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ABSTRACT 

This memorandum has two parts. The first part is a review of 
previously established results in a general treatment of position find- 
ing, the object of which is to establish comprehensive procedures 
applicable to all of the Navy's position finding problems. This review 
illustrates how such problems are influenced by quantities that appear 
as parameters in the formulation of the problem. The second part 
extends the treatment to the case where knowledge of these quantities 
in uncertain. 
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I.   INTRODUCTION 

Most position finding problems involve parameters in addition to the quantity or 
quantities of primary interest and to those which are observed.   In formulating the state- 
ment of the problem or specifying the model that is applicable, it is often assumed that 
the values of these parameters are known or can be determined.   This assumption is often 
justified as in the case of the following example.   Position finding systems often require 
a knowledge of the positions from which the observations are made.   If the observations 
are made from fixed sites, the position of each station may be ascertained by geodetic 
survey techniques with a degree of precision far beyond that applicable to the overall 
problem.   Where these conditions prevail, the set of parameter values represented by 
the station coordinates may be assumed known without violating the validity of the model. 
If, on the other hand, the observations are made from moving platforms dependent on 
imprecise navigational systems for a knowledge of their own positions, the treatment of 
these parameters must take account of the uncertainties thus introduced. 

The principal contribution of this memorandum is the derivation of procedures 
applicable to a wide range of problems in which parametric uncertainty is present.   The 
treatment is based on a Bayesian approach to position finding and is an extension of that 
previously developed for the case in which the values of all of the parameters are known. 
This material is covered in references (1) through (4) but will be summarized in the fol- 
lowing three sections. 
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II.   POSITION FINDING - A GENERAL APPROACH 

In order to include the greatest number and variety of possible problems in a single 
formulation, position finding is outlined in the following terms: 

(a) The quantity whose value is of interest is denoted by the random variable  x . 

(b) In order to obtain information as to the value that x assumes, measurements 
are performed on a finite set of quantities  a. , or- ...a    which are related to  x  by 

1 Zr 11 

means of known relationships of the form: 

a. = f.(x) i = 1,2,.. .n 
1      v ' 

(c) Observations of the quantities   a.   yield the quantities   9.   for   i = 1,2, ...n. 

(d) A complete statistical description of the measurement errors is available. 

This brief outline is merely intended to serve as a starting point.   To establish the 
general context and achieve the desired objective of applicability to a diverse range of 
problems, some additional amplification is necessary. 

An essential feature of the approach outlined is that the observations are made on 
quantities related to those of primary interest.   Although this is often the case in posi- 
tion finding on account of the comparative inaccessibility of the entity whose position is 
of interest, the approach is not restricted solely to situations characterized by the phys- 
ical and geometrical considerations in terms of which position finding is usually described. 
Therefore, although we shall confer the physical attributes of a position on this quantity 
and refer to the relationships as being determined by geometry, the generality implicit 
in our model permits many other options.   For example, the quantity of interest  x 
could be a vector with elements the components of position and velocity in a specified 
coordinate system and the relationships could depend on the propagation characteristics 
of electromagnetic radiation or sound in addition to geometrical factors. 

To facilitate the discussion of the relationships linking the quantity of interest with 
the observed quantities we give two simple examples, both of which address a problem of 
position finding on a plane surface.   In each case, a rectangular coordinate system is 
employed, the position of interest is denoted by its coordinates   (x, y)  and the observa- 
tions are made from fixed stations sited at   (X., Y.), (X„, Y„), .. .(X , Y )   . 

In the first example, the quantities subject to observation are the angular bearings 
of the position (x, y) from each station and the relationships are readily shown to have 
the form: 

a. = f.(x, y) 

x - X. 
= arctan —_ y i = 1, 2, .. .n 

y       i 
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In this case the quantities  a.   are angular bearings measured with respect to the direc - 

tion of an increasing y coordinate and the above expressions indicate their relationships 
to the position of primary interest. 

In the second example, a signal with identifiable time structure is assumed to origi- 
nate at the point  (x, y)  and the observations consist of the differences in the times of 
arrival of this signal at each station.   If all of the time differences are referenced with 
respect to the arrival time at one station - say station  r , the required relationships, 
for this case, are readily shown to be: 

a. = f .(x, y) 

(x - X.)3 + (y - Y.)2\k - | (x - Xr)8 + (y - Y/ f5] 

i = 1,2,.. .n 

i^r 

where   c   is the transmission velocity of the signal. 

