
Kw- M --- -U-w

AD-756 183

THERMAL ANALYSIS OF PLATES WITH CIRCULAR

INCLUSIONS

A. L. McFall, et al

Notre Dame University

JI

Prepared for:

Office of Nav& Research

February 1973

DISTRIBUTED BY:

National Technical Information Serv!oe
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

III I 'a



THERMAL ANALYSIS Or:' PLATES
WITH CIRCULAR INCLUSIONS4

by

A. L Mcall T.Aria nd . 1I. N. Lee

February, 1973

OIM~IOmtao" b#rwi HISIN ufis UNUM DYED

Deep Ocean Engineering
C#4TRAC O#4R.MOOO4-60.A 01111

University oF Notre Dame
college oF engineering

notre dame, indiana

Reoroduced by .n q 3j
*1~NATIONAL TECHNICA F[ J

INFORMATION SERICE. W
USDopfletmont of Commerce

1E17Spingfied VA 22151

1JMBR



THERMAL ANALYSIS OF PLATES

WITH CIRCULAR INCLUSIONS

by

A. L. McFall, T. Ariman and L. H. N. Lee

February, 1973

Document cleared for public release e-d sale:

Distribution is unlimited.

i-,

1.
University of Notre Dame
College of Engineering
Notre Dame, Indiana 46556

Contract
N00014-68-A-0152(NR 260-112/7-13-67)

Office of Naval Research

TECHNICAL REPORT
NUMBER:
UND-73-2



uCLASSIFIED
ecuraty Classification

DOCUMENT CONTROL DATA -R&D
(securttl iseg|ti ltt of tol*. tody of abstraect ond smi# .tng onnotatic€.r mlust be atleted whan the ov~ell report is classified)

IOftla'.INA1ING ACIIlY (Co rporte author) 20 REPORT SFCURITV C LASSIFICATION

Coll(,qf' of Engineering UNCLASSIFIED
1Inivor-iity of Netre Dame 26 GROUP
Notrie Dame, Indiana 4r)556

3 nPonT TITLE

THERMAL ANALYSIS O PLATES WITH CIRCULAR INCLUSIONS k

4 Of CRIPTIVE NOTES (Typo of report end Incluelve dre.)

S AUTHOR(-') (Leal n o. Ittot name. initial)

McFall, A. L., Ariman, T., and Lee, L. H. N.

6. REPORT DATE 7a. TOTAL NO. OF PAGES 7 b. NO. Or RCFi3

January, 1973 35J 25
$a. CONTRACT OR GRANT NO. 90. ORIGINATORIS REPORT NUMBIES)

ONR-N0014-68-A-0152 UND-73-2
b. PrtOa.LCT NO.

In-House Acct. No. 2400-24038
c 9b. OTHEfl RCORT NO(S) (Any oorarwb.,e UaMae may be aaeloned

Mshl* report)

d.
10 AVA IL ABILITY/LIMITATION NOTICES

Document cleared for public release and sale. Its distribution is
unlimited.

If. SUPPL EMENTARY NOTES 1Z. SPONSORING MILITARY ACTIVITY

Department of the Navy

13. ABSTRI.' T

A least square boundary point matching method is employed to
deteri-.ne the temperature distributions and deformations of rectangular
plat. s with circular elastic inclusions. Solutions for two problems have
bef-. obtained. The first problem is concerned with the determination of
th., temperature distribution in a finite rectangular plate having a circular
inclusion and subjected to prescribed temperature distribution and thermal
conditions along the edges. The plate is heated uniformly through the
t:hickness. The second problem is concerned with the deflection and moment
:istribution in the same plate model with simply supported edges and pre-
scribed temperature variation across the thickness but no temperature vari-
ation over the plate surface. Numerical results are presented.

JA.1473 UNCLASSIFIED
! Security Clkssification



1c LINKA LINK i LINK C

ROLE IV ROLE W 0 RLr WT

RECTANGULAR PLATE

ELASTIC CIRCULAR INCLUSION

TEMPERATURE DISTRIBUTION

PLATE DEFLECTION

BOUNDARY POINT MATCHING

I

I

I.

