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THE EMPTINESS AND COMPLIMENTATION PROBLEMS
FOR AUTOMATA ON INFINITE TREES

BY

Charles Weill Rackoff

Submitted to the Department of Electrical Engineering on August 14, 1972

in partial fulfillment of the requirements for the Degree of Master of
Science.

ABSTRACT

In [6] Rabin defines Automata on Infinite Trees, and the body of
that paper is concerned with proving two theorems about these automata.

The result we consider irn the first chapter says that there exists
an effective procedure to determine, given an automaton on infinite
trees, whether or not it accepts anything at all. We present a new
decision procedure which is much simpler than Rabin's since we do not
use an induction argument as he does. We show in Theorem 1, the
main theorem of Chapter 1, that if ¢t is an automaton on infinite
trees, then T(41) (the set accepted by Ut) is non-empty if and only
if there exists a finite tree E and a run of ¢t on E of a particular
type. This latter condition is equivalent to saying thac the set
accepted by a particular automaton on finite trees is non-empty,
Hence (see Theorem 2) the emptiness problem for automata on infinite
trees can be reduced by Theorem 1 to tlie emptiness problem for automata
on finite trees, which is shown decidable in [7]. Theorem 1 is proven
by showing how maps on finite trees can generate maps on infinite trees
which are then said to be finitely-generablas. A corollary of the proof
of Theorem 1 is that if an automaton on infinite trees accepts some
input tree, then it accepts a finitely-generable one; this result
was proved in a much more complicated way by Rabin in [5].

Chapter 2 is concerned with the more difficult result of [6]
that for every automaton on infinite trees, &1, there exists another
one, 0L ', such that ¢U' accepts precisely the complement of the set
accepted bydl . Rabin's construction of ¢l' and the proonf that it
works is an involved induction. 1In this paper we present a fairly
simple description of a complement machine o', given U1, such that it
1s very plausible that &T' works in the sense that T(UT')ST(C1). The
proof that our construction works, hovever, is difficult and very

similar in complexity to Rabin's proof in [6) that his (more difficult)
construction works.
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CHAPTIIR 1
The Emptiness Problem

Section 1: Introduction

The analysis of finite automata on infinite trees is the basis for
Rabin's remarkable proof of the decidability of S2S (the monadic second-
order theory of two successors) [6]. Rabin's proof follows the now
standard form of Biichi and Elgot's proof for WS15 (weak, single successor)
[1,3]) and Thatcher-Wright's proof for weak S2S [7], and requires
demonstrating effectively that the automata arc closed under union,
projection, and negationm, and that the emptiness problem for the
automata is decidable. As in the case of S1S, *he main difficulty in
the case of S2S lies in proving closure under complementation of sets
accepted by nondeterministic automata on infinite trees. The problem
is complicated by the fact that nondeterministic infinite tree automata
are known not to be equivalent to any of the likely definitions of
deterministic infinite tree automata.

In [6) Rabin shows how, given an automaton on infinite trees (T,
one can construct another one, ¢01', such that ¢t accepts exactly the
complement of the set accepted by Jt. His construction, however, is a
very complicated induction. In Chapter 2, we present a fairly simple
construction for oi'.

Curiously, the emptiness problem, which is easy for the other kinds
of automata, turns out to be nontrivial for (nondeterministic) infinite
tree automata. Rabin subsgquently improved his original proof of the
decidability of this emptiness problem, but even the second proof [5]

uses an involved induction and consequently dces not yield a simple
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effective criterion for deciding emptiness.

In this chapter we provide such a criterion by showing that an
infinite tree automaton accepts some valued tree if and only if there
is a computation of the automaton containing a certain siwple kind of
finite subtree. Moreover, the set of finite subtrees of the kind we require
is recognizable by a finite tree automaton, and in this way we reduce the
emptiness problem for infinite tree automata directly to that for

finite tree automata. This also yields a simple proof of another

result of Rabin's about '"regular" runs by automata (see below).

Section 2:

For this paper the appropriate way to visualize the infinite
binary tree T is as follows. At the top is the root A, Every xCT

has a left son x* 0 and a right son x* 1. Hence '1‘={0,1]“.

N\

00 1 10 11

R U A

' » L] '

0
\

We define a parti‘al orderiné onT by x<y if y=x"z for some z€ (0,1} "

If xSy and x#y, then we will write x<y.

For each x€T, define the (sub)tree with root x to be the set

= < M =
T, (ylx<y}. Thus T Ty

Definition: A path T of Tx is a set ﬂCTx satisfying: 1) x€m;

2) if yCm, either y*0€T or y*1€T but not both; 3) ™ is a minimel

subset of Tx satisfying 1) and 2).
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Notation: If x and y are members of T and x<y, then we denote by
[x,y] the set (z'szSy}.
For a set B we denote the cardinality of B by c(B) and the set of

subsets of B by P(B).

Definition: A set BCTx is called a frontier of Tx if for every path
TTCTx we have ¢(m1 B)=1. By Konig's Lemma, every frontier of Tx is
finite.

For x€T, a finite tree with root x is a set

Ex=[z|szSy, for some y € B}, where B is a fixed frontier of Tx' Tor
Ex as above, B is called the frontier of Ex and is denoted by Ft(Ex).

Unless otherwise noted, we will use E to denote a finite tree with root A .

Definition: A X-tree is a pair tx=(v,Tx) such that v:Tx-’E. A fipite

l-tree is a pair ex=(v,Ex) where V:Ex-’E. Unless otherwise noted, we
will use t and e to denote th and e\ respectively. If t=(v,T) is a
Z-tree, then we use both (V,Tx) and tx to denote (vITx,Tx). If t=(v,T),

and E_ is a finite tree, then we use e and (v,E ) to denote (le ,E ).
X bl X x’ x

Definition: For a mapping ©:A~3, In(9)=[bEB|c(6-1(b))2w] ;
_— . < gt
Definition: Let ©:A9%B and let Q=( Li’Ui>)ISisn be a finite sequence

of pairs of finite sets. We say © is of type Q, written 8 € [Q], if for

some i, 1<i<n, we have In(e)nui;qu and In(0)N Li=¢. IfQis the

empty sequence, then we define it never to be the case that 9 € [Q].

Definiticn:An f.a.t. (Iinite automaton on trees) is a system
Ol=<5,Z M, sO,Q> where S is & finite set of states, & is a finite set,

M:SXZ+P(SXS), so €5 is the initial state, and Q=(<Li’Ui>)ISiSn is a
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finite sequence of pairs of finite sets.

1f tx=(v,Tx) is a I-tree, then an¢l-runont is any mapping
r:TX"S such tuat: 1) t'(x)-—-s0 and

2) for all y€T, <r(y'0),r(y'1)>€M(r(y),x(y))-

1f ex=('.,Ex) ;s a finite L-tree, then an ¢I-Ttn on e is any

Ex"S such that 1) r(x)=s0 and
2) for all yEEx-Ft(Ex),
<r(y+0),r(y* 1> EM(r(y),vy))-

mapping r:

The set of all J{-rumns on t:X (ex) will be denoted by Rn(éz,t'x)

An accepting ¢l-run on t is any r GRn((:L,tX)

( Rn(()t,ex) . respectively).
such that for every path ﬂCTX, rl'ﬂ € [Q]. Dvefine

Tt )={ tx‘ there exists an accepting J{-run on tx}. T@t) is called

the set accepted by 0T .
Given an f.a.t. L =<8, Z, M, 8- (>, we wish to determine

whether or mot TEL)=% . Consider the automaton Ji =<8§,{a}, M, 502 Q>

where for all s€8, ﬁ(s,a)=céJz M(s,0).

Thus, the emptiness problem is reduced to the cas

Clearly T(/L)=9 *T(oD)=9 .

e of automata

over the single letter alphabet (a}. Henceforth in this section we

restrict our attention to this case. Since there exists just one

{a)-tree rooted at A, (v,T), and for every finite tree E just one finite

(a)-tree, (V,E), we will omit mention of the valuation ¥ and talk

about ¢L-runs on T and E, ¢taccepting T, etc. Clearly,

TP CTETET).




Theorem 1: Let(l= < S, {a}, M, 54 ((Li’ Ui))1 <is<nm > be an f.a.t.

T@OD # ¢ © for some finite tree E there exists an r suck that
1) r € rRn(OL,E),
2) there exist mappings J: Ft(E) - E-Ft(L) and H: Tt(E) -
E-Ft(E) such that for all x € Ft(E)
a) H(x) < J(x) < x,
b) r(i(x)) = r(x),
c) r([H(E), J(x)]) = r([I(x), x]),

¢) for some i, 1 < i < n, r([J(X), x]) N L, = ¢ ard r(x) € g

Before we prove Theorem 1, we show that Theorem 1 easily yields the
following theorecm.

