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FOREWORD
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Assistant, Associate Professor and Professor in the Department of
Aerospacce and Mechanical Engineering.
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Department of the Navy, Office of Naval Resear~h, Washington, D.C.
20360, with funding under Contract N00014-68-A-0152 and In-House
Account Number UND-2400-24038.

Readers are advised that reproduction in whole or in part
is permitted for any purpose of the United States Government,

This technical report has been reviewed and approved for
submittal to the sponsoring agency January, 1973
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I. INTRODUCTION

It is a common knowledge that plates are essential structurzl elements
for constructing marine vehicles. To serve their functions, most plates
may have holes and elastic inclusions and be subjected to temperature
gradients. It is the objective of this zesearch to develop an approach for
the determination of temperature distributions, thermal stresses and de-
formation of rectanguiar plates with circular inclusions. It is assumed
that both the plates and inclusions are individually homogeneous and
isotropic.

In the last decade, several papers on membrane thermal stresses in
infinite plates with holes appeared in the literature. Goodier and Florence
published a number of articles [1-6] on localized thermal stress at holes,
cavities and inclusions ca» :ed by disturbed uniform heat flow, It is well
known that in an infinite plate a steady heat fiow under a uniform temperatufe
gradient does not induce thermal stress provided the plate is free to expand.
Thermal stress is induced, however, if the uniform flow of heat is disturbed
by the presence of an insulated circular hole, or by an inclusion of another
material. The influence of the shape and rigidity of an elastic inclusion on
the transverse flexure of thin plates was investigated by Goland [7].
Tauchert [8] analyzed thermal stresses at spherical inclusions in uniform
heat flow. Recentiy Hoffman and Ariman [9], Rao, Rao and Ariman [10,
11] have used the least squares boundary point matching method to in-
vestigate the temperature, bending and membrane stress distributions
for a rectangular elastic plate with circular [10] and elliptic [11] holes

subject to heat flow.

-
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On the other hand in many cases a satisfactory solution for a given
boundary value problem can be obtained by the method of point matching.
A simple description of this technique is that solutions are used which
satisfy the governing differential equations exactly, while approximating
the boundary conditions at discrete points on the boundary. This proce-
durc proves very useful for problems in which no exact theoretical analysis
can be formulated. Furthermore a single computer program can be used
for any problem governed by that equation without regarding the shape of
the boundary.

The concept of the least squares boundary point matching method

(see Appendix A) occurred to several investigators as early as 1934,

Slater [12] and 1937, Barta [13]. The method was not used extensively
; until 1960 when Conway [14], after recognizing the method's potential for _
a wide class of problems, named this technique "point-matching'. Since

then, the method has been developed particularly for the bending of plates

¢
P )

by Leissa and Niedenfuhr [15] and has been applied to numerous other

boundary value problems {16-19]. Eringer and his co-workers extended

this method to stress concantration problems in shells with holes and to

the problem of two normally intersecting circular cylindrical shells [20-22].
In the first problem of this study, the temperature distribution in a

finite rectangular plate with a circular inclusion is investigated by the same

E ' method. The plate is heated uniformly through the thickness, thatis the

L - temperature varies orly along the coordinates within the plane. Two

opposite edges of the plate are kept at constant temperatures while the

) other edges are insulated.




N P iy ey

WY T

T T e _,'_.v_._', w ‘—V‘—v—v———f -

UND-73-2 -3-

In the second problem, the «:flection and moment distribution in the
same plate model with simply supported edges is investigated by the least
squares point matching method. The heat flow consists of an arbitrary
temperature variation across the thickness of the plate, but with no varia-
tion over the plate surface. For both problems the solutions are derived
in the form of an infinite series in terms of circular cylindrical co_ordinates
r and 8. The boundary conditions at the inclusion interface are satisfied
exactly while the ones at the simply supported edges of the rectangular
plate are satisfied at selected points by the least squares method. Numeri-
cal results are presented for temperature distribution, deflections and
moments as a function of the ratio of elastic properties of the plate and
inclusion, and the inclusion size.

