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PREFACE 

This Final Technical Report describes the work performed on Contract 

DAHC15-72-C-0129 on Theoretical Studies of High-Power Infrared Window 

Materials during the period from July 1, 1972 to November 30, 1972.   Two 

previous technical progress reports were prepared under this contract. 

Other publications are listed in the Introduction (Sec. A). 

The work on Theoretical Studies of High-Power Infrared Window Materials 

will continue under Contract DAHC15-73-C-0127. 

Computer analyses, which have been delayed by the change from 6600 to 

7600 computers at the laboratory of Dr. Arnold Karo (consultant from Liver- 

more) are now under way.   The results will be presented in a future report. 

The following consultants are participating in the program at present: 

Dr. Arnold M. Karo, Lawrence Livermore Laboratory, Dr. Alexei A. 

Maradudin, University of California, Irvine, Dr. Douglas L. Mills, University 

of California, Irvine, and Dr. Lu J. Sham, University of California, San Diego. 
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■J- 

in    m  - 



SUMMARY 

ifer 

(a typical value of current interest).   For various types of inclusions, the fre- 
2 

quency dependence ranges from increasing as u; , to independent of to, to 

exponentially decreasing with oo.   The temperature dependence ranges from 

The recently observed exponential frequency dependence of the inirared 

absorption coefficient ß in NaCl- and CaF2"structure crystals is explained in 

terms of multiphonon absorption processes.   A calculation gives the correct j| 

frequency dependence and approximate magnitude of ß and predicts the tem- 

perature dependence, which should be observable.   Use of the central-limit 

theorem reduces the mathematical complexity of the analysis sufficiently to 

yield a simple closed-form approximation to ß.   In the exponential region, 

the difference processes, in which some thermally excited phonons are anni- 

hilated, are negligible with respect to the summation processes.  Terms 

higher than second order in the perturbation expansion are found to be neg- 

ligible for small n (small number of phonons created).   An explanation in- 

volving finite phonon lifetimes is proposed to explain the fact that the alkali 

halides show less structure in the ß-u) curves than do the semiconductor 

crystals.   Preliminary results on a new approach, using an anharmonic 

Einstein model, also exhibit the exponential frequency behavior.  In addition, | 

-2 i 
ß ~ CO     is predicted for "square-well" type impurities. | 

Small amounts of macroscopic inclusions in or on the surface of a non- J 
■? 

-7-8 absorbing host crystal, in some cases a fractional volume of ~10    to 10   , | 

-4    -l i can give rise to a value of the optical absorption coefficient ß of 10    cm % 

AM 



independent of T to increasing as T^ in the high-temperature limit, where 

p 2 2 - 4 typically.   Simple expressions for the absorption cross section are 

derived for various cases of practical interest.   The cross sections are used 

to derive expressions for ß for the four cases of large inclusions of strong 

and weak absorbers and of small inclusions of dielectric and metallic particles. 

A result of general interest in the theory of scattering is that the absorp- 
2 

tion cross section of large spheres is equal to (1 -RT )ira , where R i   is the 
o 

reflection coefficient for normal incidence, rather than (l-(R))ira , where 

<R) is the geometric-optics average reflection over the illuminated hemisphere. 

Material failure resulting from local heating of macroscopic inclusions is a far 

greater problem in high-intensity, short-pulse systems than in low-intensity 

long-pulse or cw systems having equal average intensity.  Microsecond pulses 
2 

with energy densities as low as ~5J/cm   (excluding Bloembergen field enhance- 

ment) can cause material failure. 

Experimental curves of j8 vsw, collected from the literature, are pre- 

sented for a number of materials.   Results on multiphonon calculations, the 

need for emissivity measurements, effects of pressure on the operation of 

infrared windows, effects of interband and deep-level transitions on infrared 
2 

absorption, and a discussion of the previously observed T   linewidth dependence 

for NaCl, which were presented in the two previous technical progress reports, 

are summarized briefly in the Introduction. 

■0 
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Sec. A 

A.  IOTRODUCTION 

In the first technical progress report    the program was outlined, the 

problems and objectives were defined, and the relevance to other Department 

of Defense programs was discussed.   A highly simplified discussion of the 

theory of infrared absorption was given as an introduction for investigators in 

l elated fields.   Preliminary calculations of the values of the absorption coef- 

ficient ß for the two-phonon and the general n-phonon summation intrinsic 

processes provided an overview of the theoretical problem and established the 

method of calculation and the types of approximations necessary to render the 

mathematics tractable.   Methods of estimating the values of the anharmonic 

coefficients, the higher-order terms in the dipole-moment expansion, and 

the joint densities of states were established.   The exponential decay of ß as 

a function of frequency was explained in terms of multiphonon absorption pro- 

cesses.   It was suggested that two-phonon summation processes in materials 

having the NaCl structure are small unless one phonon is optical and the other 

is acoustical.   The latter result afforded a tentative explanation of the previously 
2 

observed T    dependence of the resonance linewidth of NaCl and the small 

number of two-phonon summation peaks in various alkali halides. 

It was pointed out that currently known transmission and calorimetric 

measurements cannot be used to obtain values of ß in a crucial range of fre- 

quencies, and that emissivity measurements should be capable of providing the . 

needed values of ß in the full range of interest.   Pursuit of such experimental 

programs would contribute substantially to the information presently needed for 

Department of Defense laser programs.    Two effects of pressure on the operation 
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of windows were considered.   First, the deformation resulting from a static 

pressure differential between the two faces of the window can distort the laser 

beam or fracture the window.   Second, the window-material figures of merit 

for thermally induced optical distortion that were previously developed are 

changed when the thiclaiess required to withstand the pressure is taken into 

consideration. 

It was pointed out that several references on inter-valence-band transi- 

tions and transitions involving deep levels in the band gap for semiconductor 

materials suggested that at impurity concentrations so low that the usual free- 

carrier absorption is not detectable, transitions of holes between two different 

valence bands apparently can give rise to broad absorption bands that can be 

-1 2 strong (ß = 0.3 cm    in one case,   for example) in the 2-6Jim region.  Transi- 

tions of electrons between different regions of the conduction band where the 

densities of states are high also should give rise to observable values of ß. 

3 
In the second technical progress report,   the results of a Green's function 

analysis and additional ordinary perturbation-theory analyses of the n-phonon 

summation process were presented.   A detailed analysis of the multiphonon 

absorption was presented and applied to several alkali halides.   It was sug- 

gested that a possible explanation of the fact that the ß - Cü curves of the alkali 

halides and alkaline-earth fluorides show less structure than those of the semi- 

conductor materials is that the greater anharmonicity of the NaCl-structure 

crystals could give rise to such short lifetimes of the zone-boundary phonons 

that the peaks are broadened to the point of essentially complete overlap. 

J 
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Sec. A 

The contributions to the n-phonon absorption coefficient ß   from higher- 

order processes with n phonons in the final state were calculated for a number 

of processes and classes of processes.   Terms containing self-energy diagrams 

within the final-state- or fundamental-phonon lines simply renormalize the 

phonons.  Diagrams having one intermediate phonon and one 3-phonon vertex 

give the leading contributions to ß of the higher-order processes considered. 

In NaCl at 300 K, the contributions to ß~ from the higher-order process was 

an order of magnitude smaller than that of the single-vertex contribution. It was 

also shown that higher-order processes will dominate the single-vertex diagram 

at some larger value of n. A complete report of pressure-induced optical dis- 

tortion and the effects of pressure on the figures of merit of candidate materials 

was given. 

S < 
In the present report, new results on the multiphonon infrared absorption 

are reported (SecTB), a theory of infrared absorption by macroscopic inclusions 

in crystals is presented (Sec.~C), experimental curves of ß vs w, collected from 

the literature, are included (Sec* D), and a list of references to previous multi- 

phonon calculations is given ^hrSec.E. 
A- 

In addition to this final technical reporr, the following publications and 

conference presentations were prepared under the contract: 

II    liTll I     i i    ~  ^ri^Bl 



Sec. A 

M, Sparks, "Recent Developments in High-Power Infrared Window Research," 

4    ASTM Damage in Laser Materials Symposium, Boulder, Colorado, June 14-15, 

1972. 

M. Sparks and M. Cottis, "Pressure-Induced Optical Distortion in Infrared 

Windows," Conference on High Power Infrared Laser Window Materials, 

Hyannis, Massachusetts, Oct. 30-Nov. 1, 1972; proceedings to be published by 

Air Force Cambridge Research Laboratories, Cambridge, Massachusetts. 

M. Sparks and L. J. Sham, "Theory of Multiphonon Infrared Absorption," Con- 

ference on High Power Infrared Laser Window Materials, Hyannis, Massachusetts, 

Oct. 30-Nov. 1, 1972; proceedings to be published by Air Force Cambridge Re- 

search Laboratories, Cambridge, Massachusetts. 

M. Sparks and M. Cottis, "Pressure-Induced Optical Distortion in Laser Windows," 

to be published J. Appl. Phys. January 1973. 

M. Spares and L. J. Sham, "Exponential Frequency Dependence of Multiphonon- 

Summation Infrared Absorption," Solid State Commun. U, 1451 (1972). 

M. Sparks, "Theory of fiifrared Absorption by Macroscopic Inclusion in Crystals," 

to be published. 

A. Karo, M. Sparks, and L. J. Sham, "Numerical Analysis of Infrared Multi- 

phonon Absorption," in preparation 

Section letters, which are displayed at the top of each page, are not dis- 

played in equation numbers, figure numbers, and table numbers.   Important 

results are denoted by underscored equation numbers. 
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Sec. B 

B.   THEORY OF MULTIPHONON INFRARED ABSORPTION 

The recently observed exponential frequency dependence of the infrared 

absorption coefficient ß in NaCl- and CaF«-structure crystals is explained in 

terms cf multiphonon absorption processes.   A calculation gives the correct 

frequency dependence and approximate magnitude of ß and predicts the tem- 

perature dependence, which should be observable.   In the exponential region, 

the difference processes, in which some thermally excited phonons are annihi- 

lated, are negligible with respect to the summation processes.   The higher- 

order terms in the perturbation expansion are negligible for small n (small 

number of phonons created).   An explanation involving finite phonon lifetimes 

is proposed to explain the fact that the alkali halides show less structure in 

the ß-to curves than do the semiconductor crystals.   Use of the central-limit 

theorem reduces the mathematical complexity of the analysis sufficiently to 

yield a simple closed-form approximation to ß.   Previously obtained results 

that were given in the two preceding reports were outlined briefly in Sec. A. 

^i^^ia^**-**«:.-*- ■ 
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Sec. B 

I. Introduction J 
1 

The availability of high-power infrared lasers has stimulated renewed 

interest in infrared absorption. The intensity I of infrared radiation propaga- 

ting through a solid typically decays according to the Beer law, 1=1« exp (-ßz), 

where ß is the optical absorption coefficient    Materials with very small values 

-4     -1 of ß, say ß ^ 10    cm   , are needed in high-power infrared laser systems 

for such transparent optical components as windows.   Prior to the availability 

of high-power lasers, there was considerable interest in relating the positions 

3a of the multiphonon peaks, chiefly in the two-phonon-summation region     (where 

ß » 1 cm   ), to the phonon dispersion relations.   Current interest is in the 

higher-order phonon regions where ß « 1 cm     and in the numerical value 

of ß, not simply the positions of the multiphonon peaks. 

2 4 An interesting recent result '    is the observation of optical absorption 

coefficients that vary exponentially with frequency 

ß ~ exp (-Aw) (1.1) 

for ß ^ 10 cm"1 in LiF, NaCl, KC1, KBr, MgF2, CaF2, BaF2, SrF2, 

A120,, and BaTiO«.   For example, ß decreases exponentially with frequency 

for over four orders of magnitude change in the value of ß for NaCl as u/uif 

increases from 2.2 to 5.8, where (tif is the fundamental-mode frequency (i. e., 
JL 

the frequency of the transverse optical phonon with k^O).   See the points and 

crosses in Fig. 1. 

The exponential behavior naturally suggests the form ß ~exp(-nw/kßT), 

where to is the photon frequency and the other symbols have their standard 

meanings.   However, the room-temperature values of A in (1.1) differ by 

Mk 
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Fig. 1. Comparison of experimental and theoretical results. 
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Sec. B 

factors of *- 2 - 4 from the value of ft / 300 kß.   Furthermore, the temperature 

dependence of 0,   although not well established at present, apparently is less 

strong than e3qp(-ftüJ/k_T). 

Of the many intrinsic and extrinsic sources of absorption, the simple 

n-phonon summation contributions to ß give rise to a frequency dependence 

of ß that is very nearly exponential over a large range of ß, including the 

experimental range,   hi the n-phonon summation process, shown in Fig. 2(a), 

a photon is annihilated, a virtual fundamental phonon is created, the fundamental 

phonon is annihilated, and n phonons are created.   Classically, the electromag- 

netic field drives the fundamental mode (off resonance, in general), whose re- 

laxation frequency is determined by the process of splitting into n other lattice- 

vibrational modes. 

By energy conservation, ftco is equal to the sum of the energies of the n 

final-state phonons.   Thus, the n-phonon summation process cannot contribute 

to ß when w is greater than n times the greatest phonon frequency w     . 

Furthermore, for w « nw.    , the contribution ß   of the n-phonon summation top "n r 

process to ß is small because energy conservation forces the wavevectors of 
2 

the final-state phonons to be small, and the factors k   in the densities of states 

are small.   Thus, ß   has a peak at a frequency below no)     .   As n increases, 

the peak shifts to higher frequencies and decreases in magnitude (since the 

higher-order processes contribute less to the value of ß).   This behavior of 

the ßn is illustrated by the light curves in Fig. 1 and is discussed in detail in 

Sec. IV.   The heavy curve, which is the sum of the individual ß , shows the 

near-exponential behavior of /3. 

10 
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VVW 

Cs) 

WW 4 

(b) 

V\AA 

(c) (d) 

Fig. 2.      Various n-phonon processes: (a) single-vertex process; 

(b) two-vertex process; (c) (n-l)-vertex process; (d) process with 

self-energy contributions to several phonons.   Wavy lines are 

photons and straight lines are phonons. 

11 
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Sec. B 

It will be shown (Sec. VI) that for to > w       at room temperature, the 

contribution to ß from the confluence processes (Fig. 3 b and c) is negligible 

with respect to that from the splitting process (Fig. 3 a).  Assumptions and ap- 

proximations made in the analysis are discussed in Sec. II. 

In Sec. II, a general expression for the n    order absorption coefficient 

ß   is derived.   In Sec. Ill this expression is evaluated approximately for n = 2 

to obtain a closed-form approximation for ß- resulting from the splitting of the 

fundamental phonon into one longitudinal optical and one longitudinal acoustical 

mode.  In Sec. IV, the central-limit theorem is used to reduce the problem of 

evaluating a multiple integral over phonon coordinates Q. • *' 0   to that of 

evaluating integrals over a single phor on coordinate Q. Further approximations 

are made in order to obtain numerical values for fl . m Sec. V the central- n 
limit approximation is discussed.   In Sec. VI the effect of the confluence pro- 

cesses on ß is shown to be negligible.   In Sec. VII, the effect of terms other 

than the (n+1) -order interaction V*n     ' and K    axe discussed. In Sec. VIII, n 

terms higher than second order in the perturbation expansion are shown to be 

negligible for small n. Preliminary results of applying the Liouville equation 

for the classical distribution function of an array cf anharmonic Einstein oscil- 

lators to the infrared absorption problem are given in Sec. IX. 

12 
■-M^ 
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(a) 

(b) 

(0 

Fig. 3.  Splitting process (a) and confluence processes (b) and (c). 

13 
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(Fig. 2 a).   It is not difficult to show, by a Green's function analysis of the dielec- 

tric constant for example, that the value ß   of ß in the n-phonon region for 

materials with the NaCl or ZnS structure is    [with 2T(qj j', 0) in Cowley's 

notation written as T ] nJ 

4ffNe* f n 
^n = cm.n.fl 72 2      ' (2A) 

((J-uf) + (wfrn) 
:mrnr 

where N is the number of unit cells, O is the volume of the crystal, e* is the 

Born effective charge, c is the velocity of light, m   is the reduced mass of the 

two ion types, n   is the index of refraction, co, is the fundamental mode fre- 

quency, and r   is the energy relaxation frequency of the fundamental mode. 

The real part of the self energy is not included in (2.1) as it is not of interest 

here; the experimentally determined phonon frequencies will be used. 

In the analysis of T , the following assumptions and approximations 

are made: 

1) Standard second-order perturbation theory is used. 

2) The anharmonic-potential interaction, and not the Lax-Burstein-Born 
7 

higher-order-moment mechanism,   is considered. 

3) In the anharmonic interaction, only the short-range repulsive force 

of nearest neighbors is included. 

4) The central-force approximation is made. 

I 

IL Analysis of Absorption Coefficient ß i 

Consider the anharmonic-potential induced n-phonon summation process f 

14 / 
.f 
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t t 
X    =     £ V A(K)afan, • • • an     + cc   . (2,3) 

Ql",Qn 1"    n        ~ 

15 
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5) Only NaCl-structure materials are considered.   Materials having \ 
I 

the cubic ZnS structure will be considered in a future report. I 
i 
I 

6) The finite lifetimes of the interacting phonons are neglected except in | 
1 

plausibility arguments concerning the sharpness of multiphonon absorption f 
I 

peaks. I 

7) The central-limit theorem is used to reduce the multiple sum over i 
I 

phonon coordinates Q. • • • 0   to single sums over the coordinates Q of one 1 
■I 

phonon.   In the present analysis, considerable care is required in applying this f 
! 

approximation, as discussed in Sees. V and VI. | 

8) In Sees. Ill and IV, approximations to the density of phonon states 1 

1 
g(w), the occupation numbers nQ, and certain angle factors U are made. \ 

| 

The value of T   can be calculated from the standard perturbation-theory J 

8 ^ expression for the n-Boson-summation relaxation frequency f 
-r 
f 

r;■=^n:Q^••QJV'•Q.•'•Qn|2A(K",6<S">::n• C-2> J 
k 

where K„ = L + k,+'"+k   + K., k. is the wavevector of the i    phonon, 1 «n     ~1    ~2 ~n     ~ j    ~i r * j 

K. is a reciprocal lattice vector, A is the Kronecker delta, to  = w -co«  - • • • ecn  , 3 ~J n mi ^n I 
■'S 

Q. is defined as the set of numbers k. and b., where b. is the branch of the dis- I i ~i 1 1 j 

persion relation, n^Mnj+lMiu + 1) ••• (nn+l)/(n    +1), n. = n(Q.) 

