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SECTION I

INTRODUCTION

This report is concerned with theories, formulations, and computer

programs for the analysis of shell structures in general and fiber rein-

forced rocket motor cases in particular. Such analysis is intended for

use in efficient design of missile structures consisting of complex

structural components subjected to various loading conditions. Only the

isothermal problems are reported herein.

Various material properties such as elasticity, plasticity, visco-

elasticity, and viscoelastoplasticity are considered in the present study.

Schapery 19,131, among others, confirmed that glass fiber-reinfor-

cad structures embedded in epoxy exhibit significant rate-dependent elasto-

plastic or viscoelastoplastic behavior.

The response of such structures depends greatly on types of loading,

static or dynamic. Perzyna [18] presented the thermodynamic foundations

of the theory of viscoplasticity. Experimental evideuces in his study

necessitated the simultaneous consideration of viscoelastic and plastic

properties of z material. Both static and dynamic loadings will be stu-

died in detail in the present study.

Yielding of the fiber-reinforced structure in the context of present

state of art still remains a controversial matter. StudLes of plastically

anisotropic materials were initiated by Hill [8 ] who postulated the form

of yield condition based on the von Mises criterion for isotropic plastic

raterial. Hu [10), on the other hand, generalized the Tresca shear-stress
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yield criterion in a similar manner. These theories, however, are incap-

able of taking into account the presence of fibers in a ductile matrix.

Mulhern, Rogers and Spencer [ 14 ] proposed a general continuum theory of

the mechanical behavior of fibers which are considered plastically irex-

tensible. Lance and Robinson E2 ] more recently presented a theory of

ductile behavior of composite materials based on physical ideas related to

those contained in the maximum shear stress theory of isotropic materials.

It is evident that this later theory removes shortcomings of all other

theories but successful application to a shell structure with fiber angle

plys appears to be doubtful. In view of these developments, the most pro-

mising approach is to modify Hill's theory to incorporate strain-hardening

of fibers in similar context of the work of Lance and Robinson. Jensen

[11] and Whang [23] applied this idea to orthotropic material. In the

present study a further extension is made to account for layers of fiber

angle plys.

Thin and thick shells are considered. A treatment

as a thin shell requires plane stress approximation of the finite element

model in which anisotropic parameters for each axisymmetric layer of

angle plys through the shell thickness must be characterized. Detailed

study on this subject which has not appeared in the literature will be

elaborated in the present report. The results of a thin shell approxi-

mation are compared with three dimensional thick shell theory in which

imposition of axisymmetry permits use of a plane strain isoparametric

finite element. This ccmparison points to a distinct superiority of three

dimensional theory in dealing with filament wound fibers. The computer

program is capable of analyzing a body composed of a combination of several

monolithic materials and composite materials.
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Based on theso ideas and the theoretical background, details of form-

\ulation of governing 6cuations are presented in the following sections. A

I:hin shell is discussed in Section 2 and a thick shell in Section 3 with

spacialized topics included in Appendices A.1 through A.12. Computer

programs are written with maximum utilization of currently available numer-

ical methods. Demonstrative problems are solved and results presented in

Section 4. Conclusions and recommendations are given in Section 5. Docu-

mentation of the computer programs is included in Appendices B.1 through

B.6.
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SECTION 2

THIN SHELL ANALYSIS

2.1 GENERAL

Since an extensive review of developments of thin shell theory

is beyond the scope oZ the present study we simply begin with

Novozhilov's theory [15,16] which is relatively widely accepted among

the engineers. Modifications are then introduced to account for

anisotropy, fiber-reinforced composites, plasticity, viscoelasticity,

and viscoelastoplasticity. Axisymmetric shells under static and dy-

namic loadings will be considered.

2.2 CONSTITUTIVE EQUATIONS FOR ELASTIC AND PLASTIC BEHAVIOR

Based on the Love-Kirchhoff hypothesis, small strains, large

displacements, and moderate rotations, the membrane strain tensor

e and the bending strain tensor are given below:

fu ,+u, 2t~b + (tit + AIX ( 1 + (2.1)
(2.1)

tit= "u' 1  U u bX - u b u ut + bL b u3  (2.2)

Here all Greek letters range from 1 to 2 and u and tit are the dis-
(Y

placements, b is the second fundamental tensor , the commas and

strokes represent, respectively, ordinary and covariant differentia- Ii
tions. It should be noted that all nonlinear terms in the bending
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strain are neglectee. Derivations of (2.1) and (2.2) and the phys-

ical components based on Novozhilov's theory are given in Appen-

dix A.1.

For linear elastic behavior, the stress tensor is given by

'A + a(b) (2.3)

where the membrane stress tensor Cvp
) and the bending stress tensor

a(b) are, respectively,

a(S) h- "e , P=h D' "PX.
12i b jv, (2.4)

in which h is the shell thickness and 0" is the tensor of elastic

moduli.

If yielding of the material is considered we must modify (2.4)

in order to incorporate plastic behavior. For the isotropic von

Mises material the plastic potential function f becomes [8J

f - ?r -(2.5)

where J is the second deviatoric stress invariant and F is the

equivalent yield stress. For the anisotropic von Mtses material

:8), however, we have

1 iit ck

f = ol S S (2.6)

where AIkA is th anisotropic parameters, St is the deviatoric
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stress tensor, and 1 ,j,k,, a. 1,2,3. For the case of plane stress

(2.6) becomes

f (2.7)

in which

and

-A 1" 0

A = A 0

0 0 M,:

L

Explicit forms of (2.5) and (2.7) are given in Appendix A.2.

The incremental plastic strain tensor is related by an asso-

ciated flow rule,

(P) bf
dY d x~ d (2.8)

where di is the positive constant.

Differentiating (2.5) or (7.7) yields

dzy '- d ,fV z d0Y (2.9)

where 1 )f
e a -

Let the plastic modulus E(,) be given by
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dy

where dy is the incremental equivalent yield strain. By equating
( p)

the incremental plastic work dW done by the current stress and

current incremental plastic strain with that done by the equivalent

ytild stress and incremental equivalent yield strain,

(P) a -d( (P)dW dy - dY (2.11)

and substituting (2.8) into (2.11), we obtain

dx - dY /2r (2.12)

Now inserting (2.12) into (2.8) yields

d(p) -(p)

Since the total incremental strain is the sum of the elastic

and plastic strains we can write

') =d d() (2.14)dy dy dY(P

(B)

where dy is the elastic strain tensor. This enables us to ex-

press the total incremental stress in the form,

da'X D "(dY - dv ) (2.15)
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or

d d - Z11dy (2.16)

In view of (2.13), (2.16), and (2.9) we solve for dy

-(;) -1 lvll ,, ~,a
d; - H Z (2,17)

in which

! E(- ) + Z ,zV

Substituting (2.17) into (2.16) gives

day - (iPfYIL + YPXIl)dY (2.18)

where is' the tensor of plastic moduli,

-H t -H" f ' z#'*,X" (2.19)

The explicit form of gy,. is given in Appendix A. 2.

2.3 CONSTITUTIVE EQUATIONS FOR VISCOELASTOPLASTIC BEHAVIOR

The principle of conservation of energy states that the time

rates of the kinetic energy k and the internal energy U are equal

to the mechanical power R and the heat energy Q. In the absence

of the thermal loading this principle may be expressed as

+ U R (2.20)
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Here the superposed dot represents the time rate and

k -f v dV (2.21)
-V

U 'V podV 
(2.22)

R afvFvPdV +f s'vn vi dA (2.23a)

VA

in which p is the density; v is the velocity component; , is the

internal energy density; FP is the body force; IR is the surface

traction; and n is the unit noinal to the surface. Here the small

strain and rectangular cartesian coordinates are used. Using the

Green-Gauss theorem, (2.23a) becomes

R i'FM' Fe + a v, A V )dV  (2.23b)

Now, inserting (2.21) and (2.23b) into (2.20) yields

r E cae8+ pF . naA)v P ; + aPV ldV - 0 (2.24)

V

For the principle of linear momentum to hold and for arbitrary

volumes we must have

+ ,Ff 0 aP nf~ ,a
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and

~,ey (2.25)

Here the commas denote ordinary differentiation and aY is the

acceleration.

Our objective here is to propose a form of free energy func-

tions in incremental quantity such that the non-smooth or inelastic

strains may be included for a small time interval At. For iso-

thermal conditions, the incremental free energy (At) and stresses

(At) are assumed to be functions of incremental strains v (At)

/()(At) + Y(P)(At) and incremental internal variables (hidden
(r) (r)(0). (r)(P)

variables) cv, (At) - a14 (At) + YI'j (At). This statement may

be writtpn as

f(At) = r*Y, Wt), Y1 J(At) ,YI (At, eYIj (At) (2.26)

€C) (P) (r)(.) ( )(P)1 J (at)  = 8Y[YI (A0), Y, (At), Y, j (0 t(At) ] (2.27)

For isothetmal conditions, the free energy is the same as the

internal energy so that

t.

or for the small time interval At,

_I
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p$(At) - ( Y( Y ( t)l (2.28)

At this point we introduce here the incremental form of free

energy in a truncated Taylcr series expansion r5 1,

n,$A,' D v + D Y Y

n
+ e j(( )(0) (r)(p),X (e) (r)(P)

+ A((q) + q(2.29)I)(qI (Y yR
where are stiffness constants associated with the internal

variables. Note that (2.29) has the form of truncated Taylor series

expansion only to include quadratic terms. However, the product

term of ;) and V is missing. This is because an explicit mater-
(.) (p)

ial kernel relating the product of Y and Y is nonexistdnt.and

coupling of elastic and plastic strains can be obtained using any
( ?)

one of the failure theories. Lastly, q defined here as the inter-

nal variables represent time dependent physico-chemical properties

or simply a viscous behavior which may be expressed as

, -j exp T( (T)d, (2.30)

th T ( 0

where T is the time variable and T~r) is the relaxation time. In
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order to facilitate an explicit integration we assume a linear

variation of within the time interval At given by

(-)t-At) 
(2.31)

wheretsais the current time step. Substituting (2.31) in (2.30)

and performing integration we obtain

q A (S-)+ B 0 + C 0 (a (2.32)

in which

(- () (r) ()

A = )- B T(,)(
(T)

(C ( (1.) T( )(
,, "T(r)(1- 4 ) -t 1 A)

The derivation of these parameters is given in Appendix A,3.

Rewriting (2.28) for the current time step (s) as

l /)(+ g) '**** *.7 CI +++ " q q

-a (( (3) + Y~(Y ) 0 (2.33)
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and substituting (2.32) and (2.29) into (2.33) yields

f# Y4 Y*j + qZX, s -1)+ B 's A -D + C 4(6))

C1 +I ~ +(r.s

0+ qa q (s)Y CS)+ t Ys)~G~~ A~~s)p )

(P0

Since all variations other than Y are not arbitrary we must have

the relationship

n
C ( A q ( S - )( a -1 + C r) X .( )8) Y () Ir(r AILf 1)(5) pu ( A )-

(2.34)

and
n

Lis)t))PP) (rV(p).PYi 0 ) 1j Y* "t q 5 r q ) q (a)+ qC Cs)Y (a)

+ ) (s) + Y 40) 4 (5) j -0 (2.35)

It should be noted that (2.34) results from

which states that the stresses are derivable from the free energy
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functions. In our specific problem, however, this stress is due to

an elastic strain and a law governing the plastic strain is needed

to obtain the stress due to a total strain as already demonstrated

in Section 2.2. The relationship (2.35) may be considered as the

dissipation which plays a significant role in heat conduction prob-

lems. However, for the isothermal problems as considered here these

terms of (2.35) are not needed in the analysis.

Now, if the plastic behavior is considered we must calculate

the stress incrementally. For static analysis the load is applied

in increments. Fir transient analysis or time dependent problems,

the total load4 are applied for each time increment. In either case

the incremental stresses d v are calculated iteratively until con-

vergence in achieved. Therefore, we must express (2.34) in incre-

mental form associated with the total strain in order to be combined

with (2.18) for iterative cycling upon direct superposition of visco-

elastic behavior and plastic behavior. Such superposition is achieved

"y calculating t*", initially by viscoelastic stresses. These ar-

guwants require that the second term of (2.18) for the current time

stop (s) te added to the incremental form of (2.34),

ste ntal fo (r) (r)
CPO 'eP'dv; +~ 0 (Adqs-l) +B d( (s-l)I

+ C dyCs, I + *F'OIdy(O) (2.36)

In earlier studies, the a'athors obtained a slightly different formI.i
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for dlV s) by means of the generalized Maxwell model [I]. However,

a proper choice of the relaxation time would yield identical results.

2.4 THE FINITE ELEMENT EQUATIONS OF MOTION

The use of the finite element method is widespread (17,251. The

advantage is due to its capability in handling complex geometries,

boundary and loading conditions.

The geueralized coordinates at o node placed in the midsur-

face of the ring element include the displacements in the meridi-

onal, tangential and transverse directions plus the meridional

directions.The tangential displacement need not be considered for

axisymuetrical deformations. For future use in connection with

asymmetrical loadings and for the purpose of generality, we shall

include the tangential displacement in our formulation. The element

generalized coordinates 9, are given by

'9 n *1N0 (2.37)

where *t, is the normalized displacement functions and the super-

script ranges from 1 to the total number of generalized coordinates.

For the two node element as in the case of the meridional line ele-

ment used in the present study we have N- 21 for the maximum range.

Appendix' A.4 gives the explicit form of * for linear variations

of meridional and tangential displacements, cubic variation of trans-

verse displacement and the corresponding meridional rotation. Such an

element has proven to be quite efficient (24].
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The general finite element equation of motion is obtained by

using (2.3), (2.37), (2.25), (2.22) and (2.33b) in (2.20),

NN +f (Y2 dA - 'N (2.38a)

A

or

KN +O dA+ d TAPM (2.38b)

A () N " A (b)

Here K., is the mass matrix

MNM f pk* lMd.V (2.39)

and P, is the nodal generalized force derived from (2.23b). It

should be noted that (2.38b) is obtained from the relationship

Y *e +S X
at Cd = CYR +(2.40 a)

and the integration through the thickness coordinate S is contained

in and *0 of (2.38b). In view of' (2.1), (2.2), and (2.37),

we have

N

e " A %09 + CNM14&PN

(2.40b)
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and

A + C "

where Aet,, CNOIaP , and B, represent derivatives of the normalized

interpolation function in the membrane and bending strains of (2.1)

and (2.2).

We now introduce a perturbation or a variation to (2.38b) for

an arbitrary time stop (s)

+fA (Af.e+

..." r. , ,. N , )dA +jtoSr (.S C l,4Ot{dA d(3(s)

+fd A ()BWPd Od A a dP (s) (2.41)
A (b)

where deM ) and ddOeal)are deduced from (2.36),

n

dKW fs) h h(f ' +i AIe y + h eRIECd 9

+ A d .;(s'-) + d6 40.-1)] (2.42a)

and

de " Afs) 7'(Lf'PXu!)'u + € X ') dX p + l 2 X V) q)

+ ( - +(2)(b)
+ A dF (s-1) + Bd)~s-l) (2.42b)
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Substituting (2.42a) and (2.42b) into (2.41) the local finite element

equation of motion becomes

mditdtP) + J..dA@)+ Kww d9(s) = dFt) (2.43)

in which JMM and K(N are the viscosity matrix and linear elastic

stiffness matrix, respectively,

/A n t 
to f3 MMto~ d + T2- ' 'T BNJL ,O B dA

A (2.44)

-hf) h1A A B dA (2.45)
14M Jf itA ht-1 fAJdVL toaftMAI

The nodal vector dF~P contains not only the external load but also

the pseudo loads of various sources,

(v) (a) (p) (N)
dFhp) - dPON() + dF (s + dF N () + dFN () + dF (5)

or

(v) ( ) (p) M (4)
dF 4) -dP0 s) + dF w is ) + K mm d n( - ) + K M d ns el)+ dFM (2.46)

in which the pseudo viscosity load vector,

dFMi (a) - E h[f A dqA(a-I) AMdA + +..(P) T1A.XIdAj +

A -
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-+- ' .'{,1' r)(v'b)Bi dA X.5 B BaSBX dAj] do.'(s-1)

(2.47)

The geometric stiffness matrix,

(reK"M U (vis) CNOPOdA

the plastic tangent stiffness matrix,

hf Y*"AN AMX dA + !Lt pB XjdA
Ap fAA

(N)

and the nonlineer pseudo load vector dF. Is) contain all nonlinear

terms not included in the above. It should be noted that the geometric

and plastic stiffness matrices are combined with the responses lagging

behind one time step and used here as pseudo loads.

If the structure is fiber-reinforced, then the suitable transfor-

mation matrices are applied to (2.43). The derivation of governing

equations is quite complicated for asymmetric loads. Stresses, strains,

stiffness, and displacements must be expanded into Fourier series. If

loads are applied statically the mass term in (2.43) drops out. For

the absence of viscosity the second term is eliminated. This also
(V)

requires the pseudo viscosity load dF (a) to be dropped. We will dis-

cuss these special topics in the following sections.

2. 5 FIBER-REINFORCED SHELL

In general, an axisymmetric shell reinforced with fibers would
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normally have layers of angle plys with each layer provided with

4" aply and -c ply,0 being the wrap angle. Such arrangements tend

to keep the deformation of the shell still axisynmetric if loads

are axisyumetrically applied. A typical one layer element is shown

in Figure A.5.1.

Orthotropic properties exist in the directions longitudinal and

tangential to a fiber. Coordinate transformations for elasticity

properties are then necessary to conform to the standard generalized

coordinate system of a shell. A similar transformation is required

for the plastic stiffness matrix. These transformations are elab-

orated in Appendix A.5.

2.6 ASYMETRIC DEFORMATION

Let g represent all components of displacements, strains, stresses,

stress resultants, etc.; then, we have the Fourier series expansion

of g for asymmetric deformation of the form,

g(s,) - Raj + g ) cojO + t sinjO (2.48)

in which a and 0 are the meridional and tangential coordinatesrespec-

tively, j is the harmonic number, the first term in the left hand side

represents harmonically uncoupled part, and the second and third terms

denote harmonically coupled parts for even and odd functions, respec-

tively. The Fourier series representation of the strain-displacement
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relations and stiffness matrices is given in Appendix A.6. Equiva-

lent nodal load vectors and stresses are discussed in Appendices

A.7 and A.8, respectively.

2.7 STATIC LOADING

2.7.1 ELASTOPLASTIC ANALYSIS

There are in general two methods to perform an elastoplastic

analysis: (1)the tangent stiffness method and (2) the initial stiffness

method. The former recalculates or updates the stiffness matrix

during the iterative solution cycles whereas the latter takes ad-

vantage of the inverse of the original linear elastic stiffness

being kept constant on which all subsequent iterative cycles are

based. Obviously, this latter approach is simpler in procedure

but requires a greater number of cycles for convergence. In both

cases, the load is applied in small increments. The present study

is based on the tangent stiffness matrix approach. Both of these

methods are elaborated in Appendix A.9.