An examination of these relationships indicates one way in which parameters enter 
into the problem. In the first example the relationships depend on the values of the 2n 
parameters   X., Y., i=l, 2,.. .n , and, in the second, there is, in addition, dependence 

on the parameter  c .   In general, a dependence on the arbitrary parameters 
Yi» Yo, ... Yn   could be made explicit by writing: 

a. = f.(x) 
l      l   ' 

* 
= fi(x, YJ.YJ, •••Yj) , i=l,2, ...n 

Although one objective of this research contribution is to consider how to proceed in the 
presence of uncertainty with respect to such parameters, since we are here summarizing 
previously established results, we shall assume that the values of all of the parameters 
present are known precisely.   It then follows, since the  a.'s   are the quantities subject 

to observation and not the data, that the relationships are entirely deterministic and 
consequently describe but part of the problem.   Nevertheless, certain key features may 
be ascertained from the form they assume. 

First, one consequence of the choice of a particular set of a. 's  is indicated by 

classifying each relationship into the categories of identity, linearity or nonlinearity. 
The first of these categories corresponds to a direct measurement of the quantity of 
interest and its inclusion illustrates the applicability of the model to systems which rely 
partly or entirely in such direct measurements.   The other two categories require no 
explanation and the implications of membership are self-evident.   Secondly, the relation- 
ships may be further classified according to whether the set of a. *s   so described are 



insufficient, minimally sufficient or more than sufficient for the unique determination of 
the quantity of interest.   Both the second and third of these categories correspond to an 
invertibility condition on the relationships and the third category alone to the inclusion 
of redundancy.   In the first example given above, a minimum of two stations is necessary 
if the invertibility condition is to be satisfied, and three or more are required if redun- 
dancy is also a prerequisite.   In the second example, the corresponding numbers are 
three stations for invertibility and four or more for redundancy, since, in the system 
considered, one station serves only as a reference. 

In order to proceed, it will be assumed that the relationships can be expressed in the 
form given above and that the dependence of each of the quantities selected for observa- 
tion on those of primary interest and on relevant incidental parameters is unambiguous. 
Where a viable problem is described by relationships which do not comply with this for- 
mat, the appropriate treatment will differ in some respects.   No assumptions will be 
made with respect to the linearity of the relationships and whereas it will generally be 
assumed that the invertibility condition is satisfied, it will be shown that the procedures 
established can be advantageously employed even in cases where it is not satisfied. 

The inference procedures to be established utilize the data   9., 9«. ... 8    obtained 

from the observations of the quantities  a.,«», .. .a    and also a knowledge of the statistics 

of the errors present in the measurements.   To include the algorithmic and tabular 
"look-up" procedures which might result from a calibration process in addition to formal 
probabilistic statements, it is convenient to formulate the uncertainty of the observations 
by means of a generating function which provides the numerical values of the probabilities 
defined by an applicable density function.   For the choice of a density function to describe 
this uncertainty, two closely related alternatives will be considered; in each case the 
corresponding generating function must take into account any parameters on which this 
uncertainty may depend.   If these parameters are represented by  vp,, , v« „, ... Y     and 

the measurement errors by   e., e_,... e   , the first alternative consists of specifying 

the generating function  g(e., e„, ... e )  indicated by the correspondence: 

p(e]L, e2, ... en) ~g(e1> e2>... en) 

or, in vector notation, 

P(e)~g(£)  > 

which is provided by the known values of the parameters   y0,,  ... v   and the generating 

function  g*(e, vn ,,»••• YJ  for the density p(£| y    ., .. .y) which is assumed to be known. 
—     y. +1 s V+JL s 

If,  in addition it is assumed that the errors are additive, that is, 

ei =9i ~ai ' i = 1>2' •"n 

or, in vector notation, 

£= _e -<x_    , 
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the following correspondence is readily justified: 

P(J | a) ~g(9-a)    . 

This formulation of the uncertainty present in the observations corresponds to a direct 
calibration of the measurement equipment and constitutes the second of the alternatives 
referred to above.   If the additive condition on the errors is not satisfied, direct calibra- 
tion techniques will still yield the generating function appropriate to this density, but it 
will have the more general form indicated by a correspondence of the type: 

P(6|a)~g(9,a)    . 

