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FOREWORD

This report describes an analy-tical approach to the problem of

defining changes in the water level of a basin connected to the ocean

by a channel or channels. To illustrate use of the analytical approach,

the case of Indian River, Delaware, is examined in considerable detail.

The analytical method was developed and the report was prepared by''

Dr. Garbis H. Keulegan. The work was initiated while Dr. Keulegan was

employed as Physicist for the National Bureau of Standards and was com-

pleted while he was serving as Staff Consultant to the Hydraulics Divi-

sion, U. S. Army Engineer Waterways Experiment Station.

The work reported herein was sponsored by the U. S. Army Engineer

Committee on Tidal Hydraulics.
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GLOSSARY

Part I

a Cross-sectional area of inlet vater

ala 3,h3 Constants in the expansion of z , equation 32

A Surficial area of basin

C A dimensionless number relating £Q to Q , equation 56m

Cd Coefficient of discharge of barrier cuts

g Constant of gravity

h Dimensionless ratio HI/H
h Dimensionless ratio H,/H

h imesols raioH 1 1
h2 Dimensionless ratio H2H

H Semirange of tide in sea

H1  Elevation of basin water referred to msl

Him Semirange of tide in basin

H Elevation of sea water referred to msl
2
K Coefficient of repletion, equation 12
K1 Coefficient of repletion for barrier cuts, equation 67

L Length of inlet

m Coefficient resulting from velocity distribution, equation 2

n Manning's roughness, equation 15

N,N3,N5 Constants in the expansion of Vsine , equation 27 4

Q Instantaneous discharge, rate of discharge
Q Maximum rate of discharge
m
r Hydraulic radius of inlet cross section

1

s Surface slope

t Time, measured from the instant when the waters of sea and of
basin are at the same level and waters of sea are rising

vii
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T Period of tide, 12.42 hr

V Velocity in inlet channel

V Maximum mean velocity in inlet channelm

z Difference in h1 and h2 , z = h 2 - h1

Lag of tide maxima behind sea high-water tide

A quantity defined by equation 20

e Specific tidal time, 2vt/T

X Coefficient of friction, equation 3

T Specific time when sea is at msl

a Volume of tidal prism, S1 = 2HlmA

Part II

a Cross section of "The Ditches"

D Depth of undisturbed water0

Hl1m,Hom Semirange of tide in Indian River Bay and Rehoboth Bay,
respectively

k Dimensionless constant appearing in equations 70 and 71

MI  Factor of proportionality in equation 84

Q. Volume of inflow during ebb of a tidal cycle
1

Volume of outflow during flood of a tidal cycle

Volume of river discharge into bays during a tidal cycle

Qm Net total outflow during a tidal cycle
..

r Average depth in inlet between bridge and ocean

t Time,measured from instant when sea tide is crossing msl and

is increasing

t. Duration of inflow

t The instant when the waters of bay and sea are in the same

horizontal plane

V Wind velocity

V Mean velocity of the currents in "The Ditches"

lp i,5,,rl Dimensionless parameters appearing in equation 82

A Superelevation of the mean level of bay waters above msl

t,',K Dimensionless parameters of wind tide equation, equation 95

4 Dimensionless constant proportional to k , equation 78
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p Density of water

pa Density of air

a 2A/T

Wind stress
s
X Taylor stress coefficient

ixi

ly

a .

ix 4



ABSTRACT

An analysis is made of the changes in water level in a basin con-
nected to the ocean by a relatively long channel. It is assumed that the
banks of the basin are vertical, that the connecting channel is many times
deeper than the tidal range, that there is no flow into the basin from
streams, and that, therefore, there are no density currents present. The
consideration of the storage equation shows that the coefficient of reple-
tion is a characteristic quantity for basins in general. The aim of the
analysis is to determine the range of tides within the basin, the lag
between the maximum surface deflections in the basin and in the sea, and
the maximum mean velocity in the connecting channel. These quantities are
determined as functions of the coefficient of repletion. Tables are given
for ready reference for many of the quantities.

The application of the method for channels to flow through barrier
cuts is also discussed. Finally, the matters of the Indian River Inlet
are studied in detail to illustrate the practical meaning of the various
results of the main analysis.

Preceding page hlalk
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TIDAL FLOW IN ENTRANCES

WATER-LEVEL FLUCTUATIONS OF BASINS IN COMMUNICATION WITH SEAS

PART I: THEORETICAL DEVELOPMENTS

Introduction

The study of the water-level fluctuations in basins communicating

with seas can be undertaken with reference to a number of conditior-

namely, shape (horizontal projections) of the basin, slopes of :., _-__I~s,

amount of inflow from streams, number of connections with the sea, hydrau-

lic resistance of the connecting channels, type of tidal fluctuations of

the seas, relation between tidal range and depth of channel, and presence

or absence of density currents.

The movement of water in the channel in the horizontal direction is

affeuted in a very marked manner by the shape of the basin. If the basin

is narrow, shallow, and long and the communication with the sea is at one

end, the flow of water from the sea into the basin may be associated with

advancing waves. In this case, change of water level in the basin is not

uniform; hence the various tidal changes in the basin from place to place

must be considered. On the other hand, if the basin is square or circular,

or of some similar form, the change in elevation of the water suLface will

be nearly the same for every point in the basin.

In the latter case, the accumulation of water in the basin obeys the

condition of the flow of reservoirs and, in particular, the so-called stor-

age law. The equation representing the storage is also the differential

equation of the surface changes. The Lurm of the equation and hence the

method of solving it are affected by inflow from streams, slope of the

banks, ratio of the depth of the connection channel to the tidal range, and

way in which flood and ebb tides occur.

This report discusses the simplest set of conditions. It is assumed

here that the walls of the basin are vertical, that there is no inflow from
streams, that there are no density cur,,nts present, and that the tidal
fluctuations are given by a sine curve. The connecting channel is assumed

14
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to be prismatic, and I,. depth of the channel is assumed to be large with

respect to the tidal range. It is also assumed that the flow in the chan-

nel is governed by Manning's formula.

Although this problem has been considered by COL Earl I. Brown, who

has given a solution,1 it was believed that a new treatment should be t-t-

tempted with the object of establishing a better approximation. A novelty

in the solution presented here is the dimensionless form of the equation of

the sirface changes. The aim of the analysis is to evaluate first the max-

imum displacement of the water surface in the basin, and second the maximum

mean velocity in the channel during a tidal cycle.

Derivation of the Equation of Surface Changes

Let Q be the discharge at time t in the connecting channel,

V the mean velocity, I2 the elevation of the open sea, and H1  the ele-

vation of the water surface in the basin. The elevations are all measured

with respect to mean sea level (msl). The difference, H2 - H1 , represents

the fall of the surface corresponding to the mean velocity V (fig. 1).

I - - . -I 2 !V

SEA I CHANNEL BASIN

I I

L

Fig. 1. Gradient of water surface over channel

This fall can be broken into two parts as follows:

(1)

2



The first difference gives the fall that is necessary to acceleratc the

water from the sea entering the channel from zero to the velocity V at

the entrance. Accordingly,

V2AL= m (2)

where m is a coefficient resu-Iting from the velocity distribution and g

is the acceleration due to gravity. If the velocity distribution over the

cross section is uniform, m reduces to unity. In open-channel flow the

-xact value of m is not known.

Since the jet issuing from the exit end of the channel is dissipated

in a process of turbulent expansion and the pressures in the medium where $

the jet is being obliterated are hydrostatic, the difference li gives

the fall necessary to overcome the resistance of the connecting channel.

Using the Weisbach type of formula:

LV2

= r 2g

where X is the friction coefficient, L is the length of the connecting

chaxnnel, and r is the hydraulic radius of the channel. The relation that

exists between X and Manning's n will be considered later.

Combining the expressions in equations 2 and 3:

( + m) (4)'6,s. + ,6H r 29•

Introducing the difference, H2 - H , and solving for V2 , yields:

V, =H(5)

It is desirable to express the ', ations -with respect to msl in terms of

the semiamplitude of the tir'-i displacements occurring in the sea. Denot-

ing the tidal range by 2H , and using H as a measure of tht surface

fluctuations, yields:



orXL +mr Hw- )or

V 2grH HH
V= XL +mr H H

Writing h2  H2/H , and hI = HI/11 , then

V XL + mr h

Since there are no contributions from the inflow of streams and since

the banks are vertical, the storage equation of the water in the basin,

assuming that the tide rises and falls simultaneously throughout the basin,

is

dH1
A = aV (8)

where A is the surficial area of the basin, and a is the cross-

sectionsl area of the connecting prismatic channel. Hence,

dt a7 = T v (9)

Denoting the tidal period by T permi";s introduction of the trans-

formation

t e
=__ Z_(10)

T "

where 0 is specific tidal time in radians, and equation 9 Decomes

dh1  T a

d e= -H T v

Eliminating V between equations 7 and 11 and writing

T a 2grI
21= H A VXL + mr (.2)

_ - . , .4



produces finally

T Y h;7 hl h, > hl (13)

which is the differential equation of the surface fluctuations in the basin

when the surface of the sea is at a higher elevation than the surface of

the water in the basin. When the condition is reversed, i.e. when the sur-

face of the sea is lower than the surface of the water in the basin, the

corresponding equation is

dh I

de -KVh -h 2 , h > h2

In the results that will be given later, the numerical quantity K

plays a decisive role. It summarizes the effects of the channel and the

basin dimensions, of the roughness of the walls, and of the period and

range of the tidal fluctuations on the limits of the water-level changes in

the basin. Because of this significance it appears to be appropriate to

refer to K as the coefficient of filling or repletion.

Typical Values of the Coefficient of Repletion

It is desired to consider some typical values of the coefficient K

in order to form an idea of the variations in the values of the coefficient

which are ordinarily to be expected. The first step is to give the rela-

tion that exists between the coefficient of friction X and Manning's n

Manning's formula is

V 1. J /6 r-
n

where s , the surface slope, is equal to An/L , and the units of meas-

urement are the foot and the second. But fram equation 3

V rs
5



Comparing the latter two expressions for the velocity yields

1,=n -2 (15)l7- .486rl/6

which is the desired relation connecting X with n . Some numerical

values relating X to n and r are given in table 1.

If it is assumed that the distribution of the velocities at the en-

trance to the channel is uniform, m in equation 12 can be taken as unity.

The relation giving K can now be written as

AKCH T~
a 21t / L+r (12a)

The quantity on the right side of the equation has been computed for

various channel depths and lengths and for different values of n . Compu-

tations are made for an assumed tidal period T equal to 12 hr. All

lengths are in feet and times in seconds in the computations. For the re-

sults see table 2. As an illustration of the use of the table, assume that

r = 5 ft, L = 1000 ft, n = 0.03, and H = 1 ft. Then from table 2:

4 a

K = 2.734 x lo 4

so that if A/a is given the succession of values, 10, l04 , and l0,

K takes on the values, 27.3, 2.73, and 0.27, respectively.

Sinusoidal Fluctuations of Surface of Sea

Granting that the fluctuations in level of the surface of the sea can

be represented as a pure sine curve, the most general solution to describe

the fluctuations of water-surface level in the basin needs to be effected

with reference to the height of the water surface in the basin at the

instant the basin is connected to the sea.

If, however, the basin has been in communication with the sea for a

long time, the fluctuations of the water surface in the basin become steady

and fluctuate between limits that do not vary with time. The same limits

6
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are established no matter what the initial depth of water in the basin may

have been. Although the fluctuations of the surface of the water in the

basin are periodic, it cannot be said that they have the form of a pure

sine curve, because the frictional resistance of the connecting channel

varies as the square of the mean velocity.

Assume that the displacements of the water surfaces in the sea and in

the basin are given on a common axis of time t or of the dimensionless

time parameter e (see fig. 2). The origin of time may be taken as the

SEA.

SEA
h2

Fig. 2. Surface fluctuations of sea and basin

instant when h2  and h1  are equal and h2  commences to become greater

than h1 . Then, as shown in fig. 2, h2 = 0 when 9 = T . Accordingly,

the oscillation of the surface of the sea will be given by

h2 = sin (e - T) ,0 < e< 2v (16)

A consideration that will have a bearing on the method of solution to be

followed is the proportion of the time during which the water level in the

sea is higher than the water level in the basin. It will be assumed that

during the period T/2 the surface of the sea is higher than the surface

7
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in the basin. The assumption will be verified later. During the following

period the reverse is true. Accordingly, the determination of h1  will be

made separately for the ranges of values 0 < e < it and < e < 2a ;

these ranges will be referred to as the first range and the second range,

respectively.

The mathematical task involves the following relations for the first

range:

h2 > h1 , 0 < e< 

h2 = sin (e - T) (16)

dhldj-- K V2-hl (13)

h 2 = h I , e = o

and

h2 = h. ,9= et

For the second range, the relations involved are:

hl> h2 , it < e < 2vt

h2 = sin (e - -) (16)

dT =-/h (
h2 =h _K f = 14

and h

h= hl , 9 = 21t

Instead of determining h1  directly, it is more convenient to obtain

the difference, h1 - h2  Thus, putting

z= h2 - h1 , 0 < 0 < v (17)

8
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equation 13 reduces to

dzh= -K -\/z + -
de de

After introducing the value of h2  from equation 16. the mathemaui-

cal problem for the first range becomes that of determining z from the

f'ollowing relations:

z>0 ,O e<

dzde= K z + cos e cos T + sin e sin (

z=0 , 0

z=0 , e=t

For the second range, putting

z =h- h2  < e < 2(9)2I

equation 14 becomes

dz dh2

Introducing h transformation

e = r + (20)

and hence the relation

h2 = -sin ( - r)

the mathematical problem for the second range involves the solution of the

conditions

0



z>O ,O< <

d z -KF + cos P cos T + sin P sin T ;21)

z=O , 0

z=O , =

Comparison of the systems of relations in equations 18 and 21 indi-

cates that it should be sufficient to obtain the solution of z for the

first range. The behavior of z for the second range is readily deduced.

