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13 ABSTRACT

" The recently observed exponential frequency dependence of the infrared absorption coeffi-
cient 8 in NaCl- and CaF9-structure crystals is explained in terms of multiphonon absorption
processes. A calculation gives the correct frequency dependence and approximate magnitude
of B and predicts the temperature dependence, which should be observable. Use of the central-
limit theorem reduces the mathematical complexity of the analysis sufficiently to yield a simplq
closed-form approximation tc f, In the exponential region, the difference processes, in which
some thermally excited phonons are annihilated, are negligible with respect to the summation
processes. Terms higher than second order in the perturbation expansion are found to be neg-
ligible for small n (small number of phonons created). An explanation involving finite phonon
lifetimes is proposed to explain the fact that the alkali halides show less structure in the B-w
curves than do the semiconductor crystals. Preliminary results on a new approach, using an
anharmonic Einstein model, also exhibit the exponential frequency behavior.. In addition,
B~w2 is predicted for "square-well" type impurities. .

Small amounts of macroscopic inclusions in or on the surface of a nonabsorbing host crys-
tal, in some cases a fractional volume of ~10-7 to 10-8, can give rise to a value of the optical
absorption coefficient B of 10~4cm™1 (a typical value of current interest). For various types
of inclusions, the frequency dependence ranges from increasing as
exponentially decreasing with w. The temperature dependence ranges from independent of T
to increasing as TP in the high-temperature limit, where p = 2 - 4 typically. Simple expres-
sions for the absorption cross section are derived for various cases of practical interest. The
cross sections are used to derive expressions for B for the four cases of large inclusions of
strong and weak absorbers and of small inclusions of dielectric and metallic particles.
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A result of general interest in the theory of scatter-
ing is that the absorption cross section of large spheres
is equal to (1-R; )Traz. where R; is the reflection céoef-
: ficient for normal incidence, rather than (1 - {R))wa%, ) _
" where (R)is the geometric-optics average reflection :
! over the illuminated hemisphere. Material failure re-
' sulting from local heating of macroscopic inclusions is
a far greater problem in high-intensity, short-pulse
systems than in low-intensity long-pulse or cw systems
having equal average intensity. Microsecond pulses with
energy densities as low as ~5J/cm2 (exciuding Bloem-
bergen field enhancement) can cause material failure.
Experimental curves of 8 vs w, collected from the
literature, are presented for a number of materials.
Results on multiphonon calculations, the need for emis-
sivity measurements, effects of pressure on the opera-
tion of infrared windows, effects of interband and deep-
level transitions on infrared absorption, and a discus-
sion of the previously observed T# linewidth dependence ;
for NaCl, which were presented in the two previous
technical progress reports, are summarized briefly in § |
the Introduction. ] y
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PREFACE

This Final Technical Report describes the work performed on Contract
DAHC15-72-C-0129 on Theoretical Studies of High-Power Infrared Window
Materials during the period from july 1, 1972 to November 30, 1972. Two
previous technical progress reports were prepared under this contract.

Other publications are listed in the Introduction (Sec. A).

The work on Theoretical Studies of High-Power Infrared Window Materials

will continue under Contract DAHC15-73-C-0127.

Computer analyses, which have been delayed by the change from 6600 to
7600 computers at the laboratory of Dr. Arnold Karo (consultant from Liver-

more) are now under way. The results will be presented in a future report.

The following consultants are participating in the program at present:
Dr. Arnold M. Karo, Lawrence Livermore Laboratory, Dr. Alexei A.
Maradudin, University of California, Irvine, Dr. Douglas L. Mills, University

of California, Irvine, and Dr. Lu J. Sham, University of California, San Diego.
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SUMMARY

The recently observed exponential frequency dependence of the inirared
absorption coefficient B in NaCl- and Can-structure crystals is explained in
terms of multiphonon absorption processes. A calculation gives the correct
frequency dependence and approximate magnitude of f and predicts the tem-
perature dependence, which should be observable. Use of the central-limit
theorem reduces the mathematical complexity of the analysis sufficiently to
yield a simple closed-form approximation to 8. In the exponential region,
the difference processes, in which some thermally excited phonons are anni-
hilated, are negligible with respect to the summation processes. Terms
higher than second order in the perturbation expansion are found to be neg-
ligible for small n(small number of phonons created). Ar explanation in-
volving finite phonon lifetimes is proposed to explain the fact that the alkali
halides show less structure in the B-w curves than do the semiconductor
crystals. Preliminary results on a new approach, using an anharmonic
Einstein model, also exhibit the exponential frequency behavior. In addition,
B~ w-z is predicted for "“square-well” type impurities.

Small amounts of macroscopic inclusions in or on the surface of a non-

absorbing host crystal, in some cases a fractional volume of ~10”” to 1078,

can give rise to a value of the optical absorption coefficient 8 of 10 % cm™!
(a typical value of current interest). For various types of inclusions, the fre-

. . 2 .
quency dependence ranges from increasing as «”, to independent of w, to

exponentially decreasing with w. The temperature dependence ranges from
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independent of T to increasing as TP in the high~temperature limit, where
p = 2-4 typically. Simple expressions for the absorption cross section are
derived for various cases of practical interest. The cross sections are used
to derive expressions for B for the four cases of large inclusions of strong

and weak absorbers and of small inclusions of dielectric and metallic particles.

A result of general interest in the theory of scattering is that the absorp-
tion cross section of large spheres is equal to (1 - R;)'naz, where R 1 is the
reflection coefficient for normal incidence, rather than (1-{R) )'naz, where
(R) is the geometric-optics average reflection over the illuminated hemisphere.
Material failure resulting from local heating of macroscopic inclusions is a far
greater problem in high-intensity, short-pulse systems than in low-intensity
long-pulse or cw systems having equal average intensity. Microsecond pulses
with energy densities as low as ~5] /cm2 (excluding Bloembergen field enhance-

ment) can cause material failure.