In the sections which follow it will be assumed that the errors are additive and that 
a complete statement of the uncertainty of the observations is provided by the specifica- 
tion of a generating function for the joint error density: 

P<L |Y£+1....Y8) 

or, alternatively for the conditional density: 

p(9_ | a, YÄ+1i...Y8)     • 

If the additive condition is not satisfied, knowledge of the joint error density is, per se, 
insufficient, and the second alternative would require a knowledge of the more general 
generating function indicated above. 

As a final point, it should be appreciated that uncertainty in the observations may 
also depend on the value of the quantity of interest.   A range-dependent error or one 
influenced by the anisotropy of the medium are examples of this.   Also, the formulation 
of this additional dependence may introduce a further set of incidental parameters.   If 
this dependence is completely specified, the methodology is again applicable, the addi- 
tional steps necessary are presented in reference (4).   Assuming that these steps have 
been incorporated, the situation with respect to uncertainty in the values of the param- 
eters thus introduced is no different from that affecting incidental parameters in general. 
The procedures that will be established are therefore also applicable to this form of 
uncertainty. 



III.   PROCEDURES WHEN ALL PARAMETERS ARE KNOWN 

In agreement with the preceding section, the problem is formulated by specifying 
the relationships: 

tf.=f.(x) i = 1,2, ...n 

and a generating function g(e)  for the joint error density.   It is also assumed that 
knowledge of  x  existing before the observations are made can be formulated by means 
of a discrete density function in agreement with the rationale introduced in references 
(1) through (3).   This may be briefly stated as follows.   There is some degree of pre- 
cision that is adequate for the treatment of the problem.   This implies that in place of 
the infinitely many values that x  can assume, we need consider only a finite number 
of uncertainty regions, the dimensions of which are chosen in accordance with overall 
precision requirements.   Since the total probability associated with any such region 
can be considered as concentrated at any one point within the region, prior knowledge 
may be taken into account by assigning probabilities to each member of a finite point 
set resulting from this quantization process.   The dimensionality of the quantity  x 
determines the number of subscripts necessary for proper indexing.   For a one-dimen- 
sional problem, which, for the present we shall assume, the prior density function has 
the form: 

cr(x) = a. 6(x - x ) j = 1,2, ...N 

whereas, for the two examples of position finding on a surface given in the preceding 
section, the form that is appropriate is: 

o(x, y) = <j(x-x    6(x-x, y-yk)    j - -J, ... -1,0, 1, .. J 

K= — K., ... — 1, U, 1, . . . K. 

where   6(x-x.)  and   6(x-x.,   y - y, )  denote generalized univariate and bivariate 
J J K 

functions usually referred to as Delta functions. 

Given that prior knowledge may be formulated in this way, our principal objective 
is to establish a procedure for computing the posterior density  p(x[9)  corresponding 
to an arbitrarily assigned prior density  CT(X)   for any problem conforming with the 
model adopted.   This density indicates how the prior knowledge is modified by the 
observations and therefore provides a statement of all of the information available for 
subsequent action.   The transformation from a prior to a posterior density is, of course, 
achieved by means of Bayes' Rule, and, as a consequence of the argument that a discrete 
formulation of prior knowledge is adequate, a convenient form of this rule is given by: 

p(x|e) = q. 6(x -x.), 

where 

-7- 



p.a. 
n    = -Li 

=1 J J 
J 

p  =p(9|x) j = l,2,...N 

and   8   is the data provided by the observations.   This formulation assumes a one - 
dimensional problem.   In the examples quoted in the preceding section the appropriate 
form is: 

P(x,y | 8) = qjk 6(x - x , y - yfc) 

where 

and 

q -  pik*ik 
qjk       J      K 

Pjk-P(9  |x.,yk) j = -J, ...-1,0,1, ...J 

The extension to higher orders is obvious. 

It is clear that the attributes of the position finding system, namely the relationships 
f.(x), i=l, 2, .. .n  and the joint error density p(e)  enter into Bayes' Rule via the values 

of the conditional density  p(8|x)  for the observed data and for  x=x., j=l, 2, .. .N   .   To 

complete the treatment, all that is therefore necessary is to indicate how this density is 
determined.   In the preceding section it was shown that, starting with the generating 
function  g(e)   for the joint error density, and the assumption that the errors are additive 
we can readily establish the correspondence: 

p(8|£)   ~g<9-a) 