The same comparison shows also that the portion of the time during which

the surface of the sea is at a higher level than the surface in the basin

is T/2 . Thus the original assumption is confirmed.

Now since the solution of equation 18 is of the form

z= f(e) (22)

and since

hl= h2 - z , O< e <

the value of hI  for this range is

hl= sin (e- ) -f(e) (23)

Again, since the solution of equation 21 is of the form

z = f( ) (24)

and since

hl= z + h2 0< t1<0

I0



the value of hI  for the second range is
1!

hl = sin ( T- ) + f(P) ,e= A + (25)
1t

The geometrical interpretation of the above discussion is readily in-

ferred. The curve of hI  for the first range is drawn. The curve is re-

flected and is moved along the axis of e by an amount v . The curve

thus displaced is the curve of h1  for the second range.

Fourier Expansion of

The determination of a form of z that will satisfy the differential

equation, equation 18, can be effected in various ways. The solution can

be in terms of polynomials of e or in terms of the circular functions of

e . Since periodic changes are involved, it is preferable to obtain the

solution in circular functions. Select as a possible expression the series

z sin ne + Z Bn[cos ne - cos (n + 2)e] (26)1 1

n = 1, 3, 5, ... , 2m + 1

since z vanishes for e= O and e= n . Here, A and B are

constants.

It is obvious that the first term in the series, i.e. the quantity

A1 sin e , is the predominant term. In equation 18 there is the term 4 ,

and it will be necessary in the course of the analysis, as will be seen

later, to have the Fourier expansion of Isin e . Now, by the rule of the

Fourier expansion, if fl(e) is single-valued, finite, and continuous be-

tween e = 0 and e = a , it can be developed into a series of the form 2

fl(e) = a, sin e + a2 sin 2e+ a3 sin 3e

where the coefficients have the values

ll



am = fl(e) sin me de

0
In conformity with the rule and by inspection, the following equation can

be written:

-vS h e= N1 sin e + N3 sin 3e N5 sin 5e (27)

where

2r
Nl =  -\/-s-in sin e de

N3 = 1 sin e sin 3e de (28)

N5, sf T i sin 5e de

The N's can be determined numerically by replacing the process of

integration by a process of summation. For example:

NI= Z in esin eAe, o<e<n,

The summations are made by putting the interval A0 equal to 0.03491

radians. The computations give

N1 = 1.1107

N3 = 0.1580 (29)

N5 = 0.0711

The degree of convergence of the series in equation 27 will be exam-

ined best when the differences

A=l O- N1 sin e

12



= Ysine -N1 sin e-N sin3e

65= i -N, sin e -N3 sin 3e - N5 sin 5e

are computed and plotted (see fig. 3). The convergence appears to be sat-
isfa-tory. The larger deviations are confined to the end regions. The
effect of adding sine terms of the higher frequencies is to decrease the
interval length of the end regions where the maximum deviations occur. In

0.24

0.22

0.20

0.18

0.16

0.14 1

0.12

o.o A3

0.08

0.06

0.04

0.02

0

-0.02

-0.04

-0.06

-0.0a

-0.10

-0.12 0 20 40 6o s 100 120 140 160 180

0, DEGREES

Fig. 3. Residuals in the successive approximations of the
Fourier expansion of ysin
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addition, the magnitudes of the deviations are decreased. It appears also

that for the ordinary approximations, when very high accuracy is not needed,

it is sufficient to adopt:

- = N sin e+ N sin 30 (30)1 3

Conforming to this selection, the terms of higher frequencies in the ex-

pression for z , equation 26, could be dispensed with.

Method of Approximate Solutions

As was mentioned above, it will be sufficient to determine z for

the first range only, i.e. for the interval 0 < e < :n . The differential

equation to be solved is

dz (8-= -K z+ cos e cos T + sin e sin T (18)

The solution is taken to be of the form

z = a, sin e+ alb3 (cos e - cos 3e) + ala3 sin 3e (31)

an expression which vanishes for the points, e = 0 and e = T Since

terms of higher frequency are omitted, the solution represents an approxi-

mation. The unknown quantities are the coefficients, a1 , a3 , b3 , and

the phase angle .

Factoring out the first term on the right side of equat f 'on 31 yields

z= a, sin ei+ b3 cos e- +a 3cos 3en sin 3e (32)

Since the terms in parentheses remain finite when 0 is varied from 0 to

IT, it is admissible to take the square root of both sides. Hence,

1/2 1/2 1 Vcs-o3 + sn0z!!' =conl+ e s e + a E (33)2 sii n 0 2 sine

14
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It is conceived that a and b are fractions; therefore, in writing the3 3
square-root expression for the terms in the parentheses of equation 32, the

terms containing the squares of a3 and b and their product are ne-

glected. Introducing the Fourier expression of equation 30 yields

1/2 (1/2 Cos e- cos 30
z a, (Ni sin e + N 3 sin 3e) + *b3  sin

sin 3e(34)

Removing the first set of parentheses and ignoring the terms multiplied by

N b and N a , since these are small fractions, yields33 33 3

S= 1 sin e + N3 sin 3 + 2 (cos e cos 3e)

+ 3 1 sin 3 (35)

Differentiating equation 31 yields

dz - a1 cos e + ab(-sin e + 3 sin 3e) + 3ala3 cos 30 (36)

Substituting the expressions from equations 35 and 36 in equation 18, 1
the latter equation reduces to *

I

a N K - alb3 -sin sin 6 + a -- b + a1 - cos T cos e

+ aI/2 K (N3 + - a3  + 3alb3] sin 30

+ (a1/2 Nib 3 + 3ala3 ) cOs 30 = 0 (37)

This equation must hold for any value of e . Hence it must hold

when multiplied by sin e de and integrated between the limits 0 and

. The same is true when it is multiplied by cos e de , cos 3e de , or I
sin 3e dO and integrated between the same limits. Carrying out all the

steps, it is found that

15
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1/2 NK a.lb 3 - sin T = 0 (38)

1/2 - K  
+

ai 2 b3 + a, - cos = 0 (39)

K / N3 + --a3 + 3ab 3 = 0 (40)

and b + 3a3 = 0 (41)
-ai 2 3 +aa0()

and these equations are sufficient to determine the unknowns, T , , a3 ,
and b3.

Obviously the rigorous determination of the unknowns is involved.

Since a3  and b3  are small quantities, the values obtained by the method

of approximations will be satisfactory. Discarding in equations 38 and 39

the terms multiplied by b3 , these equations simplify to

91/2 NK = sin T (42)

and

a = cos T (43)

Squaring and adding gives

Sal N (44)

Solving for a, and denoting the positive root by a..,

a = I+ U - - (45)

The corresponding solution for T is

= cos T (46)

The quantities a,, and T, are referred to as the first approximate

values of a, and T

Substituting all for a, in equations 40 and 41 and solving yields

16
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and~~ Wttha3 =-2 _lI.2 3 a. (47)
"la 2+ 6l

da

and .1/2
b3 -- ') a3  (48)

b N1K 3 (8

With the values of a3  and b3  thus known, the second approximate

values of a1 and T can be obtained by reverting once more to equations

38 and 39. Writing

~and
and = + T (50)

it is found that:

ba Nl + 1N  b (51)

223

and

5 al(21+ V22 3(52)

Bearing in mind that the fluctuations of the water surface in the

basin are given by hl = z + h2 and that z is given by equation 31, the

quantities a1 , a3 , b3 , and r are the parameters that determine the

form of the fluctuations in the basin as a function of time. These con-

stants depend individually on the coefficient of repletion K . Their

values, de-cermined according to the scheme of relations discussed above,

are given in table 3.
In the method used, the results are obtained within the solution to a

second approximation of the differential equation, equation 18. The method

of analysis is such that one can go to higher approximations. This possi-

bility, however, has only a theoretical significance, since the computa-

tions to be made are very long and should be avoided.

17
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Surface Displacement Curves for the Case when K is Equal to Unity

By way of illustration, the surface curves for the case in which the

coefficient of repletion, K of equation 12, is equal to unity will be de-

termined. Tabl e 3 shows that in this case the surface curve parameters are:

a1 = 0.5451 cos T = 0.5178

a3 = -0.0165 sin T = 0.8555

b = I.o66b3

3

Substituting these values in equations 16 and 31, the quantities h2

and z are determined. Since z = h1 - h2 , h1  is computed by taking the

sum of z and h2 . The results are shown in fig. 4. In preparing the

1.0 -

0.6 2112

0.6

0.4

-0.2

-0.4 h h

-0.6

-0.8

0 20 40 60 80 100 140 140 180 220 260 300 340

0. DEGREES

Fig. 4. Surface fluctuations of sea and basin waters for the case K = 1

plots, use was made of the fact that the solutions for the range 0 < e < 1
can be extended to the range v < e < 2g . This matter has been discussed

previously.

18

H L 
- " l I - - -



The solutions given are only approximate, and it would be instructive

to find how closely the differential equation, equation 18, is satisfied.

Because of the approximations, if the derived solution is reintroduced into

the differential equation, a remainder AR will be left; that is,

AR = -L + K dh- 2 (53)

The smaller the difference AR , the closer the approximation will be

to the exact solution. In this case an idea can be obtained concerning the

sufficiency of the approximation by comparing the remainder AR with

dh2/de . For this comparison the quantities AR and dh /de are plotted

against e in fig. 5. It can be seen that the remainder is small, and

1.0

0.8

8h2

dO

0.6

0.4

0.2 -

0

-0.2

-0.4

0 20 40 60 80 100 120 140 160 180
0, OEGREES

Fig. 5. Residual from the second approximate solution for the case K= 1
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that a good solution has been obtained in the case under consideration.

Range of Tides in the Basin and Lag of the Maxima

The range of the tides in the basin is twice the maximum displacement

of the water surface in the basin measured from msl. The maximum and the

minimum displacements correspond to the zeroes of the difference z (i.e.

h; = h1), since for these points the rate dh1/de vanished (see equation

13). As z vanishes at the points e= 0 and e= n , it is sufficient

to consider the value of h1  at e = n , where hI  is maximum. Let this

value be h . Bearing in mind the dimensionless character of the quan-

tity, it is seen that him gives the ratio of the semirange of tides in

the basin to the semirange of tides in the sea. Since at e = v , hlm

equals h., , and the value of h2  at e = ( is sin T (see equation 16),

the ratio of the semirange of tide in the basin to the semirange of tide in

the sea is

hlm = sin T (54)

The ratio of the range of tide in the basin to the range in the sea is also

sin T . The values of sin T as a function of K are shown in table 4.

Thus the tidal range of the water in the basin can be read directly from

the table, once the coefficient of repletion K is known for the particu-

lar basin (see also fig. 6).

The next question to consider is the lag between the maximum dis-

placement of the water surface of the sea and the maximum displacement of

the water surface in the basin. In order of time, the former precedes the

latter. Let the lag, expressed in radians, be denoted by a . The maximum

displacement of the surface of the sea occurs at e and has the value,m

from equation 16,

e - T= E 2 -+m 2' m 2

The maximum displacement of the surface of the water in the basin occurs

20
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when e= v . Hence the lag is:

m
a e

or

a= (- 5)

The question of sin T was considered in the preceding paragraph.

Tidal Prisms and Maximum Mean Velocity in the Communicating Channel

The volume of water in the basin included between the two horizontal

planes, one giving the highest elevation of the water surface during a

tidal cycle and the other giving the lowest elevation of the surface, is

referred to as the tidal prism. Let the volume of the prism be 0 . If

& is the maximum rate of discharge through the connecting channel during

a half tidal cycle, the volume of the prism, the maximum rate of discharge,

and the period of the tides can be connected by an expression:

-c(56)

where C is a dimensionless number.

The value of C is close to unity, and its exact value depends on

the coefficient of repletion K . This dependence will be determined next.

With the maximum mean velocity being denoted by V ,

m

in aVm

Also, from the condition of continuity,

T /2
= af Vdt

Since z = h2 - hl , it can be seen from equation 7 that

22



and

V OF

the suffix m indicating that maximum values are taken. Hence,

0 T/2 fdzdt

or, since 2ndt Tde ,

T% (57))

Let e be the value of e which renders z a maximum. At this

point -/z is also a maximum. Accordingly, dz/de = 0 , and from equa-

tion 36:

cos 61 + b3 (-sin e1 + 3 sin 3el) + 3a3 cos 3eI = 0

It can be shown that the smallest root of this equation is:

1l + (58)

where

14E b3

1- 9a3

and

Cos el = -e

cos 361 = +3e

s in e I  sin 30I = -1

23
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From equation 35 the maximum value of F is

(V)m = aI / 2 [N1 i sin 1+ N s
b3N1  Na

+T3 (cos e - cos 30l) + 3 sin 301
+ 21 CO 2 f ]

Introducing the value of el from the preceding page, this reduces

t o : 2

( -- / . N - 2N1b3 = (59)

II
Again, from equation 35, effecting an integration:

f zl/2de= 2a2 N1 + 5 N3 + Nla3  (6o)

Substituting these expressions, equations 59 and 60, in equation 57,

and then making use of the fact that N3 , a , b 3 , and r are all small

quantities, yields

,~ 2b- E -- I  -Ia
3 N, 3 3 3

The right member of the equation is the expression for C appearing in

equation 56; that is,

2!