Experimental curves of B vs w, collected from the literature, are pre-
sented for a number of materials. Results on multiphonon calculations, the
need for emissivity measurements, effects of pressure on the operation of
infrared windows, effects of interband and deep-level transitions on infrared
absorption, and a discussion of the previously observed T2 linewidth dependence
for NaCl, which were presented in the two previous technical progress reports,

are summarized briefly in the Introduction.
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A. INTRODUCTION

.2,

In the first technical progress report1 the program was outlined, the

problems and objectives were defined, and the relevance to other Department
of Defense programs was discussed. A highly simplified discussion of the

‘ theory of infrared absorption was given as an introduction for investigators in

s RN R s

1elated fields. Preliminary calculations of the values of the absorption coef-
» ficient B for the two-phonon and the general n-phonon summation intrinsic
processes provided an overview of the theoretical problem and established the
method of calculation and the types of approximations necessary to render the
mathematics tractable. Methods of estimating the values of the anharmonic
coefficients, the higher-order terms in the dipole-moment expansion, and
the joint densities of states were established. The exponential decay of 8 as

a function of frequency was explained in terms of multiphonon absorption pro-

cesses. It was suggested that two-phonon summation processes in materials
having the NaCl structure are small unless one phonon is optical and the other
is acoustical, The latter result afforded a tentative explanation of the previously
observed T2 dependence of the resonance linewidth of NaCl and the small H

number of two-phonon summation peaks in various alkali halides.

AN L7 L

It was pointed out that currently known transinission and calorimetric
measurements cannot be used to obtzin values of B in a crucial range of fre-
quencies, and tiiat emissivity measurements should be capable of providing the .
needed values of § 1n the full range of interest. Pursuit of such experimental
programs would contribute substantially ro the information presently needed for

Department of Defense laser programs. Two effects of pressure on the operation




Sec. A 3

of windows were considered. First, the deformation resulting from a static
pressure differential between the two faces of the window can distort the laser
beam or fracture the window. Second, the window-material figures of merit
for thermally induced optical distortion that were previously developed are
changed when the thickness required to withstand the pressure is taken into

consideration.

It was pointed out that several references on inter-valence-band transi-
tions and transitions involving deep levels in the band gap for semiconductor
materials suggested that at impurity concentrations so low that the usual free-
carrier absorption is not detectable, transitions of holes between two different
valence bands apparently can give rise to broad absorption bands that can be
strong (8=0.3 cm"l in one case,2 for example) in the 2-6 g m region. Transi-
tions of electrons between different regions of the conduction band where the

densities of states are high also should give rise to observable values of S.

3
In the second technical progress report, the results of a Green's function

analysis and additional ordinary perturbation-theory analyses of the n-phonon

summation process were presented. A detailed analysis of the multiphonon
absorption was presented and applied to several alkali halides. It was sug-
gested that a possihle explanation of the fact that the 8- w curves of the alkali
halides and alkaline-ea:th fluorides show less structure than those of the semi-
conductor materials is that the greater anharmonicity of the NaCl-structure

crystals could give rise to suck short lifetimes of the zone-boundary phonons

that the peaks are broadened to the point of essentially complete overlap.
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Sec. A

The contributions to the n-phonon absorption coefficient ﬁn from higher-
order processes with n phonons in the final state were calculated for a number
of processes and classes of processes. Terms containing self-energy diagrams
within the final-state- or findamental-phonon lines simply renormalize the
phonons. Diagrams having one intermediate phonon and one 3-phonon vertex
give the leading contributions to § of the higher-order processes considered.

In NaCl1 at 300K, the contributioas to 53 from the higher-order process was

an order of magnitude smaller than that of the single-vertex contribution. It was
also shown that higher-order processes will dominate the single-vertex diagram
at some larger value of n. A complete report of pressure-induced optical dis-
tortion and the effects of pressure on the figures of merit of candidate materials

was given.
e o / '
In the present report, new results on the multiphonon infrared absorption

are reported (Sec.B), a theory of infrared absorption by macroscopic inclusions
- \
in crystals is presented (Sec.C), experimental curves of 8 vs w, collected from

the literature, are included (Sec.-D), and a list of references to previous multi-

phonon calculations is given hrSec. E.
A

In addition to this final technical report, the following publications and

conference presentations were prepared under the contract:

AT e Tkl

e T s i v e

TR o L S A 6 5 U

N ety ot < g e




N —

Sec. A

M. Sparks, "Recent Developments in High-Power Infrared Window Research, "

th

4~ ASTM Damage in Laser Materials Symposium, Boulder, Colorado, June 14-15,

1972,

M. Sparks and M, Cottis, ''Pressure-Induced Optical Distortion in Infrared
Windows, "' Conference on High Power Infrared Laser Window Materials,
Hyannis, Massachusetts, Oct. 30-Nov. 1, 1972 ; proceedings to be published by

Air Force Cambridge Research Laboratories, Cambridge, Massachusetts.

M. Sparks and L. J. Sham, "Theory of Multiphonon Infrared Absorption, " Con-
ference on High Power Infrared Laser Window Materials, Hyannis, Massachusetts,
Oct. 30-Nov. 1, 1972; proceedings to be published by Air Force Cambridge Re-

search Laboratories, Cambridge, Massachusetts.

M. Sparks and M. Cottis, ""Pressure-Induced Optical Distortion in Laser Windows, "

to be published ]J. Appl. Phys. January 1973.

M. Spa:zVs and L. ]J. Sham, "Exponential Frequency Dependence of Multiphonon-

Summadon Infrared Absorption, " Solid State Commun. 11, 1451 (1972).

M. Sparks, " Theory of Infrared Absorption by Macroscopic Inclusion in Crystals, "
to be published.

A. Karo, M. Sparks, and L. J. Sham, ""Numerical Analysis of Infrared Multi-

phonon Absorption, " in preparatior.

Section letters, which are displayed at the top of each page, are not dis-

played in equation numbers, figure numbers, and table numbers. Important

results are denoted by underscored equation numbers.
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i | B. THEORY OF MULTIPHONON INFRARED ABSORPTION

The recently observed exponential frequency dependence of the infrared

e pamr € et

absorption coefficient 8 in NaCl- and Ca F,-structure crystals is explained in
terms cf multiphonon absorption processes. A calculation gives the correct

frequency dependence and approximate magnitude of B and predicts the tem-

In the exponential region,

P

perature dependence, which should be observable.