2.7.2 VISCOELASTOPLASTIC ANALYSIS

Problems of creep and stress rel'axation are time dependent

phenomena. The procedure for analysis is identical to that in the

elastoplastic analysis except that the increments in loads are re-

placed by the increments in time and the total load is applied at

each time increment during the numerical integration of the govern-

ing equations.

The equations of equilibrium are solved by a recurrence for-

mula derived from a suitable difference operator. Such a formula may
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be derived by assuming a linear variation of either displacements

or displacement rates. Explicit forms of various difference opera-

tori are given in Appendix A.1O.

For each time increment the viscoelastic analysis is performed

initially; then the plastic matrices are calculated from the visco-

elastic stresses. A standard iterative cycle is subsequently re-

peated until acceptable convergence is achieved.

2.8 DYNAMIC LOADING

2.8.1 ELASTOPLASTIC ANALYSIS

Effects of inertia are added to the governing equation for a

dynamically loaded shell. We construct the mass matrix according

to the formula (2.39) elaborated in Appendix A.ll. The equations

of motion thus obtained are solved once again by a suitable diff-

erence operator.. In general, a linear or constant acceleration

assumed for a small time increment is used for deriving a recurrence

formula (Appendix A.IO); Various schemes of numerical integration

have been investigated and are available in the literature E 20J.

For all time-dependent problems as indicated in the previous

section the increments in loads are replaced by the increments in

time to handle nonlinear plastic behavior. This would require the

total dynamic load to be applied at each time increment during the

numerical integration process L2,3,41.
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2.8.2 VISCOELASTOPLASTIC ANALYSIS

The dirombic analysis of a.viscoelastoplastic fiber-reinforced

shell is our ultimate goal in the present study. Because of this

generality we will summarize and itemize the analysis procedure.

(a) During the first time increment, the generalized displace-

ments are calculated from the recurrence formula with initial

and boundary conditions.

(b) Examine the current viscoelastic stresses in (a) above to

determine if any layer through thickness of any element has

yielded. If so, the plastic tangent stiffness coefficients

for that portion are developed.

(c) The plastic tangent stiffness matrix, if non-zero as deter-

mined in (b), is incorporated into the recurrence formula

to calculate displacements and velocities from which incre-

mental strains and strain rates can be found.

(d) The incremental equivalent stress is calculated and compared

with that of the previous cycle.

(e) Steps (b) through (d) are repeated until convergence or a

certain accuracy is obtained for the incremental equivalent

yield stress.

(f) For a yielded element (or layer of the element) the maximum

equivalent stress which was originally set equal to the input

yield stress is now updated by adding the incremental equiv-

alent yield stress to account for strain hardening. For the

yielded portion the anisotropic parameters of plasticity
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must be updated.

(g) If no yielding occurred anywhere in the shell the steps (b)

through (f) are omitted.

(h) A new time increment is initiated and the above steps are re-

peated until desired time increments have been completed.
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SECTION 3

THICK SHELL ANALYSIS

3.1 GENERAL

It is generally known [15) that a shell with the thickness-radius

of curvature ratio of approximately 1/20 or larger is regarded as a

thick shell In which transverse shears become significant. Tradition-

ally, a thick shell is analyzed similarly to a thin shell with trans-

verse shears incorporated. Chung and Bandy [6 1 studied finite

element applications to an axisymmetric thick shell considering trans-

verse shears in the planes of meridional and transverse directions

and tangential and transverse directions. In theit formulation rates

of these transverse shears with respect tomeridionalcoordinate are

added to the bending strains of respective directions. For fiber-

reinforced shells with several layers of angle plys through the thick-

ness, however, the three dimensional shell theory is more convenient.

In fact, it will be shown in Section 4 that even for a thin shell if

layers of fiber angle plys exist through the thickness direction the three

dimensional theory appears to be more satisfactory, particularly when

inelastic yielding is considered.

For the reasons stated above the present study will employ the

three dimensional shell theory and be specialized for axisymmetric

geometry and deformations.
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3.2 INTERPOIATION FUNCTION

Although the three dimensional theory is used only radial and

axial displacementfields may be considered because of axisymnetric

conditions, thus eliminating shears in the planes of axial and tan-

gential directions and radial and tangential directions. This permits

use of a plane element subject to integration around the circumference.

Ouqh4plane element as used here is the isoparametric element with four

corner nodes which represents a linear variation of axial and raddA

displacements within the element. This element was origially devel-

oped by Ergatoudis and Zienkiewicz [251. Detailed descriptions of

this element are given in Appendix A.12.

The strain components considered here include normal strains in

axial, radial and tangential directions plus shear strains in the plane

of axial and radial directions because of axisymmetry. Development of

governing equations follows closely the procedure presented in Section

2. The isoparametric element is based on the local coordinates with

origin at the center of the element and four corner nodes having coor-

dinate values of 1 and -1. This permits use of Gaussian quadrature

integration in. the plane together with integration around the circum-

ference. Consequently, to conform to global coordinates a transforma-

tion by means of Jacobian matrix is needed for stresses and strains.

Such transformation is in addition to fiber transformation as elaborated

in Appendix A.5.

The generalized displacement field 09 (@9 - u, 0 - v) is given

by

* " t1 O (3.1)
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where i-1,2 and w-12,...6 and *IN is the normalized interpolation func-

tion (imoparametric), Alternatively, 01 may be expressed as

e, - 'e' (3.2)

where wml,2, 3,4 and #r is simply the interpolation function (isopara-

metric) given by

1

*4 = (l- ) (l-)
14= (+0) (1-1Q)

*3 = i(I- l) (1+1) (3

in which and I are isoparametric coor,. ,ates. See Appendix A.12 for

derivation of (3.3). The difference between *IN and *N is associated

with arrangements of thb nodal displacement vector.

3.3 LINEAR ELASTIC CONSTITUTIVE EQUATIONS

Because of the isoparametric coordinates which require transfor-

mation to the global cartesian coordinates, derivatives of any variable

with respect to isoparametric coordinate are given by

IJ (3.4)

where the Jacobian J is

[ -1i
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br bz

I ibr bt
L[ (3.5)

Therefore,

[ L0J (3.6)

The linear elastic stress-strain relation for axisymmetric solid

is given by

a11 , EtjkA Yk (3.7

where s,j - 1,2,3,4.

The corresponding strein-displacement relations for small dis-

placement using (3.1) through (3.6) may be expressed as

4
bu

Y1 b r XA + Bag+ CS Dq)uU (3.8a)

yes W Y W " al n(Ar.+BIrn + Cr TI)vn  (3.8b)

4

33," Y9 a "!lr r + a,,. + Cq + D. P)u, (3.>8c)

4
bu Ov_

Yls + " + r (O(Ar.. + B..g + Cr.)uD

+ O(ASa + Bss + C,.fI)vul (3.8d)
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in which the values of all constants are defined in Appendix A.12.

3.4 CONSTITUTIVE EQUATIONS FOR FIBER-REINFORCED VISCOELASTOPLASTIC
SOLID(AXISYMETRIC THICK SHELL APPROXIMATION)

The explicit form of the three-dimensional.yield function given in

(2.6) is elaborated in Appendix A.2. The tensor of plastic moduli

generally referred to as plastic matrix i derived in Appen-

dix A.2.

Our purpose here is to derive first of all the orthotropic visco-

elastoplastic stressi-strain relation of the type (2.36) specialized

for axisymnetric three dimensional shell.A detailed procedure achiev-

ing this goal has already been presented in Section 2 for a thin shell

The final form requires change of indices from ct,P,X,ji to t,j,X,Z so that
n

dalJ(8)- 1ijeL dYkj(s) + EJkl A d q,,(s-l)

+ B dY A,(s-1) + C dykj(s)] + 1 IJk dykj (S) (3.9)

3.5 FINITE ELEMENT EQUATIONS OF MOTION

In the case of a thin shell integration through thickness was

required. Such integration here, however, is combined with axial

direction over the area of iasparametric plane element by means of

Gaussian quadrature. This byt..ses distinction between membrane and

bending stresses. Effects of t!-i',F P'.esses are combined in the pre-

sent procedure. The final form of equation of motion following the

same operations described for a thin shell in Section 2.4 may be
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derived in the formi

MN,,d§"(s) + JNI~dd(s) + Km d@(s) -dFm(s)

in which
I n

-N0 2Tjf C~r A tLA,,,r tJIddQ

KN" T 2f V ANkAl rI3IddT)

(a) (y) ( V)
dFN(s) w dFw(a) + 04~(s) + dFN

dFN(s) -L2u A( dqkjJL U)o

1 A qfsl),

+ Vil, A mic Aw1jrIJjdgdTI]dE9(s-l)

dFt4- [2 D J'j'jA i rtjjdfdI~d0(s-1)

It should be noted that A,.j can easily be identified in the expressions

(3.8a) through (3.8d). The product term is also shown in expressions

such as F.., G.., etc. in Appendix A.12.

3.6 ANALYSIS PROCEDURE

Various cases of analysis including elastoplastic and viscoelasto-

plastic analysis under static and dynamic loadings for a thin shell are

described in Sections 2.7 and 2.8. Other than three dimensional yield

criteria for the thick shell as shown in Appendix A.2,I we follow the
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identical procedure as in a thin shell. Therefore, no further comn-

- munts are required for the case of a thick shell.
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SECTION 4

APPLICATIONS

4.1 GENERAL

Based on the theory and procedure described earlier various

versions of computer programs have been written. Detailed descrip-

tions of these programs are given in Appendix B and its subappendices.

Some demonstrative problems are solved and the results discussed

in the following subsections.

4.2 GROMETRIC CONFIGURATIONS AND MATERIAL PROPERTIES

Three types of geometry are considered for example problems:

(1) oylindrical shell, (2) combined cylinder and spherical dome, and

(3) the structure same as (2) with a portion of the dome section

built up with increased thickness.

The geometries shown in Figures 1 and 2 are analyzed as thin shells

whereas those shown in Figures 3, 4 and 5 are treated as thick shells.

The fiber wrap angle 01 is measured from the circumferential direc-

tion rather than from the longitudinal axis. Analytical results for

isotropic solids and fiber angles t a 00, 500, 90° are compared. Deter-

mination of isotensoid dome surfaces and corresponding fiber angles

based on netting theory is inadequate if bending is significant. The

analytical means of determining isotensoid surfaces by bending theory, how-

ever, appears to be impractical. Furthermore, wrapping of fibers dic-

tated by bending analysis in general may not be possible. For these

-' . . . . . . . . . .
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reasons the present program performs stress analysis for given trial

geometries and fiber angles to determine efficiency of performance or

load carrying capacity.

In our examples to be presented in the following subsections two

fiber layers are used. Each layer consists of angle or cross plys

wrapped with -W and - fibers which lead to axisymmetric deformations

under axisymmetric loads. Material properties used for all example

problems are the same and they are listed in Tables I and 2. For the

analysis as isotropic solid the material properties corresponding to

transverse direction are used.

4.3 STATIC LOADING

4.3.1 THIN SHELL

The computer programs SPl and SVPl are used for analysis of the

structures as a thin shell.

The elastoplastic deformations of a cylinder (Geometry Case 1,

Figure 1) subjected to internal pressures are shown in Figure 6. The

only experimental data available for comparison is plotted also in

this figure. The elastic load limit for analytical solution is slightly

lower than that for the experimental value for ot=50 0 It is interest-

ing to note that for CV-900 which represents fibers oriented in the

axial direction, yielding occurs at much smaller strain and no strain-

hardening is exhibited.

The viscoelastic response of this cylinder with (t500 subjected to

an internal pressure of 250 psi is shown in Figure 7. A relaxation time

T(r) - .005 sec. with ra 1,2,3 and the integration time increment At

•
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TABLE 1

MATERIAL CONSTANTS FOR THIN SHELL

Modulus of Elasticity EL - 8.5 x 106 psi

E, - 2.8 x 106 psi

Shear Modulus G -I a 1.3 x 106 psi

Poisson's Ratio %AL - .4
% -- .131

Plastic Modulus E(p)L a 8.5 x 10' psi
E(p)T - 2.8 x I0 psi
E(P)45o - 3 x 10' psi

Plastic Shear Modulus G(p)TL G(p)TT - 1.3 x 10' psi

Yield Stress a(,,)L - 3.05 x 10 psi
- 3 x I03 psi

a(u) 4 o - 2 x 104 psi

o(E)sc A C(o)TT = 5 X 103 psi

Density .0388548 pci

TABLE 2

MATERIAL CONSTANTS FOR THICK SHELL

Modulus of Elasticity & = 8.5 x 06psi
ET - 2.8 x 10 psi

Shear Modulus CT; 1 x 106 psi
*T - 1.3 x lOipsi

Poisson's Ratio %; a .262

% -T .4

Plastic Modulus E(P)L - 8.5 x 10P psi
E(); - 2.8 x 103 psi

Plasti- shear modulus G(p)L - 1.3 x 103 psi
G(p)i = 1 x 10' psi

Yield Stress ),,L - 3.05 x 0 psi
0;(,,), 3 x I0' psi

)T L 5 x 103 psi

a(.)TT 2 x 10' psi

Density .0388548 pci
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T(r) = .003 sec.

at - .001 sec.
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Time (10-3 sec.)

Figure 7. ViscoeLastic Response of Thin Cylinder
Subjected to Static Internal Pressure of
250 p)i - Geometry Case 1



42

* .001 sec. are used in this case, It is seen that the viscoelastic

displacement gradually increases and reaches the linear elastic dis-

placement at approximately .012 sec. More discussions of this subject

are given later for a thick shell.

Effects of various fiber angles for a dome-cylinder are shown in

Figure 8. The fiber angles for the dome part of the structure are arbi-

trarily designated as a-5° , 150 , 250, 350 for elements 1, 2, 3 and 4,

respectively. With this dome the fiber angles for the cylinder are

taken as (Y 0 , 500 , and 900 for 3 separate analyses. In one case

CI 900 is used throughout the structure. Displaced shapes of these

4 different cases under 100 psi are compared in Figure 8. For o?=0 °0 for

the cylinder the displacement is largest at the dome but smallest at

the cylinder. In contrast to this, y-900 everywhere gives the least

displacement at the dome but considerably larger displacement at the

cylinder. For a=50 for the cylinder with variable Fiber angles at

the dome the displacement is about medium throughout the structure.

These results appear to be quite reasonable.

Some serious difficulties remain, however, in the elastoplastic

analysis of a fiber-reinforced thin shell. These difficulties stem

from our plane stress approximation of three dimensional shell, which

in turn effect a unique definition of anisotropic yield parameters as

proposed in Appendix A.2. Specifically, the parameter Alp lacks unique-

ness as the fiber rotates between 00 and 900 . This leads Aln to take

on large values which consequently cause the equivalent stress a to

assume a negative value. This situation arises for Y 5 450 in static

analysis but such range increases in dynamic analysis. As pointed out

in earlier sections, the plane stress approximation for a thin shell is
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simply a device to avoid treating a shell as a three dimensional struc-

ture. It is too simple an approximation to afford checking the yield

phenomena of fiber-reinforced shell through the thickness.uniquely.

Such discrepancy exists also in dynamic loading.

4.3.2 THICK SHELL

The computer programs SP2 and SVP2 are used for anklysis of the

structure as a thick shell.

Figure 9 shows plots of internal pressure vs. radial displacement

for a cylinder (Geometry Case 3, Figure 3). For all wrap angles other

0than cYO the elastic limit pressure occurs much smaller than the ex-

perimental value for ar=50 ° . The shapes of the curves are quite sen-

sitive to wrap angles as noted in the analysis as a thin shell, The

results for ctn90 are identical in both analyses as either a thin shell

or as a thick shell, although the elastic limit for 0-50 in the thin

shell is larger than that for c=500 in the thick shell. This is at-

tributed to most probably the non-uniqueness of the arsisotropic paranm-

eter Alg, as discussed in the previous Section.

Displaced shapes of cylinder for various wrap angles subjected to

the internal pressure of 2.27 psi are shown in Figure 10. The least

displacement in both radial and axial directions is caused for 0 °

whereas ar900 gives the largest radial displacement but very small

axial displacement. For the case of c=50o both axial and radial dis-

placements are medium. Of course, the largest displacements occur in

isotropic solid.

Effects of integration time increment and relaxation time are sig-

nificant in viscoelastic analysis. These effects are even more critical

in viscoelastoplastic analysis. Figure 11 shows effects of various
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values of relaxation time for a constant integration time increment of

.001 sec. with an isotropic cylinder subjected to internal pressure of

2.275 psi. For T(r) - .02 sec. the response is extremely erratic. A

sLight improvement is obtained for T(r) - .001 sec. A stable solution

is achieved when the relaxation time is reduced to .0001 sec. at which

the ratio of At to T(r) is 10. With the relaxation time being the

material property in general the integration step size must be adjusted

for a given problem. Toward this end Figure 12 shows effects of var-

ious integration time increments for T(r) - .0001 sac. For the fiber-

reinforced cylinder of = 500 and isotropic solid subjected to internal

pressure of 102.4 psi integration time increments of .0002 sec. and

.001 sec. are used. For both material properties At a .0002 sec. is

unsatisfactory. The smaller increment of At - .001 sec. produces a

stable solution. In dynamic analysis, however, it is well known that

the smaller the time increment the more stable the solution. This is

an interesting contrast associated with viscous properties of the mater-

ial which tend to damp out a motion. Finally, influence of ramp load-

ing is shown in Figure 13. Once again a proper choice of At/T(r) is

needed. This ratio in general larger than 10 appears to be sitisfac-

tory, although yield properties may require even larger ratio, say 100

or larger.

Stresses are of fundamental importance to the designve. In Figure

15, viscoelastic stresses in directions longitudinal and transverse to

the fiber are plotted. This particular analysis corresponds to o=500 ,

T(r) - .0001 sec., and At - .001 sec. in Figure 12, although these

stresses are calculated for the element 1 which contains the node 1 for

which Fig. 12 is drawn. It is interesting to note that the viscoelatic

4J
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- Isotropic, At - .0002 sec.
....... Isotropic, At = .001 sec,
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Figure 12. Effects of Integration Time Increments on Visco.l:astic
Response of Cylinder Subjected to Internal Presstire
of 102.4 psi - aeowetry Case 3



50

Viscoelastic, isotropic

Viscoeleatic, at M 50°

Linear elastic, isotropic

Linear elastic, o a 500p lOZ. a
T(r) .0001 sec.

t .001 80c 12.
5

amTime (103 secs)
' . 3

1.2

4Je

Figure 13. Viscoelastic Response of Thick Cylinder Subjected to
Ramp Internal Pressure -Geometry Case 3

--- SAL



51

Isotropic
.. . ot 50 ° 0'

Displacement Scale
.003"!