However, if the set of relationships 

a. - f.(x) i = 1,2, ...n 

satisfy the invertibility condition of the previous section, then knowledge of the quantities 
a.   for all  i  is equivalent to a knowledge of  x   .   This follows from the definition of 

invertibility and the assumption that all of the parameters that influence the relationships 
are known.   Compliance with the invertibility condition therefore permits us to write, 
for the additive error case: 

-8- 



p(e|o) ~g(e - a) 

= p(e I x) ~g {ex - fx(x), e2 - f2(x),... en - yx)] 

and p. = p(e|x ) ~g C91-f1(xj),  a^-tyx ), ... 9n-fn(x )} 

where, in the final statement   9  consists of the observed data.   This provides a gener- 
ating function for the computation of the quantities   p., j=l, 2,.. .N ,   for insertion into 

the discrete form of Bayes' Rule from which the numerical values of the required posterior 
density may be ascertained.   For nonadditive errors, the development is similar except 
that the initial correspondence is of the form: 

P(i|ff)~g(e,a) 

and results in a generating function for the quantities   p.  which has the form: 

gfBj, 92>...0n,f1(x),f2(x), ...fn(x)} j=l,2, ...N . 

The entire procedure may be simply stated as follows: 

(a) Replace   e.   by   9.-f.(x)  for all  i  in the generating function for the joint 

error density. 

(b) Replace the quantities   9,» 9„, ... 9    by their observed values. 

(c) Evaluate for each point  x., j=l,2, ...N   . 

(d) Replace the quantities   p.   in the discrete form of Bayes' Rule by the numbers 

so obtained. 

This provides the required posterior probabilities  q., j=l, 2, .. .N , for the case where 

the joint error density is available.   The slight initial modification necessary where 
direct calibration is employed is obvious. 

It should be noted however that although the development of this section has been 
largely possible without explicit reference to the parameters that have been introduced, 
this is entirely due to the assumption that prior knowledge of their precise values exists. 
In order to assign numerical values to the quantities   p. — and hence, to the quantities 

q. , —the relationships  f.(x)  and the error density generating function g(e)  must be 

completely specified.   This is achieved by substituting the values of the parameters 
known to occur in the more explicit statements of the relationships and in the generating 
function denoted by  fj* (x, Y1» Y2> • • • Yg)  and g*(£, Yg+1» Y^» • • • Yg)»   respectively. 

-9- 
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IV.   SEQUENTIAL PROCESSING WHEN ALL PARAMETERS ARE KNOWN 

In the foregoing treatment it has been assumed that all of the data are simultaneously 
available.   Where this is not the case and where the observations are of the same kind 
and statistically independent, it can be argued that sequential procedures offer certain 
advantages.   The extent of the data need not be known a priori.   The computational 
algorithms applicable to a single data point will involve only a univariate density and 
will be essentially the same for each step of the sequential process.   The inclusion of 
a rule for terminating the process based on some property of the most recently com- 
puted posterior density is also a possibility.   These considerations justify a re-examina- 
tion of the procedures that have been formulated to determine their suitability in 
sequential applications. 

A sequential approach to position finding differs from that previously considered. 
Instead of a single statement of the problem in terms of all of the available data, a 
number of statements are provided, each pertaining to one of an ordered subset of the 
data - usually a single data point,  - and each of the restated problems is addressed in 
the order thus established.   In addition, a means of combining the computations per- 
formed at each state of this process is required.   In the present context a decision to 
adopt this approach will be greatly influenced by the availability of a common algorithm 
for implementing the computations appropriate to each data subset.   This, in turn, 
depends on the homogeneity of the entire system and on whether the subsystems corres- 
ponding to the data subsets act independently of each other.   Given that these matters 
have been settled and that a common algorithm is available, the question of combining the 
results of the computations performed at each stage poses no problem, since the posterior 
density computed at any one stage of the process becomes the prior density for the suc- 
ceeding stage.   A problem may arise, however, with respect to the validity of the pro- 
cedures that have been established when used to obtain the computation algorithms 
applicable to a subsystem specified in accordance with a particular subdivision and 
ordering of the data. 

To illustrate the problem, consider the first of the two examples of position finding 
on a plane surface described in section II.   For sequential processing based on the single 
data points   0., 9„, ... 9    indexed in the order they are recorded, the relationships are 

X.        Z* IX 

as previously described, namely: 

«i = fi(x» y) 

x-X. 
= arctan  rr- 

for  i=l, 2, .. .n , but the appropriate error density function and corresponding generating 
function for any single choice of  i — assuming independent observations— becomes: 

P(ei) -g^) 

from which, if the errors are additive, we obtain: 

P(9i|ß.)~g(9i-o'i)    . 