11

DD 173-- - - -

DD -o-.,1473 (PACK) UNCLASSIFIED
Secuilly Classificatton A.3140 LI



UND-73-2 - iip

rI

FOREWORD I

This technical report was prepared by the Dynamical Systems
Group under the Deep Sea Engineering Project at the University
of Notre Dame, College of Engineering. The authors, A. L. McFall,
T. Ariman, and L. H. N. Lee are, respectively, Graduate Research
Assistant, Associate Professor and Professor in the Department of
Aerospace and Mechanical Engineering.

The research was performed under the sponsorship of the
Department of the Navy, Office of Naval Reseam'h, Washington, D.C.
20360, with funding under Contract N00014-68-A-0152 and In-House
Account Number UND-2400-24038.

Readers are advised that reproduction in whole or in Eart
is permitted for any purpose of the United States Government.

This technical report has been reviewed and approved for
submittal to the sponsoring agency January, 1973

iB

!3

!I

EDWARD W. JER AN
PROGRAM VNAGER DEAN, COLLEGE OF GINEERING

UNIVERSITY OF NOTRE DAME



UND-73-2 - iv -lp

TABLE OF CONTENTS

Page

INTRODUCTION -------------------- 1

'rEMPERATURE DISTRIBUTION- - ------------- 3

THERMAL BENDING - - - - --------------- -- 7

APPENDIX A----------------------- 15

APPENDIX B ----------------------- 17

REFERENCES ----------------------- 19

Prcediog pp I



D-73-2 - v-

LIST OF FIGURES page

Pig. 2.1 System of coordinates for temperature distribution. 21

Fig. 2.2 Typical boundary layout for "point-matching". 22

Fig. 2.3 Temperature function 0 , plotted as a function of 23
inclusion size and e = .1, a/b = i.0, and r = R.

Fig. 2.4 Temperature function ep, plotted as a function of 24
and e for R/b = .5, a/b = 1.0, and r = R.

Fig. 2.5 Temperature function D, plotted as a function of a/b 25
and 8, with R/b = .5 and , = .1, and r = R.

Fig. 2.6 Temperature function 0, plotted as a function of X 26
and Y with R/b = .5, a/b = 1.0, 1 = 0.

Fig. 2.7 Temperature function r, plotted as a function of X 27
and Y with R/b = .5, a/b = 1.0, -A .1 .

Pig. 2.8 Temperature function p, plotted as a function of X 28
and ), with R/b = .75, a/lb = 1.0, y = 0.0.

Pig. 3.1 Simply supported rectangular plate with circular 29
inclusion - coordinate system.

Fig. 3.2 Plate deflection as a function of R/b with r = .1, 30
p = !.0, and v= vb =.3

Fig. 3.3 Plate deflection as a function of R/b with = 10.0, 31
p = 1.0, and va = vb = .3

Fig. 3.4 Plate deflection as a function of 9 with = 10, 32
p = 1.0, R/b = .5 and va = vb = .3 .

Pig. 3.5 Plate deflection as a function of 8 with 1 = i, 33
p = 1.0, R/b = .S and va = vb = .3 .

Pig. 3.6 Plate deflection as a function of , with R/b = .5, 34
p = !.0 and Va = . = .3 .I

Fig. 3.7 Plate deflection as a function of p with n = 1.0, 35
R/b = .15, va = vb = .3

: + r '+k ... ° I



-- _ - - - 1111.- - - W - - 9- - - w

'JNI)- 73-2 -]1-

I. INTRODUCTION

It is a common knowledge that plates are essential structural elements

for constructing marine vehicles. To serve their functions, most plates

may have holes and elastic inclusions and be subjected to temperature

gradients. It is the objective of this zesearch to develop an approach for

the determination of temperature distributions, thermal stresses and de-

formation of rectangular plates with circular inclusions. It is assumed

that both the plates and inclusions are individually homogeneous and

isotropic.

In the last derade, several papers on membrane thermal stresses in

infinite plates with holes appeared in the literature. Goodier and Florence

published a number of articles [ 1-6] on localized thermal stress at holes,

Lavities and inclusions ca., -ed by disturbed uniform heat flow. It is well

known that in an infinite plate a steady heat flow under a uniform temperature

. gradient does not induce thermal stress provided the plate is free to expand.

