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ABSTRACT 

In [6] Rabin defines Automata on Infinite Trees, and the body of 
that paper is concerned with proving two theorems about these automata. 

The result we consider In the first chapter says that there exists 
an effective procedure to determine, given an automaton on infinite 
trees, whether or not it accepts anything at all. We present a new 
decision procedure which is much simpler than Rabin's since we do not 
use an induction argument as he does. We show in Theorem 1, the 
main theorem of Chapter 1, that if tn.   is an automaton on infinite 
trees, then T(^0 (the set accepted by ex ) is non-empty if and only 
If there exists a finite tree E and a run of (/t on E of a particular 
type.  This latter condition is equivalent to saying thaL the set 
accepted by a particular automaton on finite trees is non-empty. 
Hence (see Theorem 2) the emptiness problem for automata on infinite 
trees can be reduced by Theorem 1 to the emptiness problem for automata 
on finite trees, which is shown decidable in [7]. Theorem 1 is proven 
by showing how maps on finite trees can generate maps on infinite trees 
which are then said to be finitely-generabla. A corollary of the proof 
of Theorem i is that if an automaton on infinite trees accepts some 
Input tree, then it accepts a finitely-generable one; this result 
was proved in a much more complicated way by Rabin in [5]. 

Chapter 2 is concerned with the more difficult result of [6] 
that for every automaton on infinite trees,^ , there exists another 
one,^T. ', such that #1. ' accepts precisely the complement of the set 
accepted byCt . Rabin's construction of «/t1 and the proof that it 
works is an involved induction.  In this paper we present a fairly 
simple description of a complement machine OX', given #t, such that it 
is very plausible that OX'  works in the sense that T(^t')=T((^). The 
proof that our construction works, however, is difficult and very 
similar in complexity to Rabin's proof in [6] that his (more difficult) 
construction works. 
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CHAPTER 1 

The Emptiness Problem 

Section 1: Introduction 

The analysis of finite automata on infinite trees is the basis for 

Rabin's remarkable proof of the decidability of S2S (the monadic second- 

order theory of two successors) [6].  Rabin's proof follows the now 

standard form of Büchi and Elgofs proof for WS1S (weak, single successor) 

[1,3] and Thatcher-Wright's proof for weak S2S [7], and requires 

demonstrating effectively that the automata are closed under union, 

projection, and negation, and that the emptiness problem for the 

automata is decidable.  As in the case of SlS, -.he main difficulty in 

the case of S2S lies in proving closure under complementation of sets 

accepted by nondeterministic automata on infinite trees. The problem 

is complicated by the fact that nondeterministic infinite tree automata 

are known not to be equivalent to any of the likely definitions of 

deterministic infinite tree automata. 

In [6] Rabin shows how, given an automaton on infinite trees,«, 

one can construct a-other one, OV ,  such that en*  accepts exactly the 

complement of the set accepted hyfft.    His construction, however, is a 

very complicated induction. In Chapter 2, we present a fairly simple 

construction for <7X'. 

Curiously, the emptiness problem, which is easy for the other kinds 

of automata, turns out to be nontrivial for (nondeterministic) infinite 

tree automata. Rabin subsequently improved his original proof of the 

decidability of this emptiness problem, but even the second proof [5] 

uses an involved induction and consequently does not yield a simple 

— 
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effective criterion for deciding emptiness. 

In this chapter we provide such a criterion by showing that an 

infinite tree automaton accepts some valued tree if and only if there 

is a computation of the automaton containing a certain simple kind of 

finite subtree. Moreover, the set of finite subtrees of the kind \ie.  require 

is recognizable by a finite tree automaton, and in this way we reduce the 

emptiness problem for infinite tree automata directly to that for 

finite tree automata.  This also yields a simple proof of another 

result of Rabin's about "regular" runs by automata (see below). 

Section 2^; 

For this paper the appropriate way to visualize the infinite 

binary tree T is as follows.  At the top is the root A.  Every xGT 

has a left son x • 0 and a right son x • 1. Hence T»{0,1) . 

We define a partial ordering on T by x^y if y=x'z for some z€ [0,1] 

If x^y and xj^y, then we will write x<y. 

For each x€T, define the (sub)tree with root x to be the set 

Tx={ylx^y}.  Thus T=TA. 

DefinitJon: A path n of T is a set TTCT satisfying:  1) xGrr; 
X x 

2)  if yGn,   either y^OSn or y'lSn but not both;  3) rr is a minimal 

subset of T    satisfying  1)  and  2). 

^M* wm 



Notation: If x and y are members of T and x^y, then we denote by 

[x,y] the set {z|x-^zSy). 

For a set B we denote the cardinality of B by c(B) and the set of 

subsets of B by P(B), 

Definition: A set BC:T is called a frontier of T if for every path 

nCTx we have c(Trn B)=l.  By Konig's Lemma, every frontier of T is 

finite. 

For x6T, a finite tree with root x is a set 

E ={z|x^z^y, for some y € B} , where B is a fixed frontier of T .  For x x 

E as above, B is called the frontier of E and is denoted by Ft(E ). 
x x y    x 

Unless otherwise noted, we will  use E to denote a finite tree with root A 

Definition: A S-tree is a pair t =(v,T ) such that v:T -»L. A finite 
          r x      '  x x   

^-tree is a pair e =(v,E ) where v:E   -*L.    Unless otherwise noted, we 
  XX X ' 

will use t and e to denote t^ and e. respectively.  If t=(v,T) is a 

D-tree, then we use both (v,T ) and t to denote (vjx ,T ),  If t=(v,T), 

and E is a finite tree, then we use e and (v,E ) to denote (VIE ,E ). 
x x K  '  x' v ' x' x' 

Definition: For a mapping e:A-»B, In(9)={b€ B|c(e  (b))Saj) . 

Definition: Let e:A-+B and let ^C <Li.
u
i
> )ls.<;  be a finite sequence 

of pairs of finite sets. We say 9 is of type Q. written 8 6 [0], if for 

some i, 1 s i <: n, we have In(e) (1 U.^0 and InCS) D L.= 0 .  If 0 is the 

empty sequence, then we define it never to be the case that G f [fi]. 

Definitionen f.a.t. (Tinite automaton on trees) is a system 

^ = <S>S, M, s0,ü> where S is a finite set of states, S is a finite set, 

M:SXE-»P(SXS), snes is the initial state, and n=(<L.,U. >)1^.^ is a 

 J ^ i— 
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finite sequence of pairs of finite sets. 

If t =(v.T ) is a S-tree, then an^kiun^^ is any mapping 

r.T -♦S such tliat!   1) r(x)»80  and ^ , , N  / ,NN 
2) for all yeTx, <r(y 0) ,r(r 1)> € M(r(y) ,v(y)) 

T£ e -(,. E ) is a finite 2>-tree. then an air™*  ™ ex is any 
x    x 

capping r:Ex-S such that!) r(x)=s0  and 
2) for all y€Ex-Ft(Ex), 

<r(yO),r(yl)>€M(r(y),v(y)). 

The set of all <n-runs on tx (ex) will be denoted by Rn^.t,) 

( Rn(^.ex). respectively). An accenting-- on tx is any rWOX^ 

such that'for ever,, path nc^. r|n 6 [«]. define 

T^).CtJthere exists an accepting ^T-run on ^ . W) is called 

the set accepted by CZ • 

Glven an £.a.t. ^ .<S. S, M, ,„. D> . «e .l.b Co dote™!™ 

whether or not tin)-* ■    Consider the auto-mton « .<S,(a) , H> »0. «> 

Co Ü, .-,- U M(So). Clearly T«^)-0 "T(C£.)«« • »here tor all s6S, MCs.a)-^ M(s,o,. 

Thua, the e-ptineas proble. Is reduced to the ease of automata 

over the single letter alphabet (a,. Heneeforth in this section we 

restrict our attention to this case. Since there exists Just one 

(a,.tree rooted at A. (v.T), and for every finite tree E Just one finite 

,.,-tree, (v.E). ve «ill cit «eution of the valuation v and talk 

about «t-runa on T and E, ^accepting T, etc. Clearly, 

.^^^Maa^M^MM^. 
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Theorem 1:     Letfll= < S,   {a} ,  M,   s   ,   ((L  ,  U.)) , > be an f.a.t. 

T(0l)   ^ 0 ** for some finite tree E  there exists an r such  that 

1) r 6 Rn(Or,E), 

2) there exist mappings J: Ft(E) -*  E-Ft(E) and H: rt(E) -> 

E-Ft(E) such that for all x € Ft(E) 

a) H(x) <: J(x) < x, 

b) r(J(x)) = r(x), 

c) r([H(x), J(x)]) - r([J(x), x]), 

C)    for some i, 1 S i S n, r([J(x), x]) C] L.  " i  and r(x) 6 D, 

Before we prove Theorem 1, we show that Theorem 1 easily yields the 

following theorem. 

Theorem 2:  The emptiness problem for f.a.t.'s is decidable. 

Proof of Theorem 2: Lei 01  be as in the statement of Theorem 1. 

