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INTRODUCTION

This is the final report which summarizes some results of my

investigation for the research task of the fiscal year 1972. The

investigation has been concerned with the penetration dynamics of

plate impacts in three ballistic categories.

This research should be of value for consideration of weapons

design and armor protection from kinetic energy threats.

A survey of the literature [1-41 shows that many approaches have

been taken to provide solutions which characterize the ballistic

impact with dominant features in one way or the other. But there

exists no single approach which has offered a convincingly satis-

factory slution. For this reason and others, we seek to consider

the impact of plate from the viewpoint of nonlinear mechanics. Such

an approach is especially suitable for the analytical treatment of

terminal ballistics which is often empizical (and confidential). It

is not surprising that remarkable simplification and idealization have

to be made in order to arrive at an analytical description of the

problems considered. As mentioned we will consider normal impacts

and their ballistic effects only. A few modes of plate penetration

1. Effects of Impact and Explosion, Summary Technical Report of NDRC,
Division 2, Vol. 1, Chapters 6, 7, and p. 275 (Washington, D. C.,
1946).

2. W. Herrmann and A. H. Jones, Survey of Hypervelocity Impact
Information, A.S.R.L. Report No. 99-1 (Massachusetts Institute
of Technology, 1961).

3. W. Goldsmith, 12_•t, pp. 240-248 (Edward Arnold, London, 1960).

4. N. Cristescu, DYnamic Plasticity, Chapter 6 (North-Holland,
Amsterdam, 1967).
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and perforation can be formulated as one-dimensional nonlinear prob-

lems. This method we have exploited not only for less mathematical

effort but also for more physical support by scaling. Therefore

our analytical results are derived from concepts such as nonlinear

resistance and shock fragmentation.

For the categories of impact to be considered, there are a large

number of parameters which affect the processes and results of these

irpacts. Here we refer only to the more important factors such as the

projectile velocity, mass (size, shape, density), tensile strength,

plate thickness, density, hardness, and shock-compression properties.

Upon impact, the projectile and plate interact with or without perfora-

tion/shatter. Plate perforation may occur as a result of plug formation, I

hole enlargement, bulging petal, spallation, or fragmentation. At the

same time severe shock loading and unloading may cause large deformation

or complete disintegration of th.- projectile. Let us summarize these

situations as depicted [l] in Figure 1.

S=17
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FIGURF I - BALLISTIC IMPACT OF PLATE
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There we note three lines of demarcation: (a) the ballistic limit

without shatter, separating impact categories I and II; (b) the bal-

listic limit with shatter, separating categories III and IV; and (c)

the transition velocity dividing the no shatters and the shatters.

Thus we may consider the various impacts under these headings:

I. No Perforation, No Shatter

II. Perforation, No Shatter

II. Perforation, Shatter

IV. No Perforation, Shatter.

In what follows, we shall examine most of the cases except for

category I and petaling.

ARMOR PERFORATION WITH PLUG

Let us consider impact category II. A simple model can be

constructed for it on the basis of nonlinear resistance R = R(i,x),

where x is the penetration depth and = dx/dt is the rate of

penetration with t denoting the time. It is heuristic to consider

R - Kxn, K and n being appropriate constants. Thus the equation

of motion of the projectile may be written as

Mx+Kxn = 0 (1)

where M denotes the projectile mass and x its deceleration. From

equation (1) the ballistic impact appears to be a special kind of

nonlinear vibration. But we will not exploit equation (1) in that

rk
p.-g
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sense for the projectile's terminal trajectory might not be the same

as the solution of equation (1). With certain shape factors and

appropriate energy balance accounted by constants K and n, equation 1

can satisfy the initial and boundary conditions: (a) t = 0, x = 0,

V = striking velocity; and (b) t = 1 = penetration time, x = P

total penetration depth, 0 = 0. Inserting these values into the

* first integral of equation (1), we get the intial energy and momentum

; as given by

1 MV2 = Kpn+l/(n+]) (2)
2

- I_ 1 (n+l)

MV = (2MK/(n+l)]2 P (3)

Let P be the plate thickness. Then V stands for the ballistic limit

(V,). From Equation (2) we should have n = 2 for perforation by

energy absorption 12] in a volume proportional to p3. Such proportion-

ality is justifiable for plate thickness of about I caliber; otherwise

a certain shape factor should be considered. From equation (3) a

momentum-absorption theory [2] requires n = S, which implies also

the alternate form of equation (1) as

Mýx+k x 2 . 0 (4)

for a different kind (k) of nonlinear resistance (viz. rate

sensitive).