-11- 



Knowledge of  a.   for any one value of  i , is not, however, equivalent to a knowledge of 
(x, y),   so this argument can no longer be used to equate this conditional density with 
p(9. |x, y) for which a generating function is required in order to determine the values of 

Pjk = P(ei^yk> 

for insertion into Bayes' Rule.   In other words, in this example, the subsystems based on 
a single data point do not satisfy the invertibility condition previously used to justify this 
important step in the derivation of an applicable procedure. 

This situation is hardly surprising.   It cannot be expected that each of the subsystems 
corresponding to an arbitrary subdivision of the data will retain the characteristics of the 
corresponding composite system.   Yet, while in general this will be conceded, there is 
intuitive support for acknowledging the equivalence of sequential and one-time processing 
in the particular example chosen, even when the invertibility condition is not satisfied, 
and consequently, for acknowledging the existence of a procedure applicable to a single 
data point.   In fact, in a numerical example similar to this appearing in reference (2), 
the sequential procedures which would have been applicable, had the invertibility condi- 
tion been satisfied at each stage, lead to the same posterior density as the single pro- 
cedure which applies when all of the data are simultaneously available.  There is, however, 
no inconsistency.    The invertibility condition depends only on the relationship between 
the quantities selected for observation and the position of interest.   Its utility in treating 
the uncertainty present in the observations is that it provides a convenient sufficient 
condition for establishing the equality of one formulation of this uncertainty with an 
alternative formulation required for the application of Bayes' Rule.   It is clear, however, 
that any mechanism for obtaining the required formulation is acceptable. 

To revert to the example, the probabilities defined by the density   p(9. \a.)   are given 

by the generating function  g(9.-a.)   , but the application of Bayes' Rule requires the 

generation of the numbers   p.,    derived from the conditional density   p(0. |x,y)   .   Since 

knowledge of a.   for any single value of  i  is not equivalent to a knowldge of  x  and  y , 

we cannot invoke invertibility to claim that 

p(8i|x,y) = p(9i|ai) 

and that consequently 

Pjk = P(9i|Xj. yk) ~g{9i-fi(Xj, yk)}   • 

Nevertheless, we claim that these statements are in fact valid, that the key equality can 
be justified by noting that, for any  i, i=l, .. .n , the independence assumed permits us 
to write: 

P(6i|o'i) = P(9i|o'i»Q'2' '••Qn)    * 

-12- 



It is clear that: 

and the remaining statements follow. 

To conclude, conditional knowledge which is equivalent to knowledge of the quantity 
of interest with respect to a particular statement of uncertainty, or other applicable 
methods, may be used to effect the implementation of Bayes' Rule and thus provide 
acceptable procedures where, as is often the case in sequential applications, invertibility 
is not satisfied.   Thus, in the first example of section II a single station capable of pro- 
viding one angular bearing, and in the second example, two stations capable of providing 
only one measurement of time difference can be regarded as viable position finding 
systems.   Where the conditions of the problem allow the choice of sequential methods, 
the greater flexibility and simpler processing which result makes this an attractive 
alternative to the one-time procedures of the preceding section. 
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V.   PROCEDURES APPLICABLE IN THE PRESENCE 
OF PARAMETRIC UNCERTAINTY 

In the previous sections it has been postulated that the parameters   y., Y2» • • • Yr, 

enter into the formulation of the problem in relating the quantities selected for observa- 
tion to the position of interest and that the additional parameters   Yn+, > Yg+2> • • • Yg 

are part of a statistical statement of the uncertainty present in the observations.   The 
appearance of these parameters in the initial statement created no problem, since the 
exact values of all of them were known.   If this assumption is relaxed and only some, 
or possibly none of the values are known precisely, the procedures described are clearly 
inadequate.   In this section, therefore, the problem is reconsidered for the case in which 
r  of the   s parameters are precisely known, 0 < r < s , and the behavior of the remainder 
is described by a joint density function for which a generating function is specified. 

As previously stated, the attributes of a particular position finding system enter 
into Bayes' Rule via the quantities: 

p. = p(9|x.)   , j=l,2, ...N    . 