Definition: Let E be a tree (finite or infinite). Let r be an OJ-run 

•k 
on E. Let x € E. Since x € (0,1) we can write x = CT-CJ- ... a . Define 

1   /I m 

a, v to be the following member of I a =  r(^|'r(al)»r(a1a0)...r(x) r,x —^ —  „r^      -v—, .^.y  'v-1>'2' 

Notation;Let a be a finite string and let n and m be positive integers, rcSm. 

Then by a(n)  we will mean the nth element (irom the left) of a.     By 

tcCfnjm]) we will mean the set of elements between and including the nth 

and the mth places of rv.  Note that a(n) is only defined if 1 ^ n^length(cv) 

and a([n,m]) is only defined if 1 s n^m^ length(a), 

-" mt m* 
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Definition: Let a € S . We say that a i& Cood it there exist positive 

integers H and J such that H ^ J < N = leri£tli(Q'), a{i)  = ff(N), (y(fH,J]) « 

cy(fJ,N]), and there exists an i such that a(N) 6 U. and ff([J,N]) H L - 0. 

Note that good is defined with respect to our f.a.t. 0]. 

Lemma 1: The set of good strings is a regular sety i.e., it is 

recognizable by a finite state machine or finite input strings. 

Proof of Lemma 1:  Obvious.   O 

Lemma 2: Let G be a regular set of finite strings on S. Let II = 

{E|E is a finite tree and there exists a run r on E such that for all 

x € Ft(E), ff   € 6J Then H is recognizable by a finite automaton on 
r ,x 

finite trees as defined in [7], 

Proof of L^nmia 2:  Fairly obvious.  D 

Completion of proof of Theorem 2: By Theorem 1, Lemma 1, and Lemma 2, 

the emptiness problem for OX can be reduced to the emptiness problem 

for a particular finite automaton on finite trees. But by Theorem 7 in 

[7], this problem is decidable. 

Proof of => in Theorem 1: Let r be an accepting 0[-run on T.  By the 

definition of accepting run and of good string, it is clear that for 

every path TT of T there exists an x, x € TT, such that a        is a good 
r ,x 

string.  Let B = (xloc   is good and for all y < x, a   isn't good). 
r,x r>y 

Then B is a frontier.     If we let E be the finite tree with frontier B, 

then there exist mappings J and H which,   together with rjE,   satisfy 

conditions 1 and 2 of Theorem 1.    This completes  the proof of =>. 

>■ ■^■d 
• got 
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Proof of^ ir\  Theorem 1:  Let E, r, J and H be as specified in 1) and 

2) of Theorem 1. 

We define a mapping T]:    T -► E inductively as follows. Let TKA) = A . 

If TI(X) has been defined, then for cr € (0,1), define rKx'd) as follows. 

Case 1:  If TI(X) € E - Ft(E), then let r)(x*a)= Ti(x)'a. 

Case 2:  If Tl(x) € Ft(E), then let Ti(x,o-)= J(Tl(x)),CI. 

Define r: T -♦ 3 by r(x) = r(Tl(x)), for all x € T.  Clearly by 2) 

b) of Theorem 1, r € Rn(^|, T) so that it suffices to show that for all 

paths n c T, (r | TT) € [0], because then T C%0\)  and hence T((7|) ^ 0. 

Let rr c T be a specific path. Let y0, y1, y2, ... hu  the infinite 

subset of TT (listed in increasing order under <:) consisting of exactly 

those members of TT whose images under n are in Ft(E).  Define V^ to be 

the following infinite sequence of members of Ft(E) X Ft(E): 

VTT = ^V* ^y^^^i^ ii(y2>>' <'ri(y2)' ^J*' ••• 

For all i <u  we have by the definition of T),  JCiKyj^)) < ^^^x^ 

and r([yi, yi+1])  = rCUCTlty^),  Ti(yi+1)]).    Hence,   In(r  | n)  = 

U r(fj(x),   z]). 
<x,z> 6 ItiCV^) 

Clearly there exists a finite sequence (possibly with repetition) 

©f members of Ft(E),  x,,  x2,  x3,   ....  xm,  such that 

t^^^mmk 
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x,   = x    and 
1        m 

(1) InCV = {<x], x2>, <x2,  x3>,  <x3,  x^. 

<x     - ,   X >] . 
m-1'    m ' 

From now on we will  denote J^)  by ^ und H(xi)  by l^.   for a11 

1 <:  i s m. 

We have from the preceding paragraph 

(ID 

for all 1 s i < m,  J    < 5C1+1, 

m-l 
and    ln(r  I TT)    =     U     r(   rJi,  x1+1J) 

(r  | TT)  €  in]  is immediate from the third of the  following three 

lemmas. 

Lemma 3:    There exists an M,   1 <: M 5 m,  such that  for all i,   1 s i <: m, 

That is, 1L = mint'lK, ... , H ] . 

Proof: Our induction 

hypothesis at stage h is that there exists an integer M', 1 s M' ^ h, 

such that for all i, 1 <: i s: h, H^, ^ H . Clearly the basis case Is 

trivial. We assume the induction hypothesis for h and prove it for h+1. 

—A -   1 SM - -  ' ^MÜ 
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H , ^ H.    , by the induction hypothesis, 
M   h 

H.  ^ J h    h 
, by li  a) in Theorem 1. 

Jh <Xh+l  ' by ai) 

Hence, H^ < K^. 

By 2) a) of Theorem 1 we also have Hh+1 < X^j^. Therefore, 1^ and 

H . are comparable (under £). Clearly for all i, 1 ^ i s h+1, 
h+l 

If M ^ m, we can rename x., ^r   • • •» xm 
so that W  and (II) remail1 

true and 11 = minfH, H ). Henceforth, without loss of generality 
m 1      m 

we assume that M = m. 

Lemma 4: ■ If H = minfH,, ... , H } , then for all i, 1 <: i ^ (m-1), 
—     m    i      m 

r<iV xi+i])2r(lV ^'i1^ 

f: Let i be any integer such that 1 St i < m. H
TO ^ 

Hi ^ Ji < ''i+l' Proof: 

hence we have the picture: 

fc— 11 i ■ 
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Hence,  r([Hm,  *i+1])  2 r([H
m.  ^J)  U r([H ,  J  ]).     By  2)   c)  of Theorem 1, 

r([ll  ,  J  ])  = r(fj      x   ]).     Hence,  r([H  ,  X..,]) = r([J.,   x,]),  and 

therefore,  r([llm,  x.+1])  3 r([Hm,  x.]). 

Lemma 5;     If H    = niinfH, ,   ..., H },   then for all i,   1 <: i s (m-1), 

r([Hm.  Xm])2r([Ji,  xi+1]). 

Proof:    Let i be any integer such that 1 s i s (m-1). 

By Lemma 4 r^,  xj)  = rd^  x^^),  r([Hm>  x^])  = r.([Hffl.  x^]). 

•••'   raHm'  *U.2])  - r([II
m'  

Xi+1])-    Hence'  r(tHm'  Xm])  3 r([11m'  Xi+1])- 

We have H    ^ "i s Jj < x.+1-     That is the picture: 

m 

li+l 

Hence,   rHm.  x.^] 3  r^.  x.^].    Hence r([Hffi. xj) 2 rC^,  x^]), 

D 
Completion of the Proof of Theorem 1;    Without loss of generality we 

assume H    = mlnfH.,   ...,  H } .     By Lemma 5, m i m 

m-1 
r([Hm,  xmj) =     U^    r([Ji> x^]). 

By part 2) d) of Theorem 1 we have for some i, 1 <; i s n r([J  x 1 0 
' m'    m 

L.   = 0 and rCxJ  € U..     By part 2)  c)  of Theorem 1,  r([H  ,  x  ])  = 
m      m 

r(fJ   ,  x   ]),    Hence, m      m 

- ^^■^■^Mtaai 
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and 

m-1 
U  rdJ.. xi+1]) OL. = 0, 
i-l 

i„-l 
U  rClJ., xi+1]) 0 U. 5« 0. 

i-1 

refore, by (II) (r I rr) 6 [H], The 

Section 3: Remarks 

D 

In f6 1 Rabin uses the following definition. 

Definition: An f.a.t. with (U^mLed submits is a system O'i - 

<r- <; r M <■ . 3 >, where S is a finite set of states, E is a finite 
«^ a, ij, ii> OQ»    > 

set, M: S X 7^ P(S X S), and ye P(S) is the set of depj.snated subsets. 

An ^-run on t = (v,T) is as defined in Section 2. (H  accepts t if 

there exists an r € Rn(^,t) such that for all paths TT C T, ln(r I IT) G 7. 

The proof of Theorem 1 can be extended to show that rdH^ xj) - 

m i-l 
Ü r(lJ , x.+1]), where IK, x., etc. are as in the proof of Theorem 1. 

i=l 

Hence for Ol' < S, {a], M, sQ, V >,  where c(S) - q, we have: 

T(01) T' 0 « for some finite tree E there exists an r such that 

1) r € Rn(q,E), 

2) there exist mapplngs J:  Ft(E) -♦ E-Ft(E) and H: Ft(E) ^ E-Ft(E) 

such that 

a) ll(x) S J(x) < x, 

b) r(J(x)) - r(x), 

c) r(ni(x), .l(x)]) = r([J(x), x]), 

d) r([J(x), ::]) € 9. 