From the similarity point of view, equation (1) can also fit

the classical formulations of Robins, Fairbairn, DoMarre, and Krupp

2. W. fierrmnnn and A. H. Jonrs, Survey of t!)-rvelocity Impat
Information, A.S.R.L. Report No. 99-1 (Massachusetts Institute
of Technology, 1961). 6
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for the ballistic limit of armor plate [2]. Thus we may put n = 0 and

K'od 2 in equation (1) or (2) to derive' the Robins formula, a being the

flow stress of plate and d being the projectile caliber. For Fairbairn

we should have n = 1 and K-Td, T being the shear strength of plate; for

DeMarre, n = 3/10 and K-d3 / 2 ; and for Krupp, n = 1/3 and K-d5 /3  All

these different values of n should be attributed to the empirical nature

of the pertinent formulas. As far as terminal ballistics and nonlinear

mechanics are concerned, our formulation of equations (1) and (4) is

analytically sound. Slightly modified experimental correlations are

up to individual investigators.

If the projectile has sufficient kinetic energy to pass through

the armor plate, then its residual velocity is given [5] by

1

V M(M + mi) 1 (V2  V. 2) (5)oror 1
Vr = [M(M + m)-1 (V2 - V*2 )] 2  (6)

where m is the mass of the displaced plug. In equation (5) V should

be identified as the flight velocity of the projectile, which differs

from the striking velocity due to effects of friction and rotation

(rifling). Equation (6) neglects such difference. Obviously, there

is no difference between equations (5) and (6) for heavy projectile

or thir. plate. Ideally, tne secondary impact of a double-plate system

would occur with almost the same amount of momentum as the initial.

W. Herrr-ann and A. HI. Jones, Survey of Hypervelocity Impact
Information, A.S.R.L. Report No. 99-1 (Massachusetts Institute
of Technology, 1961).

5. See Appendix. 7
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But the impact energy is less. Threat from such impact could be

indentation, spalling, bulging, or petaling. For a safe design of

spaced plates, Vr should be such that the kinetic energy of the

secondary impact be small.

PLATE PERFORATION WITH SPRAY

This is our Category III. See Figure 1. For a given projectile

there exists a shatter velocity depending upon shock-compression

properti': a-i the impedance match, at and above which it will be

disintegrated due to the sudden release of strong shock pressure

around its free surface. Strong shock compression of solids requires

hypervelocity impact at the level of 1 km/sec and higher [6]. We

shall give expression for evaluating the shatter velocity after we

consider the shock waves of the explosive impact.

Upon impact at hypervelocity, the two colliding bodies are

compressed by two strong shock waves ($I, S2) which can be described

as follows:

.lO (W1 + V) = P1(W1 + k - uI) (7)

S P1 = PloUl(W1 + V) (8)

El M I P, (PlO10-I "l11) (9)

2

6. y. K. Iluaui ,.J N. .1.vids, .J Franklin Inst. 276, 39 (1963).

8



-20W2 P 2(W2 u2 ) (10)

$2 P 2  P2 0u 2W2  (12)

E (12)E2 T P2 (P20- - P2-I(2

where V i., the impact velocity, W shock velocity, u particle

velocity behind the shock front, o = density, p = shock pressure,

E = specific internal energy, and subscripts 0, 1 and 2 refer to the

initial value, striker and plate, respectively. It should be noted

that only u, is a velocity relative to a reference frame moving with
i

V. The interface between the two colliding bodies furnishes the

boundary conditions:

"P2 Pl (13)

= V - u1 . (14)

Thus far we have set up only eight equations for ten unknowns,

namely, p,, PI', El, Wi' u V P2) P 2 ' E2, W2, and u2 . Since the

strongly compressed material will expand immediately as spray, we

may approximate the shocked and expanded states by a polytropic

gas with carefu-ly chosen index r (in the limit r ÷ 3). So two

additional equations are given by:

E = pl/Pl (rI -1) (15)

E2= p2/P 2 (r 2 - 1). (16)

9



Now we can solve equations (7)-(16) simultaneously for the ten

unknowns whose explicit results are given by:

P1  P10 (rl + l)/(r1 " 1) (17)

uI= V/( + I) with

1

[P2 0 (r 2 + l)/IP0 {(rl 1)]2 (18)

,(r l)-2
w - (19)2+I

Pl= 1 (r, )(WV) 2 /(t 2 (,20)

E1  1 (&V) 2  + 1) (21)

2

P = P20 (r 2 + 1)1(r - 1) (22)

u2 = V/( + 1) (23)

W = 1- V(r 2 + ')/(E + 1) (24)
2 2.