I =[exp(wQ./toT)-l]"1, nw = [expiui/co^-l]"1, a>T = I^T/h = 3.928 x 1013 

|, rad/sec at 300 K,  and the V's are the coefficients in the scattering Hamiltonian 
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In (2.3), f denotes the fundamental mode, cc denotes hermitian conjugate, and 

the a and a are phonon creation and annihilation operators normalized to unit 

commutators. 

f-li 
For the Hamiltonian, up to n    order phonon processes, take the central- 

force potential 

l /TVI.I\ N  N_1 n+1     n 
K = T-AVT V £    E   (R,    - 6.    )     + £ 

^^ £=1 m=l     Zm     *m p=2   P Am 

where R,    is the length of the vector from ion m to ion I, v*     's d'     'V(R,   )/ im 
(n+D 

'im' 

dR^m
v       evaluated at equilibrium (R«    = Ö.   ), A labels the cell (lighter ions, 

for example) and m labels the neighboring ions.  No factor of 1/2 to avoid double 

counting is needed for this labeling.  The vector amplitude R»    , whose equilibrium 

value is 6.    , can be expanded in terms of displacements u. and u      as 

hmB  |&jt_&m|= |5iO-5mO+Äi"Äm|S  \&lm+hm\   ' 

where R-Q and R   Q are the equilibrium values of the positions R. and R     of 

the &     and m    ions and 

~&m    ~m ~ ~10    ~m0   ' 

Äi = Ä<5io>' i = I, m, u,     = u „ - u 
~j£m     ~b     ~m 

The amplitude R.     can be written as 

1/2 

=6    +6    ♦ u,     + m       m    ~*m (2.5) 

16 
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Thus 

R-     - 6     =6     • u.     + Am       m m     ~*m (2.6) 

Dropping the p = 1 • • • n terms in (2.4) and the higher-order terms in (2.6) and 

substituting (2.6) into (2.4) gives 

Kn ~   Cn+TTTV im     m    ^m (2.7) 

When all terms from (2.4) and (2.6) are retained, the angle factor 6   • u,    in 

(2.7) [and a   in (2.16)] is changed, as discussed in Sec. VII. 

9 
The usual expansion of the displacement is 

/ ft \1/2 

»T(5l0) =  I   (2NmT0)      )      ÄTQAQ 

ik • R.n 
(2.8) 

where 

A^ = *kb = *kb + a- 
t 

kb 

and T = 1 or 2 denotes the type of ion (Na or Cl, for example). The polarization 

vectors u Q obey the orthonormalization relations 

£ u_1t_* • u_1u, = Ö.., ~rkb      ~rkb bb 
T 

S(üTQ*.X.)(UT,Q.Xj)=       öy      ÖTT, 

(2.9a) 

(2.9b) 

where x, is a unit vector along a unit-cube axis.   These are simply the ortho- 

normality relations for the rows and columns of the six-by-six diagonalizing 

17 
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matrix (for the eigenfrequency problem) whose columns are the six vectors 

(u>r), JJ<o^» where T = > and T =< denote the greater and lesser masses, 

respectively. 

hi Ref. 9, (2.8) was written [with x = T, j^b, (b»k) = Q» and 

u(£x) s uT<Ri0>]as 

\ lk • R 
,      ,        \       efrlkMA_< inyoQ MR*n)=2   /öTf^TT- )      e(T I kb) An e''*'    ~*° 

In this expression, the equilibrium ion position R.0 appears in the exponent, in 

contrast to (2.8) where R.n = R.n + B. (with B. as one of the two basis vectors 

specifying the ion positions in a cell) appears in the exponent.   The relation be- 

tween these two expressions is 

~TO 
= £^Tl&k) ' for small mass, 

ik -B 
UTQ = e(T|kb)e ~   r   , for large mass, 

where it is assumed that the small masses are at the lattice sites (B. - 0) and 

the large masses have B0 = B = a„   (x + y + z) for the NaCl structure. Here A 

denotes a unit vector and a     is the near neighbor equilibrium spacing. 

For the fundamental mode 

r  / »    \1/2 

»Tf ■("1>    (57/      üf ' <2'10a> 

where mr is the reduced mass (m "   = m^   + m^   ).   In the limit kL « 1, 

where L is of the order of the unit cell length, 

t, 

\ 

18 J :J 
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T      /m     \1/2 

Htkb = (-!)      ( ny )       urkb    ' 

1/2 
/ mT \ . 

~Tkb *"   \ m< + m^,  /       uTkb   ' 

(optical) 

(acoustical) 

(2.10b) 

(2.10c) 

Notice that (2.10a) and (2.8) with Af ^ 0 and all other AQ = 0 (only 

fundamental phonons present) give the well known relations 

uT(R.) - u_,(R. + 6    ) ~ 1/y/lT 

u,(R. )/u,. (R. + Ö    ) ~ -ni ,/nu 

I 

for T £ T '. 

Substituting (2.8)-(2.10a) into (2.7) and using 

h 
Z   exp[i(Jki+...+kn)-R£0] =  NA(Kf; 

A — 1 

and 

Aim B  Ä£ " um 5 "<<£* >" S><5io + 6m> 

l1/2 

Q    \  *«"«<«"Q 
/ f,        \V2 *JS ' £*o 

where 

m 

üm(Q) "   ä<Q  -J  nT;    *>Q 
ik • 6„. 

e 
(2.11) 

>** 
19 
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gives (2.3) with 

(jft)!*"^!), 
(m-D 

fQl",Qn T^"1) ,    ,,^2   mn/2 1/2 

/\ ä 

x L (6    -u,) U   (Q,)---U   (0 ), v m     f    mx u' mx TT 
(2.12) 

m 

where Um(Q) ' 6
m * Ü JQ)'   In general, m     ~m 

6    • U   ,(Q) s U   ,(Q), 
m m 

(2.12a) 

The factor (n+1) in (2.12) arises from the n+1 ways of choosing a, from the 

AQ. in (2.7) and (2.8).   Note that for the fundamental mode, (2.11) and (2.10a) 

give 

am«>-(^-)   5, • (2.12b) 

The following model potential     is used: V = E exp(-R.   /pa    ) for near 

est neighbors and zero otherwise.   Here a     is the equilibrium near-neighbor 

distance.   The Coulomb potential is added to this repulsive potential in order to 

3 2/ determine the values of p and of E = 3exp(l/p)Bann p /(l - 2p), where B is 

the bulk modulus, but is not included in the anharmonic potential.   This is a rea- 

sonable approximation for 2 < n ^ 20, since the higher-order derivatives of 

the rapidly varying repulsive potential are much greater than those of the slowly 

10 varying Coulomb potential.   This is easily seen for a repulsive potential <~ 1/R. .' 

and a Coulomb potential ~1/Rjj» for which the n    derivatives contain factors of 

magnitude (2)(3) • • • (n+1) and (10)(11)• • • (n+9), respectively. 

20 / 
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The value of V*     ' for this model potential is 

/ . i\ 3Ba     p , ,(n+l) _   . nn *_ 1 
(l-2p) nn 

nn F 

(2.13) 

From (2.12b) 

1/2   Ä 
Um(f)= (m</mr)        6m •   Uf (2.14) 

Substituting (2.13) and (2.14) into (2.12) gives 

Ba nn VfQ1-Qn
=±-Ä   %   n,N*<n-l) 

1 

1/2 

Ql Qn 

n/2 

2m ü)a r      nn 
r * 

2p m< nn 

(2.15) 

where 

Of 
m=i 

(2.16) 

Substituting (2.15) into (2.2) gives 

r   = y   L     , n        n     n (2.17) 

21 
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r 

where 

X. = -    9ffP        1 
Ba nn 

(l-2p) 2   nT 
_h  

ma) a r     nn, 2p2nva  2 

< nn 

x   [l-exp(-fttd/kRT)] BJ 

and 

L   = J_ r    n(t0Ql)+ * 
NQi~~%~ 

1    s     n((tfQn)+1 

I I' 
Ql "Qn (2.18) 

Substituting (2.17) into (2.1) gives, for co2 » o> 2 + T2 

f n  ' 

ß    =/fD   Kw    5      1 1 
n     v 2    p       mx  n. +1  ~T^ T

1
— (co     D )  £     , 

-co' co*n7      "*   e       n (2.19) 

where 

v-1 
(n^ + 1)      =1 -exp(-nco/knT) BJ 

D   =  —L_    / 6ffP 

K s 
B2e*2a    cu.      nn   f 

I—2 r » ficm    n cc 
r    r   mx 

De5Tm 
nn     <  mx 

22 / 
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and w     , which cancels out of (2.19), was introduced for later convenience. 

From (2.18) and (2.16), 

6        6 n(wQl)+l 

"=ii ,&. (6">-u<)(6™- • -^ * $ -*£- u-«.)o--«i 

x •••x  4T   £ N   Q vn 

n(üJQn)+1 

CO 
Qn 

NA(Kn)ö(co-«Qi 

U   (Q ) U  . (0 ) 

""Qn»   • 
(2.20) 

It can be shown that ß   is independent of the direction of uf for the NaCl 

structure.   The proof involves using 

and 

U   (b.,-k.) =  U   (b.,k.) nr i' ~i7 mv i'~i7 

U   (Q.) = -U    (Q.)    , mv n7 -nr n7    ' 

(2.21) 

(2.22) 

where U_m(Q*) is obtained from (2.11) and (2.12a) by replacing 6     by -&• 

These results (2.21) and (2.22), which follow directly from (2.11) and (2.12a), 

are used in (2.20), the dummy indices in the sums over the components of the 

wavevectors are relabeled, and the invariance of tüQ. to the symmetry operations 

of the cubic crystal are used to complete the proof. 

Since the value of j3  is independent of direction of üf , we choose 

uf  =   Xj   , (2.23) 

where x, is a unit vector along a unit-cube axis.  Then, only the two terms with 

6     = ± a    xt in (2.16) are nonvanishing: ~m nn   1      v       ' 6 

%=  Ux<Ql)"-Ux<Qn>-U-x<Ql)-"U-x<Qn> (2.24) 

23 
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III.  Closed-Form Approximation to /L 

For n = 2 , (2.24) gives 

«2  = u 
<Q2x 

x     I   u 
<Q2x 

u 
«^x 

-     P<u e
iann<lx\ 

vm>   U>QjXe J 

Jm>   u>Q2xe I 

m - -ia    v 
*   u_     e    ^ 

x     I   u 
<Q2x 

m>    >Q2x 

J m>   U>Q x 
*annklx 

(3.1) 

where subscript x denotes the x. component, and wavevector conservation, 

k,   = - kj , has been used.   Combining terms in (3.1) and using 

~T-kb      ~Tkb 

gives 

°2 = 21 ^ (u<kibixU>kiV'u>VixU<V2x) sin1c* 

From (2.18) with n = 2 

r         1        -           n(wk1b1)+l       n(wkb )+i 
£2 = TT      L  — 

*lblb2 Vl ^ 1"2 

a nn 

(3.2) 

«2\    Meo-c^-«^)   . (3.3) 

24 
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The value of a2 tends to be small in a number of cases.  First, for both 

phonons (Q, and Q„) on the same branch, i. e., b. = b2, (3.2) gives the well 

7,11 known selection rule a2 = C; i. e., 

ß2 = 0 , for b. = b2   . (3.4) 

i |2 0 
For k,a     « 1,   I sink,   a     |   ^ (k.   a    )   « 1, and the contribution 

to ß2 is small. 

For the one-dimensional diatomic chain (Ref. 10, p. 176 , for example) 

and for the three-dimensional NaCl structure for k along [ 111], the optical 

and acoustical modes at the zone boundary correspond to standing waves with 

only the lighter and heavier masses, respectively, vibrating: 

ÜT<Q = ° ' ÜT>Q ~ UT>Q   ' acoustical, 
zone edge 

(3.5) 

ÜT<Q  "  UT<Q   ' UT>Q = ° ' optical, 
zone edge   . 

(3.6) 

If both modes in (3.2) obey either (3.5) or (3.6), then a2 = 0.  Even though 

(3.5) and (3.6) are not satisfied exactly for other points in the zone, this result 

suggests that the quasi-selection rule that ft, is small unless one output phonon 

is optical and the other acoustical may hold for NaCl-structure crystals.  The 

validity of this proposed quasi-selection rule, which has several important con- 
3 

sequences, will be examined in detail in a later report. 

The sum L2 in (3.3) can be approximated as follows. Consider the term 

b. = LO and b2 = LA and the term b. = LA and b2 = LO, where LO and LA 

25 
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denote longitudinal optical and longitudinal acoustical, respectively.   Since (3.3) 

is unchanged if b, and t»2 are interchanged, these two terms give the same 

contribution to £~ • 

i      i2 

A factor of 1/3 will be included in the value of | o« |    to account for 

i      i2 

several regions in k space in which | a„ \   is small.   These regions are as 

follows: The factor sink,  a„„ in (3.2) makes the contribution to E-, from the ix. nn I 
i      i2 

volume in k space near the plane k,   = 0 small.     Similarly,   | a2 I   is small 

for all directions when ka     << 1. At the zone edges along [ 1001 axes, nn «>«... 

ka     =if, and the factor sink,  a     in (3.2) is equal to zero. nn ix nn 

i    i2 

In the rest of k space, the value of | a7 \   will be approximated by the 

value 

•' .      ,2 4     m< ! k2 ={    - (3.7) 
■] '   l 'lll.ZB        y     m> 

* 

I at the zone boundary along a [ 111 ] axis.   [ Note that at this symmetry point, 
] 
I which is commonly denoted L, (3.5) and (3.6) give 

U>LO=U<LA=0' u<LO = U>LA = 1- (3'8) 

Since the x component of a unit vector along the [ 111 ] axis is l/ZsT1, the value 

of the square of the u factor in parentheses in (3.2) is 1/9. ] With the factor-of-3 

i       |2 
reduction in I or» |    discussed in the preceding paragraph, and a factor of two 

included for the two choices of b. and b~ discussed above, 

I2        8      m< 
a2\ ' "27   «;•• (3-9) 
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i 

i 

12 The density of longitudinal acoustical states is rather sharply peaked at 

WLA 5  2-7 x 1013rad/sec. (3.10) 

(See Fig. 4.) Thus, cc,   j. will be set equal to the constant co,. . With these 

approximations, (3.3) and (3.9) give 

R    m^    n(OJ     )+l n(to )+l 
E2LL= Tl   m7   -ÖTTT—   TJ  J   -ÖT—  6^1-^"WLA>1       <3-"> > LA k. 1 

for the contribution to E« from the LO and LA modes. Since the summand 

now is a function of «. only, the sum on k. can be replaced by an integral 

over to, 

I    „  *..}j ^     \    dWj 

kl 

where the density of optical states gn(w) is normalized to unity 

dü)g0(w) =  1   . (3.12) 

'0 

Evaluating the trivial integral in (3.11) gives 

27 

t 

o   m< n(w     )+l     n(03-w    )+l f 
S2LL=21irg0

(W-WLA>    —ÜTT co-JrA ' <^JL3) 
> LA LA 

A rough sketch of r2, ,  from (3.13) and (2.17) is shown in Fig. 5 as a dashed 

curve.  It will be argued below that the effect of replacing the delta function 

—  ■j—- * — -— — teM^B^MUMMBMBMia^M 
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w(1013rad/sec) 

Fig. 4. Densities of states for LA and LO phonons in NaCl after 

Raunio and Rolandson (Ret 12). 
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w(1013 rad/sec) 

Fig. 5. Rough estimate of the relaxation frequency r„LL of the 

fundamental mode decaying into LO and LA modes (heavy curve).  The 

effect on T»..   of relaxing the approximation g^w) = Ö (w -ftij.) 

and of allowing the LA and LO phonons to have finite lifetimes is 

illustrated schematically as the solid curve. 

29 
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distribution of LA .nodes by an ((t)-mQ)   distribution is to make T-,,  higher 

and narrower.   Furthermore, the finite lifetimes of the LA and LO output 

phonons are expected to eliminate sharp peaks in r2LL. Thus, r2LL can be 

approximated by the solid curve in Fig. 5. 

The lumerical value of ^LL at £he Pealc of *e s0^d curve in FiS* 5 can 

be obtained by numerical integration of (3.12), using the functional form in the 

figure and the normalization (3.12).   The result is 

^■M
LAL- 1.7xi0-13sec/rad=£3 (3.14) 

LO 

.13 where oc^ = 4.9 x 10    rad/sec.   The peak in the solid curve in Fig. 5 occurs 

J3 at w = 0)T A + u     = 6.3 x 10    rad/sec.   This defines tt    .   From (3.14) 
LA gp SD 

(3.13), and (2.17), 
gP 

and 

fE        \ 2J6     ^     n(a5LA>+1 
1   2LL;mx       «^     m> 

'V 
6Ü LA GO 

gp 

(r9TI)    ■%(£,„)_ 
2LL mx      2     2LL'mx       (i-2pÄ)p 

2.7ir 
2771 l-exp[-(coLA+aj    )/«T] 

ftB2[n((dIA)+l][n(«gp)+l] 

gp7    LO   LA   gp 

LA ;   gp 

^»<»><»IA+Wm)wL0WLAW 

=  1.0 x 10    rad/sec , at 300 K (3.15) 

30 
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13 for the value of T2T ,   at the peak at w 25 6.3 x 10    rad/sec.   In units of 

1013 rad/sec 

"LA = 2'7 ' 

gP 

WLO=4.9, 

WLO+ü)gp=6'3' 

U!T   =   3.93 , 

J2 

at T = 300 K . 

Substituting (T01 T ) = l.Ox 10" rad/sec from (3.15) into (2.1) gives 

(3.16) 

2LL'mx 

1 (09) = 19 cm 
" LLmx 

A comparison of this result with the numerical results currently underway and 

a comparison of the numerical results with experimental results will be given 

in a future report. 

A second approximation to the value of S2LL can ^e 0^tauie^ by approxi- 

mating the Brillouin zone by a sphere of radius k      and selecting linear disper- 

sion relations for the LO and LA branches to match the densities of states. 