. 

MMH 
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The appi-opriatc definition of a good string with respect to 01 

is  a simple modification of the definition of good string used in the proof 

of Thcorom 2.  For either definition ol' good string we can design a no:i- 

deterministic finite automaton on finite strings, W, which recognizes 

the set of good strings and which has at most 2 q(q+l) states.  Ey the 

subset construction we can design a deterministic automaton W   equivalent 

to 3J1 such that W  has at most Q = 2  Kq    '   states.  Using 51!' we can 

easily construct a finite automaton on finite trees, OV,   such that TCOt') 

/ 0 if and only if T(Ol) *' 0 and such that the state set of OC   is the 

cross product of the state sets of fTj and W .     Hence 0\'   has at most qQ 

3 
states. We can determine whether '£(£'*)  r $  in (q Q) computational 

steps. 

Hence given a finite automaton Ol on infinite trees which has q 

states and uses either notion of acceptance, we can determine whether or 

not T(0]) ^ 0 in   V q 2  ^     >   J computational steps. 

Femark ?.'.     If we have a finite S-tree (v,E), and a function J: Ft(E) -♦ 

E-Ft(E) such that for all x € Ft(E), v(J(x)) = v(x), then we can 

generate a unique D-tree (v,T) as in the proof of Theorem 1.  Call any 

]D-trec which can be generated in this way a finitely-p.enerahle F-tree. 

.^^.—^^^ 
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Rabin in [5 ] defines a Z-tree. (v.T), to be regular if and only 

if for e«ch a C-. Z,  v'^a) is a regular subset of {0,1}'.  It is easily 

shown that a Z-tree is finitely-generablc if and only if it is regular. 

Rmark 3:  From Theorem 1 it is easily shown that if an f.a.t. accepts 

any S-tree, then it accepts a finitely-generable S-tree. Rabin shows 

this in [5]. In [2] Buchi and Landweber prove that if P(X,Y) is a 

finite-state condition and X has a winning strategy, then X bar a winning 

finite-state strategy.     Rabin has observed in [5] 

that the set of winning strategies for X corresponds in a natural way 

to a set of {0,1]-trees defined by a (deterministic) infinite tree 

automaton. Hence, it easil^ follows from Rabin's result in [5] or from 

the results in this paper that if X has a winning strategy then X has a 

winning finite-state strategy. 

We can also observe  the following.  If X does not have a winning 

strategy, then by our Theorem 1 we see that X does not have a "Eartial- 

strategy of a particular kind.  From this one can show that Y has a 

winning strategy for P(X,Y), thus showing that P(X,Y) is determined. 

This is another result of [2]. 

•A^atf^Mttf 
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CHAPTER 2 

The Coinpleine-ntation Problem 

Section 1: Introrkiction 

Given an automaton CK  on infinite E-trees, one defines a »tree t 

to be accepted by (A.   if there exists an Ct-ruTi on t such that for all 

paths, the sequence of states on that path satisfies a particular 

property. Cm can similarly define t to be dually accented by OX   if 

for all d/t-runs on t, there exists a path satisfying for that run the 

particular property.  The problem is to conrtruct, for given OX,   an 

automaton A' such that for any valued tree t, t is accepted by C1' if 

and only if it ;s not accepted by OX.     Sinne given ^ we can construct on 

automaton VL    such that the set of »trees not accepted by C^ is 

precisely the set dually accepted by (A^,   the complementation problem 

can be reworded to state that given Ct, we v.-ish to construct an automaton 

W   such that the set of valued trees dually accepted by <A   is precisely 

the set accepted by VV . 

That is, we want OV   to accept t if and only if for every i/t-run on 

t there is a path such that the. sequence of states along it satisfies 

the property defined by OX.     The natural thing to look for in constructing 

OV   is an automaton which can explicitly pick out an appropriate path 

for each (/t-run on t. That is, we would like every Cf-run on t to 

specify a path for each </l-run on t, and we would like there to be some 

condition on sequences of Cl' states which holds for all paths of the «*.'- 

run exactly when for each ta-run, Che sequence of c/C states along the 

path specified for that run satisfies the ^-property. 

A natural poirt of view is to think of starting out at A, and 

having our 6^'-run choose, for each possible pair of Cl-statea which can 

• 
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occur at the nodes 0 and 1 (in an it-run on t), whether to continue the 

path by going left or by going right, and continuing in this way, at each 

node choosing for each possibility of ^t-run occurring lircr.ediate]y below 

it whether to go left or right.  An M.'-run cannot tell us in one step 

what path to choose for each Ct-run.  But it can tell us each successive 

choice of left or right given each successive segment of the CC-TUTI. 

A state of <A.'  will be, essentially, .1 finite sequence of states of 

#l. Each member of an CAJ   state at a node will represent the last state 

in the initial segment of a path chosen for the initial segment of a 

particular at-run.    For each member of an csC  state at a node the t/t'-run 

must say how to continue the path for each pair of <si  transitions 

possible (for t) beneath that node.  It is therefore necessary that a 

state of crt'  actually be a sequor.e of ordered pairs whose first part is 

a state of ^t and whose second part is a set of backward pointers. Yes, 

I said a set of backward pointers rather than just one; this is because 

in reality an ordered pair appearing at a node in an M.'-run must 

represent the lest state in the initial segments of (possibly) many paths 

chosen for the initial segments of (possibly) many <n-runs. That is 

because the sequences making up the set of states of ca' must be bounded 

in length in order for CA.' to be a truly finite automaton.  If we insure 

this bound by insisting that in every state of Csi'  an ^t-state can occur 

at most n times, then we formally denote at'  by ü^t • 

cmn 
The fact that everything accepted by UJt^ is dually accepted by ot. will 

follow easily from the definition of OT^ . The converse, that for 

sufficiently large n, if t is dually accepted by Ct we can find an 

accepting run for it on 5^ , is far from obvious, and our induction 

proof basically parallels the one Rabin presents in [6].  The difference 

■Al **■* 
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between our proof and his can be viewed as being that we keep, at each 

stage of the induction, information which he discards, so that we arrive 

at the end with a specific, non-inductive description of the desired 

automaton. 

Section 2: Some Definitions, Theorems, and Proofs 

Definition: If S is a set, denote by S the set of infinite sequences 

of members of S. We identify the sequence s ,8.,. . . with the map 

a:a)->S where a(i)=s.. 

Notation; If <x,y> is an ordered pair, let p,(<x,y>)=x and let 

P2(<x>y>)=:y-  If 0l=a-,a.,.   .   .     is an infinite sequence of ordered pairs, 

let p1(a)=the sequence p.(a ) tpAa^) L^.fine p„(a) similarly. 

Note that this notation is consistent with thinking of an infinite 

sequence as a map from u to a set. 

Notation: If xpr and TT is a path of T , and r:T -»S, then denote by 

(rl'rOjj the sequence r(x ),r(x ),. . , where Tr=fx0,x..,. . .} and x.<x... 

for all i^w. 

Definition: A Generalized Automaton on Trees (G.A.T.) is a system 

d=<S,L>M,s ,Q> where S, E, M, s , are as in Chapter 1, and Q is a subset 

to 
of S .  If t is a S-tree, let Rn(^t,t ) be defined as in Chapter 1. x x 

Define T(Ut),   the set accepted by ^t, by T(6t)= 

There exists an r(:Rn(<?t,t ) such that for all paths ncr , (rjiT) € Q. 

(Call r an accepting run of ^t on t .) 
x * 
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Define D(<yO.   the set dually accepted  by ^t ,   by D(<^.) = 

[t   | For all  r€RTi(^,t  ),   there exists  a path rrCT    such that   (r|rr)    CQ.} 

We now define  three  types of Fini te. Automata on Trees. 

Defim tion:   A pairs-ante ma ton is a system it=<S,!D,M,8n,n>whcre 

0=(<L.,U.>),   .  ,     is a  finite sequence of ordered  pairs of subsets  of 
11      l^isk 

S,     and  S,  S,  M,   s    are as above.     Let   £t'   be the G.A.T.  <S,E,M,s0,Q> 

where Q-;.a€ S^j cv€ [Q]].     Define T(^)   and D(^t)   to be equal  to T^'t') 

and D(^T.')   respectively.     (Note that a  pairs-automaton is  the same 

thing  that we meant by an f.a.t.   in Chapter  1.)   For  such an C/l-, we  say 

that Q is  of order k and  that £/l is  of order k.     If L =0,   then we say 

that Q and CA. are of order k-empty. 

Definition; A sets-automaton is a system fit"<SiTt,ll>8r.i^> where ^EPCS) 

(P(S) is the set of subsets of S.) and S, E, M, s^, are as above. Let 

01* be the G.A.T. <S,?:,M,s0,Q> where Q={cy G S^j InCa) 6?}. Define T(^r) 

and D(^0 to be equal to 1(0%') and T)(OV) respectively. (Note that a 

sets-automaton is the same thing that we meant by an automaton with 

designated  subsets  in the remarks of Chapter  1.) 