' the difference processes, in which some thermally excited phonons are annihi-
i lated, are negligible with respect to the summation processes. The higher-
order terms in the perturbation expansion are negligible for small n (small ;
number of phonons created). An explanation involving finite phonon lifetimes l
is proposed to explain the fact that the alkali halides show less structure in i

4 the B-w curves than do the semiconductor crystals. Use of the central-limit ;

theorem reduces the mathematical complexity of the analysis sufficiently to

yield a simple closed-form approximation to 8. Previously obtained results

that were given in the two preceding reports were outlined briefly in Sec. A. |
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I. Introduction

Al

The availability of high-power infrared lasers has stimulated renewed

interest in infraied absorption. The intensity I of infrared radiation propaga-

¥

ting through a solid typically decays according to the Beer law, I = Ioexp (-Bz),

where 8 is the optical absorption coefficient. Materials with very small values
4

of B, say B= 10 em”™!, are needed in high-power infrared laser systems !
P for such transparent optical components as windows, Prior to the availability f
4 of high-power lasers, there was considerable interest in relating the positions
of the multiphonon peaks, chiefly in the two-phonon-summation regionsé (where
g>>1 cm'l), to the phonon dispersion relations. Current interest is in the

higher-order phonon regions where 8 << 1 cm“1 and in the numerical value

of B, not simply the positions of the multiphonon peaks.

An interesting recent resu1t2’ i is the observation of optical absorption

coefficients that vary exponentially with frequency

B ~ exp(-Aw) 1.1)

for % 10em™! in LiF, NaCl, KC1, Kbr, MgF,, CaF,, BaF,, SrF,, ;
A1203, and BaTiO3 . For example, B decreases exponentially with frequency |
for over four orders of magnitude change in the value of f for NaCl as w/w £

increases from 2.z to 5. 8, where We is the fundamental-mode frequency (i.e.,

the frequency of the transverse optical phonon with X = 0). See the points and

crosses in Fig. 1. ‘

The exponential behavior naturally suggests the form B ~ exp (-fiw/ kBT )
where w is the photon frequency and the other symbols have their standard :

meanings, However, the room-temperature values of A in (1.1) differ by
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® EXPERIMENTAL VALUES FROM HORRIGAN
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; \
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Fig. 1. Comparison of experimental and theoretical results.
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factors of ~2-4 from the value of fi/300k,,. Furthermore, the temperature
] dependence of B,S although not well established at present, apparently is less
strong than exp (-hw/ kBT ).

e TR e e e e e A8 WY o g ] e

Of the many intrinsic and extrinsic sources of absorption, the simple
} n-phonon summation contributions to B give rise to a frequency dependence
)

of B that is very nearly exponential over a large range of 8, including the

P i R e T

experimental range. In the n-phonon summation process, shown in Fig. 2(a),
# a photon is annihilated, a virtual fundamental phonon is created, the fundamental
' t phonon is annihilated, and n phonons are created. Classically, the electromag-

, netic field drives the fundamental mode (off resonance, in general), whose re-

laxation frequency is determined by the process of splitting into n other lattice-

vibrational modes.

f . By energy conservation, fiw is equal to the sum of the energies of the n

final-state phonons. Thus, the n-phonon summation process cannot ccntribute

e -
- y

to B when w is greater than n times the greatest phonon frequency wtop .

Furthermore, for w << nw, op’ the contribution B n of the n-phonon summation

-

process to B is smail because energy conservation forces the wavevectors of
the final-state phonons to be small, and the factors k2 in the densities of states
are small., Thus, ﬁn has a peak at a frequency below nw, op’ As n increases,
the peak shifts to higher frequencies and decreases in magnitude (since the

higher-order processes contribute less to the value of 8). This behavior of

the ﬁn is illustrated by the light curves in Fig. 1 and is discussed in detail in
H Sec, 1V. The heavy curve, which is the sum of the individual B » Shows the
near -exponential belavior of 8.

10




(2) (b)

(c) (d)

Fig. 2. Various n-phonon processes: (a) single-vertex process;
(b) two-vertex process; (c) (n-1)-vertex process; (d) process with
self-energy contributions to several phonons. Wavy lines are

photons and straight lines are phonons.
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It will be shown (Sec. VI) that for w > W, op at room temperature, the
contribution to B from the confluence processes (Fig. 3b and c) is negligible
with respect to that from the splitting process (Fig. 3a). Assumptions and ap-

proximations made in the analysis are discussed in Sec. II.

In Sec. II, a general expression for the nth order ahsorption coefficient

Bn is derived. In Sec. III this expression is evaluated approximately for n = 2
to obtain a closed-form approximation for Bz resulting from the splitting of the
fundamental phonon into one longitudinal optical and one longitudinal acoustical
mode. In Sec. IV, the central-limit theorem is used to reduce the problem of
evaluating a multiple integral over phonon coordinates Q 177 Qn to that of
evaluating integrals over a single phoron coordinate Q. Further approximations
are made in order to obtain numerical values for Bn . In Sec. V the central-
limit approximation is discussed. In Sec. VI the effect of the confluence pro-
cesses on B is shown to be negligible. In Sec, VII, the effect of terms other
than the (n+1)-order interaction V(n+ 1) and Kn are discussed, In Sec. VIII,
terms higher than second order in the perturbation expansion are shown to be
negligible for small n. Preliminary results of applying the Liouville equaticn
for the classical distribution function of an array ¢f anharmonic Einstein oscil-

lators to the infrared absorption problem are given in Sec. IX.
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Fig. 3. Splitting process (a) and confluence processes (b) and (c).
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IL Analysis of Absorption Coefficient ﬁn

Consider the anharmonic-potential induced n-phonon summation process
(Fig. 2a). It is not difficult to show, by a Green's function analysis of the dielec-

tric constant for example, that the value Bn of B in the n-phonon region for i

materials with the NaCl or ZnS structure is6 [with 2T (qjj', @) in Cowley's

notation written as I‘n]

o 47 Ne*? ww Iy

(9}
n cmn, (- w

2, @ T ’ .
f f'n
where N is the number of unit cells, £ is the volume of the crystal, e* is the
Born effective charge, c is the velocity of light, m r is the reduced mass of the
two ion types, n_ is the index of refraction, we is the fundamental mode fre-
quency, and I‘n is the energy relaxation frequency of the fundamental mode.

The real part of the self energy is not included in (2, 1) as it is not of interest

here; the experimentally determined phonon frequencies will be used.

In the analysis of I‘n » the following assumptions and approximations

are made:

1) Standard second-order perturbation theory is used.,

2) The anharmonic-potential interaction, and not the Lax-Burstein-Born

higher-order-moment mechanism,7 is considered,

3) In the anharmonic interaction, only the short-range repulsive force

of nearest neighbors is included. ! {

4) The central-force approximation is made.

14 4
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5) Only NaCl-structure materials are considered. Materials having

the cubic ZnS structure will be considered in a future report.