For the LA branch, take 

%A = VA(k'kmx)+WA' 

See Fig. 6a.   Then using 

vAH<WA-WA>/kmx 

E«k) 
k 

3N    f 

mx    j, 

mx 
dkr f(k) 

(3.17) 

(3.18) 
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in 

£LA
(W)

 
=  S 6 (ü:] LA 

w) 

gives 

k mx 

rTIÄ 

dkk   ö (w,       - w) 
kLA 

(3.19) 

Using (3.17), the delta function can be written as 

ö(ü,kLA-W)-ö[vA(k-lW)+coA.W].^6(k.kA)f 

where 
W. - Cü W - 03» 

v    s k -  =    — k 
■A       mx vA wA-Ö3A    «« 

Using these last two results and evaluating the integral in (3.19) gives 

'-- 

gLA<u>) = 
3N(co-wA)2 

for w. < to < u>A (3.20) 

=   0  , otherwise . 

For the LO branch, take 

kjjQ 0 mx'       0 
V0S «V<V/lcmx   ' (3.21) 

f 

it 

See Fig. 6a.   The same type of analysis as above gives 

SLO
(W)

 
= 7= 

3N<<tf0-wr 

(w0 - w0r 
for (tiQ < ic < u)_ (3.22) 

=    0 , otherwise. 
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The densities of states in (3.20) and (3.22) are sketched in Fig. 6b.   Formally 

inserting a sine factor [see (3.2)] in (3.9) gives 

0   i2-   8      mNa   . 2V a2 !   " IT  5^ sm Vnn* 

With (3.3), this gives 

8       mNa     3 f1 

27      mc 3 
mx       J, 

mx n(wk. .)+! 
dkk2 LA 

w, CLA 

n(wkL0)+i 

wVin       6(k - kT ) sin2k.a KLO L 1  nn    ' (3.23) 

where w, . .  and 
kLA ma "kLO are given by (3' 17> and <3-21)» respectively, and 

A.   - _    __ 
i-< m    4-/.« 

—   k 
w0+ft,A-w0-(OA   ^ 

Evaluating the integral in (3.23) gives 

y _    8     mNa     <wo + a)A"ü5) n(wk.LA) + l 

Cl    H + wA-Wn-wA)
J 

"0 ' ~A   w0   "V \LA 

nH  LO>+1 

77  sin kT a      , 
"icLO L  nn   ' for w + w   < a, < s   + s 

Ü        A TrwA 

=    0 otherwise 
(3.24) 

Here <\LA and %LO are th* values of u^ and o,        fron, (3.17) and 

(3.21) with k = kL. 
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The maximum value of (3.24), which occurs at W = üJ_ + oc•    (i, e. 

kL = *mx)> is 

8     m< n(wA) + l 

mx m >    (^ + «A-ftVj-«A) w. 

n(ü?0)+l 

13 
where sü^mx3™ was set equal to one formally.   In units of 10    rad/sec, 

(3.25) 

W0 =  WLO =4'9 ' 
wn = "L, = 3-5  • 0       gP 

WA = 2.0   , 03A = 2.8 , 

co0 + coA = 6.9 , ftfc + «A - 6.3. 

Thus 

13 ü)Q + wA  - ü>0 - OJA = 0.6 x 10    rad/sec = 0)^/8.2 

and (3.25) can be written as 

7#3      m<      n(wA)+l      n(w0)+l 

'mx      w LO m. oo to, 
(3.26) 
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In comparing (3.26) with the previous result (3.14), the unmodified curve 

(dashed) in Fig. 5 should be used.   Thus, (3.14) should be multiplied by a factor 

of 1.9, which is the ratio of the peaks of the two curves in Fig. 5.   Then, with 
13 13 

u:0 = ui     and wA = 2.8 x 10    rad/sec and «JJ^ 2.7x 10    rad/sec, the 

value of r      in (3.26) is approximately a factor of 1.5 times larger than the 

corresponding value in (3.14), which is good agreement. 

In the second model [spherical Brillouin zone and tt = f(|k j)], setting 

ÜJ.  = ü). = W-.   corresponds to using the delta function approximation to the 

density of LA states gj. (UJ).  For this second model, it will now be shown 

that the effect of replacing the delta-function approximation to g. A(üJ) by the 

quadratic density (3.20) (with üi. ^ w.) is to reduce the region over which 

T2 IT   is nonzero and increase the maximum value of T„.. . 

Setting ÜA = ccA = «^ (i.e.  «0 - «A - «fl - u>A = ü>0 -W(J = u^/3.5) 

in (3.25) gives 

3 1        m<       n<WLA>+1       n<wcm>+1 

***-&>   ^t   -^7A~   "#- (3'27) 
LO > LA gp 

as the maximum value of (3.24) in the delta-function approximation.   The delta- 

function approximation to (3.24) is sketched as the dashed curve in Fig. 7. The 

corresponding curve for the density gLA(w) in (3.20) is shown as the solid curve. 

This result that the delta-function approximation to r„LI   is nonzero over a 

larger region is surprising in view of the result in Sec. IV that T2LL is a convolu- 

tion of the two densities gj. and g,Q (weighted appropriately).   Recall that the 
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V2LL 

w(1013rad/sec) 

Fig. 7. Relaxation frequency T2LL from the spherical-Brillouin-zone 

approximation (dashed line).  Making the delta function approximation to 

g.i(u)) gives the solid curve. 
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length of the nonzero region of convolved functions is the sum of the lengths 

of the nonzero regions of the individual functions. The difference in these two 

results arises from the fact that wavevector conservation was neglected in 

deriving the convolution result. 

This difference can be understood in terms of the schematic illustrations 

in Fig. 8.   The dispersion curves for the LO and LA modes are shown (for a 

spherical Brillouin zone) at the bottom of each section (a) • • • (d) of the figure. 

The bars at the top of each section indicate the nonzero regions of r2LL (i. e., 

the region of u> for which w = CO j, + co y~ for some pair of modes.  The bars 

to the left are for the case of kr. = k.Q, and those to the right are for no wave- 

vector conservation.   In going from Fig. 8c [for which g. Aw)= 6 (co - oo. . )] 

to Fig. &b [for which gLA(W) is given by (3.20)], the left-hand bar decreases 

in length while the right-hand bar increases. 

38 

 — ■ m—mm 



Sec. B 

(a) (b) (c) (d) 

Fig. 8.  Schematic illustration of regions for which the two-phonon- 

summation process with W = WJ.+üJL0 can conserve energy.  The bars 

at the top left of each figure show this region for the case in which k is 

conserved, and those to the right are for no k conservation.   The model 

dispersion curves for the four cases of interest are shown in the bottom 

portions of the figures. 

1 
si 
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IV. Closed-Form Approximation to ß 

The value of E in (2.18) for general n will be approximated by using the 

central-limit theorem as follows: First, wavevector conservation will be neg- 

lected by formally setting 

NA(K   ) = 1 . (4.1) /*rfn 

This is expected to be a good approximation for large n.   Substituting (2.23) 

into (2.20) and using (4.1), (2.21), and (2.22) gives 

n+1 
E    = £ . + (-1)     £ n n+      *     ' n- (4.2) 

where 

i        nQi+1 

X   ö(OJ-UJr.     -•< 
^1 "V ' (4.3) 

with 

0±(Q.) s [ReUx(Q.)]2± [«9mUx(Qi)]
2 

By inserting the trivial relations 

l    dßf(0)ö(n-ü3Qi)= f(wQ.) (4.4) 

into (4.3), £  .  can be written as 

n± 

JJ 00 00 

~-ir   )   dV±<ni>'" j   dOna±(On 
mx -» -oo 

x ö (u> -   £    0.) , 
i=l     * 

(4.5) 
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where 

or+(ß) = 
to mx^ z    n(fi)+l 0+(Q) 

N<o±>   Q       wQ 

x  6 (0 - WQ) 

and 

<«*>■«« S d°^^ ^^Q) 

(4.6) 

ö(ß- u^) 

%   E    n^Q)+1 

N      Q WQ 
0+<Q)   • (4.7) 

i 

Note that a+( 0) are normalized to unity: 

I     dO a+(0) =  1  . 

The factor of w      , which cancels out when (4.6) is substituted into (4.5), was 

introduced for later convenience. 

13 For large n, the central-limit theorem     reduces (4.5) to 

2<0 + > 

Ln± = /Tin1 or    0)mv
n+1 

a+    mx 

^■na±V)2/2naa+
2w mx 

(4.8) 

where 
/■soo 

üT+ =     I     dO a+(fi) ft s ä+ 

«/.OS 

CO mx (4.9) 
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and 

<*>.     = r dfla+(0)02 s a±
2 «jj2 (4.10) 

and 

<l>_       =    CO. -i- ,2 a.   2 

<T+     mx 
(4.11) 

With a+( ft) given by (4.6), the results (4.9) and (4.10) become 

°±=N<b- $<V1)#*(Q) 

and 

°*2- 
±     mx    V 

Substituting (4.3) and (4.8) into (2.19) gives 

.n+1 

(4.12) 

(4.13) 

•n     ^n+    x    '       *n-        no- 

where the approximate equality is discussed in the following paragraph and 

K DpK l*±«>mi\*        1 /,„ i„   |' 

± -<j + y « 

x exp ■(w-na.o)     ) /2na    ^OJ I ^ Vw   ""i^mx7 '        a+    mx   I (4.14) 

Using the central-limit theorem has reduced the multiple sum over Q. • • • 0   [in 

(2.20)] to sums over the single phonon coordinate Q [in (4.7), (4.12), and (4.13)]. 

By calculating the values of the real and imaginary parts of U (Q.) for several 

14 points in the Brillouin zone using the eigenvector data of Karo and Hardy,    it is 

simple to show that neither of the two parts is negligible in general.   Thus, from 
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the definition of 0+(Q.) under (4.3), 0+ = 0_/s, where s s 2.  From (4.3), 

2     - £ _/sn; thus /? _ is negligible for large n since ß     «  S . . 

The values of the a's will now be estimated. First consider U (Q). For 

kL « 1, the approximations (2.10) are valid. For modes near the zone edges, 

the one-dimensional results (3.5) and (3.6) will be used. 

Substituting these results into (2.12) gives 

Um«>    *<6
m'«<0>     . m 

I I2       m<      -       -       2 

optical, 
zone edge 

acoustical, 
zone edge 

U (Q)    s= m x 

m< *       2 
mT  (8m,GTQ>    » 

I |2 n»< *       *      2   *       *   2 2 
|UnH   Mm-TmZ<6m'*TQ>   <6m ' V <kL>> 

optical, 
kL « 1 

acoustical, 
kL « 1 . 

Since kL « 1 in the last expression, this value of    Um(Q)   is negligible. 

Thus, as a rough approximation,   U  (Q.) will be set to zero for co < f co     , 

where f < 1.   In the nonzero region, the remaining three terms are averaged 

to give 

,2 I o   I        m< \  «       ~       2 
Ux<e>|   *-r(1+   m7J<6m'UTQ>   e<fWmx-%>  • <4' 

where 0 is the unit step function and 

/        m<       m<  v /        m< x 
T(

1+
 s; + Tn7J= i(1+ nr;) ■ 

15) 
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The value of the scalar product in (4.15) is approximated by 1 // 3 ', 

which is its value for 6 = x. and u<t a unit vector along [111]. The 

value of the square root of the average value of cos 8 also is equal to 1//T: 

^ J' 
jfi-    JdOcos2e=-i-     \     d8sin8cos28 

^0 

du u    =  1/3   . 

This reduces (4.15) to 

V»> 2    /        m< \ 
-  "T   (l+ —     8 (fco       - U)~) y   y       m> /     v     mx        Q' (4.16) 

The sum in (4.7) now can be written as 

r F   5   F(V  =   6     1       dWQ S<WQ> F<WQ>     ' (4.17) 

where the total density of states g(w) is normalized to unity 

dec g(co) =  1 

in order to make the total number of states correct: 

S(l) = 6N     \      da) g(w) = 6N . 

^ "0 
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Substituting (4.16) into (4.7) and using (4.17) gives 

<a+>  = *('♦?) (^ CO 
mx   ' 

where 

mx 

*)g(«) ^i-1 . 

(4.18) 

(4.19) 

Similarly (4.12) and (4.13) give 

a '+ 
<(n-rl)9) 

and 

^7 _        <(n+l)co8) 

+    ^«) CO 2     ' 
mx 

where 

SI CD 

dcü 

ff.> 

<(n+l)9>  =      \ dco g(co) [n(co)+l ] 

'fco mx 

(4.20) 

(4.21) 

and 

<( 
r n+l)oi6)=   \ 

mx 

dco g(co) [n(co) + 1 ] co 
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The density of states, shown as the solid curve in Fig. 9, will be 

approximated by the Debye density 

g(W) =  -2W       , (4.22) 

mx 

as illustrated by the dashed curve in Fig. 9.  The factor n((d)+l will be approxi- 

mated by its high-temperature limit 

n(CÜ) + 1 = IV^"T * ~^ + ^' (4*23) 

In the worst case of iti/uij ss I £or NaCl at 300 K, n(o>)+l = 1.582 and 

(aJ„/w) + -y = 1.500; thus, the approximation jr (4.23) is quite good. 

Substituting (4.21) and (4.22) into (4.18)-(4.21) and evaluating the simple 

integrals gives 

< 
a

+
)=y(1+^) [3(1-f)^ + T<1"l?>J • (4-24) 

2        WT 1 1 = 
2[(1-H)   —-i  +i(l-fd)] 

«H = 4™     —' (4-25) i 
4(i-f) — +(i-r) 

"HIT ! 'mx 

w. 

<*+    = r, 52 2      , (4.26) 
0-0^-21 +4- d-f-) 

mx      * 
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w = 3.8xl013rads"1 

to(1013 rad/sec) 

Fig, 9. Debye approximation (dashed to   curve) to the density 

of states. The solid curve is the density of states calculated in Ref. 12. 
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and 

CO 
mx <5£1»)- 

to. 
= 3(l-f) 

CO mx 
+ f (1-f2) (4.27) 

Substituting these results (4.24)-(4.27) into (4.14) and assuming that the con- 

tribution from the ß _ term is negligible as discussed under (4.14) gives 

D.K / a,co      \        ,  p  I     1   mx I 1 

ä,4a„ (n,, + l) *      w      / /Tn! l    ai    CO 

(t°-nala;mx) 

:—2—T 2n«   co a    mx 

(4.28) 

where D   and K are defined under (2.19). 

1 3      1 
Consider two values of f: f = 4- and f   = 4- (i. e., f = 0.79).   The 

significance of considering more than one value of f will be discussed in Sec. V. 

The value of f = -*■ corresponds to assuming that kL « 1 for 1/8 of the modes 

(or 1/4 of the acoustical modes) according to the discussion of (4.15) above. 

Note that with g(co) given by (4.22), 

.CO 
mx 

dco g(co) = 1 - r 

fco_ mx 

1 3       1 which is equal to 7/8 for f =  y .   The value of f   = -y- corresponds to con- 

sidering only the optical modes. (Half of the modes --the low-frequency, 

acoustical ones -- are then formally neglected, as discussed in Sec. V.) 
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Note that f«      = 0.79 (3.8x 10   ) = 3.02 x 1013rad/sec, which is near the 

13 frequency 2.8 x 10    rad/sec that roughly divides the optical and acoustical 

modes in Fig. 9. 

i 2        2~    —2 
Setting f = -s- in (4.25)-(4.27) and using a    = a   -a   and <&_/<*<'     =1.03 * (j j      mx 

for NaCl gives 

/ 
U5_ mx ̂ •> ■ «•» ■ (*j = 0.757 , 

a2   = 0.594, aj = 0.594 - (0.757)2 = 0.0210 = (0.145)2 . 

3       1 The corresponding values for f    = -s- are 

«   /n±ie\ =o. mx \   cc    / 9165 , «Kj = 0.899 , 

aj   = 0.811 , a0
2 = 0.0028 = (0.053)2 . 

The following values of parameters in (4.28) are used: 

,-23 23 m> = mci = 5.89 x 10      g , n^ -  mN   = 3.82 x 10      g , 

23 m    =  2.32 x 10      g , a      = 2.815 x 10    cm , nn 

nr   =  1.5 , 1/p =  9.05   , 

B = 2.44 x 1011 dyne/cm2  , e* = e = 4.80 x 10"10 esu , 
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13 
6üf = 3.09x 10    rad/sec , 

% = °-147' 
Dp = 2.85 , 

13 
Cü  = 3.8 x 10 rad/sec (ß 's independent 
ra of üJ     ) 

inx 

a^ = 0.757 , 

K = 5.92xl03cm_1 

In Fig. 1, /L • * • ß7 are plotted as the light curves. The sum ß = E  ß , plotted 
n=2 

as the solid heavy curve, shows the approximate exponential behavior of ß. The 

agreement between this theoretical result and experimental results (points and 

crosses in Fig. 1) is good in view of the simplicity of the model and the assump- 

tions made. By adjusting the values of two parameters in (4.28), such as K and 

D , the experimental data can be fit to within the scatter of the points.  By changing 

the value of the single interaction-strength parameter 1/p from 9.05 to 13.7, the 

heavy dashed curve in Fig. 1 is obtained.   Results for materials other than NaCl, 

as well as computer evaluations of the multiple sums of ß   with n = 2 to 5 or 6, 

will be presented in a future report. 

Concerning the value of p, it should be mentioned that the higher-order 

anharmonic coefficients are much more sensitive to the shape of the potential 

curve than are the quadratic terms, which are used in the analysis of the binding 

energy and bulk modulus.  Thus, it would be reasonable to replace p by an 

n-dependent factor p .   Since there appears to be no reasonable method of de- 

termining the values of p   from first principles or from other experiments at 

present, the p   would have to be considered as adjustable parameters.   This 

would give five parameters to adjust in order to fit the experimental data in 

Fig. 1.  Even though it is neither surprising nor impressive that an extremely 

good fit to the data can be obtained in this way, it is interesting that the value of 

l/p„ is equal to the usual value of 1/p and the values of l/p~, l/p4 • *' are some- 

what larger. 
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The n-phonon regions, marked on Fig. 1 for n = 3 - 6, are given by the 

relations (n-a)u3,< w < (n+i -a)wf, with values of a ranging from 0.5 for 

n = 3 to 0. 8 for n = 6.  The n-phonon region cannot be taken as nw, <iti < (n+ l)6Cf, 

as neu     < ü)< (n +1) a;     , or as nco, t~<oc< (n+1) u>,,- , as often done in the mx mx LO LO 

literature.   In fact, the n-phonon regions shift as the temperature changes. 

It has not been established conclusively that the Lax-Bur stein-Born 

7 14a mechanism   is negligible in polar crystals.        The fact that the present 

anharmonic-potential result explains the observed frequency dependence and 

order of magnitude of ß suggests, though by no means proves, that the con- 

tribution of the anharmonic-potential mechanism is greater than that of the 

Lax- Bur stein- Born mechanism over the experimental range of values of to. 