(a) Geometry Case 4 (b) Geometry Case 5

Figu~re 14. Displaced Shapes of Cylinder-dome with Built-Up
Section Subjected to Static Internal Pressure of
100 peL - Geometry Cases 4 and 5

5 - 4



52

Stresses iii Fiber Direction, CL

Stresses in Direction Transverse
to Viber, U,

- 500

At .001 sec.

T(r ) - .0001 sec.

U

'-4 1.itear elastic 0 L

"4

r,6 L,1inear elastic 
P4

W'.

r4

10.

2 3 4

Time (10 0sec.)

Figire 15. Viscoelastic liber Stresses in Element 1 of
Cylinder sithiected to Internal Pressure of
102.4 psi - Geometry Case 3
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stress increases until t - 1.5 x 10' sec. and decays asymptotic

to the linear elastic stress at approximately 3 x 10-3 sec. Suchdecay

may not occur for hours, days, months or even years depending on

the material property or here the relaxation time. For instance con-

crete creeps under sustained load and stresses relax over the period

of time. The relaxation time could be 100 or 1000 times larger than

used in this analysis. Such large value then would require corre-

pondingly large integration time increments to maintain the ratio

At/T(r) for stable solution. In such case the results that might be

plotted in Figure 15 would simply require a larger time scale.

Results of analyses of a cylinder-dome (Geometry Case 4) and one

with built-up section (Geometry Case 5) are presented in Figure 14.

For the cylinder-dome it is shown that ct500 contributes to consid-

erably less displacement than the isotropic solid does. The displace-

ment of the dome with built-up section is very small at the dome

portion but very large at the bottom of the cylinder portion (Figure

14b).

4.4 DYNAMIC LOADING

The computer programs DVPI and DVP2 are used for analysis of

the structure as a thin shell and a thick shell, respectively.

In general, displacement of a structure under a load applied dy-

namically is 60% to 807. more than that under the same magnitude of

load applied statically. Consequently, dynamic stresses are larger

than static stresses, and design of the structure must depend on ac-

curate or realistic limiting stresses. A need for dynamic analysis

is, therefore, apparent when explosive pressure is involved such as

in missile structures.
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The linear elastic responses of both isotropic and fiber-reinforced

cylindezs(Geometry Case 1) subjected to internal dynamic pressure of

20O psi are shown In Figure 16. For the case of 01 500 considerably

smaller peak response is observed. It is also seen that for both cases

the dynamic peak radial displacements are approximately 80% more than

the static radial displacements.

The dynamic viscoelastic responses for the cylinder of Geometry

Case 3 subjected to dynamic internal pressure of 34.1 psi are shown

in Figure 18. Smaller peak responses for viscous behavior are noted.

Here the relaxation time of 10'; sec. with integration time increment

of 10- sec. is used. This gives the ratio At/T(r) of I. Such ratio

would have been too small for stable solution in the case of static

loading. For dynamic analysis, however, even At/T(r) N 1 is very

large as noticed by significant damping, particularly for OM500 . It

is expected that the ratio At/T(r) much smaller than 1 could provide

stable solution.

Figure 19 shows the dynamic elastoplastic and viscoelastoplastic

responses for the cylinder subjected to internal pressure of 102.5 psi

with T(r) - At - 10"e sec. Once again, effects of viscosity contri-

buted to smaller peak responses. For the case of cy a 500 the peak

viscoelastoplastic response is considerably smaller than that for the

isotropic solid, but such difference is almost absent for elastoplastic

response.

Dynamic stresses corresponding to these peak responses are al-

most twice as high as static stresses. Results of a static analysis,

therefore, would lead to unsafe design when such load is to be applied

dynamically to the structure in service.
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SECTION 5

CONCLUSIONS

Theoretical formulations and computer programs for the analysis

of thin and thick fiber-reinforced arbitrary axisymmetric shells sub-

jected to static and dynamic loadings with diversified material pro-

parties such as viscoelasticity, elastoplasticity, and viscoelastoplas-

ticityhave been presented.

Adequacy of anisotropic ezress.-history-dependent yield parameters

modified from Hill's yield criteria and internal or hidden variables

approach for viscous behavior has been demonstrated. However, the

inisotropic parameter corresponding to a plane stress in the

fiber-reinforced thin shell is not unique as fibers change in wrap

angles. It is, therefore, necessary to analyze the structure as a

thick shell in which a three dimensional theory is utilized if yield-

ing of fibers is to be involved.

Dynamic stresses are larger than static stresses. Although de-

sign calculations may be carried out with static equivalent load actual

dynamic responses for various geomettical and material properties are

too complicated to be guessed at from so-called dynamic "load factor".

Viscoelastic stresses are large initially but decay as time elap-

ses. If the structure is under sustained load creep and stress relax-

ation may be important. However, selection of relaxation time must

be made carefully because such viscous behavior may be exhibited for

only a few seconds to months or years.
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APPENDIX A.1

STRAIN DISPLACEMENT RELATIONS FOR A THIN SHELL

1. KINEMATICS

Consider the location of a point in the undeformed shell defined

by the position vector

r 1

where

X, , -z)

Thus,

r = r) + zfn (1)

where is the position vector of a point on the undeformed middle surface

and n = n (FI, ,O) is a unit normal vector to the middle surface. The

square of the length of the line element is given by I

090" dr'dr = godfd ,O+gadedga  (2)

where dr = d5 + d(zn) -dr + dzn + zdn (3)

with F, = 1, 2 and i, j = 1, 2, 3

Thus,

(ds,, )a= dr) "dr, + 2dzn'dr, + 2zdn'dro

(4)
+ z2 dn'dn + dz"

Now,

dr. dr .) r.. dF *r ds = a *a d'dF - a ded. j
is the fundamental form of the middle surface where a = the first funda-

mental tensor.

dn.dr, n ad drI -b de dF is the second fundamental form of.. o 0



62

le N

XiI

Figute A.1.1: CoordinateH for Shell Deformtion
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the middle surface where b C the second fundamental tensor

dn.dn a n ,n gd.dFo is the'third fundamental form of the middle

surface where
-, (z = (n - b a )"(-b a)
-.,cr nn, a),-o

ina bL VA10 Y4b" bb a " b Ab

- third fundamental tensor

Substituting these identities into (4) gives

(do)S - (a - 2zb + zc )dedg + dzP (5)

Denote that

got a -2zb UO+ zc Y

g y -o

Now, after deformation, consider the new position vector

R- aR + zn (6)

and the squared length of the line element on the deformed surface is

given by

(ds)v a dR-dR - G Ot d9J

w G dg G ded?+ G33dede

- (A + zN ) (A + zN0 )de d 8

+ (A + zN )" N dg d e+dz:'

- CY -,cr - cv
n (A - 2zB +zNC ) dradr, (7)

+ (A +zN). N ded + dzs?

C /
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where

Go -A -2GBO + 00C

Ot ".-
*G 0  Cba ( +hN )N

GOt - 1

and,A A A rA

BV -p  Ito
B -N a p

C -N' *N .(-BA A *(-B A)

-B B A -B B

The difference between the squared lengths of the line t&ments on

the deformed and undeformed surface is:

ds -dso 2Y,, dgj dgJ

2Y dtd,+ 2Y dj d3 + 2Y3 3dz

S[(A -a ) -2z(B -b + z2 (Co C 0)] dfdgp
CYR YA aoc (YO C

+ 2(N , A + 0 N )d de (8)

so that

y B ,2z(B01 bol) + z2 (C ,t - ca)]

V N.A +zN.N

Y3a 0

Denote the middle surface membrane strain as

(A -a) (9)

But,

A =(r + u) rocr + u -a + u

A A *A Rz a + a u + a u + u u

I
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Thus,

e (a 'u + a 'u + u " ) (10)

where

u u a +u~n (11)

u = (u a ) +t? n+u n

=u a + up a + u3 , n+ t3 n (12)

in which
a L a +is n = a + b n

where Christoffel symbols,

aa ! 0 tra n -b

Hence,

u = (u + 1 uM)a + ub + u3  n- ubp a-.,t ,o y it av PCt "- C " x

= (up + r P u -iuabp )a + (ub + u3 ) n

=(up' - uf'b-P)a + (t? + u b )n (13)
1L (X vaCI

where

la =Ua fa

and the "I" represents covariant differentiation.

Using (13) in (10) yields:

C! Jfa *f(u P- .li bI )a + (0? + up b )n]

+ a "[(up' -t?b'l )a + (u + ub )n.1
8 ja a-'a a C~

+C (upa -u~b' )a + (ti- + uAb )n -[(upa -l3b'a)a
"a t ,a " I Z p.

+ (u + u b )nl
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[u1, + u -2u'b +(u "u~ b )(u" -bt)

+ (Wi + uXb (u' +ub ) (14)Pa (1t OY

Let m N - n , N - m+ n (15)

Denote the change in curvature tensor as

y - (Ba -b ) = A N a " n

(a +u ) m -u bx a_ a. a 3,a ",o ",a o " X,

Denoting m= mot a + mn , then

m (mo" mbi )a + (m+ mtlb )n
", -- ' . oil -

and
X = m 1 - mb +(u tb )(mPB -mbp )

+ (u + uXb )(m + m Y  -bbP
,a ax (, bY )  (UPI a-2 bu o,)

since
a "a E n-. a -B a$

E" a a a E E n 2n

n j E a *a
-- a "8

similarly,

N = E aA *A

If the permutation symbols in the deformed and undeformed surfaces

are the same (small strain); i.e., E4 = E *0 , then

-2 -Ub - X ENY bY 3 (2 +bun) aam- f-u3 a -Ub Eay -x ' to on

. I
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Ua b1 u + I& EyA (U -by Ii) (u bX us )1 .3

la a
We define

3UaU X0 .EB(y "Yn
a u _ub E (u IXb U ) (u -bu)

. b" I? + E E (1 bY te(m u - baJ + Eyx (uT bu ) (u u3 )

Aa= (m1  mb )(M~'m~+m + b )(m +Uj A

= (mX t - mb , )b m - A's m+ )bX %

So finally,

Y = e + z(OL + zRA

The shear strain is

Y =N.A +zN. N
rip - I~

= m+m'u -m1t? b + (u' +ulb )(re-l)
O A a pa90 L

+zmm !-m mb +zm (m +m1,b )
PI(X ,~a a aM

-zmpa +z(m + m b )

2, SPECIAL APPROXIMATIONS

For large deflections but small rotations

b uB << u

u (u - ba , ..

( Uio ull OL+ui
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oL

m = c (a+u a n

ina

Figure A.1.2: Approximation for Small Rotation

3

=- k E (2a +,U n) - u n
-a ,a

33 a
u -uA = au

from which

m 0, m = -u

Consequently:
at 0' (r0 a p+b(' n

a x., a

- - ( + U b + n

X=-(a + u an (u ya + b U n) -u -bo u U.

or, neglecting the nonlinear term,

au3 )( CLO -U la
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a, E* - *'10 AEd a *E" A

a A

*a . n E a *a -- Ea

-a13 1 - - I LJ.

nP-a E a n -- E ao
---- 04O $ fr

ao
a n.E aa , a. n--

Ea 8 E =l

Love-Kirchhoff Assumptions

(1) points which lie on one and the same normal to the undeformed

middle surface also lie on one and the same normal to the

deformed middle surface.

(2) the effect of the normal stress on surfaces parallel to the

middle surface may he neglected in the stress-strain relations.

(3) the displacements in the direction of the normal to the middle

surface are approximately equal for all points on the same normal.

Assumptions for Love's strain-energy expressions

(1) the shell is thin, i. e. h/r << 1

(2) deflections may be large but strains are small -e C

(3) strain energy is a quadratic function of the strain componeits

1 .E tj k I y k
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(4) the state of stress is approximately plane, i. e., the effect

of transverse shear stresses and of the transverse normal stress,

acting on surfaces parallel to, the middle surface, may be ne-

, tected in the strain energy density. For thin shell, terms

with z9 - 0 and Y3. 0. For shallow shell, uP >> b u - 0.

3. CALCULATION OF FUNDAMENTAL TENSORS

Xee

XIX

xl

Figure A.1.3: Surfaces of Revolution

( x ) R0(x3) Cos G + Re(x 3)sin 0 + x.3

r =2 -0 R1 cos h +R sin i +i1o0l t1 1t ax3 o o -3

a r 6r

r a - - -R sini +R Cosi-0,2 -2 2 "e o o os

a11  
I + (R )2

0o



7 1,

812 "-9 92a 0

822 -!2 *-- 2  -

2 1.2
28 X81 11 (8 22- 8 12) -Rofl + (RO) j

n aj ~ (coso + sineRt)
t8a122 Z11

R

0/F R' (co o 11:. + si 9 12 R' 1)
0 0

-,.- 2 (cos i + sine - o-)
'1 + R 2 1 L o

6n R'R" Rg
n1- - o 2 (cos i + sin e . R'I )bx3 "IT-R' 2  - o 2 -+3

o 0

R'R' R (l- Rj2)

0 0, - 2 ( co "o + sin e 1 '
b-22 +. I+

-R
0

R 1 2 " R" ( R 2 ) R
b,-tj nl 00 0* + 0

11 +' '1 R' 2 0/TT+ R

b12 n-a t n,2 0

R
b22 -2 n 2 , +R,2

0
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1 (ll (+ R 2)(/l+
2) (l + Ro2)

3/2

R1  T " r"""-- + R" -

1 a 22 R2 Ori+ ) 2 J 2

. ..2 ..b R2 V Rb2 b22 R

Since a12 b 12 = 0 we say that the meridians and

parallels are lines of principal curvature.

R1 - Radius of cur-
ye vature of

merilian curve
%0 (x)

A Q

R, .. . x

Figure A.1.4: Principal Curvatures

R- -- tan (p
0 )X 3

AB - R tan cp- R'
0 0
V~~ 2 +P2 '' -

BO u'R 2 + R2 Ro2  1 2

- sign signifies R2 is opposite to direction n. To check if

a(, and R1 and R2 define is valid surface we use Coadazi equations

b b 22 1)2-)

Cr I1 1va2 2R21 92 R



73

" " !2 
X 2

"W " lIa-- -l A7 -a- l)+C(2 2

-1 V~- , C2 "

1122 11 22

. I 

-e*n ___ - t) + c 2(t I t 2 )

-a -

a2n. 11 2a 1  2t 2
b

1 bit all

, "R I  tl

Similarly

itl " - ,, " /a I Rl t R



I 9f

4. LITNW STRAIN-DISO iCEEN'T EQUAT1ONS (wRvozHIoV)

e " ((u u +  Iuua + + u)a , 2b u31

LeA,/7, -- b 81 '22-
'CY 22 0 )a, (.'2a)aOlbA

a l 2 2
L ee AAR B

1 / 1 22
up upl-o .,9 p , (rlu 2 )al

(U

, vP Vr-a-a j3 V -a xl

on ppT

u )a
P-l

e__ +~ -a- -t-
e v' Loua a,, U't -, /a, a,,,

11 11

+ /a,, _ _ a - - u
t2 v I a- a a 1

22 11i

at

t 711 1 1-,u

W7-, -2 al -3
+ fa- 1 ___ - L

U - U

'2/22 11 il lll 1



75

Let
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-2 1 6v 2
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For a shell of revolution

Let A, = I A r

2I
R2 r

Novozhilov strain equation

bu bp

e22 r (-+ u sin tp+ w cos cy)

- v V Iue Ty - sin rp + --- 1u1l2 = s r r 0%

2 2 OuO', (16)
+ ti- + -)1 s2  b2 s

2
1 t 6 w  Cos ID bv CO bw 1"22 = "r {r be 2 r be + sin (7+ u )

- bw  I - F + s sin + uv

bsOO r ba bs () - r

p
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APPE,4DIX A.2

YIELD CRITERIA

1. ISTROPIC YIELD FUNCTION I

The von Mises yield criterion, one of the most widely used, is

discussed herein. Von Mises suggested that yielding occurred when the

second deviatoric stress invariant J reached a constant value a called

equivalent stress such that j
93I

f - U = 3J Toot

where f is the plastic potential function, and Toot is the octahedral

stress defined as

2 2 a
cct = 3 -(i11 - 22 )" + (Oil-O:,)' + (:33 -01) + 6((72+du:gya 1 )

(2)

Together with Drticker's postulate that the yield surface is con-

vex and the plastic strain rate vector is normal to the yield surface

the Prandtle-Reuss flow rule for isotropic hardening material as de-

fined in (2.8), Section 2,will he employed in the present study.

Following the procedure outlined in the expressions (2.8) through

(2.1q), we obtain the explicit physical .:omporients of the tezsor of

plastic moduli,

-D Z Z' D
D E:( +zTDz (3)

F ( ••)
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where E is the standard elastic matrix and

I

11 3 :" 33 3l 3 a 3 3 3.
ZT c- - -- (4)WT=['2 27" 2r U' F a

in which i, u'g, and,,Y:v are deviatoric stresses.

2. ANISOTROPIC YIELD FUNCTION

2.1 THREE DIMENSIONAL SOLID

Developments of anisotropic yield criteria have r%.:oved for the

last two decades. The directional anisotropy was studied by Hill [8]

using the von Mises yield condition and its flow rules. He chose

yield functions such that the von Mises criterion for isotropic solid

is restored when anisotropy vanishes. Such yield functions were used

also by Tsai £22], Fulton [7 1 and others. The formulation, however,

is not convenient for numerical scep-by-step computation. Hu [lOj

extended the Hill theory and introduced equivalent stress-strain re-

lationships in appropriate form, using simple uniaxial and shear

stress-strain tests on coupons cit in the directions of the ortho-

tropy. The aniaotropic parameters were held constant. However,

experimantal evidences show that anisotropic parameters f-Ir strain-

hardening material depend on the state of stress and should be iip-

dated as the stress level changes. Such procedure was used by Jensen

[111 and Whang [23). In the present study the yield criterion of Hill

as extended by Hu and further by Jennen and Whang will be specialized

for fiber-reinforced shell strucLures. Additional discussions con-

cerning coordinite transi%,;tmatoas 6,e given in Avpendix A.5.
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For the case of anisotropy the yield function (2.6) is given

explicitly,

f U 4r 2 [Aa(o 1 1-o**) 2 + A93 (o -o3 3 )A + A3 (O33-ol )0

6(A44(710 + AiIJM+ A'"'J' (5)

where AIR, etc. are anisotropic parameters.