Definition:   An automaton-automaton is a  system *t=<S,]D,M,s0,l( > where 

S, E,  M,   s»,  are as abov? and 2^   is a deterministic sequential automaton 

(as defined  in  [6])  whose inputs are members of S  .     Let ft1  be  the 

G.A.T.  <S,S,M,s0,Q> where Q={a6S   |a€T(W)3   the set accepted byl^. .} 

Define T(6T.)   and T)(OX)   to be equal  to ^^T.')  and DtCL1)  respectively. 

These  three  types of  finite automata are all  equivalent,   in the sense 

of Facts   1 and  ?.     These facts are easily shown by Rabin in [6]. 

*~m*^*tmk mmä 
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1'act 1: Let E be a finite set and let W be a set of D-trees.  Th 

there exists a pairs-automaton Ol. such that TC^T^-VJ » 

there exists a sets-automaton ^Z» such that T(£t„)=W » 

there exists an automaton-automaLon ^t. such that T(tfT«)=W. 

Fact 2: (same as Fact 1 only with 1(^1-), T^t ), 1(6-^) replaced by 

D(iX(;L), D(^2), D(<^:3) respectively.) 

Nov? if ^t =<S,E,M,sn,'
?'> is a sets-automaton, then by its definition 

we see that D( <S,'L,}A,sQ,V(ß)-T'>  )  is exactly the complement (with 

respect to the set of L-trees) of T^t).  This observation, together 

with Facts 1 and 2, imply that whichever definition of finite automaton 

on trees you choose, to solve the complementation problem it is sufficien': 

to exhibit for every pairs-automaton VI , an automaton-automaton CV   such 

that T(t7l,)=D(^£).  We shall do this.  Now follows the main definition of 

this chapter. 

Notation: If n is a positive integer, let [n] = {l,2,. . . ,n] . 

Definition: Let Ct=<  S, E, M, s., Q > be a pairs-automaton.  Let n be 

a positive integer. We will define an automaton-automaton 

9J&= < s", E, M"W <s0, 0 >, U^i >•    Let m=c(S).  Then we define 

a is a finite sequence of members of SXP([mn]) such that for each 

s€S, there are at most n values of i for which p1(a'(i))=s. 

(Every member of P([mn]) is to be thought of as a set of backward 

?;■ « 

pointers.     Since  each member of S can occur  up  to n times  in a member of 

la'   eac^ n,ern^cr  0^ ^Vi cari ^e as  lOT18 as mn,   hence  the need  for mn 

backward pointers.) 

The starting  state of ^ is ^.(S >,   a  sequence of length 1. 

Let afS,. and  let a€S.    Define 

-A^M—^kj ^^^mm ^mmM 



: 

^o'ai>e 

M^>a)=Vxs^ l-Vt. "  "cT. 

23 

For all i,   1si ^length(oO,   if \ 

u=p1(a(i))  and if ^.u^S M(ii,a),   thc.i there exiatfl    J 

a positive, integer j  such  that  either 

I)  P^VJ^'O ailcl  i€P2(p;0(j))       0r 

ID  P1(a1(j))=u1 and  t € p2(Qf1(j)) . / 

(Think of c(i)   as representing  the value at  some node x of a run of 

01   on (v,T).    If p1(a(i))=u and «^u^ € M(u,v(x)),  then each SDv,.-run 

must tell us either  to go left  to an clement whose  first part  is uQ or 

right to an element whose first part is u^.) 

It remains  to define l£.£ , and we will do this by defining a set 

u 
QC^s")    and  then arguing that there exists a deterministic scquentaal 

automaton which accepts exactly Q.     Firstly,   if aC- (SlX)   ,  ot-a^ot^,...       , 

de.'ine a thread of tt to be an infinite sequence of  integers, 

j=i„,iv,.   .   .     such that for all iSw, «.(J.)   is defined,  and such that 
OX xx 

for all i€u,  Ji ^ Pp/Vl^i+l^'    Defi"e tlie s-sequence associated 

with the thread J   (for a)  to be the sequence 

P=P1(«0(J0)),P1(Q'1(J1))-   ...       so  that  ßG^.     Define 

Q=[a€ (s") | For  every S-sequence  ß associated with a  thread of 0-,   (3 € [0].). 

,n CO 

So we have that Q=(Sl,t) - Q= 

{«€(8,5) | for some thread of a,   the associated S-sequence is not of type [0]} 

It is easy to see that there exists a nondeterministic sequential 

automaton, 1^, such that 1{U^A-     Rut McNaughton [4] has shown 

that for every nondeterministic sequential automaton Ic^ one can 

construct a deterministic one, X^, such that T( i/^TCl^).  But it is 

easy to see that given any such K 2 there exists a deterministic sequential 

automaton, \( v  which accepts precisely the complement of T^H^).     So 

fci 
^^^Hft 
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let V.," be such that T(l^ )-Q . This finally completes the definition 

of aft. 

Notation; Very often, if R is a iUgt-run, we will want to refer to the 

ith element of R(x) for some node x and some positive Integer i.  So 

instead of writing (R(x))(i) we will write R(x,i). 

So if t =(v,T )  is a S-tree  ,  R€RnC-C .O, y€T      u=p  (R(y,i)), 
xx x A 

and <u .u >€M(u,v(y)), then we require that there exist at {0,1] and 

a positive integer j such that P1(R(ycr, j))^ and i € P2(R(ya, j)) . 

Remark: Let tft be a Z>pairs-automaton, and let n1 and n2 be positive 

integers with n^. Then since S^es"2. and if <a,a>GS^1xZ: then 

M"1(asa)£M^2((V,a). and ^U^1) =T(U^), w2 have that irf) ^ TC^
2) • 

We now state the main theorem of this chapter. 

Theorem 3: Let C/lhe a  pairs-automaton of order k.  Let 

k 

k(k+l) . 

2i=02(  2 

,11 Then D(<^L)=T(2Jl" ) 

half of Theorem 3 follows from Lemma 6. 

Lemma 6: Let^t = <S, S,M, s0 ,&>   be a pairs-automaton.  Let n be a 

positive integer. Then D(^0 3 TC^ ). 

Proof of Lemma 6: Let t=(v,T) be a S-tree such that t^T^). (Since it 

is clear that for any of the tree automata we have defined, (v^T^) is 

accepted (dually accepted) if and only if (VQ,T) is accepted (dually 

accepted) where v^(y)=\y;x'y) for y6T, to prove Lemma 6 it is sufficient 

to show that t GDC^). ) 

- • 
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Let R be an accepting run of Sfg, on t, that is, R £ Kn^" ,t) and 

for all paths TTCT, (KITT^ € 1(2^ ). Let r€Rn(^.t). We wish to find 

a path T7CT such that (HTT)^ [0].  To do this, we define by induction 

a function f:W-»T such that f(0)=A and f(1+1)-either £(1)'0 or f(i)'l, 

andrfeifi]. Then we merely let TT=( f(0) ,f(l),. . 0 • 

Simultaneously with f we define a function g:W-»[tnn] where m-c(S). 

(The idea is that the ith element of the path we construct will correspond 

to R(f(i),g(i)).) As an induction hypothesis at stage i we assume: 

r(f(l))-p1(R(f(l),g<i))) and (for i>0) g(l-l) 6P2(R(f(i),g(i)))• 

Define f(0)=A and g(0)=l. Clearly the induction hypothesis holds 

so far. Assume that f(i) and g(i) have been defined and that the 

induction hypothesis is true for i. We win define f and g at 1+1. 

Let x=f(i). Then r(x)=p1(R(x,g(i))). Let u0=r(x-0) and u^x-l). 

Then <u0,u1> €M(r(x) ,v(x)).  By the definition of SU^run we have 

that there is a positive integer j and a cr€{0,l} such that 

u =p1(R(x'a,j)) and g(i) 6P2(R(x-a,j)). Define f(i+l)=x-o and g(l+l)-j. 

Clearly the induction hypothesis Wolds at 1+1. 

Let n=(f(0),f(l),. . .}• " is a path of T so, since R :s accepting, 

(R|n) €T(UT1)- By the hypothesis we have carried through the definition 

of f and g, we see that the sequence g(0),g(l),. is a thread of 

(RITT)^ and that (rjn)^ 

P1(R(f(0),g(0))), P1(R(f(l),g(l))), P1(R(f(2),g(2))) 

the S-sequence associated with that thread. By the definition of 1^ 

we see that (r|TT)w€ [Ci], 

n 
•ai 

a 
The other half of Theorem 3, namely that for CTL and n as in Theorem 3 

D((/t) CTCm^, follows trivially, by induction, from the next three Theorems, 

I 
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Theorem 4: Let^ be a pairs-autcnaton of order 0 (that is. the sequence 

of pairs is empty).  Then HOt) ^1(0^). 

Theorem 5: Let k be a nonnegative integer and let n be a positive integer 

such that for every pairs-automaton^ of order k. D^)=T(*).  Then 

for every pairs-automaton ^t of order k+1-empty, D<^)=T(<). 