The absence of a resonance denominator (2.1) in the Lax-Burstein-Born 

-4 result would eliminate the factor u>    in (4.28), thus giving a significant devi- 

ation from an exponential frequency dependence.  The frequency dependence 

and numerical values of the matrix elements in the Lax-Burstein-Born theory 

may be difficult to determine accurately, since they are expected to be rather 

strongly model dependent.  (A simple rigid-ion model gives zero for the 

matrix elements.) 

1 3 In the two previous reports,  '    numerical values of ß were obtained 

by making approximations that were different from those of the present report. 

Although the results are not too different, the present results are believed to 

be the more accurate of the two, and the form of the present results certainly 

is more convenient. 
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V. TTie Central-Limit Approximation 

The central-limit theorem was found to be a powerful tool for obtaining 

the values of ß   for large n, at which straightforward computer calculations 

are impractical at present.  However, considerable care must be exercised in 

the application of the central-limit approximation lest drastic errors should be 

introduced.   In the present section and in Sec. VI it will be shown: that the con- 

fluence processes are negligible; that including the confluence processes and 

using the central-limit approximation gives drastically incorrect results for ß; 

and that truncating g(w) can give improved values of ß when the central-limit 

approximation is used and ß(co) is approximated by the locus of the peaks of the 

ß (ic) curves. 

The central-limit approximation will be applied to two model problems in 

order to illustrate these difficulties in applying the approximation to the present 

problem.  First, consider the function in Fig. 10a. The n    convolution of 

f(cü) = f.(co) is 

V«) = i: dojj f(w1) r n 
do)   f(w ) 6 (03- £ a ) n .=1    n (5.1) 

From (5.1) it is easy to show that 

y«) 
«00 

dw2 f(w1 ) f (tt-Cdj)   , (5.2) 

fn(u» ■I dWl fn-l (W1} t(U}-u1> (5.3) 
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Fig. 10. The function f(w), (a), and successive convolutions (b)-(e). 
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The result of the successive convolutions in (5.2) and (5.3) is shown in Fig. 10 

for n = 1, 2, • • • 5. 

The central-limit approximation to f (to) in (5.1) is 

1 f (to) ^- 
n y?ffn toff 

exp (to - nco) 
2ncoa2 

where 

(5.4) 

co   =    i     dco f(co)co = a co , mx (5.5) 

2 _    l ,     ,/   v    2 2 2 co   =   \      dco f (co) co   = a  co , mx (5.6) 

and 

2 .    ,,2 2   _ 
CO       =    CO       -    CO       = 

2 2 a     co a      mx (5.7) 

Evaluating the integrals (5.5) and (5.6) for f (co) in Fig. 10a gives 

CO   =     -*- CO , 8    mx 
~%        7   ,,    2 

12 <°mx    ' 

co 
RS 2 2 
^  o^J  =  (0.665 Wmx)    . a       T3S" *mx 

The result for n = 5 is shown as the dashed curve in Fig. lOe.  The agreement 

with the exact solid curve is poor, since the central-limit approximation is not 

valid for the function in Fig. 10a unless n is very large.  After convolving 

f (co) n times, the Gaussian half-width of each peak is approximately /n" co     , 

where co_ , = co__  // 48' is the Gaussian half-width of the positive half of f (co). 0+       mx r 
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In order for the central-limit approximation to be valid, the width /IP w 

must equal the spacing (3/4) w      of the two sections of f(w), roughly.  This 

gives n/48 - 9/16, orn^ 27.  Thus, n must be quite large before the central- 

limit result is valid for this function with a gap.   This simple example will be 

used in Sec. VI to show that confluence processes are negligible in the expo- 

nential frequency region. 

Next consider the function F(a>) in Fig. 11a.  The central-limit approximation 

to the function 

yoj) =     I       dWj   F'üJj) •••    1 dOJ    F(co   ) n     v   n' 

x  6 (a; - L  a:.) 
i=l    l 

is 

F (w) 
nv   ' fI¥Z ua  

exp (fa) - n(0) 
2nO)ff2 

where w  and oo^ are given by (5.5)-(5.7) with f(ü>) replaced by F(w).  The 

functions F-'co) and F„(oi) are plotted in Fig. 11,  For this smooth function 

with no "gaps"   the central-limit approximation is fairly good even for the 

very small values of n = 2 and 3. 

The following discussion is included for those interested in the details 

of the calculations. As a rough approximation to obtain preliminary results, 

the curve of ß = Z ß   as a function of U) was approximated by the locus of 
1,3 

the peaks of the individual ßn.    (The size of the error introduced is apparent 

in Fig, 1.) Under this approximation, it is found that formally setting a 
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12/w 

3 
fa 

mz F,(<o) 

(•) 

0 

•2/co 

«Ö/03 

fa 

mx 
nix 

F3(«)- 

Fi2<w>-^7 

2Fr(w)*Fe(ü>) 

Fr2(u,) 

0 

•2/u; 

fa 

mx 

(b) 

mx 

<li/u mx 

Fig. 11. Rectangular function F(u>) considered as the sum of two equal rectangular 

functions ^(u) and F
r(

w). The dashed curves in (b) and (c) are the central-limit 

approximations to F, and F„, respectively. 

• 

56 



Sec. B 

low-frequency portion of the density of states g(w) equal to zero can increase 

the values of ß. Increasing the value of f in (4.16), (4.19), and subsequent 

equations corresponds to such a truncation of g(co).   The reason for this result 

that decreasing the number of physical processes causes an increase in the 

value of ß can be understood as follows.  In Fig. 1 it is seen that the value of 

a given ß , say ß,, at its peak can be much smaller than the value of ß   , - ß? 

at the same frequency.   Truncating g (u)) causes a reduction in the value of ft. 

(especially at its peak and on the low-frequency side of the peak), but also causes 

the peak to shift to higher frequencies.   This new peak lies nearer the true curve 

of ß = L ß   than does the old peak, as illustrated by the following example. 

In order to examine the value of F_(«J) in Fig. 11 in the wings (away from 

the peak), first consider F(co) as the sum of the two equal rectangular functions 

F(w) =   F£(u>) +  F (tu) (5.8) 

as shown in Fig. 11a. The first convolution F2(co) is then the sum of three terms, 

as seen by substituting (5.8) into (5.2) with f (w) replaced by F(w).  This gives 

F2(u» = 

its 

[ ¥i (Wj) Fx (w - cop + F£(<o1) Fr ((ü - ü3j ) 

+ Ff («) Fz (w - Wj) + Fr(w1) Fr (u> - Wj) ] (5.9) 
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The second and third integrals are equal as seen by making the transformation 

to - w- - to. in either integral.   Thus, (5.9) gives 

F2(W) = Fje2(co) + 2F£(to) * Fr(w) + Fr2«0) . (5.10) 

where * denotes the convolution.   In the convolution notation, Fj2(to)= F.(to) * F^(to). 

The three functions in (5.10) are plotted in Fig. lib.   Similarly, F„(to) is the sum 

of four functions, as shown in Fig. lie.   In this figure, note that at cu/to     = 2.75, 

the central-limit approximation (dashed line) has a smaller value than the exact 

result (solid line).   Also note that at this value of to/to     , the central-limit ap- 

proximation to F „(to) is a closer approximation to the correct value than is the 

central-limit approximation to F(co).   That is, if F(cü) is truncated to F (to), 

the resulting central-limit approximation is more accurate in portions of the wings 

than the central-limit approximation to F(to) itself. 

In the same way, F(to) could be truncated to the rectangular function F   (to) 

extending from <*)/&      - 7/8 to 1.   If the value of ß   in the wings of the expo- 

nential is important, formally truncating g(to), by making f large in (4.16)-(4.19) 

for example, may result in a more accurate value of ß .   This result was the 

motivation for considering two values of f in Sec. IV.  The result is similar to 

the result considered above and in Sec. VI that the central-limit approximations 

to |3 with confluence and splitting processes included is not as good an approxima- 

tion as that obtained by including splitting processes only. 
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VI.  Effect of Confluence Processes on ß n 

It will now be shown that confluence processes are negligible in the 

exponential region.   The analysis of Sec. IV, which is for the case of the 

splitting of the fundamental phonon into n phonons as in Fig. 3a, can be easily 

extended to include all confluence processes, such as those in (b) and (c) of 

Fig. 3.   The general confluence process has m output phonons and n - m +1 

input phonons.   The method below sums the diagrams over all values of m. 

It can be shown that this generalization to include all confluence and splitting 

processes is accomplished simply by replacing 0(0- co~) by Ö(fi -u^)-ö(ß + ccu) 

in (4.6), giving 

_    /n. mx       v     n(ß)+l   M   /r.. 

x [ö(0-wQ)- ö(ß+wQ)] , (6.1) 

and defining g(-co) = g(co) and 

n(-w) a   -[n(w) + 1]   ; (6.2) 

i.e., n(-co) + 1 = -n(co). Standard Green's function analyses give the Ö(ß + cün) 

terms automatically. See Eq. (4.19) of Ref. 6, for example.   The resulting expres- 

sions for (a. .) are c± 
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<«c±> •"«  J -»■*- = ^ MQ) 

x [ 6(0-üJQ) - 6(Q+wQ)] 

co 2 n (w,~)+1 

N      Q WQ 
0 + (Q) (6.3) 

1 
1 

and E + still are equal to the n-fold convolution of cr+(ß) as in (4.5): n± 

nc± 
mx "- 

d0lac±(ßl)*" I dO a . (0 ) 6(w- E 0,) n c±      n' .  ,    i i=l 

(6.4) 

Notice that the summation weighting functions <X+(0) in Eq. (4.6) of Sec. IV 

are zero for negative ß, while the confluence weighting functions in (6.1) are non- 

zero for both negative and positive values.  For example, if the angle factors 0+(Q) 

are approximated by a constant $+, then (4.6) and (4.17) give 

w)   , 

ff+(0)=       *2HLg<G)   Hi^±i 
± <a+> n 

=   o , 

for Ü > 0 

for 0 < 0 

(6.5) 
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Similarly, (6.1) and (4.17) give 

x [6(0-0)) - ö(ß + to)]   , 

ac±(ß)= _i_HHL   g(0)   »1^. forO>0 , 

(6.6) 

,     for O < 0  . 
6*Aw n(|0   ) 

7^ "I ° l> iW" 

Note that the top expression in (6.6) is formally correct for ft < 0 also, as seen 

by writing ft= - | ü | and using (6.2). 

The central-limit theorem could be used to evaluate the multiple integral 

in (6.4).   The results, however, are quite misleading, as will now be shown. 

It is necessary to carry out the successive convolutions to obtain the values 

of #2» &y " ' •   Consider £    , in (6.4).   In the example above, in which 

0+(Q) is approximated by a constant $+, o    (ft) is given by (6.6).  In the 

high-temperature limit, n(0)+l * n(ft) ~ I/O; thus, if g(ft) ~ ft   over 

its nonzero region, cx,(0) is constant over its nonzero regions. The function 

f(w) in Fig. 10a is therefore a reasonable approximation to o.(ft) in (6.6). 

In fact, the ratio of 1 to 3 of the heights of the two peaks in Fig. 10a was chosen 

with foresight to agree with the room-temperature ratio [n (ft)+1 ] /n (ft) a? 3 of 

the two peaks in or     on the positive and negative ft axes, according to (6.6). 
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Physically, the positive-axis peak in f (co) in Fig. 10a corresponds to the 

creation of a phonon, and the negative-axis peak corresponds to the annihilation 

of a phonon.   It is not difficult to show, by considering the frequency regions over 

which the various confluence processes can conserve energy, for example, that 

this interpretation of the two peaks in Fig. 10a is consistent with the following 

interpretation of the peaks in f   in Fig. 10 b-e.   The peaks in these functions 

f (co) correspond to the various splitting and confluence processes.  For example, 

the last peak on the right of f« (u)) corresponds to the splitting of the fundamental 

mode into three phonons and the next peak to the left corresponds to the confluence 

of a fundamental phonon with a thermally excited phonon to form two phonons, as 

illustrated on Fig. 10c. 

The splitting peak (last to the right) is not the largest peak for a given n 

in general.  However, in the present example, the other peaks can be neglected 

in the region of current interest since they are obscured by the contributions of 

lower-order terms (smaller n).   For example, the last (splitting) peak of n = 3 

gives a much greater contribution to ß than does the second peak from the right 

in f,- (co):   From (2.19) with the frequency dependence of (n    +1)    neglected 
n 

and Ln 2= (a) f
n(

ü5>/w
mx » ßn is given by the expression 

ßn ~  -j-   <<«>D   "f <w)   , 
11 /,>*n I e " CO  n! 

where  <a> Dg 2= 0.1.   For the last j3, peak in Fig. 10c, 

«Vj ~  ;^I0~3 (0.633/Wmx)  , 
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and for the next-to-the-last /?,. peak 

^5>2~Tr10"5(0-4285/Wmx>' 

Thus 

(ßr)    /(/*,)      "    3'38X   10"4«    1 5 2       3 ! 

so that (/L)    is negligible.   This simple example clearly illustrates that the 5 2 
confluence processes are negligible in the exponential frequency region; only 

the splitting process should be included. 

The errors introduced by formally using the central-limit approximation 

to (6.4), which includes both the confluence and summation processes, are 

drastic.   Direct calculation shows that the resulting values of ß are incorrect 

by orders of magnitude in some cases.   The difficulty can be seen simply by 

considering the positions of the peaks of the various j3   vs ui curves.   For 

example, in Fig. lOe, the five-phonon peak is at a) 2 2üJ,.   Experimentally, 

this frequency is in the region of two-phonon peaks, not five-phonon peaks. 

An even more dramatic error results at high temperatures, where the heights 

of the negative-axis and positive-axis peaks are approximately equal.  Then all 

ß  (for reasonable values of n) peak near co = 0, which is, of course, below 

the fundamental resonance frequency.   • 
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VII. Effects of Terms Other Than V(n+ J) in K n 

In the previous sections, only the term V*n    ' in 3C [Eq. (2.4)] was 

considered.   In determining the effect of the other terms V™' with p < n + 1 

in (2.4), first the higher-order terms in the expansion of the square root in 

R„     in (2.5) are needed.   With the definitions im 

Ä B W6£m  ' *m      *m 

and, formally, 

2 u • u = u     . 6 • u = Au , 

(2.5) becomes 

im     m   r, ,    2 

6m       =[ m 
+ 2 Au ]I/2- •1 * 

Expanding the square root gives 

^-(^ )<A2*.,+   ('f )<U
2
+2Au,2+ ('f )(^+2Au,

3
+. 

where the binomial coefficients have the values 

(>*•    CD-i.    (>*. 

(7.1) 

/1/2V        ^ /l/2\       35 ,1/2, 

\   4   /        128   ' \   5   / " 1280  ' \   6   )   '"' 

(7.2) | 

105 
5120 

64 

AM* 



Sec. B 

2 
Expanding each power of u + 2 Au in (7.1) and collecting equal powers of u 

gives 

R.     - 6 
- =   L    r_ u      , 

6 s=l 
(7.3) 

where 

-■no 2A = A   , 

- new-CX:H O-A*)   , 

r3 = no'""-no (2A) = ^_A(-I + A
2
)   , 

-no •»••CDC 3\ /l/2\/2 
(2Af + I 

)( 2   /V2 

= -g-(-l + 6A2 -5A4)  , 

r5  = no .5.   i^2\/4\   „..3 n/2\/3\ 

=  -g-A[3 - 10A2 + 7A4]    , 

r6 = -ig- [1 - 15A2+ 35A4 -21 A6]    . (7.4) 

Expanding the powers of (R«„, - 6 )/6 gives the results displayed in Table I. 
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JCL,    O 

Multiplying each [(R£m - 6£n|)/öJmf by (-l)P(p! pP)"1 and summing 

gives 

K = C   £    -fl    u1*1    , ,_ ... 
n=2      n ^il> 

where 

3Ba   3p2 

C = nn 

l-2p 

and 

r2 2 

™1 2"   =  9     ' 2!p^ 2Jp2 

r,4 3r2r0 r2+2 4i    - -L.   -        l    2   +    r2 +2rlr3 
3       4ip4        177" 2-p2 

-—4- [A4+3p(5p+2)A4-6p(l+3p)A2 + 3p2l 
4: p J 

,4 = - JIL + ^2.. 3^%+y-i) + 
2<v4+y3> 

5<P 4!p4 3lp3 "   "TT? 

—5 ["A + 5p(2 -9p-21p2)A5 

In 

2^ A3 . 1C   2 
10p(l-6p-15p^)AJ-15p^(l + 3p)A]   , 
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6! p 

- 120 p3 (3 rj2r4 + 6 rjr2r3 + r2
3) + 360p4 (2 r^ + 2 r^ + rg

2 ) ] 

—l—r-  [A6(l + 1155p4 + 450p3-120p2 -15p) 
6!p6 

+ A4(-1875p4 - 675p3 + 240p2+15p) A2(765p4+270p3+180p2) 

+ (45p4-15p3) . (7>6) 

The first term, 

(n + DIp1*1 

An+1 

in each -A    in (7.6) corresponds to the value used in the previous sections. 

It is tempting to approximate A - 6    « u*     by I/V0   in (7.6) and calcu- 

late the ratio of 4\    to the first term in -ft   .   The results of the previous sections 

could then be multiplied by the square of this ratio in order to approximate the 

effect of the additional terms.   In deed, this increases the value of {ß ,,)    Iß ) n+1 mx   n mx 
by a factor of approximately 3.7 far small n, giving better agreement with experi- 

ment.  However, this result probably is not correct since considerable care must be 

exercised in approximations of this type.  For example, if A is approximated by 1/3 § 

rather than by l//lT, the value of (Ä.,)     /(ß )      changes erratically with in- 0+1 mx       n mx 
creasing n. 
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From -n9 in (7.6) it is seen that replacing A  by 

A3+3pA3 -3pA (7.7) 

takes into account all terms in K2 [in (2.5)].    Thus, (6     • u,    )   in (2.7) is 

replaced by 

(1 + 3p) (6    • u.    )3 - 3p(6     • u,    )(u.     • u,    ) 

The corresponding value of a, in (2.16) is replaced by 

A A. 

a9 =    L       -{ (l + 3p)(öTT, • uf) lUQ^U  (Q0) 
m=l m    uf' umwl' wm^2' 

A A, 

-'<6m-vöm<Qi>-ym<Q2> 

2pwt"f-ym<Q2)] (7.8) 

A /v 

For uf = x, (7.8) gives 

«2 =  ^(Q^U^Q^-pU^Q^U^Q^ 

-pUxiQJUxiQJ ^piyQ^U},^) 
z " "i"    y 

2pU2(Q1)Uz(Q2)    - cc (7.9) 
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Notice that the coefficient of U (Q.)U (Q„) from the extra terms 
3 

[ 3p A   - 3p A in (7.7)] vanishes.   This is a general property of aR for n ^ 2 

resulting from the fact that all r    =0 when A = 1 for n ^ 2.   See (7.4). 

