they respectively damp the

oscillating link and increase its frequency (or conversely). Let us

consider the effect of the resultant integral feedback coupling.

The characteristic polynomial (upon disconnecting the loops I and II)

in terms of the time T becomes
(#2+1)p+Cf, (23)

where Cf is the resultant amplification coefficient of the integral

couplings (small quantity).

For f = 0 one .of the oscillating roots of the polynomial (23) p

PA - ;. For f # 0 the same root is p1 = ; + Apl. Below, f and Ap,

are assumed to be small. Substitution of the new value of p, into

(23) and a retention of the terms of the first order of smallness

yield Ap, - fC/2. Thus, the oscillating root of the system moves to

the left or to the right depending on the sign of C, but its imaginary

part remains the same I). Therefore, from the point of view of the

oscillatory partial motion, the integrating feedback coupling with

the amplification coefficient "Cf" is equivalent co a differentiating

feedback coupling with the amplification coefficient "-Cf."

*) With the aid of the Rouche theorem [5), one can prove the
admissibility of the calculations as the first approximation in i.
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The resulting effect (damping or anti-damping) of the circuit is

determined by the mutual relationship of the "weight" coefficients of

the feedbacks II or III.

In particular, for the apparatus shown in Figure 2, the resulting

effect for a pl > abal will be, as we know, in the form of damping (and

conversely).

ZAC kh COS .W .

Figure 3.

It is clearly advisable (in order to retain the working capacity

of the system in case of a malfunction of the damper in the "" channel)

to make sure that in a steady-state motion a p- abal is positive and

equal to several degrees (up to 100). The latter should be taken into

account in the design of the tracking system used to place Mpi in the

same direction as V for the adaptive channel of a system for controlling

the lateral motion.
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CONTROL OF THE FLIGHT OF SPACECRAFT DURING ATMOSPHERIC
RE-ENTRY BY MEANS OF ON-BOARD COMPUTERS

Ukolov, I. S.; Mitroshin, E. I.; Krayzman, V. Ye.;

and Oleynichenko, L. G.

Formulation of the Problem

During atmospheric re-entry at parabolic velocity and a flight

range on the order of 7,000 - 10,000 km, the flight of a re-entering

vehicle must be organized in such a way that its trajectory outside

the atmosphere [1] is as shown in Figure 1. The altitude of 100 km
is taken as the upper boundary of the atmosphere.

The most important segment, from

the point of view of maximum accele-
I Irations and its effect on the

Ilongitudinal range, is that of the

L,,M first immersion. Therefore, below

Figure 1. the control system operation will be

considered only within that segment,

and the accuracy of the system will be determined with respect to the

total range of the first immersion and the elliptical path outside

the atmosphere.
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The system of the equations of motion for a re-entry vehicle in

the longitudinal plane, written in the velocity coordinate system,

has the following form

g,- -nx.--gslnO

- - .cos 0 + p ' - K.
dff, *

dH=VsinO()

dL Tov , V_ S
)R' nl..IpVJ A..pl- , gingo- WIT 2 me

The basic task of the control system considered in the present paper

consists of bringing the re-entry vehicle to the point with a given

value of the longitudinal range Lis, irrespective of the large scatter

of the initial conditions and the existing disturbances. The motion

is controlled by changing the effective aerodynamic lift-to-drag ratio

of the vehicle
CiC .

,X ,(2)

where y is the bank angle.

One of the possible methods of determining the free fall portion

of the trajectory consists of suocessive refinement of the lift-to-

drag ratio of the vehicle by predicting the longitudinal flight range

using an on-board computer to solve System (1). Thus, for example,

if we take the simplest flight program in which the lift-to-drag ratio

is constant on the entire trajectory, then the iteration process used

to calculate the required lift-to-drag ratio of the vehicle in the

(i + 1)th step is done using the following relation

K, :, " ,,.I . .C- L,. ., ', (3)
Ko. i: i ,,,Ko:.,

Another method for computing the program of lift-to-drag ratio

variation is proposed in [1].
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When the motion is predicted by integrating System (1), it is

necessary to somehow determine the actual value of the atmospheric

density p(H) and the correction

St) - p actual Pa (4)P nominal 0 Pn()

In addition, due to the strong dependence of the exit (from the

atmosphere) parameters on the variation of the density pa (H, L), it

is necessary to extrapolate &(t) and somehow predict its behavior over

the entire remaining portion o' the first immersion.

The limited possibilities of modern on-board computers require

a very thorough study of the methods of solving the boundary problem,

and a thorough analysis of the equations used to predict the flight

with a view toward their simplification.

In order to lessen the demands on the storage capacity and speed

of the on-board computer, it is advisable to construct a control

system that combines the principles of flight prediction with the feed-

back principle. In this case during the time interval needed by the

computer to calculate a new programmed motion, the object is controlled

not by an open system, but instead by a feedback principle with the

advantage that the motion becomes stabilized even in the presence of

various perturbations. This enables us to eliminate the unpleasant

situation when the parameters of motion at the end of the interval

needed to cr.culate the control command differ significantly from the

calculated values due to perturbations and using an open system. This

results in an instability of the control process and in a sharp change

of the controlling action in the consecutive control intervals.

Selection of EQuations Describing the

Process of Spacecraft Re-entry

In order to select the mathematical model which will then be used

by the on-board computer to predict the re-entry process, it is

desirable to simplify the equations describing the dynamics of space-

craft descent, or if possible, to use approximate analytic solutions
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of the equations of motion. The wide range of variation of the initial

conditions and the required range, the large values of the perturbations,

and the strong dependence of the elliptical range on the parameters of

motion at the point of departure from the atmosphere complicate the

application of approximate analytic solutions.

Let us replace the system of differential equations (1) with a

simpler system (5), using the flight velocity V as the independent

variable, replacing the equations for the variation of altitude with

the equation for the variation of the acceleration, and assmi tg

g gay " const [2].

em __ ____ ___ ___

dnx PnXV sin 0 2ax
Ifl (x+se) + - (5)

dL R VcosO
2V" -W7'" # ("xy 7'11o)

The transition from System (1) to System (5) has been made using the

following relation
nX Wx- " - CXS .I P C:.x$

"AX 1X6)
2." Vg (ax + sin O) - xpVn 0.

Let us consider the effect of various variations of the density

" in - on Systems (1) and (5).

For 4 a 1 we obtain the standard type of variation of the actual

density pa - Pn' Both Systems (1) and (5) are equivalent in this case.

For C a 0.5 - const or C - 1.5= const Equations (6) imply that per-

turbations of this type In no way affect the accuracy of System (5).
In general for any C a const It is only necessary to state correctly

the initial conditions for System (5), since when the initial condi-

tions on nx are given exactly, C is automatically taken Into account.
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k(Hcurrent

For perturbations of the type 4 - e r0 using Equation (6) we

obtain
x 2nx "nx(Pj±k)VsjnO

dV V + g(nx+sinO) (7)

For k - * 0.5 • i0- 5 [1 the relative variation of the density at the

altitude H = 100 km is

=e'o-5 1'1. and for k -±1 . 2.7

i.e, the density changes more than by a factor of two in either

direction from the nominal value. When the basic system (1) is used

with such perturbations, the right-hand sides of System (1) change

by factors 1.5 - 2.7, respectively. When System (5) is used with

analogous perturbations, only one of the terms in the second equation

changes by 1' (O.5-.- 3.5-7%.

When the density perturbation changes according to the law

assumed in 1)

t (I + eft"[A + Dsin1+ #.-H 4 (8

the coincidence of the solutions of Systems (1) and (5) without the

use of information about the character of the perturbations is some-

what disturbed. Figure 2 shows the plot of one of the coordinates

(altitude) corresponding to the exact no

solution of System (1), assuming that

we know the character of the density UT c*4 '
70perturbation (solid lines), and the

corresponding solution of System (5) 50 oYf "c,

with an additional third equation low

from System (1) (dotted lines), Figure"2-.

obtained without using any information about the character of

perturbations. In Equation (8) we set c - ±i; #n a i"

Thus the use of System (5) instead of System (1) permits us in

certain cases to avoid direct measurement of the flight altitude and

the atmospheric density, and use only the information about the

acceleration, which considerably simplifies the necessary calculations.
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It should be noted that recently other simplified forms were proposed

for the description of the center of mass of the spacecraft [IU.

The Solution of the Boundary Value Problem

The problem of bringing a spacecraft to a given point is a

boundary value problem whose solution involves great computational

difficulties. In addition$ in a number of cases various additional

requirements are imposed on the selected control Tunctions which

complicates the solution of such problems even more.

As we know, when solving optimization problems in accordance with

the classical methods of variational calculus or the method based on

the Pontryagin maximum principle, it becomes necessary to solve a

system of differential equations whose order is twice that of the

system describing the physical process, and includes two boundary

conditions.

When solving such problems numerically, one needs to supplement
the incomplete boundary conditions at the Initial point, then to

numerically Integrate the differential equations up to the final

point, to see to what extent the boundary conditions at the final

point thus obtained correspond to the given conditions, and finally

to improve the Inaccurate Initial conditions. This process must be

repeated until all final conditions are satisfied.

These methods are of little use if one wants to obtain numerical

solutions in real time using an on-board computer.

Since the problem must be solved within a short period of time,

it is desirable to use the most rapidly converging procedures. For

this purpose, we use a method which is analogous to the procedure

of the A-matrix control 5, 6]. This permits us to Improve the con-

vergence of the iterative process and thus reduce the number of

iterations, since when integrating the system in the forward direction

one uses the information about the current deviations of the phase

coordinates of the actual motion of the object from the intermediate

reference trajectory.
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If System (5) is written in a general form

dxV = I Ix (V), K (V), V], (9)

where x is the state vector of the system, then the equations of

motion in variations with respect to the reference trajectory have the

form

d- B (V) Ax + c(V).AK. (10)

Adding the conjugate system of equations to System (10)

one can obtain the fundamental Bliss formula [3, 4), and take into

account the change in the final point

("'.AX)v+Av - W '.c)(AK)dV + Q.'Ax)v (12)

(the prime symbolizes the operatin of tranLposition). We impose on

the scalar product ('.Ax) the condition

0" AX)*V,+V - AL13. (13)
Taking this condition into account, the initial conditions for System

(11) are determined in the following way

OL d ' ' d -1 ,0 (14)

where x* is zhe phase coordinate defining the endpoint of the .ontrol

interval, -di' and r, are partial derivatives with respect to the

corresponding coordinates, dL, and d are total derivatives determined

by the corresponding equations of System (5).

In connection with the fact that the lift-to-drag ratio at our

disposal is small, it appears advisable to choose the control functions

such that the required change in the range AL1 3 will be achieved by

minimizing the change in the control program (in the mean-square sense).
Thus we arrive at a variational problem involving a conditional

extremum. We are required to determine the law of variation of the

control action (AK) such that the following expression will be minimized
Vt

(%K)? dV (15)
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subject to the constraints (12) and (13). This type of problem involv-

ing a conditional extremum subject to constraints in an integral form

is called isoperimetric.

An isoperimetric problem can be reduced to the Lagrange problem,

i.e., to the minimization of v•S( AK)2dV

(15)
subject to the condition +J4(AL2),mQ('.c)AIC. In order to minimize the

expression in (15), we construct the intermediate function

HY - (AK)' + tt (V)[+ - - .AKI (16)
and solve the corresponding Euler equation

a 6/ d dff
Y - d -t o (17)

]a d OHN

* From Equations (17), we obtain

2(AK)- P(V)(W'.c)-0 (18)

0- d P(V)-O
The second equation in (18) implies that p does not depend on V. i.e.,

* const, and from the first we obtain

'AK--'.c)IQL'.c) (19)

where ui is a constant to be determined.

Using (19), (12), and (13), we obtain

Vk (20)
dL13'- 5! 1Q.,'. c)dV + (." AX)v.

whence e

Ill -(21)i.e)'dV (2

The obtained expression (19) for the variation of the control (AK)

has a definite physical meaning. The variation of the functional (20),

when (AK) is selected in accordance with relation (19), always has the

same sign as the sign of the variation of control AK.

Equation (19) gives the direction of the gradient, i.e., the

direction of thC maximum effect of (AK) on AL1 3.
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We introduce a function i(V) by means of the equation

C.2 (22)

for which the boundary condition is AV = 0.

k

Using (19), (21), and (22), we finally obtain

&K (V) = - AI(V) [AL13 + (k'.Ax)v.1 (23)

where

Equation (23) determines the control law for a closed system, which

takes into account the effect of the input AL1 3 and the deviations of

the actual motion from the reference trajectory.

The difference between this method of solving the boundary-value

problem and the methods discussed in [1l, is that in solving the

boundary-value problem we use the information about the deviation of

the actual motion from the nominal motion, and in forming the control

AK we only use a single integration of the fundamental nonlinear

system (5). Instead of a second integration of the nonlinear system

describing the dynamics of a descending vehicle, we integrate the

associated linear system (11) and Equation (22) in order to determine

new control coefficients.

A block diagram of the control system realizing this control

algorithm is shown in Figure 3.

Figure 3: 1 object; 2 - data sensors;
3 - information conversion block; 4 -
prediction block; 5 - automatic pilot.
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The information about the parameters of motion, obtained by means
of the data sensors, is fed through the data conversion block to the
parameterL; of motion prediction block of the spacecraft and to the
automatic pilot which determine the command value of the effective
aerodynamic lift-to*-drag ratio.

Conclusion

The system discussed here which involves an on-board computer
c onnected into the control loop can be atpplied to various objects
subject to large perturbing forces and a large area of scatter of the
initial conditions, where the presently known systems using a fixed
nominal trajectory do not meet our requirements. In addition, such

* control systems may be uped in such Important cases as when, during
* the operation of the system, It Is necessary to change the trajectory

of motion in a direction unknown beforehand -for example, when
guiding a spacecraft toward a moving point. Similar control systems
can also be applied in spacecraft returning from other planets. A
characteristic feature of Interplanetary flights is the fact that
spacecraft re-enter the atmosphere at a very large speed which is
much larger than the parabolic speed. This places high requirements
on the accuracy of the necessary spacecraft maneuvers in the atmosphere.

At superparabolic speeds, the operation of the control system
subject to large density perturbations is greatly improved If the
control system includep aus on-board digital computer that can calculate
in real time the maneuver required when perturbations are present.
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PARAMETRICALLY INVARIANT AUTOMATIC CONTROL SYSTEMS

WITH A LINEAR PHYSICALLY REALIZABLE REGULATOR

Sokolov, N. I.; Makovlev, V. I.;

and Lipatov, A. V.

When synthesizing adaptive control systems, we are usually faced
with the problem of maintaining a system's performance indicators
constant or changing them in a desired direction with a change in the

parameters of the object.

There are papers available in which the solution of the problem
is attempted by using systems of variable structure, self-adjusting

systems of various types, and systems with an infinitely large ampli-

fication coefficient (for example, 1, 2, 3,).

In this paper we show that it is possible to construct linear

physically realizable regulators with a rigid structure and constant

parameters in order to control objects whose parameters change within

a wide range. It is shown that such regulators are capable of keeping

the performance indicators of a dynamic system constant within any

finite range of the parameters of the controlled object.

It is assumed that the object is controlled by means of some

linear actuator. Suppose that the object is deseribed by a differential

equation of mth order
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rn-I

x(-) + ai(t) Am - a(t)Ko(t) , (1)
1-0

and that the actuator is described by a differential equation of the
(n - M) th order

("-I) + b b u* - bou,
,-0 (2)

where x is the controlled coordinate;

is the actuator output;

u is the control;

01 1i(t) are the variable parameters of the object, varying within

finite limits;

K (t) is the variable transfer coefficient of the object
ob

0 <K1 1  o (t) Komx

b, are constant parameters of the actuator.

The problem is to control the object in such a way that the

performance indicators of the system will remain constant while the

parameters of the object are changing.

The control must be effected using the input coordinate of the

system and the signals generated by physically realizable correctors

that transform the output coordinate of the system and a number of

measurable intermediate coordinates of the system.

In the case of complete observability, i.e., when it is possible

to use n - 1 derivatives of the output coordinate of the system, one

can obtain the required dynamic properties within any range of the

object parameters [1, 3, 4].

Under the actual conditions, it is not possible to obtain and

use "pure" derivatives, particularly those of high order. Therefore,

it is of interest to consider the possibilities inherent in linear

systems with physically realizable correctors. Physically realizable

correctors will be defined as correctors for which the order of the

numerator of the transfer function does not exceed the order of the

denominator.
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Figure 1.

Figure 1 is a diagram of the control system for which the

controlled object and the actuator are described by Equations (1) and

(2), and the physically realizable correctors Co, Ci, C2 , C3 are

described by the differential equations

i r-!

yr) + Jcay') -Ic04; (3)
f..0

yr" + , c,yr" - (4)

1=0 i,0

yr" + Yj C, ', - 2 dlv('".()
1"0 I-0

The corrector Co, described by Equation (3), is introduced to

eliminate the derivatives on the right-hand side of the differential

equation for the closed system [5]. The motion of the closed system

is then described by the equation

,n+,(P) x - coKo6qAxo, (7)

where Fn+r(p) is a differential operator of the form
n+r-I

,+,(p) - p4+ + Ajp'-j-0
n+r-I .intJ, n] MInI. m+

- I a,b,_,(c,.., +Kp,-,),' + (8)
J.C .-r, mitO. I-rl I-ma%1O. I-n J- l.:

X+, mln(J, fu) r

+ 2 2; Kbopay. 1p' ± + 2;KI6adjP' + KKoa0boc0
J-r0 -maxi0, J-J 1-0
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Depending on the degree J of the operator p, the form in which

the selected parameters c,+Kpi, )k, d, enter into the coefficients Aa

of the characteristic polynomial (8) changes. Three forms of the

coefficients A of the characteristic polynomial are possible

a) m+r+1<I4n+r
mli, (9)mrin (1, a}A, - j N), il 11'a alb-I (ci-I + Ktj-1)(9)

I-ms to. J-?I I-m.. 10. I-n.'m
b )r -+ 4 J < m +l r

b)) r+ 1. NJm

m Aj - mni aibii (c1-, + Kj.j-,) +
- 5-ma j0, I-') S-.m [(I. 1--+mI 10

i"n ' (10)

-mK. I-|i

c) 0 j~r
min 14 n mil i. NJ

Aj L I albi-I (cj1 + Kp,-) +A1  : -m tO. I- -max [o. 1-m+m]

+ :n,7 KboaA,._, + KKo&a1 bod1.