Posterior probabilities can therefore be determined if an algorithm is available for 
computing these quantities from those given in the problem statement.   To establish 
an algorithm that is applicable in this case, we proceed as follows.   By assumption, 
some of the parameters which influence the joint error density may not be known, so 
a generating function capable of providing the numerical values of this density is not 
initially available.   Instead we have: 

P<£lYg+r...Ys)~g*(£,  Yfi+r...Ys) 

namely, the generating function corresponding to a joint error density that is conditionally 
dependent on a knowledge of all the pertinent parameters. 

If the errors are additive, then, from above: 

P(£|a,  Yg+1,...Ys)~g*(9-a,  Yß+1> •••Yg) 

and if, in addition, the relationships satisfy the invertibility condition, this may be used 
to establish the correspondence 

p(9|x, Yj» •••Yg) 

-gf^ -f*(x,Yr ...Yg)...6n-f* (x, Yr •••Yg),Yß+1 Yg}     • 

If either of these conditions is not satisfied, the modified procedures, described in 
sections HI and IV, that are applicable when all the parameters are known, may still be used 
to obtain the generating function for this conditional density.   This assigns a numerical 
probability for all the values that   9., 9„, ...9 , x, and  y., y„,... yg can each assume. 
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This generating function may be more general than required for the problem speci- 
fied.   Of the  s  parameters   Yi»Yo»«««Y   »   the values of  r  are known.   If the known 

1       L S 
values are substituted and the remaining  s-r  parameters relabeled   Yi» Y2» • • • vs_r » 

a generating function which we shall designate: 

g<e,x,YrY2,...Ys_r) 

is obtained.   This clearly corresponds to the density: 

p(G |x, Y1,Y2,...Yg_r) 

which is conditionally dependent on a knowledge of only those parameters which are not 
precisely known a priori.   For these parameters, however, a joint density is specified, 
and, if this is denoted by: 

*<YrY2,...Ys_r) 

in the revised notation, it is not too difficult to show that, for the position finding problem 
under consideration, 

P( ©. I x) = H... Jp(6 |x,Yl,...Ys_r) (T(Yr ...Ys_r)dYr --^s-x 

and that 

p. =p(6 |x.) = H... Jp(6|x.,Yr •••Ys_r) ^(Y1....Ys_r)dY1,...dYs_r    . 

By expressing the quantities   p., j=l, 2, .. .N , in terms of other quantities that are either 

given by or can be ascertained from the statement of the problem, this provides a formal 
solution that is applicable where the density  a (y , Y2> • • • Ys _r\  is continuous.   If this 

density is discrete, or, alternatively, is continuous but can be replaced by an equivalent 
discrete density, the required numerical quantities are provided by an expression of the 
form: 

p  =p(x  | 9)=V    £     ...£ p. (T 
J ] Yi     Y2 Ys-r    J'Yl',,,Ys-r   Yl""te-r 

j=l,2,...N 

in which the discrete indexing is denoted by subscripts.   Using the values of  p.   so 

obtained, the posterior density p(x | 8) is, as before, given by the expressions: 
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p(x   I 9) = q 6(x-x.) 
J J 

where 

p.cr. 
<i;=*  J        . j=l,2,...N 

2-.-P-QT- 
J J   J 

for a one-dimensional problem, or for position finding on a surface by: 

p(x,y|0) =q.k6(x-x ,y-yfc) 

where 

„ .. JSSL 
*     ^j^cPj^k 

and, where the values of  p.,    are given by, either 

Pjk = $!•-• Jp<ilxj' W-'-Vr* ff(vr ...Ys_r)dv, ...dYs_r 

or, 

Pik    2-    2^      • • • 2_<        pi k v        v       ^v        v J Y,      Y9 Y _    J'   ,Yl"-Ys-r    Yl"-Ys-r 

j= -J, ...-1,0,1, ...j 

k= -K, ...-1,0,1,...K 

The extension to problems of higher dimensionality is obvious. 