Theorem 2: The emptiness problem for f.a.t.'s is decidable.

Proof of Theorem 2: Let O] be as in the statement of Theorem 1.

Definition: Let E be a tree (finite or infinite). Let r be an {{-run

%
on E. Let x € E. Since x € {0,1) we can write x = 00y +++ O - Define
%
ar’x to be the following member of 5 : a}’x = r(tg'r(cl)-r(clcz)...r(x).

Notation:Let @ be a finite string and let n and m be positive integers, n<m.
Then by a(n) we will mean the nth element (from the let) of o. By
¢{[n,m]) we will mean the set of elements betweer and including the nth

and the mth places of . Note that «(n) is only lefined if 1< nSlength()

and @([n,m]) is only defined if 1<n<m<length(w).
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Definition: Let o € SK. We say that ¢ is Cood if there exist positive
integers H and J such that H < J < N = length(a), o(J) = «(N), o(lH,J]) =
o([J,N}), and there exists an i such that a(N) € Ui and o([J,N]) N Li = B,

Note that good is defined with respeci to our f.a.t, o1.

Lemma 1: The set of good strings is a regular set, i.e., it is

recognizable by a finite state machine or finite input strings.

Proof of Lemma 1: Obvious. []

Lemma 2: Let G be a regular set of finite strings on S. Let 1l =

{EIE is a finite trece and there exists a runr on £ such that for all

x € Ft(L), @ € G} Then H is recognizable by a finite automaton on
3

finite trees as defined in [7].

Proof of iLemma 2: Fairly obvious. O

Completion of proof of Theorem 2: By Theorem 1, Lemma 1, and Lemma 2,

the emptiness problem for O can be reduced to the emptiness problem
for a particular finite automaton on finite trees. But by Theorem 7 in

[7], this problem is decidable.

Proof of = in Theorem 1l: Let r be an accepting Ol-run on T. By the

definition of accepting run and of good string, it is clear that for

every path m of T there exists an x, x € 1, such thut A & is a good
’

string. Let B = [xla is good and for all y < x, o isn't good).
r,X r,y

Then B is a frontier. If we let E be the finite tree with frontier B,

then there exist mappings J and H which, together with r|E, satisfy

conditions 1 and 2 of Theorem 1, This completes the proof of =.
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Procf of<€ in Theorem 1: Llet E, r, J and H be as specified in 1) and

2) of Theorem 1.

We define a mapping m: T = E inductively as follows. Let nAhy = A,

If 1n(x) has been defined, then for o € (0,1}, define n(x*0) as follows.
case 1: 1f nM(x) € E - Ft(E), then let N(x*0)= n(x)*0.
Case 2: 1If m(x) € Ft(E), then let m(x'0)= J(N(x))*0C.

Define r: T =+ § by r(x) = r(n(x)), for all x € T. Clearly by 2)
b) of Theorem 1, r € Rn(0], T) so that it suffices to show that for all
paths mC T, (r ‘ m) € [Q), because then T € Tg{) and hence T(q]) # @.

Llet TC T be a specific path. Let Yo? Yy y2, ... be the infinite
subset of m (listed in increasing order under <) consisting of exactly
those members of ™ whose images under N are in Ft(E). Define Vﬂ to be

the following infinite sequence of members of Ft(E) X Ft(E):
= < < <
v n(ygy) s Ny P, n(yy)s My,» s N(yy)s N(yq)=s --e

For all i <wW we have by the definition of 7, J(n(yi)) < ﬂ(yi+1)

and £(ly;s ¥;4q)) = r(IIMY,)), M0y,,))). Hence, In(@ | m) =

) r([3{x), z]).
<x’ z> € In(Vﬂ)

Clearly there exists a finite scquence (possibly with repetition)

of members of Ft(E), X1s Xps Xgs vovs X such that




= d
X, = x_an
(1) In(Vn) = [<x], x2>, <x2, x3>, <x3, K,y oo

< >).
=1’ *m )

From now on we will denote J(xi) by Iy and H(Xi) by H,» for all
1<4i<m,

We have from the preceding paragraph

for all 1 i <m, J, <x

i i+1’
(I1) n-1
s I m o= U R R

(r | M € Q) is immediate from tie third of the following threc

lemmas.

lemma 3: 1There exists an M, 1 < M < m, such that for all i, 1 i <m,

HM < Hi.

That is, W, = min(Hy, ..., H .

m
Proof: Our induction
hypothesis at stage h is that there exists an integer M', 1 s M' < h,
such that for all i, 1 £ i < h, HM' < Hi' Clearly the basis case 1is

trivial, We assume the induction hypothesis for h and prove it for h+l.

i
.i

N S LS W L“__A.——-.‘_—“——‘ -




:

" < Hh , by the induction hypothesis.

H

Hh s Jh , by 2, a) in Theorem 1.

Jh < X1 o by (11).

< .
Hence, HM' X4l

By 2) a) of Theorem 1 we also have Hh+1 < %41t Therefore, HM and

H are comparable (under <). Clearly for ell i, 1 <1< htl,

h+1
m_E{HMI’ Hh'}'l] S Hi' D

If M # m, we can rename X5 Ky eees X 8O that (I) and (II) remain

true and Hm =3213{H1, veey HnJ' Henceforth, without loss of generality

we assume that M = m,

Lemma 4:. If Hm = gig[Hl, ore 3 Hm], then for all i, 1 < i < (m-1),
=2

Proof: Let i be any integer such that 1<i<m. H <H <J <X .,
—_— m i i i+l

hence we have the picture:

i i+l
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Hence, r([Hm, xi+1]) =] r([Hm, Hi]) U r([Hi, Ji])' gy 2) c) of Theorem 1,
1) = :
(g, 3D = e, %)), Hence, T([H, x,,,1) 3 r(1J,, x,1), and

thmeﬂxc,rﬂqf ﬁ+1D Dr(mm,xﬂ).

O
Lemma S: If Hm = gig{ﬂl, TN Hm}, then for all i, 1 € i < (m-1),
r(, x 1) 2 (0, x4 D).
Proof: Let i be any integer such that 1 < i < (m-1).
/ e
By Lemma 4 r{[H, x 1) 2 e(IH, x 11, v({i, x ;1) 20, x 1)),
3 1) 2
. r([Hm, mi+2]) 2 r([Hm, xi+1]). Hence, r([Hm, xm,) r([Hm, xi+1]).

We have H S H, <5, < x,
m i i

i+l That is the picture:

=2 .
Hemce, MH , x; ;]2 [J,, x, ,]. Hence r(MH, x D23, x 1.

0

Completion of the Proof of Theorem 1: Without loss of generality we

assume H = gig[ﬂl, coey Hm}. By Lemma 5,
m-1
r([Hm’ xmj) =2 1L=J]_ r([Ji, xi‘l“l]). '
By part 2) d) of Theorem 1 we have for some i, 1< i < n, r([Jm, xm]fj

I..i = ¢ and r(xm) € Ui' By part 2) c) of Theorem 1, r([Hm, xm]) =

r([J», x ). Hence,

e T B
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m=1
U r([Jis xi+1]) N Li = ¢9
i=1
and
Tu'l
I
131 r(l3, x DY # e
Therefore, by (I1) (xr | m € 1.
a .

Section 3: Remarks
Tn [6] Rabin uses the following definition.

Definition: An f.a.t, with designated subsets is a system 01 =

' <S8, T, M, S g >, where § is a finite set of states, 7 is a finite
set, M: S X Y-+ P(S x8), and ¥ € P(5) 1is the set of designated cubsets.
1 An O0l-run on t = (v,T) is as defined in Section 2. Ot accepts t if

Lo

there exists anrt € Rn{0,t) such that for all paths m € T, In(r } i) G 5.

b The proof of Theorem 1 can be extended to show that r([nm, xm]) =
m-1 .
igl w(i3ys xi+1])’ where W, x., etc. aro: as in the proof of Theorem 1.