II. TEMPERATURE DISTRIBUTION

A rectangular elastic thin plate of uniform thickness is subjected to
heat flow in the x-direction ( Fig.2. 1.) The edges at y = £ b, of the plate
are insulated. The surfaces at x = * a are held at constant temperatures

'1'l and 'I‘2 with T1> TZ' A circular cylindrical inclusion with different

thermal properties than the plate is centrally located with the plate. The

governing equation for the steady-state heat conduction in a thin plate with

no sources or sinks is the Laplace equation [23],

?T=0 (2. 1)
where
2 2
2 2 1 2 1 )
VrSs - 2y — S (2.2)
ax_Z r ar rZ an

and T(r, &) is the temperature. The boundary conditions are given by

T=Tlatx=a

T=T2atx=-a

(2.3)

LT ey

(a1 JRT QLA AL SRt a

[
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T
== _ =90 == .
3 at y b (2. 4)
3T AT, !
Ta= Tb and Ka =t =Kb -a—;— atr = R (2.5)

Equations (2. 3) and (2. 4) are the boundary conditions at the edge of :<
the plate, while equations (2.5) apply at the boundary of the circular in-
clusion and the plate. In these egs. K, and Kb represent thermal
conductivity of the inclusion and plate materials respectively.

The general solution to Eq. (2. 1) in plane polar coordinates can be

represented as

T(r,€) = % e + B £nr}+ Z:l [anrn+ Bnr-n) cos ng
n=

n -n, .

+(an +6nr ) sin n@] (2. 6)

where a sn’ Y, and 6n are unknown coefficients to be determined from
the boundiry conditions. By considering th: symmetry of the problem

about the x-axis, this solution reduces to:

[- 3
Ann)+ L [le,r"+58 . r Mcosne  (2.7)
n=1 nb

_1
For the plat‘e. Tb(r, g) = -z(a Srb

+Q
ob 'ob

. _— 1 . e n -n i
For the inclusion: Ta(r,e )= > (a°a+ ,bain )+ Lo T+ anar Ycos n6 (2. 8) !

n=1 02

‘Whe fc Tb

respectively. T, should remain finite as r approaches zero in the in-

and T represent temperatures in the plate and in the inclusion :

clusion, therefore it is easily seen that aoa= ana = 0 and Ta takes the

%

following form

%oa
2

Eqs. {2.7) and (2. 9) by the use of boundary cec::ditiors around the circular

Ta(r, 8) =

- -]
n a
+n=21 (ana r) cosnég (2. 9)

inclusion Eqgs. (2. 4) and (2.5), yield the followi.:g relationships:

- - aa e a . - e ettt e, -
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Gop t Bob in R = %oa (2. 10) 1

] R+ B R =y R (2. 11)
| Pob = 0 (2. 12) | f
* Kyl R™ 1= BpR ™" = K, @, R (2.13)

From Eqgs. (2. 10) and (2. 12)

“ob T %pa (2. 14)
: anf from (2. 11) and (2. 13)
K, -K
b
| Bob = b R TR (2.15)
! a b

Substituting Eqs. (2.12), (2.14) and (2. 15) into (2. 7) and (2. 9) one obtains

%ob g n, _2n n
‘v N 57— e >“ =
ior *>R ’Ib(r,e) 5— R anb(r +R™¥1r ") cosng (2. 16)
[ forr< R T_( e)-ie%i’; (1+v) " 8 (2.17)
¢ or 2(t:8) =3 ' 2 Oy ¥) r cos n .
¢
3 where
| S K,-K,
r Yz = (2.18)
k 1 - KytK,
H For the case of an circular hole in the same plate Ka : 0, ¥=1and Eq.
i (2. 16) is in agreement with the one givenby Rao et al [10].