P 2  = 1.P 2 0 (r 2 + 1)V 2 /(• + 1) 2 (25)

E = 12 +1)2 (26)

Further results can be sought. Equations (15) and (16) imply

2
dp/dp a = rp/p, a being the sound velocity. From this and

10



equations (17), (20), (22), and (25) we get

1.

a, 1  (ý + 1)1 [r 1 (r 1 -1)/212V (27)

1

2Msl = (W1 + V)/a 1  =(r 1 + 1) [2rl(r 1 - 1)] (28)

1

a2  = (+ [r2(r - 1)/21 (29)

1

Ms2 = W2 I/a, (r 2 + 1) [2r 2 (r 2 - 1)] (30)

with M. denoting the shock Mach number. Using the Riemann invariant

[7], we also get the velocity component of lateral expansion: i

uii 2a/(r- 1) (31)

the spray angle of particles is given by 0 = tan" 1 (uAu 2 ).

Therefore, we have

u2rI )y"1
tan U 2 (32) A

U2  rl-1_

1

tan z• 2  (-)
u2  r 2 -1

2
From a or E we can also estimate the shock temperature. In this

connection, the impact spray may be thought of as a result of

vaporization (rather than spallation).

The foregoing is an analytical description for the perforation

of plate by a small projectile shattered as a result of shock loading

7. R. Courant and K. 0. Fredricks, Supersonic Flow and Shock Waves
pp, 87, 90 (Wiley, New York, 1948).

11
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and unloading. It is of interest to consider three limiting values

of the index r. As r ÷ 0, equations (18), (20), (23), and (25) reduce

to those equations of shaped-charge jet penetration [1,2,8). This

evidence seerns to indicate the generality of shock-wave theory on

the one hand and the complementality of hydrodynamics on the other.

Since two different material models are involved in the two theories,

we would not seek the meaning of equations (15), (16), (17), and (22)

with r = 0. A similar case with r = -1 has been considered [7,9]

for isentropic flow in gas dynamics. Equations (28) and (30) impose

another limit upon r. The shock waves are said to be hypersonic with

M ÷ • as r i. Let r = 3 and E = 1. From equations (32) and (33)

we get ¢ 600 which turns out to be qualitatively descriptive of the

spray. Moreover, the pertinent p, u, and p/P are comparable with

those for the products of detonation [10] (TNT) based on r = 3. Thus

we consider r = 3 appropriate for both dense gases.

In order to evaluate the shatter velocity Vs, we must consider

some fundamental properties of shock waves in solids. It is far

reaching to begin with the relation [11]:

W = A + Bu (34)

where A and B are experimental constants with many physical interpreta-

tions and implications. According to Rodean r12], A2/2B2 is approxi-

mately equal to the heat of sublimation of the solid. From equation

(18) the absolute particle velocity is given by V - uI = V/(E + 1) and

2the associated kinetic energy is V2/2(E + 1) . When the latter is

equal to the heat of sublimation, the shocked material will expand

12
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infinitely upon unloading. Therefore we establish the relation

Vs = (1 + ) A/B (3S)

1

where A and B belong to the projectile material, with • = (P2 0 /Po)T

Current criterion for the design of spaced plates is as follows.

At velocities where the projectile is broken up, there is an optimum

shield thickness for which the total penetration is a minimum. A

semi-empirical demonstration of such calculations is given in Refer-

ence (13]. At lower velocities with no breakup of the projectile,

the shield plate offers less protection for potential threat.

HYPERVELOCITY CRATERING

When a target plate is too thick to permit perforation, a crater

may form therein as a result of annihilation of the projectile by

strong shock compression. Category IV of Figure 1 is comprised of

impacts like this. In the literature there exist a large number of

papers concerning this problem. See Reference [1] and Proceedings

of Symposia on Hypervelocity Impact (1958, 1960, 1961, 1963, 1964).

In this report we consider this problem again with nonlinearities in

one dimension.