N1  - a 3  (61)

It is obvious that C depends on K, since a3 , b 3 , and E de-

pend on K . Values of C computed using the latter expression are given

in table 4. It is seen that as K is increased from 0.1 to 100 the value

of C changes from 0.8106 to 1.0000 (see also fig. 6).

The formula for the tidal prism is the means by which the maximum

velocity in the connecting channel can now be evaluated. By the definition

of the tidal prism,

n= 2hlmAH
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where him is the ratio of the maximum displacement of the water surface

in the basin to the maximum displacement of the surface of the sea. Hence,

using equation 54

= 2AH sin T

As before,

= Vm a

introducing these into the formula for the tidal prism, equation 56,

gives

Vm = 2nC - sinT (62)
a aT

This is the relation which connects the maximum mean velocity in the

connecting channel with the range of tides in the sea, 2H . In the ex-

pression H is measured in feet and T in seconds.

Prismatic Equivalence of Irregular Channels
and Multiplicity of Channels

The determination of the coefficient of repletion K of the connect-

ing channel has been carried out, as discussed in the initial sections of

this report, on the basis that the channel is prismatic. An actual channel

may not meet this condition, the depth and width varying from point to

point. For the purpose of evaluating K , the actual irregular channel can

be replaced by a regular one having the same conductance as the irregular

channel. In finding the equivalent channel it may be well to assume that

the channel length L and the roughness coefficient n remain the same;

also that the depth of the equivalent channel is equal to the average depth

r of the irregular channel. Thus it remains to find the constant cross

section as of the equivalent channel. If the end cross sections of the

actual channel are not of the same size, the activity of the channel

25
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differs for the two directions of flow, one direction being the reverse of

the othe*r. If then asl is the equivalent cross section for one direction

and as2  for the opposite direction, it should suffice to take the mean

(asl + as2 )/2 as the cross section of the equivalent channel. If the

length of the connecting channel is large in comparison with the depth, the

error arising from this difficulty will be reduced.

Let rx  and ax be the depth and the cross-sectional area of the

irregular channel at the point x . Let a be the mean value of a
m xaveraged along the entire length of the channel. Let a1  and a2 be the

end cross sections of the channel, a, being on the end toward the sea.

Assume that the flow Q is from the sea toward the basin (see fig. 7).

SEA Ox Q 0 2 BASIN

r
x

Fig. 7. An irregular connecting channel

The surface fall may be broken into two parts, iH and 2 , having

the values

2

and L x2gal
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Hence, f

ra2 2g ;

For the equivalent channel,

2 XL 2m QQ -m
2g r2 2g(2

ra5

In these expressions X is the coefficient of friction correspond-
x

ing to the hydraulic radius r and n , and X is the coefficient ofx m
friction corresponding to the hydraulic radius r and n . Since chan-

m

nels are very wide, the average depth of a cross section can be taken equal

to the hydraulic radius of the section. In channels having equal conduct-
2

ances, the quantity 2g6H/Q is the same for the same value of Q

Applying this to the above gives

(mL 
L1, xdx:+(X 1) =f x 12

If it is assumed that along the channel the variation in depth is not

very great, the above expression can be simplified. Putting rx = rm + 6r

it can be inferred from equation 15, since 8r is small with respect to

rm ,that

rx  rm  3

Substituting this in the above equation, multiplying the resulting
b 2 -XmL

equation by a , and then dividing by -- + 1 yields
mm

1M
a 2 2ar a r a
m m - d + Mr
a2 L + 2 (63)

0Mf _8.a 1in m m a2

which is the formula for determining the cross section of the equivalent

channel when the flow is from the sea to the basin. If a2  is replaced by
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a, in equation 63, the result gives the cross section of the equivalent

channel for flow in the other direction.

when there is more than one connecting channel, it is a simple matter

to determine the equivalent single channel. In fact, if K, , K2 , K

... are the coefficients of repletion of the individual channels, the co-

efficient of repletion of the single equivalent channel is

... =K(64)

This fact will be readily understood if the derivation of equation 13

is borne in mind.

Empirical Values of the Tidal Prism Formula

Keulegan and Hall have given an empirical determination of the con-

stant C in the tidal prism formula. 3 Based on the observed values of the

actual discharges for the inlets at Nantucket, Manasquan, Beaufort, and

Baker's Haulover, the average value of C is found to be 0.86.

Considering further the tidal ranges in the basins involving these

inlets and the ranges of the seas outside duiLng the period of the dis-

charge observations, it will be possible to obtain theoretical values of

C according to the methods discussed previously. In table 4 the quanti-

ties hLm (i.e. sin T) and C are given. Thus it will suffice to take the

ratios of the tidal ranges in the basins and the seas and deduce therefrom

by referring to table 4 the correspondirg values of C . This is sho.n

below for the inlets under consideration.

Tidal Range, ft h
Inlet Inside Outside lm C

Nantucket 2.0 2.5 0.800 0.841
Manasquan 2.5 3.7 0.676 0.825
Beaufort 3.5 4.0 0.878 0.862
Baker's Haulover 3.0 3.3 0.910 0.872

For these four inlets the average theoretical value of C is 0.85,

and this compares well with the empirically determined value.
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Despite the irregular and rugged shape of the basin areas of the

respective basins, the above agreement would indicate that probably in the

basins considered the total variations are nearly constant over the entire

areas of the basins.

Comparisons with COL Brown's Analysis

The original idea that the flow through an inlet is essentially hy-

draulic stermed from COL Brown.1  The problem was approached by assuming

that if the surface fluctuations in the sea are sinusoidal, then the fluc-

tuations of the lagoon also are sinusoidal. Since the resistance of the

inlet channel is best described by quadratic laws, the fluctuations in the

lagoon fail to conform to a pure sinusoidal variation. The developments on

the preceding pages were meant to improve the rigor of analysis. There-

fore, it may be worthwhile to make a comparison between the method reported

herein and those of COL Brown's analysis for a hypothetical basin. In the

review of this report Mr. Wicker made this comparison, and the results are

reproduced below from the commentary kindly offered.
400x0 6  2

Assume: A basin with A = ft

A channel with r = 15 ft

a = 10,000 ft 2

L = 5,000 ft

n = .04
An ocean tide 2H = 4 ft

H= 2 ft

Then, according to the procedure reported herein, from table 2

AKV H O- 4 = 2.o4o
a

an," thus

K= 0.36

From table 4 for K= 0.36 (see also fig. 6)

sin T= 0.40 and C= 0.814
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Then from equation 62

V = 3.78 ft/secmi

According to the procedure of COL Brown,

QtAh

Q= 17,04 4a V = 17,044a 1.4 r2/3

Vm 1,4a n r 2L2L

where notation is the same as used herein except, that

Qt = total inflow (or outflow)

= range of tide in sea; i.e. 2H in
the notation of this report

h = range of tide in basin;
i.e. 2Hm in the notation of this j

, report

Assuming that h =1.8,

6 33
t = 720 x0 ft

Also, from the second expression for t in the above,

Q =730 X 10 6ft 3

Assuming that h = 1.9 ,

Qt = 760 x 106 ft
3

t = 723 X 106 ft3
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Assuming that h = 1.82,

6 3
Qt = 728 x 10 ft3

Qt = 727 X 106 ft3

Evidently h will be approximately 1.82 ft. Taking this value,

v 1.486 -2/3Jh
Vn n r L s 1M s

Vm 4.26 ft/sec

This compares with the 3.78 value obtained by the method herein. COL

Brown's procedure overestimates by 12.7 percent as compared with results of

the procedure herein.

To take another example, assume:

A basin with A = 400 x lo
6 ft2

A channel with r = lO ft

a = 5,000 ft2

L = 10,000 ft

n= 0.03

An ocean tide 2H= 6 ft

H=3 "
According to the procedure herein, from tac.' .2

AK1 X i0"4 = 1.519
a

and thus

K = 0.1095

From table 4, or fig. 6, for K = 0.1095

sin T= 0.125 and C= 0.8107

Then from equation 62,
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V = 3.52 ft/secm

According to the procedure of COL Brown, assumiiig that h 2 ,

= 800 x 106 ft3

= 329 x 106 ft3

Assuming that h 1

6 3Qt = 40 0x x06 ft

Qt = 337 x 106 ft
3

Assuming that h 0.8 ,

= 320 x 106 ft
3

Qt = 338 x 10 ft3

Evidently h will be approximately 0.8. Taking this value,
I.1

Vm = 3.96 ft/sec

which compares with the value of 3.52 from the procedure reported herein.

COL Brown's procedure again overestimates as compared with the results of

the method herein. The difference is about the same as previously computed.

Application to Barrier Cuts

The procedure of evaluations relating to inlets, as discussed previ-

ously, is equally applicable to barrier cuts separating two bays or the two

parts of a bay, provided the coefficient of repletion K is determined

anew.
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Let Q be the discharge at the cut, V the mean velocity, H2  the

elevation of water surface on one side of the cut, and H1  the elevation

in the protected bay. As before, the elevations are measured with respect

to msl. The flow through the cut will be thought to be analogus to flow

through an orifice connecting two reservoirs. Then, let Cd be the coef-

ficient of discharge and a the mean cross section of the current at the

cut. Hence

Q- 0da ; 2 g(; - ) (65)

Using the half tidal range H in the outer bay as a measure of surface de-

flections,

ij
V=C, 2gH hI;- hl (66)vv

Using the surface area of the protected bay A , the storage equation is

1 T a

,dh - 
_ V (11)

Eliminating V between equations 1 and 66 yields
dhl=

d G " hl h 2 
> hl (13)

dhl

d- Kl - "h2 hl > h2  (14)

where the coefficient of repletion K1 now has the new value

2nH A d (67)

Once K1 is obtained, the values of C and sin T are read from table 4

or from fig. 6. Using these determinations, the maximum water elevation in

the protected part of the bay, the maximum mean current through the cut,

and the lag in the oscillations in the protected part are established

33 1



from equations 54, 62, and 55, respectively.

Similar to the case of a canal, assuming that the surface oscilla-

tions on the two sides of the cut for points sufficiently removed from the

cut are nearly sinusoidal, a would be the cross section of the cut when

the waters on the two sides of the cut are at msl. As regards the coef-

ficient of discharge Cd , ignoring the effects of the geometry of the cut

and the roughness of the passage, this may be put equal to unity.
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PART II: APPLICATION TO INDIAN RIVER BAY

Topographic Conditions of Indian River Inlet

At the suggestion of the Committee on Tidal Hydraulics, the case of

Indian River Bay, Del., was examined in detail to illustrate the applica-

tijn of the formulas of the present analysis.

Indian River Bay is a lagoon about 2 miles wide from north to south4

and 6 miles long, the surface area being 15 square miles. The main trib-

utary is the Indian River, which flows into the bay from the west. For

",out 3-1/2 miles above its mouth the river is broad and relatively shal-

l. . having a depth of about 7 ft at local mean low water (mlw). From

this point to the head of navigation, a distance of about 8 miles, it is

narrow and sluggish with a meandering course, bordered by mud flats and

swamps. Depth of water in the bay averages about 3 ft at local mlw. The

bay is connected with the ocean through the Indian River Inlet.

This bay is connected with Rehoboth Bay through two waterways known

as "The Ditches," see fig. 8. These passages had a controlling depth of

only 2 or 3 ft below the local mlw prior to 1956.

Rehoboth Bay is a shallow-bordered lagoon separated from the ocean

by a barrier beach. It is 3 miles wide from east to west and 4 miles long,

with a surface area of approximately 13 square miles. The controlling

depth is 3 ft below mlw. Two tributary streams, Herring Creek and Love

Creek, enter the bay from the west. Lewes and Rehoboth Canal is an inland

waterway from Rehoboth Bay to Delaware Bay. From the jettied entrance on

the north shore the inland waterway follows a northerly course through

marshland, entering fastland in the vicinity of Rehoboth, then in a north-

westerly direction it again passes through marshland to an inlet from Del-

aware Bay, and thence to a connection with Broadkill River. Prior to 1937

the total length was 11.8 miles. The project depth is 6 ft below local

mlw and bottom width varies from 50 to 100 ft. It must be kept in mind

that the connection of Lewes and Rehoboth Canal with Delaware Bay via Roo-

sevelt Inlet was not in existence in 1928-1929. The length given here is

for a zonnection with Delaware Bay via Broadkill River.
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Indian River Inlet

Indian River Inlet has an interesting history.5 Prior to the mod-

ern improvements it was an unstable passage, opening and closing alter-

nately. Under such conditions an inlet is likely to move from one place

to another, and evidence suggests that during the period from 1847 to 1910

this inlet migrated northward a distance of 2 miles. About 1910 the nat-

ural inlet had shoaled to an extent that a closing was impending. In

fact, about the year 1925 the closing was complete and little hope could

be entertained for the opening under natural causes. In the summer of

1928 the Indian River Commission undertook to open the inlet by making a

cut through the barrier reef at a point almost opposite the center of

* Indian River Bay and I mile south of the final position of the natural

inlet. A channel 60 ft wide anod 4 ft deep at miw of the ocean was exca-

vated from the bay, beginning where the water was 4 ft deep on the same

datum, extending eastward through the marsh, and then partly through the

barrier reef to within U15 ft of the high-water mark on the ocean beach.

Actual work began on 23 June 1928 and was finished in October. From the

*eastern end of the dredged cut an attempt was made to complete the open-

ing to the ocean by first removing a part of the sand with scrapers and

then blasting out a channel. The final attempt in November 1928 was not

successful, and as the funds were exhausted, work was suspended. About a

month after the work had stopped the locality regained its former appear-

ance except for the opening through the dunes and the cut in the marsh.