An extremely important case, closely related to that just considered, occurs where 
there is uncertainty with respect to certain of the parameters, but that with a view to 
reducing this uncertainty — for at least some of these parameters— observations are 
made.   In this case, the use of the unconditional prior density  a(y., y~, .. .y _ )  is 

clearly inappropriate and should be replaced by the conditional density of these param- 
eters given the observations that have been obtained^   The necessary statement of prior 
knowledge with respect to the uncertain parameters is thus provided by the specification 
of a density which is posterior to the parameter-related observations.   In this case, 
therefore, the solution of the position finding problem under consideration is dependent 
on a solution being obtained for a preliminary problem, namely, that of ascertaining 
this density function from the parameter-related observations and from the characteris- 
tics of the system used to obtain them.   The situation may be described in more concrete 
terms with the aid of the example given in the introductory section in which the observa- 
tions are made from mobile platforms dependent on imprecise navigational systems for 
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a knowledge of their own positions.   Clearly, there is a subsidiary position finding 
problem to be considered in which the positions of the platforms are the quantities of 
primary interest.   An independent treatment of this problem by means of the Bayesian 
procedures that have been established yields a posterior density which expresses what 
is known with respect to these positions subsequent to the observations obtained from the 
navigational systems.   This density then provides the required statement of the uncer- 
tainty of the platform coordinates which appear as parameters in the main problem. 
Computation of the values of p.   or p.,   that are now appropriate, and hence, the posterior 

density of the position of primary interest may then proceed as we have indicated. 

To conclude this section we observe that while the Bayesian approach that has been 
followed makes formal provision for the presence of uncertainty in the parameters which 
appear in the formulation of a position finding problem, the computational procedures 
are, in general, considerably simpler when the uncertainty is described by a discrete 
density function.   If a continuous density is specified, computation of the quantities   p. 

for most practical problems will involve the use of numerical integration techniques. 
This may be avoided if the continuous density can be replaced by a discrete density. 
This step can be justified if the effect of the replacement can be shown to be negligible 
in relation to the overall precision resulting from the initial quantization of the problem. 
In fact, the entire question of relative precision should be investigated if unnecessary 
computation is to be avoided.   However, in addition to the possibility that the degree of 
precision implicit in the initial statement of parametric uncertainty is unnecessary, 
there is also the possibility that it is unrealistic.   An examination of the reasons for 
specifying a continuous density to account for the uncertainty is likely to reveal that this 
has been done for convenience and that the choice of a discrete density would be more 
consistent with applicable physical limitations. 
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VI. CONCLUSIONS 

In many military engagements, a critical factor is the extent of the available know- 
ledge of where something is.   If the methods used to acquire this knowledge in different 
situations are examined, it is apparent that although the problems have much in common, 
there is little explicit recognition of this fact.   On the contrary, the uniqueness of the 
particular solutions proposed is often stressed.   Given the existence of this commonality, 
however, the advantages of a general approach are evident.   It provides not only the con- 
ceptual framework necessary for the unambiguous description of the problems which 
occur, for the isolation of their essential features and for illustrating their relationships 
with other problems, but also procedures for solution, applicable to a range of problems. 

The utility of this approach is governed by the variety of problems that can be effec- 
tively addressed.   To provide the greatest possible generality, therefore, the formulation 
of position finding that is adopted and the procedures that are established are based on 
Bayesian methods.   The selection of this approach over more conventional alternatives 
follows from arguments summarized in reference (5).   While no restatement of these argu- 
ments will be attempted, we observe that the basic premises are simple and readily related 
to the kinds of problems which occur in position finding, that the introduction of ad hoc pro- 
cedures for special situations is not necessary, and that sensible orthodox inference - and 
decision - procedures can often be reformulated in Bayesian terms.   In addition, when used 
in conjunction with suitable preliminary quantization schemes, the unified treatment utiliz- 
ing this approach (references (1) through (4)) yield general procedures for which simple 
computational algorithms have been derived. 

The principal features of this unified treatment of position finding are summarized 
in sections II, III and IV of this research contribution preliminary to consideration of 
the kind of problem which arises in acquiring knowledge of where something is while 
uncertain of where you are.   As a consequence of a general formulation being available, 
this problem is readily identified as an example of uncertainty with respect to a param- 
eter, so it is the class of problems for which this general description holds that is 
addressed in the final section.   The results of this section may be summarize das follows: 

(a) A general treatment of position finding in a Bayesian formulation makes 
formal provision for the existence of parametric uncertainty and provides applicable 
procedures when this uncertainty is adequately specified. 

(b) Explicit computational procedures are derived for the case in which prior 
knowledge of this uncertainty is provided by an appropriate unconditional density 
function and also for the case in which the prior knowledge is dependent on separate 
observations. 

Position finding systems have been designed, constructed and used in large numbers 
in response to problems that have been inadequately researched or formulated.   This 
continues, despite the existence of a general approach that can ensure both complete- 
ness and agreement with reality.   This approach is provided by Bayesian methods. 
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