I
Let us find the relationship between the smallest necessary order

of the correctors and the orders of the equations describing the

object and the actuator. In order to uniquely construct the coeffici-

ents Aj of the characteristic polynomial (8), it is necessary that

each coefficient of the characteristic polynomial, starting with the

coefficient An+r_ , contain successively a new para.ster out of the

set of the selected parameters c, )t, d,. The number of the arbi-

trarily selected parameters cI is equal to r. The number of the

arbitrarily selected parameters Az is equal to (r+l), and the number

of the parameters dz is equal to (r+l). Since the parameter X, enters

the coefficient Am+r first, the value of r must be chosen such that

the parameters cz will form the coefficients of the characteristic

polynomial from An+r_1 to Am+r+l inclusive, i.e.,

or r-(n+r- )-(n+r + 1)+ 1 (12)

r, i - m - 1.

52



Since the parameter dI enters the coefficient Ar first, the r

parameters cI together with the (r+l) parameters I must form the

coefficients of the characteristic polynomial from An+r_ to A+1

inclusive, i.e.,

r + (r + 1)- (n + r -1)- (r + 1) +

or

n-2 (13)
2

We obtain two possible values of r: ri and rz. The larger is

taken as the required value of r. If the number is a fraction, which

occurs when n is odd, then the value of r is rounded off to the

nearest higher integer

We shall give an example of how to select the order of the

correctors. Suppose that the order of the equation of the object is

m a 2, and that the actuator has the order n - m a 3, (n - 5).

Then from (12)
rl-3-1-2,

and from (13)
5-2

r2 "-F" 1,5
and r - max [r, rol - 2.

If the order r of the corrector is selected properly, then it

becomes possible to obtain any desired performance for any possible

mode of operation of the system described by Equation (7). However,

due to the variation of the parameters of the object - in particular

the component Kobao in the case of other operating modes - it is

possible for the dynamic properties of the system to deteriorate all

the way to a loss of stability.

In order to obtain a system which is operational in the entire

range of the admissible operating conditions, we suggest the following

approach to the formulation of the variable characteristic polynomial

(8). Each of the coefficients Aj of this polynomial contains both

53



constant terms (due to the fact that a a 1), and variable terms.

By properly selecting the value of K, we can achieve a situation in

which the constant terms will be larger by an order of magnitude than

the sum of the variable terms in each coefficient A for J > r. Since

the terms containing the component K obao usually vary the most, it is

advisable to write the characteristic polynomial (8) in an approximate

form reflecting the variability of this component.

F+, (p) - pR+' + A.+,._pII-' +... + A,+p t+l +
+ (A, + A;7)y +... + (A; + AO'T) (15)

Kobao
where

(Kobao) m n

and changes from 1 to (Kobao)may
Smax (Kobao)min

A$, Allare constants.

From the structure of the characteristic polynomial (15), we

can see that a change in y may result in a displacement of its roots

to the right half-plane of the root plane even assuming that the

system has a sufficient stability margin for any y. The effect of

y on the roots of the characteristic polynomial can be controlled to

suit our purposes by writing the polynomial (15) in the form of a

product of two polynomials: one of order n - I and the other of
order r + 1:

F.+, (p) - F,. , (p P,+ (p) - ( r-' + B,-2"pr + - + Bo) X (16)
X ( +W + C, + ... + CO)

If the natural frequency of the polynomial F (p) is greatern-i
than the natural frequency of the polynomial F r+(p) by approximately

one order, I.e.,
0 ' (17)

then the polynomials F (p) and P (p) may be approximatelyn-1i ~
expressed in terms of the coefficients of the polynomial (15) in

the following way [63:
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F p. ( ") - + Ax+,_- + ... + A,+2p + A,.; (18)

F,+1 (p) :- [A,+ + (A; + A;T)p' + + (A; + IA;)]. (19)

If the condition (17) is satisfied for all y (and this can always be

achieved by properly choosing c. + Kp1 , Ai, di for any finite range

of the object parameters and any finite speed), then the performance

indicators of the system are completely determined by the polynomial

(19), and aZ can be selected such that the inequality A' c A" is

satisfied, and then the polynomial (19) becomes
F,+1  , ) + + (20)! F ,7 I A, +  +Ap +. +A;71

One can always achieve a situation in which for y = 1 one of

4 the roots of the polynomial (20) is so far from the imaginary axis

that it will have little influence on the dynamic properties of the

system. According to [6), the value of this root a is approximately

2 Ay and as y increases the root will affect the dynamic proper-

ties of the system even less. However, the remaining roots of the

polynomial (20), determining the performance indicators of the system,

can be obtained from the polynomial Fr (p) with constant coefficients
, • (21)F, (P) [ A ,p + A,'_Ip-'+ ... + A;] 21

If the absolute value of the increasing root a of the polynomial

(20) approaches the average absolute value of the roots of the poly-

nomial Fn. (p), then the group of roots with the largest modulus will

be determined by a polynomial of degree n with a free term dependent

on y. As y increases, the system may become unstable (for n > 2) as

a result of an increase of the free term in the polynomial.

Thus, on one hand, the variable root a must be greater than the

roots of the polynomial Fr(p) which mainly determines the performance

indicators of the system, and on the other hand, it must not approach

the roots of the polynomial Fn_ (p), i.e., thus for all y we must

have the inequalities

A5, A,+ (22)
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The inequalities in (22) are a sufficient condition (but not

necessaryl) for the stability and constancy of the performance

indicators of the system for any finite range of the parameters of

the controlled object.

In practice, a similar result can be obtained with less

restricting inequalities. It is not necessary to require that for

any y the right-hand inequality in (22) be satisfied. We may assume

that for large values of y the root a reach the region of the roots

with the largest modulus, corresponding to the polynomial (18). As

y Increases further a pair of complex conjugate roots appears of the

polynomial of degree n with a free term dependent on y, and the pair

moves toward the imaginary axis of the root plane. The absolute

value of this pair of roots remains quite large, and as a result

these roots have hardly any effect on the performance indicators of

the system, even if they move all the way to the imaginary axis in

-he root plane. The character of motion of the roots as y changes

is shown in Figures 2 and 3.

Fn-

Figure 2.

The polynomial Fr+(p) (20) can be constructed ini such a way

that - as y increases - not just one but two, three, or more roots

become larger. The condition for the separation of the absolute

values of the roots (17) of the polynomials (F (p) and Fr+1(p) then

changes. For example, in the case when two roots of the polynomial

Fr+ (p) increase with an increase in y, we write
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Figure 3.

which is a less restricting condition than Condition (22).

Finally, if the polynomial Fr (p) is constructed in such a

way that as y increases so do all of its (r + 1) roots, then the

performance indicators of the system do not remain constant, but

instead vary within a certain range.

Thus linear systems with a finite amplification coefficient with

physically realizable correctors can in principle satisfy the

requirements on the dynamic properties of a system for a finite range

of the parameters of the controlled object. Moreover, the structure

and the parameters of the regulator remain constant.