Thermal stress is induced, however, if the uniform flow of heat is disturbed

by the presence of an insulated circular hole, or by an inclusion of another

material. The influence of the shape and rigidity of an elastic inclusion on

the transverse flexure of thin plates was investigated by Goland [7].

Tauchert [8] analyzed thermal stresses at spherical inclusions in uniform

heat flow. Recentiy Hoffman and Ariman [9], Rao, Rao and Ariman [10,

11 have used the least squares boundary point matching method to in-

vestigate the temperature, bending and membrane stress distributions

for a rectangular elastic plate with circular [1O] and elliptic j 11] holes

subject to heat flow.

I
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On the other hand in many cases a satisfactory solution for a given

botindary value problem can be obtained by the method of point matching.

A simple description of this technique is that solutions are used which

satisfy the governing differential equations exactly, while approximating

the boundary conditions at discrete points on the boundary. This proce-

dure proves very useful for problems in which no exact theoretical analysis

can be formulated. Furthermore a single computer program can be used

for any problem governed by that equation without regarding the shape of

the boundary.

The concept of the least squares boundary point matching method

(see Appendix A) occurred to several investigators as earl., as 1934,

Slater [121 and 1937, Barta [13]. The method was not used extensively

until 1960 when Conway [14], after recognizing the method's potential for

a wide class of problems, named this technique "point-matching". Since

then, the method has been developed particularly for the bending of plates

by Leissa and Niedenfuhr [151 and has been applied to numerous other

boundary value problems [16-191. Eringen and his co-workers extended

* this method to stress concentration problems in shells with holes and to

In the first problem of this study, the temperature distribution in a

finite rectangular plate with a circular inclusion is investigated by the same

method. The plate is heated uniformly through the thickness, that is the

temperature varies only along the coordinates within the plane. Two

opposite edges of the plate are kept at constant temperatures while the

other edges are insulated.
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In the second problem, the L-:flection and moment distribution in the

same plate model with simply supported edges is investigated by the least

squares point matching method. The heat flow consists of an arbitrary

temperature variation across the thickness of the plate, but with no varia-

tion over the plate surface. For both problems the solutions are derived

in the form of an infinite series in terms of circular cylindrical coordinates

r and 0. The boundary conditions at the inclusion interface are satisfied

exactly while the ones at the simply supported edges of the rectangular

plate are satisfied at selected points by the least squares method. Numeri-

cal results are presented for temperature distribution, deflections and

moments as a function of the ratio of elastic properties of the plate and

inclusion, and the inclusion size.

I. TEMPERATURE DISTRIBUTION

A rectangular elastic thin plate of uniform thickness is subjected to

heat flow in the x-direction (Fig.2. 1. )The edges at y = ± b, of the plate

are insulated. The surfaces at x = ± a are held at constant temperatures j
T and T 2 with TI> T 2 . A circular cylindrical inclusion with different

thermal properties than the plate is centrally located with the plate. The

governing equation for the steady-state heat conduction in a thin plate with

no sources or sinks is the Laplace equation [23].

v T= o (2.1)

where
2 + I + .1 

(2.2)
-r2 r ar 2 2

Brr Be
and T(r, E) is the temperature. The boundary conditions are given by

T = T Iat x = a

T = T 2 at x = -a
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5T 0 at y = ± b (2.4)by

__T_ Tb
T = T and Ka =K at r =R (2.5)a b a br b ar

Equations (2. 3) and (2. 4) are the boundary conditions at the edge of

the plate, while equations (Z. 5) apply at the boundary of the circular in-

clusion and the plate. In these eqs. K a and Kb represent thermal

conductivity of the inclusion and plate materials respectively.

The general solution to Eq. (2. 1) in plane polar coordinates can be

represented as

1 n -

T(re)= (ao+ $Lnr)+ Z [an r n+ r - n ) cos n6
n= In

+ (Ynrn+6nr - n ) sin nO] (2.6)

where a n $n, yn and 6 are unknown coefficients to be determined from

the bound try conditions. By considering th, symmetry of the problem

abot the x-axis, this solution reduces to:

1 n -n
For the plate: Tb(r,.) = -(a o+fn r)+ [(anr +,br )cosn (2. 7)

b Z o'obD n=I nb riI n
I " r+£( rn+ -n 1

Fr the inclusion: Ta(r,8)=1 (a o + a Ln r)+ (a ( r n +nar )cos nG (2.8)a 2 oa 1ta n= Ina n

whe.c Tb and Ta represent temperatures in the plate and in the inclusion

r-.-.pectively. Ta should remain finite as r approaches zero in the in-

clusion, therefore it is easily seen that 8 oa= Ona = 0 and Ta takes the

following form

Ta(r, e) = + Z ( r) cos ne (2.9)n=1 na

Eqs. iZ. 7) and (2. 9) by the use of boundary ca;.ditiors around the circular

inclusion Eqs. (2. 4) and (2. 5), yield the followi.:g relationships:
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aob + 0ob In R = aoa (2. 10)

anb R n + $nb R - = a n(.1
I'

$ob = 0 (2. 12)

n-i -n- 1 n- 1KbR - 13bR ) =K a (anaR )(2. 13)
b nb nba na

From Eqs. (2. 10) and (2. 12)

Uob = oa (2. 14)

anf from (2. 11) and (2. 13)

R R2 n K b K a (.

8nb anb Ka+K (2. 15)

Substituting Eqs. (2. 12), (2. 14) and (2. 15) into (2. 7) and (2. 9) one obtains

ob n 2n -ntor ->R =-+ (, (r + R cosn@ (2.16)
Tb(r, 2 n

n=l
whe re

K-K
bKa (2. 18)

For the case of an circular hole in the same plate Ka - 0, 1 and Eq.

(2. 16) is in agreement with the one givenby Rao et al [10].

The unknown coefficients aob and anb are now determined by satisfying

the boundary conditions at the outer edges of the plate (Eqs. (2. 3) and (2. 4)).

However, since the boundaries x .- ±a and y = ±b are not coordinate lines

for the temperature function, an exact solution cannot be found. To obtain

an approximate solution the infinite series in Eqs. (2. 16) and (2. 17) is

truncated at n = N terms, -,kaving n + I coefficients to be determined. M

points are chosen along the plate outer boundaries. As there is one

condition for each point, M equations are generated. For M = N + 1, the

, /
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equations may be solved for the required coefficients. However, if

M > N + I and the unknowns are deternined in the least squares sense,

then as M -4 c this process becomes that of minimizing the integral of

the squared error,

In order to get some numerical values for the problem T1 and T 2

are chosen as 150 0 F and 100 F respectively. The number of boundary

points taken is forty (M=40) Fig. (2. 2) and eight terms (N=8) are considered

in the series. Thus forty equations for nine unknowns are generated.

Solving these in the least squares sense yields the necessary coefficients

O.
n

In Fig. (2. 3), the variation of the nondimensionalized temperature
T- T2

function 0 = TIT 2 is presented on the perimeter of the inclusion in a

square plate. The curves are given for various sizes of the circular in-

clusion and no inclusion case with R/b = 0. The conductivity of the in-

clusion is assumed to be one-tenth of the plate X . 1. It is seen that as the

size of the inclusion becomes larger the temperature at the inclusion inter-

face increases and approach the constant values at the outer edges. In

Fig. (2. 4) the inclusion size is held constant (R/b . 5) and the conductivity

ratio X is varied. Lowering the conductivity ratio increases the tem-

perature at the interface to the case of an insulated circular hole, in-

creasing the conductivity ratio X approaches the case of the infinitely con-

ducting inclusion which holds all of the heat. Figure 2. 5 displZys the

effect of plate size on the variation of normalized temperature b for a

given inclusion size R/b = . 5 and a prescribed conductivity ratio X . 1.

It is seen that for a/b = 4 temperatures on the perimeter of the inclusion

, x I
• a/
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are quite lower than the case of - = . 25.

Figure 2. 6 shows the normalized temperature distribution for a square

plate with a circular inclusion determined by R - .5 and X = 10. The curves
bi

represent the temperature variation for various values of y = X. As I

increases the temperature approaches the linear distribution, thus verifying

the fact that the effect of the inclusion dies out as the distance from the

hole increases. The similar temperature distribution 3s presented in Fig.