6) The finite lifetimes of the interacting phonons are neglected except in

plausibility arguments concerning the sharpness of multiphonon absorption

peaks.

7) The central-limit theorem is used to reduce the multiple sum over
phonon coordinates Ql e ¢ Qn to single sums over the coordinates Q of one
phonon. In the present analysis, considerable care is required in applying this

approximaticn, as discussed in Secs. V and VI,

8) In Secs. III and IV, approximations to the density of phonon states

£ (w), the occupation numbers nQ » and certain angie factors U are made,

The value of I‘n can be calculated from the standard perturbation-theory

expression for the n-Boson-summation relaxation frequency 8

[\*]

2
T =<0, 3 \/ AK )0 (& )n_, 2.2)
s H 2 (g, | Ak 0

where K = k) + '152 toeeetk Ej' X, is the wavevector of the it phonon,
'lsj is a reciprocal lattice vector, A is the Kronecker deita, 511 =w -wQ ] - Qn’
Qi is defined as the set of numbers }5i and bi , where bi is the branch of the dis-
persion relation, 'ﬁn = (nl+l)(n2+l) oo (nn+1)/(nw +1), n = n(Qi)

-1 -1 — 13
= [exp(in/wT) S X n, = [exp(w/w,r) -1] 7, Wy = kBT/ﬁ = 3,928 x 10

rad/sec at 300K, andthe V's are the coefficients in the scattering Hamiltonian

t ot
A(K)a

.= % fan.“aQn + cc . 2.3)

\Y
nTgleq B
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In (2. 3), f denotes the fundamental mode, cc denotes hermitian conjugate, and

the a and a are phonon creation and annihilation operators normalized to unit

commutators.

For the Hamiltonian, up to nth order phonon processes, take the central-

force potential

N Y R b, A W St N o M A P 5 L)

1 i N-1 n+l

_ y (1) a1 (D)
I}C—z——ﬂ-,— T Z (R ) + 2 4+ VVI R -6).(24)
Dk Lhe 2=1 m=1 fm Zm p=2 p: im L

where R ‘m is the length of the vector from ion m to ion £, V(m'l)E d(MI)V(R£ In)/

dR 7 m(n+1) evaluated at equilibrium (R b= 6 )Zm) » £ labels the cell (lighter ions,

for example) and m labels the neighboring ions. No factor of 1/2 to avoid double
countirig is needed for this labeling, The vector amplitude R 270 whose equilibrium ‘

value is & om? 20 be expanded in terms of displacements u, and u., as

RI.mE l ‘~£0 ~m0 -Bm|5 'glm+~£m '

where R 10 and Bmo are the equilibrium va]_ges of the positions R , and Bm of
th

the £ and m™ ions and

e e — -

QZmEQmEBw-B'mO ’

8 = 8(Big) s i=2,m,

The amplitude R, m can be written as

n

12 1
Rl,m |:('gm v Bx’,m) ) (Qm 4 Bﬁm)]

T I 2.5)

16 | l
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Thus

R -6 =06

fm m m ¥mTT . (@ 6

Dropping the p=1+-- n terms in (2.4) and the higher-order terms in /2. 6) and

substituting (2. 6) into (2. 4) gives

x = —L_ y@D g (gm- @.7)

u
n (n+1)! m ~£m)

When all terms from (2. 4) and (2. 6) are retained, the angle factor 6m i Y. in

(2.7) [and o in (2.16) ] is changed, as discussed in Sec. VII.

The usual expansion of the displacement i89

172 ik

« R,
1B = 2 (fﬁ%’?) srqhqe” ik
where
) _ T
A = &b kbt 2k

and T = 1 or 2 denotes the type of ion (Na or C1, for example). The polarization

vectors u 7Q obey the orthonormalization relations

E""l"rkb* * Mep = Opp (2.92)
D (4rg"+ %) (prg - %) = By B (2. 9b)

where Axi is a unit vector along a unit-cube axis, These are simply the ortho-

normality relations for the rows and columns of the six-by-six diagonalizing

17
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matrix (for the eigenfrequency problem) whose columns are the six vectors
Y (u >0’ a‘kQ)’ where T = > and T =< denote the greater and lesser masses, |

respectively.

In Ref. 9, (2.8) was written [withx = 7, j= b, (b, k) = Q, and

u(n) = u (Ry,,)] as

1/2 :
fi ik - Ry
By (Byo) = g (m—mﬁg ) e(r|kb) Aqe -

In this expression, the equilibrium ion position BEO appears in the exponent, in i
contrast to (2. 8) where BiO = BIO + Ei (with P-i as one of the two basis vectors

specifying the ion positions in a cell) appears in the exponent., The relation be-

tween these two expressions is

Lrq = g(‘rl,lgb) - for small mass,
ik°B L
E’TQ =£(T|l<b)e , for large mass, ‘
where it is assumed that the small masses are at the lattice sites (B 1 0) and
the large masses have gz =B = an (;c + ;r +'£) for the NaCl structure. Here *

denotes a unit vector and an is the near neighbor equilibrium spacing.

For the fundamental mode

T (M. n
where m_ is the reduced mass (mr'1 = m<'1 + m>-1 ). In the limit kL << 1, p

where L is of the order of the unit cell length,
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1/2
] A ” ical 2, 10b
i Sy = CD |\ wm] Urkb ’ teptieall Gty
m, 1/2 )
Yo = ( m; Uiy ? (acoustical) . (2. 10c) 3

Notice that (2. 10a) and (2. 8) with Af # 0 and all other AQ = 0 (only

T i fundamental phonons present) give the well known relations 14

BT(Bi) "R (Bi +'gm) ~ 1A m,

u (B;)/u (R, +8 )~ -m../m

for T# 1°.