REFERENCES

1. Eucabimoo C. B., YTXHII B. H. flPwcHIISC01 C"CIO&I 301"IflI'kX013I

perymIpomiI c PcpemmcNOil MiYKTYPOA Ann YnPOOD-CIIII011 .Hr.M I"It
MoITpU KI)TOPUX N13111IIOTC11 a luIpovinI lpCACnaix. JA! CCCP,. T. 152, "A 2,

* ~~~~~~~~~2. TPYAW III Bectoostoro cC101118 ,?~1I'COU i~ili.I~iIK.~%Ie

IS0, &13A110 91a1Yx~lk, 1901.
3, Al c e ) 3 A. B,. CHune cTPYCTYP ICIICTOA £DToiNamhiecitoro poetyJlpoflOSIin

Ijutoxali 'W4110c?., H3AsJ~o elUoyKO) 1967
4. 6 e .1 i K K 66 movapflattlicTI pery xyof'i 1111b IIidaTOhIOTH4cCKoro

Va'OcTpocTa OT IICOTO lAX erO 111aplIMCTP08. 13nCIR AH CCCP 0TH, 3u.p.
rTNICOII ItASTOM11TIK, M6, 1960.

5. C 0 x 0 A 0 is H. H., 0 CKHIT036 mcpe)KHM~lIX pcryjiRTOPOJJ, AvolialITHUCKOCe

y~pnle:1C1It~ ObgqgCJ'IjTe-11,lafl TCXIN)KS, OUnYCH 9.,1968.
63a r y C i B. AI., CnpaUOqrnuc1n0 qlItCfiOIISIUm blCTOJIOM PCwcSIIA YPaone.
luil,, 41HsIM1s3, 1960.

57



IF

APPLICATION OF "APPROXIMATE" STABILITY CRITERIA
TO THE SYNTHESIS OF ADAPTIVE SYSTEMS

Sokolov, N. I. and Lipatov, A. V.

When synthesizing adaptive systems, we usually deal wich a set
of systems with "frozen" coefficients. Usually it is required that
the entire set of systems as a whole or some of its subsets satisfy
certain performance criteria. In the analysis and synthesis of

systems, one has to know the relationships between the performance
on one hand, and the variable parameters of the object or parameters

of the regulator (constant or variable), on the other. In particular,

It may become necessary to establish such relations between the

varying parameters of the object and the varied (or constant) para-
meters of the regulator such that the performance remains constant

or changes according to a certain law.

In this paper, we attempt to supply the means for establishing

this type of relationship for one of the partial performance
criteria of a system - namely, stability. The application of

existing stability criteria to establish such relationships is

possible, but in practice this is impossible for systems of high

order.

There is a need for approximate but simpler stability conditions

which could eliminate this drawback. The approximate stability

conditions will be defined as either only necessary conditions for
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stability or only sufficient conditions. Geometrically this

corresponds to replacement of the stability region in a k-dimensional

space of "k" parameters that are of interest to us, and for which the

equation of its boundary is too complicated, with another region

inscribed into the exact stability region, or described around it,

tor which the equation of the boundary has a simpler form.

One of such "approximate" simple stability conditions involves

the necessary condition requiring that all the coefficients of the

characteristic polynomial of a system be positive. This condition

also specifies a certain region in parameter space, but it differs

too much from the exact stibility region for systems of order higher

than two. This makes it impossible to use this condition by itself.

Let us formulate two theorems about the necessary conditions

of stability.

Theorem 1. In order that the polynomial
P(z)- ae + a, -1 +..+ a.; at > 0()

have all roots lying in the left half-plane, it is necessary that the

following inequalities be satisfied

!&iL--- > 1; 1.-1,2.... -, n- 2. (2)

Theorem 2. In order that the polynomial (1) have all roots

lying in the left half-plane, it is necessary that the following
inequalities be satisfied

-2A.. ...,-2, (3)

where

._+(-1)4+1+3), (-1)1+3

2 51 (4)C, -(,,-- i+ (- )0,-1 _1+ )
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The values of Ci for each n and i can be calculated and listed

in a table.

Both conditions involve a certain parameter X,, defined as

at-151+2

In terms of this parameter conditions (2) and (3) can be

rewritten as:

JI ,t> l;i I2. ... 2 (6)

and

' ~~~)-jk1+, > Cj; 1 - 2.3., . -2.(7)

Each characteristic polynomial of order "n" is characterized oy

n - 2 parameters X. The number of the parameters, X., is smaller by

one than the number of the coefficients determining the characteris-

tic polynomial in a normalized form. Nevertheless, it can be shown

that the stability of the system describing this polynomial depends

only on the parameters Ai

Suppose that we have a polynomial of degree n with a given system

of parameters AVi Since for a complete description of the polynomial

in this case we need two or more parameters, they will be assigned

arbitrary values. Let us write the polynomial in the form

AB Za- + 13 +,-
F.(z)-z+Az-1+ Bz- +xz +

+ . +AIZ46 +.. (8)
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|I
Here A and B are arbitrary parameters which define a set of

polynomials having the same system of parameters Xi" The only con-

ditions on A and B are that they must be greater than zero. We know

that, if the initial polynomial has all roots in the left half-plane,

then they remain there upon the substitution z = z1k (by the scaling

theorem), and when all even or odd coefficients are multiplied (or

divided) by the same positive number, the roots also remain in the

left half-plane (by Mikhaylov's stability test). Therefore, without

changing the character of stability of the polynomial in (8), we

make the following transformations. We make the substitution z = z/ .

Then we divide the even coefficients of the polynomial thus obtained

by (/B)n, and the odd ones by A(1B)n -1. We obtain the polynomial

(dropping the primes):

F" Wz 2"z + 2- 1 + Z"- + Z + Z4-4 +._~~ (9)j

Thus, it is clear that any polynomial in the set of possible

polynomials having the same system of parameters Xi can be reduced

to a polynomial whose coefficients depend on A alone by means of

transformations that do not affect its stability. Since the stability

of a system described by this polynomial depends only on the para-

meters X,, the stability of a system describing the original poly-

nomial also depends on the parameters Xi"

The system of parameters Xi completely describes the stability

of the system but hardly characterizes its quality. For example, the

two characteristic polynomials:

F51 (z) z+Sz4+ lOzI+iz 2+3z+l (10)F&.(z) zs+5Oz4+l1z3+10 ,2+5Z+ 10

are described by the same system of parameters X,, and are factored

as follows:
ISL (Z) - (Z + 1)5

F (z) - (z + 49.84) (z' + 0,047z + 0,105) (z + 0, 11z + 1,89) (11)
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The character of roots from the point of view of oscillations

is different, but from the point of view of stability, these two

polynomials are equivalent. The systems described by these poly-

nomials will also have the same stability margin in any of the para-

meters entering the coefficients of the characteristic polynomial in

identical fashion. We shall assume that any parameter enters the

coefficients of polynomials in identical fashion if it produces iden-

tical fractions in identical coefficients. Thus, the free term in

both equations can be increased until instability occurs the same

number of times. This example shows that it is incorrect to Judge

the stability margin of a system on the basis of the oscillatory

character of the roots of its characteristic polynomial.

Since the system of parameters Xi determines completely the

stability of a system, it is natural to construct the regions of

stability of the system in the (n - 2)-dimensional space of the

parameters. Then the necessary conditions for stability (2) and

3) will also yield a certain region which comprises the exact region

of stability and may serve as an "approximate" region of stability.

From the point of view of the regulator synthesis, it would be

more useful to have ;ome simple sufficient conditions for stability

that would guarantee the stability of a system. It turns out that

such conditions may be obtained also by using the parameters Xi"

We can prove the following theorem about the sufficient condi-

tions for the stability of a system having the characteristic

polynomial (1).

Theorem 3. If all roots of all possible polynomials of fifth

degree, formed out of six consecutive coefficients of the polynomial

(1), lie in the left hJif-plane, then all the roots of the polynomial

(1) also lie in the left half-plane.
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Thus, one can obtain a stable system of nth order by achieving

the stability of n - 4 systems of fifth degree, which is much simpler'

to do. The stability conditions for a system of fifth degree,

expressed in terms of the parameters A, have the form

, > 1(12)

3 + 2X1X3 + X1ktX3 XI24 -R 4143 1 > 0 (2

As we can see from Equation (12), these conditions are also quite

complicated which will hinder their use in practice when investigating

the stability of systems of nth degree. But this expression can be

considerably simplified. We can use the "approximate" sufficient

conditions instead of the exact, necessary and sufficient, conditions

for the stability of a system of fifth degree. By investigating the

second inequality in (12) graphically or analytically, one can show

that it is valid if all Ai > 2.144 ... (i - 1, 2, 3) or if all
+  1 < 0n89 .. (i - , 2). Using this and Theorem 3, we can

formulate the following two theorems about the sufficient conditions

for the stability of linear stationary systems.

Theorem 4. If the polynomial in (1) satisfies

X > 2,144 ... , 1 -12 . . n- 2, (13)

then all its roots lie in the left half-plane.

Theorem 5. If the polynomial in (1) satisfies

+ < <o,89 .... i -1, 2. ..... n- 3, (14)

then all its roots l~a in the left half-plane.

Conditions (13) and (14) determine a certain region in the space

of the parameters X., which is inscribed into the exact stability

region, determined using the exact necessary and sufficient conditions
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for stability. This region may also be used as an approximate region

of stability.

Let us consider several examples showing how "approximate"

conditions for stability are used.

Example 1. Suppose we are given the characteristic equation of

a system

zd + 12z+ 47z + 108z3 + 122z2 + K2z + K, 0 (15)

We are required to find the "approximate" regions of stability

in the space of the parameters K, and K1.

In this case, we have selected a simple polynomial, so that for

comparison we can obtain the "exact" boundary of stability using the

method of D-decomposition.

The necessary conditions for stability of (2) and (3) and the

requirement that the coefficients of the polynomial be positive impose

on the parameters K, and K2 the following conditions:

0 < K, < 105
K < 242 (16)
K 2 > 0,89K,

If even one of these conditions i3 not satisfied, the system

becomes unstable. On the other hand, if all the conditions are

satisfied, this still does not guarantee stability.

The sufficient conditions for stability (13) and the requirement

that the coefficients be positive impose on the parameters K, and K2

the following conditions:

0< K, <0,52K(

A2 < 13o (17)
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If these two conditions are satisfied, the stability of a system

is guaranteed.

And, finally, the sufficient conditions in (14) yield

O<K,<Kt-0,00412 (18)
K2 < 169

If both of these conditions are satisfied, independently of the

validity of the inequalities in (17), the system is also guaranteed

to be stable.

The inequalities (16) - (18) determine certain regions in the

space of the parameters K, and K2 . In the same space we can also

construct the exact boundary of the region of stability by using the

method of D-decomposition. Three regions, constructed using the suf-

ficient, necessary, and exact conditions for stability, respectively,

are shown in Figure 1. The sufficient conditions for stability deter-

mine a region, lying completely inside the exact region of stability,

and the boundary of the region obtained using the necessary conditions

for stability, encompasses the exact region ot stability.

Example 2. In the preceding example, the approximate tests for

stability were used to solve a problem that can also be solved using

the exact methods (D-decomposition). Let us make the problem a little

more complicated. Suppose we are given the following characteristic

control function

+ 12z5+ 47 +108z'+ 122e +K Kg + K,- 0, (19)

where X is a variable parameter of the object, and K, and K2 are the

unknown parameters of the regulator. The method of D-composition is

difficult to use here, since first of all the problem is three-

dimensional which makes it hard to visualize the solution. Secondly,

it does not reduce to a system of three linear equations with three

unknowns. However, the use of the "approximate" conditions for
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stability gives simple inequalities

that do not require geometrical
3 interpretation. Thus, the use of

the necessary conditions for

stability (2) and (3) yields:

W K 105

242 (20)
KI<

30 IN

I(, > 0,89K,

Figure 1. Exact and "approximate"
regions of stability. The sufficient stability con-
! ditions (13) yield

1 - region of stability obtained
using the sufficient conditions 0<.K1<0,52K
for stability (17) and (18); 2 - (21)
exact boundary of stability, K2< . (1
obtained using the method of
D-decomposition; 3 - boundary of
stability obtained using the
necessary conditions for stabi- Finally, the sufficient con-
lity (16). ditions (14) yield

o < K, < K3 - 0,004Kj - (2
K2 .... (22)

For any given range of change in the parameter K, we may find the

values of the parameters K, and K2 necessary for stability.

Thus, it may be seen that the "approximate" stability criteria

may successfully replace the "precise" stability criteria for high order

systems. The use of the "approximate" stability criteria yields simple
relationships between the system parameters, which makes it possible to

synthesize the regulator simultaneously for a certain set of values for

individual parameters of the system. The use of "approximate" stabi-

lity criteria greatly increases the productivity of the engineer-

designer.
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CERTAIN PROBLEMS OF THE CONSTRUCTION OF PARAMETRICALLY

IIi INVARIANT AUTOMATIC CONTROL SYSTEMS

N. I. Sokolov

The control of nonstationary objects with their parameters

changing within wide limits is in principle possible with the aid of

adaptive automatic control systems and systems equivalent to them.

Here adaptive regulators will be defined as regulators in which

certain (adjustable) parameters are functions of the corresponding

variable parameters of a nonstationary controlled object. Consequently,

the operation of such a regulator requires, in principle, that infor-

mation be given about the variable parameters of the controlled object.

Technically the variation of the regulator parameters is achieved with

the aid of parametric couplings. A parametric coupling is a necessary

(but not sufficient) trait of an adaptive system. The basic problem

in the construction of adaptive automatic control systems is to organ-

ize the information about the variation of the parameters of the non-

stationary controlled object.

In adaptive control systems with open loops for the adjustment

of the regulator parameters, the information about the change of the

parameters of the nonstationary object is obtained directly by meas-

uring the external conditions that result in the nonstationarity of

the object, or in certain cases by using a specially programmed unit.
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In both cases the accuracy with which the problem is solved is
small.

Adaptive control systems with closed loops for the adjustment of
the regulator parameters offer much greater possibilities. The infor-

mation about the changes in the parameters of a nonstationary object

is obtained from the signals circulating in a closed system. However,

a signal, circulating in a system, has no natural characteristics

that would lead in a technically simple fashion to information about

changes in the parameters of an object.

On the other hand, we cannot exclude the theoretical possibility
of building such characteristics into a signal by selecting structures

and parameters of the basic contour of a control system.

The best known methods of extracting information about changes
in the parameters of an object are the correlation methods with the

method of the energy balance as one of their forms. These methods

have become widespread in solving engineering problems. However, the

energy balance method is applicable only in the case when the para-

meters of an object change very little during the transition process.

The technique in which the effect of changing parameters (parameter)

is translated into a high-frequency signal by properly selecting the

structure and parameters of the basic circuit can theoretically be

used to extract information about changes in a certain parameter of

an object. This is the so-called indirect method of determining

parameters of an object.

The equivalent adaptive regulators will be defined as those

regulators in which the information about the variable parameters of

an object is not used and is not needed to provide a given type of

control.

The usual dynamic and static properties of the equivalent adaptive

regulators are achieved by introducing proper coordinate links. It

is also theoretically possible to use parametric links in such regu-

lators. However, the parametric linkage, in contrast to adaptive
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systems, changes the parameters of a regulator depending on the
instantaneous value of certain phase coordinates of the control system.

The equivalent adaptive control systems may be subdivided in

two classes:

1) parametrically invariant systems are characterized by the
fact that, when the parameters of a control object change, the output

coordinates of the performance indicators of the system remain the

same or change in a desired direction within given limits;

2) ultra-coarse systems, characterized by the fact that - as

the parameters of an object vary - the stability of a control system

is preserved, and the performance indicators are not subject to control.

These classes in turn may be subdivided into groups that differ

from one another in design, and naturally, in their capacity.

Figure 1 shows the classification table.

The definitions given here and the classification table do not

pretend to be complete, have purely utilitarian objectives, and are

used in the further discussion of the material.

Let us briefly discuss the basic differences and capabilities of

the structures in question.

The parametrically invariant control systems can be subdivided

into the following groups:

a) parametrically invariant compensating systems are linear

within a limited range. In order to assure stability and independence

of the performance indicators when the parameters of an object undergo

a change, one introduces inversely parallel correcting devices which

comprise the object and certain elements of the regulator, and are

in the form of physically realizable filters. In order to compensate

for the lag introduced by physically realizable filters, a low fre-

quency filter-whose poles are equal to the poles of the inversely
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parallel correcting devices

- is introduced in the direct

S 0-) 010 INcircuit between the measuring

element and the adder.

The structural diagram of

the parametrically invariant

compensating systems in their

general form is given in
Figure 2. Figure 2, where W,(p) is the

Fmeasuring element; W(p) is

the amplifier; W,(p) is the drive, WO(t, p) is the control object;

and Wki(p) are the correcting devices.

The poles of the transfer function Wk (p) are identical with the
Spoles of the functions W k (p) Wk,(p) , Wk,(p) , Wk(p) (or at

least identical with the smallest ones among them).

A differential equation for parametrically invariant compensating

systems can in general be written as

. d2 ,A!mx + y~~nx+ L
- KpK (1) x,

where n is the order of the differential equation for an uncorrected

system, m is the order of the differential equation describing the

processes in the correcting devices, CW(t) are the coefficients which

contain the variable parameters of the object and their derivatives,

K(t) is the product of the amplification factor and the natural fre-

quency of the nonstationary object. The introduction of a compensating

filter minimizes the coefficients multiplying the derivatives in the

equation. By the same token, assuming there is interference and non-

linearities of the saturation type, it keeps the control system

operational when the parameters of the object vary within a wide range.
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fI

Figure 3. Figure 4. Figure 5.

b) Systems of variable structure with internal feedbacks

linking the control object and certain elements of the regulator,

technically based on the *-cells involving sufficiently small lags in
the correcting devices. Also theoretically assure parametric invari-

ance when the parameters of an object vary within a certain range.

A diagram of a system of variable structure is shown in Figure 3,
where F is the unit in which the switching functions are formed, b

is the coefficient of action with respect to the derivatives.

Taking into account the real lag involved in the formation of

the derivative signals, the differential equation for a system of

variable structire, shown in Figure 3, may be written as

di-xaux +__xe
A C, (1)'~rul + Kp K(t) bj X

J,.0 J -O J(O

x (xBUX J ... d'nx d'x.7- dpx(9 (2)

b
where b = { " Since here we deal with systems of variablej b'

J2

structure which are characterized by sliding regimes, when a sliding