For a,, (6     • Ujj    )    n (2.7) is replaced by [see -ft, in (7.6)] 

[l + 3p(5p+2)](am-u,m)4-6p(l + 3p)(6m.ujem)(u,m.u£m) 

+ 3p2(Äim'Äim)(Äim'W  • 

The corresponding value of a« in (2.16) is 

6      f *        * a3=    S      J[l+3p(5p+2)](6in.uf)Um(Q1)üm(Q2)Um(Q3) 
m=l 

ä <* 

-3p(l+3p) (6m • uf) Um(Ql) tUm(Q2) -ym(Q3) ] 

-3P(l + 3p>Um(Q1)Um(Q2)[Gf -U^Qg)] 

+3p2["f • SIm<Qi>] [um(Q2) ■ Um(Q3) ] \   . (7. io) 
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A A 

For u, = x, (7.10) gives 

a3 = Ux(Qj) Ux(Q2) Ux(Q3) -3p(l+2p)[Ux(Q1)Ux(Q2)Ux(Q3) 

+ Ux(Ql)Ux(Q2)ux(Q3) +   Uy(Q1)Uy(Q2)Uy(Q3) 

+ uz(Qi) UZ
(Q2) us(Q3)]+ 3P2 [ug<Qi> U^Q2

) U]J(Q3) 

+ Uy(Qj) Uy(Q2) Uy (Q3) + Uz (Qj)Uz (Q2) Uz (Q3) 
X 35°"^ XX X 

+ Uz(Q1)Uz(Q2)Uz(Q3)]   . (7.11) 

These results (7.9) and (7.11) are being used in the computer analyses, 

to be discussed in a later report. 
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VIII.  Higher-Order Processes In The n-Phonon Region 

In this section it will be shown for NaCl at room temperature that the 

higher-order processes shown in Figs. 2b, 2cf 12, 13, 14, and 15 are negligible 

for reasonable values of n. The results suggest that higher-order processes 

may be negligible for values of n of current interest, say n < 8.  Additional 

analyses will be made elsewhere to establish the validity of this suggestion. 

The process shown in Fig. 12a will be called the single-vertex, n-phonon 

process.  Processes with more than one vertex will be called higher-order 

processes.   For n = 2 there are no higher-order processes except those of 

the type in Fig. 12b, which can be accounted for simply by renormalizing the 

phonons. 

For n = 3, the only higher-order process of interest is shown in Fig. 12c. 

The contribution to |3, can be obtained simply as follows: By standard perturba- 

tion theory, the matrix element for the process in Fig. 13a (with vertices 

aQ,not A    s a^ + a^ )is 

< fn | Kah+ |i> = E4<l+2+3+f | A(Kb)Vm23 ama+a+ | l+m+f > 

^m 

x (lVf | A(Ka) Vfml afr. + a| | l02030m0f° > /% <u> - C0j -ü>m) (8.1) 

where | 1~ ) s | rij ± 1 >, | m > = | nm >, etc., and permutations of 2 and 3 and of 

m and 1 in K give the factor of 4. Evaluating the sum on k     in (8.1) by using 

A( K   ) and using the well known values of the matrix elements gives 

<fn'Kri>f!1>      -   2    <nm+1>Vm23Vfml 
<fn|K3|i>      bm

T^(a;-co1-Wm)Vfl23 <8'2> 
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(b) 

Fig. 12. Phonon relaxation processes: (a) single-vertex, n-phonon process; 

(b) processes with renormalized phönon lines; (c) three-phonon - summation 

higher-order process. 
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(c) 
(d) 

Fig. 13.  Various time orderings of the process shown in Fig. 12(c). 
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(•) 

(b) 

n-1 

Fig. 14. Two-vertex, n-phonon process (a) and (n -l)-vertex, 

n-phonon process (b). 
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cba 

(a) 0>) 

bca 

(c) 

cab 

(e) 

acb 

(d) 

bac 

(f) 

Fig. 15. Various time orderings of the process shown In Fig. 14(b) for n = 4. 
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where 

ttt < fii |3C3 | i > = <l+2+3V I A(Kb)Vfl23 a^a^aj | l°2030f° > 

The diagram in Fig. 13b gives tne same result as (8.2), but with to m 

replaced by -to    and n    + 1 replaced by n 

The contribution from the diagram in Fig. 13c is 

<* »Wit) 2<V+»Vm23
vfml 

<*l»slO       bm -3«(^-"1+«m)Vfl23 m 

and the contribution from the diagram in Fig. 13d is the same as (8.3), but with 

to„ and n+1 replaced by -co    and n   . respectively. m m r J      m m r J 

Adding these four terms gives 

<fa|«b.22'
i>_ E 

4%VfmlVm23 ^ 
<fn|:K3,i>        bm  3fi[(co-co1)

2-tom
2]Vfl23 

The value of this ratio in the three-phonon region, say at co = 3.5 to [ see (5.5) ] 

is of interest. With this value of to and with to, = tö and to    5 to , (8.4) re- 1 m ' v     ' 

duces to 

<ta|K||l>      " 15-75  ft"? bm 
V«23 • ' •  ' 

The value of Vfl23 = Vf ~ „„     is given in (2.15).   This result (2.15) is 

also valid for V, „      t     1V when written in the form: 1,1''' (n+ \) 
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3p ST Ba. 
+        jpvn , nn 

«*># 

• m<     \ 2p   m<ann    / 

n/2 

_1  

vn+l 

172- 

(8.6) 

where 

a    = 
6 

p=l      lp (ttfl)p 
(8.7) 

with 

fp p M£) 
1/2 

Substituting (2.15) and (8.6) into (8.5) gives 

.      Ba 1 nn <fa 1*3-22 1°. _6_   __   __   , __ 
<fn|K3|i>    " 10'5  !"2P  'S1"  \m<m>/     bm       -31123 

1       \       Z      2bnl  2m23  .     (8.8) 
Of, 

In evaluating the sum over b in (8.8), it will be assumed that the quasi- 

selection rule that the matrix element for the splitting of a fundamental phonon 

into two optical or two acoustical phonons in NaCl-structure crystals is negli- 

gibly small. Wavevector conservation of the three output phonons will be 

78 



Sec. B 

neglected formally, and the value of ( fn | 3C, «2 I *)/( fo 13C~ | i) will be 

computed at co = 3.5 Ho, assuming that 

cüj = ü?2 = (0, = oj (8.9) 

for the three output phonons.   For NaCl, the three output phonons are longi- 

tudinal optical (LO) phonons.   Thus, the quasi-selection rule requires that the 

intermediate phonon m be an acoustical phonon.   The case of m being a longi- 

tudinal acoustical (LA) phonon will be considered.  Since b_ = LA and b, = IX), r ml 
a2fml fr°m (3.2) can be approximated by (3.9).   From this same equation (3. 9), 

with 6   • ür replaced by (m /m^,) '   U       to account for the fact that a„   00 pi r      <•'        mp 2m23 

does not involve the fundamental mode, 

1/2 

a2m23 - \"m^/        lu<kTnLAx       V m^  u 
ikr*,„ a -   mx   nn 

>k    LAx e 

m 

>k2LOxe 

ik2xann 
"(^l^LOx- Vm|    u 

/ fm^ ik,   a    \ 
X   ^u<k3LOx-ym7    U>k3LOxe    3Xnnj-cc (8.10) 

As in Sec. HI, we set u<LQx = l//T\ u>LQx = 0, u<LAx = 0, and 

u>LAx = 1/*^1 •   These values, with (8.10) and sin k     a     = -x formally, 

give 

I2        2     mr 
a2m23|    S17-  in"     ■ <8' "> 
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Next consider the value of a of j2o •   The same arguments that gave (8.11) 

indicate that 

.2 
fa 3fl23 I 

4 
27 (8.12) 

is a reasonable approximation.   Substituting (3.9), (8.11), and (8.12) into (8.8) 

gives 

.2 2      ,1/2 
<fh |3C_„ |i> 3-22 

<fii|XJi> 
LOLA 

1    /     1        Bann  \     m<mr 
1^f\T7T^Br^)      m>

3 

= 1.0 x 10 (8.13) 

Even if the other two acoustical intermediate states contribute as much as the 

LA state, the total ratio in (8.13) is increased only by a factor of 3, giving 
-2 

3 x 10        for the value of this ratio.   Thus, the order-of-magnitude calcula- 

tion suggests that the higher-order processes are negligible in NaCl for n = 3. 

In considering larger values of n, several classes of diagrams can be 

studied.   First consider the n-phonon diagram in Fig. 14a.   The energy de- 

2 2 nominator corresponding to (co - u:.)   - u>       in (8.4) is 

(cc -ÜJj -0!2 n-2 m 

lv- Assuming that ui = (n + -x)to and co, = u)9 = ••• =tü   ,=o)    =«, this energy 
* i        ä n *■ x      ill 

denominator reduces to 

[n+y5 -(n-2)w]   - Ö32 = 5.25 Ü52    . 
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The rest of the analysis ib the same as that leading to (8.8), and the results 

are the same as (8.8) with the appropriate changes in the matrix elements: 

1/2 
<fn lKn-2(n-l) '°_      6    /n\ _J_  ^frm /     1     V'"    tt(n-l)fml- -a2mnn-l 
(foi^li) 10.5U/l-2p-2    U<m>) 

a
nfi2...n 

(8.14) 

The value of a« , is given by (8.11): 2mnn-l 

a 2mnn-l 
2_   _%: 
27    m^ (8.15) 

With all output phonons 1 • • • n as LO phonons and the intermediate phonon as a 

LA phonon, the arguments leading to (3.9) indicate that 

a. nfl2"-n a (n-l)fml 
_8_   ™< 
3n    m> 

(8.16) 

are reasonable approximations.   A factor of 2/3 was included in (8.16) as dis- 

cussed in Sec. III.   From (8.14)-(8.16) with £ = 3 formally, 
m 

<falKn-2(n-l)li> 
<m|3C   |i> 

2       2 
m<mr 1     /£\3/_J_   B&™   \   m<n 

^l3' \J"2P 5^J   m>
5 (8.17) 

This result (8.17) is (n/3)   times larger than the n = 3 resu't (8.13).   The ratio 

in (8.17) is equal to unity for n = 190.   Thus, it is clear that the contribution to j3 

from the diagram in Fig. 14a is negligible. 
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Next consider the diagram in Fig. 14b.  For n = 3, this diagram reduces to 

that of Fig. 12c, and the matrix element is given by (8.13).  For larger values 

of n, a straightforward evaluation of the sums over the diagrams corresponding 

to those in Fig. 13 would be tedious. A simple method of evaluating the sums is 

first illustrated for n = 3. Since the ratio < fn 13C_22 | i)/< fn 15C | i> is inde- 

pendent of temperature, ail occupation numbers, such as n    in (8.2), must sum 

to zero. Thus, only terms containing factors of (n+1) need be considered.   For 

example, the diagrams in Figs. 13(a) and (c) are considered, and those in Figs. 

13(b) and (d) are dropped. [ For the m arrow going from left to right, the term 

a   a     gives rise to n   + 1, while the m arrow going from right to left cor- 

responds to a    a    = n   .1 v m   m       m J 

Since the sum over the four diagrams contains the factor co   , the energy 

denominators can be expanded, and only the co    terms retained.  For example, 

the energy denominator corresponding to Fig. 13(a) is 

i i ^ 1 1       , m       , 
CO - CO.   - CO CO - CO. ,. ,     " ' v2 1      m 1      (to - Co.) 

CO 
+ •.. (8,18) 

(co-cop2 

and that for Fig. 13(c) is 

1 m C0_ CO 

,„    -   , -    r = - 77-^77+  2L
-T + --- = EL__+... (8. 19) 

(CO-C01+COm) CO-COj       - .        j2 (co-co,)2 

1       (CO - CO, ) (CO - CO, ) 
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For large n, n + -*- as n.  Thus we set to = (n + -*-) to s« n to, or to = 3 to for 

n = 3 in anticipation of the large values of n of interest. Adding (8.18) and 

(8.19) and using to - 3 to and to, - co gives 

2 to 
m (8.20) 9—2 

(3.5-iroT 

which corresponds to 

2 to 
 2* y (8.21) 
(to-top -com 

2 
in (8.4).   For large n, the factor to     in the denominator of (8.21) is negligible, 

and (8.20) and (8.21) are equivalent.   To shorten the notation further, set 

to = 3 to , to, = oo   and a)    = m to   in (8.18) and (8.19).   This reduces (8.18) gig m g 

and (8.19) to 

1 m  , 
-m       4 

l m   , 
^2TmT =   X+"' 

and the sum is to 2m/4, which can be written as 

2 m        2m 

(2!) 
£21 -    zm /a VJ\ 
T ~ 7^2    • (8*22) 

For n = 4, a straightforward evaluation of the sum over the energy denomi- 

nators of the 24 diagrams gives 

to      to y n v2 mi   ni2 mi m2      (2) mimo 
—ZTl— ~*   ~E =    5    ' (8.23) 

9to4 9 (3!)2 

83 



Sec. B 

This result (8.23) can be obtained by the method above as follows:  The energy 

denominators corresponding to the diagrams in Figs. 15(a)-(f) are, respectively 

TT m1)
1(2 - n^ > a I   H"1!)     (^T11^)     =^mlm2 + '" 

(3+m1)i2^)g|mlm2+'" 

T3 + m1Hl+m1+m2) 
=   ("9~

+
T)    

mlm2 

(3- m 
1        / 1   ,   2 \    m  m   , 

jXl-mj - n^)       \ 9      3 /        12 

(2+m2)(l-m1-m2)  
=   ( 4 " l )    ml m2 + 

-(i-n^^d+mj + m^  =   (I-1)   m1
m

2 
+ "'   • 

Adding these six terms gives (2) m, m., /(3!)   in agreement with (8.23). 

For n = 5, adding the 24 terms gives 

2 m1m2m3 

 2"  

By induction, for general n the corresponding result is 

2n"  m1m2..»mn_2 

F(n-l)ij2 (8.24) 
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Thus 

<fr|\-22... 1°     ,       2n"2 

<fo|Kn|i> 
= + 

[(n-1)!]2   (üw2)n"2   b. 
E ... £      co. 
ml      mn-2 

m, m. n-2 

flm,  m, m2 *  *   m   2(n-l)r 

fl2"«n 
(8.25) 

Substituting (2.15) and (8.6) into (8.25) gives 

<fii |3C   ,9       |i> '   n-22 "• _ + n 
<fo|3<^|i> ' 2(n-l)I 

__3_     Bann 
2(l-2p)   ^T 

n-2 

x   E 
2flm, a2m. m 2 " * a2m   0(n-l)n x       i.   z n-z 

bml   bm(n-2) 
a. nf 12 • • • n 

(8.26) 

For n = 3, the numerical coefficient 9/8 in (8.26) is slightly different from the 

corresponding value 9/10.5 from (8.8).   The difference is that tt) 2 in (8.21) 

was not neglected in the derivation of (2.15) and n + -*- was not approximated 

by n. 

The values of the multiple sum in (8.26) can be estimated by formally 

setting 

£       = (3) 
n-2 

H     bm(n-2) 

85 

tmtätk MMMM 



Sec. B 

and using (8.11) and (8.16), which gives 

l<frlK3-22-- !i> 2 

I      <fii|3C3|i> 
i/21 Ba 

2n-4 

24(n-l)!     I 2(l-2p) m<6ü 

nn (8.27) 

Since the value of the ratio in (8.27) decreases with increasing n and is negli- 

gible for n = 3, the order of magnitude calculation suggests that the contribution 

to ß from the diagrams in Fig. 14b is negligible. 

Although the temperature and frequency dependence of j8 for the higher- 

order processes is of academic interest only since these processes are negli- 

gible, it is mentioned that the frequency dependence of the higher-order pro- 

cesses is different from that of the single-vertex process. The formal expression 

for the temperature dependence of the higher-order phonon processes is the same 

as that of the single-vertex n-phonon process.   However, wave-vector conserva- 

tion in the intermediate states may cause the final-state phonons to be different 

in the single-vertex and higher-order processes, thus giving some difference in 

the temperature dependence of the two types of processes.  Furthermore, the 

factors B, a    , and w in (8.27) are temperature dependent. At the present state 

of knowledge (of the phonon dispersion relations and the coefficients in the scat- 

tering Hamiltonian, for example) these temperature differences could not be 

used to distinguish between the two types of processes. 
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DC.   Anharmonic-Einstein-Oscillator Model 

A study of the absorption of electromagnetic radiation by a collection of 

non-interacting but anharmonic oscillators has been initiated as an alternate 

approach to the multiphonon absorption problem.   A ^eliminary report of the 

results is presented here.   A complete presentation will be given in a future 

report. 

Since most of the experimental measurements of interest to this study 

have been carried out at room temperature or higher, purely classical methods 

were used.   The first step was to derive an expression for the absorption coef- 

ficient of the oscillator array, assuming the system in thermal equilibrium at 

temperature T.   The resulting general form may be applied easily and quickly 

to compute the absorption coefficients for a number of anharmonic potentials of 

physical interest. 

The Liouville equation for the classical distribution function p(q,p,t) of 

the oscillator array in the presence of a spatially uniform driving field of fre- 

quency m was treated by perturbation theory to obtain a classical form of the 

well known Kubo formula for the absorption coefficient.   The Kubo formula was 

then reduced to a form that may readily be computed once the nature of the par- 

ticle orbit in the anharmonic potential is known.   The final form is particularly 

convenient for use in the quasi-harmonic region, where anharmonic corrections 

to the particle orbit are small.   This is the temperature region of interest in the 

discussion of both solids below their melting temperature, and for molecular 

gases below the temperature at v hich dissociation occurs. 
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The formula was applied to the case of particles whose motion is governed 

by the Morse potential, an anharmonic potential used frequently in molecular 

physics.   In this quasi-harmonic region, we obtain a particularly simple result 

for the absorption coefficient.   If the fundamental vibration frequency of the 

molecule is to», then the intensity of the n    harmonic absorption at 0)   = n tu 

is given by the simple expression 

where D is the dissociation energy, and P. the strength of the fundamental ab- 

sorption line at cün.  For temperatures near room temperature, kT « D, 

and a plot of P  against n gives a form very close to the exponentially decaying 

form observed in many crystalline materials. 