Hence for O(= <8, (a}, M, Sg % >, where c(S) = q, we have:
TO) # @ ¢ for some finite tree I there exists anr such that

1) r € Rn(O,E),

2) there exist mappings J: Ft(E) - E-Ft(E) and H: Ft(E) =+ E-Ft(L)
such that
a) H(x) £ J(x) <x,
b) r(I(x)) = r(x),
¢) r(H(x), I(x)]) = r([I®), x]),
) r (I, =) €%,

- e

Ll o El o o e = o e o 2 . o _— - g——mn I.l' Il-.lllll I 2 “IIJ
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The appropriate definition of a guod string with respect to O
is a simple modification of the definition of good string used in the proof
of Theorem 2. For either definition oi good string we can design a nou-
deterministic finite automaton on finite strings, ™, which recognizes
the set of good strings and which has at most 22q(q+1) states. By the
subset construction we can design a deterministic automaton M' equivalent

. 2q
to M such that M' has at most Q = 22 (q+1)

states. Using ' we can
easily construct a finite automaton on finite trees, OU', such that T({)
# ¢ if and only if T(O) # ¢ and such that the state sct of O is the
cross product of the state sets of Uland M. Hence ¢’ has at most ¢Q
states. We can determine whether T((') # ¢ in (q Q)3 computational
steps,
Hence given a finite automztou & on infinite trces which has q

states and uses either notion of acceptance, we can determine whether or !

3
2q
not TE) # ¢ in (q 22 (a+1) ) computational steps.

Remark 2: If we have a finite Z-tree (v,E), and a function J: Ft(E) -

E-Ft(E) such that for all x € Ft(L), v(J(x)) = v(x), then we can

generate a unique J-tree (;,T) as in the proof of Theorem 1. Call any

¥-tree which can be generated in this way a finitely-penerable Y-tree.
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Rabin in [5] detines a Z-tree, (v,T), to be regular if and oniy
if for esch 0 G Z, v-l(c) is a regular subset of [0,1}". It is easily

shown that a ¥-tree is finitely-gencrable if and only if it is regular,

Remark 3: From Theorem 1 it is easily shown that if an f.a.t. accepts
any Z-tree, then it accepts a finitely-generable T-tree, Rabin shows
this in [5]. In [2] Buchi and Landweber prove that if P(X,Y) is a
finite-state condition and X has a winning strategy, then X has a winning
finite-state strategy. Rabin has observed in [5]
that the set of winning strategies for X corresponds in a mnatural way
to a set of {0,1}-trees defined by a (deterministic) infinite tree
automaton. Hence, it casily follows from Rabin's result in [5] or from
the results in this paper that if X has a winning strategy then X has a
winning finite-state strategy. |

We can also observe the following. If X does mot have a winning
strategy, then by our Theorem 1 we sce that X does not have a "partial"
strategy of a particular kind. TFrom this one can show that Y has a
wimning strategy for P(X,Y), thus showing that P(X,Y) is determined.

This is another result of [2].

i
g
|
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CHAPTER 2

The Complementation Problem

Section 1: Introduction

Given an automaton U on infinite T~trees, one defines a Tetree t
to be accepted by ¢ if there exists an ¢i-run on t zuch that for all
paths, the sequence of states on that path gatisfies a particular
property. One can similarly define t to be dually accepted by 01 if
for all ¢l-rums on t, there exists a path satisfying for that run the
particular property. The problem is to censtruct, for given 61, an
automaton @' such that for any valued tree t, t is accepted by €1' if
and only if it s not accepted by ¢1. Since given Ul.l we can construct an
automaton (/(2 such that the set of Z~trees not accepted by D’El is
precisely the set dually accepted by 012, the complementation problem
can be reworded to state that given ¥, we wish Lo counstruel an autonaton
¢U' such that the set of valued trees dually accepted by ¢l is precisely
the set accepted by ot'.

That is, we want ¢t' to accept t if and only if for every ¥t-run on
t there is a path such that the sequence of states along it satisfies
the property defined by ¢t. The natural thing to look for in eonstructing
oU' is an automaton which can explieitly pick out an appropriate path
for each ¢t-run on t. That is, we would like every ¢t ~-run on t to
specify a path for each ¢l-rum on ¢t, and we would like there to be some
condition on sequences of o' states which holds for all paths of the oU'-
run exactly when for each ¢i-run, the sequence of ¢t¢ states along the
path specified for that run satisfies the ¢7-property.

A natural poirt of view is to thiuk of starting out at A, and

having our ¢l'-run choose, for each possible pair of ¢t-states which can
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occur at the nodes 0 and 1 (in an ¢C-run on t), whether to continue the

fath by going left or by going right, and continuing in this way, at each
node choosing for each possibility of <Z-run occurring immediately below
it whether to go left or right. An ¢t'-run cannot tell us in one step
what path to choose for each ¢t-run. But it can tell us each successive
choice of left or right given each successive segment of the «(-run.

A state of ¢U' will be, essentially, 2 finite sequence of states of

0l, Each member of an ¢t' state at a node will represent the last state

. o ., oo . B .. R R

in the initial segment of a path chosen for the initial segment of a
particular ¢t-run. For each member of an ¢t' state at a node the et'-run
must say how to continue the path for each pair of ¢t transitions
possible (for t) beneath that node. It is therefore necessary that a
state of ¢t actually be a sequer.e of ordered pairs whose first part is
a state of ¢t and whose second part is a set of backward pointers. Yes,
I said a set of backward pointers rather than just one; this is because
in reality an ordered pair appearing at a mode in an ¢ot'-run must
represent the lest state in the initial segments of (possibly) many paths
chosen for the initial segments of (possibly) many ¢t-runs. That is
because the sequences making up the set of states of ¢7' must be brunded
in length in order for ¢t to be a truly finite automaton. If we insure
this bound by insisting that in every state of ¢t' an ¢t-state can occur
at most n times, then we formally denote ¢t' by mﬂk.

The fact that everything accepted by ﬁﬂ_is dually accepted by ¢z will
follow easily from the definition of mﬁL. The converse, that Ior
sufficiently large n, if t is dually accepted by ¢t we can find an
accepting run for it on M, , is far from obvious, and our induction

proof basically parallels the one Rabin presents in {6]. The difference
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between our proof and his can be viewed as being that we keep, at ecach

stage of the induction, information which he discards, so that we arrive
at the end with a specific, non-inductive description of the desired

automaton.

Section 2: Some Definitions, Theorems, and Proofs

w
Definition: If S is a set, denote by S the set of infinite sequences

l of members of S. We identify the séquence S,.,8 with the map

0'S1 t

o:w+S where a(i)=si.

Notation: If <x,y> is an ordered pair, let p1(<x,y>)=x and let
p2(<x,y>)=y. If 0= 0q5 e o is an infinite sequence of ordered pairs,
= i s 7 s

let pl(d) the sequence pl(ao),pl(al),. 5 . Lafine pz\a) similarly.

Note that this notation is consistent with thinking of an infinite

sequence as a map from W to a set.

Notation: If x€T and 7w is a path of Tx’ and r:Ti*S, then denote by

(rln)w the sequence r(xo),r(xl),. . . where n={x +1 1

0’¥1’ .} and xi<xi
|
for all i€w, {
Definition: A Generalized Automaton on Trees (G.A.T.) is a system i
01=<S,Z,M,SO,Q> where S, 2, M, 5,5 are as in Chapter 1 and Q is a subset _ ,
w
of § . If tx is a Z~tree, let Rn(&t,tx) be defined as in Chapter 1, 1

Define T(U1), the set accepted by ¢1, by T(¢()=

gtx

There exzists an rGRn(&T,tx) such that for all paths ﬂCTx, (rlﬁ)w € Q. i :
(Call r an accepting run of ¢t on tx.)
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i Define D(¢1), the set dually accepted byct, by D(Cl)=

i {txlFor all rGRn(m,tx), there exists a path '.'rCTx such that (rlﬂ)mEQ.}
We now define three types of Finite Automata on Trces.
Definition: A pairs-autcmaton is a system 0'E=<S,E,M,_SO,Q>'\~Jhcre
Q=(<Li,Ui>) l<i<k is a finite sequence of ordered pairs of subsets of

S, and S, T, M, s, are as above. Ilct ¢t' be the G.A.T. <S,E,M,SO,Q>

0
where Q=[ o € SwIQE [Q]}. Define T(¢t) and D{£7) to be equal to T(7)
and D(¢c1') respectively. (Note that a pairs-automaton is the same
thing that we meant by an f.a.t. in Chapter 1l.) For such an ¢7, we say
that O is of order k and that ¢T is of order k. If Lk=¢, then we say
that Q and ¢U are of order k-empty.

Definition: A sets-automaton is a system ¢1::<S,%,M,s ,5> where ¥ < P(S)

0’

(P(S) is the set of subsets of S.) and S, 2, M, s,, are as above. Let

0,
Ol be the G.A.T. <5,5,i,5,,Q> where Q={w€ §”|In(2) €F}. Define T(c7)
and D(¢t) to be equal to T(cot') and D(UT) respectively. (Note that a

sets-automaton is the same thing that we meant by an automaton with

designated subsets in the remarks of Chapter 1.)