regime does occur, the above equation may be replaced with a linear

one, where the coefficients are equal to the averages bj,-. '-±bn
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The linear equation thus obtained will describe the motion in a
hyperplane. Fast movements relative to the hyperplane are not repre-

sented by this equation. However, since the frequency of a sliding
regime in systems of variable structure of this type is much higher
than the band of the working frequencies of the system, these fast

oscillations will have practically no effect on the output coordinate.

Consequently, the systems of variable structure with physically reali-

zable correcting devices may in this case be investigated using linear

equations.

The occurrence of an uncompensated lag, introduced by physically

realizable correcting dr ices, interferes with the minimization of

the coefficients of the differential equation for the system. There-

fore, when there is interference and a system involves additional non-

linearities, its capacity is less than that of a parametrically in-

variant compensating system. In addition, the nonlinear control part

(the control part might be said to have a source of internal inter-

ference) also results in a higher sensitivity to interference than

in the case of parametrically invariant compensating systems.

A system of variable structure may serve as an example of a I
parametrically invariant system widely utilizing parametric links in

the phase coordinates due to which the system acquires certain non-

linear properties. In general, the presence of parametric links does

not necessarily result in nonlinear properties, which can be directly

seen in Figures 4 and 5. Figure 5 shows an equivalent model of the

control portion of a system of variable structure [2]. A system of

variable structure is characterized by the parametric links in the

coordinates x, x, x..., resulting in a change of the "bank" of relays.

Figure 4 shows the control portion which is fairly close to the

control portion of a system of variable structure, with the exception

that here the modulus is taken of the total signal "q." The parametric

linkage does not disturb the linear properties of the system. Thus,

in the case of Figure 4, we have a technical realization of a liniear

system composed of nonlinear elements.
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c) Systems involving a special nonlinear filter. These systems

are conceptually similar to systems of variable structure. They

differ from the latter in that a signal entering a relay element is

formed by one operator, whereas a signal entering modulus-type non-

linear elements is formed by another operator. In the case of a

single frequency input signal, one can form any amplitude and phase

frequency characteristics (in the first harmonic). However, in the

case of a mixed signal, in view of the invalidity of the superposition

principle, these characteristics do not hold. If in such a system

high frequency sliding regimes occur, then processes in the system,

just as in a system of variable structure, are approximately described

by linear equations. The capabilities of such systems in the case

of a nonstationary automatic control are similar to those of systems

of variable structure.

adjustment). These systems perform harmonic linearization.

For a certain structur6 of the regulator with respect to slow

actions, the system will operate as a linear and statioiary system, /
independently of the variable parameters of the control object. The

amplitude of the auto-oscillations will vary depending on the changes

in the parameters of the object.

The amplitude of the auto-oscillations must for technical reasons

lie within a certain range, which considerably limits the capabilities

of cuch systems.

The systemb in question are also more sensitive to neine than

linear systems.

e) Nonlinear systems with high-frequency external signals.

Such systems perform linearization at the expense of external high-

frequency signals. The system has quasilinear propertits with respect

to slowly varying signals. The capabilities of such systems approxi-

mate those of the auto-oscillatory systems.
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We have in mind the following systems:

a) parametrically invariant compensating systems;

b) systems of variable structure;

c) systems with special nonlinear filters.

We can formally construct a combined system of the form linear-

variable structure auto-oscillatery. However, this type of system

is of no technical interest, since all problems are solved more com-

pletely by a combined system: parametrically invariant compensating-

auto-oscillatory (optimality at large deviations and stability, as

well as given values of performance indicators at small deviations).

To illustrate the parametrically invariant systems and ultra-

coarse control systems, we shall use an example from [3) (Kokhenburger's

system). The equation of the control object will be

1(t) 5000
-m T0K.() , where 0,1 <K(t)<10 (4)

The regulator elements were assumed to be inertia-free WI (p) - KI

W2(p) - Ka Ws(p);for simplicity we assume that KI - 1, K, = 1.

The control system to be designed must satisfy the following

technical requirements:

a) static error no greater than 5%;

b) maximum regulation time no greater than tp = 0.28 sec (the

process is considered to be over when the dynamic error is less than

5%);

c) over-regulation is no greater than 15%.
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A Parmretrically Invariant Compensating System

1) Excluding the static error, we include an integral link in

the adder (See Figure 3.).

Then W"Gp);= WIIp) -
.. .. - ) A(P).=Aj

In a general form W. (p) - -L); W4.2 (p) - Akp W*(P) _A*#

Dki (P) Ikh,(.o)

The transfer function fcr the syst;em will be

K(p) - ( ( K,000K, i t)K )-L+5)1 (p+200o) Bill (P) +-- ,1=0K. (t) +

1 (5)
•+K,As (p)p(p+5)1(p-20Wj 5d K, A ,,(p) p

In case of correct.ng devices of the hype

0,383p' + 29p' + 38%0p + 78 000.,
(p+150)(p+8)(p+.o) .(6)

(includes the object, power drive, amplifier),

0,135p+-, 84p+252

(includes amplifier),

'!- W (p) 480000

('2he last correcting & ice war put between the measuring element

at.d the adder) aad K2 = 2140, .-l technical requirements are eatisfied.

Let us consider the operational ability ot the system ti, the

presence of ikterference Pnd saturation-type nonlinearitiei in the

drive.

Suppose that the drive becomes saturated by an input signal Xdr

16 V. Consider Xdr with noise of the form 0.001 sin 2000 tin'
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a) The noise xin.n = 0.001 sin 2000 tin acts on the input of

the system. The object has a sufficient inertia and does not pass a
signal of frequency w = 2000. Therefore, at that frequency the system
might be said to be open with respect to the principal feedback, and
we can write approximately

X,,p 8O_000 2140
rP- F'50,,p+80oxP+40) -1+ (0. 5P, + 084P+ 52) 2140-

(P+15U)(P+8")(P+4) (9)
480 000.2140(PIo + 5bOps + 2J000p + 1020000) p

IJX.P*S4 0,001. MW O 0'0000000 6 15 V (10)

The noise at the input to the drive will be greatly weakened.

b) The noise Xout n * 0.001 sin 2000 t enters the input of the

correcting device Wc.d. 1 (P).

Xnp_ 0.383p'+2 9p'+3850p+7800 2140
(p+ 150)(p+80)(p+40) " (O,'IJ5 p .,84p+25)21,0•DX1 I+- (+150)(p+ 08)(p+40)

(0,383p+2p'+385p+ 76O)21401

P'+5P+ 0.23 + 0UU

Ix.pl 0,001 .0,368.2140=0,785 V (12)

The jystem will be operational with this type of noise.

%2) Correcting devices may be chosen to be simpler.

For example, the above dynamic requirements are satisfied for

,0l,54p+5,38 .* . 0020 45U" P+45 ; 9+5)- - [ Wk(p+45 .T) p  (13)
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The ope;rational capacity of the system in the presence of noise is

a) Xp 45 3 6 50 ((p+5) (14)
x,.. P(P+45)(p+800)

b)XPI, 10p 1900(+) x1jzs*0 17713 177xmr P+45)(p+600) O=,7V(15)

In the second version, the scheme is also operational, but its

resistance to noise is lower than in the first version.

Systems of variable structure and the system with nonlinear

filters without compensating filters will have a lower resistance to

interference than the above structure.

(Control Systems with Passive Self-Adjustment.

Auto-Oscillatory Control Systems)

Auto-oscillatory control systems are also parametrically invari-

ant but their operational regimes differ from the preceding ones.

I I

Figure 6.

Let us consider Kokhenburger's solution (Figure 6).

The equation of the oscillatory loop for X2 - 300,000 will be

5OOIK K (p'-G64p3 + 165 I op-+ 18,28. iO'p+ 760. __ R'

I= p+ 4p" + 1'1777p.. 132- 1O'p +947 • 10'pl +81(1. I6p + 19050. 10')j~+2WJ (16)
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Under those conditions, the loop becomes unstable. Due to the

saturation of the amplifier (or the drive) the system will be auto-

oscillatory. The expression in the brackets can be factored into a

product of two polynomials

(p3+ 667p2+167 0.6p+ 30,8. J 6)(p3+7,2p+61p+ 145) (I')

The first polynomial has roots with positive real parts. The

instability will occur at the frequency w = 510. If, just as before,

the saturation occurs at 16 V, then the amplitude of the auto-oscil-

lations of the object will be less than the amplitude of the noise

Xout.dr = 0.001 V. The system will not be operational. One can

increase the amplitude of the auto-oscillations at the output from

the object by introducing an amplifier after the nonlinear element,

and a divider before the nonlinear element. However, the result wIll

be that the amplitude of the auto-oscillations at the input to the

object will be very high, which is not permissible under real conditions.

Ultra-Coarse Control Systems. A Structure that Remains

Stable for K

The system has tp X 0.28 sec for K0 
= 0.1; for Ko - 10"the system

has tp =09.02 sec. The over-regulation for K0 = 0.1 is 15%.

The operational ability

X'V .-. in the presence of noise.

Here the effect of the

(P#102) noise xin.n and Xout.n is
I equivalent and similar to

Figure 7. what was used earlier

X 0P 2003(P+IO)'
7" D . + , -1 UOP) ; (18)
'Ux3n.

, ,,!=v..... .0U ) -S,'!(19)
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At 16 V the drive will become saturated due to noise, For this

type of noise, vibrational linearization will occur, the effective

amplification coefficient of the drive will be reduced several times,

t pwill increase, and in this case the process will become more

oscillatory.
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CERTAIN PROBLEMS OF STATISTICAL ESTIMATION IN CONTROL THEORY

A. S. Golubkov

The desire to satisfy the increasing requirements placed on

technical systems leads in a majority of cases to the use of optimal

design methods in the construction of control systems.

When one solves applied problems in that area, there always

arises the problem of obtaining reliable information that would be

sufficient for the construction of optimal systems. Attempts to

solve this problem also encounter certain specific theoretical diffi-

culties, particularljy when the problem is statistically formulated.

As a rule, problems of that type cannot be tackled by a single theory.

They require the use of probability theory, mathematical statistics,

and theory of optimal processes.

The results obtained in those areas indicate that to construct

high-quality systems it is absolutely imperative that measurements be

made. If this is impossible, the values of the parameters character-

izing the state of the processes investigated must be calculated with

high accuracy and with no substantial delay. The occurrence of various

random disturbances and measurement errors, and changes in the para-

meters and characteristics within a wide range in a way impossible to

predict, force us to use the statistical approach in the evaluation

of processes. As always, the estimates are a result of certain opera-

tions on the measurement date, permitting us to estimate the state

of the process.
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The state of a process can, as we know, be described by a stochas-

tic model to any degree of accuracy. Moreover, the correspondence

between the model and the real process occurs only if the model is

statistically sufficient. Considering only one class of processes

- namely, the class of controlled Markov processes - we shall assume

below that their space-time behavior is described by the trajectory

x(t) satisfying a model written in the form of a stochastic differential

equation

i (X, 0) t+ W x () (1)

where w(t) is a random process of the type of white noise with the

parameters E(w(t)} and E{w(t)w(T)} (E is a symbol denoting the aver-

aging operation).

Information about the state of the coordinate x(t) can be obtained

by measuring a certain y(t) which is related to the original x by

equations of the type

y(t) = H(x, t) (2)

or

H(t)=I1(xtw) (3)

and is given as a solution of the stochastic differential equation

where v(t) is a random process of the type of white noise with the

parameters:

{-v.p (t)) -O and E{v (I) v ()

This type of description allows us to take into consideration

the peculiarity of the measuring process which includes the dynamic

properties and the additive noise of measurements.
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Assuming for, simplicity that x, y, and z are scalar processes

and H(x, t) = x, the equation of measurements (4) becomes

z €) -A (, z, 0)+ B(x,t) ( (5)

According to the terminology accepted in theory of controlled

random processes [1], the set {x(t); z(t)}, where x(t) is the unob-

served coordinate, and z(t) is the observable, came to be called par-

tially observable, and the procedures based on the use of the second

coordinate z(t) alone came to be called the procedures based on

incomplete data.

In our case, the set {x(t); z(t)} satisfying (1) and (5), repre-

sents a two-dimensional Markov process in which the first coordinates

x(t), z(t), being fixed, form the so-called conditional Markov process.

The problem as applied to a conditional Markov process belongs

to the class of problems of mathematical statistics, and reduces to

the question of how one can best estimate the component x(t) on the

basis of measurements of z(t). The technical solution of the problem

involves processing large amounts of data, and acceptable solutions

can be obtained only if one extracts "sufficient statistics" based on

the Cet of the measurement data y(z), that are the central question

in those problems [2].

One of the principal difficulties in this approach is the volume

of measurement data, which increases as time goes on, and whose

processing in real cime and in full is difficult using the computers

available today.

In a majority of problems of sequential analysis, where the

present estimate problem also belongs, the a posteriori probabilities

turn out to be sufficient statistics.
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Referring to [3], we can state that the use of the Markov

properties of the set {x(t); z(t)} enables us to considerably reduce

the volume of data required to obtain sufficient statistics. In the

case of a finite observation interval, the a posteriori probability

is a Plarkov sufficient statistic if the following conditions are

satisfied:

1) unobserved process x(t) is a Markov process;

2) observed process consists of a sequence of conditionally

independent random variables;

3) optimality test is additive;

4) preceding measurements and estimates do not impose any

restrictions on the following estimates.

If the conditions (3) [3] and (4) [4) are satisfied, we can con-

sider the synthesis of optimal estimates as an extremal problem of

mathematical statistics in relation to a conditional Markov process

subject to conditions (1) [ll and (5) [5).

'2he problem will consist of making decisions, x(t)Zy((-)) 'i(.,

:onst'ucted out of known data z(T), zEZ, 0 <r < T, which must be

optimal in the sense that they must give the best estimate of the

parameter x(t), xEX, t , T.

When the Bayesian approach is used, such an estimate (here we

have in mind a point estimate) must minimize the mean risk [4)

to( =i (.,, p (x, z) dxifz (6)

where Zo [z, x, y (z)] is a loss function.

To satisfy (6), it is sufficient to minimize the conditional risk

,.'(.lz) to(z,.x, ) p(x,'z) x (7)
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at each point individually.

The conditions (1) and (5) on the set {x(t); z(t)} require that

one consider additional conditions in the extremal problem, in parti-

cular, that one introduce a new loss function L(x, z, x)

n-I

L(x, z,i) - 10 (x,zx) + I X1 (xz.) (8)

and minimize the mean risk R(x) under the condition that

It(z, x,.p (X, Z .d-Z C (=9 )

In view of (8) and (9), we assume that the estimate has the

form x y y(z, A), where the parameter AX = A(ct) is determined by

(i(x, 2, (z, k)) p (X, z) dxdz =ci (10)

If System (10) has a solution, then the estimate x = y(z, A(c))

is optimal for the loss function (8) and is the desired solution of

the extremal problem. Next, assuming that the measurement interval

is bounded 0 = . T . T < -, and the process in which we obtain and

process the data is sequential in time, the introduction of time ill

the problem leads to the following relations for the loss function L

and the estimate x
r

L(x, z, () =L(() z(t), 3(t)) dt + LT(xr, Z,XT)

c(T) =lr(z ()) 0 -<xg T (0 :

respectively. The optimal solution, satisfying (11) and (12) for

fixed T, can be found from the minimum condition

rr ( (T)z ('0) = 5 L (x (,), z (), , ( )) p (x (),': (') dx ( )
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The conditional risk (13) depends on z(T) 0 S Tr _ T through the

a p'.teriori distribution p(x(t)/z(T)) 0 , T : T, which contains the

entire necessary information about the structure of the optimal

estimates.

since (x(t); z(t)} is a conditional Markov process, p(x(t)/z(T))

may be found for all T s T by applying the theory of conditional Markov

processes [5]. The evolution of the a posteriori probability p(x/z)

Is cbtained as a solution of the stochastic differential equation,

and for the model (1) and (5) it is characterized by the solution of

an infinite-dimensional system of stochastic differential equations

P (t P., (t) 8a (x,) -

, + {-j[px()p,,(t)I + i[(X. )p,, (t)} (14)

A (z, x, )-f A (x, p,1) p., () dx

Suppose that pj/z(t) is a solution of (14). Then we shall assume

that the estimate of x(t) will have the form x(z, t) - y*(p /z(t).

We know that in the case when the probability density pX/z(t) is

unimodal and symmetric in its expectation, and the loss function is

symmetric, i.e., L(x, x) - L(x, x), then the conditional expectation

is the best estimate. Therefore, the optimal estimate will always be

chosen as

. x(z) xpz(x/z) dx - xp (zx)dx (5

p (x) p (z (x) d-v(5

Such an estimate being asymptotically unbiased represents an

efficient estimate In the sense that the deviation is minimized [2, 4].

The above expression for the a posteriori probability clearly

shows that the process of finding estimates requires a solution of

parabolic partial differential equations, which is very difficult.
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Since Equation (14) is infinite-dimensional, we are actually not

interested in it as much as in the fact that from it one can obtain

equations of certain characteristics of the process px/z (t), for

example moments, characteristic functions, and semi-invariants.

However, even with this simplification, the equations for the

first two moments can be obtained and solved only for an exponential

family of Markov process distributions, and then only in the case when

it is possible co establish a one-to-one correspondence among the

sets X, X and Z.

As an example, let us consider a Markov process described by

the equation

xC + aw(l) (lE)

x0 = x(O) is a Gaussian random variable with the parameters E{x} and

E(x2 }. w(t) is a random process of the white noise type with the

parameters E{W) - 0; E(w'}.

The process x(t) is observed in the presence of white noise by

a system of measurements described by the equation

= x(t) + bu (t) (2E)

v(t) is a random process of the white noise type with the parameters

E{v} - 0 and E(v2 ).

The processes w(t) and v(t) are statistically independent. On

the basis of the measurements z(T), 0 1 Ti T, we are required to

obtain optimal estimates of the coordinates x(t), which are optimal

in the sense that they minimize

L (x, X) lx8(t)9 -'V (Ili
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For this purpose, we have to determine the first and second

moment of the a posteriori density p /z(x, t).

The first moment

).= xp, 1 Odx (2Eb)

is an optimal estimate, and ti second

D (t) . S (x( )-(t)) d,(tdx (2Ec)

is its minimum deviation.

The a posteriori probability according to (14) satisfies, in the

case of Example 1E and 2E, the stochastic differential equation

dP _/,(t) OPx,,,()+.a (t) 0 1P,(t). . ... .

-T ' " - ' } (x-x(t)x (ZQ-x(1) ( 3 E)

with the initial conditions pxl,(x, O/O)8='exp,.X !----!;-'}•

The first term on the right-hand side of (3E) is the right-hand

side of the direct Kolmogorov equation, and the second is a result of

measurements.

Equation (3E) for p (t) yields an equation for x(t) and D(t)

X(1) - e + £(I()() )('SE) M

b0
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The solution of the problem is thus given by a system of nonlinear

differential equations whose analytic solution in closed form may be

obtained only in certain particular cases. Nevertheless, analog and

digital computers can be used without too great difficulty in conjunc-

tion with an algorithm for the processing of data. Using digital

computers the operations on the data are in the form of recursive
computational procedures, using at each step only the current data,