Setting

All = A12 + Aal

A33= A23 + Ai

f 7-= Al1 cyz + Assa(, + Aa33 - 2(Algoulaog + A 3 os*a3 3

+ ij, ,:.jOI, ) + 6(A + + A .o ) (6)

Differentiating (6),

dul I
d = - (All"ll - A1 2 a20 -A'11(33)

do 3 2
+r (-Asoll + Ammose A2 3 0o3 )

do 3 3
+ 2--('A3 c - A*,3g1 + A3 33 )

dol 3  d9 33  d0 3 1
+ (3A4 4 I9) +- (3As 5o) + -- (3AGs 6 () (7)

73 CJ3
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It is seen that (6) reduces to the isotropic yield function (1) if

All I Age - A 3 3  2 and all other anisotropic parameters are equal

to 1.

The anisotropic parameters initially depend on the initial yield

stresses in various directions. Let 3(0 ) be the equivalent initial

yield stress in the 1-1 direction and all other stress components be

equal to zero, and set

11(0) = "(o)11 (8)

which gives from (5)

2 (A(o)Ip + A(o)a)O(o)t1

or

A(o)12 + A(0 )3 1 - 2 (9)

Similarly for dhe 2-2 direction,

(J, = (O)tS

=. ()(,o (ho
7-.2) 12

- (A,0)1 2 + (2.j) )S

A~o)1 2 + A(o)s:i W 2 1 (10)

and
C3 3  0Y(o)33

CY )- (A( 0 )w~ + A03 c(03
- 2
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A(o)o3 + A( 0 )31 = 2 o (1)

Solving for A(0 )12 , A(0 )23 , and A(0 )3, from (9), (10), and (11), we

get.

a (o)33 - (022
A(o)%( + €0) __o_ o (12a)

(2
a ((0)33 + I( s

-10' + 0) 2 2G €(o)3.1(J(0)49 (12b)

3 ((ome - 0( o)M3
A(o 1, + Co ( - (1 2c)

0 )3.3 (( 0) 22

Similarly, we determine A(o)44 , A(0 )65, and A(o),r as

A 0 --- (12d)
'Y(0)12/

S-)
I ( o)

A(o,. 3f  et (12e)

A( = - ( 0 ) 2 '/ (12f)

Let

A(o) 11 = A(o) 1 2 + A(o) a = 2 (13a)

A(~~~~ ~ ~~ 0)sA(OI AO@A) A() + A(o) 2---- (13b)

A(0 )33 , A( 0 ) 3 + A(o) 31 - (0)33 (13c)

170)3(3
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These initial parameters do not remain constant as the material

undergoes strain-hardening. The subsequent anisotropic parameters

should depend on the current state of stress, equivalent stress, and

bilinear plastic moduli for various directions. We make use of the

fact that plastic work performed in the current stress space and

equivalent stress space for a given direction must he equal. For

the 1-I direction, I

W udYj]j -f '5di,

W jCTsudYuI = I
etc.

(o))

1 144- - II

Y1 1 ) YJ)

Figure A.2.1: Plastic Work

From the figure above it is easily seen that
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a2

E(at(u)2 - 0(0))l.) + 2Eplt(a(,) , " 0(0)12)

= 0o 1 0(0).) + (+J(8 )- 1 0)(o) )
0 )22_ 1 0)22

E(p)qg a(0)20) + 2E(p)g 08

or
(~n "E(p)gp 2a. "'ol] + aoI

'E( +

Therefore, the subsequent anisotroplc parameters are, using

a( M) 1 
1

E( p1 =2(- ( 4a)

H()9 0(0)11) +0(2

E(P)I2

(14b)

Similarly,
27

A.,., " E( P).13j T .
A:, --1 ) )(+ (14c)

A 4 G (.. P - o
3 ) E(p)ii (0 - o(0)i) + 1(o),1l (14d)

'I

A
b " G( a~o:) +

3 -EpI ((0)) + 43(01. (14e)
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Ar, r, ( p)23
3[ -.- 3( 0)1.0 + U(01 14f)

where E(,,) and G(,,) are the plastic modulus and plastic shcar modulus

in bilinear stress-strain curves.

2.2 PLANE STRESS

For the case ot a shell subjected to the state of plane stress,

the yield function is written in the form,

All~ Ago 9 2

f 2 (71, - Alpa11 °gg + - - mgg + 3A4c;( (15)

Here we can only provide two tensile tests and one shear test

which arc not sufficient to determine 4 parameters of anisotropy. To

settle this problem the yield stress in the direction of thickness of

plate or shell may be assumed to be the same as that of 1-1 or 2-2

direction Cli]. This assumption was rejected by Whang L.23] who sug-

gested additional tensile test at some angle from the axis of ortho-

tropy. In the present study, the later procedure is followed. If this

tensile test is performed at an angle 0 from one of the axes of ortho-

tropy, then (15) becomes

a All a a
7 2 ()() cos4,, - AlsoJ cos2) sin 20

A,2  2
+ y- sin40 + 3 4°7 cos 2. sin2) (16)

0
For convenience the tensile test may be performed at U - 45 which
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will simplify (16) such that for initial yielding,

A(0 )1 1  A(o) 19  A(o)Oe 3
• 0 ) (I( O)4 0 [ 8 - 4 + 8 + Z A(0)4 4 )

or

A( 0 )11 A(0 )mg F c(O)
A(0)12 2 +-2 + 3A(0)44 - 4'(0 4, 0/  (17)

where A(o)jj, A(0 )21, A(0 )44 are the same as in the three dimensional

case. The subsequent parameter AIN for strain-hardening is I
I

All A,, 4I(O
A1 2  = a + + 3A4 4  (18)

E(P) 11  C - J(0)11) - j()460

where All, Ap, and A44 are the same as in the 3 dimensional case.

2.3 ANISOTROPIC PLASTICITY MATRIX

With a l anisotropic parameters defined it is a simple matter to

apply the aissociated flow rule to obtain the anisotropic plasticity

matrix in the form

D DZZTD
D a D , + " D z (19)

where the components of Z are given by

z B ,
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3. ANALYSIS

The linear elastic analysis is first performed to calculate dis-

* placements and stresses. If the stress in any element exceeded the

limiting yield stresses then the plastic matrix as derived above will

be calculated.

For the case of a thin shell integration of plastic stiffness

matrix must he performed with each layer integrated one at a time and

summed through the thickness. Necessary equations for this process

are derived in Appendix A.9.

Details of elastoplastic analysis are also given in Appendix A.9.

m m •



87

APPENDIX A. 3

DERIVATION OF INTERNAL (H1IDDEN) VARIABLES

Consider the internal variable I
1 3 (t) exp;j(rT)d-r(1

where y, (T) may be considered to vary linearly within the emall

time interval At,

,j~tAt + T-tat) ~ (-t) (2)

Substituting (2) in (1).

PtA (t-r letr (rdjt 1,p T- (rd) exp -4 -foT, ft+ A t

u (V-(t- )q1j(t-Atr) r~~

ft -a

At p -f t+ at T

At Ij 1)(t-(t)ld
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-exp ( q5 ) ~(t-At) +f ex(p~.))~' + Wj' 3 t

t -At

Atj At (t-At) d~r -ex (~ q, i(t-At) + TC r)f exp((t At At Cp)

-(t () T( ~ dtt-) C-exp( + -Zexp(--- -~r - e(-xp ~At ~ T() At \ T(,) At T~r) 1j t-At W

+ -exp- exo p --- + - exp tA)At ~ p A At - ) ti j
f~~Ttr Cr)p E-

p1-i q,,r (t-at + T(,) [1- e xnI-e-I~ X T ~ r J ' ' I 1 T ( , 1  A t ~r j

+eIL t-At t Tor T(.
t1 -~' +A )/ At -

A t At At\ AtT,

Atri.e. t tAt At ITot)

+ j exp 1YI-T+i) exp~j- +~t,'

At(F ~ ~(r) t-~-r - At (t

+~r TA t ) - AtNr

At

+Tvt j(t-At) + Cv

or
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(e ( ) ( ) e)(T) + ( )+(P).

qij C

where
()-A
A = exp

r T(r)(r) [(a) (a.)]

B T(r) A

T T(,OI - 1

4 T-r- (1 .(A)

At
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APPIDIX A. 4

INTERPOLATION FUNCTIONS FOR AXISY)METRIC

THIN SHELL ELEMENT

Let us consider an arbitrary axisymmetric shell as depicted

in Figure A.4.1. The nodal circles passing through the nodes normal

to the surface are boundaries of each element. The deformation

state of each discrete element (Figure A.4.2) is described by four

midsurface displacements (Ref. [24j).

:l) meridional translation ,

(2) circumferential translation ej

(3) transverse translation E6

(4) meridional rotation 04

The generalized displacements at nodes p and p + I for the ele-

ment with meridional length Z are:

at s0 at sa

- u(0) ,t = u()

0,P- v(o) 94 v(L)

w(o) 03, =w(L)

+ (b+ b(P
04 u=I +4P1 u - (-+U-

S'abe Do w b 'e1

where ep is the angle between the z axis and the line tangent to the

meridional surface, a is an arbitrary distance from the node p along

the meridian.

• =
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2

6

2f

Figure A.4.1: Discretized ArbiLrary Axisymmetric Shell

Pp

L rpo

P+I

Figure A.4.2: Generalized Coordinates and Geometry of a Curved Shell Ilement
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The midsurface meridional siope q7 is assumed to very as

(9(s) - s +8at a + apes

Assuming that the curved shell element may be approximated as a seg-

mant of a circle, the coefficients 80, a,1, and am are determined as

a&1 1(4 - 4c% - 21P, , )

l- CP + 3V;, p

The midsurface radius r(s) is given by

r(s) -r. + f sin (Pds
0

The shell thickness h(s) is assumed to vary linearly so that

h(s) - hl? - Rhh+I)

The meridional variation of midaurface displacements, u, v, and

w may be assum2d to be of the form

*1s u 1(s) - C, + cgs (Ia)

8()- V(S) - C3 + C4 8 (lb)

0.(s w(s) - qi + Q-'s + C so + C so (1c)

The meridional rotation is, then,

b4(s) b 81b-- - Co+2CIs+3CA5 +(C 2 ,+C 2 5)m(ld)

Writing these four equations at p(s0O) and p+l(s-1) we obtain 8

equations from which we can solve for the 8 constants, C, through

Ca. Substituting these constants into (1a) through (ld) we have

61 ONQR (2)

or OI* N

In matrix form,

S Q a(4)
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where

(4x 8) ( x8) (8x 8) (5)

7-
A oo......o o I ° ! o ° ° o ..o

1 0 0 0 o.0 0 0 0

""0 1 0 0 0 0 0

-l - 0 01 0 0 00 0

A 00+' 2 1 0

-.z t m - -io=f

A, I F'2  IF i

23 13 7p -2 to i

,. - g+ 4s i a 6s. As + 313 s 2 a

*4 +1 3 s~22 8+ 2 1I3. - 3. -: = 3

-y, *4 -- A+ , ,,,44 - T

3 a6s? -2s# 45 *47" " *48 T +

all other *IN 0 . *"i, etc.

Thus, the strain-displaccment relation may be written in the form,

*, e I
The angineering strain vector in matrix form considering only lirear terms

can be obtained by substituting the interpolation functions into the strain-

displacement relations,
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Y% ej + a

VJ (C + CBS) -(CS + CBS + C7 88 + CS W

bb

+ bf[ (C5 + Or8 + C7s + cHs)

+ (c,+c s) 4 , + b (CI + CO)-

Writing similarly for Y2 and Yiu, performing differentiation, and sub-

stituting values of constants, we obtain

X- 1+ (4 !W__ge+ z Wq (6)

e - G Q~ I
where F0  0 0000

001000

-FEoooII
The explicit form of W will be shown in Appendix A.6.

G 0 1* 0 0I
0 0 10 0

0 0 0C 0
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APPENDIX A.5

TRANSFORMED ELASTICITY AND PLASTICITY

MATRICES OF FIBER-REINFORCED AXISIMETRIC SHELL

1. GENERAL
Two types of element, plane stress element of axisymmetric thin shell

and.isopaoratric olenenc of axisymnuetric thick shell will be discussed.

Shear stresses in the plane of meridional and tangential directions

are included in the axisymmetric plane stress shell element whereas

shear stresses in the plane of axial and radial directions are incor-

porated in the isopcrametric s6lid element. Coordinate transformations

between the local and global systems differ depending on the choice of

either plane stress eiement to be used for a thin sheLl or isoparametric

element for a thick shell. Since the global coordinates for the thick

Ihell consist of axial and radial directions additional transforms-

tion for an inclined element is required.

2. PLANE STRESS ELEMENT

It can be chown that the transformation between the local and

global components of strain for a thin shell is related by

[Yt I cvsa: cosot sin i sin( 1 y
Y "I - 2 s i c o s y c o S y t - s i n l a 2 s i r c o s v Ys

L-sin' -coact 39tj (1)
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The above notations are shown in Figure A.5.1. In matrix form (1)

may be written,

*(i) (o)

Y = TY 2)

where (L) and (Q) refer to "local" and "global", respectively. It is

a simple mattez to show that the global elasticity matrix is in the

form,

D TT DT (3)

(L) (L) (L)

in which D = D(O) + D(p) with (0) and (p) denoting "elastic" and
(a)

"plastic". The components of D are

(0) E~ (2D1+ s*DI2) + 4s
2c2G + s2(cDLg + ON,)2

D~a =sc(c Dtt -2D 2) + (c2-sG)(-2scG) - cs(caD g + euo)

(0)

D13  = s(c2D11  + sNDIS) - 4slcsG + cs(csD1 s + ssbss)

(Q) czs(DI-DI) + (cI2-s)G(-2sc) + cs 3 (D1 -Dg)

(6)

Dg. I c s(D 1 1-D 1 .) + (c-s)

lNsa3 cs(D 1t-D 1 2 ) + 2sc(co-sM)G + c3 s(D1 'Dos)

ca~s%&+ c$D&13) - 4s CG + SS(B*D,1o + clDsq)(6)

Da sc(s'DI + cDlg) + 2acG(cl-sa) - sc(sOD1  + c$D2 @)

Dhere - s (sD 1  + c 2 Dh3 ) + WuOG + c' (sDeg + ceDtg)

where c - coact and s - sint . For axisyonetric deformations we
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N/N

T T

Meridional displacement

Tangential displacement

. Trageversa displacemnt

E4 Meridional rotation

Figure A.5.1: Fiber-Reinforced Axisymetric Thin Shell
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require that stresses carried by ot fibers be the same as stresses

(YOcarried -a fibers e' *.This is satisfied by imposing the average
(00

stress to assume the form

However, the strain in each ply is equal to the imposed strain. This
(Q) (Q) (Q) (B)

causes DI0  D31  = 0):1 B = 0 and we obtain the following form
of(a)of D.

(a) ( a)Di% 0 D1

D 0 Dan 0
((a ())

S D3  (4)

which is the globally transformed fiber reinforced elastoplasticity

matrix. If the plasticity matrix is used as pseudo load the above

operations are performed separately without adding together.

3. PLANE STRAIN ELEMENT

Referring to Fig.A.5.2 the coordinate transformation of the elas-

ticity and plasticity matrix for a plane strain axisymmetric solid ele-

ment for a thick shell without bending may be accomplished in the same

manner as in the plane etress case if such transformation is limited to

a plane(vertical cylinder). The global elastoplastigity matrix caft also

be given equivalently by

(o) (L)

D T' D T (5)
G4 4Z6 6x6 G4
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44

r~rz

=u radial displacement

(t! v axial displacement

Figuire A..2 FiIbr-RLeinforced Ayinynuetric Thick Shell
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in which D is the sum of rcgular 3-dimensional elasticity and plas-

ticity matrices and T is related by

0 1 0 0 0 r

1 YT 0 C-4 a a 0 Y,

YL  0 an c2  0 Y9

YrT 0 0 0 c YVZ

YPL 0 0 0 -s

VTL L 0 -2cs 2cs 0

where c cnse s - siT Y

(0)

or a T- (6)

If the element is inclined an angle ofeo from the z axis

(FigA.53), then T must be modified as follows:

o0 0 0

= 0 s c 0 J 0 [1J
L J L0 c -8 _j 0 j TP

or

F R

where

R = !i s .

and
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Ccoo '4 sinf0

11 r ,

as defined in Figure A.5.2.

The modified t then assumes the form,

, Be 0 -B

c318  88LO ca Boa

2M1c -2Ice 0 ec-ec

-2isi WEk a -e8+12S

-2cies -2"ccs 2sc -2cisl

Here T replaces T in (5) for inclined element.

F i oire A.5.3: Coordinate Tra?; foril w Ji l [,i litted Eleiwiel
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APPENDIX A. 6

STIFFNESS MATRIX (SYMMETRIC AND ASYMMETRIC LOADING)

Since tl., stiffness matrix for symmetrical loading is obtained as a

special case of that for asymmetric loading we discuss here the Fourier

harmonically-coupled stiffness matrix. The circumferential variation of

the displacements at any meridional station, s, may be expressed as

( 0 00 (3 0 (J

u(se) - u(u (s) u (s) cos JO + 0 (s) sin JO

(0)

v(sO) - v (s) + v (s) sin je + (a) Cos JO (1)

Jul j"1

W(SO) = W () + W (a) coS JO + (s) sin JO

jai

where the unbarred and barred coefficients are defined as the "A" series

and "B" series, respectively. Note also that the circumferential dis-

placement, v, varies as an odd function, an., therefore, this coefficient

is associated with sin JO (odd function) in "A" series. The "A" series

harmonic number j takes on the positive sign whereas the "B" series har-

monic number j takes on the negative sign.