The trench made by the explosions was obliterated. The ocean end had been

filled to above low water for a distance of 125 ft. At the end of April

1929, locally interested people made a small cut, and the impounded water

eroded an opening through the remainder of the barrier beach. The cross

section of this opening was estimated to be 100 ft wide and 4-1/2 ft deep

in June 1929, but late that summer it was evident that the inlet was shoal-

ing rapidly and again was about to close entirely. In November 1929,

dredging of a channel 60 ft wide at the bottom and 8 ft deep at mlw was

commenced, beginning in the marsh about 3700 ft from the ocean. The ex-

cavation followed the line of the previous cuts, and by January 1930 it
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had reached the outer bar. The work provided an inlet that was con-

sidered to be comparable in size to the old inlet that existed prior to

1910. However, by November 1930 the inner bar was above mlw and the con-

trolling depth over the outer bar was 2 ft. By 1935, the inlet was vir-

tually closed and the State of Delaware decided again to appeal to the

Federal Government for assistance in providing a stabilized inlet.

As expressed by the state and local interests, the purposes of a

stable inlet were as follows: to provide for an adequate exchange of

water between the bays and the ocean in order to relieve stagnation and

to increase the salinity of the bays sufficiently to support a seafood in-

dustry, and to provide a satisfactory channel for navigation from the ocean

to points within the bays. The project designed by the U. S. Army Corps

of Engineers for these indicated purposes consisted of jetties at the in-

let entrance extending to the 14-ft depth contour in the ocean, a channel

15 ft deep and 200 ft wide from the end of the jetties to a point 7000 ft

inside Indian River Bay, and thence a channel 6 ft deep and 100 ft wide to

the natural 6-ft depth contour in Indian River Bay. This project was ap-

proved by Congress, and construction was completed in 1939. A generally

satisfactory inlet has existed since that time; as of 1966, a total of ap-

proximately 100,000 cu yd of maintenance dredging had been performed and

the controlling depths in the inlet have approximated 9 ft, which is ade-

quLte for navigation. The quality -f the water within the bays apparently

has been satisfactory since opening of the inlet.

Profile of Tide in Indian River Bay

One of the assumptions used in the derivation of the formulas relat-

ing to the regime of tides in an internal basin was that the mean levels

of the water in the basin and of the sea outside are contained in the same

horizontal plane. It is necessary to examine how nearly this assumption

is satisfied for Indian River Bay. In table 5, which was prepared by

Mr. Wicker for the guidance of the discussions herein, the longtime tide

data of the various stations of the two bays are given. The observations

of the surveys of the two periods, 1938-1939 and 1948 and 1950, appear to
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be distinct. The former covers a period of 14 months. From the 1938-1939

survey a superelevation of mean tide level (mtl) of about 0.15 ft is in-

dicated. The correspor ing value in Rehoboth Bay, taking the average from

Dewey Beach and Love Creek, is 0.08 ft. With reference to the 1948 and

1950 survey covering a period of 6-1/2 months, a much augmented super-

elevation of mtl at Oak Orchard and Dewey Beach over that observed in 1938-

1939 is indicated.

The averaged 1948-1950 values are shown in fig. 9. These were
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Fig. 9. Indian River Inlet and Bay 1948-1950 tides
reduced to longtime means
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selected for detailed study in lieu of 1938-1939 values because current

velocity observations were made in 1948 in Indian River Inlet and at sta-

tions in the bay. Ocean values were not observed. Some measurements

would place the range of tide at the ocean as 3.77 ft. However, in a

memorandum dated 12 December 1939, Mr. Wicker rejected this value on the

ground that the observations were very poor and very few in number. On

the premise that the tide at Indian River Inlet is most likely similar to

the tide at Lewes, the value 4.1 ft was proposed for the range. The value

of tide at Lewes is well established. This value is shown in fig. 9,

H = 2.05 , and will be used in all the subsequent computations.

Fig. 9 also shows that the range of tide along the inlet decreases

almost uniformly. In the bay area, tidal displacements are nearly con-

stant. The mtl at the Inlet Bridge coincides with msl, whereas in the bay

interior a superelevation of 0.3 ft is established. This is a superele-

vation much higher than that observed during the surveys of 1938-1939.

The tributary discharges, the shallowness of the inlet, and the wind ef-

fects must have a bearing on the superelevations. It is desirable, there-

fore, that each of these factors be separately examined in order to es-

tablish a reasonable limiting value for the superelevation.
!

Tributary Discharges into the Bays

In 1930 the Indian River Inlet Comnission (IRIC) conducted a field

investigation to ascertain the inflows from the sea and the outflows dur-

ing a tidal cycle, and also the changes in the water level within the

bays. The level changes were noted for a period of about two years at

Holts Wharf, and these are shown in fig. 10 together with the monthly pre-

cipitation in the area. The flows were measured by means of current

meters at the Rehobth Bay end of Lewes and Rehoboth Canal and at Indian

River Inlet. There was no need for flow observation in Assawoman Canal as

this waterway was closed during this study. Observations of currents were

made continuously each day except Sunday for a period of three months.

Average values from these observations for consecutive periods are shown

in table 6 together with the average durations of inflow and outflow.
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Fig. 10. Bay water elevation and prezipitation
(Survey of Indian River Inlet Commission)

For inlet and canal alike, the outflow is greater than the inflow.

This is attributed to the fact that at the time the average level of the

water of the bays was above that of the sea. The value of the superele- I
vation can be determined analytically, since the disparity in the inflow

and the outflow durations is known. Let A be the superelevation, H the

semirange of the tide in the sea, and H2 the sea tidal elevation
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Fig. 11. Notation diagram. Ocean tide and bay superelevation

measured from msl, approximately H = 2.05 ft (see fig. 11). The tide of

sea is

H2 = H sin at , a = 21%/T

if t is measured from the instant when the tide is crossing the msl

plane and is increasing in value. The period of tide is T . Let t1 be

the first instant when the waters of the bays and of the sea are in the

same horizontal plane. Let t. be the duration of the inflow. Then

t_ + t.= -. 1T is the next instant when the waters of the bays and of

the sea are again in the same horizontal plane. Since the internal tides

of the bays at the time of the flow measurements were negligible, it can

be written that

A= H sin at1
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II
and also that

A =H sin (Gt + ati)

Eliminating A between these two equations, expanding the result, and col-

lecting terms, it can be seen finally that

sin at.
tan at 1 = s t.

I-Cos at.

Since at 1 is a small angle

tanct I = atI =A/ (68)

and I.

sin at.
A/=1- cost(69): 1 -Cos at.

From table 6 it is seen that the average inflow duration is 4.46 hr,

whereas the average outflow duration is 7.14 hr. Since the sum of these

two durations, 11.60 hr, is less than 12.42 hr, the period of the tides,

the observed inflow and outflow duration values need to be increased 1.072

times. Thus the adjusted value of the inflow duration is 4.79 hr and then

at. = 139.2 degrees. Evaluating the right side of equation 69 yields

A/H = 0.372

and

A = 0.372 x 2.05 0.76 ft

Accordingly, if it is assiued that during the study the msl was 1.95 ft

above the 1929 datum, the mean level elevation in the two bays should be

2.71 ft. This is shown also in fig. 10, F. it appears that the value is

in close agreement with the Holts Wharf measurement of the time. In the
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subsequent analysis the notation 6o will stand for 0.76 ft

superelevation.

Examination of the lower plot in fig. 10 shows that the level of

the bay waters fell about 1/2 ft from June 1929 to April 1930. It might

be helpful to obtain a theoretical relation to show the dependence of the

rate of fall upon the tributary discharges.

First an expression is derived relating the net total outflow

during a tide, for a superelevation A , assuming in the analysis -hat the

variations of canal and inlet cross sections during ebb and flood are ig-

norable, and, more important, that the tidal changes inside are insignifi-

cant, H1 = A . According to equation 6 the inflow during a tidal cycle

is given by, after putting m = I and H ,

T
2 -t

kaF dt (70)

' J 1

and the outflow by

rT+tr; 1 2 (1

=0 Ha H (71
iT t 1

where

k 2rk UVX + r

H2  H H sin at , a -29/T

at I  A

and a is the cross4sectional area of canal or inlet. Inspecting fig. 11

it will be inferred that as a good approximation
H2 A ( ) 2 0 e =t " t l

-: =1 -! sin 21te-
HT! -] T 4t1 J 0 < 2t

-2 1
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and 0 t - +t I

-+ =1 + ! sinT 4H H=l+ )sn
T < 1 + 2t,

-- -2

Using the relation in equation 30 and ignoring the higher Lermonics

f H N, ( l 1 -sin t
112 A 1 ~ /2 * 2ne

H = Ni -sin 4t 1

and

H N 1 +11' T _

A
Since - is a small fraction, sufficient approximation is obtained by

Husing

H I ( i- t ( 7 2 ) X5 T - 4tI

and

N (1 +! s 2n 2e (73)

Substituting in equations 70 and 71 from equations 72 and 73, respec-

tively, and carrying out the required integration, yields I
N,

and

Since
4tl 2ctl 2 A
T
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and since the square of A/H is negligible with respect to unity, the

expressions of inflow and outflow simplify to

NJ

1i= [1 Ila (74)i

and

Qo 2 H (75)

For A positive, the inflow is smaller than the outflow. That is,

= %- Qi (76)

Introducing from equations 74 and 75, the net outflow becomes

QT= i.La TAAI

where

N 4) - +(78) 
'

The product pa is referred to as the conveyance of an inlet or

canal. It is not a dimensionless quantity; its dimensions are (pa) =

(L3T) , i.e. volume per unit time. In the early periods when the Indian

River was being developed, the dimensions and hydraulic characteristics of

the inlet were somewhat uncertain; therefore, for the analysis of the

tidal regime of that time, the conveyances could not be evaluated and an

alternate approach was necessary. During the period from Jume 1930 to

Zeptember 1930, the net total outflow of the inlet and canal was recorded.

Let QTo be this outflow and A represent the prevailing superelevation
0

of the bay waters at the time. From table 6, the combined value of the

net outflow is QTo = 12.76 x 106 ft3. Analysis places A°  at 0.76 ft.

Let QT be the total net outflow at some other superelevation A . Then
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= ia T A A'i

and

QT Pa T AA

(It is assumed that the longtime ocean range of tide is invariable.)

Taking the ratio, it follows that

QT QT= A/1o  (79)
t 0

showing that net outflow is proportional to superelevation.

The longtime storage equation for the two bays is, ignoring inter-

nal tides,

Ad T T

where Qr is the river inflow for one tidal cycle. According to weather

bureau data, the normal annual average evaporation, as judged from the

evaporation in Class A pans, is about 39 in., whereas the normal annual

precipitation is 40 in. in northern Delaware. Since these two values are

nearly equal, the matter of precipitation and evaporation does not enter

into the storage equation. Introducing from equation 79,

A d Qr QTo A (8o)dt - Ao
To place the equation in a dimensionless form, first introduce T, , the

number of seconds in a year, and e , the initial elevation of the bay

water at time t = 0 . Adopting the new variables,

and (81)

= t/Tl
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and introducing them in equation 80, the latter changes to

d = I a 1 15 (82)
I 1
1I

where

0r T

and

'T
PlA,6 T

The solution for 5 , subject to the condition that 8 = 1 when r= 0

is

[8 (a - (83)

This equation can be used to determine the discharges from the rivers if

the fall of the surface waters in the bays is known and, conversely, the

fall of the water surface if the river discharges are known.

According to page 3 of the IRIC report, the freshwater flow into the
bays amounts to 30 x 106 ft per day. This is 15 X 106 during 12 hr,

which amounts to 348 ft3/sec. The drainage area of the bays, including

their water-surface areas, is 254.5 square miles. Deducting the water-

surface areas, amounting to 29.5 square miles, assuming that evaporation is

nearly of the same value as the precipitation, the net drainage area equals

225 square miles. Thus, the unit-runoff is 1.55 ft3 per second per square

mile. The only area currently gaged is a tributary of Indian River with a

drainage area of 5.24 square miles. The average discharge through 1963 is

741 ft 3 / ec, and the unit runoff is 1.41 ft 3 per second per square mile.

The total drainage area of 225 square miles does not differ materially as

to runoff characteristics from any part thereof. It appears that the IRM,

value o-' 30 x 10 ft3 per day or 15 x 106 for 12 hr is a reasonably
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accurate value and will be used in the subsequent computations.

It would be instructive to find how closely the fall of the water

level during the period from June 1929 to August 1930 could be determined

using equation 83. It will be assumed that the discharges from the tribu-

taries were in proportion to the precipitation of the area, and that during

this period the conveyances of Indian River Inlet and Lewes and Rehoboth

Canal remained constant. In particular, on the yearly average basis, Qr =

15 x 106 ft 3 per tidal cycle and QT= 12.76 106

when the superelevation is A = 0.76 ft. Examining the upper graph in

fig. 10 it is seen that the average monthly precipitation from June 1929

to January 1930 was 2.84 in., whereas from January 1930 to August 1930 it

-was 1.64 in. It is now inferred that for the former period
16 3 perio

19.0 X 10 ft , and for the later period Qr = 11.0 X 10 ft . Accord-

ingly, the computation of the fall of water surface in the bays should

be made separately for each period.