Definition: An automaton-automaton is a system 07.=<S,E,M,so,'u> where

S, &, M, are as above and Y is a deterministic sequential automaton

50
(as defined in [6]) whose inputs are members of Sw. Let ¢t' be the
G.A.T. <S,E,M,SO,Q> where Q={o € SmlafET(u), the set accepted by Y .}

Define T(¢1) and D(PU) to be equal to T(CU) and D(cU') respectively.

These three types of finite automata are all equivalent, in the sense

of Facts 1 and ?. These facts are easily shown by Rabin in [6].
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Yact 1: Let 2 be a finite set and let W be a set of S~trees. Then

there exists a pairs-automaton €1, such that T(¢7,)=W ©

| P
there exists a sets-automaton 02:2 such that T(azz):w o

there exists an automaton-automaion 013 such that T(0Z3)=W.
Fact 2: (same &s Fact 1 only with T(ﬂll), T(o”Zz), T(o’z3) repiaced by

D(¢1y), D(UL,), D(e%,) respectively.)

Now if Vl=<S,E,M,$O,°7‘> is a sets-automaton, then by its definition
we see that D( <S,E,M,SO,P(S)-fr’> ) 1is exactly the complement (with
respect to the set of Z-trees) of T(st). This observation, together
with Facts 1 ard 2, imply that whichever definition of finite automaton
on trees you choose, to solve the complementztion problem it is sufficient
to exhibit for every pairs-automaton /{, an automaton-automaton ¢Z' such
that T(JU')=D(¢t). We shall do this. Now follows the main definition of

this chapter.

Notation: If n is a positive integer, let [n]={1,2,. . .,n}.
Definition: Let ot=<§, I, M, S 1 > be a pairs-automaton. Let n be
a positive integer. We will define an automaton-automaton

My = < Sﬂ, Z, N,I,L <s;)s ¢ >, 2(2 >. Let m=c(S). Then we define

n

(Every member of P([mn]) is to be thought of as a set of backward

¢ is & finite sequence of members of S XP([mn]) such that for each

s €S, there are at most n values of i for which pl(d(i))=s.

pointers. Since each member of S can occur up to n times in a member of
n n
SUL, each member of S, can bhe as long as mn, hence the need for mn
backward pointers.)

3 . q o,

The starting state of M, is <s0,¢ >, a sequence of length 1,

Let o€ SJZ and let a€X. Define

S S

: .
.
- e M“,“‘__-_—_—g
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For all i, 1=i<length(o), if
0’71

M?L(d’a)=\sll,:xszl a positive integer j such that either

I) pl(ozo(_]))=uo and 1€p2((VO(J)) or

\ IT) py(oy(3)=uy and i€py(ey(§)).

< ,0.>€ u=p1(oz(i)) and if <u0,u1>€M(u,a), then therc exists >

~

(Think of /(i) as representing the value at some node x of a run of
@ on (v,T). If py(a(i))=u and <ug,u,>€M(u,v(x)), then eacit W, ~run
must tell us either to go left to an element whose first part is u, or

right to an element whose first part is ul.)

It remains to define 2,(,:,1,_ , and we will do this by defining a set

W
QS(S,E) and then arguing that there exists a deterministic scquential

w
automaton which accepts exactly Q. Firstly, if at (SE) . oz=:‘10,ozl,4.. .

de’ine a thread of @ to be an infinite sequence of integers,

J=j0,j1-,. . . such that for all iCuw, ozi(ji) is defined, and such that

for all i€uw, 316 pz(ozi+1(3i+1)). Define the S-sequence associated

with the thread J (for @) to be the sequence

B=p1(0!0(j0)),p1(cul(j1)), . . . so that Bééu. Define
w
Q={a€ (Sﬂ) I For every S-sequence B associated with a thread of o, BE[Q].]).

. W
So we have that Q=(S£) - Q=

w
(o€ (SFL) lfor some thread of @, the associated S-sequence is not of type Q1.

It is easy to see that there exists a nondeterministic sequential

automaton, U 1 such that T(u1)=(_2. But McNaughton [4] has shown

that for every mnondeterministic sequential automaton u‘l one can

construct a deterministic ome, U'Z’ such that '1‘(?(.,)=T(u1). But it is
L

easy to see that given any such uz there exists a deterministic sequential

automaton, 1(3, which accepts precisely the complement of T(uz). So




24
let 'Z/._:), be such that T('L(:L)=Q . This finally completes the definition

ofﬂmf,],_.

q \8) .
Notation: Very often, if R is a M -run, we will want to refer to the

th ; _— . .
i element of R(x) for somec node x and some positive integer i. So

instead of writing (R(x))(i) we will write R(x%,1).
, Ly s n )
So if tx=(v,’lx) is a Z-tree , RERn, ,tx), yETx, u=p1(R(y,1)),
and <u0,u1>€M(u,v(y)), then we require that there exist 0€ (0,1} and

a positive integer j such that p;(R(y:0,j))=u; and i€ p,(R(y°0,3)).

Remark: Let 01 be a L-pairs-automaton, and let ny and n, be positive
int ith n,< Then since S,.1C5n2, and if <a a>Cs,1xZ th
integers with n,sn,. en since S, S, and 1 ,d b en
n n n n n n
M‘.,Ll(d,a) cM,2(x,a), and T(U,D cr(t,2), we have that 'r(‘Jﬁ,,}) STER,2).

We now state the main theorem of this chapter.
Theorem 3: Let ¢/{ be a pairs-automaton of order k. Let

k
n= E= k(D)) Then D) =T@,).
21=0 9 2
Half of Theorem 3 follows from Lemma 6.

Lemma 6: Letot=<S8,X,M, 50 ,0> be a pairs-automaton. Let n be a

positive integer. Then D(JU)RT(W ).

Proof of Lemma 6: Let t=(v,T) be a Z-tree such that tET(ﬂZ). (Since it

is clear that for any of the tree automata we have defined, (V(TTx) is
accepted (dually accepted) if and only if (v('),T) is accepted (dually
accepted) where v(')(y)=\b(x'y) for y€T, to prove Lemma 6 it is sufficient

to show that t D). )

I -

g, Lo S
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[ Let R be an accepting run of WSL on t, that is, RERnM, ,t) and

t for all paths TCT, (Rlﬂ)MET(u; ). Let r €Rn(¢1,t). We wish to {ind
a path mCT such that (rlﬂ)we [Q). To do this, we define by induction
a function f:w-T such that £(0)=A and f(itl)=either £(i)*0 or £(i)*1,
and rf €[Q). Then we merely let m={£(0),f(1),. . .}.. .

Simultancously with f we define a function g:wW- [mn] where m=c(S).
(The idea is that the ith elecment of the path we construct will correspond
to R(£(i),g(i)).) As an induction hypothesis at stage i we assume:
r(£(i))=p;(R(£(1),8(1))) and (for i>0) g(i-1) €, (R(£(i},8(1))).

Define £(0)=A and g(0)=1. Clearly the induction hypothesis holds
so far. Assume that £(i) and g(i) have been defined and that the
induction hypothesis is true for i. We wil?! define f and g at i+l.

Let x=f(i). Then r(x)=p1(R(x,g(i))). Let u0=r(x°0) and u1==r(x' 1).

Then <u ,u1> EM(r(x),v(x)). By the definition of ‘J'J’S,;run we have

that there is a positive integer j and a 0 ¢ {0,1) such that i
u°,=p1(R(x'U,j)) and g(i) €p2(R(x°0,j))- Define f(i+l)=x*c and g(i+l)=j.
Clearly the induction hypothesis holds at i+l

Let m={£(0),£(1),. . .}. T is a path of T so, since R : s accepting,
(RITT)wET('L(,:t). By the hypothesis we have carried through the definition
of f and g, we see that the sequence g(0),g(1),. . . 1is a thread of
®|m,, and that (c|m) =
py(R(£(0),8(0))), py(R(E(D,E(1))), pyR(E,82),e - - =

the S-sequence associated with that thread. By the definition of ’L(_ZL

i L k&

we see that (rlﬂ)wE Q.

0

The other half of Theorem 3, namely that for ¢l and n as in Theorem 3

D(U1) CT(‘W?,, , follows trivially, by induction, from the next three Theorems.
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g Theorem 4: Let U be a pairs-automaton of order 0 (that is, the sequence

1
of pairs is empty). Then D@1) STCERR) -

Theorem 5: Let k be a nonnegative integer and let n be a positive integer

such that for every pairs-automatonn{’f of order k, D(dr) & T(‘JJ’E,). Then

for every pairs-automaton Ul of order k+l-empty, f)(d"l) gT(‘l‘t&).