Theorem 6: Let k and n be positive integers such that for every pairs- 

automaton^ of order k-empty. D(*) ^(SDg > • ^ for ™ry  pairs- 
n2k 

automaton crL of order k, D(<n) 5=1(31^ )• 

Before we prove Theorem 4, we need the following definition. 

Definition: Let c/l= <S,2:.M.s0. n> be a pairs-automaton. Let s 6 S. 

Then define ^s to be the pairs-automaton ^ <S, E. M, s , Q> • That 

is 01     is the'same as (A.  except that the initial state is changed to 
•  s ■ 

Proof of Theorem 4: 

Let ^=<S, L, M, s0. "> be a pairs-automaton with n=the empty sequence 

and c(S)=m. Let t=(v.T) be a Z^tree such that t€D(^). We wish to 

show that t€T(aJ&. (Recall that no map is of type 0.) 

Since tC:D(^) .        there are no ^t-runs on t, that is, 

Rn^n.tM.  Tor - a non-aeeative integer and for x € T such that 

lengtMx^n, define the finite tree E^Y ^ iJlengtMy^n} . Define 

en=(v En)  By an application of König's Lemma we see that for some n, 
X N -rf. 
Rn(CT e!1)=0 • Let N be such a number, that is, Rn(  .eA)-0 . 

Define a map R-.T^S1 as follows: R(A)=<s0, 0 > ; for x6EA, 

let R(x)=<s1,!m]>,<s2,lm]>,...,<srM> where B^Sj,.... .8^ Is 

some enumeration of the set (s € sM^.eV0 ] ; for x such that 

**mä ** 
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length(x) >N,   let R(x)=the empty sequence. 

Clearly if TT is a path of T,   (R!")^ has no threads.    Hence,   if 

1 N 
R is a run of  £% on t,  it is an accepting run.     So let x € EA and  let 

8=p1( R(x,i)) for some i.    Then Rn(d7ts,eJJ) = 0 .     Let   <u0,u1> €M(s,v(x)) 

Then for some af. (0,1), Rn(^t    ,eN    ) = 0 .     So there exists a j  such 
UQ-  X CT 

that ucr=p1(R(x»a,j)) and i € p2(R(x«a, j)).  So R is a run on t.  So 

Theorems 5 and 6 will be proved in the next two sections.  To 

this end, we make some more definitions. 

Definition: Let ^t= <S, E, M, SQ, n> be a pairs-automaton. Denote by 

Öl    the SXP(S) automaton <S, Lx P(S), fl, SQ, n>   where H is defined 

as follows. Let s^S, a€L, S^S. Define 

M(s1,<a,S1>)= 
^M(s1,a) if s12S1 

0 if s1€S1 

Definition: Let t =(v,T ) be a E-tree, let S be a set, and let H 

be a subset of TXS. Then define t H to be the Sx P(S)-tree( (v,Tx), 

where v(y)= <v(y) ,(s € s| <y,s>€Hl> for y € T^ 

Intuitive Remarks: Let ^•=<S, E, M, Sp, n> be a pairs-automaton. Let 

t=(v,T) be a E-tree. Let HGTXS. 

Every ruM of <jä on tH is also a run of #1  on t, but there might 

be fewer of the former since RnCc^tH) is precisely those members, r, 

of Rn(^l,t) which dor.'t'tun into" a member of H, that is, r € Rn(d7l,tll) 

if and only if <y,r(y)>?H for all y6T.  Say that t€D(CT.).  Then 

tH€D((5x)-  If our goal is to show that ttT(!IK^), it might be easier 

to show first that tlieT(!D£.) since Rn(ät ,tH) might in some dense be 

a simpler set that Rn(fl,t). 

^M^i 
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same as 

Consider what a run of aft   on tH looks like.     It starts out  the 

a run of iß   on t,   that is it's a map R:T-»sJl   such that 

R(A)=<s   ,0   >,  and it continues like a run of ^t on t except that 

certain threads are allowed to die at meubers of H.     For example, 

say that  for  some x and i,   p1(R(x,i))=u and   <u0,u1>e M(u,v(x)) . 

If R were a run of SD^t  on t, we would require there to exist a j 

such that  for some a € {0,1} ,  UCT=P1(R(X'CT, j))  and i € p2(R(x-or, j)). 

Since R is only a 3^   -run on tH, we require this condition only if 

<x,S> ^H.    Hence,   for a path TTCT,   (RITT^ may have fewer threads 

than if R€Rn(5lC,t) and therefore,as already claimed,   it might be 

easier to find an accepting run of 5^   on tH than of £&&,  on t. 

How do these observations lead-mrtowards constructing an 

accepting <-run on t?    Maybe we    can find a set H^TXS such that 

we can show tH0€T(iD^).    Let RQ be an accepting run of %   on tH0. 

R    is partly an accepting run of 23^,on t,  except that if   <x,s>tH0 

0 r        u     •<* 
and p1(iy;x,i))=s,  then RQ doesn't continue properly for the i 

element of R0(x).    But, maybe we can find a set H<X)S>   such that we 

can show that t H.    CJ:T(!D£   ),   that id,   there exists an accept ing 

run R„  ^ of iD&  on t H-  . •  Then we can use R..  > to continue 
<x,s>    -^s    X <x,s> x»s> 

threads of R^ which had died. But for ^ .s'XEH^^ we need a 

set H   ,  , etc. For the sake of uniformity we will refer to 
<x ß > 

H0 aS "<A.s0>- 

It is important to understand wha'. ^<x>s>
€ Rn(%s'txH<x,s>) 

means. R   ^ differs from a member of Rn( !D§ ,tH    ) only by 
<x,s> A• 

starting at x instead of A and by starting with <s, 0 > rather than 

<s ,0 >. Assume now that we have a set HSTxS such that <A,s0>CH 
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and such that for every <x,s>€H we have a subset of 11, l^ >i 

with H^  .^(T -(x})XS. Assume furthermore that for every <x,s>Cll 

we have an accepting run R-  . €Rn( SDfc , t H^  O- What ve  would 1  *    <x,s>     ^s ' x "^»sV 

like to do is "put together" the runs R,^ >  to form an accepting 

n 
run R of Mirt  on t, as in the above paragraph. 

So for every x and every i, 1^ i Slength(R(x)), R(x,i) will 

be associated with some <y,u>6ll and some integer j such that 

y^x and p1 (R(x,i))=p1(R<  :>(x,j)).  We use this association to 

determine which elements of R(x,0)and R(x»l) should point backwards 

to R(x,i). 

The problem that remains is how to decide what members of H the 

elements of P.Cx'O) and R(x*l) should be associated with.  These 

decisions will be made so that R has the property that for any 

path rr err and any thread of (Rirr) , if the members of that thread 

are altogether associated with only a finite number of members of H, 

then that thread eventually has the same S-sequence as a thread of 

(R,;- u;>I'
rr)U) (f

or some <y,u>€H), which I   pothesis is of type fJ. 

The decisions must also be made in such a way that for any path 

TTCT and for any thread of (R|TT) , if the members of that thread 

are associated with infinitely many members of H then the S-sequence 

of that thread is of type ft. 

To jrovc both Theorems 5 and 6 we will find H, (H,,  O , and 

(R<  vj as above. However the way they are obtained and the way 

the decisions referred to above are made will be different in 

the two proofs. 

In order to combine ÜJl^runs it will be convient to have a notion 

       ■*  •- M% 
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of such a run being well-formed. 

Definition!. Let Ot= < S, £, M, s , 0> be a pairs-automaton, with 

S=fs„,s,,. . .,s  ,] , that is, we have imposed an ordering on S.  Let. 1 0  1     ' m-r ' 

t be a S-tree.  Let n be a positive integer and let R G RnC^, t ). 
x x 

Then we say that R is Well-formed ^"ith respect to the ordering on S, 

although this will usually not be explicitly stated in the future) if for 

all y>x, length(R(y))=mn, and if for all i, OslSm-l, and all j, 

lsj<;n, it is the case that p1(R(y,ni+j))=si. That is, R(y), for 

y>x, is of the form: 

<S0'A0,1>'<S0^0,2> <s0*k0tn
>^lA$l

>*-''^VA\tn
>'''''^m^Vkl-l^ 

where each A. . £[mn]. 

Lemma 7: Let ca=<S, H, M, s-, 0> be a pairs-automaton where 

S={s_,s1,. , .,s ,}. Let t =(v,T ) be a L-tree. Let n be a positive 

integer. Let R be an accepting run of ^d on t . Then there exists an 

accepting run, R', of ^ on t which is well-formed. 

Proof of Lemma 7: The proof of lemma 7 is actually quite easy in 

concept, but we shall do it in detail anyway. 

Let &l,t   , and R be as in the lemma statement. Choose 

f:{ <x,l>} U ((T -(x)) X [mn]) -» [mn] such that 

a) if Osi^m-1 and !<; j <: n , and if y€T and f(y,ni+j) and 

R(y,f(y,ni+j)) are defined, then p^RCy, f (y,vii+j)))=si   and 

b) for every yG T  and every JJ, 1 ^ J& ^ lcngth(R(y)), there exists 

V   such that f(y,Ä,)=£. 