Similarly, we may write all the midsurface strain components in the

form of Fourier series as follows:

,I
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(es) e + cos je + (Is)°  sin je
a0 a50 a30 9 50

j"l j=1

(,) _. () __= _ ( )
(4e)o" ( ) + sinJO+ (e ) cosJO (2a)

e~ Beo 0Be0 L. Be 0

(e (00)O") + >j(e 9 )( 3Cos JO + 0 % sin JO

Bending Strains are

xs " s  + x cos JO + sin je
j I I = S

Xse Xse + x e  sin JO+ X 8  cos JO (2b)

j=l ju=l

+a = f X cos JO + sin Je

Jl j=t

Substituting "A" series of (1) in (16) of Appendix A.l and setting

these results equal to the "A" series of (2), we obtain ,considering only

linear terms, the following relationships:

For the meridional Utrain,

a 0 (J)

(as) =s U(s)COS jo - WC os je

a. W a co je (3a)

i- a .SoI
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From (2a)} (a) (s) °  coo JO (3b)

From Eqs. (3a) and (3b),

(5)
(3) ()

(e) - a- w (3c)s o as as

Similarly for the shear strain,

co .) co

(t 11 (1) )

1(0 )O o r Ii v sin j )- v sin J6sinO

Jul Jul

+o ( 4) 

(essio = cp.  - P!~ sin je (4a)

s r. re

is%
() () , ( 5) (*

(e so ~ -0 (4s) sin O (4b)

(,CS)

(e ) = - v sinto- j (4c)
se o as r r

Omitting the first two steps for the rest of the strain expressions,

(J) V() U sin) (5)(5) (5) (5)

((4)

(J)°  _ + u sin i + w o -  50 r r r o (5

(J) (,wyi k t)a(~ ~ U -' y + b (6)
s 7 as' as as
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(3) ( j)
- si Qn w + coo

so r as r

- sineco#v +J (7)

(( ) 1X 9 1- w +-cos v - +u sin(P (8)

For dome-ended shells of revolution (r - 0), the strain components

are obtained by taking the limit of the above equations as r approaches

zero.
(J) (J) (4) A( e)

(e) U tim (eo) a (,) o - " (9)

r=O r-'0

(() (a)

(3)

(6) =li + r. -tim sr -si 0 j.

(3) () ,4)

-lim all Of al be - (10)
r-'0 k_ I.(0

as

Note that, at r = 0, we have

6rsin ; -

as s v + u sin (P + v coP

(.0 )o - lt. 0 tim &.
r-'O r-68

r-4 . be as as)
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as + s (11)

X lim - + u (12)r-O \6s

2 Ms sin V w + r cos -sicos@.v +Jr (

X lim X lim

r-O ()

+U( a82 u be (13)

Note that the first derivative liaves the expression still singular for

r - 0 and, therefore, the second derivative is required:

Cs . ) sin

2( imlaryforth "B" seie pa cors pondin pol 8stan -

Xre im Xe im al
so r-10 r-40

r-40

i s how  v w (

Similarly, for he "B" series part, corresponding pole strain dis-

placement relations are obtained by replcing unbarred quntities by

barred quantities and j by -J.

Now, introducing the displacement functions of Appendix A.4 into

these harmonically coupled strain expressions, it is a simple matter

to cbtain W in (6) of Appendix A.5 or in the expression,

( .Q (+) Wi)) Z~V 1a
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oo o o

-j -iS n ~0
r r

in no5 . M m Mal M9
or r r r r r r

0 -(iOqiWN) 0 0 0 0 -2 6s

20t1 thEt OM-2 I mn 2m l 2ner mem (,_go 2 c2n be )

similarly.sr

rrT r rr r r rr--

r r

Comparing this with (2.40) in Section 1 we note that

A,,e- GW (164)

-kr W i (16b)

[ Note that CNm~ ,In the nonlinear membrane strain term can be determined

similarly.

I With (15) and (16) substituted in (2.40 a,b) of Section I and allsi
stescmoet f epne nFore eistelna lsi
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stiffness matrix of the form (2.45) of Section 1 can be derived explicitly,

K W T aT D aTW rdOds

' ( ) (j)
Q 7 W f PbT rd8da (17)

where

1000001
0 110000

0  0100 01

000101[0 0 001 0

I 1-V~ seE9a 1 G 0e'[ I Ye* 0 e -

Here integration along the meridional coordinates can be performed

using Simpson's rule.
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APPENDIX A.7

EQUIVALENT NODAL LOAD VECTORS

We consider arbitrary asymmetric distributed loads of pl(s,),

ps(s,O), and p(s,e) acting on the midaurface of the discrete element

in directions a, 8 and C,' respectively. In matrix form, these loads

are expressed by Fourier series of the form,

( (

.(s,8) -. (i) + p(s) + - (1)
Jlt

where

(s,e) = Ept(ae) , p2(s,e) , p (s,9) T

cosje 0 0

Z 0 sinjP. 0 -

0 0 cobjO

inU0 0

C cosJe 0

L [ 0 sinjJ

Deleting the last row of matrix S in (4), Appendix A.4, we write

3 *8' 6x 3x8 (2)
3l 378 x8 W8x-1 3x8 8W1
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where .is the 3 x 8 normalized interpolation function. The equiva-

lent nodal load vector P, in (2.38a) is derived from (2.20) for

harmonically uncoupled part,

(0) (0)
P4 = f pS)rdgds

or in matrix form

(o) oo (0) (0) (0)
P a . p (a) rd~ds "'CPI Pg , *P

0A
where (0) 1 (O) da)

PI a 21T f 1 p(al Xjrds to f o rdse

J0 0

(o) (0)

Ps - 2nT f Pu0 (a) Xards

P3a * 2rTJ fop3(s) X3 rdS

(0) f (a)
P4  . 2Tr jo p3 (s) ?4rds

:0) r (0): ' 0

PS - 2Tf P&(a) ) rds o JP3 (a) Asrda)
0

(0) C (0)
P -- 2y pa(s) 4 rds

0
P7 a 2 rrJ paNG') A7 rd a

0

(0) r' (o)
P " 2T+ ps (s) Xrds

Whe0

whe .+e



£ £i
X x N " " ' A1s 3 )9 + 2 4 )3

A4 _!)X] xr A

X, 3 2 (1)3 +

For harmonically coupled "A" series p-rt,

(,) 2 T  (,3) 0

SIt! V C rdede

Here the components of P are the same as for P except for 2n re-
(o) (J)placed by n and P% , etc. by p,  , etc. The components for "B" series

part are the same as in "A" series part except for j replaced by -j.
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APPENDIX A.8

CALCULATIONS OF STRAIN AND STRESS

With nodal displacements available as a result of solving equa-

tions of motion or equilibrium we can calculate strains either by the

standard finite element procedure or the finite difference represen-

tation of itraindisplacement relations.

1. STRAINS

1.1 FINITE ELEMENS

Using the notations introduced in Appendix A.4, the mid-surface

normal and shear strains and bending strains are

"E Q 0(
Y uW
6xl 6x8 8:x8 1xl (I)

where C Le. ee •, X 8 %se Y683

and j ie the harmonic number. Also, the engineering strains Y may

be written in the form (see (5) Appendix A.4),

" (G + ) ,. Q . (2)

3x1 3x6 3x6 6x8 8x8 8x1

1.2 FINITE DIFFERENCE PRESENTATION

From harmonically coupled expressions for strains as given in

Appendix A.6 we write the finite difference analogue as follows:
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es be W = "0 2( (3a)

- 1 Er.vat " vm siJfpa - jun (3b)
so r5

S4 = + us sine, + w. cos,. (3)

"(.i) Ci)
(* ,- p5 1  (3d)

((3)

(5) - 2 ( ) **',... () sinhcof.. 3) ,
e " sw,1 " r. + cos~pav - r + Js.u1

(3e)

r. r . r .

where

U, 1t * U. -

L 2

vlI L , vs 2

s3ip+.1 93 *4i+ p 4
w21 L ' L

() ) 94) ".

2 ' L

with a denoting midsurface.

Writing (3) in matrix form, we get
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Y - (4)
6xl 6x8 8xl

and

( G = + Z ) (5)

3x1 3x6 3x6 6x8 8xl

2. STRESSES

The Fourier series representation of stresses is
n n

aa ( + C ( r +a

where C and C are defined in Appendix A.7.

(j) (5)
anda "E , etc.

3. STRESS RESULTANTS

The inplanetress resultants are

h h

N= a dC , 5 - a CdC
h~ h

2 2

h hae =f e ,8 Me h 7 e d

2 2N J -h 2a 0dt M Mh2 4d
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The stress resultants in the C-direction are given by

am in(P sira

-- +- + -- (7a)

r r Mae ba

Once again these equations are expanded into Fourier series for

summation. It is also convenient to write (.7a) in harmonically cou-

pled finite difference form,

ci) (i)
(j) Ms,.I - , sinip r (j) v%_ (M)
Q, - +- ) - ( )- J + ,

9 r 8r. so L (7b)

4. STRESS RESULTANTS THROUGH LAYERS OF COWPOSITES

If the shell thickness consists of n layers of composites we

write (6) in matrix form,

'n fhlgN dC

n h

S= I, a k CdC (8b)

whr dhk-L

where k denotes the t- layer.
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APPENDIX A.9

ELASTOPLASTIC ANALYSIS PROCEDURE

1. GENERAL

The yield criteria and coordinate transformation of plasticity

matrix together with elasticity matrix are discussed in Appendix A.2

and A.5, respectively. The yield criterion to be satisfied is checked

in the local coordinates of the fibers, which requires transformation

of global strains and stresses to those of vhe local coordinates be-

fore the state oi yielding can be determined. In what follows we

discuss procedures involved in static loading. The viscoelastoplastic

analysis for dynamic loading is discussed in Section 2.8.

2. INCREMENTAL LOADING PROCEDURE

As demonstrated in Section 2, the incremental equations of equili-

brium is of the form

(o) (p)

(KNm + KNm )dm = dFN (la)

or

KNN d9" - dF4 (lb)

(o) (p)
in which KN, and K.m are elastic and plastic stiffness matrices,

respectively; and dBN and dF, are incremental displacements and

applied forces. It should be noted that in the above equation only

the static elastoplastic behavior is considered for simplicity.
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The given load is applied in increments as shown in Figure A.9.1.

For convenience one dimensional case is illustrated here. For a typi-

cal incremental load the incremental strain to be reached is shown in

Figure A.9.1(b). Point C is reached through several steps, each step

consisting of solving (lb) with updated plasticity stiffness matrix

KNM which is calculated from plasticity matrix PO1. The above pro-

cedure is referrred to as the tangent stiffness matrix.

An alternate approach is to rewrite (Ib) in the form

(0) (9)

KYN d@" - dFN - 44N dS" (2a)

If the load increment is sufficiently small it is possible to write

(2a) for a load increment step (s) us

(o) ()
Kau dOw(s) - dFe(s) - KmN(s)d@"(s-l) (2b)

This procedure, called initial stiffness method, is illustrated in

Figure A.9.1(c). In this case each iterative cycle is controlled from

initially calculated elastic stiffness matrix. The product of plastic

stiffness matrix and the incremental displacements of the previous step

serve as a pseudo plastic load. Although this procedure is simpler

than the tangent stiffness method, it requires more iterative cycles

before convergence.

The transitional and unloading elements which turn to plastic

from elastic and plastic to elastic, respectively, must be treated

accordingly. For an element whose equivalent yield stress i is less

than the current yield stress E at the end of elastic analysis or
max



B, 4!f:' d

dY Y

(a) One Dimensional Representation of Streas-Strain Curve

do do

LC

B dY B dY

(b) Tangent Stiffness (c) Initial Stiffness

Figure A.9.1: Proc~eduare of Incremental Loadings
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previous increment, it is likely to expect faulty incremental equiva-

lent stress da, larger than actual. It is easy to show, however, that

correct d;. for such transitional element is given by

d -a E(V)dY1  + 0max " a (3)

where
.(p)

dYj " (a + d&j - & max)/(E + E(1 )) (4)

For the next cycle this element is no longer transitional but alas-

toplastic. In this case dyl above is modified to

.(P) . (V)

dY9 [ dV?, + (&~ + dr,1  )/ E 1  5
~( 1)

which is to replace dYj in (3).

For unloading element da becomes negative. In this case we simply

set ]PP equal to zero and only the elastic properties are used in

the next cycle.

Whether tangent or initial stiffness method is used, the proce-

dure begins by scaling displacement and stress in order to create

impending yield (the elastic load limit of the structure under the

given loading pattern). After the elastic limit is found status of

yielding is checked for each element and the plastic stiffness matrix

is developed. The incremental displacements are calculated until

convergence with updated plastic stiffness matrix. The acceptable per-

cent convergence s may be defined as

[ ((56 + Cut)$ + V45 + E 9)3]/V + dul)$]
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An acceptable convergence is considered to have been reached if g is

small, say, e S 5% - 107,. A new load increment is initiated and the

above steps are repeated until application of total load is completed.

3. INTEGRATION THROUGH THICKNESS

(P)
Calculation of plastic stiffness matrix KNM is performed by

summing the integrated plastic matrix D through the thickness of the

shell. It is possible to write

K(~fc D T] wQ dv

Since nWK
fDdCa D (h(K)-bhK.%)

fDCdC - (h( - ))/2KI
and

f C dC D 0 0(K -413/

we obtain h(W) h(,-.%) (h(K)- h(K-.)/21

L iK j~j~ ~ (K) 3 IW rd~dr,

Here h is the thickness, (K) represents the layer number, and R and W

are defined in Appendices A.4 and A.6, respectively.
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APPENDIX A.10

DIRECT NUMERICAL 'TIME INTEGRATION SCHEMES

1 GENERAL

If the dynamical system is linear and has a simple geometry, the

mode superposition method may be used, in which the forced response

for each mode is calculated by way of the Duhamel integral or any equiv-

alent method and the total response is obtained through superposition.

This approach is especially attractive if low frequency bands of exci-

tation dominate the applied loading. Even for a large system, conden-

sation or component modal reduction schemes can reduce the problem to

manageable size without significant lose in accuracy, provided the

applied loading has this low frequency domination.

When high frequency excitation is significant, however, the cou-

pled equations of motion of the system can best be solved by direct

step-by-step integration. However, choice of inadequate integration

operators result in unbounded solution or unstable solution. In the

following, we discuss various integration operators and the solution

stability.

2. FINITE DIFFERENCE OPERATORS AND ERRORS

The basic differential equations of motion are expressed in the

form of recurrence matrix of finite diffarences to solve dynamic re-

aponse of structures based on the following assumptions:

(1) The continuous lapse of time during the motion is divided into

a series of small finite and equal time intervals. Within each time
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interval, the motion of the structural system can be described by an

ordinary linear differential equation of motion.

(2) The force excitation, or the displacement excitation applied

to any part of the structure can be evaluated numerically at any de-

signated time.

Numerical integration techniques fall into three rather broad

categories - explicit, implicit, and predictor-corrector techniques.

1. Explicit method

a. Forward Euler formulas

b. Runge-Kutta formulas

c. Open-end integration formulas (.predictor formulas)

2. Implicit Method

a. Backward Euler formulas

b. Closed-end integration formulas (corrector formulas)

3. Predictor-correction method (mixed axplicit-iFpplicit uethod)

3. PARABOLIC COORDINATE

The choice of the finite-difference equivalents directly governs

the accuracy and performance of the procedure. Consider the equation

of motion,

Introduce a small time invtrval At,

At- ta - ts.1

Writing for a parabolic variation of 9 within the time increment,
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-(t)A[Cf, - 2.t) + (I)

Substituting in the equation of motion

t - 28n + 0 + - (2)

+ M-F(At)* + [2 - M-"K(At)O a - (3)

ux- 1

at At

Figure A.1O.1 Parabolic Variation of Displacement

For free vibration with single degree of freedom

on+% = [2 - k(At)']O - on (4)

Introducing

oi = Apl" (5)

where A is the arbitrary constant to be determined from initial con-

ditions and 0 is a number to be so chosen that (4) is satisfied.

Substituting,
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+ Ik(At)' - 2)APn + AP' & 0

Dividing through by Apn-1

P3 + [;(At)O . 21 + I - 0 (6)

Consider various ranges of At

(1) 0 < At < 2

First investigate At - 42/M - .225(2T)/! so that At -. 225 T

where T = r , natural period of the system. In this case Eq. (6)

becomes

Am + 1 0 (7)

- -+ +-l ti-e+ I (8)

Substituting in (5),

t a t 1' , T
8 =Ae + Be A sin- + B co (O)2 2 (9)

Since tf -

Eq. (9) can be written,

= A' sin 1.11 t + B' cos 1.11 (10)

In this case, the effect of the numerical integration method is to

increase the effective natural frequency from to 1.11lJ without

introducing damping or build-up of the response.
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As At changes from 0 to 2 /f the factor in (10) varies from 1

2"

(2) At

Consider first At = 3/, Eq. (6) becomes

P + 70+ 1-0 (11)

giving

P = -.1459 = -e-1.
925

P - -6.8541 -e1.925

Substituting these into (5),

" A(-1) e 925 + B(-1)" e1.925n

A 'cos n TT sinh 1.925n + B' cos n rT cosh 1.925n (12)

Substituting n - t = t

U, [ EA' snh .642 tj]S + B' cosh .642 tJ'k I co 1.047 t is

(13)

The primary effect of numerical integration methods is to introduce

hyperbolic functions of time in the ar.wer. Since these functions

increase indefinitely with time, the result is divergent.

For all values of the time incremen,: r M , divergent solutions

of the time (13) result.
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4. CUBIC COORDINATE

Writing the acceleration and velocity for a cubic variation of

8 within the time increment,

(14)

lie, - 188 .. + -

Figure A.lO.2 Cubic Variation of Displacement

Substituting into equation of motion

,- -3-) + K9- (15)

or

(2 + M4K 60))8,s M -IFAt' + 50.14 + (16)

For free vibration with a single degree of freedom

[2 + !(At)2]e 3 - 50.- 1 + 40- - 0..3 a 0 (17)

Substituting (5)
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[2 + h AtIJAP 5APa-. + 4APA" - APn -3  0 (18)

Dividing through by Ab '3

k[2 +k(At)] - 5P + 40 -1-0 (19)

In this case, the errors are a small drop in natural frequency, .961

in place of 1 due to the presence of decaying exponentials. In the

limit when At-0, the coefficients 2.32- 0, .0095 -. 0, .961 - 1. The

solution approaches the exact solttion as At approaches zero.

Case (3). To judge the errors for large values of At consider

At - 98k

C= Aell805f +(e"1424t/ )

X(B' sin .183t + C' coo .183t /1)

The errors are a large drop in natural frequency, .183 in place of 1.

As At- - we have coefficients .805, .1424, and .183 -. 0. It is seen

that large errors may result for large values of At, but they will be

always convergent.

5. GENERAL FORMULAS

Consider a time interval At and assume variations of acceleration

to be constant, linear, of a step function, or of any other form. For

example let us take a linear variation,
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+ At

By integration,

' + 0 )- + c

where c€ =  ,. By substituting t I 0

to
2At

By further integration,

ED ti + 3 + Co(20)

where c, G 8-.. By substituting t I 0

.. t .. ta&=-- + ( .6 + &t + o

At t *At we have n+

%,. e~att + + ,T +a t. + I-t
At2t*AA

44 -6'2 +( 6 -

At + (At) +

3 ;-n 6 t~

Newmark suggested the following general form of i,,L and 9,~ by intro-

ducing parameters Y and 0 which characterize, respectively, artificial

damping and patterns of acceleration between the time interval:

+ I -) A t(1
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+ ,At + -)O n(At)l + Pe (At)' (22)

For Y - 0 produces negative damping

> I produces positive damping

2

8t

Ut

Figure A.10.2 Step, Constant, and Linear
Variation of Displaceomnt

It can easily be seen that we must choose Y to avoid artificial

dam ping and j6 0 -. -1, and 0
I 
- correspond to accelersations of con-

4, 6

stant, linear, and step function, respectively.