Theorem 6: Let k and n be positive integers such that for every pairs-

automaton . of order k-empty, D(dr) ET(WE ). Then for every pairs-

k
automaton &L of order k, D(¢1) QT(mB,_Z ).

Before we prove Theorem &, we need the following definitiom.
Definition: Let 0'(.=<S,E,M,so, Q> be a pairs-automaton. lLet s €8s.
Then define ¢1_ to be the pairs-automaton ¢ =<8, Z,M,s ,Q>. That
is, ()’ls_is the same as Ul except that the initial state is changed to

S

Proof of Theorem &:

Let V1=<S,%, M, S2 (> be a pairs-automaton with (=the empty sequence

and c(S)=m. Let t=(v,T) be 2 T tree such that t ED(CT. We wish to
show that tET(ml(,lt), (Recall that no wap is of type Q.)

Since t€D(oT) there are mo Jl-runs on t, that is,

Rn(gl,t)=b. Tor m & nomiegative integer and for x €T such that

length(x) <n, define the finite tree E2=[y€Tx|1ength(y)Sn} . Define ‘

e:=(v,E::). By an application of Konig's Lemma we see that for some n, 1 J

Rn((/l,eX)=¢ . Let N be such a number, tha is, Rn( ,eRl)=¢ .
Define a map R:T-’S1 as follows: R(A)=<sy, ¢ >; for xEEx,

let R(x)=<sl,[m]>,<32,[m]>,...,<s£,[m]> where §,,8,,.+:15 is

S e . . as i

some cnumeration of the set {sESan((/’ls,ez)=¢]; for x such that

. -
o et

- al el ! . . I
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length(x) >N, let R(x)=the empty sequence.

Clearly if 7 is a path of T, (R|1T)w has no threads. Hemnce, 1f
R is a run of ‘.m}.t on t, it is an accepting run. So let xEEII;I and let

8=p1( R(x,1)) for some i. Then Rn(JL ,eN)=¢. Let <u,.,u, > €M(s,v(x)).

s’ x 0’1

Then for some o€ (0,1}, Rn(ﬁlu ,e}l\:.c)=¢ . So there exists a j such
o
that uc=p1(R(x'c,j)) and iEpz(R(x'c,j)). So R is a run on t. So

cer(myy. O

Theorens 5 and ¢ will be proved in the mext two sectioms. To

this end, we make some more definitions.

Definition: Let /l=<S, I, M, 89> Q1> be a pairs-automaton. Denote by

 JL the TxP(S) automaton <S, DX P(S),H, s,, ?>  where N is defined

as follows. Let 3168, a€d, Slgs. Defire

= . M(s,,a) if s, ¢S

H(s,,<a,5,>)= L 17
: ¢ if s1€S1 .

Definition: Let tx=(v,Tx) be a Z~tree, let S be a set, and let H

be a subset of TXS. Then define txH to be the L X P(S)-tree (-\;,’I‘x),

where '\7(y)=<v(y),(s€S| <y,s>€H}> for yETx.

Intuitive Remarks: Let ¢l=<S, T, M, Sg° 1> be a pairs-automaton. Lct
t=(v,T) be a I-tree. Let HSTXS.

Every run of Jl on tH is also a run of /1 on t, but there might
be fewer of the former since Rn(a"i,tH) is precisely those members, r,
of Rn(dT,t) which dor't 'run into" a member of H, that is, r € Rn(di,tll)
if and only if <y,r(y)>¢H for all y€T. Say that t€D(). Then
tHED(Gr). If our goal is to show that tET(Ele,, ), it might be easier
to show first that tllET(men.L) since Rn(Cl ,tH) might in some sense be

a simpler set that Rn(0l,t).
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Consider what a run of 93?},1‘, on tH looks like. It starts out the

same as a run of UJIBL on t, that is it's a map R:T"S::, such that
R(A)=<so, ® >, and it continues like a run of ﬁml;L on t except that
certain threads are allowed to die at meubers of H. For example,
say that for some x and i, pl(R(x,i))=u and <u0,u-1>€M(u,v(x)) .
If R were a run of 93&, on t, we would require there to exist a j
such that for some o€ (0,1}, uc=p1(R(x'c,j)) and iEpz(R(x'd,j)).
Since R is only a ﬂ]l(% -run on tH, we require this condition only if
<x,s> ¢H. Hence, for a path TCT, (Rln)w may have fewer threads
than if RERn(‘IJI?,L, t) and therefere,as already claimed, it wmight be

easier to find an accepting run of Wg—};_ on tH than of 3'3&, on t.

How do these observations lead—us towards constructing an
accepting ﬁ]@;-run on t? Maybe we can find 2 set HOQTXS such that

we can show tHOET(ﬂ%). Let R0 be an accepting run of EUIZ-:-L on tHO.

RO is partly an accepting run of W},’Lon t, except that if <x,s>€H0
and pl(PO(x,i))=s, then RO doesn't continue properly for the ith

element of Ro(x). But, maybe we can find a set H<x,§> such that we

can show that txH<x,s>E T(‘.m_%s), that is, there exists an accepting

run R ofﬂ]’f—‘- ontl 3
N Bex, s> as " x{<x s>

Then we can use R to continue
’ 5 <x,s”

threads of R, which had died. But for <x',s'>€H_ we need a
\ <x,s8>

set “<x',9'> , etc. TFor the sake of uniformity we will refer to

a.>'

1{0 as “<A,oo

N
. . ¢ M
It is important to understand what R: ,S>€Rn( ""ﬂ.s’txH<x,s>)

means. differs from a member of Rn( me tH<x,s>) only by

R<x,s> o

starting at x instead of A and by starting with <s, ¢ > rather than

<s0, ® >. Assume now that we have a set HET XS such that </\,SO>EH
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and such that for every <x,s>€H we have a subset of H, H<x o>

with H<x S (T -{x}) XS. Assume furthermore that for every <x,s>C1

,8>

we have an accepting run R<x’s>€5Rn( E%%s ’txH<x,s>)' What we would

like to do is "put together" the runs R<.x to form an accepting

s>

run R of mﬂl on t, as in the above paragraph.

So for every x and every i, 1<i<length(R(x)), R(x,1i) will
be associated with some <y,u>€H and some integer j such that
y<$x and pl(R(x,i))=p1(R<y,u>(x,j)). We use this association to
determine which elements of R(x*0)and R(x°*1l) should point backwards
to R(x,i).

The problem that remains is how to decide what members of H the
elements of R(x*0) and R(%*1l) should be associated with, These
decisions will be made so that R has the property that for any
path T CT and any thread of (Rlﬂ)m, if the members of that thread
are altogether associated with only a finite number of members of H,
then that thread eventually has the same S-sequence as a thread of

(R

<y u>|")w (for some <y,uw>€H), which 1 ‘pothesis is of type Q.
?

The decisions must also be made in such a way that for any path
TCT and for any thread of (Rlﬁ)m, if the members of that thread
are associated with infinitely many members of H then the S-sequence
of that thread is of type Q.

To prove both Theorems 5 and 6 we will fipd H, {H<x.s>]’ and
[R<x,s>} as above. However the way they are obtained and the way
the decisions referred to above are made will be different in

the two proofs.

In order to combine W@}runs it will be convient to have a notion

o il ki




}
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of such a run being well-formed.

Definition: Let ¢1=<8§,Z, M, s , Q> be a pairs-automaton, with

0’
S=(so,sl,. . "Sm-l)’ that is, we have imposed an ordering on S. Let

t be a Z~tree. Let n be a positive integer and let RCRn(EU?EL, tx).

Then we say that R is Well-formed (ith respect to the ordering on S,
although this will usually not be explicitly stated in the future) if for
all y>x, 1eng1:h(R(y))_=mn‘, and if for all i, 0<is<m-1, ard all j,
1<j<n, it is the case that pl(R(y,ni+j))=si. That is, R(y), for

y>x%, is of the form:

y y y y y
< < g > RS X 3
SO’A0,1>’ SO’A0,2>"' ’<SO’A0,n ’<51’A1,1>’ ’<Sl’A1,n>’ ’ Sm-l’pm-l,n\

where each AY 1(; [mn].
9.

Lemma 7: Let e1=<S§, 5 M, s, {)> be a pairs-automaton where

0!

S=(s Let t _=(v,T ) be a J-tree. Let n be a positive

0°S10c ¢ - ’Sm-l} .
integer. Let R be an accepting run of fmfi on tx. Then there exists an

accepti'ng run, R', of 9313,_ on t which is well-formed.