which means that the required estimates can be obtained with a delay

equal to the machine time of computation for one measurement.
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AN ANALYSIS OF A TYPICAL STRUCTURE OF AN AUTOMATIC CONTROL
SYSTEM AND A METHOD OF SELECTING THE TRANSFER FUNCTION

FOR A STANDARD MODEL OF A SELF-ADJUSTING SYSTEM

N. A. Shokalo

In designing a self-adjusting control system, one has to analyze

the original control system to discover the possibilities of satis-

fying the T. T. Z.0 with respect to the performance indicators of

the transfer process, which may be in the form of:

1. Maximum over-regulation of the bank angle (y) no greater

than +15% of ygiv"

2. The length of the transfer process no greater than 2 - 3 sec

with a deviation of the bank angle from its steady value by no more

than t5%.

3. Maximum over-regulation of the bank rate (wx ) no greater

than +50%.

Methods of the theory of sensitivity can be used to solve this

problem for a system of any order, but the solution is hindered by the

necessity of choosing a reference transfer function for the control

system (1, 3).

* Translator's Note: Expansion unknown.
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:.e turpose of this paper is to select a reference transfer
function for a control system. For this, it is necessary to establish

a relation between the performance indicators for the transfer process
with a c.stribution of the poles and zeros, and the coefficients of
the transfer function for a typical control system of fifth degree in
the denominator and third degree in the numerator.

W*3C tW + A4 A,4 ( 1)W~e" + np'+Ap ,' + P+ A,

To solve the problem, we have to vary simultaneously from 5 to
8 coefficients of the transfer function. The second problem to be
solved consists of selecting the optimal coefficients of the control

system's regulator and the reference model such that certain quality

tests will be minimized.

Mutual Relationship amonx the Coefficients of the Transfer

Function on the Boundary of the Region of Transfer

Processes of Given Quality

The transfer function is studied using the method of mathematical

models. The problem to be solved can be simplified by fixing coeffi-

cients in the denominator A,. A,$ As, which contain only the time con-

stants of the object and the director, or by fixing the coefficients

A4 and As, containing the typical regulator and control surface

efficiency coefficients. The coefficients are varied successively

from the average value in both directions, and the variation is limited

by tolerances in the given quality characteriatics. Experiments serve

to establish the range of the coefficients of a normalized and unnor-

malized tranfer function of the system, and thus we could construct

the grids of the regions of transfer processes of given quality in

the coordinates of any two denominator coefficients. The effect of

each numerator coefficient on the dimensions of the regions was

determined, and the restrictions on the coefficients were selected.
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Figure 1. Figure 2.

The relationships thus obtained permit us to claim that:

1. The transfer processes satisfy a given performance level

for a wide range or the first three coefficients A,. As, As (Figures
l and 2). For comparison, we plotted the volumes "I" and "2," which

define the maximum possible variations of the coefficients A,. A,, At

depending on the time constant of a real director.

2. The "lower" boundary

of the region with the two
: ,"0 .u,;', last coefficients in the deno-

flue minator A4 and As being fixed

is determined by the high fre- I
quency oscillation. In order

.. .-i -' to assure a given level of

... performance, the coefficients
// " , z __Alt Ass As must be selected

2 T  . : . ... such that the boundary of the

1:o 2 0 500 0 I,) high frequency Instability

Figure 3. will shift beyond the area

determined by the performance

indicators, since for values close to those on the boundary the region

of performance shifts toward the origin and has small dimensions as

compared with the stability region.
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3. The region of
/4/ - transfer processes of givens

/performance may be widened In
A'! Atwo ways:

three cofiint , 2

~V61~ . ~ -b) by finceing all fis
19 4thr coefficient s AA, adsmlan-

A, imutAneousl (Figure );

At 3 40 ~ ofi It is aond sihuttan
Figur 4j eou4 increas ingf the coef-en

Al-MO NfAcinthe Acoordigre 5).A

ot processes of given performance
got only in the direction of the

coefficient As, and a corre~i-
I AN o tion to increase the coeffi-

cient A2 is necessary (Figure
20 40 Up9 M AiD M2 6).

Figure 5. 5. When analyzing the

functional relationship along

/ i. 0the boundary of the high-
frequency oscillation between
the coefficients A2 -A andj ~tS~I ~ A, - As, we find a relationship

Oh 'f ' )Vwhich is close to linear. By
-0* I A6e-',.*, expressing this relationship

A as a formula, one can reduce
the number of the independvpntly

2XITh 4.1 V 97 /317 INA M0 #00 IN0 89 ism /li varied coefficients of the

Figure 6a, b. equation. The modeling -(,Icrwe
is shown in Figure 7.
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An Investigation of the Distribution of the Poles of the Transfer

Function Inside the Region of Given Performance

On the grids of the selected regions of transfer processes of

given performance, we have plotted the regions where the roots are

located and constructed the boundary curves that separate them (Figures

3 and 4). In constructing the regions with the roots, we have used a

procedure described in [2]. The classes of the roots were determined

as proposed by A. A. Felldbaum: 2A is a class with one real root and

two pairs of complex roots, the nearest complex roots with respect

to the Imaginary axis. 2B is a class with the real root nearest to

the imaginary axis and two pairs of complex roots. 01 is a class with

three real roots and one pair of complex roots, as well as the real

root nearest to the imaginary axis; 0 is a class in which all five

roots are real.

The method is essentially as follows. If the characteristic

equation of a closed system has the form

~' ~ =u, where ()

then each set of coefficients Ak (k - 1. 2 ... n) is associated with

a single class of distribution of roots of Equatior (2). We know from

higher algebra that the necessary and sufficient condition for Equation

(2) to have r identical roots is that the polynomlEl in (2) and its
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(r - 1) h derivative vanish simultaneously when the multiple root is

::ubtituted in the'". To simplify the problem, we set r = 2. Thus,

when the multiple root is substituted, both the polynomial in (2) arid

It- first derivative should vanish. Thus, we have two equations

I. nAk,''k 0 jA i k .(3)
k-0 k4,C

where A0 1.

Letting po take on values from 0 to-- we obtain various sets of

the values of coefficients satisfying ly.em (3) when pa is substit-uted

in the latter. Each of the sets is, in the hyperspace of paramete rs,
a figurative point lying on the boundary separating the subregions

with a different combination of roots. The boundary of the subregion

with a different combination of roots is constructed in the plane of

any two parameters, where the remaining parameters are fixed, i.e.,

one intersects the hyperspace of parameteru by a plane of two para-

meters A and A . One derives an expression for the boundary curve
I m

[4) separating the subregions with a different combination of roots

in the canonical form, and its behavior is considered by studying the

derivative of the boundary curve. The shading of the boundary curve

from V# a 0 to U0 * _ is done from the left if (m - z) is e',en, and

from the right if (m - 1) is odd in case the "Im" coefficient lies on
the axis of ordinates.

The distribution of the zones of roots in the coordinates of anj

two normalized coefficients permits us to establish that the coeffi-

cients A2, A3, A4 have the greatest effect on the redistribution of

the zones of the curve inside the selected region. It is found that

in the coordinates A., As, which may first of all include the para-

meters of the regulator, a wide performance region can be obtained

in two ways:

I. If the director has a large time constant and the values of

A,, A2 , A3 are close to the boundary of the high-frequency cscillatlZn,

then fixing the coefficient A, one can correct the coefficients A2
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and A3 in such a way that the boundary of the high-frequency oscil-

lation will move beyond the region of transient processes of giver:

performance. In this case, the values of the coefficients A2 and A 3

should be equal to A2 a 2000, As a 30,000. The region of the transient

processes ij here filled with roots of the 2B type (with the real

root nearest to the imaginary axis and two pairs of complex conjugate

roots). The region of the roots O is small and is close to the

coordinate origin (Figure 6).

2. A wide region of transient processes of given performance

can be obtained by simultaneously increasing the values of three

coefficients A1, As, As, i.e., by bringing their values closer to the

values corresponding to the drive constant Tdr a 0.03 sec and the

booster constant Tb a 0.015 sec. In this case the entire region of

given performance, with the exception of a narrow lower strip, is

filled with roots of type O (where the real root turns out to be

nearest to the imaginary axis, followed by a pair of complex ccrjiigate

roots, ard by two real roots). It is important to know that by varying

the valucs of Al, A2, As one can superpose the regions of the distri-

bution of 01 roots on the region of transient processes of given

performance (Figure 5). Thus, having the grids of transient processes

of a given performance, and given the aerodynamics and parameters of

the real director of an aircraft, one can determine in each case the

values of the nominal coefficients of the transfer function, the

nominal distribution of roots, and thus the nominal transfer functicn

of the fundamental system, which may be used as the transfer function

of the reference model of a self-adjusting system.

Tests of the Optimization of the Coefficients of a Control

SytmReaulator and a Reference Model

The opt:nization of the coefficients of the control system regu-

lators and the reference model of self-adjusting systems is accomplished

b calculating the partial derivatives of the phase coordinates in

,erms of the parameters of the rigulator in the two basic regimes of

the conlrol system: damping (pilot's manual control) and stabiliza-

tion. Partial derivativee can be best calculated by using the method
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of the sensitivity function models which may be linear or nonlinear,

The advantage of tha method is that the extremal values of the coef-

ficients are obtained fast, and it is not necessary to vary those para-
meters by trial and error. The regulator coefficients are optimized

in the presence of two actions: control ygiv' X f and wind (f w). As

the optimization test, we propose a square integral test determining

th. miniium loop error in the stabilized regime

I El(t, , )dt, where E , (4)

J is the regulator coefficient in the damping loop, i is the regulator

coefficient in the stabilization contour. The gradients will be

v l - 21 E,(t, ML t,1)d

0I -- (1, i)di (6)

The extremal values of the coefficients U* and i* for equal values

of integral estimates (Figure 8) correspond to the values of p, lying

in the selected region of transient processes of given quality, and

the values of i* lie beyond the performance region - for example, in

the middle of the stability region. With wind disturbances (of the

same spectrum as the contrl. ones) the optimal values of p*, 1' lie

at the ujper boundary of the stability region (Figure 12). Thus, the

test lz.Sgfdtdetermines the minimum of the stabilization error. For

a flight*in a turbulent atmosphere, this test may result in consider-

able overloids acting on the pilot and large values of vane deflections.

For aircraft, the damping loop may usually be considered to be auto-

nomous by using its integral performance test to optimize its coef-

ficient p. This is advisable If one wants to adjust the coefficient

w independently of the adjustment of the stabilization loop coeffici-

ent i.
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In this case, we can take the following integral tests:

I.= r r!dwhere E, M

r r

I\,cdi I - (w,)-dl

The phase coordinate E characterizes the loop error for manual

control, the second phase coordinate 6b characterizes the defle ction

of vanes, and is of practical interest since it can be measured when

forming the integral estimate. The third phase coordinate w charac-

terizes the minimum overloads acting on the pilot. In the case of a

sufficiently fast director (fdr 4 - 5 Hz), these estimates turn out

to be close (Figures 9, 11). The values of UO and i* for the tests

being minimized lie within the region of transient processes of given

performance. In addition, the value of p* is inversely proportional

to the effectiveness of the vanes as the flight regimes change.
r

The advantages of the practical test 1. 62 dt are as follows:

1. Independence of the adjustment of coefficients p and i.

2. Sufficient stability margins relative to p and i, corres-

ponding to the desires of the pilot 'in the linear regime),
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Figure 10. Figure 11.
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Figure 12. Figure 13.

3. Constancy of the stability margins as the regimes of flight

change for both the control (y giv' x f) and wind disturbances (of the

same spectrum). (Figures 9, 10, and 12).

4. The possibility of realizing a fairly simple self-adjusting

scheme (when adjusting the coefficients u and i by different tests).

5. The average deflection of vanes is minimized, which is

Implied by the test itself.

The shortcomings of the test include a lower accuracy of regu-

lation in the stabilized regime, and a higher necessary value of the

coefficient p in the nonlinear regime (Figure 13).
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Thus, from the point of view of satisfying the requirements on
the processes of given performance, of minimizing the loads acting on
the pilot, and the deflections of the vanes, we see that the efficient
test involves optimizing the coefficients of the automatic pilot

Ia sE2Fdi or I Y 7 .t(8)

In the stabilized regime during bombing, the test I~~~1is efficient
or (in the case of wind disturbances or nonlinear control systems) its
modified version is

(+ TpJ 2 di.(9

To achieve independent adjustment of the coefficient of the damping
loop regulator, it is advisable to use different performance tests in

the stabilized regime for the adjustment of the coefficients Ui and i.
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AN APPROXIMATE PROCEDURE FOR DESIGNING A SEARCHLESS SELF-ADJUSTING

SYSTEM SENSITIVE TO THE PROPER FREQUENCIES OF THE BASIC

CONTROL LOOP

B. V. Vi!:torov, G. N. Izmaylov, B. V. Kirsanov, V. A. Pokhvalenskiy

The analysis and synthesis of complicated control systems is more

often than not extremely laborious or completely intractable analyt-

ically. For this reason, it is of great practIcal importance to

develop approximate procedures based on permissible simplifications.

One of the possible ways of investigating nonperiodic processes
in complex systems is the method of separation of composite motion.

It is based on the theory of differential equations with a small

parameter multiplying the derivatives. Its application enables us

to lower the order of the original system of equations and estimate

the accuracy of the approximate solution [5].

The system under investigation is shown in Figure 1. This system,

known in the literature as the Marx system [1], was studied in quite

a few papers [ 2,3,4 ], and is used at the present time in aircraft.

In this paper, we do not investigate the dynamics of' the system,

its stability, or the performance of the adjustment processes. We

shall only be interested in the possible ways of obtaining the analytic

relationship
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Figure 1.

.where Iiadj is the adjusted value of the amplification coefficient,

S To, Tdr, Tup , T1 ow, T are the time constants of the object, drive,
upper filter, lower filter, and forming filter, respectively; C, Cdr,

CupGlow are the damping coefficients of the obje.t,* drive, lower
filter, and upper filter, respectively.

To solve the problem, we propose to make a number or simplifica-
tions that reduce to the following:

1. As shown by simulation, stand, and flight tests of this

type of system, wind disturbances have hardly any effect on the adjust-

ment processes and on the steady-state values of the coefficient i

(with the possible exception of the takeoff and landing regimes).

Therefore, the pilot's signal in the course of piloting was taken as
the test signal.

2. The disturbance used as the input into the control syste

Tas taken in the form of a single function. Stand tests showed the

correctness of this simplification. The error in the adjusted value
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of the coefficient under various actions (also including manual

piloting) did not exceed 10%.

3. The dynamics of damping loops of present-day aircraft is

such that one can distinguish two qualitatively different types of

flight regimes:

a) regimes with a fairly large scatter of the roots of the

drive and the aircraft. The root hodograph, illustrating this type

of regimes, 1 shown in Figure 2. In this case, the control law

assumed here is satisfied with sufficient accuracy;

b) regimes with a small scatter of the roots of the drive and

the aircraft. In this case, the control law 6 a pw might be said to
change to 6 ; P. Here 6 is the angle of deflection of the control

surfaces of the object, w is the angular velocity, a is the angle of

attack. This type of regimes is illustrated by the root hodograph

in Figure 3.

Regimes of this type do not satisfy the basic requirement on

the control system - namely, that the drive should act faster than

the control obj.;t.
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Recently there has been a tendency to increase the speed of

operation of the drives. In view of this fact, we shall consider

only the "slow" regimes or "fast" ones in which filters or special

* control laws are used to obtain differences in motion.

The procedure we propose is based on extracting from the general

*transfer function (of fifth degree) two component second-degree

functions which reflect the characteristic types of motion: aircraft

("slow" and drive ("fast").

Strictly speaking, three types of motion occur in the loop under

consideration. In the order of speed of action, we have the aircraft,

drive, and booster motions.

The fastest motion (booster motion) is not taken into account

when considering the aircraft motion. When considering the drive

motion, the booster motion may be taken into account in the form of

several terms in the expansion of the transfer function.

The zero-order approximation is used as the transfer function

generating the "slow" component of composite motion. Structure I in

Figure 4 illustrates how this approximation is obtained. In principle,

one could also take the first-order approximation in which the drive

is represented by the expansion (which does not Increase the order

of the system)

IV.(p)a-2,,T p (2)
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Figure 6..A

The root hodograph

of aircraft roots with

real and inertialess

drives is shown in Figure 7.

Figure 5. The transfer

function, generating the "slow" motion, is written as

p-'+(2.oTo+k r. )p+I+k#& 
(3)

The "fast" component of the composite motion is conveniently taken

in the form of the first-order approximation. Then the drive (the

unit generating this type of motion) is closed through the object

taken in the form of an integrating unit. The root hodographs of the

drive roots in real and idealized schemes, confirming this approxima-

tion, are shown in Figure 6.

The formation of the "drive" transfer function is shown in Figure

7. Loop 4 does the "generation," and loop 5 extracts the desired

motion.
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Analytically this has the following form. We assume that the

transfer function of loop 4

W .p , T 7' .-'IIL 1tP', p) P( ',0 -+- .7,,p+j)
P (_1;Pt+2 ,,P + I) + kit ( 4)

consists of a sum of the desired Wb and the transfer function of loop
5, which is the image of the "slow" motion

( (,P- - P) (5)

The denominator of the unknown transfer function is determined by

the expansion of the function

p (,- 4p+),k ... 7 p, + (2pn.r, - +rp)" +

p+ +
- (6)

+ 1 - 2..-. + i P-,

in a Laurent series. Equation (6) can be obtained by dividing the

denominator of the transfer function W4(p) by the denominator of Ws(p).

Neglecting the remainder in (6), we obtain an approximate expres-

sion for the denominator of the unknown transfer function. An analysis

of the transient error processes for the system in Figure 1 shows that,

taking into account the transfer function for the "slow" component,

Wb(p) should have the form

k'P

where ki ; 2P T is obtained using the method of indeterminate

coefficients and the condition that the original W4(p) is approximately

equal to the sum of the approximate transfer functions in (5) and (7).
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Thus, the reaction of the original system has been decomposed

Into two superimposed components, given by the transfer functions in

(3) and (7).