It is interesting to note that Eq. (21) resembles the truncated

Taylor series expansion with partcular choice of coefficients,

+ i + 'At + - -"+..

Forconstant acceleration, we have

At

iu + 2 Contant, a inea r
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Substituting these into the equation of motion for the time step cor-

responding to n+l,

ItL + K% +4,A t + t2 6 +-T "t &+I F. 1(4

or

4M+At me +-K .+ OAt+ " At$
E7+ an 4 (25)

From this we calculate and 0 subsequently.

6. RATE-DEPENDENT PROBLEM

If viscosity is present the general form of equation of motion

becomes

Me+ C@+KI-F (26)

where C is the viscosity matrix.

Considering a constant accelpration and substituting (22) and

(23) into (26) for the n+l step,

A t

+ .t - At u+ K Q2 + A t + L2f 4 ~ +

or M (27)

where

S t At
R C(8, + -~ 9, + K(8, + At~s + -
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Recursive equations are then (27), (23) and (22) to be solved repeat-

edly for all time increments.

7. QUASI-STATIC PROBLEM

In the absence of inertia force we have the equation of the form,

C + KO F (28)

Either the displacement or displacement rate may be assumed to vary

linearly within a small time increment. Both cases are considered

below.

7.1 LINEAR VARIATION OF DISPLACEMENT RATE

For a given time interval,

For t=At

SAt+ at
2 +

or

Substituting (29) into (28) for the ,+t step

m. 1- i.+ k' 6 -I) -z.I

or
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(C + t K)e-# " - (30)

where

i K( + 9 ) (31)

Here (30) and (29) constitute recursive equations.

7.2 LINEAR VARIATION OF DISPLACEMENT

We consider a linear variation of displacement so that the aver-

age displacement at the mid-interval is

ot " (t, + O)/2 (32)

The displacement rate at the mid-intervals is approximated as

-- @)/At (33)

In view of (32) and (33) and rewriting (28) for the mid-interval '4,

we obtain

29, 20

c:.(- - ) + K On+
At

or

2 2
(i-C + EA +~ G + C

using (32) once again,

2~ 2.2w i m e C + e )(Fa + t a exte (34)

which may be solved repeatedly to any extent of time desired.
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APPENDIX A.11

MASS MATRICES

1. GENERAL

There are two types of mass matrices in use: lumped mass matrix

and consistent mass matrix. The lumped mass matrix is a diagonal

matrix contributed by the tributary area around the node with equiv-

alent mass (weight divided by gravitational acceleration). The

consistent mass matrix is derived in Section 2 and given by (2.39)

in terms of the normalized interpolation function. Although the

lumped mass matrix is simpler we use the consistent mass matrix in

the present study because computer coding does not present any special

difficulty.

2. THIN SHELL

The general form of consistent mass matrix (2.39) is

MNM p#'*lMr(s)deds

or in matrix form

S2T f it(S) .(9)r(s)ds

0
or

M- 2 Tp. L9 (1)
8x8 88 8 8

in which

L - ST S r(s)ds (2)
G8 J 8x4 4 x8
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Here Q and S are given in (5), Appendix A.4 and the integral L

is easily obtained by computer program using Simpson's rule.

3. THICK SHELL

The consistent mass matrix corresponding to a thick. shell

without bending represented by the plane strain element described

in Appendix A.12 can be obtained similarly as in the previous sec-

tion. We have

M- 2-np T i lJlrdgdq (3)

in which* and IJI ire given in Appendix A.12.

Explicit forms are not presented here because the computer cod-

ing by means of Gaussian quadrature is quite simple.

-J
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APPENDIX A.12

THICK SHELL ISOPhRAMETRIC EMW

1. INTERPOIATION FUNCTION

Consider the four-sided element with nodes 1, 2, 3, and 4 charac-

terized by two coordinate systems r-z (cartesian coordinate) and C-i1

(isoparametric coordinate) as shown in Figure A.12.1. The isoparametric

nodal values are either 1 or -1 measured from the origin of C-1I coordi-

nate. It is possible to write

r- a ()

where

R C 1 1 1 )

a a, a a93 a4 ]

Here a,, etc., are constants to he determined writing the nodal values

of X by substituting the nodal values of and T we obtain

r= A a (2)

where r r r r r3 r4

1. -l -l I

1 1 -• -1 l

A"

Aw1
a* " 1
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Substituting the above into the expression for r gives

rr= [ 1 I ) 3"1 1 1 1."r

-r 1 - r

4 -I1-I 1 1 r

1 -1 1 -1 r 4

or

r r (3)

where

1

$3 = .(1+) (1+1)
1

*4 a i(1-9)(+T)

Similarly z can he written

z z (4)

Here * is called the isoparametric interpolation function.

Combining (3) and (4) we can also write

X- M *N X" or X,-*IrXr

In matrix form

X -i - xor X [r]

where * * *41

*5 *3 #

- ri 0 *0 0 *3 0 *4 0Lo *# 0 *s 0 *3 0 4]

-r, rg ra r4 zj z. z, 54

I-[ Z r. Z. rG k, X4 4 3
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44

N V31

ru

Figure A.12.I.: leopararnetric Element
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Here 1, 2, 3, and 4 indicate the node numbers.

It is nov assumed that the displacements u and v are also

related by the same interpolation functions such that

u= i U, V.$V

where

u-u, u* i, U4 1, v-' IvI v8 v3 V4 1

or u - I(1 -q+'T)u + (1 + - q-)u=

+ (1 + + + N + (1-F + qr- ,9)U4 1

G (+s B"9+c COI+ D. ")US (58)
'ml

B -1 C -i D 1
1 1 1

B Il C D "-l

B C 1 D 3 1
3

B -1 D - -4 4

4

Similarly
V. , (1 + B e.+ Ca + Da. 0"j)V (5 b)

Since r is given by

f C(l-.)(l- t+ (l+)(l-'1)r, + (1+p)(k+ )r 3 + (1-p)(.')t 4 ]

or - T + (RA)e + (R,)r+ (Ric) ] .(6)

where

it, (t + t4. r3 +f

RA (-rI + rm + 13 - r'4)

R e (- f' - r, + r 3  + r4)

e (rI- r +1;r)

I .N
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Similarly,

Sk(QT + QA + (I + QCfQ) (7)

where

Q, (21 + s + + 34)

QA- (-zI + Z+ Z3 -Z4)

Q6- (-k, - 5e + '3 + 4)

- (r, - r. +r3 - r4)

Substitution of interpolation functions into the strain-displacement

relations will lead to partial differentiation of these functions. Thus,

bj hr hi bz .
.,-. r+ d .

or

= b br

a j M(8)

JJ L 6 b L Lj'J
This gives *

~r ~ (9)

in which

i& .! - (10)

Here J is called Jacobian matrix. Performing the partial differentia-

tion required in (),
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Vr- (-r, + r.+ r3 -r4) + (r r. + r3 r4 )11 la

Similarly,

b- - r(-z , , + Z4) + (Z1 -I z+ 3 -z)) (11b)

~(-l-ra+r+r4) + (r&-r9+r3-rs)C3

[i (-z%-z+za+Z 4 ) + (ZI-ZN+Za-ZO)

(ld)

6r hz [ (-r I+r I+r 1,-r 4 )(-zl-z9+z3 +Z4 ) +
16

(r I - r8 +r3 -r4 )I- -Z.+I+Z4 ) +

(-r 1+r2+r3 -r 4 )(z, -ZM+z 3 -:4)p +

(r1 -r,+r3 -r 4 )(Z, -Z 2+Z3 - Z4)

And

hr 16 C (-rl-r,+r3 +r,)(-z1+x,+%-z 4 ) +

(-r1 -r,+r3 +r4) (Zl Z,+X3 -Z4 )1)+

(r, - rR+r , - r 4 ) (- z ,+z,+z3 -z 4 )p+

(r I-r +r., -r 4 )(ZI -ZO+2z. _Z4 )

Substituting these into Equation (8) and denoting that r,, r, - ~etc.,

* ~ ~ "I ((r4,z19,-r13 Z4.) + (r 3 4 Z1:,-rjZ 3 4 )F, + (r41z,3-r., 4 )

(12)
Similarly,

A- k[(-v4v,+%v -V4) + (V1.V,+V,-V4)1 (3a

-1- tC(-vv + +(v-V2+V 3-V4)9 3 (13b)
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&V 1 -v,+v,+v3 -v,)(-r, -r+r,+r4,) +

b M 16 (-V 1+V23 v-%4)(r. -r,+r3 -rd)9 +

(V, -V,+vs -v4) (-r, -r3,+r5+r4 )i +

* (VI -VM+v 3 -VG ) (rI -r*+r 8 -r491

.L. ht bg 6 8 r44+V4l'1 5+V3 1*4+V4781) + (14s)

(v , r3 4+V @143+V3 211+V4?1 ) 9 +

(v Ir* 3 +VV41
4 V3 rf 4 +?aN)Tr)@

Lb..Z -6 V+V$+V3-V4)(Z -ZS+23+Z4) +

(-V I +VI+v3 -V4) (X -ZP+X3 -Z4) 9 +

(V' -+V& -v)-z z+15+Zd) + (VI V*+V3 'V4)(ZI -Z3

(V VAVa+V 4)(ZL+ZO+ZaZ4) +

(v1 -VS+v3 -V4 ) (-Z +ZI+% -z.4 +

(-VI v§+V8 4V4 ) (I ZR+Z 4  )Tl+(I +V3 V4) (ZI -98+4 -4

there fore

(V *j , 4+VS.31 +V3 4 S+V4  13 +

(VI Z43+VIX 4+V3Z,+V 411 1 ) +

(VI z4+VII 14+VS Z41,+V4 20 3'~ (14b)

We will make use of equations ( 14a ) and ( 14b ) in evaluatingAV

in term. Of 't,vv 8, v4 and nodal coordinates (r, Z, (r,,Z,) (r3 Z3)

and(r 4 i1a4 ).

ftom equation (.I':) we can write,

mv Lv +m v1a
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and *1
v &Z & mh (15h)

Using equation (14a.) and (14b )

6z 8A 0+vr.+v3 r2 4 v 4r. 1 ) +

(vI r +v, r, +v3 r, I+v4 r,,,) % +

(vI r :4 + r4, + v3 4 4V 32)11 (16.)

and

8A f_ V8ZIz3 +V z4 2 +v4 z13 ) +

(vI z4 3+v 2z. q4+v.l zI 5 +v4z* ) I

(v z3 2 +v. z14+v3 z4 +v4 z 3 ,T) (16b)

1
Denote (2 U

I ,")(r4+r.30". r39]

Mg - f(r,.,+r4 3 +r 4 11)

=, w f)(r. 4+r, I Or 14 1 )

M4 - n)(r 3 ,+r,, +r3 .1)

L r)(z 24+z43 F+z,1)

I - O(Z3 I+Z34 !Zl 4 1)

L ()(Z4a+Z 1 2tiZ 4 1 9I

-" O(513+Zgl k*ZX3

Substituting these into equations (16a) and (16b) yields

• (17a)

L v (17b)
br
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where

tN M - M , N.]

L I 1 L9 L .L4]

and
v, V v 3 V4 ]

Equations (1-17,a) and (1-Lb) can also be written as

I r (A%+Br +C,.i)Vn (1a)

hy 4" rfl (A f+Bt 9 CsO)vU (18b)

where

Ar= r4 -r, Br = ra-r,, Cra r,-r 3

Ar.,= r1-r3  Br = r4-A Cr. -r

ArI = r-r 4  Br3  - r-r, Cr. r,- r4

Ar4 = r1-r, Br4 =r1-r. Cr4  r-r s

and
Az -z Bz1 a z4 Z3  Cz1 a Z.;.z

Az, * z3 -z I  Bza - z3 -z4  Cz aZ -Z4

Az3 - Nz-z- B 3 MZ z 2 C3 Z

Az4 W z1 -z 3  Bz4 W z2-z I  Cz4 a za-z3

Similarly,

& - 10 (A.,+BP.,+4C,)u(1

br (9a)

W - f ( +, , +C, )U (19b)

Using equations ( 18a,l), (19*,.b),(5a..) and ( 5b ) the following

relations can be obtained:



144

6V b4 44
rp Ar +(Arm +BrA )p+(ArvCr+CgA

Z IF I awl u r Z r n r ru:uT1

Or sCr "+CmB 2 ) r + B B 3 + C 3  C T V v

Mv buv 4 4

bz br w r, ',l A A* 2 0 + (A 3*I+Br. 0 FA~,) + (A C + CA)T +

(Croci. + BC )q + BrsBxnw' + CsC1 z1p'lV~oV

4 4
Xv &! 1% E ?f (A2 B + B A ) 0 (As Cr +Ar nC a +

br bz vW% .I i to n soE 33 ?n fl

(B.%Ct+ CSBBra)r + BSMBPONG + C2*Crnq 21Vaun

IV -iF Arm )BsAu + (CO+ANCD +

hz ~ 4 oun-

(cBC +BCB +A,*D )r + B2*Ba + CroCu 18 + BrMDR er4C 1O~ TI3Vu

CrDVIU] u.

bvu 4 4 0(s+(sB + A C +
- F+ wC E+C + 'B- C its+o ar~~~w awl ~ 3 2 1~

CBnn+DAmB ek+BBV+CC 1B,+DB71,+ jDn kCvOnsas

Lm.44 f ( Bz 3 4-r~' um mii n~ , r3~ + CmA,+C-.u,

am~nwI

(BIRCr +CvmBr +DoAr a W9+ Be Bru 1 + C Cr + DBraej
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4 4
E (I , + (B. +B, )F + (C. +C,.)q + (D. +D, B r, +Ca 2 ) +

BO Ba F+C Ca + (Sm.Da +Dm U, )B I + (Cm Du + ,,C, )MD.. D, 'I

2. STRAIN ENERGY AND ELEMENT STIFFNESS MATRIX

Strains in the element are given by

YZ b

bu
r

y

Ye  u/r

bu bv

zr ?w+T

Element stress strain relationship can be written as

a z D11 'D12 D13 0 yk

r D2 1 D22  D2 3 0 r

U0  D3 1 D3 2 D3 3 0 yo

0 0 0 D Y
rz 44 rz

i.. which

D11 = CE, (EL-ET L)

D12 a CET(ELVTT+ETvTV)

D13 = D23 - CEELVTL(1+VT)

D 2 CE (E -E, VL)

D33 " Ce(I-v,)

D44 - G*

C a CE,(l-v4,) - 2EvBL(l+vl,)]J 1
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Strain energy in the element is given by

U -1 f YTOriV

(ff a +,.Of + v v-T + Y
0 f f rz r Qj zrzr)dv

, 0ffVD1  12yr + D 13y0 + Yr (D21Vz+D22 Yr+D23Vq)

+ Y (D Y +D V +D3 Y4-Y (D 4 Y) rdqdrdz

(D .W1h + z 3 r z 44'rz1h

~V~ bV bJ u
(2?r~ ~~ f-(l V6 + - +D - +

214?~ hr + D22 z~r 23 )] hrd~d (2r

FAV1 Bv +B A ! v( C +A!T (BC +C Bd ()

1 1

G*~ ffa fAA,+(A ,.B2 ~+~AZ

-1 -1 + B % r 2 r M pln ) r ~ d

1 1
G. Iff [ fAzA n+(A B. +BA B)7 +(A 2 C+CAr$

-1 -1

%C3RB2*+B23 C3*)7'T+ B23 B2 ~ + CSOCT1 ]r drjdP

Lo *1 A2§Arf+ A,,B,,+BA,)g+(AC rf+A C.)n +
jj 8 z Aar mr ~*.

(BIsc h~z BrR)+ B,*RB rF,+ C aC r Is2 )r d: dF,



147

11

p a ffl2f Ar+(Br+A,.B" )g +(Cr+ArC 1  )Tt+ (CmBa +BrCe +AWUDf) I

-1 -1 ff 32+ B mB + cmc n To+ B mD" FA :e, ' d

11

Q81 uff2 fAz1 + (AZNB. +B. ) + (AzC . +Czn )P +(BssCn +CS5 B +SND +

BZmB " e+ Cs n C n 18+ BsDe 1 + C§D, i djd

11

a aff3 [Ar + (B,.+B, Ars)+(Cs A, n) +(B.Cn+Cm B,., A.)i +

B, Bra+C m Cr al +D, BrnT+ Dm C1. aTldTdg F P

1-1 (~.i/1 A, m+ (B, +B m As a ) + (C A z +C z a) + (B. a CS+C. 0 Bt+Dlw, A?.)

+ Bel Bz,2 + C, Cz2 ,l'+ Do B, Q g + Dm C. U2)djd :Q

~11I

Tm fy f1+ (Bi ,B ) +(C 3 +C" )1+(D +D +B, C +C, B,) +

BmB P + C C, . + (Bm D. +D, B3 )a "

(C, +DmCa ) A + Do D F'11 tJjdijd.

These integrals to appear in (20) are evaluated by using six point

Gaussian quadrature. With the notations above we can rewrite (18) in

the form,

4 4
'vv+D Cv uu+D GUV

y(2TT) r DIm v I Gm v u.s a Vu'D+Au"
mma, fD 1 1 Fm 3 v 12 an v a" 21 mm*

+ D2 2 Iaum uU+D 2 3Qsnumuu+D 3 1ppmur'v5+D 3 2 um U mum

+ D T u u +D(1 V+L, u'V+ a u

33mfm anan44 on *11 a mnma0))

or
U 4 4

U = (2r) , E fAalvmvR+B v au +CaUuavR+E muaUOj

2 mt~
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or

4 4

U -~(21T) tvu. E*i, [I u

tCmS ESaJ ru
The stiffness matrix K is identified as

where (21)
Ann = DlI1F. +D44I U

Bee M D1 2G*n+Dl3P +D44 La.

Can = D2 1 Gn,+D 3 1PRI+D4 4 Ln.

E* = D2 2 Is +D2 3Q +D32 Qn +D3 3T +D 4 4fon

The stiffness matrix obtained from Eq. (21) is 'of the form,

1  v v u3 4

A11  A12  A13  A 4 B11 B2 BI B4 11

A21  A2 2  A2 3  A2 4  "B2 1  B2 2  B21 B24  v2

A 1 A32  A33 A34  "31 B32 B3  SB4  v,

A4 1  A4 2  A4 3  A44  B4 1  B4 2  B4 3  B4 4  v4

K -. .-. .. -..-.-.-..... . . . ... . .. .. .. . . .. ..