Let us denote the nonlinear resistance by

R(vx) = a £(x)vY + 6 g(x)v 2

where v is the velocity x = dx/dt, f(x) and g(x) are two arbitrary

functions, and a, 0, and y are all constants. Expressing x as v dv/dx

1. Effects of Impact and Explosion, Summary Technical Report of NDRC,

Division 2, Vol. 1, Chapters 6, 7, and p. 279 (Washington, D. C.,

1946).

13. 0,. Y. Stone, "Designing for Meteoroid Impact," ASMK Paper 67-DE-45
(March 19e,).

13N



with some constant equivalent mass A, the equation of motion is given

by

Y 2Mv dv/dx = - a f(x)v - 6 g(x)v

which may be re-arranged as

dv + ~~Y-1
- + g(x)v - (X)v . (36)

dx N1 M

Now equation (36) is of the Berr.julli type. Let y = v2-* Then

equation (36) can be linearized and integrated as

y exp [f 6(2 - Y)g(x)dx/M]

- f (a/M)(y - 2)f(x) exp [f 6 (2 'Y)g(Jdx/M]dx
(37)

It is clear that we have been motivated to formulate the idealized

impact by the well-known Bernoulli's nonlinear differential equation.

As a special case, we have the classical Poncelet resistance [1] with

f(x) = constant, g(x) = constant, and y = 0.

In the theory of nonlinear differential equations, Riccati's

equation is also well-known. It turns out also reasonable to assume

a norlinear resistance in the form:

R(v,x) = Xv3 - Pvx0

where X, P and 0 are all constants. Now the equation of motion

becomes

dv x u
- v2  x (38)

dx M M

which is the Riccati equation. Let C1 = X/M, C2 = u/M, and

y = exp (Clfvdx). Then equation (38) reduces to

1. Effects of !rpaut and Lxplosion, SLunary Technical Report of NDRC,
Division 2, Vul. 1. Cha:trcrr I, 7, and p. 279 (Washington, D. C.,
190.1

14



d2 y SCIC2XOy = 0

dx2  12

which is the Bessel equation with solution in closed form:

I
y = x2 [BII (hxq) + B2 I- (hxq)]. (39)

In equation (39) we have used:

v = ( +)

1 1

h = 2iv(C C2 )2 , i =(-)

q - + 1

2

IV(z) = e J (iz]>
V

From equation (39) we get

v Cd ny/dx

-! (2CLx)1" [1 + 2 h q xq(BlI' + B2 I.)

(B II + B2 I_ ' (40)

For given iL:itial and boundary values, we can establish appropriate

penetration formulas from equation (40).

15



!I

CONCLUSION

This investigation has attempted to provide a basic understanding

of plate impacts from consideration of both physical and mathematical

nonlinearities. Cur physical concepts are noulinear resistances and

shock compression of solids. Our mathematical fonnalism is classically

* motivated, See equations (1), (4), (36), 9nd (38). Within this frame-

work of nonlinear mechanics and mathematics, we have examined ballistic

effects of plate impact in three categories. Analytical evaluation has

been given of the ballistic limit, residual velocity, shatter velocity,

and spray angle.

This research is conceptually oriented for physical reality and

mathematical simplicity as much as possible. Its methods and results

can be exteaded to more general problems of high-speed impact.

A
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APPENDIX

Following Recht and Ipson [14], we may write

MV = (M + m)vi (a)

1 MV2  1- (M + m)v 2 1 -l
2 -2 -(M+M) m MV =AE (b)

with AE denoting the energy loss due to momentum redistributzion. Let

'W = work done for shearing the plug m from the plate. Then energy

balance gives

1W.MV2 =AE + AW + (M + m)Vr 2. (c)

From equations (b) and (c), we get
AW.-'* (M + M)-I M2V, (d)

for V = 0 and V = V= the ballistic limit. Assuming AW = AW. aTudr
substituting equations (b) and (d) into equajion (c), we get

Vr = M(M +m 1  V2 V.2),

which is the sought equatioi. (5).

If we write with AE = 0

MX' (M + m)V

MV2 AW + (M+m)V

then we obtain

1 2AW =AW,= .
2 a *

and 1

V r [M(M + m)"1 (V2 
- V*2)]2

which is the sought equation (G).

I:, P. V. Recht ai;d r. w. Ipson, J. AppI. Mech. 30E, 384 (1963).
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