For the first period it is noted that the water-surface elevation in

June 1929 was about 2.95 ft. This makes A 1 = 1 ft. The relevant data

for the fall computation are:

I1 =1Ct, f 0.76ft

A = 8.2 x 108 ft2 , T/T 1 = 730

Q= 19 x106 ft 3 , QT = 12.8 xlo6 ft3
0

Accordingly, a, = 13.8 and 0i = 15.1, and with these values equation 83

becomes

6 = 0.91 + 0.09 e " 1 5 " I T

and as Z= 1 ft

A = 0.91 + 0.09 e- 1 5 "IT

The fall curve corresponding to this is shown in fig. 10. In January 1930
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the water-surface elevation is 2.86 ft and this makes ,= 0.91 ft. The

relevant data for the fall computation in the second period are:

S=0.91 ft, 0 o,76 ft

A = 8.2 x 108 ft2, T/T1 = 730
Qr = 1 X 106 ft 3 ,  =12.8xlO6 ft3

0

Accordingly, a, = 10.7 and Pi = 15.1, and with these values equation 83

becomes

6= 0.71 + 29 e 1 5 "l -

and as = 0.91 ft

A = 0.65 + 0.26 t-1
S.1T

The fall curve corresponding to this is also shown in fig. 10. The agree-

ment between the observed and computed falls is sufficiently close, sug-

gesting that the use of equation 83 is permissible to obtain the limiting

mean elevation of bay waters for the later periods with the Indian River

Inlet cross section greatly augmented.

Limiting Mean Elevation of Bay Waters

With the later enlargement of Indian River Inlet the conveyance was

increased and the mean level of the bay waters descended to a lower plane.

It will now be examined as to what the limit would be for the inlet con-

dition present during the surveys of 1938-1939. First, however, it is

necessary to establish the conveyance of the enlarged channel.

According to the IRIC report, the inlet cross section during the
2study varied from 440 to 750 ft . Similar changes also occurred in the

depth of channel. For example, the cut through the barrier reef had
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shoaled from -8.0 ft (zero at 1929 mlw) to which it was dredged to an aver-

age of about -2 ft, indicating a general fall of 6 ft. This would mean

that the depth varied from 4 to 10 ft. Taking the me.a, of the extremes,

the lower value repeated, the channel cross section would be 543 ft2 and

the depth 6 ft. It is seen, next, from table 7 that in 1938-1939 the av-

erage cross section of the inlet channel in the part next to the sea, east

of sta 22+00, was 6240 ft2 , whereas the depth was 11.15 ft. Since the

conveyance of the channel would be proportional to

r2/3a

then the conveyance of the inlet channel in 1938-1939 was about 17.6 times

as large as the conveyance of the channel of 1930. During the period of

the IRIC study, the net outflow per tidal cycle through the inlet channel

as discussed previously was 6.38 x 106 ft 3 , corresponding to a superele-

vation of bay waters of 0.76 ft from msl. The corresponding outflow capa-

bility through the 1938-1939 inlet channel would be 17.6 times as large,

i.e.,

6 ll l 6~ 3
17.6 x 6.38 x 10 112.2 x 10 ft

Meanwhile, since no significant changes had occurred in the Lewes and

Rehoboth Canal, the net outflow per tidal cycle through the canal remained

the same and thus it is

6.38 x l06 ft 3

Then, adding these tvo, the net outflow capability per tidal cycle in

1938-1939 through the two waterways was

Q= 18.6 x lo 6 ft 3 , Ao = 0.76

The tributary discharges also remained the same:
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r= 15 x l0 6 ft 3

To determine the superelevation of the bay waters, assume that at

t=0 , = =O.76. Also:

A = 8.2 x10
8 ft2

Qr = 15 x 106 ft3 per tidal cycle

= 118.6 x 106 ft3 per tidal cycle

T/T= 730

Hence, a, = 17.5 and Pi = 138.2, and equation 89 reduces to

8 = 0.127 + 0.873 e 1 38 T

and since Zi =0.76 ft, also

A = 0.097 + 0.664 6-38

Accordingly, the terminal superelevation which is reached in about 30 days

has the value 0.097 ft. This agrees fairly well with the longtime ob-

served sliperelevation of the 1938-1939 surveys at Oak Orchard and Love
Creek (see table 5).

Effect of Inlet Cross Section on Bay Water Levels

In inlets where the mean depth of water is small, the cross section

during a flood would be greater than that during an ebb. Assuming that

there are no tributaries leading to a basin and that the water level of

the bay has attained its equilibrium position, the inflow and outflow

volumes for a tidal cycle would be the same. Since the currents of a

flood would be greater than those of an ebb, the duration of flood would

be smaller than the duration of ebb. This circumstance leads to a
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superelevation A which may be related to the half tidal range of the

sea H . It should be sufficient to examine this relation for the simple

case of insignificant internal tide.

Because surface width is very large in comparison with depth, the

changes in the cross section would come from the changes in the depth, r

Thus, for the instantaneous discharge,

,r5/3 (84)

where 611 is the differential head between the bay and the ocean water

and M1  a factor of proportionality involving inlet length, roughness,

and surface width. The depth of water at mid-inlet can be taken to give

the effective hydraulic radius, and on the assumption that the surface

water in the inlet is nearly straight, its value accordingly would be

A Hr=r 0  + +-sin e, at (85)

if the ocean tide is given by

H2 = H sin at

Here r is the water depth at time t = 0 , t being measured from the0
instant the tide is rising from the msl plane. Equation 85 can be written

in the form

-ror(1 + - + sine02r 2r)

and since 4/2r0  is small, also

r = r0  + A  (1 + H sin 0 (86)
r (r k2r, 2r

Denoting by Aq the instantaneous discharge during an ebb and by Iq°

the instantaneous discharge during a flood, substituting in equation 84
from equation 86, and recalling the meaning of H
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q (. + H sine inO0 (87)=M2  1 02 sin; 0 -

and

=M2 ( + H sin e) - sin 0 (88)

where

M2 =M~i ( 2r-

and this is a constant.

At the instants t i  t I , and T + t I , the waters of the bays

and of the ocean are at the same level. Denote t by 01

A =H sin e

and since I is a small angle

el -(89)

iDenote total inflow during an ebb by Q, and total outflow by Q .From
0

equations 87 and 88:

1 + 1 + -sin 0 sin e deQiM 2 , \2r 0 ) 5i6H

and

o M~f (71+ 2 I i e) -sin edO
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In the absence of the tributaries Q. = Q and hence

1 + - sin 0 sin 0 - i de

2l+e
Le 1(+_ ° sin - sin e dS (90)

_el0

which defines implicitly the relation between 4/H and H/2r ° . A simple

relation can be derived if it is assumed that both 4/H and H/2r are

small quantities, so small that the products or the squares of these

ratios are negligible in comparison with unity. This will be granted.

Then quite adequately one can put

si6- 1 (lA eI < e< - e1
sin e 1+2 sin 1- e el

,-sin 6 = 1- sine a - el <e8< 21f + 01

Introducing these in equation 90 and carrying out the integrations and

neglecting in the result the second-order quantities, one has

A 1 H
H l o (91)

Applying the result to the case of the Indian River Inlet with H =

2.05 ft and r = 12 ft one finds that0 7
A = o.o88 ft

The deduction to be made from the discussions of the last two sec-

tions is that although there are river discharges and the inlet waterway

is moderately shallow, nevertheless, the level of the waters of the two

bays is expected to be only slightly elevated. According to the estimates

made, the superelevation from msl could hardly be greater than 0.20 ft,
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a value considerably less than that shown in fig. 9, but close to that

of 1938-1939, and could very well be ignored in the computations to be

entered subsequently.

Wind Tides in Indian River Bay

Examining again in fig. 10 the course of the elevation of the bay

waters, it is seen that there was a fall from September 1929 to April 1930

and then a continued rise up to about 2.80 ft. This rise may be explained

in part by the shoaling of the inlet. The consequent decreases in the out-

flow amounts could account for the impounding of the waters of the bays.

Besides this, setup produced by the winds would be another factor

to bear in mind. The frequently occurring strong winds can have a

measurable bearing on the exchange of waters between the two bays and

the ocean. A strong wind blowing westward would lower the water surface

at the interior ends of inlet and canal and at the same time increase the

height of the ocean waters at the exterior ends of the two passages. The

additional head thus created may augment the inflow to a degree that a net

inflow is realized during a complete tidal cycle.

Wind setup is governed by the equation

dA _ s

dx pg (D 0+A (92)

-S = X Pa V2

Where A is the Icztup, i.e. the displacement of the surface of water

from the undisturbed level; D is the depth of the undisturbed water;
o

T. is the wind stress; p and Pa are the densities of water and air,

respectively; V is the wind velocity; and X is the Taylor stress coef-

ficient. The analysis of setup in Lake Erie due to severe storms suggests

that X ; 0.0025 (reference 6). Let ZW denote the lowering of waters,

measured from the undisturbed level, at the inlet interior end. If L is

the length of the bays, the solution of equation 92 subject to the condition

that A is small in comparison with Do , is
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4 X P VL/g Do,, (93)

Taking the average of the lengths of the two bays as the operative basin

lenCths, L a 4.5 miles (approximtely). Putting p/o a w 840 , one finds

from equation 93 that 4 s 0.045, 0.18, 0., 0.72, and 1.10 ft corre-

sponding to wind velocities V = 10, 20, 30, 40, and 50 mpb, respectively.

Next, one should consider the rise of water surface at the ocean end

of the Inlet or canal. Astume that the Continental Shelf is of length L

and that the depth of water at the point where the shelf terminates is of

value Do . Assume that the shelf is a uniformly inclining surface of

inclination a2  so that Do -a 2L . Since the depths are great beyod

the shelf, it would be appropriate to suppose that wind setup vanishez at

the ocean end of the shelf. Measure x from the shoreline, and denote

the wind tide at x as A
0 0

Writing

K = -- L ,P V2~
P g ro - 1l, . , 1o  15 (94)

and0

.=x/L

the wind tide equation, equation 92., takes on the form

dn K

with the boundary conditions

=g0

.For the problem at hand an approximte solution of equation 95 should

suffice. As the water-surface height should not differ substantially
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from a straight line diaposition,

qI 04( - 0:

When substituted in the right-hand member of equation 95, the result of this

is

dq K7d n + (I- o

The solution of the latter, subject to the condition that n = 0 at

=1 , is

_) K log [ o0 + (1 - no) ]

and as = when = 0 , by substitution

K Ilog T 0 (96)
0 I

an expression that relates, implicitly, the rise of ocean water at the

coastline with the velocity of the wind.

Assume that the Continental Shelf seaward of the inlet is 25 miles

long and that the slope is a = 1/100 . According to equation 96 the wind

which should raise the inlet ocean waters by 1/10 ft is of the strength of

62 mph.
An additional rise of water level would be due to the drift current

-rom the wind. The wind velocity being V , the drift current (i.e. the

velocity of water at the surface) would amount to 0.03 V . Besides the

rise of the water surface at the coastline, the wind will cause a drag on

the waters of the inlet, augmenting the flow that would result from a

difference of water levels at the two ends of the inlet. Since the com-

putations needed to determine the additional current are too involved,

they will be ignored at this time.

58



Manning's Roughness of Lewes and Rehoboth Canal

The main difficulty in the analytical evaluation of the surface
fluctuation of a bay connected with the ocean through an inlet or a navi-

gation canal is the assignment of a proper value of the Manning's n for

the roughness. Not many references to this question are mentioned in the

literature, and it was thought to be worthwhile to attempt to obtain the

hydraulic roughness of the Lewes and Rehoboth Canal on the basis of the

field investigation results of the summer of 1930 relative to the amounts

of inflow and outflow transpiring during complete tidal cycles.

As indicated previously, the mean velocity through the canal can be

expressed as

2grHl (7)X VL + r -M

where H is half of the tide range in ocean, r is the hydraulic radius

of the canal, and X is the coefficient of friction. The connection

between X and n is given by equation 15. The quantity aH is the

difference between the levels of the waters of Delaware Bay and Rrhoboth

Bay. Observations have shown that during the period of field investi-

gations the internal tides of the two bays, Rehoboth and Indian River,

were insignificant. On the other hand, the bay waters showed a Vuperele-

vation A with respect to msl. Analysis places this at the value =

0.76 ft. Measuring from the instant that the ocean tide is rising from

the mtl, during the inflow or the flood

i =Hsin at o , a=21/I

and during the outflow or the ebb

ilO = - H sin at

Let t be the first instant when the waters of Rehoboth Bay and of

Delaware Bay are at the same level. Then, the inflow during a tidal
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cycle QI and the outflow are

T-t T+t

c~ VAdt and %IVadt

Introducing V from equa.';ion 7 and denoting the canal cross section
during flood and ebb by a, and a2 , respectively, and the correspond-

ing hydraulic radii by r. and r 2 , one has

1~ 2gr1H

where

At-at

H1 dat
at1

and

a-2 29r2H

Qo a +r 2 Io

where
2i +at

I01 1~ . dat
A-at 1

The integrals I i and I °  were evaluated numerically using the data:
at I = 0.38 radian, A° - 0.76 ft, and H = 2.05 ft. It was found that

i  1.44 .nd I ° - 3.45;

2grlH
then 0.69 a, . (97)
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and

0.29 - = r2

2 2

With the values of the discharges known, i.e. Q. = 9.73 x 106 ft3 and

Qo = 16.1 x 106 ft3 (see table 6), equations 97 and 98 can be used to

evaluate two values of X and then, through equation 15, the correspond-

ing n values.