Proof of Lemma 7: The proof of lemma 7 is actually quite easy in

concept, but we shall do it in detail anyway.

Let 27 ’tx’ and R be as in the lemma statement. Choose
f:(<x,1>} U ((Tx-[x]) X [mn]) # [mn]} such that

a) if 0si<m-1and 1ISj<n, and if yETx and f(y,ni+j) and
R(y,f(y,ni+j)) are defined, then pl(R(y,f(y,ni+j)))=si and

b) for every yt& Tx and every £, lszslength‘(R(y)), there exists

2' such that f(y,2')=4.

Define R' as follows. Let R'(x)=<so, $>., For z€ T g c€({0,1}, and

y=z*0, let R'(y) be the string of length mn such that for 0<ism-1

and 1= j<n and q=ni+j, we have

-
LENE -




31
¢) py(R'(y,q))=s; and

d) if £(y,q) > length(R(y;), then pz(R'(y,q))=
(L€ [mn]]£(2,2) is defined and f(z,£) >1length(R(2)))

e) if £(y.q) < length(R(y)), then py(R'(y,@))=(£€ [mn]]£(z,8) is
defined, and either £(z,£)>length(R(z)) or f(z,4) GpZ(R(y,f(y,q)))]

R' is well-fgrmed. To show that R' ERn(fm?q,tx) let zETx,
let £ be such that R'(z,£) is defined, let u=p1(R'(z,f')) and let
<u0,u1>€M(u,v(z)). 1f £(z,4) >length(R(z)) then by c), d), and e)wve se2
that for c€{0,1} and some q, pl(R'(z'c,q))=uc and ZEpZ(R'(rc,q)).
1f £(z,4) <lemgth(R(2z)), then by a) and ¢), pl(R(z,f(z,J?,)))=u. So for
some 0€ {0,1} and some q , pl(R(z‘c,q ))=uc and £(z,4) Epz(R(z'c,q-. ).
By b), there exists ¢ such that f(z*0,q')=q. By a) and c)
pl(R’(z°c,q‘))=p1(R(z°c,q))=uc. Also, since f(z,4) Epz(R(z'c,f(rc,q'))),
we have by e) that J?,Epz(R'(z'c,q')). So R!' ERn(‘-m‘:,tx).

Tt remains to show that R' is accepting. So let TrCTx be a path,
1T={x0,x1,. . .} where xi<xi+1 for i€w, Let 01=J?,0,J?,1,. . . be a thread
of(R'|m),. Note that £(xy,4)=f(x,1)=1 so that f(xgs2,) < length(R(x,)).
Now let i €w be such that f(xi,zi) Slength(R(xi)). So, since
J?,iépz(R'(xi+1,J?,i+1)), wehave by d) and e) above that
f(xiH,BiH) < length(R(x, ,)) and E(x;,4) € pz(R(xi+1,f(xi+1,zi+1))).

So by induction we see that the infinite sequence
B=f(x0,1?'0)_.f(x1.”-1),. . . 1is a thread of (Rlﬂ)w. But by a) and c),
the S-sequence associated with 01. for (R' |ﬂ$w is the same as that

associated with B for (Rlﬂ)w, and this is of type {2 since R is

accepting. |

AN A ammam  an
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Section 3: Proof of Theorem 5

such that for every pairs-automaton Jr of order k, D(i& )ST(YBI?,). Let

=<8, M, s,, 1> be a pairs-automaton where Q=(<Li’ui>)1sisk+1’

0’
Lk+1=¢, and S=(so,sl,. . +»8 1)}, Let t=(v,T) be a fixed L-tree

such that t&D(s). We wish to show , eventually, that t:ET(UﬁE .

Define a set HETXS by H=( <A,so>} U( <x,s>ltx€D(07.S) and s€ Uk—l-l} .

For <x,s>€H, define H__ _ =(<y,u>€H ly>x). tLet
’

| -
Q'=(<L:HU5>) 1 cicrer

Lemma 8: For every <x,s>€H and for every rGRn(ﬁ('.S,t:‘{), either

I) there exists a path 'l'rCTx such that r|1'r€ ('] or

f ie
I1) there exists y>x such that <y,r(y) > €H<x,s>'

Proof of Lerma 8: Assume otherwise. Let <x,s>€H and let

Let k be a nonnegative integer and let n be a positive intecger |
rERn(OLS,tx) be such that for all paths TCT, rlné [Q'], and such
that for all y>x, <y,r(y)>¢H.
Definition: If YCTx is a set of (pairwise) incomparable nodes (under =) J
I
Y. » 1
define Tx-~[z€Tx|for all y€Y, z#y)=T y%'y(Ty‘[Y})' {‘
We will now define r' €Rn(sL ,t ) such that for all paths mCT, |
r'|m¢ [Q], contradicting the fact that t D@L ). Let
Y=[y€Tx|y>x, r(y) GUk-l-l’ k+1} :

Clearly the members of Y are incomparable. 1If zGTi, define r'(z)=r(z).

and for all z, x<z<y, r(z)¢U

Now let y€Y, r(y)=u. Since uGUk+l and <y,u>¢H, it must be . 1
the case that tyQD(dLu). So let ryGRn(az_u,ty) be such that for all _ ‘

paths MCT, rylrr(E [Q]). For all y€Y and all z€Ty, define r'(z)=r (2).

Clearly r' is a run of ms on t_. Let 1TCTx be a path.
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| Case 1: mNY=9¢

' Then r'|ﬂ=r|1'r so r' |1'r¢ [Q']. But r'(m-(x})=r(i-(x}) must not
. 1

intersect U, ;. Sor |7 ¢ 1a1.

Case 2: mNY#¢

Let (y}=nNY. Let W _=nNT . Then r'ln =r |n . So
y y Yy y ¥

r'lnye[o]. so r'|me Q.
; Contradiction. [

Now define the pairs -automaton 4=<S, %, M, S ()'>. What Lemua

8 says is that for <x,s>€H, txH<x,s>€D(£s)' But & g is of order
k. So by the hypothesis, for <x,s>€H, txH<x’S>GT(9'.'§S). So for

<x,s>€H, let R<x,s> be an accepting run of ‘.U%_s on txu<x,s>' But

Q' is a subsequence of Q, so each R__ is also an accepting run of
’

Mm :
9 on txH<x,s>
’ Without loss of generality (Ly Lemma 7) assume that for <x,s>€H,
R<x,s> is a well-formed accepting run of ‘.mrl,“s on txu<x,s>' We want

to construct a well-formed accepting rum, R, of ‘.m?L on t. R(\) will
equal <so,¢> and for x>A, R(x) will be of length mn. Simultaneously
with R we will construct a function f which is defined at a node x and
integer £ if 1< £<length(R(x)). If defined, f(x,4) will be a member
of H, say for example <y,u> . The interpretation is that we think

of the z"'h element of R(x) being continued like some element of
R<y,u>(x)° Like which element? Well, if y=x, then R<y,u>(x) has only
one element, namely, <u,$>, and we better make sure that pl(R(x,,(’,))=u.
Otherwise, that is if y>x, we associate R(x,4) with R<y’u>(x,l?,), which

we can do since by the definition of well-formed both elements have the




same first part.

function g such that we always
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To speak of the two cases uni formly we define a

thivk of associating R(x,4) with

Rf(x,f,) (x,8(%,£)). We also have to make sure that Rf(x,z) gives us
acceptable directions on how to continue the Zth element of R(x), and
therefore carry along various induction hypotheses in the definition of

R and f. To define f, we will need a well-ordering on H.

We now begin more formally. Let < be a fixed well-ordering on
TXxS; clearly < induces a well-ordering on H. Denote by < the usual
strict well-ordering determined by <,

We now define R:T-Sy, and £:(<A,15)U((T-{A}) X [mn]) 1. We will

define them by induction, and at every stage the following will be true:

If R(x) is defined and 1<Z=1length(R(x)), then f(x,2) is defined;

if £(x,£)=<y,u> and pl(R(x,Z))=s, then

a) ySx and
b} if y=x then u=s and
c) <x,s>¢H<

y,uw> .

Let R(/\)=<so,¢>. Let £(A,1)=<A,s.>. Clearly the above

0
hypothesis.holds so far.

Assume now that R(x) and f have been defined so that the above
hypothesis holds. For £, 1< f<length(R(x)), define
Lif p)(£(x,£))=x
g(x,4)=

L if py(£(x,8))7x

Let ¢ C(0,1). Define R(x*0) to be of length mn such that for

’

q
I<g<mn, p,(R(x*0,q))=s, where i= the greatest integer less that -
1 i n

and such that
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l pz(R(x-o,q))=[zlf(x,z) is defined and g(x,4) €p,(Re . g (x°0,a))].

| We mow define f. Let s=p1(R(x'O',q)). If <x*0,s>€H1 let
f(x*0,q)= <x*0,s>. Clearly this preserves the induction hypothesis.