4. Next, we assume that both components of the composite motion

are sufficiently different in speeds of action. This assumption

enables us to direct each ohe of them to the "lower" and "upper"

filters, respectively of the spectral analyzer.

The forming filters are considered as follows:

0 1

The value of the root corresponding to Loop 1 in Figure 1 is
chosen so that its modulus lies between the roots of the drive and
the aircraft, and the value of the root corresponding to Loop 2 is

much greater than the modulus of the drive root.

In view of the above, in the case of a "slow" signal, the

forming filters 1, 2 in Figure 1 may be accounted for by the differ-

ential loop Tp, 2 In Figure 4. In fact, a "slow" signal is a sum of
a stepwise component and a component that increases from 0 [see

Equation (3)]. The stepwise signal is separated at the input to the

low-frequency filter 2 in Figure 4 in the form of a short (as compared

with the time of the transient process in the low-frequency filter)

pulse, whose effect on filter 2 will be practically identical with

the effect of a delta function (since the areas of the delta function

and the real pulse are identical and equal to T). However, the "flat"

part of the Algnal, in view of its small slope, will practically be

differentiated by Loop I (Figure 1) and passed without distortions

by Loop 2.

The "fast" signals, due to its high "speed of action," will be

passed by either filter with hardly any distortion.

The above is reflected in the structural schemes In Figures 4

and 7, showing two separate channels along which the input signal

proceeds.
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In addition, to account for the effect of' the stepwise component

of the "slow" signal [see Equation (3)] on the high-frequency filter

7 in Figure 7, we introduced an additional single connection 6.

5. To make an analytic calculation of the possible scheme, the

moduli were replaced by quadratures 3 in Figure 4, and 8 in Figure 7.

A simulation of the complete Figure 1 and the separated Figure 4

and 7 showed a good agreement between the results with respect to

the adjusted value of the coefficient p

An error in the value of p was no greater than 10% in various

regimes.

It is important that, when the convolution integral is applied

(in a complex domain), the order of the original integrand in the

exact scheme (Figure 1) is nine. When the procedure proposed here is

used, the order is lowered to four.

6. The subsequent design of the system can be made by finding

the quadratic estimate at the output from each of the channels. This

permits us to obtain an analytic expression which relates the basic

parameters of the system.
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AN INVESTIGATION OF ADAPTIVE CONTROL SYSTEMS
FOR RANDOM ACTIONS

M. F. Rosin and V. I. Ul'yanov

At the present time, adaptive control systems are studied

statistically by using the interpolation method (3), the method of

equivalent perturbations (4], and the method of coefficients (I].

Among the methods in which the output signal is represented by poly-
nomians, the interpolation method has the highest accuracy. In this
method, the interpolation points are taken to coincide with the roots

of the orthogonal polynomials, with the weights equal to the coeffi-
cient distribution densities in the canonical expansion of the input

signal to the control system.

The accuracy of the probabilistic chazacteristics obtained by

the interpolation method is checked by comparing the results for

various degrees q of the approximating polynomial. The entire compu-

tational procedure is repeated again for a new value of q, since the

optimal interpolation points change. In contrast with the interpola-

tion method, the method of coefficients uses the results of previous

simulations. This lowers substantially the amount of work involved

in the calculation of the probabilistic characteristics of the adaptive

control system. For example, for q z 4 and p - 7 in the interpolation

method and the method of coefficients, one has to carry out 2187 and
113 simulations of the control system, respectively.
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however, due to the nonoptimal selection of the approximating

points, the methc'd of coefficients is inferior in accuracy to the

interpolation method. One can increase 0e accuracy of the coefficient

method by taking into account different effects of the coefficients in

the canonical expansion of the input signal, and by combining the

coefficient method with the interpolation method.

Determination of the Probabilisitic Characteristics of a Control

System by Taking into Account Various Effects that the

Coefficients in the Canonical Expansion of the

Input Signal Have on the Output Signal

The selection of the degree q In each random coefficient in the

coefficient method is achieved by improving the accuracy of the proba-

bilistic characteristics of the control system, and does not require

any additional simulations of the control system. Let us select

Chebyshev-type points in such a way that their number will be suffi-

cient to determine the coefficients in the expansion of the output

signal in a Maclaurin series. These points satisfy the requirements

cf the coefficient method: they lie within the ranges of the real

values of the random coefficients in the canonical expansion of the

input signal, and the output signals for them are not very small.

Let us consider the procedure in which the variance of the output
signal from an adaptive control system is calculated taking into

account different effects of the random expansion coefficients.

We have

jY (1) =m I'1,(1, X, . X2, Y.. ,,))( )

Here

7 (1. 1, X ,, ... , .X )m (t, X, , ..... ,)--,)11 (2)
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X1, X2 9, ... , XO arc the random coefficients of the canonical expansion

of the input signal with the variances

M [XII=-', (3 )Xl.-o, . "" ;"

The expansion coefficients will be assumed to be distributed

normally. The degrees qj, qa, ..., qP of the expansion coefficients

X,, X2, ..., X in the polynomial approximating the function

Y(t, X1 , X2, ..., X P) are unknown. To a first approximation, we

assume

ql q 2 ... = % -( 4)

According to the coefficient method, we find the first approximation

to the variance of the output signal from the control system

Hire

'I'.E, 0,0 .... 0)-'(t, x,, x . .)Ao (t) (6

for x1 -j x ... mx"0

Ak t, 0: I (t .k -'l (t X,0 .. )

for -x2= ... ... =x9 =0 and xh#O (8)

Chebyshev-type points are chosen as the concrete values of the random

coefficients (3).
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Process No. Values Of XIS X2, ... , X

__ _ _ _ _ X, X, .. .. X -
-1,732*

+11,2a,0 . . . . .:.:3 (j+:7320, 0- 0 -1.732g .... . . 00 172 . . . . . .o0

...... ...... . ...... . ... .2p-1 0 0 1 732opOp 0 I- 732 0 0

We increase the degree q in the expansion of the function T(t, x, ... ,
xv 1 ... , x ) In a Maclaurin series in only one ("large") random coe:-ficient xv, so that the highest degree of the approximating polynomial
of the function T(t, x,, Xz. ,.,, ... , xe) does not exceed tour.
The algorithm in which the random coefficients are divided into "large"
and "smaUl" is given In Section 2.

.............. .l. A,*'. ).xAQ, X...r-,

2k I
J 1,,, V)k:/.y

0 2A (t , x,, )-Ao (i + a ( . ) + ,aj, (I).,v X+

,4.,,,(t, xv)-A,,.)+ A;,k,0. A, ) x ! t,-
(i) .4 (12)
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Substituting Equations (10), (11), (12) in Equation (9), we have

V(t, x, ... x )= Ao(t)+Ar (t)x,.+-,,oA2(t).2+
I S s

+L A4 (t) X+j A4 (i4+ E A,, (i)+A", (t) x,+
kt (13)

+ 2 2 I 11+ A. v- (t) 4 + T Adt.l,+ - "X 2 ,[,,,()

ho.v kjV*

+A , (t)xv+2.-Av (t ) I xv2

Applying the expectation operator to Equation (13), we obtain

,2 + 4 V

Y t +  ,v(t) - Ao(t)+1Axv(t).M {. + Ao,().,A (.
S 2 (1 )

+ .A,;,, (t) A {x4} + ,,- (f4,, (t) + A:x. (tiM (.)1 l, 1.

The coefficients Hk k(t) are determined from the known formulas by

using the results of the previous simulations of the control system.
The coefficients A'4 Mi)are :alculated using the formulas

GX-X 41

-- (t -x ).- Av ,, (X, x,,)-+A ,,( X , . (1

The number of simulations of the control system for one "large" random
coefficient as compared with the first approximation to the variancc"

D;(t) is increased by

Since the Chebyshev-type optimal points were chosen as the

approximation points, some of the terms in the variance (14) can be

calculated using the Interpolation method
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+~~A~' (t)~~tA ( .V .(,0, .. ,O)po+V(tO, ... ,1,732av, ... ,0)p,+ (17)
+TI(f. 0, ... , -1,732 av,.... .)pj

Here po,, pi, P are the Christoffel numbers used in the normal distri-

bution of the random coefficient with the following values [3]

Po00,666; pF-0,166; pi-0,166. (18)

A partial application of the interpolation method permits us to reduce

the number of simulations of the control system by 2.Kz; KZ is the

number of "large" coefficients in the expansion. If the increase in

the variance of the control system ADXv(t), caused by an increase of
y

the degree q relative to the "large" random coefficient x V, does not

exceed K.DO(t), then in the case of the random coefficient xv, we

limit ourselves to the obtained value of q

The coefficient K characterizes the accuracy to which the variance

is determined. It can be, for example, taken as equal to K a 0.05.

If AD v(t) t KD°(t), then one should consider - in the expansion of
y

the output signal - terns of a higher degree q V in the random coef-

ficient x . Upon finding ADXv(t), we proceed to consider two "large"

random variables x. and xP. For this case, in the formula for the

variance of the output signal

D;O(t)-D, (t)+bI)" (f)+AD, (1) (19)

we add the terms

A A, (t) Al (x}, LA, () A (A,) A1 (x4,)

whose coefficients are determined using the formulas similar tc

Equations (7) and (8).
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The number of additicnal simulations of the control system in

order to calculate the variance D2 (t) as compared with the variance

D'(t) is increased by

o, = 4 (p - 2) (20)

The increase in the variance AD'P(t) due to the random coefficient

X is compared with the value of K'D;(t). If AD'U(t) I KD;(t), we

limit ourselves to the value q, = 4; otherwise the degree y in the

random coefficient X is increased to six. 4
The increases AD y(t) and degrees q needed to take into account

the successive random coefficients are calculated in the same order.

For p = 5, p = 10 and q = 4, we give below the necessary number of

simulations of the control system.

Number of simulations using the Coefficient method
coefficient method considering without considering
different effects of the expan- different effects
sion coefficients of the expansion

coefficients

KZ 1 1 3 4 1 6 7 8 19 10I-

Pe5 27 39 i 47 511 51 61

Thus, the number of simulations of the control system, taking into

account different effects of the random coefficients in the canonical
expansion of the input signal, is much lower than the number of simu-
lations as compared with the usual coefficient method; or, for the

same number of simulations, the accuracy of the coefficient method

taking into account different effects of the coefficients is higher

than the accuracy of the ordinary coefficient method.

2. The algorithm for dividing the random coefficients into

"large" and "small."
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Let us consider the algorithm in which two coefficients in the

canonical expansion X, and X2 , normally distributed, are divided into

"large" and "small."

Using the coefficient method for Chebyshev-type points

X, X2
0,000 0,000

+.1,732 * + 1,732
- 1,732 c, - 1,732 02

we find the components of the first approximation to the variance of

the output signal.

M (o110 (1, x, 0)j - T'I(t, 0, 0) + A(1).AIxv1 (21)

Al i{y(t, 0, x )) - ('1I, 0, 0)+P A+ (.l '.,' (22)

Using the same results o, a simulation of the control system,

we use the interpolation method to find the expectation of the

functions 0 1(t, xi, 0), *'(t, 0, xj) for q, - qj - 4

Al ('i,,, X1, 0)) = '(1. 0. 0) + A-L A- + (, Y){X(23. . 141 X.(23)

T (t, U, 0)p. + 1(t; 1,732 a,, 0)p, + TF(i, -1,732.*, 0)p,

Al, (IV, (1, 0, 2) = 'l(1, 0, 0) + A' (*1 (,21 + A, 4A1 t) .1: (24)
-, T (1, 0, 0) p,) + W' (1, 0, 1, 732 aj) pt + W (t, 0, - 1,732"a) Pi

We calculate the differences

Al (0 "(, X, 0)) - Al (TO(, x,, 0)) (,, (25)

Al (" (~, 0, x-2)) - 1.1 ('O(t, 0, x.,)) a

(26)
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The coefficients aX,, a characterize the effect of the fourth-degree
terms

~.A', (1) A txi, A' (1)M1 {x02)

on the value of the variance of the output signal from the control
* system.

The random coefficient with the largest value of ax is taken as
the "large" random coefficient when going from the first approximation
D(t) to D1(t). The transition from "Ismall" *to "large" random
y y
variables is done in the descending order of a~

The transition from q- i4 aud qa 6 is done similarly.
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EQUATIONS OF MOTION OF A SYSTEM OF BODIES

OF VARIABLE MASS AS A CONTROL OBJECT

Zh. S. Agayev, B. V. Viktorov, and I. S. Ukolov

A majority of objects in aircraft, missile, and space technology

are mechanical systems that can be represented, if one neglects the

elasticity of their construction, as ensembles of a number of ideally

rigid bodies of variable mass whose relative motion and the variation

of mass are assumed to be known.') Such objects include, for example,

spacecraft with cosmonauts or other movable mechanical masses moving

in them, aircraft of variable geometry, and a number of other objects.

Due to the shifting of the centers of mass of the component bodies,

the gyroscopic linkage between rotating bodies, the shifting of the

axes of inertia, the change of the moments of inertia of the ensemble

in its entirety, etc., the dynamics of the above mechanical system

differ substantially from the dynamics of an isolated rigid body of

variable mass. Numerically this difference is greater if the mass of

the moving bodies is greater compared to the mass of the main body,

and if the movements of the masses are faster.

*The term has the following meaning: the relative kinematics of
bodies and the character of mass variation of each one of them are
known functions of time or, in a more complicated case, are the
phase coordinates of another more complicated dynamic system.
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It is important to note that, for the particular case of bodies

of constant mass, the equations of this type (only for rotational
motion) were obtained in [1].

The mechanical system considered here has of course six degrees

of freedom. Therefore, it is necessary and sufficient to set up six

tndependent dynamic equations of first order, with the variables in

the form of the components of the linear velocity vector of an arbi-

trary instantaneous center of mass and.the components of the angular

velocity relative to that center.

In the present paper, the center of reduction is the instantaneous

center of inertia of the system. The scalar equations for transla-

tional and rotational motion are written relative to the instantaneous

central axes.

The hypothesis of near-action [2] is used as the initial assump-

tion, as is done in a majority of papers on the mechanics of variable

masses.

The Coordinate System and Kinematic Relations

Let us consider the case when the system consists of the main
body "0" and a number of movable bodies "i" (Figure 1). We shall use

the following coordinate systems:

cn& - inertial;

XoY0Zo - attached to the main body "0";

XiYiZi - attached to body "i";

XYZ - movable system whose origin coincides with the

instantaneous center of inertia.

Since the relative motions of bodies and the change in their mass

characteristics are considered to be given, the following quantities

are also assumed to be given: p0 which is the radius vector giving

the position of the origin of the XYZ system relative to XoYoZ,; the

Euler angles giving the relative orientation of the XYZ and XoYoZo
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axes; wi is the angular velocity

vector of the system XiYiZi rela-

tive to XYZo; Psi is the radius

vector giving the origin of the

odyd- system XiYiZi (i - l, 2, ... ,

S/ A " zi n) relative to X*YOZ@; the Eulor

angles giving the relative

orientation of the XiY Z aria

X X.YZo axes; Do is the angular

velocity vector of the system

body.o XYZ relative to XOY@Z 0 ; t is

At "the angular velocity vector of

the system XYZ relative to

XiYiZ,; moreover

Figure 1.
are the Euler angles coordinating the orientation of X Y Z and XoYoZ,.

Of course, a knowledge of the orientation of XYZ and XYeZe, XIYIZ1

and XYZ uniquely determines the orientation of XGYZ, and XiY Z1 .

P1 is the radius vector giving the location of the origin of XYZ

relative to XIYiZI (i a 1, 2 ... n); A c is the radius vector giving

the position of the instantaneous center of inertia "0" relative to

XYZ; Aci Is the radius vector giving the position of the instantaneous

center of inertia of a body "i" relative to XYZ; p sc is the radius

vector giving the position of the instantaneous center of inertia of

the body "0" relative to XOYZe; pic is the radius vector giving the

position of the instantaneous center of inertia of a body "i" relative

to X *I Zi; mo and m I are the instantaneous masses of the body "0" and

"I," where by assumption

A

*Translator's note: Incorrectly given as "Y" in foreign text.
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m¢ and m are instantaneous masses of "current points J"1 forming

the bodies "0" and "i," respectively, where

SI IuOJ

The above points are referred to XYZ using the radius vectors

A and A respectively, where

Aj -xjl + y 1d + zjn(i - I ... ) (1.5)

IX'i, Ivyi , I '"i, IXyi, IyZi, I"Xi are the instantaneous moments of

inertia of a body "i" in the central axes XYZ. IXX, Iyy, IMV I,

IyZ, IZ.. are the instantaneous moments of inertia of the ensemble

relative to the central axes XYZ.

qO is the local derivative of po in the XoY.Z. system, and it

characterizes the velocity of the origin of XYZ relative to the boun-

daries of the body "0,", q, is the local derivative of pi in the

X Y iZ system, and it characterizes the velocity of the origin of XYZ
I

relative to the boundaries of a body "i"; qo is the local derivative
of qO in the XoYeZO system; qi is the local derivative of q, in the

X Y Z system; qoi is the local derivative of poi in the X*YoZo system;

qei Is the local derivative of qei in the XYZ system; Re is the radius

vector giving the origin of the XYZ system relative to 4nC; V = d/dtRo
is the derivative of R0 in the ;nC system; d/dt V is the derivative

of V in the 4nr system; Z, d, n are the unit vz'.tors along the XYZ

axes. From the vector triangle in Figure 1, we can write

NJ o+ (l (1.6
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Then the local derivative of pc in the XoYoZo system is

qO - q,, + q, + -XP (L. 7)

and

q 0, +, X ps +w-o X (oX,) +2 ", "<ci , (1 .b )

where wi is the local derivative of wi in the XoY.Zo system equap"'

the local derivative of i in the X YiZi system. Clearly,

dIV = V + (o,) + 1) X V ( .9)

and

V = Vx + Vyd+Vz, (1. 10)

where V is the local derivative of V in the XYZ system.

The total angular velocity of a body "i" and its angular accel-
eration are equal

(jI -" % + i (1. 11 )

d/d to, - d/d wo + d/dtd, (1.12)

respectively, where wo is the angular velocity vector of the XoYoZo

system;

d'di w, - W, + w ;< -).
(1.13)

Furthermore,

d/dt, -w 1, + (, (1.14)
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where wo is the local derivative of wo in the XYZ system. Finally

d!dt1 w,% + oo X+.(.5

It will be noted that

+ .- l *- & ,u. - , (1.16)

where woX, woY, w0Z are the projections of wo on the XYZ axes. By

analogy, we can also write

dfdicoWI = W* + DO X 'Jo + ;0,~ + ) X WI, (.7

where is the local derivative of w in the XYZ system.
!i

The Force Equation

In accordance with Equation (22) from [3] and the notation used

here, the vector equation of the translational motion of a body of

variable mas, written for the body "0," has the form

m1,d'dI V - P,, +" R,, I tooI d'dt ,< A - (,mou ,%U +

+ wial + q, + 2 . , (2 .1)

where F0 is the resultant of all the external forces acting on the

body "0." This may include forces which are internal relative to '.-e

ensemble. RG is the resultant of all the external (with respect tc

the body "0") reaction forces. It may also include forces that are

internal relative to the ensemble.

The sructure of the expression in (2.1) remains the same for a

body "i." One must only change the indices and write out the totl

angular acceleration and velocity vectors in more detail.
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In view of (1.13), (1.14), and (1.15) after a number of trans-

formations, we obtain

md/dt V - F, + R, + m, [-dldiwoXAc, - (wa6,) 0 + 4Aj" +

+ m, -1 ,X , - (,Ao,) w, +w4'A,!1 + 2m (o,),, -(22)

m- m,(wo. Ao,) , + m,(q, +2woXq, + 2WXq,).

Adding Equations (2.1) and (2.2). we obtain in view of (1.2) and

(1.3)

4a

mdldiV - F + R + 2 m, I-AXA', - (0a ,)'f, + wkdN +

+2 j m, (wo .w,) j - 2 m(W.1) + (2.3)

+m.& + m'4) + 2 wo X +

fl

+ 2 , m, (w, X Q.,

where

N a

F-Fo+YF, and R-Ro+IR,.
5-4 1-t

It should be noted that F and R do not now contain any components

internal to the ensemble.

Equation (2.3) is a vector equation determining the motion of

the instantaneous center of Inertia of the system. If another poirnt

le waken as the center of reduction, the structure of the right-hand

side of (2.3) will turn out to be mu,.'h more complicated.
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Let us project the vector Equation (2.3) onto the axes of the