Mangir and Hellwarth    have treated the same problem from a quantum 

mechanical point of view and obtained a result that reduces to ours in the 

correspondence-principle limit ti -» 0.   A detailed comparison between our 

calculation and theirs should prove most illuminating. 

We believe a form similar to the result quoted above will very likely 

emerge for large n from the study of any potential for which the deviations of 

the small-amplitude motions from the harmonic approximation are small.  It is 

interesting to contrast this near-exponential behavior with that appropriate to a 

potential for which the harmonic approximation cannot be applied.   An example 

of such a potential would be a simple square-well potential, with a flat bottom 

and infinitely steep sides.   Applying the method to this problem indicates that 

at high frequencies the absorption does not fall off in a near exponential manner, 
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but rather as 1/w .   We plan to examine two or three more potential functions 

to see whether or not one can make a clear systematic statement about the rela- 

tion of the form of the potential function, and the frequency dependence of the 

absorption coefficient at high frequencies. 

The comparison between the results for the Morse potential and the square 

well leads us to conjecture about the possible role of certain impurities in in- 

creasing the linear absorption coefficient of crystals above die value expected 

for the intrinsic processes apparently responsible for the near-exponential tail 

at high frequencies.   It is well known that in the alkali halides, certain impuri- 

ties (Li and Ag, as examples) move in potential wells that are very flat, since 

very low, strongly temperature-dependentfrequencj.es are associated with these 

impurities.   It may be that the presence of these impurities will give contribu- 

tions to the absorption coefficient which falls off like to    rather than exponen- 

tially with frequency.   Consequently, at high frequencies, the value of the 

absorption coefficient may be greatly affected by these impurities. 

The results obtained to date will enable us to make semi-quantitative 

estimates of the impurity concentrations required to give rise to a given value 

of the absorption coefficient.   The simplicity of the method may make it useful 

in other problems, such as examining nonlinear absorption mechanisms. 
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C.  THEORY OF INFRARED ABSORPTION AND MATERIAL 
FAILURE IN CRYSTALS CONTAINING INCLUSIONS 

Small amounts of macroscopic inclusions in or on the surface of a 
-7 

nonabsorbing host crystal, in some cases a fractional volume of ~10    to 

10   , can give rise to a value of the optical abscrption coefficient ß of 10 

cm    (a typical value of current interest).  For various types of inclusions, the 

frequency dependence of ß ranges from increasing as 05 » to independent of w, 

to exponentially decreasing with 60.   The temperature dependence ranges from 

independent of T to increasing as T^ in the high-temperature limit, where 

p = 2 - 4 typically.   Simple expressions for the absorption cross section are 

derived for various cases of practical interest.   The cross sections are used 

to derive expressions for ß for the four cases of large inclusions of strong 

and weak absorbers and of small inclusions of dielectric and metallic particles. 

A result of general interest in the theory of scattering is that the absorption 
2 

cross section of large spheres is equal to (1 - Ri )rra , where Ri   is the re- 

flection coefficient for normal incidence, rather than (1- (R>)ira , where 

(R > is the geometric-opucs average reflection over the illuminated hemisphere. 

The material failure resulting from local heating of macroscopic inclusions is a 

far greater problem in high-intensity short-pulse systems than in low-intensity 

long-pulse or cw systems having equal average intensity.   Microsecond pulses 
2 

with energy densities as low as ~5J/cm   can cause material failure. 

,*" 
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I- 

I.  Introduction 

Several theoretical studies of intrinsic infrared absorption are currently 

underway.        a' '    It is expected that the results of these studies, especially 

in conjunction with experimental investigations, will afford estimates of the 

values of ß for various materials that could be approached by removing the 

extrinsic sources of absorption. The present investigation is concerned with 

another aspect of the problem — that of extrinsic absorption by macroscopic 

inclusions. Since the inclusions may be either in the bulk of the crystals or 

on their surfaces, the results are of interest in surface studies as well as 

studies of bulk properties. 

Absorption is of greater interest than scattering in the study of high-power 

-4     -1 infrared windows. A value of ß = 10   cm     for the absorption coefficient can 

cause sufficient heating for the system to fail, for example, by thermal defocus- 

rscat 
18-20 -A 

ing or by window fracture. But an equal amount of scattering )8_      = 10 

cm"   may be tolerable.   Thus, scattering will be neglected here, except to 

mention that the observation of the associated scattering may help to identify 
21 the absorption mechanism in some cases. Winsor    has shown theoretically 

that scattering, especially in conjunction with total internal reflection at the 

host crystal boundaries, may increase the measured value of ß by increasing 

the path lengths of the rays in the crystal. 

22 There is great interest     in lowering the value of ß for candidate ma- 

terials for high-power infrared windows.   Materials of current interest include 

ZnSe, CdTe, KC1, KBr, and TI1173 glass (G^gS^^n^  Results» S"00 as 
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those presented here, concerning the magnitude and the temperature and 

frequency dependence of ß for extrinsic and intrinsic processes are needed 

in the material-improvement programs. The effects of inclusions on absorp- 

tion in the infrared have not been studied experimentally.  Such experimental 

studies would be welcomed. 

It has been realized for some time that windows in high-power infrared 

laser systems can cause the system to fail with or without actual mechanical 

18-20 failure of the window. Examples are thermally induced fracture of the 

window material and thermal defocusing of the laser beam by the window 

resulting from uneven heating of the window, respectively.   The increase in 

the spatial average of ß resulting from inclusions can cause either type of 

failure,   hi addition to this overall heating of the material, localized heating 

in the vicinity of inclusions can cause material failure.   This local-heating 

failure effect is considered in Sec. V. 

For sufficiently large concentrations of inclusions, the localized heating 

can also cause considerable optical degradation of the beam.   In the present 

study it is assumed that the concentration of inclusions is so small that this 

localized-heating type of optical distortion is negligible. However, it should 

be mentioned that scattering may be considerably larger at high-power levels 

than at low levels as a result of the scattering by the heated host material near 

the inclusion.   This effect should be greatest for scattering near the forward 

angle. 
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n. Analysis of Absorption Cross Sections 

Consider a sample consisting of a nonabsorbing host material of dielectric 

constant «„ (real) containing N, inclusions per unit volume, each inclusion 

having absorption cross section 0 .   .   Multiple scattering will be neglected -- 

a reasonable approximation for the present case of small impurity concentrations. 

The well known result for the absorption coefficient ß of the sample is then 

ß =   O^ N,   . (2A) 

Only the case of spherical inclusions of radius a will be considered.  The 

absorption cross section is not generally equal to the geometrical cross section 
2 

ffa .   For ka « 1, where k = 2 rr/A„ , with X„ the wavelength of the radi- 
2 

ation in the host material» the value of or .    typically is small (a .    « ira ). 

In the case of ka » 1 and | f | » 1, where € = *TAU» with €j the dielectric 

constant of the inclusion, the reflection at the surface of the sphere is great, 
2 

which again makes a.    « ffa . 

Simple expressions for a.    for various limiting cases will be derived 
23 24 

from the classic result of Mie:   ' 

L    (21+1)     fReUj+bp- | a£ |   - | b£ |2 1 ,    (2.2) 

where Re denotes "the real part of."  The values of a.  and b. in the regions 

of interest are given below in Eqs. (2.3), (2.7), and (2.8). 
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24,25 
For small spheres (ka « 1), the sums are well approximated by 

the single term containing a. , where 

al = "* T 7TT (ka)   ' (2.3) 

24 
The time dependence is taken as exp(-icot).   Some authors     use exp(+iout), in 

vhich case all factors of i in (2.3) and below would be changed to - i.   With 

i      |2 e = €-3 + i Cj, substituting (2.3) and | a. |   « Re a, into (2.2) gives 

12 £j ka 

"»"   (V2)2
+c/ 

ffa    , for ka « 1 (2.4) 

Two limiting cases of (2.4) are of interest.   For e, « €« , which is 

satisfied for nonmetals at frequencies not too near the fundamental resonance 

frequency or the high-frequency absorption edge, ß, and e» are related 

the expression 

Cjk 

h = 2Jm(n>ka! Kk (2.5) 

Using this result to eliminate Cnk in (2.4) gives 

12 Ren    IQ    .     2 
Us=  ;—IT ^la>ffa » €J <K €ft * (2.6) 

The second limiting case of (2.4) is that of small metallic inclusions. 

The Drude expression for the dielectric constant is 

2 

GO 

CO 
p  - — 

€H(oT + icor) 
(2.7) 
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where T is the electron relaxation frequency (often written as 1/T), €„, is 
2      1/2 the contribution to € from the core electrons, and co   = (4ffNe /m) '   is the 

plasma frequency, which has a typical value of to   = 5 x 10    rad/sec.  At 

14 10.6Jim, a; * 1.9 x 10    rad/sec.   There are two contributions to the relaxa- 

tion frequency T: T = T„  + rg , where the bulk contribution T„   has a typical 

value    of T-   a 5 x 10    sec   .   The value of the surface-scattering contribu- Bu 

10c Hon Tg   is ~v„/a, where the Fermi velocity vp has the value vp 

JO _1 o 
cm/sec for many metals.   With rßu ^ 5 x 10    sec    and vp ^ 10 cm/sec, 

rSu>rBufora^200A- 

For typical metals at 10.6pm, to     » | to   + itoT |, and (2.7) gives 

co. 
*eH •- 

co +icoT 
"p 

a2 + r2 ("-{)- en + 2*en (2.8) 

Both the real and imaginary parts of the dielectric constant are large in magni- 

tude for small particles of typical metals at 10.6pm.   Substituting (2.8) into 

(2.4) gives 

ffabs =  12 *H       ^   T  ™2 •' Wp2 » l^2+ i"T |  . (2,9) 
wp 

for metals.   This simple expression for the absorption cross section will be 

used in Sec. HI. 

Next consider the case of large spheres, so that 

1 ka » 1 , TPI 0Ta » 1 (2.10) 
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are satisfied, where & = 2 k Jm n is the bulk absorption coefficient of the 

inclusion, n = /T1, and c9m denotes "the imaginary part of."  Ihe inequality 

j ß. a » 1 typically is satisfied for metals and strongly absorbing dielectrics. 

It will be shown that 

ffabs =  d-Rl)^    . ka, yfya» 1 (2.11) 

where R.  = | (n -1) /(n+1) |    is the reflection coefficient for normally inci- 

dent radiation. 

The asymptotic expressions for the a. and b. in (2.2) are 
25a 

. I   -i ka -l   e sinx -ncosx tany 
1 - in tany 

as   0, 

for I $ ka 

for i > ka 

bi ft jA+Vika     cosx^y-jisinx § fori* ka 

^ 0, forje> ka 

(2.12) 

(2.13) 

where x = ka-y(4+l)ff andy= nka - y (4 4-1) n .   The approximation 

tany sf i is valid when «9m(n)ka » 1 is satisfied, as seen from the expres- 

sion 

ta„/A ,jn\      sin2A + isinh2B   ...   . .„ ^ . 
^^^^   cosU+coshSS   Bi«»*2B*i (2.14) 

where the approximations are valid for B » 1. 

Using tany a: i and 

,X+1   -ika i      e 

4+1 

-ika        -ix e = e (2.15) 
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reduces (2.12) and (2.13) to 

h - e •ix    isinx + ncosx 
 I+H  

.    a. „-ix    cosx + insinx /9 i*\ bi - e     —r+5 •   (2,16) 

for £ ^ ka.   From (2.16), it is easy to show that 

,2 

i^-w-tifp- a£+b£ ^ 1. (2.17) 

for £ 5 ka, and from (2.12) and (2.13),a£ a b, 2: 0 for £ > ka. 

Substituting (2.17) into (2.2) with the upper limit in the sum replaced by ka and 

using 

1-   inl!±l= JRen    =   1 
In+ll2       |n+l|2 l 1 

(2.18) 

gives 

"abs^fl   (1_Rl)iC   (2X + 1) (2.19) 

This expression, with 

ka 9 
L   (2£ + l) 2 (ka)   , 

£=1 
for ka » 1  , (2.20) 

gives (2.12). 

When -y Fja »1 is not satisfied, that is, when a ray traversing the inclu- 

sion is not completely absorbed, it is reasonable that (2.11) should be replaced by 

the approximate expression 

ffabsa!<1-Rl><1-e^ia>ffa2- (2.21) 
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The well known result that the extinction cross section o^ = ogbs + 0"scat 

is equal to twice the geometrical cross section when ka » 1 follows directly 

from (2.17).   Substituting a£ + b^ = 1 for t £ ka and a^ + b£ = 0 for X ^ ka 

into the expression 

ffext = pf Jj (2i+DReUi+b1) 

and using (2,20) gives or      = 2ffa . 

For large spheres with (2.10) satisfied, it is not difficult to show that using 

geometrical optics approximations gives the result 

*abs = <!-<*»«. (2.22) 

where (R) is the value of the reflection coefficient averaged over the illuminated 

hemispherical surface: 

■f 
J r1 

<R) =    \    d(cos26)R=   \   d(cos2T)R  , 

'0 J0 

(2.23) 

where 6 is the angle between the surface normal and the wave vector of the inci- 
1 2 2 

dent radiation, r = -s- JT- 0, and R = I r   |   + I r   I   , with r    and r    the i p ■  n p n 

Fresnel reflection coefficients for the two polarizations.   By numerical evaluation 

of (2.23)for specific values of n, itis not difficult to show that R.  ^ <R> in gen- 

eral, although they do not differ greatly for a number of different values of n. 

For example, for n = 1.27 + i 1.37,  <R> = 0.66 (p. 292 of Ref. 24) and 

RI = 0.72. These two values differ by 8%, which is a typical value of other 

values of n considered. 
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It is believed that the result (2.11) is correct since it was derived from 
23,24 

the exact theory of Mie. The difference between (2.11) and (2.22) is not im- 

portant in the present study since the small difference is overshadowed by other 

effects, such as deviations of particle shapes and sizes from the assumed spheres 

of common radius.   In passing, notice that the phenomenological expression (2.22) 

results from using geometrical optics approximations and assuming that the re- 

flections for both polarizations from the (curved) differential area on the tphere 

are the same as those of a plane semi-infinite medium at the same angle of inci- 
26-28 

dence.  With these approximations, the Franz, Depperman, Foch surface 

waves do not arise and surface wave "spray" is neglected.   The exact theory of 
25,24 

KJe does contain these effects. 

Limiting values of the absorption cross section have been discussed above. 

For example, (2.4) and (2.11) are the expressions for a .    for the two cases of 

lea « 1 »ud ka, -J-^I3 >> *' respectively,   h some cases the two limiting 

values arc joined smoothly by a monotonically increasing function of particle 

radius a, as illustrated schematically in Fig. 1.   In other cases, a .    as a 

function of a may exhibit a maximum, as illustrated in Fig. 2.   In this figure, 
2 

the value of o./va   at ka = <» was corrected (1 - R.) = 0.75, as compared 

with 1 - (R> = 0.66 in the reference). 

The value of or.     at the peak not only is greater than the a -* • limiting 

2 2 value, but also may be greater than ffa .   In Fig. 2, for example, a .    - 2ira 

at the peak.   An absorption coefficient greater than the geometrical cross section 
2 

ffa  is possible since the electric field in the inclusion may be larger than the 

incident field, as is well known in electromagnetic theory (large fields near sharp 

cracks in dielectrics, for example). 
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inclusion radius a in arbitrary units 

Fig. 1. Schematic illustration of a rnonotonicaüy increasing cross section. 
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e* 

ß   H 

1/ka 

1     2 345» 

Fig. 2. Example of a CXOM section with a maximum value greater 

than ff a . After Van der Hülst, Ret 24, p. 276. 
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in. Absorption Coefficients for Various Types of Inclusions 

The results (2.1), (2.4), (2.11), and (2.21) will now be used to determine 

the effects of various types of inclusion in crystals.  First consider the case of 

ka » 1 and fya » 1.   From (2.1) and (2.11) 

ß = 7ra/(l-RL)NI for ka, 0ra » 1 (3.1) 

This result for ß is essentially independent of temperature in many cases of inter- 

est.   In the infrared region, the frequency dependence of large metallic inclusions 

is either ß ~ w '    or ß independent of m, as discussed at the end of the present 

section.  Near the reststrahl region of dielectric materials, R.  is strongly fre- 

quency dependent;   otherwise R,  is relatively constant in the infrared region. 

If the absorption coefficient 0. of the inclusion becomes too large, R. 

approaches unity and ß becomes small.   In the other limit of small ß, 

(/3ja « 1 « ka), the rays traversing the inclusions are not completely ab- 

sorbed, and ß becomes small again. 

Consider this latter case of large inclusions (ka » 1) that absorb only a 

fraction of the radiation in the inclusion j3.a « 1).   From (2.1) and (2.21), 

ß =   ±(\-R1)ißl , /3Ta « 1 « ka , (3.2) 

where f = 4 ira   N,/3 is the fractional volume of inclusions. 
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Next consider the small-inclusion case of ka « 1.  From (2.1) and (2.4) 

9€J ß  2  J T fk   , ka « 1 (3.3) 

For nonmetals, where Cj « c« typicaUy is satisfied, (2.1) and (2.6) give 

ß 2= 
9 Ren 

(ea + 2) + e, 
/5rf , for ka«l, c, £ 1 , (3.4) 

where the factor in the bracket typically has a value near unity.   For very strongly 

absorbing dielectric materials (u> near the fundamental resonance or the elec- 

tronic absorption edge, for example), the result (3.3) should be used, otherwise 

(3.4) is more convenient. 

The absorption coefficients in (3.2) and (3.4) are strongly temperature and 

frequency dependent in general.   If 0, is controlled by, say, the n-phonon sum- 

mation process, then ß ~ Tn"   in the high temperature limit and ß decays 

exponentially with frequency. 