Substituting (2. 8)-(2. 10a) into (2.7) and using

oG -di«-w'm_d NS

N
I expli(k;+- e +ky) “Rygl = NA(K,®
£=1 "

and

oot s s - .
e e T L P C P S A R

CraiE = - e A i

’ (2.11)

%{
19
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gives (2. 3) with

)

1
1 @+l
v _GN I NE DGy 1 1
£Q.+Q = T o] = 2 7
U ey ?®Y @ m (g, -, /
X Xz (Sm ':lf) Um(Ql) T, Um(Qn) , @.12)
m

where Um(Q) = 6m . Qm(Q). In general,

b U @ =U_.Q), U @ =U @ (2. 122)
m m

The factor (n+1) in (2. 12) arises from the n+1 ways of choosing a, from the

f
AQi in (2.7) and (2. 8). Note that for the fundamental mode, (2.11) and (2. 10a)

give
1/2

m. "
U _(f) = (-ﬁl__) uf 3 (2. 12b)

~m .
The ifollowing model potential L isused: V = E exp ('Rzm / p am) for near-
est neighbors and zero otherwise., Here an is the equilibrium near-neighbor
distance. The Coulomb potential is added to this repulsive potential in order to
determine the values of p and of E = 3exp(1/p)Ba_2p°/(1- 20), where B is
the bulk modulus, but is not included in the anharmonic potential. This is a rea-
sonable approximation for 2 202 20 » since the higher-order derivatives of
the rapidly varying repulsive potential are much greater than those of the slowly
varying Coulomb potential. This is easily seen for a repulsive potential ~1/Rijlo
and a Coulomb potential ~1/Rij » for which the nt:h derivatives contain factors of

magnitude (2)(3)+-°(n+1) and (10)(11)- -+ (n+9), respectively.

20 7




The value of V(n+l) for this model potential is

2
TS I o L
T (1-2p) n_n
% P
From (2. 12b)
1/2 .
U (0= (m</mr) 6m u,

Substituting (2. 13) and (2. 14) into (2. 12) gives

3
v 43P Ban, 1
le...Qn Zl-ip) n n!N;—Tn-l) (wQ “wQ)IZZ
1 n
1/2 n/2
X il
2m_Wwa 2 2p2m a 2 '
r “nn < “nn
where
ST U_(Q)
o, - nf-:l (bm' u) U Q- T

Substituting (2. 15) into (2. 2) gives

21

(2.13)

(2. 14)

(2.15)

(2.16)

2.17)
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]
where
3 2 n
, o 9wt 1 [Bag B %
n- o2 n! h 2 2 2
(1-2p)" m W an 2p m a

and
oozl s Wbl Lz n{Wg, )+1
t Ng g, Q, “q
2
x la, NA(L(,n)b(w-le-o---an) . (2. 18)

Substituting (2. 17) into 2.1) gives, for w2 >> W f2 + I‘nz s

- T 5 1 1 .
Bn =\/-;Dp le_nx %—+I E’— (mee) En ’ (2.19)

where

my+D7! = 1 -exp (-fiw/kyT)

2
_ 1 6mp yil
D = — —_— D =
P/z_n‘(l-Zp)’ ¢ S im w
2pann m<a'mx

*2 l
K = Bze annwf

2 S5

ficm w
r r “mx
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W
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and W’ which cancels out of (2. 19), was introduced for later convenience.

From (2. 18) and (2. 16),

6 &6 2 . .1 n(wQ1)+1 e
B= T T GG 8 g B o—5l— @U@
n(w. )+1
xeeex § B — B U Q)U_.Q)
Qn Qn
x NAK ) 8 (w-wg ===y ) - (2.20)

It can be shown that Bn is independent of the direction of ﬁf for the NaCl

structur:. The proof involves using

U_(b,-k) = U_(b, k)" @.21)
and

U (Q)=-U_(Q) , (2.22)
where U__(Q,) is obtained from (2. 11) and (2. 12a) by replacing &_ by -0_. ;
These results (2.21) and (2.22), which follow directly from (2. 11) and (2. 12a), ;
are used in (2.20), the dummy indices in the sums over the components of the
wavevectors are relabeled, and the invariance of in to the symmetry operations ?
of the cubic crystal are used to complete the proof. ?

i

Since the value of Bn is independent of direction of u., we éhoose
U = X4 (2.23) ;
where §1 is a unit vector along a unit-cube axis. Then, only the two terms with

6 ==+a il in (2. 16) are nonvanishing:

~m nn

o, = U(Q) U (Q) - U_(Q)U_(Q) - 2.24)
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III. Closed-Form Approximation to B,

For n =2, (2.24) gives

[}

a _ ™= u tap, €14
2 “<le my ">Qx©

e W e

X d N B u e-i %hn klx
<Q2x . m >Q2x

<Q1x J m,, >Q1x

m ia__k
< nn - lx
u - _— U e 7 3.1)
<Q2x J m, >Q2x

where subscript x denotes the X, component, and wavevector conservation,

x

k2x = - klx’ has been used. Combining terms in (3.1) and using

ST T R
gives
m
o, = 2i - (u< u -u u, sink, a
2 m,, k1 blx >klb2x >k1b1x klbzx Ix "nn
(3.2)
From (2. 18) with n=2
_ Nl- " n(wk1b1)+l n(wklbz )+1
5 =
kb;b, “;b, “b,
’2
X o 6 (w - - w ) (3.3)
2 wklbl kb, fou )

24
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The value of a, tends to be small in a number of cases. First, for both
phonons (Ql and Q2) on the same branch, i.e., bl = b2 » (3.2) gives the well

7,lla

known selection rule 5 = G;i.e.,

By=0, for by = b, . (3.4)

2 2
. = < —t
For k1 an <<'1, |sin klx a - (klx ann) < 1, and the contribution

to Bz is small.

For the one-dimensional diatomic chain (Ref. 10, p. 176, for example)
and for the three-dimensional NaCl structure for k along [111], the optical
and acoustical modes at the zone boundary correspond to standing waves with

only the lighter and heavier masses, respectively, vibrating:

Yr<q = 0> r>Q 7 Yr>Q 2332331211' -
87<q = Yr<q *  Ur>q =0 o g &0

If both modes in (3. 2) obey either (3.5) or (3.6), then o, = 0. Even though
(3.5) and (3. 6) are not satisfied exactly for other points in the zone, this result

suggests that the quasi-selection rule that _§2 is small unless one output phonon

is optical and the other acoustical may hold for NaCl-structure crystals. The

validity of this proposed quasi-selection rule, which has several important con-

3
sequences, will be examined in detail in a later report.

The sum 22 in (3. 3) can be approximated as follows. Consider the term

bl = LO and b2 = LA and the term bl = LA and b2 = LO, where LO and LA

25
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denote longitudinal optical and longitudinal acoustical, respectively. Since (3.3)
is unchanged if b, and b2 are interchanged, these two terms give the same

contribution to 22 .

2
A factor of 1/3 will be included in the value of |a2 | to account for
2
several regions in k space in which |a2 | is small. These regions are as

follows: The factor sin klxa

- in (3. 2) makes the contribution to 22 from the

‘ 2
volume in k space near the plane klx =0 small. Similarly, |a2 | is small
for all directions when kann << 1. At the zone edges along [ 100] axes,

kann = 7, and the factor sink in (3.2) is equal to zero.