The unknown coefficients %ob and A p, aTe now determined by satisfying
the boundary conditions at the outer edges of the plate (Egs. (2. 3) and (2. 4)).
However, since the boundaries x = *a and y = tb are not coordinate lines
: for the temperature function, an exact solution cannot be found. To obtain
' an approximate solution the infinite series ir Egs. (2. 16) and (2. 17) is
truncated at n = N terms, lcaving n + 1 coefficients to be determined. M
points are chosen along the plate outer boundaries. As there is one

condition for each point, M equations are generated. For M = N + 1, the

n e

Ny
4
s

1 U S U P - )
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equations may be solved for the required coefficients. However, if 1
M > N + 1 and the unknowns are determined in the least squares sense,
r then as M - « this process becomes that of minimizing the integral of
the squared error,
$ In order to get some numerical values for the problem T1 and T2

o
are chosen as 150°F and 100 F respectively, The number of boundary

f points taken is forty (M=40) Fig. (2.2) and eight terms (N=8) are considered

} in the series. Thus forty equations for nine unknowns are generated. «’
Solving these in the least squares sense yields the necessary coefficients '

Qn-

In Fig. (2. 3), the variation of the nondimensionalized temperature

. T- Ty
unction ¢ = =
T,-T

1742

square plate. The curves are given for various sizes of the circular in-

is presented on the perimeter of the inclusion in a

5

clusion and no inclusion case with R/b = 0. The conductivity of the in-
: clusion is assumed to be one-tenth of the plate A = .1, Itis seen that as the

size of the inclusion becomes larger the temperature at the inclusion inter-

{ face increases and approach the constant values at the outer edges. In

Fig. (2.4) the inclusion size is held constant (R/b = .5) and the conductivity

[T

ratio )\ is varied. Lowering the conductivity ratio increases the tem-

perature at the interface to the case of an insulated circular hole, in-

creasing the conductivity ratio \ approaches the case of the infinitely con~

L

ducting inclusion which holds all of the heat. Figure 2.5 displays the
effect of plate size on the variation of normalized temperature ¢ for a
given inclusion size R/b = .5 and a prescribed conguctivity ratio A = . 1.

It is ceen that for a/b = 4 temperatures on the perimeter of the inclusion
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Figure 2, 6 shows the normalized temperature distribution for a square

are quite lower than the case of == .25,

plate with a circular inclusion determined by%{ =.,5and )\ = 10. The curves
represent the temperature variation for various values of y = % As %
increases the temperature approaches the linear distribution, thus verifying
the fact that the effect of the inclusion dies out as the distance from the

hole increases., The similar temperature distribution is presented in Fig.
2.7 for a lower conductivity ratio A = .1, Again the temperature variation
is almost linear for y = 1,0 while the x-axis (y = 0) shows the effect of

the inclusion most., However due to the lower conductivity ratio, the tem-
perature drop from the edge of the plate to the inclusion is less than in

Fig. 2.,6. Finally for square plate with a given inclusion size of -%-= . 75,
Fig. 2.8 shows the temperature distribution as a function of x, while the
conductivity ratio is varied. Again the temperature differential from the
plate edges x = %a to the inclusion interface is less for the lower con-

ductivity ratios,

III. THERMAL BENDING

In the second part of this study thermal bending problem of a rectangular
elastic thin plate with an elastic inclusion by the least ¢quares point matching
method is investigated. The upper and lower surfaces .O.f the plate are held
at constant temperatures Ti and T, respectively. (Fig. 3.1) The temperature

2

is assumed to vary in the z-direction only. Hence

T=’I‘(z)=To+Tz (3. 1)

SFSINh S S

F,

Ry tleusalpionioguely
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where ‘
Ti+'r2’ ) T’-Té ]
0> T — w:.thT1>T2 and 'r=-—§-——-

b The governing equation for the transverse displacement w of a plate

T (3. 2)

[P

of uniform thickness t subjected to distributed transverse loading and ) :

nonuniform heating is [24]