Forthecaseof-j-(l-R, )s= 9Re(n)[(c   +2)2+ Cj2]    ^ 1,(3.2) and 

(3.4) give 

ß * ißt for both ka » 1 and ka « 1     . (3.5) 

For the cases above [(3.2), (3.4), and (3.5)] for which ß ~ ß,, a small fraction 
2 

of the radiation entering the inclusion is absorbed, while for 0 ~ (1 - Ri )ffa  in 

(3.1), essentially all the radiation entering the inclusion is absorbed, roughly 

speaking. 
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Next consider the case of small (ka « 1) metallic inclusions.   From 

(2.1) and (2.9), 

9n„3üJ2rf 
ß * 9     • (3.6) 

ceo z 

P 

This expression (3.6) shows that ß increases quadratically with frequency and 

is independent of temperature, roughly. 

The absorption by small metallic inclusions has a peak that lies in the 

ultraviolet or visible region typically.      The value of p at this peak is much 

greater than the value in the infrared.   Thus ultraviolet and visible measure- 

ments can be used to verify the source of absorption by small metallic particles 

in the infrared. 

Consider, as an example, small potassium spheres in KC1 or KBr. 

F centers can be transformed to colloidal potassium (small spheres) by heating 
29-31 

the crystal. The transformation is enhanced by ultraviolet radiation.  The 

wavelengths XQ   of the peaks for the small potassium spheres in KC1 or KBr 

are 0.730 and 0.770jim, respectively.      In the visible and ultraviolet, 

r2 « a;2, and (2.7) and (3.3) give, with k = n„ w/c 'H 

2 2 
00 CÜ 

00 

€H W €H W 

r2"20pk 
ß *   5 ~ T    ' <3'7> I 

{ur-taj) + (r«0V«> I 
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where 
(a 2 _ p 

w0 2 ct. + €. H     "I» 
ß pk 

9nnV 
CWp

2r 
f    . 

Notice that for fairly narrow lines (T ^ U)Q /10),   ß ** ß .   at the peak at 

(ti = a)_ , and r is the full line width between the points ß = -y- ß . . 

Dividing ß ,   by the infrared absorption coefficient (3.6) gives 

is. O) 0 
273" wnfr 

(3.8) 

%14       -1 For XQ = 2 irc/ü)Q = 0.75jAm,  Xffi =  10.6jzm, and T = 5X 10     sec   , 

(3.8) gives 

ÖL>  = 6.4 X103 

0 
(3.9) 

10.6 

If it is assumed that the limit of detectability of color for the colloids in 

KBr or KC1 corresponds to ß,   = 0.03 cm" , the value of ß.Q ,  from (3.9) 

is /3,0 , = 5 x 10    cm   .   Thus the contribution to ß from potassium colloids 

in water while KC1 or KBr crystals should be less than ~ 5 x 10"  cm" , accord- 

ing to the order-of-magnitude estimate.   Colored crystals could have a greater 

contribution to ß from this source.   It should be mentioned that impurities in 

the form of F centers which give rise to strong absorption in the visible region, 

may not give rise to detectable absorption in the infrared. 
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The usual concept of reflectivity loses its meaning when ka « 1. However, 

in this case of a small sphere, the incident electric field is nearly constant across 

the sphere, and the field Ej inside the sphere can be obtained from simple electro- 

static theory.   The well known result is 

EI " 7+1 EH   • 

where E„ is the field in the host crystal in the absence of the inclusion.   Thus, 

for a sphere with | c | » 1, the field inside the sphere is much smaller than 

that in the host material. 

Consider the frequency dependence of 1 - R.  in (3.1).   For the case of 

2 2 
r   » w , (2.8) gives the familiar result 

w„ 

£j = £H»r 

Alto 
CH<° 

where a = to   /4irT is the conductivity.   For e — i €» , the value of n is 

n=vr?is/|~\      (1+i), and (2.18) gives 

1/2 1/2 

With 1/2 (3.1), this gives ß ~ to ' , as discussed under (3.1). 

For the case of T2 as I^2 « to2, (2.8) gives 

(3.10) 

n=fr*   ^SSL    fl+ljÄ 
2nHto Bu 

(3.11) 
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f 

Substituting (3.11) into (2.18) gives 

i-Ei- 
2"HrBu r2 a= IL2 « w2 

Bu (3.12) 

f 

From (3.12) and (3.1), ß is independent of frequency» as mentioned in the second 

case under (3.1). The temperature dependence of ß in this case is determined 

by r~   iii the usual case in which n„ and (0    are nearly independent of T. 
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IV. Examples 

_3 
Volume fractions of various inclusions in a nonabsorbing host for ß = 10    cm 

will be calculated in this section.   For large nonmetallic particles with 1 - R> ~ 1, 
2 

(3.1) gives ß = ir a N,.   Thus, a single nonmetallic particle of radius u = 50Mm 
3 

(with ka, /5La » 1) in a 1 cm   crystal gives 

ß a:  10"4cm-1   . 

3 -7 The volume fraction for this inclusion, f = (4ffa N./3), is f = 5 x 10   .  The 

-4     3 same value (ß = 10    cm ) is obtained with 100 particles per cubic centimeter of 

a = 5jim (with, say, k = k.       = 2k       = 4ir/10jim, so that ka = 2ff » 1 host vac 

Jm (n) * 1).   The volume fraction of inclusions in this case is f = 5 x 10 •8 

Clearly, such macroscopic inclusions must be essentially eliminated in order 

to obtain small values of ß. Metallic inclusions (with ka »1) are not as trouble- 

some as nonmetallic.   For a metallic inclusion with R, = 0.95, or 1 -K. = 1/20, 

-4     -1 20 times more inclusions are required to give ß = 10    cm   .   Even with such a 

reduction in absorption, the absorption by large metallic inclusions is not negli- 

gible; the volume fractions in the two examples above become 10    and 10   , 

which are still quite small. 

2        2 -1 

For the small inclusion case of 9Re(n)[(€»+ 2)  + €. ]    ^ 1 in (3.4), or 

for |( 1 -R.)a 1 in (3.2), with f = 10"5 and j3j = 10cm_1, (3.4) or (3.2) gives 

ß = 10"4cnk_1. For /3j = 103cm-1, f = 10"7 gives ß = 10"4. Consider the specific 

example of ZnS in ZnSe, which is of interest because Kodak's Irtran 4 is polycrys- 

talline ZnSe. Until recently, ZnS was added to inhibit grain growth. It is believed 
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-1 that ZnS collects along grain boundaries. With Ren. = 2.47 and p\ = 0.4cm 

for ZnS and nH = 2.89 for ZnSe, Ren ^ n as 0.855, and for ka « 1 and €j « 1, 

(3.4) gives 

ß 2i 0.38 f cm" 

-4      -1 -4 The volume fraction corresponding to p = 10    cm     is f = 2.6 x 10   .   The 

results for fya « 1 « ka from (3.2) are ß = 0.29 f cm"1 and ß = 10'4cm_1 

-4 
for f = 3.4 x 10   .   Thus, ~0.01 to ~0.03 volume percent of ZnS in ZnSe gives 

ß at l0"4cm_1. 

The present theory indicates that the 10.6 Jim value of ß ss o. 1 cm"   for 

Irtran 4 is not a result of ZnS in the crystal.   Since ß. = 0.4 cm" , approximately 

25 percent ZnS would be required to give ß = 0.1 cm" .   Even the doped samples 

did not contain such a large fraction of ZnS. 

Next consider the case of very small metallic inclusions.   For w =* 2 x 10 

rad/sec, T a rgu a 5 x 1014sec_1 (for a = 20A), w   = 5x 1015 rad/sec, 

kvac ~ 2ff/10-6Mm» and €H = 4, (3.6) gives 

ß  2i 2000 f cm 1 

-8 -4      -1 For a very small fractional volume of f = 5 X 10    , this gives ß = 10    cm 

for the small metallic inclusions. 

As a final example, consider the problem of a surface contaminated by, 

say, a polishing compound.   Since polishing compounds contain light elements 

such as oxygen, aluminum, and carbon (in order to obtain hardness), their funda- 

mental resonance frequencies are high, that is, near the 10.6Jim frequency. 
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Thus, their absorption coefficients are large at 10.6Jim.   For example, 

extrapolating the A1„0„ data on the range 4ßm < X < 5.5jim to 10.6jJm 

2      4-1 gives ßj = 10 -10 cm   .   Even though the extrapolation procedure gives a 

highly uncertain value of ft, a value of ft = 100 cm    seems quite reasonable; 

the values of ß for LiF, MgO, and GaP at 10.6p m are 50, 60, and 123 cm"1, 

respectively. 

As a simple specific model, consider particles of radius a = -j- fXm in a 

surface layer of thickness Lg   = 2 a.   The fraction volume in the surface layer 

-2 -1 is taken as f~   =10   , and the value of ft is assumed to be 100 cm   .   The 

value of ß for the surface layer, from (3.5), is ft,   2: f_ ft = 1.  The fraction 

of the energy absorbed in the surface layer is ft Lg   = 5 x 10" .   Thus, the 

-4 fractional absorption at two surfaces is ~10   . 

In spite- of the fact that the cross sections are often much less than ffa , 

they are quite large in a number of important cases. As a point of reference, 

recall that the real and imaginary parts of the wavevector are equal for 

0j = 4ir/10.6jUm = 104cm_1, roughly, atl0.6f*m. See Eq. (2.5).   For 

23     "3 -19     2 
N = 10    cm   , the corresponding cross section is a = ß / N = 10     cm . 

-19     2 4-1 These large values of a = 10     cm   or ß = 10 cm     are typical of values 

at the fundamental resonance in ionic crystals. 

-4      -1 -7 -8 For a value of ß = 10    cm     and a volume of f ~ 10    to 10   , which 

corresponds to ~10    to 10    impurity atoms per cm , the value of the cross 

section per impurity atom is ~10"4/1015 to 10_4/1016 = 10"19 to 10"20cm2. 

Thus, the average cross section per atom in a highly absorbing inclusion is 

large, approaching that of an atom in a solid absorbing at the fundamental 

resonance. 
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V. Material Failure From Local Heating 

The heating of macroscopic inclusions can give rise to localized regions 

of high temperature that can cause material failure when the intensity i • large. 

This is not a nonlinear effect, but is usually important only at relatively high 

intensities.   Consider the same model, used in the previous sections, of a 

uniformly heated spherical inclusion of radius a in an infinite host crystal 

that does not absorb the laser radiation.   For times short with respect to a 

characteristic time for heat to diffuse by a distance a, very roughly speaking, 

most of the energy absorbed by the inclusion remains in the inclusion.   Thus 

the temperature in the inclusion increases linearly with time.  For times large 

with respect to the characteristic time, part of the absorbed energy has dif- 

fused into the host crystal, and the temperature rise in the inclusion is con- 

siderably less than the value obtained by neglecting diffusion.   Thus, a given 

amount of energy will cause a greater temperature rise if it is deposited in a 

time that is short with respect to the cSaracteristic time than if deposited in 

a time long with respect to the characteristic time; the local heating of macro- 

scopic inclusions is a more severe problem in high-intensity short-Dulse systems 

than in low-intensity long-pulse or cw systems of equal average intensity. 

The criterion for failure of the window material depends on the details of 

the laser system and the type of material and inclusions. Since there is no uni- 

versal criterion, it will be assumed that a temperature rise of 1,000 K consti- 

tutes failure.   This is a reasonable choice for the following reasons:  This 

temperature is approximately the correct value for melting temperatures and 

fracture-inducing temperatures.   The latter have typical values of the order 
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of a{/oE, where a- is the material strength, a the linear thermal 

expansion coefficient, and E the Youngs modulus.   For a, = 10  psi, a = 10 

and E = 10  psi, the temperature corresponding to fracture is 1,000K. Heats 

of fusion have typical values corresponding to several hundred degrees Kelvin. 

Ac 1,000 K above ambient temperature in materials which do not melt, the 

ionic diffusion may be important.   Although order-of-magnitude accuracy in 

temperature usually is not sufficient, order-of-magnitude accuracy of intensi- 

ties corresponding to failure is all that can be expected at present, and this is 

often sufficient.    Since the present interest is in this failure intensity L and 

the failure temperature T, is linearly related to I-, the value T. = 1,000K 

should be sufficient for present purposes. 

Some differences between the failure criteria for high-power windows 

and for previous studies of glasses for glass-host lasers (at 1.06fim, for 

example) should be mentioned.   In the latter, highly focused, single nano- 

second pulses are used, and breakdown occurs in a small volume.   In the 

former, all of the window is illuminated, apart from edges, .   v ^rt-structure 

shadows, Cassegranian-optics "shadows", etc., and operatl itions range 

from microsecond pulses with repetition rates of a few hundred pulses per 

second, to ~ 1 sec  pulses with several seconds between pulses in order to 

allow the window to be cooled, to continuous operation. 

Thus, two important features of high-power laser-window failure are 

that failure of the weakest part of the window can constitute system failure, 

and that fatigue and other multiple-pulse effects must be considered since re- 

peated pulses must be withstood.   As an example, in a single-pulse measure- 

ment, a laser glass conceivably could melt locally and recrystallize without 
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leaving detectable damage.   For a window in a pulse-operated system, the 

local absorption coefficient could be changed by the high temperature associ- 

ated with the first pulse or the first i: pulses, thus causing increased absorp- 

tion in subsequent pulses with eventual failure. 

Bloembergen has suggested that local field enhancement, such as that 

occurring at the edge of a crack in a material, may give rise to local intensi- 

ties up to 100 times greater than the nominal external intensity.   This effect 

could lower the values of the breakdown intensities calculated below by a factor 

of -100. 

The temperature rise for T < T   , where T    is the melting tempera- 

ture, can be calculated simply for the following model.   The spherical inclusion 

of radius a has temperature-independent values C, and K. of heat capacity per 

unit volume and thermal conductivity.   The host crystal has temperature- 

independent values C„ and K„.   The boundary between the two is assumed to 

be thermally perfect; that is, there is no thermal impedance.  Heat absorption 

by the host crystal is assumed negligible. 

The thermal time constant 

T = Ca2/4K 

is the time required for heat to diffuse a distance a, roughly speaking.   For 

short times t « T, , i\,» where the subscripts I and H denote the values 

of T in the inclusion and in the host crystal, respectively, the diffusion of 

heat out of the inclusion is negligible.   Thus, the heat-flow equation 

-Kv2T + C |I = S   , (5.1) 
o t 
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where S is the heat source (W/cm ), can be approximated by 

8T 
for t « Tj , Tu    . (5.2) 

Uniform volume heating of inclusion.  First consider the case of spatially 

constant heat generation in the inclusion (for example, ft a « 1 or, in metals, 

skin depth Ö » a). The source term can be written as S = 0 in the host ma- 

terial and 

SI=  3^1/4,.* (5.3) 

in the inclusion, where I is the incident intensity and a is the cross section of 

the inclusion, as discussed in Sec. II. It should be mentioned that (5.1) will be 

solved separately in the inclusion and in the host material, and the appropriate 

matching of the temperature and heat flow at the boundary will be made.   Thus 

K is a constant in each region, and the usual spatial derivatives of K do not 

a spear in (5.1). 

For T defined as zero at the time the laser is turned on (t = 0), the 

solution to (5.2) is 

TWabs1*/4**0!   • for t « Tj, Tu    . (5.4) 

There is a steady-state solution to (5.1), which can be obtained as follows. 

The function 

Sr      n _ 2 
Ti = Tc-6iq-r2 = Tc-AT<7>  ' t » Tj , TH    , (5.5) 
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with 

AT=  *absI/8*aKI   ' 

is a solution to -K. v   TV = S., as is easily seen by substitution, since 

„2 2       1     32 or       , V   r   = -*■ -r— r    -— = 6  . 
j2   3r <jr 

Here T    is the temperature at the center of the inclusion and AT is the tem- 

perature difference between the center and edge of the inclusion. 

The heat flow across the surface r = a is 

Qa =  -4irzK 1 U/r=a 
4-4ffa

3
Sl (5.6) 

Physically, this result indicates that the heat generated in the inclusion flows 

out of its surface in the steady state. 

Next consider the steady-state solution of (5.1) in the host crystal. It is 

well known, from the electrostatic potential of a point change, for example, that 
2 2 

V   (l/r)~6(r), where 6 is the delta function.  Thus, V   (1/r) = 0 for r>0, 
2 

as is easily verified by taking the derivatives. Thus, the solution to -KHV T„ = 0 

for r > a is 

TH = aTa/r   . (5.7) 

From (5.7), the value of Qa is 

Qa = -47ra'K, 
\        ' r = a 

4iraKHTa   ' (5.8) 
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where T   is the temperature at r = a.   Equating the values of Q   in (5.6) and a 

(5.8) and using (5.3) gives 

Ta = aabsI/4ffaKH   • (5.9) 

From (5.5) with r2 = a2 

tr.   I 
T    =  T   - AT = T   -  a*°% a        c c     8iraK. (5.10) 

From (5.9) and (5.10), the steady state value of T   is 

c» '-LT (1+ ^f) '^ki ■ *$i'*{%;**')■ ^ 

The first term in (5.11) is the temperature rise in the inclusion and the second 

term is the temperature rise in the host crystal. The value of K „ is determined 

by the smaller of K„ and K» when one K is much larger than the other.  Thus 
3 

for a metallic inclusion in an infrared window material, K ff - T KH * 

The results (5.4) and (5.11) are illustrated schematically in Fig. 3 for the 

three cases of K, « y K„, K. = K„, and  *■ K„ « K, in the (a), (b), and (c) 

parts of the figure, respectively.  For all three cases, T   increases linearly 

with time according to (5.4) for t « T ^.  Consider the values of T   for 

t « T „.  For K„ -* •, (5.9) gives T   = 0; the infinitely conducting host 

maintains the temperature of the surface of the inclusion at T = 0. In this case, 
2 

(5.11) and (5.5) give T m = AT = 4-T_., and the T m asymptote lies below 

Tj in Fig. 3a.  In Fig. 3b, for Kj = KH, Tc<a = 2TjT . 
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4 KI T   "4KT.TIT-T 

Pig, 3. Schematic illustration of the temperature at the center of a uniformly heated 
spherical inclusion for three limiting values of K„/K.. See Eqs. (5.4) and (5.11). 
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For K„ -» 0, (5.11) gives T     -' • . There is no finite steady-state VH c» 

solution since the host crystal conducts no heat out of the inclusion.   The tem- 

perature of the inclusion rises linearly with time for all times according to 

(5.4).   For K„ large but finite, T     is large as illustrated in Fig. 3c. 
II COD 

Surface heating of inclusion. Next consider the case in which the heat is 

generated near the surface of the inclusion, rather than uniformly throughout 

its volume.   Such is the case for typical metallic inclusions in dielectric hosts 

or in the extreme case of ßa » 1 for other types of inclusions in dielectric 

4     -1 hosts.   As an example of the latter, for ß= 10 cm     and a = 10Jim, ßa = 10. 