To complete the computation, the canal dimensions need to be estab-

lished. The canal length was about 11.7 miles between the southern end of

the canal and the northern end which connects with Delaware Bay via Broad-

kill River mouth. At some places the Lewes and Rehoboth Canal passes

through marshland, a circumstance that prohibits an accurate description of

an effective cross section from a hydraulic point of view. For the problem

at hand it may be sufficient to assume a uniform trapezoidal cross section

throughout the channel with a bottom width b and with the side embank-
0

ments l:m, and depth d . In a trapezoidal channel the area equals t I
(md + b0 )d ; the wetted perimeter, 2dm + b° . It is gathered from the IRIC

report that the bottom width was bo =50 ft ,whereas the water depth was

6 ft referred to mlw. Recalling that A = 0.76 ft and H = 2.05 ft, the

average depth in the channel was d1 = 9.4 ft during high tide and

d2 = 7.4 ft during low tide. Assuming that m = 2 , known as a good

average value,
2!

a, = 651 ft 2

r = 7.4 ft

and

a2 = 480 ft 2

r 2 =6.0 ft

Introducing these values in equations 97 and 98 and the proper 4alues of

Qi Qo and L one finds finally that during ebb

X =6.6 x lO 3
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and during flood

X = 7.4 x lo3

Correspondingly, during ebb

n = 0.020

and during flood

n = 0.022

Manning's Roughness of Indian River Inlet

The velocity measurements of 27 July 1948 are sufficiently complete

for the determination of Manning's n of the inlet passage. The measure-

ments were made at the location of the bridge, sta 20400. The cross sec-

tion of the inlet at this place had been divided into six parts and the

velocities in them determined by current meters placed at 0.6-ft depths.

Assuming that the distribution of velocities in a vertical line is in ac-

cordance with Manning's law, velocity readings at such depths would give

the value of the mean velocities. The channel mean velocities as deter-

mined from the individual meters are entered in table 8. Also shown in

this table are the time of measurement, the local tides, the tides at

Atlantic City, and the magnitude of instantaneous cross sections.

It will be assumed that the range of tide at the ocean end of the

inlet is similar to that at Atlantic City. On the day of the velocity

measurements the range at Atlantic City was 3.30 ft from low to high and

next 2.70 ft from high to low, and 3.00 ft from low to high. The mean,

3.00 ft, will be taken as the apparent ocean tide at the inlet during the
day of the observations. Accordingly, H = 1.5 ft. It is preferable to

consider the quantity V/ 2gh to study the variation of mean velocity

with time. In this manner the validity of the velocity data can be ex-

tended to any ocean tide range. Making the reductions of the velocity

data from table 8 on tijis basis, and using H = 1.5 ft, the results are

shown in fig. 12.

Obviously, the velocity observed at the bridge should depend on the

difference of the tides, H 2 , of the ocean at the inlet and H at the

bridge. The latter was observed and the former may be deduced from the
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Atlantic City tide of the time of the velocity measurements. It will

be assumed that the static water levels in the ocean and in the inlet at

the bridge are at approximately the same elevation and that the range of

tide at inlet ocean is nearly the same as the range at Atlantic City. Let

Hxr and H2 . denote the tides at the inlet bridge and at Atlantic Citj,

respectively, when referred to Indian River Bay datum. These are entered

in the second and third columns of table 9. The average value of H isxr
2.16 ft and the average value of H2r , 2.42 ft. These differ but little

from the corresponding mtl's of 2.07 and 2.35 ft. According to the

assumption, the ocean tide H and inlet bridge tide H2 with refer-
X

ence to the msl of the time are:

H -H - 2.16

and

2 2- 2.42

These are entered in table 9. In the same table are also shown the values

of h and h2 , representing, respectively, the ratios Hx/H and

H2/H with H = 1.5 ft. The variation of h and h2 with time is

shown graphically in fig. 13. Examining the velocity curve in fig. 12,

it is seen that the slacks occur approximately at the times of hours 9,

14.5, and 21. At the times of the slacks the tide curves of ocean and

bridge locale should intersect. This would be fulfilled if the ocean

curve based on Atlantic City tide in fig. 13 were moved to the right a

distance equivalent to 1/2 hr. The curve thus adjusted should now repre-

sent the ocean tide at the inlet. On this basis, the lag of tide between

Atlantic City and the inlet is 1/2 hr.

The velocity formula of equation 7 can now be written as
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PW 1W

where L is the distance between the bridge and the ocean end of the
x

inlet, r is the average depth in the inlet between bridge and ocean, and

V is the maximum velocity in mid-channel corresponding to the maximum

value of the difference h2 - hx . The last equation can also be written

as

V = + r - (99)

From fig. 12 the maximum current velocities observed during flood, time

11.7 hr, and during ebb, time 17.0 hr, appear to be of like absolute

values; that is,

V

m 0.24

-Vrg
The differences in head for the corresponding times, see fig. 13, are also

of like absolute values; that is, I

h- h) 0.27

At time 11.7 hr the cross section at the bridge, see table 8, is 10,740
2 2

ft , and at time 18.0 hr, it is 9,920 ft . As is expected, the mean of
2

these extremes, 10,330 ft , is the same as the cross section correspond-

ing to low-water slack time, or the area under msl.

Since the average cross section in the inlet between the bridge and

the ocean is smaller than the cross section at the bridge, the maximum

velocity for the inlet between the ocean and the bridge, a distance of

L = 1430 ft, would be greater than the value shown above. The cross-

sectional areas and the mean depths for various years are shown in

table 7, and corresponding graphs are given in fig. 14. From the 'L948

curve it is estimated that the average channel cross section, under msl

and between sta 6+00 and 20+00, is 8390 ft 2
. To arrive at this va.Lue, the

stretch between the end stations was divided into 14 intervals, the

areas at the interval midpoints were read from the plot, and the mean
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,w a established. In the same manner the channel average depth was esti-

mated to be 16.8 ft. The ratio of the cross-sectional area at the bridge

to the channel mean cross section is 1.23. Thus, the effective maximum

current velocity is

V
m = 0.24 x 1.23 = 0.296

Taking this and remembering that

* h2  h hxx =0.27; max"

r = 16.8 ft

L = 1430 ftx

equation 99 yields
i

X 246 x lo
-4

IIand from equation 15

n = 0.046

As this is a roughness value considerably higher than the value

ordinarily ascribed to water courses, it should be determined whether the

ocean tide range was overestimated when basing it on the Atlantic City

tide. The tide in the ocean north of North Jetty at the inlet mouth .i':s

observed. The observations as referred to mlw ocear datum, H2r , are

entered in the second column of table 10. Subtracting 2.16 from these

gives the ocean tide as referred to the mean level of the tidal oscil-

lations at the bridge. The value 2.16 ft was established previously, see

table 9. The results, H2 , are entered in the third column of table 10.

The entries of the last column are h2 , the ratio H2/H , H being 1.5

ft. The data from the last column are plotted in fig. 15. The curve of
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Fig. 15. Comparison of inlet ocean tides, observed and estimated

the ocean tide which was originally deduced from the Atlantic City data

is reproduced therein from fig. 13. The two curves, one relating to

Atlantic City and the other to the observations made at the inlet mouth,

are closely align3d, showing that determination from the Atlantic City

data is reliable.

In the above comparison the closer agreement is in regard to the

range of tide and not in the temporal variation of tide for the two deter-

minations. The form of the tide curve from the North Jetty observations

seems to be an irregular one and therefore hardly useful for the present

computation. Apparen.tly, the determination of n made in the above

should be acceptable. Since its value is large it would seem that other 4
I
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causes are present to augment the resistance of the inlet channel. The

interferences of the bridge piers should be considered if the tide gage

for the bridge is placed west of the bridge. Fig. 16 shows that a se-

vere movement of sand is connected with the channel depth changes, and

these processes imply considerable energy dissipation, perhaps to such a

degree as to augment the resistance in the channel.

Inertia Effect in Indian River Inlet

In the treatment of the problem of the preceding section it was

assumed tacitly that the inertia effect in the flow through the inlet

channel is ignorable. In the event that inertia effect is not ignorable,

then at the times of slacks there would be a difference in head be.ween

the waters of the inlet at the bridge and of the ocean. It is now nec-

essary to determine what this diff%=ence might be.

Express ig more precisely, the flow formula through a channel of

uniform cross section would be

dV dh VIVIdt g dx r

where the left term is the acceleration of waters and h is the surface

displacement measured in terms of H , the semirange of tide in the

ocean. Integrating between x = 0 and x =L :

_ dV (hx _ ) h2 I x
gHdt grH

Acceleration attains its maximum value at slack times when V 0 . The

diff"erential head due to inertia is

h2 - h ) (x 

0

o )o floo)
_ V~Lx 1 (dV)

For the mean velocity of flow in the channel at the bridge, fig. 12

shows that
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V = 0.24 sin at, a = 2/T

V'2gH

The corresponding expression for the channel between the bridge and the

ocean would oe 1.23 times as large, as explained in the previous section,

and accordingly,

(L )= - x 0.24 x 1.23 = 0.59

Substituting in equation 100,

h2 - h = 0.83 x----

and hence,

(12 - Hx  = 0.83 T x

4
With L = 1430 ft, H = 1.5, and T = 4.47 x 10 sec, it follows that

X

- .018 ft

which is the maximum value for the head fran inertir -aring a tidal

period. It is indeed a small quantity and can be ignored.

Indian River Bay Tides

The formulas shown in the earlier sections were derived under a set

of assumptions, and thus it is ncce ssary to now how closely these assump-

tions are verified in the overall hydraulic conditions of the bay. One of

the requirements of the assumptions was that there are no discharges into

the basin from tributaries. There are tributaries emptying into the two

bays, and by an analytical px cess it was found that the fall of water

surface in 1929 and 1930 could be c-.lained if the voluie of water brought
6

during a complete tidal period is about 15 X 10 ft3. Since ,velocity

measurements at the inlet bridge, surveyed on 27 July 1948, indicate an
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ebb out'low of nearly 400 x 106 r3 per tide, the discharges of rivers
into Indian River Buy can be ignored. A second requirement was that the

inean level of the water in the bay is in the same plane as the mal. The

1938-1939 observations indicate that the longtime mean superelevation

was 0.15 ft in Indian River Bay and 0.08 ft in Rehoboth Bay (see table 5).

Analytical considerations indicate that the actual superelevations may be

lower, and it can be assumed that there is no significant superelevation.

A final requirement is that the connection of the basin is with the ocean

through a single inlet or with a multiple inlet system. This is not true

for the Indian River Bay as there is an exchange of water between it and

Rehoboth Bay through "The Ditches." However, since the volume of the

water of the exchange is small in comparison with the volume of water

traversing the inlet channel, one may determine the Indian River Bay tide:s

assuming first that "The Ditches" are closed. Finaily, these first eval-

uations can be corrected based on the hydraulics of "The Ditches."

The determination of the tides of the bay would be in reference to

the three quantities: (1) the height of mean high tide in the bay, HIM ;

(2) the lag of tide, C ; and (3) the maximum current velocity, Vm , in

the inlet passage. The formulas to evaluate these are:

- H sin T (51

a ic/ 2 - T (i

Vm = 2A C A (6:)

In table 4 the dependence of sin r and C on the repletion coefficient

K is shown. If, however, the ratio of the inlet cross section a to the

surface area of the basin A is a small quantity, the use of the table

can be dispensed with since in this case it suffices to write, for K

less than 0.3 ,

sin T - 1.14 K

and (101)

C 3 0.812
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These relations can be verified by referring to table 4 and fig. 6. As

regards K , the coefficient of repletion, it in simply, taking m I . ,

K= - L+ra (12)

the relation between ) and n being

n (15)
1.486 r1/ b

As can be seen from the entries in table 7, the inlet cross sections

are far from uniform. It is necessary to normalize the cross sections to

arrive at a prismatic channel of uniform cross section, its length the

same as that of the actual channel, the hydraulic radius r equal to the

averaged hydraulic radius of the actual channel, and its n value the

same as that of the actual channel. Thus, the normalization establishes a

new value for the cross section. Using the results of the cross-section

survey of 1948 it is found that rm = 12.24 ft and am = 10,350 ft 2 at
msl. These values are obtained from the 1948 curves in fig. 14 after di-

viding the stretch between sta 6+00 and 60400 into 20 equal segments and

taking the mean of the areas or the depths for the midpoints of the seg-

ments. Application of equation 63 for normalization yields as1 =

0.944 a and a.2 = 0.924 am  for outflow, and thus the cross sectionm s2
of the normalized channel is a = 9660 ft . Recalling that the n for

the inlet is O.046 and r = 12.24 ft, equation 15 yields

= 243 x l0 4

The data for the determination of K from equation 12 are:

A w 420,000,000 ft 2

a a 9660 ft 2

1 w 5500 ft

r = 12.24 ft
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T - 12.42 hr or 4.47 x 104 sec

It = 2.05 ft

9 = 32.2 ft/sec2

and - 243 x

On the basis of these, equation 12 gives

K w 0.254

And using cquation 101, it is found that

sin T = 0.289

and

C = 0.812

Theoretically then, using equations 54, 55, and 62, the range of tide in

the bay, 2H3m , is 1.19 ft, the lag of tide a = 1.276 radians or 2.52

hr, and the maximum current velocity in the inlet is Vm = 2.94 ft/sec.