Define R1 as follows.  Let R'(x)= < SQ, 0 >.  For z€ Tx , a €(0,1), and 

y=z*a, let R'Cy) be the string of length mn such that for O^i^m-l 

and 1 i j S n and q-'ni+j , we have 

^■Ü 
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c) P1(R
,(y,q))=si  and 

d) if f(y,q)>lergth(R(y/), then p2(R
, (y,q)) = 

[i£[mn]\f(z,i)   is defined and f (z.-fc) > length(R(z))] 

e) if f(y,q) ^length(R(y)), then p2(R'(y,q))={^ 6 [mn] ] f (z.i) is 

defined, and either f(z,A)>]engthfR(z)) or f(z,A) 6 p2(R(y,f(y,q)))l 

R' is well-formed. To show that R1 € Rn( Di^, tx) let ^ei^, 

let Z  be such that K'(zJ)  is defined, let u=p] (R'(z, A)) and let 

<u0,u1>€M(u,v(z)).  If f(z,A)>length(R(z)) then by c), d), and e)we sea 

that for a€{0,l} and some q, P1(R'(z*a,q))=ucT and i-G p2(R
,(z«a,q)). 

If f(z,X) slength(R(z)), then by a) and c) , p1(R(z,f(z,A)))=u. So for 

some CT6{0,1} and some q , p1(R(z«a,q ))=UCT and f(z,Ä) 6 p2(R(z«a,q )). 

By b), there exists q' such that f(z«a,q,)=q.  By a) and c) 

P1(R'(z«a,q
l))=p1(R(z«a,q))=ua. Also, since f(z,^ €P2(R(z'a,f(z'CT.q

1))), 

we have by e) that £ € p^R'(z'^.q')).  So R' 6Rn(SOjJ,tx) . 

It remains to show that R' is accepting.  So let "CTX be a path, 

TT-{X0>X1,. . 0 where xi<xi+1 for i € u. Let O-AQ,^,. . . be a thread 

ofCR'lTT)^.  Note that f(x0,Ä0)-f (x,l)-l so that f(x0^0) ^ length(R(x0)). 

Now let iG" be such that f (x. ,i.) ^ length(R(xi)). So, since 

jai6p2(R
,(xi+1,Äi+1)),        wehave by d) and  e) above that 

f(xi+1,\+1) 5 length (R(xi+1)) and f (x., A.) 6 p2(R(xi+1,f (x.+1.£i+1))). 

So by induction we see that the infinite sequence 

ß=f(x ,je0),f(xr
<'..l),. . .  is a thread of (RITT)^. But by a) and c), 

the S-sequence associated with a  for (R* l11)^ is the same as that 

associated with ß for (Rl")^, and this is of type 0  since R is 

accepting, r-t 

L m±—^t^mtlm^^m iMM ■■■ 
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Section 3:   Proof of Theorem 5 

Let k be a nonnegative integer and let n be a positive integer 

such that  for every pairs-automaton 4r   of order k,  DC^r )-T(UJt^).    Let 

^t = <S, E, M, s-, n>   be a pairs-automaton   where   ^=( <L-»ui > )i<-si+i» 

L.   ..= 0 ,  and S={s0,s..,.   .   •>sm_i}'    Let t=(v,T)  be a fixed   S-tree 

such that tCD(^).    We wish to show ,   eventually,   that tflt^fy. 

Define a set H^ixS by H={ <A,s0>) U{ <x,s>|t   €D((7I. )  and sG U.J,) 

For   <x,s>€H,   define H^ s>=( <y,u>€ H |y>x] .     Let 

n'=(<Li.ui»Ui^. 

Lemma 8:  For every   <x,s>€H   and for every r € Rn((7f.   ,t ),  either 

I)  there exists a path nci    such that    r|TT€ [0']        or 

II)  there exists y>x such that   <y,r(y) > €H . 

Proof of Lemma 8;  Assume otherwise.    Let   <x,s>€H   and let 

r€Rn(<?t ,t )  be such that for all paths TTCT ,  r|TT^ [0'], and such 
, S      X X 

that for all y>x>   <y,r(y)>?H. 

Definition:   If YCT    is a set of (pairwise)   incomparable nodes  (under ^) 

define T^zGTjfor all y€Y,   z^y}=Tx-yyY(Ty-(y}) . 

We will now define r1 € Rn(<5X ,t )   such that for all paths TTCT  , 
S      X X 

T'lrr^ini,  contradicting the fact that  t   €D(^i  ).    Let 
X s 

Y=(y€Tx|y>x,  r(y)6Uk+1,  and for all  z,  x<z<y,  r(z)^Uk+1}. 

Y 
Clearly the members of Y are incomparable.     If z 6 T ,  define r,(z)=r(z). 

Now let y€Y,  r(y)=u.     Since u € U.    -  and   <y,u>?H,   it must be 

the case that t   iD(0l ).     So let r   € Rn(£/7   ,t  )  be such that for all 
y u y u   y 

paths TTCT  ,  r   [TT^ [Q].    For all y € Y and all  Z€T  ,  define r' (z)=r  (z). 

Clearly r1   is a run of (/I    on t  .     Let TTCT    be a path. 
S X X 

K*^ ^m^mäa 
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Case 1:  irn Y= 0 

Then r'|TT=rlTT so v^-nilW].    But r'(n-(x} )=r(tr-(x}) must not 

intersect Uk+1.     Sor,lTT?[n]. 

Case. 2: TTH Y^0 

Let (yl^nHY.     Let TT -rrD T .    Then r1 l-n^r^l^.     So 
y   y   y 

r'lir   ? [Q].    So T'ITT^ [Q], 

Contradiction,   Q 

Now define the pairs -automaton 4=<S, S, M, SQ, fl" > .    What Leim:a 

8 says is that  for   <x,s>€H,   tx
H<x>s>

€ D<^ s)'     Bu,: ^ s 
is üf order 

k.     So by the hypothesis,   for   <x,s>€H,    t:<
H<x>s> e T<It£s

)'     So for 

<x,s>€H ,   let R<x s> be an accepting run of ffl^    on tx"<XjS>-     Eu,: 

Q'   is a subsequence of Q,  so each R^ s> is also an accepting run of 

fflßi       on t H.     . . <^s X <x,s> 

Without loss of generality  (by Lemma 7)  assume that for   <x,s>6H> 

R        ^ is a well-formed accepting run of %&     on t U.        .    We want 
<X)S>   V.. g X     ^AjÖ-' 

to construct a well-formed accepting run, R, of %L   on t. R(A) will 

equal <so,0> and for x>A, R(x) will be of length mn.  Simultaneously 

with R we will construct a function f which is defined at a node x and 

integer Z  if 1 <:£<: length(R(x)).  If defined, f(x,A) will be a member 

of H, say for example <y,u> . The interpretation is that we think 

of the &      element of R(x) being continued like some element of 

R    (x). Like which element? Well, if y=x, then R   .(x) has only 
<y, u> ^-y»"^ 

one element, namely, <u,0>, and we better make sure that p1(R(x,.e))=u. 

Otherwise, that is if y>x, we associate R(x,A) with R<yjU>(
x.£)» vhlch 

we can do since by the definition of well-formed both elements have the 

— • 
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same first part. To speak of the two cases uniformly we define a 

function g such that we always Lhirik of associating R(x,^) with 

^(x.A)^»8^»^' We also have to  make sure that R     gives us f(x,£) 

acceptable directions on how to continue the jeth element of R(x), and 

therefore carry along various induction hypotheses in the definition of 

R and f. To define f, we will need a well-ordering on H. 

We now begin more formally. Let < be a fixed well-ordering on 

TxS; clearly •< induces a well-ordering on H. Denote by < the usual 

strict well-ordering determined by <. 

We now define R:T-»S^and f: {<A,1>)U((T-(A)) X [mn]) -»H. We will 

define them by induction, and at every stage the following will be true: 

If R(x) is defined and 1^ ^^iength(R(x)), then f(x,A) is defined; 

if f(x,£)=<y,u> and P1(R(x,je))=s, then 

a) y^x  and 

b) if y=x then u=s  and 

c) <x,s>?H 
<y,u> 

Let R(A)=<£o,0>. Let f(A,l.)-<A,80>. Clearly the above 

hypothesis holds so far. 

Assume now that R(x) and f have been defined so that the above 

hypothesis holds.  For i,   1^ je<:iength(R(x)), define 

^1 if p1(f(x,£))=x 

h if p^fcx,^))^    . 

Let CJ6(0,1).  Define R(x-a) to be of length mn such that for 

iSqSmn, P1(R(x«ff,q))-8 whcro i« the greatest integer less that - 
n ' 

and auch that 

g(x,.e) 

' *- 
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p2(R(x'CT,q))=(J&|f(M) is defined and g(x,A) € p2(Rf (x^j (x»a,q))) . 

We now define f. Let s=p1(R(x'a,q)). If <x'a,s>^ll let 

f(x'a,q)=<x'0,s> .    Clearly this preserves the induction hypothesis. 