1x%nn
2
In the rest of k space, the value of iaz | will be approximated by the

value
2 4 M«
o =l & == 3.7)
| |lll,ZB 9 m,
at the zone boundary along a [ 111] axis. [ Note that at this symmetry point,
which is commonly denoted L, (3.5) and (3. 6) give

Us1o = UgpA = 05 Ui = UspA = 1. (3. 8)

Since the x component of a unit vector along the [111] axis is 1//3 ', the value

of the square of the u factor in parentheses in (3.2) is 1/9.] With the factor-of-3
2

reduction in | a, | discussed in the preceding paragraph, and a factor of two

included for the two choices of b, and b, discussed above,

1 2d By
2 m
le, [ = & HE 3.9)
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The density of longitudinal acoustical states is rather sharply peaked at12

Wy, = 27X 1013 rad/sec. (3. 10)

(See Fig. 4.) Thus, wl(' : LA will be set equal to the constant wLA’ With these

approximations, (3.3) and (3.9) give

g Mg n(wLA)+1 1 5 n(w1)+1
2 2 =y

T - - 6[w -(w-w.,)] (3.11)
2LL ~ 27 my WA N K, 1 LA

for the contribution to 22 from the LO and LA modes. Since the summand

now is a function of w 1 only, the sum on k ) can be replaced by an integral

over w 1

z f(wl) = del go(wl) f(wl) ’

g
N
k) 0

where the density of optical states go(w) is normalized to unity

- -
dwgy(w) = 1 . (3.12)
0
Evaluating the trivial integral in (3. 11) gives
4
g m n(wLA)+l “*w'wLA)“
z = — g (W-w ,) - . (3.13)
2LL ~ 27 m_ “0 LA @ W=, S o

A rough sketch of I‘2 LL from (3.13) and (2. 17) is shown in Fig. 5 as a dashed

curve. It will be argued below that the effect of replacing the delta function

PReE
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w (1013 rad/sec) |
Fig. 4. Densities of states for LA and LO phonons in NaCl after
Raunio and Rolandson (Ref. 12).
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2 .
distribution of LA .aodes by an (w - wo) distribution is to make

phorons are expected to eliminate sharp peaks in I,; ;. Thus, T,

approximated by the solid curve in Fig. 5.

The aumerical value of 1"2 1L at the peak of the solid curve in Fig. 5 can

be obtained by numerical integration of (3. 12), using the functional form in the }

figure and the normalization (3. 12). The result is

3 8.3

sec/rad =
“Lo

gpw=-#p,) = L7X 10'!

where @, = 4.9 X 1013

at w = w; + wgp = 6,3 X 1013 rad/sec. This defines wgp
(3.13), and (2. 17),

2.4 M« n(wLA)+l n(wgPHl

o)y =
2LL'mx ~ @ 5 m W) A @

and

2.77

Gy = 2oLy, = 7= 3 7 jlrewl-(wp, tw

(1-2p%)p

ﬁBz[n(wLA)+l][n.(wg_p)+l]
X

m me m, (wLAwngwLowLAwgp

= 1.0 x 10! rad/sec, at 300K

30

2LL
and narrower. Furthermore, the finite lifetimes of the LA and LO output

Ly, can be X

rad/sec. The peak in the solid curve in Fig. 5 occurs

From (3. 14),

3

N LBl A B

higher

At X

(3. 14)

/@]

(3. 15)
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L
t

for the value of rZLL at the peak at w = 6,3 x 1013 rad/sec. In units of ]
1013 rad/sec
wLA=2.7, wLO=4.9,
l w = 3.6 , w.- ~tw =63,
i gp LO "~ Tgp
{ : wr = 3.93, at T = 300K.

Substituting (1"2 LL )mx = 1,0X 1012 rad/sec from (3. 15) into (2. 1) gives

(B, =19 em! (3. 16)
mx

A comparison of this result with the numerical results currently underway and
a comparison of the numerical resuits with experimental results will be given

in a future report.

A second approximation to the value of EZL [, canbe obtained by approxi-

mating the Brillouin zone by a sphere of radius kmx and selecting linear disper-

T NPT

sion relations for the LO and LA branches to match the densides of states.

b S e e (o, LM s . PBAS + Bd” PN 30 SO e S AV S £ DRI B o 1 B Mo & A e

For the LA branch, take
kaA= A(]c-kmx)+ wA 5 vAE (wA- A)/kmx 2 (3.17)

See Fig, 6a. Then using

e R AR Y 0 RN e ST Yot o S i

X
| C (S
T f(k) = 255 akk? £(k) (3. 18)
g E o by
0
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in
(w) = T 6 (v - w)
gLA K kpa
gives
3N km.x 2
(w) = dkk” b (w -w) .
grA ] 1397
S 0

Using (3. 17), the delta function can be written as
blw, , - @)= 6[v, (k-k )+ wy -wl= o= 6(k-k,)
LA mx ‘A

where

Wy - w w - Wy
7

Kmx

Wo " ®p

Using these last two results and evaluating the integral in (3. 19) gives

3N - &) _
gLA(“’) = (——-_ZJ—)T ’ for Wy < w < wA
Wp "%
=0, otherwise .

For the LO branch, take

w]’-I_D = -vo(k-kmx)+w0 F voE (wo -wo)/kmx .

See Fig. 6a. The same type of analysis as above gives

_ 2
3N(w0 -w)

forw. < @ < @

8o 3 0 0

= 0y, otherwise.