If <x*0,s>¢H, let f(x'o,q)=minimum[f(x,»@)lﬂE pz(R(x'o,q))]. Clearly
under <
a) and b) are preserved for x°*c, and since <x*0,s>¢1, c) is true

at x°o.

It remains to show that R € Rn( mﬁ}L,t), and that R is accepting.
Let x,z,s,uo,ul, be such that R(x,£) is defined, pl(R(x,f-))=s, and
<u0,u1>€ M(s,v(x)). Either by b) or by the fact that R and Rf(x,ﬁ,)
are well-formed (depending on whether or not pl(f(x,z))=x) we can

conclude that pl(R 2) (x,8(x,4)))=s. Now recall that if f(x,£)=<y,u>,

f(x,

is me i (,§ >
then Rf(x,,(’,) is a run of 7, on t H<y . Since <x,s €H<y,u> (by ¢) )

we know that there exists € (0,1} and q such that pl(Rf(x,Z) (x°0,4))=u_ |

’ u>

. C4 - -
and g(x,4) sz(Rf(x’z) (x*0,q)). Since R and Rf(x,ﬂ) are well-formed,
.- pl(R(x'O',q))=uo_. And by the definition of R, £€p,(R(x*0,q)). So

R € Rn( My, t) .

To show that R is accepting, let mMCT be a path, ﬂ=[x0,x1,. .3
where xi<xi+1 for i €w, and let ce=,€0,21,. . . be a thread of (Rln)w.
Case 1: For infinitely many i, xi=p1(f(xi,,€i)).

By b), pl(R(xi,Zi))=p2(f(xi,ﬂi)) for infinitely many i. But by
the definition of H, this implies that pl(R(xi,Zi)) 6Uk+1 for infinitely

many i, and hence, that the S-sequence associated with o is of type Q.

Case 2: xi=p1(f(xi,,€i)) for only finitely many i.
So for sufficiently large j, xj+1¢p1(f(xj+1,ﬂj+1)). By the |

definition of f, we have that for sufficiently large j

e

n / - o - - .2 . 3
f(xj_l_l, f'j-l-].) «f(xj,ﬂj). Since < well-orders 1I, there exists an i
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3773

ysx,. By definition of R we have that if j>i,

such that if j=2i, f(x,,4 )=f(xi,1?,i). Let <y,u>=f(xi,lli). Then

j i = . i
JZJ, €p2(R<y,u>(xj+1’ j+1))' That is, B Jli+1,lli+2,. is a thread of
Y=R<y,u>(xi+1)’R<y,u>(xi+2)" .. . Since R and R<y,u> are well-formed,
the S-sequence associated with B for R(xi+1)’ R(xi+2). : is the

same as the S-sequence associated with B for vy. so it is sufficient
to show that this S-sequence is of type (L
Let ny=ﬂﬂ Ty' We know that the S-sequence associated with a thread

of (R is of type Q. We want to be able to say that the £i+

<y,u>|ny)w 1

element of R<y,u>(xi+1) can be traced back to the first and only
element of R<y u>(y), that is, that there exists a finite string of
3

numbers B' such that BB is a thread of (R, . [m )

v, u> y w* Let z+0O=x

i+l
i =< s
where z€T_and c€(0,1}. Since f(xi 1,1,1 1) y,u>, there must

exist a q such that f(z,q)=<y,u>and q € p,y(R(x; So

+104i420)

g(Z,Q)EPZ(R<y’u>(xi+1,Jli+1)). If z=y we are done. Otherwise, g(z,q)=q,

so we have that q*B is a thread of R (z) *y and f(z,q)=<y,u>.
<y,uw>

Continuing in this way we see that there exists B' such that p'ep is

a thread of (R So R is accepting. M

<y’U>|ny)w‘

Section 4: Proof of Theorem 6

Definition: Let 0:A-B, let Q=(<L1’Ui>)15isk be a sequence of pairs

of subsets of B. Then we sav 8 is of type Q-empty, written 6 € [Q,e],

if 6 € [Q] and for some i, 1<isk, 8(A)NL;=¢ (where 0 (A)=(6(a)]|acA)).

The point. of the definitbn will be that the property of a sequence
being of type Q-empty is basically simpler than the property of being

of type 0, In particular, if Q is of order k we can "recognize" if a
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sequence is of type Q-empty with an Q' of order k-emptv. This is

~Ta g

made more precise in Lemma 9.

Now let k and n be positive integers suct that if Jf is a pairs-
automaton of order k-empty, then D(Jf) ‘—:T(er,). Let
o1=<§,Z, M, S (1> be a pairs-automaton where Sr{so,sl,. s 4]

= < > = ¢ B 5 W N
and Q=( Li’Ui )ISiSk’ Let t=(v,T) 1(be a Z-tree such that t € D(y)
Eventually we will show that cET(ﬂRf}f ).

Below, we will define a pairs-automaton of order k-empty whosa
state set is SX P({k]). To this end,
Definition: If CYESw, a’=u0,u1,. N , define a’QG (SXP([k]))w by
a'Q=<u0,NO>, <u1,N1>,. . . where N0=0§ and Ni-l—1=Ni U{jluiELj] for all
i€w,
Notation: If N is a finite set of positive iutegers and j is a positive
integer, let N(j) be the jth smallest member of N (if c(N) 2 j; otherwise
N(j) is undefined) . That is, N(j) is y(j) where y is the finite sequence
obtained by listing N in increasing ordér.
Definition: Let Q'=(<L£ ,Ui >) 1Si<k where for 1<isk-1 we let

Ul ={ <u,N> €S xP([k])|isc(N) Sk-1 and u€U and

N(1))
Li = <u,N> €5XP([k])|isc(N) sk-1 and UELysy)s define

-

Up =(<u,N> € 8 xP({k])| for some j, lsjsk, u€U, and j N (so c(N) <k) )

and I.]'<=¢ - Note that (' is of order k-empty.

Lemma 9: Let o€S”. Then o€ [Q,e]=dle Q1. ' ! J

Proof of Lemma 9: Let a=u.,u,,. . ; lot Q'Q=<u N, >, <u,,N, > : 1
F of Le 9: 0*U1r - - 3 02N> SupsN >, :

Let N={j, 1<j<sk l for some i €w, uiéLj] . Then by the definition of 1

Q Q

@, we have In(x )= <u,N>luG In(o)]}. !

=: Let o€ [(,e]. Then c(N) <k. f.ut j be such that Tn(a)N Ujfﬁb |
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and In@N1,=9. 1f 34N, then Ir(uo)ﬂul'(,#qﬁ so alE[Q']. If jEN,

Q
there existc q such that N(q)=j. Then In(dQ)ﬂ Ua#fﬁ and In(e )N Lt‘l=¢'
Q
So o €[Q'].
Q Q , )
«: let o €[Q']. If In(¢ )ﬂU{(#QS, then there exists j such
that In(cY)ﬂU £¢ and jE¢N. So «€[Q,e]. If there exists d, l<q<k-1
such that In(¢ )ﬂ U #¢ and In(a )ﬂL' ¢, then In(e)N Una) #¢ and

In(e)L =¢ . Since c(N) <k, we have o€ (el 4

N(q)

Definition: Define the pairs-automaton

jf=<'3xp([k]),2,w,<so,¢>, Q'> where for s€S, N&[k], a€Z,

M'(<s,N>,a)=( <<uo,N'>,<u1,N‘>>| <uo,u1> GM(s,a) and N'=NU[j|s€Lj}}.

Fact %For x€T, s€S, if r is a run of ,;'}<S 6> on t_, then Pyt is a
run of U'LS on t_, and if 1TCTxis a path, then by lemma 9,
rlne o] @ prlme (el

(Recall that t€D().
1t would be nice if tED(J?) For then, since & is of order

k-empty, we would have that tET(Emf,) and an accept1ng run of UJF, on
t would clearly yield an accepting run of Dﬁnc on t. It is not however
necessarily true that t€D(4). But what if we had a set
7,‘<A,so> STX (SxP([k])) such that t)/'<A’SO>€ D(F) 2. .

With this approach in mind we define a (possitly trans-finite)
sequence of pairwise disjoint subsets of TXS, {H6l6 <y} for some
ordinal y, as follows:

6
Let HO=¢ . Assume that I~ has been defined for § <p. Define

§ for all rERn((f'L & ), either
HB <x,s > |there exists a path mCT such that rlne [, e] or —éLgBH
l there exists y>x such that <y,r(y)> € 6L<JBH

Let y be the lcast ordinal >0 such that W=¢. Let H=6L</'YH
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Lemma 10: </\,so> .