moving system XYZ. Here in order to simplify the structure of the

scalar equations, we shall represent only the principle terms from

(2.3) in the projection onto the XYZ axes. They characterize the

dynamics of the translational motion of an instantaneously "fixed"

system. The remaining terms in an expanded form will be written

separately, outside of the equations.

Thus, denoting the additional terms in (2.3) by a vector Q, and

taking Equations (1.9) and (1.10) into account, we find

m fl, V X + (w Oy + 2 ) V s - ( Wz + oz ) V Y] .P x  4 I . + Q(.2

n IVY +(Wz+?O) VX - (Ox +o) VXl - F. +RA Q.. ( 2. )

where woX, woy, @Z, Q#X, Qoy, @Z are the components of wo and fZ0 In

the XYZ system; FX, Fy, FZ, RX, y RZ, QIX, Qly, QIz are the compon-

ents of F, R, and Q1, respectively, in the XYZ system.

Let us write the expanded scalar expressions for the vector Q,

in the form of separate groups of terms.

The first term is

R) m 1- ×X , - (w1' ,) w,+ °

(2.5)

In view of

(2.6)

Equation (2.6), considering (2.1), becomes

-* + 2JXW (2.7)

Substituting (2.7) and (2.5), and considering that
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we get

lit-(D1x 2 +W~IZ, Six -W1^2B~) zcj +

+(w, IJ Wjz 1 yW y IX +W,x~: gY -+(wy 'W 1) XI +

+(jxp 1 .2,, l+w,Dl ~iy*W.Iz)zc,+(wOlz+wi'x)ycid+(28

+ ")l WIn [(2) ,+( WOI z - , z Wu) -V, + ,ox +z1) y5+ n

The second term is

& 2 mi msw.,Aj -21 m , (sn0.Aj) w,

2- //,-2WV'
-~iiiIwo oy +00* Z' 1 ) XCI - (130? ",XYtt -Wz -0 WI21 1+

+21~ mi(ooy~oiy+oox~olx)zc,-woxtoiz-xea

Is -w ~8 Y'l n.

The third term is

In view of (1.1) and the ccalar expressions for the local derivatives

of qO and q in XYZ4

-- i 1.S+ q3yd+qzn,

we obtain the following scalar expression ror the third term
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{rn (ox + qoz0 " - qoy '2oZ) +

n

+ (q,, + (%1O - wy) q1  - (0 Z -,,z)q,,Jv 1+

+(mO (oy+qox"Q0 z--qz'
2
0X)+

n

+ j In, [j,, + (Roz - wz) qjx - (-2.,.- o.,x) q,.])d+ (2

I-' + (ino (jtoz + qmy, •20x - qox" 2y) +

n

+ ] ins fiz + (2x - wx) q,ly - (-)oy -wy) q,xj} n.

The fourth term is

2uo X inoqo + r, nql) = wo X Y nq (

The fifth term is

a a s

a (2.12)
+2 ( J('-',, ( e 2q ,q-)+ +

+ 2 s - (Ojy*qIX)

Using Equations (2.8), (2.9), (2.10), (2.11) and (2.12), one can
ake f numerical estimate of each additional term in Equation (2.3).

Tn addition, these expressions can be combined with the corresponding

equations in (2.4) in order to obtain a more exact solution for )
vyt vz.
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The Moment Equation

According to Equation (42) in [3) and the notation used here,

the vector equation of the rotational motion of a body of variable

mass, set up for the body "0" relative to the origin of XYZ, has the

form

, m~ X [d/dtw, X Ao + (WOA) Wo - w0A,Ao] - Mp. + MR. +
I

+mo [d/dtV X Ao + ko X jo+ 2,0 X (wo X qJl, (3.1)

where M is the moment of all external (relative to "0") forces;

MR0 is the moment of all external (relative to 110 "1) reaction forces.

M.0 and MR may include components which are internal relative to the

ensemble.

The structure of (3.1) remains the same for a body "1." One

7 must merely change the indices and write the total angular accelera-

tion and velocity vectors in more detail [see (1.11), (1.12), and

(1.13)]. After a number of transformations, the torque equation for

a body "i" will become

. "ijim.i .< Id.d/,o < Ail -F (,oops,) wo - ,,jJ *- M., + MR, -

"r m [d, diV X< Ac, -Ac) q, "!" 2A> X (wo X qj)] -I 2in Ac, XA
X ' Xq -2 s ",u's)(-%it X -.1) -( 3.2 )

- ,.s1,A1, X [ w) Ap, + (wAs1j), -u wA4j,.

Adding Equations (3.1) and (3.2), we obtain In view of (1.2)

T "ips, X ld/dtwo X Al, - (w',,) Wo - wAjJ - 1 p + 11,jR +Il I

+ I n, Ax q, +2 . ,,A, X (oxq,) + 2 m, A, X (, x q,)-

' " (3.3)

- M itn1 , (uoAl,,) (A1, X l,) - 'r ,.j, X iw, : A , -+

+'(wA,) ,, - wA,,I,
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where 2 .2m. and M, M , " The vectors M and MR do not
P.-O 1 1'=0 1^0O

contain components internal to the ensemble.

Equation (3.3) is a vector relation determining the rotation Qf

a mechanical system about the center of reduction, in this case the

instantaneous center of inertia. Just as in the case of Equation (2.3),

the structure of the right-hand side of Equation (3.3) will be more

complicated if another point is taken as the center of reduction. In

particular, it is precisely for this reason that Equation (3.3) does

not contain parameters of the translational motion.

Thus, if MF and MR are functions of time and parameters of rota-

tional motion alone, Equation (3.3) may be integrated independently
of (2.3). Thus, the total system of equations, composed of Equations

(2.3) and (3.3) and determining the total motion of the mechanical
system, in view of the remarks with respect to the functional depen-

dence of F, R, M? and MR. is connected in only one direction. It

should be noted that Equations (2.3) and (3.3) are not total time

derivatives of the momentum and angular momentum vectors, respectively.
This is the peculiarity of the mechanics of bodies of variable mass.

Let us project the vector Equation (3.3) onto the axes of the
moving system XYZ. In so doing, we shall give the components in the
XYZ system of only the basic terms ir. (3.3). They characterize the
dynamics of the angular motion of an instantaneously "fixed" system.

' x (oX + 2oy,,oz - 2oZw,) - (Ivy - Izz) .'jrwOZ - x, (,Y -
- +ox,,,t I- 2 uzftoX - .ux(Qv,) - Ixy (,ueo + o),,oy +-OXoo) -

- -O.,'ox) + lyz ((Uh - o,) =. AIFX + &IRX + Q;x ,
IYY (;uoy + ,uzCx - 2 oxwez) - (Izz - lxx) UhJzox -

- IYZ (,oz -U V X + 2 oxico - -ortOOx) -lx (aX. + ,,odOZ + (3. L)+ fw woz - 2ozfr) + Izx ('5X - -Wj) -. A IR + MiRY + Q.Y,

lzz (WOz + oxwor - @°oruvx) - (xX - In') ,0-y Or -

- 1zx (,;x - OoJZ,,Or + Oruwoz - .oz,.oy) - Izr (,r -r tozfox -
+ 20z,%ox - 20xwoz) + /x, (Wir - Uw.C) All', + 'lpz " Q.z,
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where F X* Mi F ' 3 X2 ME P NZ Q2X' Q2y, QIz are the components

of the vectors MF2 MR and Q, in the XYZ system.

The vector Q2, similarly as Q, In( 2.4), includes the additional
components, and expresaes the specific features of the mechanical

system under consideration.

Let us write the scalar expressions for the vector Q2 in the form

of individual groups of terms. The first term is

2 mA., X ,;,- m1, A x (it + U X q,) -
l1=0

n mi 1(4iz + iqlr- ,q ix) Y. - (Or' + 2 izqtx - ixq 1z)zj) I+

+ m, [(Rx + (40rq, - O,zq,) Za - (q'ua + 2,xq, r-2,rqx)xj d+
1-0

+ Y ,,, [(&, + 2jzq,x - 1,xq,z) xC, - (,x + ,vtqz - 2zqir) y,I n.

In (3.5), it is possible to make a change of variables with the

help of Equations (1.1) and (1.7) - (1.8). The second term is

2 2 mplj X (wo X q,) -

Irn

- 2 nt1 "(w xqr - worqix) ye, + (ooxqz - wzq,.) z,! I +
isJU (3.6)

+r 2 V 11, [(%Qiz - vizqi)zci + (w(aqx - woxqju,).ux d +

II

+ 2 i "h l(wozqix - woxqz) xe, + (woqy - -'i-q,z) ),,] it.

If It is necessary, one can make a change of variables also in (3.6).
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The third term is

2j IflAeii X,) .

By analogy with (3.6). we obtain

2 mi j((oxqjy - wvyqjx) ye + (wxqlz _ wlzqlx) 2,11 +

2 1 (wqz (oaqw) re, + (cvyqx wxqt. xj] d + ( 7

+2j m f (wlzqlx - wxqlz) xc:+ (wizqpj - wfq :z) y,,j .

The fourth term is

- 2T m,1 (9w0&j) (Aj1 Xw1) -22 [lx yiw.)Ouj2 + Irzi (woZwlz -

- WDY,01y) - lzxiwoxwnJI + 0,5 (lzzi + lxxi - lYvi) (OVW~rz -

-0,5 (lxxi + Iyyj - lzzi) woro,y)I 1- 22J IYZtOOVWX + lzxi X
)< &oxix - W02WIZ) - IXyWovyw, + 0.5 (lxx, + lyr, - IZ21) WaoZix - (3.8)

-0,5 (1 yvi + Izzi - 1xxi oxwjzI d - 22 flzx'.iuzwy + /xr: X

X(wovwiv - W)oxwIx) - /VzEwozOILx + ,5(/yv, + /z, _. lxx,) ojxwly -
- 0.5 (lzz, + I=x - lrv,wxI n.

The fifth term is

- 2 2 nxi,1 X p + (wA11)w, -1'AA 1

- [xx, (wx + Qlr1 wj -lz) - (IV-/ - IZZI) "W"z

- xvi (;vy - WIXUJIZ + L*2 IWX - 01Ax(,0 + lVz1(wlz-
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-Qivux) +I I zx, (* - ,oh )- lxv, (ox + w=,z + 2n wlz- iz.',,r~j; -

- [l, @,z + f_"2Xony - L2 ,x) - (lVxxi - Ivi) Wxoy -I zXi X
i

- lzi ( ty -rt zwx + fizw,x - Q,xwiz)] n.

By surnming the terms (1) - (5) [see Equations (3.5) - (3.9)] using
the same unit vectors 1, d, n, and by including them in (3.4), we
obtain a system of three differential scalar equations determining
the rotational motion of the system under consideration.

Using Equations (3.5) - (3.9), we can make a numerical estimate
of each additional term in Equation (3.4). In order to obtain a more
accurate solution for 0X, wey and w0Z, the above expressions should
be complemented by the expressions in (3.4).

If the scalar equations are set up with respect to the principal
central axes of inertia, then of course the structure of the equations
will become simplified. The transition from the components of the
vector wo in one coordinate system to another can be made using the

matrices of direction cosines.

Supplement: The orientation of the XYZ system relative to the
stationary C system is given by the vector Rs which determines
the origin of XYZ relative to cnt, and by the Euler angles *, D, and

Y.

The relationship between variables VX, Vy, VZ and the components
of V in the n system is the usual one: it is formed by means of
the direction cosines expressed in terms of the angles *, U, y, and
yields three equations. Since the projections of the total angular
velocity vector of the frame XYZ are (we + #)X' (NO + Qo)y, (we + 120) Z ,

respectively, the variables *, 0 and y must be expressed in terms of
these projections using well-known relations. This shows the differ-
ence between the structure of the given kinematic angular Euler equa-

tions and the analogous Euler equations used in the mechanics of
bodies of constant mass: in the latter the projects are equal to

WQOx, Wey, WOZ.
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It will be noted that by recalculating the projections wOX, *'Y,

WOZ In the XeYoZo system (attached to the body "0"), one can use the

ordinary kinematic angular equations. In this case, one of course

assumes that the angles o, V and y specify the orientation of the X

XoYoZo axes (and not XYZ). Any of these approaches will determine

the last three deficient equations.

In obtaining Equations (2.3), (3.3), and their scalar analogs,* *
the vector quantities po, Pip Aec Aide q0 ' qi' q0 ' qi, etc. were

used as parameters. However, Poc, Pei, w , Pc' and their derivatives

are of course the starting vector quantities which are determined by

the specific relative kinematics of the bodies, distribution of mass

in them, rate of change of the mass, and other design factors. Similar

remarks can be made also with respect to the moments of inertia of the

bodies. It is more natural to consider the latter as given functions

of time relative to the XoYoZ, system (for "0") and XiYIZ system (for

bodies "il"), but not relative to XYZ. These quantities can be easily

converted using well-known relations.

Conclusions

As a result of the present study carried out in a fairly complete

form (considering the dynamics of the variability of mass characteris-

tics and configurations), we obtained a mathematical model, in parti-

cular, of a flight vehicle as a control system which can be used in

the synthesis and development of control systems.

We have shown the fundamental difference between the dynamics of

systems of variable geometry and mass and the dynamics of bodies of

constant mass, and this must be taken into account when designing a

number of objects.
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ON THE PROBLEM OF SYNTHESIZING SEARCHLESS SELF-ADJUSTING

CONTROL SYSTEMS FOR AIRCRAFT

V. D. Yellseyev

It is advisable to design self-adjusting control systems by

minimizing a certain statistical performance index. The performance

index for aircraft should usuElly include the error determining the

accuracy of the system, and the coordinates characterizing the energy

losses and the accelerations acting on the craft.

The control system may contain the following adaptive blocks:

blocks of Identification* blocks of self-adjustment, and blocks of

learning. After the system is used many times, the blocks of learning

make it possible to establish and use the average functional relation-

ships between the adjusted coefficients and the readings of the flight

regime sensors.

In practical applications, the control system may be considerably

simplified. Thus, the learning block may be absent, and the functional

relationship between the adjustable coefficients and the regime sensor

readings may be fixed in the design stage. To reduce the level of

complexity, the identification blocks may also be removed. However,

the self-adjusting blocks can be realized quite easily if one uses

the gradient method in conjunction with simplified models of sensitivity

[11.
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Thus, in the case of a

single-loop system, in a num-

ofJ ber of cases the sensitivity

model may be taken to have the

A- , fform of a stationary filter

Imaintaining an energy balance

between the high and low error

Wo WA4signal frequencies, which is
V proper for an optimal system.

ACI The possibility of using a

stationary filter is related
Figure 1. A scheme for optimizing the
error produced by the angular velo-
city circuit for the aircraft system's pass band or adjusted
fuselage. values of the regulator

Wd - drive operator with a rigid coefficients.

feedback; Wa -aircraft operator;

Wang - operator of the angular A study of a single-loop
velocity sensor; L - operator of
transforming filter; We - operator self-adjusting system, using

of the correcting filter; f - wind a stationary filter as a

disturbance resulting in a deflection sensitivity model, shows that
of a control surface; dotted lines - the adjusted value of the
links necessary in designing a non-
linear sensitivity model. amplification coefficient

depends less on the spectral

composition of the input signals than in the case of an optimal system.

We shall give a simplified procedure for designing a single-loop

self-adjusting system with one adjustable coefficient assuming that

the basic loop operates quasilinearly. First, we find the structure

of the optimization scheme (Figure 1) to calculate the current value

of the gradient of the performance index I, taken, for example, in

the form of the absolute value of the transformed error signal

a/ 08, .

d

II
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where I = el; p is the adjusted parameter; el - L(p)c; L(p) is the

transfer function (operator) of the transforming filter; e - x - y is

the error signal, where x is the input, and y is the output from the

system; 3C is the sensitivity function of the signal el to the vari-

ation of the parameter V, obtained using the sensitivity model.

For a given type of random or determined signals, the optimal

values of the adjustable parameter u are calculated in all flight

regimes using the adjustment law where A is a sufficiently

small parameter.

By properly choosing the transforming filter, we can eliminate

the low-frequency components (if the system is non-astatic), change

the optimal value of the coefficient 1 (stability margin), and reduce

the effect of noise.

A part of the optimization scheme consisting of the transforming
filter, sensitivity model, and the multiplication unit may be called

the spectral analyzer, since the signal produced by it depends on the

ratio of the power of high and low frequencies.

When constructing a real self-adjusting system, the nonstationary

model of sensitivity may be in many cases "frozen" at an adjusted

value of V in a certain average regime of flight, i.e., it may be

taken in the form of a stationary linear filter. If the accuracy of

adjustment is insufficient in certain regimes that differ greatly

from the chosen selected regime, it is possible to use nonstationary

filters by introducing a readjustment of the filter parameters in the

function P (for example, in the sensitivity model, one can change the

analog of the coefficient p and simultaneously the analog of the con-

trol surface efficiency coefficient which is proportional to it).

Thus, the structure of a self-adjusting system is similar to the

structure of the optimization scheme (Figure 2).
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Figure 2. A scheme of a self-adjusting system controlling the
angular velocity of an aircraft.
I - transforming filter; 2 - a model filter of an optimal basic
loop; 3 - multiplication unit; 4 - filter-amplifier; 5
integrating unit.

Figure 3. An example of a multi-loop self-adjusting system
involving an adjustment of the coefficient of each loop.

W, - operator of the open drive depending, for example, on
the hinge moment of the control surface; W2 - angular velocity
operator of the aircraft; W3 - operator which transforms the
angular velocity into either an angular deflection or a linear
acceleration; Wan - operator of the angle or linear acceleration
sensor; 1, 2, 3 -- self-adjustment blocks.

After selecting the parameters of the analyzer of the self-

adjusting system, one must assure the desired dynamics of the self-

adjusting circuit, in particular, one must select a coefficient A

which can be adjusted depending on p and on the average value of the

signal modulus cl.

It will be noted that, to simplify the system, one may sometInmes

use the control surface deflection signal, for example, instead of

the error signal.
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Figure 4. An example of a two-loop self-adjusting system with
the adjustment of the damping loop coefficient and a functional
readjustment of the outer aircraft control loop coefficient.

1 - nonlinear converter; 2 - inner loop self-adjustment block.

This procedure may be extended to the case of multi-loop control

systems for which it is advisable to use a separate self-adjusting

circuit for each loop (Figure 3). Here the self-adjusting circuit of

each loop uses the error of its loop and contains a simplified model
of the sensitivity of this loop. Calculations of a two-loop system

controlling the angular motions of an aircraft show that the adjusted
value of the internal circuit coefficient is in many cases practically

independent of the value of the outer circuit coefficient. In addi-

tion, often the outer circuit coefficient may be readjusted depending

on the inner circuit coefficient, which requires only one self-

adjusting circuit (Figure 4).

Thus, the design of a searchless self-adjusting system may be
based on the property of optimal systems which maintain the energy

balance of the frequency components in the error signal and can be

carried out using the gradient method with simplified sensitivity

models.
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A CRITERION FOR COMPARING ADAPTIVE CONTROL SYSTEMS

V. I. Kozlov and N. I. Savkin

Recently there have appeared many different schemes of adaptive

control systems, which sooner or later have to be compared.

As we know, a comparison of systems reveals the advantages of

some and shortcomings of others. The work done to eliminate those

shortcomings may bring the systems being compared to the same level.

For example, historically the systems with constant adjustments of

the regulator ceased to satisfy the technical requirements, and were

replaced by parametrically invariant adaptive systems. Due to the

method for designing high-accuracy structures, developed by Professor

Meyerov, M. V., and the rational physically realizable structures,

developed by Professor Sokolov, N. I., systems with constant adjust-

ments have acquired "coarse" properties with respect to the change in

the parameters of an object. In this connection, it would be inter-

esting to compare the above adaptive systems with constant adjustments

with the self-adjusting systems.

Unfortunately, the experience accumulated thus far in the area

of the appraisal of adaptive control systems is grossly inadequate,

due to the complexity of the systems themselves and the existing

criteria for their comparison.
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SKB-3 MAY1 madea comparison of such systems when designing an

adaptive stabilization network for controlling the aircraft bank

channel:

a (P) = C(rP

Here K = const (2) and the time constant is T a 0.1 - 1.5 sec,

depending on the regime. The desirable low-frequency transfer function

of the system corresponded in all regimes to the aperiodic block

with the time constant Tc w 0.15 sec.
|c

The system was designed in the constant-adjustment and self-
adjustment versions using the frequency characteristics of the elements.

Simultaneously, an attempt was made to find a criterion for comparing

adaptive systems that would be simultaneously fairly simple and

objective. During the design, a comparison was made of: a system

with constant adjustment and a relay auto-oscillatory self-adjusting

system; a relay system operating in the forced oscillatory regime,

and a system on the boundary of stability.

The designed adaptive systems in various versions satisfied the

requirements placed on them. However, it turned out that the infor-

mation about the frequency characteristics of an object (aircraft,

drive, and sensors), which is necessary in designing the systems,

varies from system to system, and is as follows:

0 - 100 Hz - for systems with constant adjustment;

0 - 30 Hz - for a relay self-adjusting system in a forced

oscillatory regime;

0 - 25 Hz - for a relay auto-oscillatory self-adjusting

system;

0 - 15 Hz - for a self-adjusting system on the boundary of

stability.

*Translator's note: This designates the Special Design

office-3 of the Moscow Aviation Institute.
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The slightly larger amount of information needed by a self-

adjusting system in the forced regime, as compared with a relay auto-