C1 1  C1 2  C1 3  C14  Ell E2 E3 E 14 u,

C2 1  C22 C23 C24  E21 E22 E2 3  E24  u2

C3 1  C32  C3 3  C34  E3 1  E32  E3 3  E34 u3

C4 1  C4 2  C4 3  C4 4  E4 1  E4 2  E4 3  E4 4  u4

Elements of stiffness matrix thus obtained ., should be rearranged

so that they .conform to the applied force vector (or computed dis-

placement vector).

N,
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3. FORCE VECTOR DUE TO BODY FORCES

Let ps be the density of body of element. The force vector due

to dead load is given by

F,' 2Tff *4RrjJjrdjd
1-

or t 1 J

F- 2nj f~Jrd

where * 4 0
1 t 0 1t 0 3  0 #4

10 t* 0 s 0 #3 0 01

P Co A" ]

The components of force vector become

F - CO F12  0 Fa2  0 F31 0 F4 2 IT

in which
~~Ft- -2npz (l- .- Q,+tl) r [Jjjdljdt

f 1

Fax = -2nPszff (l+q+ 1j)rjJjdq1d
-l -l

F4 z n -2rr p, f (l-t+j-.1.)rIJdjdt

4. STRESSES AT ELEMENT CENTROID

From earlier developments of strain-displacement relations it is

possible to write
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or (Ara + Brag + Cra,1)v,

(Asa + B2 a1  + Csn1)ua

4C.(I + B, 9 + C. 11 + Do eT})u,

Ara + Brag + Crn'n)un + (As+ Stu + Csnl1)v,

in which all notations are defined earlier.

If stresses are sought at the centroid of an element we have

= * =0. Therefore,

Ara VW

4 Asa u n
Xe-E 01

I-u
40r a

LAr's UsI + Asa Vit

The stresses at the centroid are then obtained from the standard

stress-strain relations.
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APPENDIX B

COMPUTER PROCRAMS

There are six independent computer programs in the present report:

(1) SP1 - This program performs static elastoplastic analysis for

a fiber-reinforced thin shell.

(2) SVP1 - This program performs static visroelastoplastic analysis

for a fiber-reinforced thin shell.

(3) DVP1 - This program performs dynamic viscoelastoplastic analysis

for a fiber-reinfcrced thin shell. Dynamic elastoplastic analy-

sis is obtained as a special case.

(4) SP2 - This program performs static elastoplastic-analysis for

a fiber-reinforced thick shell.

(5) SVP2 - This program performs static viscoelastoplastic analysis

for a fiber-reinforced thick shell.

(6) DVP2 - This program performs dynamic viscoelastoplastic analysis

for a fiber-reinforced thick shell. Dynamic elastoplastic analy-

sis is obtained as a special case. This program is also capable

of analyzing a body composed of several monolithic and composite

materials.

It should be noted that all of these 6 programs can handle isotropic ma-

terials and linear elastic behavior as special cases.

A summary of the basic theories used and various features available

in the programs is given below:
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1. Thin Shell

a. Novozhilov's linear thin shell theory is used.

b. Curved finite element is used. Interpolation functions are

, based on linear variations of meridional and tangential dis-

placement and cubic variation of transverse displacement.

c. Modified Hill's anisotropic yield parameters are derived and

specialized for layers of angle or cross plys.

d. Internal or hidden variables are used for viscous effects.

e. Solution of governing equations is based on incremental approach

with increments in loading for time-independent problems and

increments in time for time dependent problems.

2. Thick Shell

a. Three dimensional theory for strain-displacement is used and

specialized for axisymmetric deformations.

b. Plane strain isoparametric finite element is used with linear

variation of radial and axial displacements.

c. Treatment of inelastic and viscous properties and solution

procedures are the same as in a thin shell.

Descriptions of each program including subroutine organization chart,

subroutine descriptions, flow chart, and data input format are given in

the following subappendices.



153

APPENDIX B.1.1

SF1 -SUBROUTINE ORGANIZATION CHART

=COND

PLASTC -A-ml

-- L =OLTN

S TRESS
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APPENDIX B.1.2

SP1 - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE
NA14E DESCRIPTION

ASSEMB Assembles stiffness matrix and force vector in a single sub-
scripted array with boundary conditions imposed.

BCOND Reads boundary conditions and initializes the row-column
indices for assembling.

DISPL Calls FACTOR and SOLTN, and writes nodal forces and displace-
ments.

DLOAD Computes the. equivalen* nodal forces.

ELIMIT Computes and writes the elastic limit displacements, elastic

limit stresses, and elastic limit load.

ELSTIF Forms elastic stiffness matrix.

FACTOR Solves given simultaneous equations in a single subscripted
SOLTN array.

GMTRY Calculates, for each element, the geometrical quantities
necessary for Simpson's integration along the line element.

MATRL Reads all material properties and constructs transformation
matrices and local and global elasticity matrices.

PLASTC Performs incremental clastoplastic analysis.

PLASTI Performs Simpson's integration with given stress-strain rela-
tions to form the element stiffness matrix.

RITEXK Writes non-zero elements of the lower half of the global
stiffness matrix with row number.

SPEEDY Performs matrix multiplication.

STRESS Computes strains and stresses.

ZERO Zeroes out the given matrix.

ZRDISP Transforms displacements into Z-R coordinate system and

writes.
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APPENDIX B.1.3

SPI - FLOW CHART
4

Read and Write input data

Read boundary conditions and
form stiffness matrix indices

Read and Write material properties

Construct local and global D, transformation matrices,
and anistropic parameters

-] 'DO K 1 1, NELEM5

C ompute geometric properties

Consruc elaticstiffness matrix

d:: Assemble in global form
imposing boundary conditions

Save the elastic global stiffness
matrix on drum file No. 11

Write the global force vector

and compute . .displacements
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FCompute global and local stresses, and writ

yen NINCR * 0

0

STOP Compufe:

(1) elastic limit stress ()
(2) elastic limit displace-

ment (1-o)
(3) incremental load-

parameter DLOFC

(4) incremental load (dP)

Let FTOT = XL

XL = / a max

DLOFC XL/DELL

'] r , -O/DELL; z - , a-

DO NI 1, NINCR

FTOT = FTOT + DLOFC
where FTOT is the load parameter

L:KOUN KOUNT + 1

rRead K(O from unit 111

CA
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lin. hc yielding

D* 0 Develop D*
I(~'~ Dvelop I(

S olve foI~

deB dO

YAL~~~( - f- Chck dqv)one
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V 44M
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APPENDIX B.1.4

SP1 - DATA INPUT FORMAT

Card 1: FORMAT (20A4)

TITLE (I) Title of the problem

Card 2: FORMAT (1015, 3F10.4)

(1) NELEMS - No. of elements

(2) NNODES - No. of nodes

(3) NET - No. of stations for Simpson's integration

Suggested values of NET

Oa- NET

0 30 15

30 50 19

50 90 23

9 -0 140 29

The program assumes NET = 15, if NET 0

(4) HECH - Signal for distributed load

0, if a force vector for distributed loads is not wanted

1, if a force vector for distributed loads is wanted

(5) NDITO - Signal for uniform or irregular distributed load

0, uniform pressure

1, pressure varies meridionally

(6) NINCR - No. of load increment desired

Set NINCR = DELL if two times the elastic limit load

is to be applied.
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Suggested values of NINCR and DELL

NINCR = 40 - 100
if NC'Y = 0

DELL = 40-- 100

NINCR = 20 - 50
if NCY 3

DELL - 20 - 50

NINCR = 0 for elastic analysis

(7) NLA - No. of layers for angle or cross plys

(8) NBC - No. of nodes with boundary condition(s)

(9) NCY - No. of iterations within a load increment

(10) NCON - No. of node(s) with concentrated load(s)

(11) DELL - Fraction of elastic limit load to be applied for each

load increment.

(12) PER - Percent error allowed for convergence in elastoplastic

analysis. Suggested value: 5 - 10

(13) PCTARC- Fraction of arc length ignored at a pole.

Suggested value: .01

Cards 3: FORMAT (3X, 2E12.6)

(1) Z(N) - Z - coordinate value

(2) R(N) - R - coordinate value

Note: Provide one card for each node in the order of node number.

The node number may be recorded in 3X spaces.

Cards 4: FORMAT (213, 4E12.6)

(1) NODE1 - first node of the element

(2) NODE2 - second node of the element

(3) PH1l - k

(4) PH12 -

(5) H1 - thickness at NODEl
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(6) H2 - thickness at NODE2

Note: Repeat NELENS times in the order of element number.

The sign convention for 0 is shown below

r

z

Card(s) 5: FORMAT (515)

(1) NOD - node number with boundary condition(s)

[, if meridional displacement is not allowed
(2) NDIR(l) i f[, if fibe

(1, if circumferential displacement is not allowed(3) NDIR(2) L
(O, if free

( , if normal displacement is not allowed
[,0 if free

fj if the rotation of the normal is not allowed
(5) NDIR(4) if free

Note: Repeat NBC times.

Card 6: FORMAT (15)

I, if fiber angles are same for every element
Ll, if not

Card 7: FORMAT (8F10.O)

SIGS(I) - Yidld stress in the direction of the normal to fiber for

each layer.
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Card 8: FORMAT (8F10.0)

SIGT(I) - Yield stress in fiber direction for each layer.

Card 9: FORMAT (8F10.O)

SIG4(I) - Yield stress in 450 from fiber direction for each layer.

Card 10: FORMAT (8F10.0)

TAUT(1) - Yield stress in shear for each layer

Card 11: FORMAT (8F10.0)

EPX(I) - Elastic modulus normal to fiber for each layer

Card 12: FORMAT (8F10.0)

EPY(I) - Elastic modulus in fiber direction for each layer

Note: EPX(I) = EPY(I) for isotropic case

Card 13: FORMAT (8F10.0)

GP(I) - Elastic shear modulus for each layer

Card 14: FORMAT (8FI0.0)

WU(I) - Poisson's ratio (normal to fiber) for each layer

Card 15: FORMAT (8F10.0)

YiU(I) - Poisson's ratio (in fiber direction) for each layer

Note: XNU(I) = YNU(I) for isotropic case

Card 16: FORMAT (8FI0.O)

EPX(I) - Plastic modulus normal to fiber for each layer

Card 17: FORMAT (8F10.O)

EPY(I) - Plastic modulus in fiber direction for each layer

Card 18: FORMAT (8FI0.0)

EP4(I) - Plastic modulus in 450 from fiber direction for each

layer



Card 19: FORMAT (SF10.0)

GP(I) - Plastic shear modulus for each layer

Card(s) 20: FORMAT (8FI0.0)

ALPHA(I) - fiber angles for each layer measured from horizontal

line.

Note: Repeat Card~s) 20 NELEMS times in the order of

element number if IANG 4 0.

Card(s) 21: FORMAT (6ElO.O)

(1) PPl(l) - distributed pressure in direction 1 at node 1

(2) PP2(l) - distributed pressure in direction 2 at node 1

(3) PP3(l) - distributed pressure in direction 3 at node 1

(4) PPI(2) - distributed pressure in direction 1 at node 2

(5) PP2(2) - distributed pressure in direction 2 at node 2

(6) PP3(3) - distributed pressure in direction 3 at node 2

Note: Repeat NELEMS times in the order of element

number if NDITO = I

Card(s) 22: FORMAT (15, 4E15.6)

(1) NOD - node number

(2) CL(l) - concentrated force in direction 1

(3) CL(2) - concentrated force in direction 2

(4) CL(3) - concentrated force in direction 3

(5) CL(4) - concentrated force in direction 4

Note: Repeat NCON times.

Omit if NCON = 0.
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APPENDIX B.2.1

SVPI - SUBROUTINE ORGANIZATION CHART

CMAT MASTI

SPEEDY

SPEEDY

-IFORV

P LASVT PAT

XKI
FORRI
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APPENDIX B.2.2

SVPI' - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION

ABG (r) (a.) Cr)
ABC Calculates viscous constants A, B, C.

ASBLYV Assembles in global form.

BCONDY Imposes boundary condition(s).

CMAT Forms the viscosity matrix.

DWOAD Computes the equivalent nodal forces.

ELSTIF Reads the material properties and forms the elastic stiff-

ness matrix.

FORV Performs integration for viscous force vector.

GMETRY Calculates, for each element, the geometrical quantities
necessary for Simpson's integration along the line element.

INIT Reads the viscous property and forms submatrices for vis-
cosity matrix.

OUTDIS Writes the displacements.

OUTSTR Writes the stresses and the equivalent stresses.

PLASTI Performs the Simpson's integration to form stiffness or
viscosity matrix.

PIASV1 Develops plastic stiffness matrix.

PLASV2 Develops plastic stiffness matrix.

SPEEDY Performs matrix multiplication.

STAN Calculates viscous and elastic stresses, checks yielding.

STRAVP Calculates incremental viscous and plastic stresses, in-
cremental equivalent stresses, and per cent error.

VISCP Performs step by step integration.

4,
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APPENDIX B.2.2 (Cont.)

SUBROUTINE
NAME DESCRIPTION

XKINVS Inverts a given symmetric matrix.

ZERO Zeroes out a given matrix.

ZRDISP Transforms the displacements into the Z-R coordinate
system and writes.



166

APPENDIX B.2 .3

SVPI - FLOW CHART

Develop M, J, K (I) and initializei1the anisorepic parameters of plasticity[

Perform viscoelastic tfllyois .
until yielding occurs

[- Begin incremental procedure

Initialize da, - Et " at-1

6max yield

da 0Begin new increment of time,
d~ dNo - .. .. Yes

_ Cfieck yieldlng

[Substitute K (11) into: cqn, "of7

equiii,.and solve for 00

d o
From ti -calc4ulat -Y

From this calculate dYi ,ds

,0,

i
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APPENDIX B.2.3 (continued)

+t- da1
* -o

Calculate D

da(Ep) a [ + A~dY

Calculate d(,)

L dLa(Fp) + av

Co lculate Z ,

d5 w ZTda1
~4

Yes

at - + 0
t + da

e- 94_ + j

4 0~ + d0

If yielded, update the
aniaotropic parameters of plasticity

and set amax 5 t-I + d 2

I

I

• • • • • m
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APPENDIX B.2.4

SVP1 - DATA INPUT FORMAT

Card 1: FORMAT (20AA)

TITLE(I) Title of the Problem

Card 2: FORMAT (1015, 3F10.4)

(1) NELEMS - No. of elements

(2) NNODES - No. of nodes

(3) NET - No. of stations for Simpson's integration

Suggested y ,ue of NET:

'Pe- 'p NET

0 - 30 15

30 .50 19

50 .. 90 23

90 150 29

The program assumes NET - 15, if NET - 0.

(4) MECH - Signal for distributed load

0, if a force vector for distributed load is not

wanted.

1, if a force vector for distributed load is wanted.

(5) NDITO - Signal for uniform of irregular distributed load

0, uniform pressure

1, pressure varies meridionally

(6) NDELT - No. of time steps desired.

(7) NIA - No. of layers for angle or cross plys.

(8) NBC - No. of boundary condition(s).

. ... .. . . ,.., ,,.-,- ==. in_ _'_=,
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(9) NCY - No. of iterations within a time step.

(10) NCON - No. of node(s) with concentrated load(s).

(11) PER - Percent error allowed for convergence in plastic

analysis.

Suggested value: PER 5 -10

(12) PCTARC - Fraction of arc length ignored at a pole.

Suggested value: 0.01

The program assumes PCTARC - 0.01, if PCTARC " 0.

Card 3: FORMAT (415)

(1) IS(l) - 1, if elastic analysis is wanted.

0, if plastic analysis is wanted

(2) IS(2) - 1, if nonviscous analysis is wanted

- 0, if viscous analysis is wanted

(3) IS(3) - Print signal

Print displacements and stresses at every IS(3)th

step.

T;e program assumes IS(3) " 5, if IS(3) " 0.

(4) IS(4) - Transformation sigdial.

Transform the displacements into the Z-R coordi-

thnate system and print for every 1S(4)- step.

The program assumes IS(4) - NDELT, if IS(4) - 0.

Card 4: FORMAT (3X, E12.6)

DELT - Size of the time step in seconds (At).

Cards 5: FORMAT (3X, 2E12.6)

(1) Z(N) - Z - coordinate value.

(2) R(N) - R - coordinate value.

(2) R(N) - R -coordinate value.
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Note: Provide one card for each node in the order of node

number. The node number may be recorded in 3X spaces,

Cards 6: FORMAT (213, 4E12.6)

(1) NODE1 - First node of the element

(2) NODE2 - Second node of the element

(3) P H11 -

(4) PH12 -T

(5) Hi - Thickness at NODE1

(6) H2 - Thickness at NODE2

Note: Repeat NELEMS times in the order of element number.

The sign convention for cP is shown below.

Zr

Card(s) 7: FORMAT (6E10.0)

(1) PPl(1) - Disributed pressure in direction I at node 1.

(2) PP2(l) - Distributed pressure in direction 2 at node 1.

(3) PP3(1) - Distributed pressure in direction 3 at node 1.

(4) PPI(2) - Distributed pressure in direction 1 at node 2.

(5) PP2(2) - Distributed pressure indirection 2 at node 2.

(6) PP3(3) - Distributed pressure in direction 3 at node 2.

I ii iiC imm
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No .: Repeat NELEMS times in the order of element number if

NDITO - 1.

Card(s) 81 FORMAT (15, 4E15.6)

(1) NOD - Node number

(2) CL(l) - Concentrated force in direction I.

(3) CL(2) - Concantrated force in direction 2.

(4) CL(3) - Con--ntrated force in direction 3.

(5) CL(4) - Conc-entrated force in direction 4.

Note: R'npeat NCON times.

Omit if NCON = 0.

Card(s) 9: rORMAT (215)

(1) NOD - Node number with boundary condition(s).

(2) NDEGF - Th3 cj)rdinatc number of whicn freedom is re-

strained.

Note: Repeat NBC times.

Card 10: FORMAT (8F1O.0)

SIGS(I) - Yield stress in the direction of the normal to fiber

for each layer.

Card 11: FORMAT (8F10.0)

S GT(M) - Yield stress i fiber direct, ,. for each layer.

Card 12: FORMAT (8F10.O)

SIA4(I) - Yield stress in 450 from fiber directiot, for each laye,.

Card 13: FORMAT (8FI0.0)

TAUT(l) - Yield stress in shear for each layer.

Catd 14: FORMAT (8F10.u)

EPX1) - Ilasttc modulus normal to fiber for each Layer.
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Cari 15: FORMAT(8FIO.O)

EPY(I) - Elastic modulus in fiber direction for each layer.

Ncte: EPX(I) - EPY(I) for isotropic case.

Card 16: FORMAT (8FlO.O)

GP(I) - Elastic shear modulus for each layer.