If <x'a,s>?H, let f(x»a,q)«mitiitnum(f (x,A) |£6 p2(R(x»a,q))}. Clearly 
under ^ 

a) and b) are preserved for x'a, and since <x,o-,s>^n , c) is true 

at x'CT. 

It remains to show that R € Rn(3CRa,t),  and that R is accepting. 

Let x.Ji.s.UQ.Up  be such  that R(x,£)   is defined,   p1(R(x,X.))=s,   and 

<u0,u1>€M( s,v(x)).     Either by b)  or by the  fact  that R and Rf/X)J^ 

are well-formed (depending on whether or not p^Cf (x,X.))=x) we can 

conclude that p^R.,     -. (x,g(x,^)))=s.     Now recall  that if f (x,£)= <y,u >, 

then R, is a run of 33^     on tJL,     ^.    Since   <x,s>?H^. „^   (by c)   ) 
u 'f(x,je) i0 " ' ~"«u "" wy"<y,u>      "'^.^ 

we know that there exists erf [0,1]  and q such that P1(R
f/x ^ (x*0'ci^=ucr 

and g(x,£) €p2(Rf(x ^(x'CT.q)).     Since R and Rf^^  are well-formed, 

P1(R(x*a,q))=u .    And by the definition of R,  £ 6 p2(R(x'cr,q)).     So 

R€Rn(m^,t). 

To show that R is accepting,   let TTCT be a path, rr^x^Xp.   .   .) 

where xi<xi+1 for l€w,  and let a=ILQ,S,v.   .   .    be a thread of (RITT)^. 

Case 1:  For infinitely many i,  x^p^f (Xj,^)). 

By b),  P1(R(xi,je.))=p2(f(xi,Xi))   for infinitely many i.    But by 

the definition of H,   this  implies that PiCRC^.^)) € uk+i 
for infinitely 

many i,  and hence,   that the S-sequence associated with or is of type fi. 

Case 2:  x.=p1(f(x.,£.))   for only finitely many i. 

So for sufficiently large j,  x.+1^Pi(f(x4+i»A
1+i))•     By the 

definition of f, we have that  for sufficiently large j 

f(xt .,,A. 1,)<f(x.,Ji.).     Since < well-orders II,   there exists an 1 
j+1    j+1. j    j 
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such that if j^i, f(x ,£ ^(x^J^).  Let <y,u > =f (xi,jei) Then 

is a thread of 

y^x,.  By definition of R we have that if j>i, 

V^Ssu-^j+l'Vl»-  ThatiS' Mi+l'V2" ' 
Y=R^     ^(x.in),R^     ^(x. ,„),...     .    Since R and R^      .   are well-formed, 1    <y,u>    i+l  '  <y,u>    1+2' "^»u^ 

the S-sequence associated with ß for R(x.   ..),  R(x    «).        .       is  the 

same as the S-sequence associated with ß for y,       so it is sufficient 

to show that  this  S-sequence is of type Q. 

Let TT =TTn T  .     We know that the S-sequence associated with a  thread 
y       y 

of (R^.     „ITT )    is of type Ü.     We want to be able to say that the £.,. v <y,u>1  y to JV J i+l 

element of R^,     ^(x.,,)  can be traced back to the  first and only <y,u>    i+l 

element of R,^     ^y),   that is,   that there exists a finite string of 

numbers  ß'   such that  ß'^ß is a  thread of  (R,^      ^TT )   ,     Let z,a=x.   , 

where z€T    anda€(0,l}.     Since f(x, ^^    1) = <y,u> ,   there must 

exist a q such that  f (z,q)= <y,u>and q € p2(R(x.   .., A     ,)) .     So 

g(z,q)€p2(R      u>(xi+i»-e
i+i))-     If z=y we ar€' done-     Otherwise,  g(z,q)=q, 

so we have that q»ß is a thread of R (z)   »y and  f (2,q)= <y,u>. 

Continuing in this way we see that there exists  ß1   such that ß'^ß is 

a thread of  (R      ^l")^'     So R is accepting, Q 

Section 4:   Proof of Theorem 6 

Definition:  Let 6:A-»B,   let   ^:::( <L
J >U. > ) i^.^.   be a sequence of pairs 

of subsets of B,    Then we say 6  is of type fl-empty. written 0€ [O.e], 

if 6 G [fi] and for some i,   Isi^k, e(A)nL.= 0   (wherr. 0 (A)={e(a) |a t A]). 

The point of the definitbn will be that the property of a sequence 

being of type R-empty is basically simpler than the property of being 

of type 0.   "in particular,   if 0 is of order k we can "recognize"  if a 

~  - ^MiM^Hil 
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sequence is of type ,0-empty with an Q' of order k-emptv.  This is 

made more precise in Lemma 9. 

Now let k and n be positive integers such that if <£ is a pairs- 

automaton of order k-empty, then D(,£) c T( Uj).  Let 

tSt=<S,L,   M, s0,n> be a pairs-automaton where S^s-.s... . .,s  ] 
0 1      m-1 

and " = (<L.,Ui>)ls.sk.  Let t=(v,T) be a ^-tree such that t€D(^0. 

Eventually we will show that t€T(^2 ). 

Below, we will define a pairs-automaton of order k-empty whoso 

state set is SXP([k]). To this end, 

Defini tioiK   If a<EsU, Q'=u0,u1,.   .   .       ,  define c^€ (s X P([k]))U by 
Q 
a =<u0'N0>'<urNl>" ' •  where ^  and N^rt Ufj|u.€L.) for all 

16«. 

Notatlon: If N is a finite set of positive integers and j is a positive 

integer, let N(j) be the Jth smallest member of N (if c(N} ^j; otherwise 

N(j) is undefined) . That is, N(j) is y(j)  where Y is the finite sequence 

obtained by listing N in increasing order. 

Definition; Let n'-(<L} ,U' >)^^ where for teizk-l  we let 

U« -{ <u,N>€sxP([k])|i^c(N)sk-l and u€UM/.J  and 
N(i)J 

LJ -{   <u,N>€SXP([k])|iSc(N)sk-l and u C LM, . J ;  define 
N(i)' 

^ =(<u,N>€ S XP([k])|for some j,   IstjsSk,  u6U.  and j^N (so c(N) <k)  ) 

and 1^=0 .     Note that 0'   is of order k-empty. 

.to 
I.cmma 9:  Let cy^ S  .    Then Q-C [n,e] «c/1^ [Q1 ] 

Proof of Lennna 9:   Let^,^,.   .   .        ;   l^t « - <u0,N0> . ^.N^ ..,. 

Let N^f j,   IS j ifc | for some i € o,  u   6L } .     Then by the definition of 

« ,  we have  In(a )«{ <u,N>|uG In(o')} . 

=»:  Lot tf€ [n,e].    Then c(N) <k.     Lut j  be such that Tn(a) H u ^0 
j 

!■ fca ^ mi M^B* 
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andln(.)nLr0.     If 3^ N.   then 1^°) R U'/0 so a   6 [Q-] •     If J ^ N, 

there exisJq  sueh  that N(q)-j.     Then In(an)nu' ^ and InCcP) fl L'^ . 

so Qp6[n']. 

«:  Let oPein'l.     If In(aP)nu^0,   then there exists j  such 

that ln(conu.^0 and j * N.     So «6 [fl.e].     If there exists q,   lSqSk-1 

such that In(aQ)nu^0 and In(cP)ni^0.   then In(a) H UN(q) ^ and 

InCaifh , v-0 •     Since c(N) <k, we have cv€ [Ü,e].   n 
N(q) 

Definition:  Define the pairs-automaton 

^-<SXPak]),i:.M',<so.0>,a'>  where for s€S,  **[*],  a € S, 

M'(<s>N>la)=(«u0.N'>,<u1.N'»I<u0,u1>GM(s,a)  and  N'^U {j | s G L.]]. 

Fact SFor x G T,   s € S.   if r is a run of ^<s  >0>    on tx,   then p^ is a 

run of Uls on tx.  and  if nC^ls a path,   then by lemma 9, 

r|TT€ [0« ] « p^lrrG [0,e]. 

(Recall  that t€D(^.).   ) . P    .       r „„J«. 
It would be nice if t6D(^).     For then,   since ^   is of order 

k-empty, we would have that t€T(^)  and an accepting run of üjf?   on 

t would clearly yield an accepting run of *$    on t.     It is not however 

necessarily true that t€D(^).    But what if we had a set 

?/  . GTX   (SXP([k]))   such that t»^      >£*(&) 1  
<A,so> ' 0 

With this approach in mind we define a (possilly trans-finite) 

sequence of pairwise disjoint subsets of TXS, (H \b <y)   for some 

ordinal y, as follows: 

Let HO=0 . Assume that H6 has been defined for 6 <ß. Define 

■"{- 
for all reRn((fls,tx),  either A 

s>   there exists a path TTCT such that r|rT€ [n.e]^     or>-£UpH 

there exists y>x such that   <y,r(y) > € ^ß11 -    y 

Let v be the  least ordinal   >0 such that HV= 0 . Let H-^H     . 

6 
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Lenuna  10:    <A,s>GlI. 