It is seen from table 5 that for the years 1948 and 1950 the mean

range of tide at Oak Orchard was 0.93 ft and at Maple, 0.99 ft. The mean

of these, 0.96 ft, can be taken to represent the range of tide realized

at Indian River Bay. This mean is close to the theoretically computed

range. In table 11 are shown longtime mean high- and low-water lunitidal

intervals for different localities. It was argued in one of the preced-

ing sections that the ocean tide at the inlet is about 1/2 hr later than

the tide at Atlantic City. Adopting this and since lag of tide at Oak

Orchard with reference to the tide at Atlantic City is about 3.33 hr, then

the lag of the internal tide from the ocean tide at the inlet should be

2.83 hr, which is a value not far from the computed value. It was shown

previously that the velocity survey of 27 July 1948 gives for the maxiimum

current in the bridge area
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Vm " 0.24 '2gfi

With It " 2.05 ft , the maximum current to be had in a croon section at

the bridge would be Vm - 2.76 ft/sec . Since the ratio of the cross

section at the bridge to the uniform croon section of the normalized

choannel of the computations is 10,330 to !),660, then in the normalized

channel Vm - 2.95 ft/soc , a value which is also close to the computed

value.

The the, tical values of the quanto.tics relating to the internal

-tides were carrid out in the above, assuming that the water change

through "The Ditches" is negligible. As there is some exchange of water,

the next task should be to determine the effect of the exchange on the

magnitude of the internal tides.

The Hydraulics of "The Ditches"

Table 11 shows the following data for 1948:

Location HW Time, hr Range of Tide, ft

Inlet Ocean 7.54 4.10

Oak Orchard 10.24 0.93

Dewey Beach 12.18 o.47

It will be assumed that the quantities observed at Oak Orchard and Dewey

Beach are representative of Indian River Bay and Rehoboth Bay, respec.

tively. On the basis of this data the courses of the tides in the three

areas (i.e. the ocean, Indian River Bay, and Rehoboth Bay) would be as

shown in fig. 17. During the entire time that the level of the water of

the ocean continues to be higher than the level of the water mf Indian

River Bay, the respective positions of water levels in Indian River Bay

and in Rehoboth Bay undergo a reversal. Thus, when an ebb of the inlet is

filling Indian River Bay, there first is an inflow into Indian River Bay

from Rehoboth Bay and next, an outflow. The balance of the discharges of

these two flows has a bearing on the magnitude of the tides in Indian River

Bay.

Let H1  and H0  denote the tides in Indian River Bay and in

Rehoboth Bay, respectively, and H3m and Hem the maximum values of
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these tides. Lot time t be measured from the instant when the waters

01' Indian River Bay and the ocean are at the same level and the tide in

the ocean is increasing. Let to denote the 1 of' tide in Rehoboth Bay

with respect to the tide in Indian River Bay. The internal tides of the

two bays are very nearly sinusoidal. Actually, there are higher harmonics,

but these will be ignored. Accordingly, the expressions of the internal

tides are:

H =,- HIm coso ,0 . 2,t/"o

(102)

Ho  = - Hom cos (9- 0 ) , 0 
= 2 t/T J

These are the inferences from the set. Ignoring the slight dependence of

the lag of tide in Rehoboth Bay with respect to the tide in Indian River

Bay upon the magnitudes of the internal tides, the value of the lag can be

placed at to = 2 hr . The ratio of the tides in the two bays is constant,

_2
Hlm,/Iom

Let tI be the time when the waters of the two bays are at the same

level. At t = t1 the flow through "The Ditches" reverses its direction.

Place 01 = 23%t1/T . Relative time 01 is determined from the condition

Ho H
Him Him

which in view of equation 102 becomes

cos 01 =-cos (e- 1 )

Lag tO was shown to be 2 hr, and thus 0  600 It was also shown

that H m - 1/2 ; with this value the last relation reduces to

con 91 = cos 01 +f sn 0 1
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yielding

e 600

It is not necessary to consider the flows through the two "Ditches"

separately, and for the purpose at hand one may as well take that the two

"Ditches" can be replaced by a single one of cross section a which is

the sum of the cross-sectional areas of the individual "Ditc. .s." The ve-

locity of inflow V. into Indian River Bay is
1

Vi = H o < e < ellm lm - _

and the velocity of outflow is

V = kVH1v --- , , _ _
0~ <

Since a is the cross section, the volume of inflow is

. 0  ---ldO01

and the volume of outflow is

Q -Tak f/H W d

o 21r fe l l

Substituting from equation 102 and integrating, one has

Tak

i = 0.63 Mn (103)

and

Tak(c)
1.58 (it4)

Accordingly, the volume of outflow into Rehoboth Bay during the entire
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time that Indian River Bay is being filled from the ocean is

0= 0.95 Tak (105)

For the determination of k , which is a quantity having dimen-

sions (L/T-1 ), proceed as follows. Place

k C CD (lO6)

where CD  is a dimensionless number, a cbefficient. Comparing the ex-

pression for the V. velocity given above with equation 7 it will bei

inferred that

rD (107)

The two "Ditches" were surveyed in 1935, and the cross-sectional propor-

tions are shown in table 12. Combining the two "Ditches," the average

value of r when the waters are at msl is 5.8 ft. The passages are re-

garded to be very inefficient for the exchange of water between the two

bays. In accordance with this idea it is proper to assign to n the

value of 0.10. With r = 5.8 ft and n = 0.]0 , equation 15 yields

X = 0.161 . Appearance of the topography of the island separating the

two "Ditches," see fig. 8, suggests that the channel length of "The

Ditches" is about the same as the maximum width of the island, i.e.

L = 600 ft. With X = o.161 , r = 5.8 ft , and L = 600 ft , equation

107 yields

cD = 0.24

and

k = 0.24
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Inserting this in equation 105, the volume of outflow into Rehoboth Bay

during the entire timc that Indian River Bay is being filled from the

ocean is

aT 1QO : 0.23- I2gl (108)

This applies independent of the magnitude of Him , provided the tide in

Rehoboth Bay lags 2 hr behind the tide in Indian River Bay and the ampli-

tude of the tide in Rehoboth Bay is half the amplitude of the tide in

Indian River Bay.

The above treatment is introduced for the main purpose of formulat-

ing the correction needed in the evaluation of Indian River Bay tides.

Although the flow through "The Ditches" reverses its direction during the

time Indian River Bay is being filled by the flood of the inlet, for the

correction it. suffices to assume that the flow is in phase with the flow

through the inlet and that the total flow is of the same magnitude as

actually realized by the currents of "The Ditches." This is permissible.

Denote now the assumed hypothetical flow through "The Ditches" as:

V = V' sin e
o om

This gives

00 R O"o

or

Q, Ta V'
0 yiel m

Comparing this with equation 108 yields '

iVo' 0 .115 (109)1
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Indian River Bay Tides After Correction

In the presence of "The Ditches," the storage equation of Indian

River Bay is

A dH a V V (o C0)

where H1  is the elevation of the waters of Indian River Bay referred to

msl, A is the surface area of the bay, V is the mean velocity of the

inlet currents, V0  is the mean velocity of the currents of "The Ditenes,"

a is the cross-sectional area of the inlet, and a 0is the cross-0

sectional area of "The Ditches." From above

d1l( ao0Vo)
A T- a V i - W--T

which, after using the transformation relating to equations U-, 12, and

13, will become

- = / K_ V-b;,hl (

The value of the expressions contained in the parentheses is close to

unity, so that in forming the value it suffices to take the velocities

separately as being sinusoidal. Consequently,

V V' sin9 V'
0 oB oM

V Y sin 0 VM M

and the last differential equation simpifi-s to

dhl_Yo = b No , > hl l

where

K' K (1~ o
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The latter represents the correction in the coefficient of repletion K

made necessary by the presence of "The Ditches."

The first estimate of H "-was HlM = 0.59 ft . Using equation 109,

V = 0.74 ft/sec . Also in the first estimate it was found that V =
om m

2.96 ft/sec . It is --en from table 12 that the combined area of the two

"Ditches," surface waters at msl, is a = 5322 ft 2 . It will be recalled

that the inlet cross section after the normalization of the channel is
2

a = 9660 ft . Hence,

a V
a0 Vom = 0.138

m

and the corrected repletion coefficient is

K' = 0.86K

and

K' = 0.86 x 0.254 = 0.218

Accordingly, one now finds that the range of tide in Indian River Bay is

1.02 ft instead of 1.19 ft and the lag of tide is 2.62 hr instead of 2.52

hr. These are quite close to the measured values of 1948 or 1950. As

regards The maximum current velocity in the inlet, this now is 2.77 ft/sec

instead of 2.95, and is an estimate lower than the observed value.

Erosion of Banks West of Highway Bridge

A'ong the numerous manifestations involving the movement of sand in

Indian River Inlet, such as the formation of bars, depositions in the in-

let channel, and the stability of dredged forms, attention perhaps should

be given to the erosion of banks west of the highway bridge. Subsequent

to the dredging in June 1938, it had been observed that the water widths

experienced rapid and continued increases. The changes that did occur
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between sta 22400 and 29+0O from October 1938 to April 1941 are shown

in fig. 18. The underlying causes of this widening, a singular and re-

markable phenomenon, were examined by Mr. Wicker. The following exposi-

tion is taken verbatim from Mr. Wicker's memorandum of 25 July 1939, ad-

dressed to the District Engineer, Philadelphia District.

1. In accordance with your instructions, I visited Indian
River Inlet and made sufficient observations on july 17, 18, and
19, 1939 to ascertain the cause of the erosion of Indian River
Inlet channel banks west of the highway bridge. I am convinced
that wave attack is responsible.

2. The wavs apparently occur only during flood current
and the weaker parts of the ebb current. During my three days
of observation, the maximum wave height above still water level
was about one foot, the direction of approach wras approximately
normal to the banik throughout the embayment extending westward
about 700 feet from the highway bridge, and the period of the
waves was about 15 seconds, -.-thin + 2 seconds. These waves do
not appear to have a trough, but look and act like mounds of
-eater moving rapidly toward the banl:. This appearance, together
with consideration of their period and height, suggests that the
.aves are of the translatory type. Tcanslatory wa-es are often
derived waves. In this case, it is believed that they are de-
rived from the ocean waves, which probably impart impulses to
the incoming flood current or check briefly the feebler portions
.of the ebb current. When the current is strongly ebb, it is be-
lieved that the energy of the ocean wawve is rapidly sapped by
the adverse current and there remains no ener&r to be dissipated
by translatorj w.aves.

Current velocities and directions in the embayment
were measured. The situation on flood current is, briefly, as
follows: The south embayment contains a counter-clockwise eddy
which reverses the flow along the south bank- from a point about
400 feet west of the bridge to the bridge. The maximum observed
current velocity in the shore;.ard side of the eddy -was about
7/10 feet per second, which occurred at a time ihdcn the main
flood zurrent thread had about 4 feet per second velocity. It
is believed that 7/10 -eet per second is not a scouring velocity.
The embayment on the north has a clockwise eddy. Details were
not observed, but it is believed that they w.ould have been simi-
lar to those found on the south side. The ebb current moves
past the embayments without creating any well-defined movement
of water within them. The zone of moving w;-ter is sharply de-
fined, as if there were bulkheads separating the waters of the
embayments from the main threads of current.

4. The eaves do their erosive work in the following manner:
On the uprush, they strike the marsh mud or the scarp of the
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spoil area, according to the stage of tide, with considerable
force. The backwash is very strong, and sand moves steadily
with it. The marsh mud is attacked, when the tide is suffi-
ciently low, by removing the P~nd layer under it. When this
has occurred, a piece of marsh mud held together by roots is
broken off and eventually disintegrates. The material eroded
is deposited on the bo+.tom in the form of ridges. There were
three such ridges a!parent a short distance from the low water
line, in depths of water from 0.5 to 1.5 feet. They were about

four feet apart and about 6 or 8 inches high. Evidently the
normal backwash cannot carry the sand that it erodes from the
bank any farther. However, waves occurring during unusually
low tides, or unusually large waves, could move the material
farther channelwards, where it would be picked up by the inlet
currents.

5. Erosion -ue to wave attack can be checked c" 'y by
longitudinal works. In the case at hand, revetments appear to
be an adequate form of protection. There is no evidence of
settlement of the rip-rapping placed by the State, but it is
being flanked on its westward end. The work si.?uld be done
as soon as possible, for the erosion has now progressed to the
spoil bank, and there is no reason for supp ing it will be less
rapid in the near future. Delay will result in the eventual
deposition of a considerable quantity of sand in the channel.

It would appear that some of the facts singled out in Mr. Wicker's

observations could be explained on the basis of turbulent expansion of the

main current entering into an area with embayments on two sides. Ac-

cording to analysis, in an expanding jet there will be a lateral flow from

two sides induced by turbulence and directed to the main current.7 If the

embayments are limited in area, the longitudinal flow at the edges of the

expanding jet together with the lateral flow to the edges will enhance the

formation of eddies in each embayment. The eddies were observed.

In a current moving between two embayments and experiencing lateral

turbulent expansion, the current velocities decreaso when moving laterally

from the center line of the current toward embayment banks. Also, very

likely the depth of water decreases from the center line away to the banks.