Card 17: FORMAT (8FlO.O)

XNU(I) - Poisson's ratio (normal to fiber) for each layer.

Card 18: FORMAT (8F10.O)

YNU(I) - Poisson's ratio (in fiber direction) for each layer.

Note: XNU(I) - YNU(I) for isotropic case.

Card 19: FORMAT (8FI0.O)

EPX(I) - Plastic modulus normal to fiber for each layer.

Card 20: FORMAT (8F10.O)

EPY(I) - Plastic modulus in fiber direction for each isyer.

Card 21: FORMAT (8F10.O)

EPr(I) - Plastic modulus in 450 from fiber direction for each

layer.

Card 22: FORMAT (8F10.0)

GP(I) - Plastic shear modulus for each layer.

Card 23: FORMAT (8F10.O)

ALPHA(I) - Fiber angles for each layer measured from horizontal

line.

Note: Repeat NELEMS times.

Card 24: FORMAT (8FIC.O)

(1) - Relaxation time in fiber direction.

(2) TT - Relaxation time in the direction of normal to fiber.
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(3) DSL - EPY(I) (see Card 15)

(4) DST - EPX(I) (see Card 14)

Note: Not required if IS(2) 0.
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APPENDIX B.3.1

DYP1 StMROUTT.NE- OROMkI17ATIO, CUPZT

=ZERO

AB L

ELSFESPEEDY
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APPENDIX B.3.2

DVP1 - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION

1r)(rr)lr)
ABG Calculates viscous constants As Bo C.

ASBKTV Assembles in global form.

BCONDY Imposes boundary condition(s).

CMAT Forms the viscosity matrix.

DLOAD Computes the equivalent nodal forces

ELSTIF Reads the material properties and forms the elastic stiff-
ness matrix.

FORV Perfoims integration for viscous force vector.

QMETRY Calculates, for each element, the geometrical quantities
necessary for Simpson's integration along the line ele-
ment.

INIT Re~ds the viscous property and forms submatrices for
viscosity matrix.

MASS Forms, for each element, the consistent mass matrix.

OUTDIS Writes the displacements.

OUTSTR Writes the stresses and the equivalent stre ese.

PIASTI Performs Simpson's integration to form stiffness or
viscousity matrix.

PLASVI Develops plastic stiffness matrix..

PLASV2 Develops plastic stiffness matrix.

SPEEDY Performs matrix multiplication.

STAN Calculates viscous and elastic stresses, checks yielding.

STRAUP Calculates incremental viscous and plastic stresses,
incremental equivalent stresses, and per cent error.

VISCP Performs step-by-step integration.
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APPENDIX B.3.2 (cont.)

DVPI - DESCRIPTIONS OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION

XKINVS Inverts a given symmetric matrix.

ZERO Zeroes out a given matrix.

ZRDISP Transforms the displacements into the Z-R coordinate
system and writes.

I
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APPENDIX B.3.3

DVPI -FLOW CHART1

Performv viscoelastic dynamic analysis
until yielding occurs

Begn increm~ental procedure ~

Moitioniz ad aov o ~

d6a - .0

t-1 max

2t I

From this calculate dy1 61
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APPENDIX B.3.3 (continued)

0C
- + +

Calculate D

da(E,) - ED+ )dY1

Calculate dz(,)

dot - d(Ep) + dZ(,)

Calculate Z |

No ,Checkconvergence of d&t nd

Yes

ato 4- + da

Zt -, Zt l + d" a -1 + d~j

"a - + dE)

If yielded, update the
anisotropic parameters of plasticity

and sct 5 ( t + d52max t- 1
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APPENDIX B.3.4

DVPI - DATA INPUT FORMAT

Card 1: FORMAT (20A4)

TITLE(I) Title of the problem

Card 2: FORMAT (1015,3F10.4)

(1) NELEMS - No. of elements

(2) NNODES - No.,of nodes

(3) NET - No. of stations for Simpson's integretion

Suggested value of NET

cpa -NET

0 30  15

30 5 19

50 - go 23

90 150 29

The program assumes NET - 15, if NET 0.

(4) MEaH - Signal for distributed load

0, if a force vector for distributed load is not
wanted.

1, if a force vector for distributed load is wanted.

(5) NDITO - Signal for uniform of ircegular distributed load

0, uniform pressure

1, pressure varies meridionally

(6) NDELT - No. of time steps desired

(7) NLA - No. of layers for angle or cross plys

(8) NBC - No. of boundary condition(s)
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(9) NCY - No. of Iterations within a time step

(10) NCON - No. of node(s) with concentrated load(s)

(11) PER - Percent error allowed for convergence in plastic

analysis

Suggested value PER 5 10 I
(12) PCTARC - Fraction of arc length ignored at a pole

Suggested value: 0.01

The program assumes PCTARC 0.01, if PCTARC 0.

Card 3: FORMAT (415)

(1) IS(l) - 1, if elastic analysis is wanted

0, if plastic analysis is wanted

(2) IS(2) - 1, if nonviscou& analysis is wanted

0, if viscous analysis is wanted

(3) IS(3) - Print signal

Print displacements and stresses at every 1S(3) -

time step.

The program assumes IS(3) - 5, if IS(3) * 0

(4) IS(4) Transformation signal

Transform the displacements into the z-R coordinate

system and print for every IS(4 ) step.

The program assumes IS(4) N NDELT, If IS(4) - 0.

Card 4: FOMJAT(3X,2E12.6)

(1) RHO - Average density of the material to compute the mass

matrix in lbs/ins

(2) DELT - Size of the time step in second@ (At)

Note: At T 10-6 sec. for metals.

i , • s • •m s • •• • • • • a
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Cards 5: FORMAT (3X,2F12.6)

(1) Z(N) - Z - coordinate value

(2) R(N) - R - coordinate value

Note: Provide one card for each node in the order of node number.

The node number may be recorded in 3X spaces.

Cards 6: FORMAT (213, 4E12.6)

(1) NODE1 - First node of the element

(2) NODE2 - Second node of the element

(3) P1un -cp1,

(4) PH12 - T

(5) HI - Thickness ot NODEl

(6) H2 - Thickness at NODE2

Note: Repeat NELEMS timer in the order of element number.

The sign convention for T is shown below.

Card(s) 7: FORUT (6110.0)

(1) PPI(l) - Distributed pressure in direction 1 at node 1

(2) P72(l) - Distributed pressure in direction 2 at node 1

(3) PP3(l) - Distributed pressure in direction 3 at node 1

(4) PP1(2) - Distributed pressure in direction 1 at node 2

(s
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(5) PP2(2) - Distributed pressure in direction 2 at node 2

(6) PP3(3) - Distributed pressure in direction 3 at node 2

Note: Repeat NELEMS times in the order of element

number if NDITO- 1.

Card(s) 8: FORMAT (15, 4115.6)

(1) NOD - Node number

(2) CL(1) - Concentrated force in direction 1

(3) CL(2) - Concentrated force in direction 2

(4) CL(3 - Concentrated force in direction 3

(5) CL(4) - Concentrated force in direction 4

Note: Repeat NOON times.

Omit if NCON - 0.

Card(s) 9: FORMAT (215)

(1) NOD - Node number with boundary condition(s)

(2) NDBGF - The coordinate number of which freedom is restrained.

Note: Repeat NBC times.

Card 10: FORMAT (8FI0.O)

SIGS(I) - Yield stress in the direction of the normal to

fiber for each layer.

Card 11: FORMAT (8F7O.O)

SIGT(I) - Yield stress in fiber direction for each layer.

Card 12: FORMAT (8FI0.0)

SIG4(t) - Yield stress in 450 from fiber direction for each

layer

Card 13: FONIAr (8FI0.0)

TAUT(I) - Yield stress in shear for each layer



183

Card 14: FO3MUk (8F10.O)

EPX(I) - Elastic modulus normal to fiber for each layer -j
Card 15: FORMAT (8F1O.O)

EPY(I) - Elastic modulus in fiber direction for each layer

Note: FPX(I) - EPY(I) for isotropic case

Card 16: FORMAT (8F10.0)

GP(I) - Elastic shear modulus for each layer

Card 17: FORMAT (SF10.0)

XNU(I) - Poisson's ratio (normal to fiber) for each layer

Card 18: FORMAT (8F10.0)

YIN(1) - Poisson's ratio (in fiber direction) for each layer

Note: XKU(I) w YNU(I) for isotropic cast

Card 19*. FORMAT (8710.0)

EPX(I) - Plastic modulus normal to fiber for each layer

Card 20: FORMAT (SF10.0)

EPY(l) - Plastic modulus in fiber direction for each layer

Card 21: FORMAT (8F10.0)

EP4(I) - Plastic modulus in 450 from fiber direction for each

layer

Card 22: FORMAT (S010.O)

GP(I) - Plastic shear modulus for each layer

Card 23: FORMAT (8710.0)

ALPRA(I) - Fiber angles for each layer mtasured from horizontal,

line

Note: Repeat NELE4S times.

Card 24: FORMAT (8FI0.0)
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(I) TL - Relaxation time in fiber direction

(2) TT - Relaxation time in the direction of normal to fiber

(3) DSL -EPY(I) (see Card 15)

(4) DST - EPX(I) (see Card 14)

Note: Not required if IS(2) 0.

J
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APPENDIX B.4.1

SP2 - SUBROUTINE ORGANIZATION CHART

§flO1F- AW,--ANJ

rX-T'I- f S- EEDYI

-- -g_ _

* ASBtI

-- STRERSSI

FSPEEDYI

ff -A.
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APPENDIX B.4.2

SP2 - DESCRIPTION OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION

ASBLYI Assembles stiffness matrix.
F Evaluates functional values used in Gaussian quadrature

integration.

GAUSS Performs Gaussian quadrature integration.

INPUT Reads and writes input date.

PIASIl Develops instantaneous stiffness matrix for initial
yielding.

PLASI2 Develops instantaneous stiffness matrix for subsequent
yielding.

SETUP Sets up weight-function values used in quadrature inte-
gration.

SPEEDY Performs matrix multiplication.

STIFIP Forms element stiffness matrix for the given elasticity
matrix.

STIFFI Calculates coordinate-dependent values used in quadrature
integration.

STRANP Calculates incremental stresses, incremental equivaletk"
stresses, and ner cent error to test for convergence.

STRESS Computes displacements and stresses under given load,
and then scales the quantities to the elastic limit.

TRANS Develops transformation matrices for both stress and strain.

XKINVS Performs matrix inversion.

XTIFIS Calculates local elasticity matrix, transforms this to
global coordinates, and then forms global stiffness matrix.
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APPENDIX B.4.3

SP2 - FLOW CHART

Read and write input data

Develop elastic element stiffness matrix
Iand assemble global stiffness matrix

Impose boundary conditions I
Ij

Invert global stiffness matrix I
Solve for elastic displacements

Compute elastic global and local stresses;

equivalent stresses, and load
factor X where X - ao /5m x

Scale elastic quantities (displacements,
stresses, forces, etc.) to the elastic
limit by multiplying by X

I Perform plastic analysis now

Compute incremental force dP from
dP - (X/DELL) x qnplied force

Initialize dcl1 &/DELL, dca 0
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3ding

Develop *D~

+a (D D)dE

da f 00do

Update previous quantities, i. e.

19 + O

a, 1  -.1 + do

Check to see if the proper number of
load increments has been executed

L STOP
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APPENDIX B.4.4

SP2 - DATA INPUT FORMAT

Car- 1: FORMAT (20A4)

TITLE(I) Title of the problem

Card 2: FORMAT (215, 2FI0.O)

(1) NCY - Number of iterations allowed for convergence within
a load increment,

(2) NINCR - Number of load increments.

(3) PER - Allowable per cent error for convergence

(4) DELL - Fraction of elastic limit load to be applied for
each load intLeement.

Cards 3: FORMAT (2Fi0.O)
(I) z - z coordinate value

(2) R - R coordinate vlaue

(Note: Provide one card for each node.

Cards 4: FORMAT (415)

I-J-K-L designations of nodes for a given element, in counter-
clockwise order.

Note: Provide one card for each element.

Sample: 1 4

K 2
4 L-1

Card 5: FORMAT (15)

NBC - Number of boundary conditions

Cards 6: FORMAT f215)

(1) NOD - Node number of boundary condition

(2) IDCG - Degree of freedom at the node which is restrained

m mmI
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IDG - t if z displacement restrained

IDG - 2 if R displacement restrained

Card 7: FORMAT (15)

ISAME - ISAME = 1 if all elements have same card(s) 8.

Card(s) 8: FORMAT (8F1O.0)

(1) ET - Modulus if elasticity transverse to fiber

(2) EL - Modulus of elasticity along fiber

(3) GNUTL - Poisson's ratio between fiber and direction trans-
verse to fiber

(4) GNUTT - Poisson's ratio between directions normal to fiber

(5) GTL - Shear modulus between fiber and direction trans-
verse to fiber

(6) GT - Shear modulus between direction' rormal to fiber

(7) ALPH - Angle in degrees from horizontal to fibe'r direc-
tion within plane of the structure

(8) PHI - Angle in degrees from vertical to plane of the
structure

Note: Provide one card for each element if ISAME not

equal to 1,

Card 9: FORMAT (15)

ISAME - ISAME - 1 if each element has same card(s) (10) and card(s)
11.

Card(s) 10: FORMAT (8Fl0.O)

(I) SOT - Yield stress in tension transverse to fiber

(2) SOL - Yield stress Ln tension in fiber direction

(3) TOT - Shear yield stress in tension transverse to fiber

(4) TOL - Shear yield stress In tcnsion in fiber direction

(5) EPT - Plastic modulus normal to fiber

(6) EPL - Plastic modulus along fibex



191

(7) GPT - Plastic shear modulus between directions normal
to fiber

(8) GPL - Plastic shear modulus between fiber and direction

normal to fiber

Card(s) 11: FORMAT (8FIO.O)

Same as cards 8 except for compression

Note: Provide one card(s) 10 and one card(s) 11 for each
element if ISAME not equal I.

Card 12: FORMA' (15)

NFORCE - Number of externally applied concentrated forces

Card(s) 13! FORMAT (215, F1O.O)

(1) NCD - Node number of applied concentrated force

(2) IDG - Degree of freedom at which force is applied

IDG - 1 if force applied in z direction

IDG - 2 if force applied in R direction

(3) FOR - Magnitude of applied force

Not.i: Provide one card for each applied force if NFORCE

= 0 Card 13 is not needed

Card 14: FORMAT (I5, FlO.O)

NPRES - N-mber of elements with applied pressure

PRESS - Applied pressure

Card(s) 15: FORMAT (315)

(1) WELA - element pressure applied to

(2) NODI - One node of the element having pressure

(3) NOD2 - Second node of the element having pressure

Note: Provid,. one card .or each element having pressure. If
NPRESS '- 0 card(s) 15 not needed.

SA LrI PRESS - 5.0
NELP - 5

3 NODI - 3
NOD2 - 4
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APPENDIX B..5.1

SVP2 -SUBROUTINE ORGAINtZT!TTON CHART

INPUT -TRN

- LSTIFFIS

SPEEDY

INITIJ

IHAIN I--

SSPEEDY

SPEEDY- - SPED

SPEEDY

PLS

SPESEDD~II
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APPENDIX B.5.2

SVP2 - DESCRIPTION OF SUBROUTINES

SUBROUTINE
NAME DESCRIPTION

ABG Calculates viscoelastic constants A, B, C

ASBLYI Assembles stiffness matrix and damping matrix

BCFOR Applies boundary conditions to force vectors

F Evaluates functions used in integration

VAUSS Performs Gaussian quadrature integration

INITI Develops the dampin& matrix together with values needed

in viscous stress calculations

INPUT Reads and writes input data

PIASII Develops plastic stiffness matrix for initial yielding

PLASI2 Develops plastic stiffness matrix for subsequent

yielding

SPEEDY Performs matrix multiplication

SETUP Initializes values used in Gaussian quadrature integration

STAN Calculates elastic and viscous stresses and checks yiold.

ing. If no yielding it updates stresses, equivalent stresses,

etc. If yielded it initializes incremental equivalent stress.

STIFF1 Calculates coordinate values used in the integration scheme

for development of the stiffness and damping matrix

STIFIP Forms element stiffness and damping matrix from functions

evaluated in STIFF1

STRAIN Calculates local strains from global displacements

STRANP Calculates increment stresses, equivalent stresses and per

cent error between any two iterations of a time increment
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SUBROUTINE
NAME DESCRIPTION

TRANS Forms the stress and strain transformation matrices

XKINVS Performs matrix inversion

XTIFIS Calculates and assembles global stiffness matrix

APPENDIX B.5.3

SVP2 - FLOW CHART

The flow chart for SVP2 is the same as that for SVPl in Appendix

Bo2o3,
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APPENDIX B.5.4

SVP2 - DATA INPUT FORMAT

Card 1: FORAT (15, P10.0)

(1) NDELT - Number of time increments

(2) DELT - Size of time increment

Card 2: FORMAT (15, F1O.0)

(1) NCY - Number of iterations allowed for convergence with-

in a time increment if yielding has occurred.

(2) PER - Allowable per cent error for convergence

Cards 3: Insert Cards 3 through Cards 15 from B.4.4.
through
Cards 15

Card(s) 16:FORMAT (4F10.0, 15)

(1) TT - Relaxation time in dirccUion transverse to fiber

(2) TL - Relaxation time in fiber direction

(3) DT - Modulus, of elasticity normal to fiber

(4) DL - Modulus of elasticity in fiber direction

(5) ISAME - Let ISAME - 1 if all elements have same properties

Note: Provide one card for each element if ISAME not equal 1.
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APPENDIX B.6.1

DVP2 - SUBROUTINE ORGANIZATION CHART

The subroutine organization chart for DVP2 is the same as that

for SVP2 except that MAIN calls an additional subroutine, MASS, which

develops the mass matrix. j
APPENDIX B.6.2 I

DVP2 - DESCRIPTION OF SUBROUTINES

The description of subroutines for DVP2 is the same as that for

SVP2 except that subroutine MASS should be added to the list.

MASS Develops and assembles the mass matrix.

APPENDIX B.6.3

DVP2 - FLOW CHART

The flow chart for DVP2 is the same as that for DVP1 in Appendix

B.3.3.

APPENDIX B.6.4

DVP2 - DATA INPUT FORMAT

Cards 1 - Insert Card 1 through Cards 16 from SYP2 in Appendix B.5.4.
through
Card(s) 16

Card(s) 17: FORMAT (FI0MO, 15)

(1) DEN - Weight density of the material in pounds per

cubic inch.

(2) ISAME - Let ISAME w 1 if all elements have same density.

Note: Provide one card for each element if ISAME not equalto 1.