Proof of Lemma 10:   Assume that   <A,s >?H.    We will construct by 

induction a run r of ^ on t such that for all  paths nCT,  r|iT^[0], 

contradicting  the  fact  that  t(zD((/t). 

As  in the proof of Lemma 8,   if YCT is a set  of (pairwiso) 

Y i incomparable points,  define T ^{z6T|for all y€Y,   z^-y). 

Stage Ot, Let Y0=[A}   and define r(A)-s0.    Clearly Y0 is a set of 

incomparable nodes and for y€Yn,   
<:y,r(y) > ^H. 

Stage i+1: Assume that Y. CT is a set of incomparable nodes and that 

r has been defined on T ^^ such that if y CY.,   then   <y,r(y)>? H. 

Let yCYj,  r(y)=u.     Since   <y,u>?H,   there exists 

r   €Rn(^  ,t )  such that for all paths nCT ,  r   ITT^ [Q.e] and such that y uy y      Y *        *■      j 

for x>y,   <x,r  (x)>?H.     Let 

G =<x€T 
y 1    y 

I)  x>y 

II)  for all j,   l^j^k,   there exists z,   y^z^x,  such that 

r  (z)€L1 y j 

111) x is a minimal (under 5) node satisfying I) and II) 

Clearly G is a set cJ: incomparable points. 

Let yi+1
= y G • Clearly Y . is a set of incomparatle points 

and TYi+l 3 

Y y^4,1    WJ 
T i.  Let zGT :L  ~ T 1.  There exists a unique yt'Y. such that y<z. 

Define r(z)-r(2).  So if x^Y^, <x,r(x)>?H. 

This completes the definition of r.  Since for all i, every 

member of Y^ is of length at least i, r is defined on all of T. 

Clearly r is a rur. of <92 on t.  Let TTCT be a path.  Let Y= U Y,. 
ieo i 

^MÜ 
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Case  1:  cCrrCt Y)=w. 

Then   if   i€w there exists y.€Y.   such that y. €TT,  and 

<v, < 
yo^yi 

•   •   • , So for every i€w and every j, 1^ j ^k, we have 

r([yi,yi+1J)nL. ^0. So for every j, l^j^k, In(r|n)nL^0. So 

r|iT«[n]. 

Case 2:  nPl Y  is  finite. 

Let y= Tnaximum(Trn Y).    Let TT =nn T  .    Then rJTT -r  |n .    Also,   it 
under ^ ^ y y    y    y 

must, be the case that  for some j,   l^jsk, r  (n ) R 1, = 0 .    But ry was 

chosen so that r  |n   ^ [n,e].     So r  |TT   ^ [Q].    So rjn   ? [Q]. 

Contradiction.   □ 

Definition:  For 6<'V,   and   <x,s>€ H  ,  define H<x ^ U Hp;   let 

>f<3C)S>={<y, <u,N>>€Tx(sxp([k])) | <y.u>^H<^)S>i. 

By the definition of H,   <x,s>€H   implies  that  for all 

rtRn(<5t  it )  either  there exists a path TTCT such that r|TT€ [0,B], 
s    x 

or there exists y>x such that   <y,r(y)>€H<     >.     Therefore,  by Fact 3, 

we know that if   <x,s> €H,     then t ^<     >€D(^<    .>),    By the 

hypothesis of Theorem 6, DC£.   (*>k)
CT(iBS       ,   )• <--S,\ö'> *'<S,0> 

So let R'      .   be an accepting run of 33E on t "W-.     .   for   <x,s>6H. 
<x,s> r '■fr<s,0> x/T<x,s> 

We would like R'       .   to have  the  following property:   For all y€T , 
^■X, S-^ X 

ae[0,l},4, q, if <u1.N1>=P1(R^X)S>(y,^)) and 

<u2,N2>=p1(R^x s>(ya,q)) and A€p2(R^x s>(yCT,q)), then 

N9=N1 U {j ju, G L.] .  If this property does not hold we could remove ^ 

from p«(Rl. ^(y'Vytl))  and what we'd have left would still be an 

acceptitig run of %&- on t V,  . . So for <x,s>€ll, assume 1   ■'        •*<Bt 0>    x' <.x,s> 

without loss of generality that R'  . has this property. 

* . ■ . ■ . ... 
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For   <x,s> €11,  define R<x ^tT^s;.1;.     as  follows:     if    Y € Tx, 

"let R<    ^(y) be the same length as R<X)S>(y);     ;-f 1 s i ^ length(R^^^y)), 

define P2(R<XiS>(y.i))=P2(R<x,s>(y'i))  and define Pl(R<x,s>(y'i))= 

Pl(Pl<R<x.S>(y'i)))-     SO R<x.s>GR^'^ «Sc^x^-     Let ^"x bC a 

path;   let  [3 be a  thread of  (R.    s>lTr)w 
and  let a be  the S-scquence 

associated with  ß  for  (R<x ^1")^-     Then ß is a thread of   (K<X)S>lTr)u, 

and the S-sequence associated with ß for  (R^ S>ITT)W is.  by the above 

property,  a .    We know,   since R^ s> is an accepting run of 3$r , 

that a   6 [Q'].    So by Leinraa 9,  aS [n,e],  so o-S [Q]. 

By the above paragraph    and Lemma 7, we can  finally conclude 

that for <x,8>€H,   there exists a well-formed accepting run of 3^     on 

,nr 
t H^      ^.     Denote  it by R^-      ^. X <x,s> ^x^^ 

We now proceed to construct R,  a well-formed run of W/n    on t 
6 

We first define a total ordering, <H,  on H as  follows:     Let <x,s>€H 

and   <y,u>GHi3  ;   then we put   <y,u><<x,a>   if ß<6,   or if ß=6 and 

<y,u> < <x,s> where ■< is a fixed well-ordering of T X S as in Section 

3.    Clearly <    is a well-ordering of H.    Denote by < the obvious strict 
H " 

well-ordering determined by ■<  .     It  is important  to note  that if 
H 

<y,u> 6H<x s>, then <y,u><H<x,s>. 

At the same time as we define R we will defiTio a function 

f:{<A,l>} U ( (T-{A)) X [mn2k]) -»H. As before, we carry along the 

following induction hypothesis:  If R(x) is defined and 1 ^-i ^ length(R(x)), 

then f(x,£) is defined; if f(x,4)=<y,u> and p1(R(x,X))=s, then 

a) y s x and 

b) if y=x then u=s and 

c) <x,s>? 11^  ^ . 

i 
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Let R(A)-<so,0>.  Let f (A, 1)« <A,80 > .  Clearly the above 

hypothesis holds so far. 

Assume now that R(x) and f have been defined so that the above 

hypothesis holds.  For i,   1s £slength(R(x)), define 

(1 if p,(f(x,je))-x 
8(x,-e)=) 

(l  if p1(f(x,£))^:  . 

Let a £{0,1], Define R(x'cy)   to be of length mn2k such that for all q, 

lsqsmn2 , p1(R(x
,a,q))=si where i=the greatest integer less than -4j- , 

n2k 
and such that p2(R(x

#cj,q)) = 

[&\f(x,l)  is defined and gCx.-ß) G p2(R   ^(x*a,q))). 

We now define f.  Let s^-p.^RCx'^q)).  If <X*CT,S>?H, define 

f(x'a,q)=minimL'm (f(x,X)|X€p (R(x«a,q))}. if <x'a,s>CH, define 
under S,, 

H 

f(x'a,q)=minimum ({ < x'CT.s > ) U ( f (x,ü) U^ p (R(x.a,q))) ) .  Clearly 
under "^ 

a) and b) are preserved.  To see that c) is true at x'a, observe 

that if <x,CT.s> ^Hf(x,CT^) then <x'a;s>€H and <x»a,sXHf(x'a,q), 

contradicting the definition of fCx'a.q). 

9k 
'ihis completes the definition of R and f. That R6Rn(^ ,t) 

follows exactly as in the previous section. It. remains to show that R 

is accepting.  So let TTCT be a path, TT-fx^X^...) where x. <x.  for all 

l6w. Let ^0,^1,. . •  be a thread of (RITT)^.  NOW for all l6w, 

f^Xi+l i+l^l^^i'^i^'  So' since ^H well-orders H, there exists an 

i such that jai implies that f (x ,Ä )=f (x. ,£.).  Therefore the proof 

that R is accepting is identical to that in Case 2) at the end of 

Section 3. ri 

' 
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Proof of Theorem 3: 
,k(k+l) 
r 2 ' 

Notation: For k a nonnegative Integer, let n(k)=2 Note that 

2k+1n(k)=n(k+l). 

Let our induction hypothesis at stage at stage K be that if 

^ is a pairs-automaton of order K, then D(0l) «=1(33^ ) • 

The hypothesis is"true at K=0 by Theorem A. Assume it is true 

for K=k. We wish to show it for K-k+1. By Theorem 5, if ^ is a 

pairs-automaton of order k+1-empty, then D(^) r=T(<k)). Therefore, 

by Theorem 6, if Ot   is of order k+1,  D(^) CT(!Ü^,'  ) • 

This together with Lemma 6 completes tho proof, p 

1 

' 
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