‘ 2 2 1 2
’ Dvyv w=p(x,y) - Ty v MT (3. 3)
E where '
| p{x,y) =  Distributed transverse loading per unit area.
I
D =  Bending rigidity of the plate per unit length = E t3/12(1-v2) :
b .t/2 :
MT = Thermal bending moment = a EJ T (z) dz
Y}
} v =  Poisson's ratio
.' N L
v =Tzt 2
: ox oy
‘ E = Young's modulus
3 oy =  Coefficient of thermal expansion

For the case of no transverse loading and a temperature distribution

described by Eq. (3.1!), the governing equation reduces to

VZVZ w=20 (3. 4)

! The solution of equation (3. 4) in plane polar coordinates can be represented

as [25]
: w=z A +B gtnr+ C r2+ D rzj,nr-[- [A re+ B r-l.*. C r3
¥ o o) o o i 1 1
+ Dyr4nr] cosg+ [A]ro+ Bi r 1y Cq £y D; r4nr] sing
B + D r29+ :Z:o) A_r™sB_r™yc M™2p r-m+2) cos mf
o m m m m

m=2,3,...

[--]
y . ; _Im s _-m ¢ M2 ; _-m+ .
‘ +m'_)::.‘_,2’§.A.q1r +er + Cmr +Dmr 2) sinm 8 (3.5)

By considering the symmetry of the problem two solutions, one, using the

B B L S

e an - — aa _am .a —
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subscript b, for the plate and one using the subscript a, for the inclusion
are formulated from Eq. (3.5)

For the plate:

2 2
wb = Aob—{— Bob Anr 4 Cob r + Dob r inr

«©
+ 2 (Amb 4 me r My Cmb rm+2+ D 4 r'm+2) cosm§
m=2,4,.-. (3. 6)

For the inclusion:

_ 2 2 - m m+2
w, = Aoa+ Coa r + Doa r Anr +m§2,4,(.“§ .mar + Cmar )008??:97)

Here Aoa’ Aob to Doa’ Dob and Ama’ Amb toD_ ., Dmb represent the

a
unknown coefficients to be determined from the boundary conditions. At
the inclusion interface (r=R) there are four boundary conditions to con-

tend with, They are

M), = (M) (Q), = (Q))y
ow W
= . a  _ b
Ya® W%t Tor T or . (3. 8)
where
2 2 M
= : = oW 1l 3w, 1w T 7
M _ = radial moment = °Dr_—2_-+"( 5 242 BrH(l-v)DJ
* or aM_, T o8
£ ) 8
Q.= Kirchoff shear force = O_+ Y

Qr = vertical shear force

Mre = twisting moment

Substituting Eqs. (3.6) and (3. 7), into (3. 8) one obtains the following four

equations by combining the terms not under the summation =ig=.

B -
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Da' 2 Coa(1+va)+ Doa(3+ 24nR)+ Doa\)a(l+2£n R) + )

Mra 1 Bob :
(1I-v D I Db ,-——2“ (\’l)ml)+ 2 Cnl)(“-vb) + g
H3 Iy R ‘
M., i
Dyp (342 &nR)+ D_, v (142 4nR) i-—“—_vp-ﬁ ] (3. 9)
4Dna 4 Dob
Da R = Db -'—Rr— (3. 10)
A _+GC_R*+D R®°inR=A _.+B. gnR+C .R%
oa oa oa ob ob ob ;
2 3 q
+ Dob R™ 2nk (3.11)
Bob
2R Coa-f- Doa(R+2R£nR)= R + 2RC0b+ Dob(R+ 2R 4nR) (3.12)

These four equations may be solved for Ap Bope Cop 2nd Db

———

Dob il Doa

Bob = 0'1 Coa+ aZ Doa.+ a3

Cob =0y Coa+ 05 Doa+ &g
Aob = Q, A0a+ ag C°a+ ag D°a+ %0 (3. 13)
where
2
a; = R [(1+vb) - n(1+va)]
a, = aq[(1+2 gnR)/2]
2 1 M ;
a, = -Rz/z ,-"i‘_ - b
3 (1--\)a)Da (1--\)b)Db J
ay = [n(1+va)+(1-—vb)]/2
a5 = [(1+24nR)/4] [(1-v,)- n(l-v )]
2

- [
a6 - a3l 'ZR
Qn = 1.0

2 2

ag = [RZ LnR(1-7m)- 4nR a, - R? as] (3. 14)

_ 2
alo = -4nR a3’ R a6 y

with

r = D,/D,
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Eqgs.