2. 7 for a lower conductivity ratio X = . 1. Again the temperature variation

is almost linear for y = 1. 0 while the x-axis (y = 0) shows the effect of

the inclusion most. However due to the lower conductivity ratio, the tem-

perature drop from the edge of the plate to the inclusion is less than in
lR

Fig. 2. 6. Finally for square plate with a given inclusion size of - 75,b

Fig. Z. 8 shows the temperature distribution as a function of x, while the

conductivity ratio is varied. Again the temperature differential from the

plate edges x = ±a to the inclusion interface is less for the lower con-

i" ductivity ratios.

11. THERMAL BENDING

In the second part of this study thermal bending problem of a rectangular

elastic thin plate with an elastic inclusion by the least equares point matching

method is Anvestigated. The upper and lower surfaces of the plate are held
atcntn eprt~e 'and r' respectively. (Fig. 3. 1) The temperature
at onsantteperturs 1  2Z

is assumed to vary in the z-direction only. Hence

T= T(z)=T0 + r z (3.1)

A0

:|: ' I i I I I i l I' :  -:1 I III i I - /

J L. .°- -' -
'

Jl . . . • . • l: I l I Ii
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where

To = withT'>T' and 11= 12 (3.2)

The governing equation for the transverse displacement w of a plate

of uniform thickness t subjected to distributed transverse loading and

nonuniform heating is [ 24]

D v2V2 w) 1 V M (3.3)Dv w =p(x, y) 1 2
I-v T

whe re

p(x,y) = Distributed transverse loading per unit area.

3 2
D = Bending rigidity of the plate per unit length = E t /12(1-v )

,tlz
MT Thermal bending moment = atE J T (z) dz

t/2
V = Poisson's ratio

x2

E Young's modulus

t  = Coefficient of thermal expansion

For the case of no transverse loading and a temperature distribution

described by Eq. (3. 1), the governing equation reduces to

v~2 2i2 = 0 (3.4)

The solution of equation (3. 4) in plane polar coordinates can be represented

as [25]
w A + B Lnr+ C 2 + Do r Anr+ [A 1 r+ B 1 r + C1  r

+ Dlr Inr] cose+ [A' rB+ B' r+ C r 3 + D rtnr] sine

20 CO rm+ B -m+ C rm+2+ D r-m+2 cos r
+ D 0r + Z (A r + r +C r D r)mn

0 e=, 3,..m m m
BA' m+BI r-m+ C' rm+2 D' r-m+ } sinm8 (3.5)

+ A r ~ m m (.5
m=2, 3...

By considering the symmetry of the problem two solutions, one, using the

I

!I
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subscript b, for the plate and one using the subscript a, for the inclusion

are formulated from Eq. (3. 5)

For the plate:
r2  r2

w A + Bb Lnr 4Cr
b ob ob ob +Dob nr

cc m -m rm+Z+ -m+2
m2, 4( mb mb mb Dmb r cosm

=, P(3.6)

For the inclusion:

w A + C rZ+ D r 2 tnr+ (A m+ C r m+Z)cosm
oa oa oa m=2,4,... ma (37)

Here A A to D D and A A to D D representthe
oal ob oa' ob, ma mb ma mb ersn h

unknown coefficients to be determined from the boundary conditions. At

the inclusion interface (r=R) there are four boundary conditions to con-

tend with. They are

V* : *
(Mr)a = (Mr)b (Qr)a (Q)b

a wb
vI w AW - - (3. 8)

a b' r r

where
2 2 M': F62wI a w+ I BW MT

M = radial moment= -DF r-- + (-2 + -+ -)+ 1- D

r r r ~

Q= Kirchoff shear force = 0 r +

Qr = vertical shear force

r Mr = twisting moment

Substituting Eqs. (3. 6) and (3. 7), into (3. 8) one obtains the following four

equations by combining the terms not under the summation 'ig:-.