Proof of Lemma 10: Assume that </\,so>§lH. We will construct by
induction a rur r of JL on t such that for all paths wCT, r|w¢[Q],
contradicting the fact that t €D(ut).

As in the proof of Lemma 8, if YCT is a set of (pairwise)

incomparable points, define TY=[z € Tlfor all ye€v, z?%y).

Stage 0: Let YO={/\} and define r(/\)=so. Clearly Y, is a set of

incomparable nodes and for yEYO, <y,r(y) > ¢H.
Stage i+l: Assume that YiCT ic a set of incorparable nodes and that
r has been defined on TYi such that if y GYi, then <y,r(y)>¢ H.

Let yEYi, r(y)=u. Since <y,u>¢H, there exists
ryERn(ﬁ’(u,ty) such that for all paths nCTy, ryln@ € ¢ and such that
for x>y, <x,ry(x) >¢H. Let
I) x>y
¢ =lxer I1) for all j, 1< j<k, there exists z, y<z<x, such that

y y ry(z) ELj

IIT) x is a minimal (under <) node satisfying I) and II)

Clearly Gy is a set ¢ incomparable points,

Let Yi+1=ngYiGy. Clearly Y, ,q is 8 set of incomparatle points

and TYi+l 2

TYi. Let z€TYi+1 - 'l‘Yi. There exists a unique yEYi such that y<z,

Define r(z)=—-ry(z). So if XGYHI’

<x,r(x)>¢H.
This completes the definition of r, Since for all i, every

menmber of Y]. is of length at least i, r is defined on all of T.

Clearly r is a run of 61 on t. Let MCT be a path. Let Y=_éa,.) Y.
i




Case 1: c(mNY)=w.

Then if i €w there exists inYi such that inTT, and
y0<y1<. g . So for every i €w and every j, 1<j <k, we have
r([yi,yi+1])ﬂLj;€¢. So for every j, 1<j<k, In(r'ﬂ)ﬂLj #¢. So

r|m ¢ [Q].

Case 2: MNY is firite.
Let y= maximum(mNY). Let m =N T . Then rlTr =r ITr . Also, it
under < y y y vy

must be the case that for some j, 1<j<k, ry(TTy) N Lj=¢ . But E was

h that m €[Q.e]l. Sor |7 €[Q)]. So r|m Z[0].
chosen so r lm ¢, Iy ¢ 1) LA}
Contradiction.

- ) 8 B
1 . Y > 1 = .
Definition: For § <Y, and <x,s>€ H , define H<X, ] [3L<JGH ; let

P, o= ( <o, N>>ETX (SKR(IKD) | <y,u>€H o).

By the definition of H, <x,s>€H implies that for all
rERn(ms,tx) either there exists a path MCT such that rITrE [9,e],

or therc exists y>x such that <y,r(y)>€H<X Therefore, by Fact 3,

’S>.
we know that if <x,s> €H, then txH<x,s>€D($<s,¢>)' By the
thesis of Th 6 £ < T( TR 4
hypothesis o corem 6, D(j;<s,¢>) ( §<s,¢>)
' i . - <x,8>
So let R<x,s> be an accepting run of T<g ¢> on tx#<x,s> for <x,s>€H.

We would like Réx to have the following property: For all yGTx,

s §>

ce(o,13, 4, q, if <u1,N1>=p1(Réx’s>(y,J’:)) and
<UZ,N2>=P1(R'<X,S>(Y'0,Q)) and f'epz(Réx,s>(y'c’Q))3 then
N2=N1U[j|u1€Lj] . If this property does not hold we could remove £
: ~ . : .
from pZ(r\<x,s>(y 0,q)) and what we'd have left would still be an

n

accepting run of M= t M.

on . So for <x,s>€1l, assume
<s, p> X7 <x,s> ? 2

without loss of generality that Réx &> has this property.
b

W

#
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. n2k
,s>' x vt

For <x,s>€1l, define R<x as follows: if yETx,
let R<x,s>(Y) be the same length as Réx,s>(y); if 1= iSICngth(Réx’s>(y)),
define p2(R<x,s>(y’i))=p2(Réx,s>(y’i)) and define pl(R<x,s>(y’i))=

PPy (R (>(h1))). So Re, o ERn( T2 e B o). Let MCT, bea

path; let B be a thread of (R<x,3>l")w and let @ be the S-scquence

associated with B for (R<x s>|'ﬂ)w. Then B is a thread of (RéX s>|ﬂ)w’
H b

and the S-sequence associated with B for (R'<x S>|ﬂ)w is, by the &bove
’
property afn We know, since R} is an accepting run of it
S ’ <x,s> g, 0>

that anE []. So by Lemma 9, @€ [Q,e], so o€ Q).

By the above paragraph and Lemma 7, we can finally conclude
k
that for <x,s>€H, there exists a well-formed accepting run of 978;12 on
s
tx“<x,s>' Denote it by R<x,s>'
'('12k

We now proceed to comstruct R, a well-formed run of M omn t.
We first define a total ordering, '<\H, on H as follows: Let <x,s>CH
and <y,u>EHB ; then we put <y,u><ﬁ<x,s> if p<§, or if P=5 and
<y,u> < <x,s> where < is a fixed well-ordering of TXS as in Section
3. Clearly <H is a well-ordering of H. Denote by <H the obvious strict
well-ordering determined by <H. It is important to mote that if
<y,u> EH<x,s>’ then <y,u>‘<H<x,s>.

At the same time as we define R we will define a function

£:{<A,T>) U ( (I1-{A)) X [mn2¥]) #H. As before, we carry along the

following induction hypothesis: TIf R(x) is Jefined and 1</ < length(R(x)),

then f(x,£) is defined; if f(x,£)=<y,u> and pl(R(x,L))=s, then
a) ysx and

b) if y=x then u=s and

c) <x,s>¢ Il<y s
b




42
Let R(A)=<s,,6>. Let f(/x,l')‘=<A,so>. Clearly the above

hypothesis holds so far.,

| Assume now that R(x) and f have been defined so that the above
hypothesis holds. For £, 1<£<length(R(x)), define

1 if pl(f(x,Z))=x
g(x,Z):

L if Pl(f(x,ﬂ))#x
Let 0€(0,1). Define R(x°0) to be of length mn2k such that for all g,
ISqun2k, pl(R(x'c,q))'-=si where i=the greatest integer less than —%{- 5

n2
and such that pz(R(x'c,q))=
(2] £(x,4) is defined and g(x,£) €pyRe ey gy (x°0,a))).
We now define f. Let s=p1(R(x'U,q)). If <x*c,s>¢H, define

f(x*0,q)=minimem [f(x,Z)'Zsz(R(x'U,q))}. If <x*0,s>CH, define

under N

E(x"0,q)=minimum ({ <x°0,s>} U(f(x,4)]L€ P,(R(x*0,q))}). Clearly
under i

a) aud b) are preserved. To see that c) is true at x*0, observe

that if <x+0,s> €H then <x°0;s>€1i and <x'0,s><Hf(x'0,q),

f(x*0,q)
contradicting the definition of f(x°0,q).
k
ihis completes the definition of R and f. That R€ Rn( 93?2% ,t)
follows exactly as in the previous section. It remains to show that R

is accepting. So let TCT be a path, 1T=[x0,x1,...] where xi<xi+ for all

1
i€w. Let £,4,,. . . be a thread of (Rlﬂ)w. Now for all i€uw,
) < . - ,
f(xi-l~1’ i+1) S f(xi,Zi). So, since <H well order.s H, there exists an.
i such that j=i implies that f(xj,Zj)=f(xi,Zi). Therefore the proof

that R is accepting is identical to that in Case 2) at the erd of

Section 3, D
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E Proof of Thecorem 3:
k(k+1
&G,

Notation: For k a nomnegative integer, let n(k)=2 Note that

2K (k) =n(kcHD) .

nduction hypothesis at stage at stage K be that if

Ut is a pairs-automaton of order K, then D(¢1) QT(EUI’;,S’K)) .

Let our i

The hypothesis is'true at K=0 by Theorem 4, Assume it is true

for K=k. We wish to show it for K=k+1. By Theorem 53, iff is a

paifs-automaton of order k+l-empty, then D(&) ST(W?},(k)) . Therefore,

by Theorem 6, if Ot is of order k+l, D(VU) cpme{thy

This together with Lemma 6 completes the proof. 7
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