Combining the terms under the summation sign in the substitution of

(3. 6) and (3. 7) into (3. 8) the following four equations in six unknowns

arc obtained

+A, D

mb

@]
:

A A t A A_A A._C
m 6

1Pma F 82 Cma” 2380t A4 Bt A5 Cp
BA__+B,C =B;A +R,B _ +B C_ +B D

C,A +C,C =C, A +C + C

1" ma 2 "ma 3" ' mb 4me Cm+c

5 b 6 Dmb

AnatD2C," D3 At Dy Brpt D5 G+ Dy Dy (3. 15)

Coefficients An’ Bn, Cn, and Dn are given in the appendix B. One

obtains the following expressions for Cob’ Pmb’ Bmb and A_ . from these
equations
c:mb = B1 Ama + B2 Cma
Dmb = B3 Ama+ B4 Cma
me = 85 Ama + a6 Cma
Amb =87 Ama * B8 Cma (3.16)
where
1-v, + n (3+v )
b a
By =0 By = %
2m-2
nR
Bs = -r—;f—- [l-vb - n(l-v,) ]
2m
By = —E—a—(-@-l—)[(l-vb) - n(l-va) ]
2m
gy = 2 11y - n(1-v))]
2m+2
R -2m
B¢ = [-1+8, + R " (1-m) 8]
3+'v'b -~ 'n(l"\)a)
Bg = i
R%(m+1)
ﬁ8 i [1+v6;- n (l+va)] (3.17)

A4 A e
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Then Eq. (3.6) can be written as

[- -]
= >
b glea+ §2Coa+ g3Doa+ §4+n;:.2 4 ,,f§5Ama+ §6Cma) cos m@
(3. 18)
where:
E. = €, = + dnr 4+ 2
SpT O ST agTaprarta,r
E. = + J + r2+ 2 2
5 = Qgt ay dnrtag n Ainr
E, =a,pt 0, nT + @ r2
4 10 3 6
- m -m m+2 -m+2
55-B7r +85r +81r +B3r
_ m -m m+2 -m+2 (3. 19)
g6-58r +s6r +Bzr +B4r

The condition that the outer edges of the plate be simply supported requires

that
atx=taandy=2%hb:

azwb Bzwb MTb
w, =0andM_= -D, (—=—+ v ) - =
b n b b atZ l-vb

2
where n and t denote normal and tangential directions at the plate boundary

0 (3. 20)
on

seapectively.
Substitution of Eq. (3. 18) into the outer edge boundary conditions re-

sults in an infinite number of equations for the infinite number of unknown

PR

coefficients., As in the case of the first problem, the least squares boundary

point matching method w15 employed. Namely the simply supported boundary

conditions are satisfied at selected points, along the plate outer boundaries.
In urdcr to present som e numerical results, Ti and Té are chosen as

150°F and 100°F respectively while the plate thickness is -4%. Forty

points are taken along the outer boundaries of the plate (Fig. 2.2) and

cight terme are considered in the series. Thus eighty equations in eleven

unknowns are generated. Solving these in the least squares sense yields

et g
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the necessary coefficients, 1

In figures 3.2 and 3. 3 the deflection function -—‘%—- is presented as a

a
function of X = =, The ratio of the inclusion rigidity to plate rigidity, J
D
r= -I_)i , is chosen as . 1 and 10 respectively and the prescribed value of
b M ;
Ta !

the ratio of the thermal moments p = =, is 1,0, Each figure

M
Tb
presents the variation of the deflection function for three different inclusion

sizes % = .25, .50, and . 75. In Fig. 3.2 the inclusion is less rigid than

the plate and it is seen that the larger inclusion increases the plate

.

deflection. However, in Fig. 3. 3, the inclusion is more rigid than the plate

and increasing the inclusion sizc decreases the plate deflection,

i In Figs. (3. 4) and (3. 5) the deflection function is presented on the

i i perimeter of the inclusion. The rigidity, thermal moment and Poisson
’ ratio and inclusion size are held constant while the deflection at various }
R : radii 1is plotted. A comparison of these two figures indicates that the
: increase in the rigidity of the inclusion, cause: lower deflection values at
, . corresponding radii.
A summary of the effect of the inclusion rigidity is presented in Fig.