AAAAAAAA

(3.19)

3.21)

e e o e

TR ot o ¢ s T

o b

ORI

ik, & A b

A R A bt R

PO

3wl o BV enctns At s AR el Som

g

4
a
A
3
3



T e Ty N

Sec. B

The densities of states in (3.20) and (3. 22) are sketched in Fig. 6b. Formally

inserting a sine factor [see (3.2)] in (3.9) gives

2 m

_ 8 Na .2

IQZ’ - 27 me; el l(lann’
With (3. 3), this gives
- kimx n (Wi, ,)+1
Z.. -8 Na 3 dkkd — kLA
2LL 27 mCl X 3 k
n(kaO)+1 g
X . G(k-kL) sin klann " (3.23)

where kaA and a;kL 0 are given by (3. 17) and (3.21), respectively, and

W+, -w
S B

cT)O+63A-w

0"wp ™

Evaluating the integral in (3.23) gives

2

) W - w +1
5 ) -g my. (w0+wA w) n( kLLA)
2LL ~ m A
Cl1 (w0+wA Wy wA) kaLA
n(kaLo)+1 :

X kaO sin kLann , forw0+wA<w<w0+wA
L

= 0 otherwise . (3.24)

Here w

kLLA and kaLO are the values of W LA and W LO from (3. 17) and

(3.21) with k = kL.
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The maximum value of (3.24), which occurs at W = wo + & i (i.e.,

R

kL = kmx)’ is 2,
i
= ) % m_ 1 n(wA)+ 1 :
mx m = = - w :
> (wo tw, - w, wA) A
n(w0)+ 1 §
X = - (3.25)
0 3
" where sink mx 2nn Was set equal to one formally. In units of 1013rad/sec,
v 3
¢
: @ = 0 = = = ]
W = Wo 4.9 , Wy wgp 3.5 ,
wA = 2.0 » wA = 2.8, ‘
@, + W, 6.9 , W, Sy | S 6.3. ,
Thus 3
W, + W, - W, - =06X1013rad/sec=w /8.2 '
0 A 0 A : Lo’°® 5

and (3. 25) can be written as 4

7.3 Mg n(wy)+l  n(wg+l

z = . (3. 26)
mx “io m,, N wg




o2xC. L

In comparing (3.26) with the previous result (3. 14), the unmodified curve
4 (dashed) in Fig.5 should be used. Thus, (3.14) should be multiplied by a factor

of 1.9, which is the ratio of the peaks of the two curves in Fig.5. Then, with

3

. _ 13 _ 1
«g = u’gp and w, = 2.8 x 107 rad/sec and WA= 2.7x 10"" rad/sec, the

value of T mx in (3.26) is approximately a factor of 1.5 times larger than the

corresponding value in (3. 14), which is good agreement.

A ..u-.;.m.m,\.wwm.:uMM‘W%AMIW RIS “E*’m-

In the second model [ spherical Brillouin zone and w = f{ Lls |)] » Setting
w A= WpS “’LA corresponds to using the delta function approximation to the
) density of LA states gLA(w). For this second model, it will now be shown
that the effect of replacing the delta-function approximation to gLA(w) by the

quadratic density (3. 20) (with @ A * @) is to reduce the region over which

1'2 LL is nonzero and increase the maximum value of 1"2 LL*

Setting Wy = Wy = Wy, (i.e. Wy - Wy ~Wy ~W, =Wy ~w, = wLO/s.S) g
in (3. 25) gives

w +1 w +1
< n ( LA) n ( gp)

3.1
= , (3.27) e

as the maximum value of (3.24) in the delta-function approximation. The delta-
function approximation to (3. 24) is sketched as the dashed curve in Fig. 7. The

corresponding curve foc the density gLA(w) in (3. 20) is shown as the solid curve.

This result that the delta-function approximation to I'z LL is nonzero over a
larger region is surprising in view of the result in Sec. IV that I"z LL is a convolu-

tion of the two densities gy.a and 8Lo (weighted appropriately). Recall that the
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Fig, 7. Relaxation frequency I‘Z 1, from the spherical-Brillouin-zone
approximation (dashed line). Making the delta function approximation to

gLA(w) gives the solid curve,
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length of the nonzero region of convolved functions is the sum of the lengths

of the nonzero regions of the individual finctions. The difference in these two

ol F R i andb i

results arises from the fact that wavevector conservation was neglected in -

deriving the convolution result. §

This difference can be understood in terms of the schematic illustrations
in Fig, 8. The dispersion curves for the LO and LA modes are shown (for a
spherical Brillouin zone) at the bottom of each section (a)- - - (d) of the figure.
The bars at the top of each éection indicate the nonzero regions of r2 LL (i.e.,
the region of w for which w = wWiat® g for some pair of modes. The bars
to the left are for the case of kLA = kLO’ and those to the right are for no wave-
vector conservation. In going from Fig. 8c [ for which gLA(w)= 6(w- WA )]
to Fig. &b [ for which gLA(w) is given by (3.20)], the left-hand bar decreases
in length while the right-hand bar increases.
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Fig. 8. Schematic illustration of regions for which the two-phonon-
summation process with w = w LAt Wy can conserve energy. The bars
at the top left of each figure show this region for the case in which k is
conserved, and those to the right are for no k conservation, The model

dispersion curves for the four cases of interest are shown in the bottom

portions of the figures,
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IV. Closed-Form Approximation to Bn

The value of Zn in (2. 18) for general n will be approximated by using the

central-limit theorem as follows: First, wavevector conservation will be neg-

lected by formally setting

NAKK )=1.

(4.1)

This is expected to be a good approximation for large n. Substituting (2.23)

into (2.20) and using (4.1), (2.21), and (2.22) gives

ntl

L =L+ Z _,

where

nn,+1 +1
Zs=2 % z ?ol 8,Qp) - lN Z ngn
- Ql Ql Qn Qn

%,@Q)

X G(w-le —eo -an) 5
with

6,@Q) = [ReU QT ¢ ($mU,@Q)1* .

By inserting the trivial relations

8 dQ £(Q)6(Q - in) = f(in)

into (4. 3), En + can be written as

n -~ w
2{a )
zni S T dﬂloi(nl).“ dnnoi(nn)
mx - -

n
xO0(w-XZ 8.,
i=1 1

40

(4.2)

(4.3)

4.4

(4.5)
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X b(n-wQ) (4. 6)

¢1(Q) . 4.7)
Note that o 1( 1) are normalized to unity:
S dfd ci(ﬂ) ="k

-®

The factor of w Tix which cancels out when (4. 6) is substituted into (4. 5), was

introduced for later convenience.