1 ±-
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D F2 C oa(l+v a)+ D oa(3+2nR)+ D oava (1+2nR)+

MTa 1 ) Bob(l ))D 1"- b " R 2 ('%-1)+ 2 Col)(l+'Vb)+

M
I),ob (3+2 nR)+ D ob Vb(1Z+ An R) I. (1-v)l) D (3.9)

b b-
4Da 4 Dob

Da--- = "b R (3.10)

= R2
oa R 2  R 2 nR A ob+ Bob AnR+ Cob

+D R AnR (3.11)
obo

2 Coa+ Doa (R+ 2 R AnR) = B-+RCob+Dob (R+ 2R AnR) (3. 12)

These four equations may be solved for A Bo, C and Dob.

ob ob ob obD~ob = oa

Bob = 1 Coa+ 
2 Doa+ 3

ob a4 Coa+ 5 Doa (6

Aob =C'7Aoa+ a 8 Coa+ a9 Doa+ (L10 (3.13)

where

aI = R b[(1+v) - l(+Va)]

a2 = a1 [(1+2 AnR)/2]

MTa MTb
3/ i(1.Va )D a  -"b ) Db j

a4 = [n(1+Va)+ (1- %)1/2

a 5 = [(1+ 2PnR)/4] [(1-Vb) - n(l-va)]

a 6 = a 31 - 2 R 2

a7 = 1.0

a8 = [R 2 - AnR 1 - R 2 a4 ]

a9 = [R2 InR (1-r)- nRa2 R 2 a 5 ] (3. 14)

0 1 0 = -AnRa 3 - R2 6

with
r = DaDb

-~i
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Combining the terms under the summation sign in the substitution of

Eqs. (3. 6) and (3. 7) into (3. 8) the following four equations in six unknowns

are obtained

A1 Ama A2 Cma A3 Anib A 4 Bmb+ A 5 Crab + A 6 Dra b

B1A a + B 2 C = B 3 Arab+ 4BBmb + B 5 C mb+ B 6 Drb

1 A ma+ C2 Cma. C3 Amb+ C4 Bmb+ C5 Cmb+ C6 Drmb

DIAma+ D2 Cma = D3Amb+ D4 Bmb+ D5 Cmb+ D6 Drnb (3.15)

Coefficients An, B n , C , and D are given in the appendix B. Onen nn

obtains the following expressions for Cmb, Dmb, Bmb and Amb from these

equations

C mb = I Area + C2 Cma

D A-i Drab = 3 Ama + 04 Cma

B mb = 5 A n a + 06 Cma

A= A 8 C(3. 16)A Arb = 0 7 Area + 08 Cma(.6

where
1-Vb+ fl ( 3+va)

= 0, 0Z= 4
mR Z

m - 2

03 = 4 ['-vb - n(l'va) I

R2m
4 = 4 (m+1[() - ln(l'Va) I

RZm(l-m) [lb -

55 = 4

m+Z [-l+ 02 + R-2m(Im)
b. . , • . 1

7 4 b 1-va)

2
= Rm [l+v6 " n (l+v)] (3. 17)

0r a

/

'4'
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Then Eq. (3. 6) can be written as

wb )Aoa - 2Coa ' 3 oa+ F4+ (t 5 A+ V6Cma) cos m e
r=Z, 4,

(3. 18)

where:

I1= a7' -2 -- a 8 + a 1 In r + a 4  r2

22

=a9 +a 2 I n r+ca5 r 2 + ' 2n r
-S 9 2

4= 10 + a 3  An r+ 6 r 2

m -r rm+2 -m+2
. 5pr + $ r + 0r + 0 r

-6 8 rm+ 86 r-m+ $, rm+2 r-m+2 (3. 19)

The condition that the outer edges of the plate be simply supported requires

that iT
at x= :t a and y= b:

22
w =-D Wb Wb MT

W =andM =D + Vb - =0 (3. 20)
n n at2

where n and t denote normal and tangential directions at the plate boundary

S,.pectively.

Substitution of Eq. (3. 18) into the outer edge boundary conditions re-

suits in an infinite number of equations for the infinite number of unknown

coefficients. As in the case of the first problem, the least squares boundary

point matching method -as employed. Namely the simply supported boundary

conditions are satisfied at selected points, along the plate outer boundaries.

In or ',- to present some numerical results, T; and T' are chosen as

0 0 a150 F and 100 F -espectively while the platr. thickness is 4& Forty

points are taken along the outer boundaries of the plate (Fig. 2. 2) and

eight terrrc are considered in the series. Thus eighty equations in eleven

unknowns are generated. Solving these in the least squares sense yields

AL -
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the necessary coefficients.