oscillatory system, is due to the fact that the frequency of forced

oscillations wb of the first system is chosen to be larger than the

frequency of the auto-oscillations wa of the second system. This is

how one achieves the greater stability under interference in the

relay system.

These results lead us to conclude that the amount of information

about an object that is needed for its design may be utilized as a

criterion in comparing adaptive control systems. This criterion will

enable us to find systems whose design (design of correcting blocks)

requires information in the frequency range in which the specific

features of an object begin to exert influence. We are talking about

features that were not taken into account by the differential equa-

tions describing the elements of the system.

For example, at high frequencies the bending oscillations of an

aircraft become important, and the transfer functions for the object

as an "ideally rigid body" cease to be valid.

At bigh frequencies also, the transfer functions of the system

drive may turn out to be invalid due to additional lags introduced by

parameters of the drive that were not considered before.

Finally, there are frequency bands in which the frequency charac-

teristics of the drive - obtained for example by means of experiments

- may no longer be utilized in the design of the correcting devices

using the ordinary methods, since the real drive may exhibit nonlinear

behavior. Of course, a system - for which the design of the correc-

0 ting devices was made in the frequency range for which one has no

reliable information about the frequency characteristics of the drive

- may in practice turn out to be very sensitive to the neglected

small parameters of the drive.
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Thus, we propose a criterion for comparing adaptive control

systems in the form of the frequency range in which the information

about an object, necessary for the design of correcting devices, is

concentrated.

This criterion permits us in the design stage to exclude those

systems which require information about the control object in the

frequency region in which that information is practically inaccessible.

The criterion enables us to see if it is necessary to consider

certain small parameters of an object, and gives imits within which

the effect of those parameters must be conside.
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DESIGN OF THE STRUCTURE OF A DIGITAL SELF-ADJUSTING SYSTEM

WITH A MODEL FOR AN AIRCRAFT AND ITS IMPLEMENTATION IN AN

ON-BOARD DIGITAL COMPUTER

N. D. Litvinov

Design of the Structure of the Control Program
for the On-Board Computer I'

Let us consider a control system consisting of a continuous part

(composite object) and an on-board digital computer.

The continuous part will include an interpolator, usually of

zero order, an amplifier with the actuator (control surface machine),

and the control object which has varying parameters.

It will be assumed that the control object is linear and has a

given structure.

Digital sensors will be used as th- sensors of the data cn the

coordinates of the object and the control signals.

The control signals involve specific and random inputs.

The continuous part or the composite object may be described by

a linear difference equation with time-dependent coefficients.
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We shall consider quasi-stationary

processes for the cases when the para-

'e) meters (coefficients of the equation)

of the composite object change con-

3 tinuously and slowly or stepwise,
and then remain constant.

It is required to design a

Figure 1. A block diagram of searchless adaptive control program
the control program. for the on-board digital computer as

l ~~ --control program; 2 -composit control ob ; applied to the composite linear non-
composite control object;
3 - optimization program; stationary control object, that would; 4 -program representing

-h pogra rteresnind result in the desired dynamic charac-
the model of the desired
closed system. teristics of the closed system.

We shall represent the control program in the form of a control

program - generating the control signal in the on-board computer,

and the optimization program - which optimizes the closed system by
minimizing the index used to evaluate the performance of the entire

system by adjusting the coefficients of the control program.

The control program may be represented in the form of a block

diagram (Figure 1).

Let us determine the structure of the control program.

The equation of the control object may be written as

k-1 k.-I

((n+k)+ () - b (n)it (n+j)(

where yn is the output from the control object, un is the control

signal generated by the on-board computer.

For the basic roime of operation of the control object, we can

assume that the control coefficients ai(n) and b (n) are constant

and given.
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Let us determine the structure of the ccntrol program using a

variational method [1]. For this purpose, we obtain a difference

equaticn of the control program from the conditions:

a) stability of the closed system;

b) astatism of first order relative to external inputs, i.e.,

exact generation of a step input in a steady state motion;

c) optimality of the system !.n the sense that the quadratic

estimate of the transient error process is minimized.

For this purpose, we write Equation (1) for the error in the

closed system, and take the first difference of both sides of the

equation. Setting x(n) - xol(n), we obtain the following equation:

k'i 1 k-!
g, s ( n + s)-- -- b (i s ( + i),( 2-g~ (ns) - 'bi(" ).(2)

where

- , -1.,. O.- 1., ak+&-a.,-o) (s- h,2...., k+ 1) (3)

Au (,) -u, (n), (4)

in which the initial conditions of Equation (1) are replaced with

certain new conditions corresponding to the action of the perturbation

q) (n)-= 5 ajxa n+ I+ (,10o (5)

where

o (+Y)Z=AI (11+Y). (6)
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We represent Equation (2) in the form of an equivalent system of

first-order difference equations in generalized coordinates in terms

of the error with certain new initial conditions

%(o)ep.p-oj .... +D.(7)

Now we can formulate the variational problem stating that it is

necessary to determine the structure of the control program for which

the closed system, described by the system of first-order difference

equations, moves from point 7 to the origin

e 00()O (8)

while minimizing the functional

cohI

which represents a generalized quadratic estimate of thc error

transient process.

The problem is variational and involves a conditional extremum.

However, it can be easily reduced to finding an unconditional extremum,

which - when solved employing the usual methods - will lead us to

an optimal control law in the form

k+I
S(n)= - s (.), (10)

PL-1

where v are fully determined coefficients expressed in terms of the

coefficients of the equation for the composite control object in the

coefficients a and 0, which in turn are determined using the method

of the standard difference equations (1I, starting with a given per-

formance index of the transient error process in the closed system.
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Substituting in (10) the expressions for e (n) and ui(n) in

terms of e(n) and u(n), we obtain a difference equation which will

determine the structure of the control program. The structure is

stable, since it was determined f-om the condition in (8).

The coefficients in the difference equation of the control

program will be adjusted by the gradient method with the aid of the

optimization program.

In order to estimate the approximation of the desired process,

given by the model, as compared with the real process, we introduce

a performance index of the adjustment in the form of the functional

where P(E) is a certain difference operator, E is the forward shift

operator, *(c) is the differentiated function of the quadratic form

in the deviation c(n).

Fo, the gradient method of adjustment, the variation of the

coefficients of the control program is given by

01(c)

c1 (n+I)-,cj (,,)I.- .j (12)

where I specifies the adjusted parameter, AI are coefficients which

generally depend on the deviation of the position of extremum and

gradient components [2).

It will be assumed that the coefficients X have been selected

in such a way that a steady adjustment process is obtained.

We obtain the following expression for the gradient for the ca;e

of the above block diagram (Figure 2)*

dl (c) dij (e) I dW, (/, c)717- ,' P (r.) -- , q (r- a, c) 11 -0 'cl d'-'c-' (l  ( )

;Translator's note: Foreign text has no Figure 2.
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where O(E, a, c) is the operator of transformation of the closed

system, dependent on the adjusted coefficients of the control pro-

gram, c., and the time-dependent coefficients of the control object

c, Wn (E, c) is the operator of transformation for the control program,

Wob(E, a) is the operator of transformation for the composite object.

Since for the deviations c(n) equal to zero we have *(E, a, c) =

O(E), where *M(E) is the operator of transformation for the model,

the algorithm for adjusting the coefficients ci of the control program

may be written as

d(e-j) .- (E)1 , c)x (14)
, dwn (I., C)x

Xs dc, x (n).

The algorithm in (14) represents an optimization program, and

is described by a nonlinear difference equation.

To form the algorithm in (14), we can use the intermediate
coordinates of the closed system. For this, we use the relation

' (n ) I- , c)lx()=c(n), -T. (R c (15)

Thus, the control program, the optimization program, which

adjusts coefficients of the control program, and the program with a

model of the desired closed system will altogether constitute a

searchless adaptive control program for the on-board digital computer.

A Method of Implementing the Control Program

In those cases where a composite control object is described

by a high-order difference equation, the structure of the control

program is also of high order. From the equation of the optimization

program, we can see that its order will be determined by the orders

of the equations of the model and the control program. Of course,
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for a given computer speed the elementary time interval of the control
program will be very high, which will affect the accuracy and quality

of control. On the other hand, for a given elementary time interval

of the control program, we need an on-board digital computer of very

high speed in order to realize the program, and this is usually

impossible to achieve in practice. Therefore, other ways of realizing

the control program are necessary.

As one of the possible ways of realizing the control program,

one can use the following method.

Due to the fact that one considers quasi-stationary processes in
which the coefficients of the equation for a composite control object

change continuously and slowly or stepwise, and then remain constant,
by analogy with continuous self-adjusting systems one can assume that
the rate of the process in a real closed system is higher than the
rate of the process of adjustment of the control program coefficients,

which will be determined by the length of the range in which the para-

meters of the composite control object stay constant. Therefore, one

can organize the operation of the closed loop which includes the con-

trol program and the composite control object, using the length of

the elementary time interval selected from the conditions determined

by the requirements on the accuracy of control, by the dynamic proper-

ties of the composite control object, and the frequency properties of

external inputs. The operation of the optimization program and the

program of the model of the desirable closed system may be organized

for the length of the elementary time interval determined by the

length of the interval in which the parameters of the composite con-

trol object stay constant. Of course, we have to impose the condition

that time intervals be multiples of the elementary time interval thus

obtained, due to the discreteness in the deviation E(n).

When the operation of the control program is as described above,

one will meet the requirements for accuracy of control, and will

obtain lower requirements on the speed of an on-board digital computer.
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Conclusion

In designing a searchless adaptive control program for an on-board
digital computer as applied to a linear nonstationary object, the
design must be such that the requirements on accuracy and quality of
control will be met. The above method of realizing the control pro-
gram for multiples of the elementary time interval enables us to
meet the requirements for accuracy and quality of control in a wide
range of the control object parameters.
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A DESIGN OF A SELF-ADJUSTING AUTOMATIC PILOT

A. A. Kotenko and V. A. Serdyukov

The behavior of the rigid fuselage of an object may be approxi-

mately described by the equation

The blocks characterizing the elastic oscillations of the fuselage

are represented by equations of the type

vL~a~vjai~v~aI.~; ~I,, ~(2)

where

Vt. (3)
I, 0

We assume that the dynamics of the control organ is described by the

equation

S-I I, --.

(4)
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In Equations (1), (2), (3), (4) we used the following notation:
v is the pitch angle of the elastic object; vo is a component of the

angle v characterizing the pitch deflection of the rigid fuselage of
the object; vi (i = 1, 2, ..., n) are components of the angle v charac-
terizing the elastic oscillations of the object; ajj (I - 1, 1,
n, j a 0, 1, 2) are time-dependent coefficients; 6 is the output of
the control organ; 6c is the input of the control organ; b is a con-

stant coefficient.

It is assumed that: 1) during flight the dynamic characteristics
of the elastic object undergo changes (coefficients a I change arbi-

trarily with time, but slowly enough so that within a given time inter-

val one can take aij - const, which Is the condition of quasi-station-
arity); 2) measuring apparatus has zero inertia; 3) the coordinates

V 1 I = 0, 1, .... n may be measured.

It is required to design a self-adjusting autopilot that will
compensate for the effect of the changing parameters of a rigid object

and the elastic oscillations of the fuselage.

The control law ia as follows

6c-(D+b) [k:--l -- (ki'O+kl') l (5)

Here D - d g is the control signal, kjo$ k, , k2 are adjustable

coefficients.

We substitute (5) in (1) end (2), taking (3) and (4) into account,

and obtain

nI

....a~v -kal _.JI a~kei( - .1 . . (6)

We approximate the desired dynamic characteristics of the basic loop
of the system "object-autopilot" by a standard filter (model) of the

form
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VA( + MIV + "OVA - as

Here aI (i = 0, 1, 2) are constant coefficients of the model.

We set

tIs

,SV VM=1Vl-VM(8)

We shall sum Equations (6) and subtract (7) from this sum. In view

of (8), we obtain

We asaame that the coefficients of the control law (5) are adjusted

by the algorithm

iKi,=-,, i~o, .... ,; =-o,!. (10)

We represented (9) and (10) in matrix form

where

A 0 B- 0

A, Iis:

Vie (12)

k= li

It

The adaptation algorithm (10) will be formed using the condition of

the existence of the Lyapunov function for System (11). The Lyapunov

function is assumed to have the form

I Usf

>, T, (13),+alkl)X
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Here K, A2 and A are certain coefficients, and P is a square positive

symmetric 2 x 2 matrix; e' is a transposed matrix.

In view of Equations (11) and the condition that the coefficients

aij i = 0, 1, ... , n; j = 0, 1, 2) be quasi-stationary, the derivative

of (13) will be

V - 6s'M:8+2x (Pts+ P12s) [(aks-) g-

I N

Here M is a 2 x 2 negative matrix. The elements of the matrix M which

are specified arbitrarily are related to the elements of the matrix P

In (13) by the equation

A'P+PA=M. (15)

If the real parts of the roots of the characteristic equation

A -XE 1 =0 (16)

are negative, then according to [2J to the definite negative form

c'Me in (14) there always corresponds a definite positive form 'P

in (13). Consequently, in order for the adaptation process in the
"object-autopilot" system to be stable, it is sufficient that the

following conditions be satisfied

.([(e" 22 ._ ajk-W 9- N! (all--&+,,..il) V,]+

Sinc chnge inthedeviations of the coefficients are independent

[l" ) u8-

(a~l--n--j /), -- ,(1-0, I . .. n; j .O, I)
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we have the following sufficient conditions for the inequality in

(17) to be satisfied .0
n

I=-0 /

iuO, 1,....,n; jm0, h

We take
;1

at,

nal

Then the algorithms for the adjustment of the coefficients of the

control law (5) become

ki, -x (P,,6+P,,) g,

K1-x(Poe+Pl,,i)uJ I), 1o, i ... , n; 10,!. (20)

In (20) the factor K may be arbitrary (including equal to infinity).

In this case with the coordinate Kij or K2 restricted in absolute value,

we obtain a relay switching of the coefficients of the control law

K,= -B sgn (P,,s+P,,e) sgn g (2J.)
K11-.Bsgn(Pie +Pti)sgn u(/'  i=0. 1, .... n; 1-0, 1.

According to the design of the algorithms (20) and (21), the self-

adjusting loops for the system "object-autopilot," designed according

to (20) or (21), assure the stability of motion of the output relative

to the output of the standard model, and consequently, assure the

invariance to within e of the dynamic characteristics of the system
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f"object-autopilot" with respect to the changing parameters of the

object and the elastic oscillations of the fuselage.
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ADAPTATION OF SYSTEMS WITH CONSTANT ADJUSTMENTS

M. I. Savkin

We know of adaptive systems in which a change in the parameters

of the control object is compensated for by a corresponding change

in the adjustment of the regulator. If a system contains a nonsta-

tionary object and it includes special correcting devices with con-

stant parameters, one can reduce the range of its performance indices.

As a result, such systems with constant adjustment acquire properties

that are analogous to adaptation.

This will be shown using an example of a simple system. Here,

we assume that conditions are satisfied so that the system may be

regarded as quasi-stationary.

Suppose we are given the transfer function of the object

we(p)= TII'p+I , the amplification coefficient o ', and the time cunstant

To.'Ithat satisfy the following inequalities in the design regimes (1, II)

K01
i

.
11  0 " 0 T' 0

°
To

Suppose that we must select the structure and parameters of a

sequential correcting device WK(P), such that the cutoff frequency

wI, II of the system 0I, ll(p) closed by a single negative feedback,

will be greater than or equal to a certain desired value wd' where
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4 '

If W K(p) * K Is taken such that - Wd' then we obtain

s"" (P)' T'"p+j (1)

where

I !

In this case

o! il 1
.t I To,(20) 2)

Here the performance Indices of system (1) will differ greatly depen-

ding on the design regime.

I(TP+I) K 1.0'However, if 7X(P)= +P+ ' 70, 0.

then

0
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and

017 1 I "r * "'o -, 7(3)

By properly selecting the value of a (for example, based on the per-

missible stability margin), one can bring the cutoff frequencies WI

and wII closer by a factor of a, and thus achieve the same effect in

the range of the performance indices of the system. This effect may

be amplified if one takes a "closing" correcting device

WK(¢P)- (Tfp1+2ET:P+ 0"''  ( 4)

The example considered above is illustrated in Figure 1. In conclu-

sion, we note that, if at the input to the system one places a low-

frequency filter with constant para-

a.dB 0(deg.) meters

,\ . 1 "O (P) - TTp, + -Erp +I

,.

fwhere T 2. (2 .- 5)wd, then the
system thus obtained will have

So" approximately constant dynamic

characteristics. It is important to

-- s, "-- note (see the preceding article)

,0 /' that such a system with "closing"

fig correcting devices requires an

IS 1 identification of the object WO(p)

NO in a smaller frequency range than a

FLfsystem with fixed adjustments withoutFigure 1. Logarithmic frequency

response characteristic of the such devices.
system.

Thus we have considered a way of designing a single-loop system

with constant adjustments that possesses a property similar to

adaptation. This method can be applied to stabilize the dynamic
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properties of multi-loop systems with constant adjustments. In this
case, the "closing" correcting devices must be put in each loop of
the system that includes given elements with variable parameters.
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SYMBOL LIST

YflP c control
QUn network

BAJI bal balance

YCT p1 placement
flPm4 ins instrument

6 lateral

4)eff effective

06 ob object
BbDX out output
BX in input

P p control
flP dr drive

nn noise

B in in
KeY ad correcting device

3AA giv given
6b booster

JiET f flight

BET w wind
SYCT b .,ooster

CT adj adjust

B up upper filter

H low lower filter
M s slow

64b undefUined
A1Vf add additional

6 large
14.M c.ni. center of mass
H 0 origin

H s stationary
AWC ang angular velocity sensor
JiA a aircraft
o0 f filter

As sensor
06 ob object

d desired
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XXiT a actual

Hn nominal

CP av average

TEK current current

3 e Euler
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