The skin depth 6 for a metal is 

6 = c (2irwa) 

35 

(5.12) 

in Gaussian units, where c is the velocity of light,  u) is the angular frequency, 
o 

and a is the conductivity.   A typical value for 6 is 40 A for Cu with X = 10Jim 

Energy is absorbed in the metal at a rate which decreases exponentially with dis- 
2 

tance into the metal [S « E   <* exp(-2x/6)]. 

For spherical inclusions with radius a » 6, we assume that heat is gen- 

erated uniformly within a layer of thickness 6 over the entire surface of the in- 

clusion. This is a good approximation for a « X because the electric field is 

nearly constant over distances of order a. For larger radii, there will be local 

hot spots over the surface not only on the front surface but also on the rear sur- 

face , 

10 
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There are three characteristic times of interest.  First, 

T6 = 4C,62/tKI (5.13) 

is roughly the time in which heat diffuses out of the skin depth, assuming negli- 

gible diffusion into the host for small time since K„ (dielectric) « K. (metal). 

Second, 

Ta = 4C,a V9ffKI (5.14) 

f 
ft 

is the time in which heat diffuses from the inclusion surface to the center, 

roughly speaking.   Third, 

TH -  CHa /3KH (5.15) 

is roughly the time in which heat diffuses a distance equal to the radius of the 

inclusion into the host.   The values of the numerical coefficients in (5.13)-(5.15) 

are chosen for later convenience. 

The temperature at the inclusion surface will now be determined for four 

time scales: For t « T* , heat does not diffuse out of the skin depth, and the 

surface temperature is linear in time. At later times, but with t « T  , heat 

is diffusing out of the skin depth and the thickness of the heated region increases 

1/2 1/2 as t ' ,  Thus, the surface temperature increases as t '  .   For still larger 

times T   « t « T„ , the temperature within the sphere reaches a spatially 

constant value and increases linearly with time.  Finally, for t ^ T„ , heat 

diffusion into the host becomes important and die temperature within the inclu- 

sion reaches an equilibrium value. 
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For t « Tß and 6 « a, the spherical shape of the inclusion surface 

is not important, and we can solve the easier problem of heat generation in a 
Of. 

thin plane slab.   The Laplace transform of the diffusion equation (5.1) is 

dirjid     2T = 
dx Kp    ' 

= £1 
K (5.16) 

In the present problem, heat is generated at a rate S = I a . /4ffa 6 in the 

slab 0 < x < 6, where x = Ö corresponds to inclusion surface r = a. Equa- 

tion (5.16) inside, outside, and within the skin depth of the inclusion becomes 

d2™ 
dx -q.V-«. x < 0 (5.17a) 

<TTH(p) 

~a7~ 
- a 2T <P> = 0 qH  lH u  ' x > 6 (5.17b) 

d Vp) 2T(p) S 0 < x < 6 (5.17c) 

Equation (5.17) has the solution 

qTx 
TI<P> = AeHl 

-qH
x 

TH(p)= Be 

x < 0 

x > 6 

s qTx -qTx 
T6(p) = -j— + Cel   +De        , 0 < x < 6 

P ci 

(5.18a) 

(5.18b) 

(5.18c) 
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The constants A through D are determined from the boundary conditions that 

T and K -r- are continuous at x = 0 and x = a: ax 

A = ~Y~ + C + D 
P Cj 

qjA = qjC - qjD 

Be        = -a— + C e      + D e. 
p C I 

-q„a q.a -q,a 
-KHqHBe   "  = K^Ce      - K^De   l 

(5.19a) 

(5.19b) 

(5.19c) 

(5.19d) 

The temperature at the inclusion surface is given by T(p) = B exp (- q„ 6). 

Solving (5.19) for B gives 

^CTKT 
T(x=6>P) = ^- T'T 

I    (/^"+/C^)    p 
v (-■"""). 

Inverting and keeping the dominant term for t small gives 

T(x=6,t) = -£- 
CJKJ 

T   (/CJKJ^+ /C^KjJ ) 
t , t « T. 

Notice that for C. K. » C„ K„ (appropriate for metal in dielectric) 

T(x= 6,t) = St/C. as one would expect.   From this last equation with 
2 

S = I a.   /4it& 61 the surface temperature of the inclusion for small 

times is 

T. = 1 ^Vi la abs la 
t Si abs 

Jl   (^CJKJ+ZC^K^) 4ira26        4ira26Cj 
t ,     t « T«  .      (5.20) 
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1 

In (5.20) and in equations below, the approximate equalities are valid for 

CJKJ » CHK„.  For T* « T « T , we can still use the approximation of 

heat generation in a plane slab with the heat generating region approximated by 

a delta-function source at x = 0.   Solutions to the heat-diffusion equation (5.16) 

are now 

A=B' 5   —*T = AKIqI + BKHqH   ' (5'22) p    4ira 

Solving (5.22) for A or B gives 

T(x=0,p) = —_*            —5*   -i-   . (5.23) 
(•CHKH+>/5JK^)      4iraZ    p*/Z 

The inverse transform of (5.23) is the temperature at the inclusion surface 

T    = 2———-    —Ä t
1/2 ,      Tfi « t « T    .      (5.24) 

a     vT (/CHKH+ycpCj")     4iraz ° a 

When t » T , the temperature inside the spherical inclusion reaches 

a spatially uniform value.   The present problem then is equivalent to uniform 

122 

qIx 

T^p.x) =  Ae l     , x < 0  , (5.21a) 

-qHx 
TH(p,x) =  Be   "    , x > 0  . (5.21b) 

The boundary conditions are that T. = T„ at x = 0 and that the heat flux away 

2 - from x = 0 is I°'ahs/4ira : i 

i 
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heat generation within an inclusion of infinite conductivity, and we can use the 

previously calculated result (5.4) to obtain 

Ta = 

3IW 
4ffa3Cr 

T   « t « Tu a n (5.25) 

For t » T„, the temperature inside the spherical inclusion reaches an 

equilibrium value, and the temperature in the host is given by T„ = T    (a/r). 

The constant, T    , is determined by equating the heat flux away from the 

inclusion to I a abs' 

Iaabs = 4lt*2KH TaJa   > 

or 
la abs 

a°°      4iraK 
H 

t » T H (5.26) 

This result is equivalent to (5.11) with K. = °o (so that the temperatures at the 

edge and center of the inclusion are equal). 

The temperature at the surface of the spherical inclusion is sketched in 

Fig. 4 for the various time regimes.   The extrapolated low-temperature linear 

1/2 time dependence of the temperature intersects the t '   curve at t = t,. 

Equating (5.20) and (5.24) gives 

1 = T6 =  4Cj 6VirKj (5.27) 
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u 
a 
cti u 
o 

I 
0) 

V CH TH 

Fig. 4.   Schematic illustration of the temperature at the surface of spherical 

inclusion with uniform heat generation within skin depth 6 « a at the surface. 

The approximation C.K. » C„K„ is made In the values of the parameters. See 

Eqs. (5.26M5.31). 
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At t = t., these extrapolations give 

16a 
T   =        '*■   1 ^^ l*°?» 

1       it2 a2    ^l  (/C7K7+^C„K„ )       ir2a2K 
(5.28) 

'I "I      ~H~H I 

1/2 At t = t2, the extrapolated t      curve intersects the next linear region given 

by (5.25).   Equating the temperatures in (5.24) and (5.25) at t,, we find 

h ' 
4a2c/ 

9ff(v/C^ + yC^Kj') 2 a (5.29) 

At t = t2 , (5.29) and (5.25) give 

T-  = 
1 °abs CI 

3ff^a(/CHKH +/CJKJ) 
7 ~ 

Iff. abs 
3ir2aKT 

(5.30) 

At t = t-, the extrapolated linear curve (5.25) crosses the equilibrium value 

(5.26). Equating (5.25) and (5.26) yields 

C.a 
r3  =  W 

and 

H CH  T|! 
(5. 31) 

%-7 For absorption in a metallic inclusion at A = lOjim, with 6 = 4 x 10    cm, 

2J/cm3K, a = lOjim, K 

(5.27), (5.29), and (5.31) give 

Cj = 2J/cm3K, a = lOjim, Kj = 2W/cmK, and KH = 10"1 to 10"3W/cmK 

f! 

l! 
3 i 
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tj  a 2 x 10"13 sec    , ^ s i(f7 sec    , 

-3 -'y 
c, t„  -  10     to 10 *" sec. 

(5.32) 

The values of t. and t. are shorter than pulse lengths of current high-power 

pulsed CO« lasers.   For a pulse length of 1/isec, the temperature is given 

by (5.25). 

The various time regimes in Fig. 4 depend on inclusion size in such a 

way that if the pulse length is fixed, long times in Fig. 4 are associated with 

small inclusions.   For example, the time t« at which the temperature reaches 
1/2 

equilibrium is equivalent to an inclusion of radius a = (3 K„t / CT)      for a 

pulse of duration t. 

The above results also apply to dielectric inclusions with ß.a » 1, as 

well as to the metallic inclusion used in the examples.   However, in the case of 

strongly absorbing dielectrics the following differences should be noted: First, 

the approximation K. » K„ is not generally valid and K. a K„ is perhaps 

more generally true. Second, the radiation penetrates to a greater depth into 
4     -1 the inclusion.  Generally ß < 10 cm    so that the radiation penetration depth 

is usually greater than 1/im, as compared to ~40 A for good conductors.  As a 

result, the first linear region of Fig. 4, (5.20), which was only of academic 

interest in the case of metals, will be important, and the size at which volume 

heating rather than surface heating applies will occur at a larger radius. 

For repetitively pulsed lasers, the above results may be applied directly 

to each pulse if the temperature relaxes to the initial value between pulses. In 

the case of a fast repetition rate, die temperature will not relax and the failure 
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temperatures will be reached at a lower intensity than calculated for single 

pulse. This will occur for two cases: First, if the time between pulses is 

less than T„, heat will not diffuse away from the inclusion before the next 

pulse. Second, for a large density of inclusions, heat that diffuses away 

from one inclusion appears at another, and die background temperature of 

the entire window is increased. This occurs when the time between pulses 

is greater than about C„J& /4K„, where I is the distance between inclu- 

sions, but less than the time constant for cooling the window. 

In the following contractual period the dielectric or metallic inclusion 

temperature will be calculated as a function of inclusion radius for various 

pulse durations. The heating of platinum inclusions in a glass host by 30nsec 

37 
duration pulses has also been considered by Hopper and Uhlmann.      They 

2 
assumed or.    =ffa   €X(CN= enu'ssivity) which is not valid for small in- 

clusions (long times).   Using the absorption cross sections discussed in 

if Sec. II, our preliminary results indicate thai the plot of temperature versus 

size in their example does not have a maximum as they found, but instead T 

is a monotonically increasing function of a. 

Preliminary calculations show that micron-size metal or dielectric inclu- 

sions can typically be heated to the failure temperature of 1,000 K by a single 

2 7 2 microsecond pulse with It less than 50J/cm   (1 = 5x10 W/cm  with t = lpsec). 

In cases of optimum heating, local material failure can occur at microsecond 
2 

duration - pulse energies is low as 5J/-,:r.:  .  Even though the failure tempera- 

ture is reached in repetitively pulsed systems of these energies, cw systems 

with the same average intensity will only heat the inclusions to about 1K. 
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38 As mentioned by Bloembergen,      local electric field enhancement 

for inclusions near imperfections such as cracks in the host material could 

lower the calculated material damage pulse energy by ?.s much as a factor 

of 100. 
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VI. Conclusions 

Small amounts of macroscopic inclusions in or on the surface of 

types of inclusions.  The corresponding effective average cross sections 

-19 -20     2 per atom, ~10      to 10      cm , are quite large. 

Simple expressions for the absorption cross sections of spherical in- 

clusions were derived for the cases of ka « 1 [Eq. (2.4)] and of ka » 1 

[Eq. (2.16)].  The results were used to derive expressions for ß for the 

four cases of large inclusions (ka » 1) of weak and strong absorbers and 

of small inclusions (ka « 1) of dielectric and metallic particles.  The 

results are summarized in Table I, which contains expressions for ß, typi- 

cal temperature and frequency dependences, and typical numerical results. 

The result that the cross section (2.6) for ka, ß,a. » 1 contains R.  , 

rather than (R), is of general interest in the theory of scattering. 

The local heating of macroscopic inclusions is a far greater problem in 

high-intensity short-pulse systems than in low-intensity long-pulse or cw sys- 

tems having equal average intensity.   Preliminary results indicate that material 
2 

failure can occur for pulse energies as low as 5J/cm  with microsecond pulse 

durations. Bloembergen has suggested that local electric field enhancement 

near imperfections such as cracks in the host material could lower the calcu- 

lated material damage pulse energy by as much as a factor of 100.  The deter- 

mination of the thresholds for damage in typical window materials will be further 

explored during the next contractual period. 
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transparent crystals can cause substantial absorption.   For example, a | 
-7 -8 15 I fractional volume of f ~ 10    to 10   , which corresponds roughly to ~10 ] 

to 10     impurity atoms per cm , can give rise to ß = 10    cm    for some 1 
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I 
I 
i 

D.   COLLECTION OF EXPERIMENTAL RESULTS FOR 0(co) j 

1 

I 
Information on the frequency dependence of the absorption coefficient has j 

been collected from the literature.   All these results have been plotted on the 

same scale for convenience of comparison.   Figs. 1-17 contain all the results 

collected to date.   Figs. 18-22 give comparisons of alkali halides, alkaline 

earth fluorides, zincblend-structure semiconductors, and type IV elemental 

semiconductors plus BaTiO«, respectively.   Fig. 23 shows a comparison of 

one material from each of the above groups, plus Ba TiO,. In this last curve, 

the elements in KBr, ZnSe, and Ge are from the same row in the periodic 

table.   The lozenges denote the 10.6 [im values from references 39 and 43. 

For Figs. 1-7, the solid-curve data was presented in the original re^r- 

ences as graphs of conductivity 2 a vs to or imaginary part of the dielectric j 

constant e« vs u. According to the relations, 

a      2ff(2g) «       W€«9 
ß=      nr       • P =   Tn-   ' 

s 

the values of the index of refraction n (co) are needed to obtain the values of ß. 

Since the values of n(co) used in these references were not given, the following 

values (lowest-wavelength values from AIP Handbook) were used formally: 

n   =1.5forKBr;n   = 1.2 for KC1 and NaCl; n   = 1.1 for LiF; n   = 1.4 for t 

BaF, ; n   = 1.4 for SrF„ ; and n   = 1.3 for CaF«.   Notice that this solid -curve 

data is in the vacinity of the main resonance, where n   is a strong function of to. 
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1 

Fig, 1. Experimental frequency dependence of the infrared absorption coefficient ß 

for KBr after Horrigan and Deutsch (+.0) Ref. 39, and Genzel (—), Ref. 40. 
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Fig, 2. Experimental frequency dependence of the Infrared absorption 

coefficient ß for KC1 after Horrlgan and Deutsch (+, x,0.0) Ref. 39, 

Smart et al(-«-) Ref. 41, and Genzel (-) Ref. 40. 
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Fig. 3. Experimental frequency dependence of the infrared absorption 

coefficient ß for NaCl after Hbrrigan and Deutsch (+,®) Ret 39, Smart etal 

(- .-) Ref. 41, and Genzel (-) Ret 40. 
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Flg. 4. Experimental frequency dependence of the infrared absorption 

coefficient ß for IIP after Horrigan and Deutsch (+,® ) Ret 39, Smart etal 

(-*--} Ref, 41, andGenzel(—) Ref. 40. 
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Fig; 5. Experimental frequency dependence of the infrared absorption 

coefficient ß tot BaFj after Horrlganand Deutsch (+,©), Ref. 39, and 

Denham et al (-) Ret 42. 
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Flg. 6. Experimental frequency dependence of the infrared absorption 

coefficient fi for S*F2 after Horrlgan and Deutsch (+,®) Ref. 39, and 

Denham et al (-) Ref. 42. 
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W/U), 

Fig. 7. Experimental frequency dependence of the infrared absorption 

coefficient ß for CaF2 after Horrigauand Deutsch (+,©)Ref. 39, and 

Denham et al (—) Ref. 42. 
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Flg. 8. Experimental frequency dependence of the infrared absorption coefficient ß 

for CdTe after Horrlgan and Deutach, Ref. 43, 
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Fig. 9. Experimental frequency dependence of the infrared absorption coefficient ß 

for ZnSe after Horrigan and Deutsch, Ref. 43. 
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Fig. 10. Experimental frequency dependence of the infrared abr^ püon coefficient ß 

for GaAs after Johnaon, Ref. 44. 
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Fig. 11. Experimental frequency dependence of the infrared absorption 

coefficient ß for AlSb after Turner and Reese, Ref. 45. 
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Fig. 12. Experimental frequency dependence of the infrared absorption 

coefficient ß for ZnS after Dettsch, Ref. 46. 
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Flg. 13. Experimente! frequency dependence of the Infrared absorption 

coefficient ß for IhAs after Johnson, Ref. 44. 
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Fig. 14.  Experimental frequency dependence of the infrared absorption 

coefficient ß tor Ge after Johnson, Ref. 44. 
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Fig. 15. Experimental frequency dependence of the infrared absorption 

coefficient ß for Si after Johnson, Ref. 44. 
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Flg. 16. Experiment»! frequency dependence of the infrared absorption 

coefficient ß for dtemond after Johnson, Ret 44. 
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Fig. 17. Experimental frequency dependence of the infrared absorption 

coefficient ß for BaTlOg after Rupprecht, Ref. 4. 
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Fig; 18. Comparison of the absorption of the alkali halidee, from Flga. 1-4. The 

curves here are amoothed curves through the led of the lowest points In Figa. 1-4. 
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Flg. 19. Comparison of die absorption of the alkaline earth fluorides, from the 

curves in Figs. 5, 6, and 7. 
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Fig, 20. Comparison of the absorption of zincblende structure semiconductors 

from the curves in Figs. 8-20. 
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Fig. 21. Comparison of the absorption of zincblende structure semiconductors 

from the curves in Figs. 11-13. 
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Fig. 22. Comparison of the absorption of type IV elemental semiconductors, 

from the curves in Figs. 14-17. 
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Fig. 23. Comparison of the absorption of one material from each group 

represented in Figs. 18-22. 
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