These two conditions will cause the refraction of waves. If U is the

current velocity and d the depth at a place, a point on the wave crest

would be moving, in space, with velocity

w = r!a+Uj
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Accordingly, when a solitary wave with crest originally normal to the

inlet channel walls enters into the area with embayments, the point of

the crest at the center moves away with greater velocity of propagation

and points farther away from the center with lesser velocities. Conse-

quently, the original wave breaks into two waves eventually, with align-

ments parallel to the banks and moving toward the bank. This also was

observed.
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Table 1

Relation Between the Coefficient of Friction X and Manning's n

x x 104

rftn = 0.02 n = 0.03 n = 0.04 n = 0.05

5 68.04 153.26 272.58 425.18
10 54.02 121.66 216.38 337.82
15 47.22 106.29 189.06 295.15
20 42.93 96.63 171.87 268.30

30 37.45 84.33 150.06 234.09
40 34.05 76.67 136.42 212.87
50 31.62 71.18 126.56 197.68
60 29.72 66.93 119.02 185.78

70 28.25 63.60 113.21 176.62
80 27.02 60.82 108.16 169.00
90 25.97 58.49 104.04 162.31
100 25.05 56.43 100.00 156.75

II

I 4J



Table 2

TauWar Values of the Coefficient of Repletion for T = 12 hr

and n = 0.02, 0.03. 0.04, and 0.05

(Ay ,rjfla) x 1o-4,

L=0.1Xo10 L=0.2Xo104 L,=O.5 Xo4
' L =1.OXO 4  L=2.0X10O

4  L4.0X1o
4

n = 0.02

5 3.697 2.859 1.974 1.443 1.132 0.741
10 4.557 3.825 2.867 2.180 1.606 1.160
15 4.810 4.364 3.437 2.708 2.042 1.1495
20 5.004 4.611 3.830 3.LLO 2.397 1.780
30 5.293 5.018 4.637 3.722 2.952 2.254

40 5.295 5.120 4.618 4.053 3.209 2.626
60 5.383 5.327 4.938 4.537 3.909 3.195
80 5.426 5.338 5.101 4.770 4.262 3.596

100 5.449 5.383 5.195 4•525 4.500 3.899

n 0.0

5 2.734 2.064 1.365 0.980 0.699 0.96
10 3.704 P 975 2.098 1.519 1.097 0.783
15 4.219 3->-3 2.589 1-939 1.416 1.019
20 4.528 3-933 2.984 2.284 1.689 1.223
30 4.871 4.4114 3.556 2.825 2.290 1.577

40 5.051 4.688 3.941 3-230 2.508 1.873
60 5.233 4.985 4.422 3.794 3.067 2.358
80 5.323 5.1140 4.696 4.154 3.473 2.743

100 5.366 5.228 4.870 4.o06 3.778 3.055

n = 0.04

5 2.171 1.598 1.038 o.14o 0.525 0.385
10 3.101 2.389 1.604 1.158 0.828 0.589
15 3.732 3.264 2.o4o 1.495 1.077 0.765
20 4.044 3.344 2.397 1.780 1.292 0.927
30 4.504 3.900 2.948 2.245 1.662 1.134

40 4.761 4.252 3.328 2.626 1.971 1.441
60 5.037 4. 665 3.909 3.191 2.473 1.846
80 5.175 4.894 4.262 3.596 2.866 2.180

100 5.261 5.035 4.500 3.894 3.182 2.46o

n =0.05

5 1.793 1.311 0.836 0.594 o.422 0.298
10 2.675 1.979 1.303 0.935 0.666 0.473
15 3.202 2.668 1.675 1.213 0.869 o.637
20 3-603 2.873 1.985 1.452 1.036 0.74,
30 4.133 3.447 1.580 1.858 1.353 0.973

40 4.454 3-837 2.AA1 2.194 1.615 i.168
60 4.819 4.336 3.1452 2.726 2.055 1.512 4
80 5.012 14.6P2 3.843 3.128 2.1412 1.796
100 5.123 4.8.5 4.131 3.392 2.713 2.0146

Nr

lI



Table 3
Parameters of the Fluctuation of Water Surface

in the Basin as a Function of K

K _ -3 _o i

0.1 0.9936 -0.0001 -0.0052 0.99327 0.1158o4
0.2 0.9745 -o.ooo4 -0.0106 0.97334 0.22934
0.3 0.45-0.0009 -0.0164 0.94086 0.33874

o. .92 -- 01 0.0220 0.89735 o.44137

1.0 0.55 -0.0028 -0.0682 0.51723 0.853553

1.2 0.746 -0.0281 -0.0349 0.7396 o0.91
1.7 0.3289 -0.0448 -0.1038 0.30159 0.9557

o.8 0.229 -0.009 -0.1327 o.65881 0.7917
2.0 0.15937 -01277 -0.1017 0.57160 0.99258
3.0 0.8834510 -0.2207 -0.0187 0.02953 0.99565

4.0 0.52X -o.2o6 -0.100 0.01037 0.99995

5.0 0.833 X 10-1 -0.2270 -0.0532 0.00535 0.99986
6.0 0.2249 X 10-1 -0.2794 -0.0377- 0.0033 0.99999

7.0 0.1653 X 10-1 -0.287 -0.052 0.0025 0,99898

8.0 0.163X 10-1 -0.2828 -0.0215 0.0012 1.0000

9.0 0.1001 x 10-1 -0.2835 -0.0170 0.00150 1.0000
10 0.8105 X 10-2 -0.2845 -0.0138 0.00119 1.0000
20 0.2026 X 10-2 -0 .2845 -0.0035 0.00030 1.0000
30 0.9007 X io-3 -0.2845 -0.0015 0.00013 1.0000

4o 0.5066 x 10-3 -0.2845 -0.0009 0.00008 1.0000
50 0.3242 X 10-3 -0.2845 -0.0006 0.00005 1.0000
60 0.2252 X 10-3 -0.2845 -0.0004 0.00004 1.0000
70 0.1654 X 10-3 -0.2845 -0.0003 0.00003 1.0000
80 0.1267 X 10-3 -0.2845 -0.0002 0.00002 1.0000

90 0.1001X :024 -0.0002 0.00001 1.0000
100 o.8105 X 10-4 -0.2845 -0.0001 0.00001 1.0000



Table 4

Coefficient C in Tidal Prism Formula.

and Range of Tide in Basin

K sin C K sinT C

0.1 0.1158 0.8106 4.o 0.9999 0.9993
0.2 0.2293 o.816 5.0 0.9999 0.9994
0.3 0.3387 0.8128 6.0 1.0000 0.9997
0.4 o.4414 o.8153 7.0 1.0000 0.9997
0.5 0.5359 o.8184 8.0 1.0000 0.9998

o.6 O.6209 o.8225 9.0 1.0000 0.9998
0.7 0.6955 0.8288 10.0 1.0000 0.9998
0.8 0.7592 0.8344 20 1.0000 0.9998
0.9 0.8165 o.8427 30 1.0000 0.9999
1.0 0.8555 0.8522 40 1.0000 0.9999

1.2 0.9168 0.8751 50 1.0000 0.9999
1.4 0.9536 0.9016 60 1.0000 1.0000
1.6 0.9745 0.9267 70 1.0000 1.0000
1.8 0.9861 0.9484 80 1.0000 1.0000
2.0 0.9926 0.9650 90 1.0000 1.0000

3.0 0.9996 0.9950 100 1.0000 1.0000

q
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Table 6

Inlet Commission Survey

Discilarge, ft3  Duration, hr
Date Inflow Outflow Inflow Outflow

Indian River Inlet

June 15-June 28 16,800,000 25,357,000 4.37 7.12
June 29-July 12 16,504,000 27,578,000 4.37 7.17
July 15-July 27 16,909,000 22,181,000 11.10 7.53
July 31-Aug 27 19,598,000 17,164,000 4.10 6.90
Aug 27-Sept 12 22,273,000 31,693,000 4.58 7.20

Average 18,417,000 24,795,000 4.30 7.18

Lewes and Rehoboth Canal

June 15-June 27 8,182,000 13,731,000 4.72 6.95
June 28-July 9 9,158,000 15,455,000 4.40 7.32
July 12-July 26 9,588,000 16,753,000 4.60 7.22
July 27-Aug 20 10,063,000 15,718,000 4.90 6.89
Aug 22-Sept 12 11,654,000 18,918,000 4.55 7.14

Average 9,729,000 16,115,000 4.63 7.10

Net Outflow

ft~3  °
Indian River Bay 6,378,000 ft per tidal cycle

Rehoboth Bay 6,386.000 ft3 per tidal cycle
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Table 8

Indian River Inlet Velocities

Survey of 27 July 1948

Time, hr Tide Velocity Cross Section Discharge

e.s.t. Atlantic City Inlet Bridge ft/sec ft2  ft3/sec

8.95* 2.60 2.14 0.00 10,360 0

9.51 3.00 2.41 +1.29 10,470 +13,510

10.07 3.32 2.66 +1 10,580 +20,100

10.64 3.53 2.83 +2.16 1O,660 +23,030

11.20 3.69 2.95 +2.30 10,710 +24,630

11.76 3.70 3.00 +2.36 10,740 +25,350

12.32 3.56 2.98 +2.17 10,730 +23,280

12.88 3.32 2.91 +1.84 10,700 +19,690

13.45 3.01 2.82 +1.43 20,660 +15,240

14.01 2.69 2.68 +0.87 10,590 +9,215.

1.4 .57"* 2.30 2.44 0.00 lO,490 0

15.20 1.90 2.12 -1.17 10,350 -12,110

15.83 1.50 1.80 -1.90 10,210 -19,400

16.45 1.20 1.51 -2.23 10,080 -22,480

17.08 1.01 1.28 -2.36 9,975 -23,540 

17.71 1.04 1.15 -2-.30 9,920 -22,820

18.34 1.21 1.19 -2.10 9,940 -20,870
18.97 1.47 1.31 -1.82 9,990 -18,180

19 59 i.F 1.50 -1.45 10,070 -14,600

20.22 2.24 1.75 -0.80 10,180 -8, ;5

20.85* 2.68 2.04 0.00 10,310 0

Low-water slack.

High-water slack.

jl_______



Table 91
Estab14.shed Dimensionless Tides at Inlet Bridge

and at Inlet Ocean (11 = 1.5 ft)

Time,hr H Hf 2
e.s.t. Hxz* __r x H2 hx H E 2 -11

8.95* 2.14 2.60 -0.02 0.18 -0.01 0.121

9.51 2.41 3.00 0.25 0.58 +0.17 0.39

10.07 2.66 3.32 0.50 0.90 0.33 0.6

10.64 2.83 3.53 0.67 1.11 0.45 0.79

11.20 2.95 3.69 0.79 1.27 0.53 0.85

11.76 3.00 3.70 0.84 1.28 0.56 0.85

12.32 2.98 3.56 0.82 i.14 0.55 0.76

1 2.88 2.91 3.32 0.75 0.90 0.50 0.6

13.45 2.82 3).01 0.66 0.6 0.44 0.40

14.01 2.68 2.69 0.52 0.27 0.35 0.181

14-57** 2.44 2.30 0.28 -0.1p 0.19 -0.0

(*15.20 2.12 1.90 -0.04 -0.52 -0.02 -0.35I

15.83 1.80 1.50 -0.36 -0.92 -0.24 -0.6

16.45 1.51 1.20 -0.65 -1.27 -0.43 -0-85

17.08 1.28 1.01 -0.88 -1.41 -0.59 -0.94

17.71 1.15 i.04 -1.01 -1.38 -0.67 -0.92

18.34, 1.19 1.21 -0.97 -1.21 -0.65 -0.80

16 .97 1.31 1.47 -0.85 -0.95 -0.57 -0.70

19.59 1.50 1.82 -0.66 -0.60 -0.44 -o.11o
20.22 1.-75 2.241 -o.41 -o.18 - 0.271 -0.12

20-85* 2.04 2.68 -0.12 +0.26 -0.08 +0.17

Mean 2.16 2 .42- -- -

Low-water slack.
**High-water slack.



Table 10

Inlet Ocean Tide Observed North of North Jetty

27 Jul 1948

Time, hr
e.s.t. "2r ft H2 ,ft h2

9.0 2.15 -0.01 -0.01

9.5 2.55 +0.39 +0.26

10.0 2.90 0.74 0.49

10.5 3.15 0.99 0.66

11.0 3.25 1.09 0.73

10.5 3-25 1.09 0.73

1P.0 3.23 ]1.07 0.71

12.5 3.00 o.84 0.56

13.0 2.8o o.64 o.43

1.3.5 2.55 0.39 0.26

14.0 2.35 0.19 0.13

14.5 2.15 -0.01 -0.01

15.0 1.95 -0.21 -0.14

15.5 1.6o -0.56 -0.37 i

16.0 1.25 -0.91 -0.61

16.5 1-.00 -1.16 -0.77

17.0 0.70 -1.46 -0.97

17.5 0.75 -1.41 -0.94 1
18.0 1.02 -1.1. -0.76

18.5 1.25 -0.91 -0.61

19.0 1.47 -0.69 -0.46

19.5 1.75 -o.41 -0.27 1
20.0 2.00 -0.16 -O.1O
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Table Il

Longtime Averages: High- and Low-Water Times and Ranges

Time of Time of Range of
High Water Low Water Tide

Location hr, e.s.t. hr, e.s.t. ft

June, July, August, and September, 1948 Survey

Atlantiic City 7.24 1.12 4.08
Lewes 8.46 2.11 4.14
Indian River Inlet Bridge 7.76 1.47 2.55
Oak Orchard 10.24 4.65 0.93
Dewey Beach 12.18 6.43 0.47

Jakuary, February, March, and April, 1950 Survey

Atlantic City 7.24 1.12 4.08
Indian River Inlet Bridge 7.89 1.60 2.60
Oak Orchard 10.53 4.63 0.93
Maple 10.93 5.50 0.99

Table 12

Cross-Sectional Dirensions of "The Ditches"

1935 Survey

Water Level* Surface Width Mean Depth

ft Area, ft2  ft ft

Little Ditch
2.8 3150 420 7.5

2.0 (msl) 2816 416 6.8
0.0 2000 380 5.3

Big Ditch

2.8 3620 900 4.0
2.0 (msl) 2506 894 2.8
0.0 1114 853 1.3

4.4

* Level referred to 1929 datum.
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