3.6. In this figure for a prescribed inclusion size the deflection function
variation along the x-axis is shown as a function of the inclusion plate

rigidity ratio n. The rigidity may be increased to the limit of the rigid

inclusion where the deflection is constant across the inclusion surface,
At the other extreme, the rigidity is lowered to the point where the inclusion
gives no support and acts as a circular hole.

Finally in Fig. 3.7 the effect of the ratio of thermal moment ¢ on the
variation of the plite deflection is displayed. For a given inclusion size,

constant elastic properties (Ea, Eb’ v, and \)b), the increase in the ratio

o e A . —ainch — i, adesibochem stk Sttt -
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p which s directly related (o the ratio of thermal expansion coefflicients 1

«t . . -
-— , causes larger values in the deflection function, |

)
b

— e n = s ——
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APPENDIX A
THE LEAST SQUARE BOUNDARY POINT MATCHING METHOD

Given a linear function of the variables g; defined by
N

flx) =2 ag(x) (A-1)
i=1

where the g; may be functions of any finitec number of coordinates (xk).

It is desired to determine the coefficients a, such that f(xi) satisfies
some specified conditions on some contour L. If L is not a coordinate
linc of the coordinate system in which the x, are defined, it is presently
impossible to do this exactly. However, if at some finite number M of
points on L the specified conditions are satisfied, the following system

of equations results.

- - - N -
] . i [
Fm Lf(xk)_! N Fm Ll__:z; aigi (xk) J- bm (A-2)

where (m = 1,...,M. If F is a linear cperator

N
b =i=El a.F (g (x)) m=1,...,M) (A-3)

Then if M= N the system is determined. However if M>N consider a

solution to

M I. N .}2
E:l I'b -i§1 aF (g (x)) | =d (A-4)

where d is minimized with respect to the desired solution vector a..

That is

M N
min 2 [bm -_f:
ai m=1 =

2
a,F  (g(x)]

1

It can be shown that if

a. = a
1 -~

F_.(g;(x))=[C]

— T Y T

=t~ tiars
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and b =b then for a to minimize (A-2) for M > N it is necessary that

a be a solution of

[c1ftcra=rci’e

N
e L, A S 1 n e
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Al = [(mz_m3) (l-va)] Rm—3‘n

Ay = [m3(va- 1)+ m2(3+va) + 4m] Rm-l'r, |

Ay = [tmP-m?) (1-y, ) ] R™"

Ag = 0 <m2+m3)(1-vb;]n'm-3

Ag = [n13(vb-l)+ mé (3+Vb)+ 4m] r-1

A6 = [m3(l-vb) + m2(3+\,b) - 4m] r-m-1

B, = [m®m) (1-v)]R™?y

B, - [mz(l-va)+m(3+va)+ 2(1+v_ )] R™n i
By = [(1-v) * (m%-m)] R*™"2 :
By = [(1-v) * (m%m) ] ™2 :

B, = [:nz(l-vb) +m(3+vy) + 2(14v, )] R™

B, = [mz(l-vb)+m(-3'\’b)+ 2(L+vp ) JR™T

: C, = rR™
m+2
i C, = R
¢
5 C; = R™
i C, = R'™
9 ‘c
] :
: CS - Rm+2
P
C6 - R-m{-Z
) Dl = mRm-l
D, = (m:2)R™H!

e i P S
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mRm—l 1

mR-rn-l

D. = (m+2)R™H! Y

Dy = (-miz)R"™H!

v v
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