In figures 3.2 and 3.3 the deflection function is presented as a2a
function of X = x The ratio of the inclusion rigidity to plate rigidity,

D a
- -- , is chosen as . 1 and 10 respectively and the prescribed value ofDb MTa

the ratio of the thermal moments p = - =, is 1. 0. Each figureMTb

presents the variation of the deflection function for three different inclusion
R

sizes -E = . 25, . 50, and. 75. In Fig. 3. 2 the inclusion is less rigid than

the plate and it is seen that the larger inclusion increases the plate

deflection. However, in Fig. 3. 3, the inclusion is more rigid than the plate

and increasing the inclusion size decreases the plate deflection.

In Figs. (3. 4) and (3. 5) the deflection function is presented on the

perimeter of the inclusion. The rigidity, thermal moment and Poisson

ratio and inclusion size are held constant while the deflection at various

radii is plotted. A comparison of these two figures indicates that the

increase in the rigidity of the inclusion, causea lower deflection values at

corresponding radii.

A summary of the effect of the inclusion rigidity is presented in Fig.

3. 6. In this figure for a prescribed inclusion size the deflection function

variation along the x-axis is shown as a function of the inclusion plate

rigidity ratio r. The rigidity may be increased to the limit of the rigid

inclusion where the deflection is constant across the inclusion surface,

At the other extreme, the rigidity is lowered to the point where the inclusion

gives no support and acts as a circular hole.

Finally in Fig. 3. 7 the effect of the ratio of thermal moment p on the

variationi of the plcte deflection is displayed. For a given inclusion size,

constant elastic properties (Ea , Eb, Va and ,Vb), the increase in the ratio
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I? wil a i crecvtly related to the ratio of thermal expanlsion coefficients

vatises larger values in the deflection function.
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APPENDIX A

THE LEAST SQUARE BOUNDARY POINT MATCHING METHOD

Given a linear function of the variables gi defined by

N

f(xk) = I aigi(xk ) (A-l)

where the gi may be functions of any finite number of coordinates (Xk).

It is desired to determine the coefficients ai such that f(x I ) satisfies

some specified conditions on some contour L. If L is not a coordinate

line of the coordinate system in which the xk are defined, it is presently

impossible to do this exactly. However, if at some finite number M of

points on L the specified conditions are satisfied, the following system

of equations results.

NF F f =i,(k b (A-2)F m [f(xk) .1 = FmLi=I  i i ( k j m

where (m= ,...,1. If F is a linear operator

N|, b = a. F (g, (xk)) (m I,., ) (A- 3)

m i=l I m

Then if M = N the system is determined. However if M> N consider a

solution to

M N -2r Fb - a. aF (g, (xk)) j = d (A-4)
m=l L. m i= M

where d is minimized with respect to the desired solution vector a..1

That is

FA N 2
minE [bm -_ a.F m (gi(xk)
a. m=l i=l

I

It can be shown that if

a. = -a

F m(gi(xk)) = C] ,

11

= [CJ l I



I v

'lli -'- .- - I -

and b = b then for a to minimize (A-2) for M > N it is necessary that

a be a solution of

[c]T[c] [C]Tb

II

(

II
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APPENDIX B

A, [(m 2 -m 3 )(1-v a )l Rm- 3

3 2 1j
A2 = rm (va- 1)+ m2(3+va) + 4m]R m - r

A 3 = [(mn2_M3) (l-Vb)I Rm-3

A4 = [(m2 +m 3(l-vb)I R - m - 3

A5 = [m3 (vb-l) + m 2 (3 +vb)+ 4 m] Rrn - I

A 6 = [m 3(l-Vb) + m ( 3 +vb) - 4m] R - m - l

B 1 = [(m 2 -m) (l-Va)] Rm 2 -n

2B2 = [m (I-Va) + m(3+v ) 2(1+v )I Rm.
a aa

B 3 - -v (m-m)]

B4 = [(-Vb) ( (2+m) ] R-m- 2

B5 = [rn (1-vb) + m (3 +vb) + Z(1+vb)] Rm

B6 = [m2 (l-Vb) + m(-3-v b) + 2(1+b)]R- m

: C 1 =Rm

C2 = R~

-~m

C = R

C5 = Rm+2C6  R
C6  R- m 2

D = mRm
- 1

D2 = (m+2) Rm+l

ii
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D) = -mR'-

D5= (m+-) Rm+l

D6= (-m+Z) Rm+l
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