For large n, the central-limit theorem13 reduces (4. 5) to

n
. 2a ) - (w - n&z";(.umx)2/2naza+2 w2
nt = nt1 € - (4.8)
27n aci wmx -
where |
© 1=
a—:_= f dﬂci(n)ﬂsai W 4.9) ;
-0 :l
3
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and
w+2 = S dt o (0) 02 £ a+2 wmxz (4. 10)
and
2 . 2 =2 _ 2 2
Wy, = wy - Wy = oag W (4.11)

With o, () given by (4. 6), the results (4.9) and (4. 10) become

—_ 1
% = Nlap 8 (ng +1) 2,(Q) (4.12)
and
2 _ 1
ai - N(ai)w g (nQ+l)wQ ¢i(Q) . (4.13)

Substituting (4. 3) and (4. 8) into (2. 19) gives

8

Ml
=B +(1) B _=

n- Bn+

where the approximate equality is discussed in the following paragraph and

= 4
DK o, w n
B, = T P ( iwmx) 1 (<°‘+)De)
- aiao+(nw+1) vn' n! -
_ 2 '
X exp [-(w-natwmx) /2nac+2wmx2] (4. 14)

Using the central-limit theorem has reduced the multiple sum over Q1 4l Qn [in

(2.20)] to sums over the single phonon coordinate Q [in (4.7), (4. 12), and (4. 13)].

By calculating the values of the real and imaginary parts of Ux(Qi) for several
points in the Brillouin zone using the eigenvector data of Karo and Hardy ,14 it is

simple to show that neither of the two parts is negligible in general. Thus, from
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the definition of ¢ +(Qi) under (4.3), ¢ Le= $ /s, where s = 2. From (4.3),

- n, . e :

En+ = En_/s ; thas Bn- is negligible for large n since 13“i @ Zni 3
The values of the a's will now be estimated. First consider Ux(Q). For

kL << 1, the approximations (2. 10) are valid. For modes near the zone edges,

the one-dimensional results (3.5) and (3. 6) will be used.

Substituting these results into (2. 12) gives

2
A ~ 2
U @ =(8_-ueqn) , optical,
2 m Q zone edge
2 m_ " R 2
U Qf =2 — (8_-u,4), acoustical,
> > m Q zone edge
2 m
< ~ 2
U Q] = (8 _-u_ ), optical,
m m, m 7Q KL << 1
2 N me 2 A 2 3 A 2 2 o
U@} = mFms Om @ Om k) (L), acoustical,
2
Since kL. << 1 in the last expression, this value of | U m(Qi) is negligible,

Thus, as a rough approximation, Um(Qi) will be set to zero for w < fw

’

where f < 1. In the nonzero region, the remaining three terms are averaged

to give
2 2 m< A ~ 2
| UX(O)' :—’T(l"' F;)(Gm. uTQ) G(fwmx-in) ’ (4. 15)

where 0 is the unit step function and

!
|
!
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The value of the scalar product in (4. 15) is approximated by 1 / V37,
which is its value for 6m = ;tl and ﬁ<l a unit vector along [111]. The

value of the square root of the average value of c0529 also is equal to l/v/ 3:

' T
ﬁ- jdﬂ cos2 0 = —;— S d0 sin 6 coszO
0

IR B WA AR R e e 90 SR ik R B b

t This reduces (4. 15) to

2 m
-3 2 ' 2 <
UX(G) ' = 5 (n— ——->> 0 (fw - wQ) 1 (4. 16)

The sum in (4. 7) now can be written as

1 =
N g F(wQ) = 6 5‘0 de g(wQ) F(wQ) ’ (4.17) #

where the total density of states g(w) is normalized to unity

0

dw g(w) = 1

in order to make the total number of states correct:

- -]

8(1) = 6N dw g(w) = 6N .
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Substituting (4. 16) into (4.7) and using (4. 17) gives

m
4 < n+1l
<(1+> = T (l+ ——n‘>) <w 9> wm "

where
n+1

Similarly (4. 12) and (4. 13) give

n
C/'g
(=3
€
o
~~
£
=3
[
l+
fu—

& = ((n+1)9>
+ +1
<—Il‘5-9> “ mx
and
0l . _S(nt])wb)
s +1 a0
<P'uT' 9> wmx
where
((n+1)8) = S dw g(w) [n(w)+1]
fw
" mx
and
((n+1)wh) = S dw gw) [n(w)+1] w .
fwm.x
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(4. 18)

(4.19)

(4. 20)

(4.21)
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The density of states, shown as the solid curve in Fig. 9, will be

approximated by the Debye density

202
gw) = 7 > (4.22) ‘
“ mx

as illustrated by the dashed curve in Fig. 9. The factor n(w)+1 will be approxi-
mated by its high-temperature limit

1 . Yt

n{w)+1 = = = + .
|- @@ w 3

(4.23)

In the worst case of w/wT = 1 for NaCl at 300K, n(w)+1 = 1.582 and

(wT/w) + -%— = 1.500; thus, the approximation ir (4.23) is quite good.

Substituting (4.21) and (4. 22) into (4. 18)-(4.21) and evaluating the simple

integrals gives

m I (73]
(a,) = % <1+ ?n':‘) |3(1-f) Fi»r-%- (1-3{' , (4.24) %
9. G 3
3 2[(1-£2) — + 4+ (1-£2)] %
a@, = Omx 3 : (4.25)

4(1-1) g;-:—x + (1-£2)

w

—

Al g 4 b e U
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! —w=3,8x10
|
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|| |
0 1 2 3 4 5
w(10!3 rad/sec)

Fig. 9. Debye approximation (dashed w2 curve) to the densitv

of states. The solid curve is the density of states calculated in Ref, 12,
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and

w
n+1 = N T 3 1 ml
w TB> = 3(1-f) -5—-+ T(l £f7) . (4.27)

Substituting these results (4.24)-(4. 27) into (4. 14) and assuming that the con-

tribution from the Bn- term is negligible as discussed under (4. 14) gives

— 4
g - DpK ( alwm

1
n = w.)\/nn!

a, aol(nw+1)

n - 2
m (w-na,w_ )
< mx
X k> 14 —— -Ii-l-w 6 D exp |- 1 (4.28)
3 m w  mx e :
> 2na @
0 mx

where Dp and K are defined under (2. 19).

Consider two values of f: f = % and f3= %(i.e., f =0.79). The

significance of considering more than one value of f will be discussed in Sec. V.
The value of f = %— corresponds to assuming that kL. << 1 for 1/8 of the modes
(or 1/4 of the acoustical modes) according to the discussion of (4. 15) above.

Note that with g(w) given by (4. 22),

w
mx

du:g((.z:)=l-f3 ,

f\
a'tn.x

which is equal to 7/8 for f = %— . The value of f I %— corresponds to con-
sidering only the optical modes. (Half of the modes -- the low-frequency,

acoustical ones -- are then formally neglected, as discussed in Sec. V.)
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Nete that fw,__ = 0.79 (3.8x 1013y = 3.02 x 10! rad/sec, which is near the

frequency 2.8 x 1013 rad/sec that roughly divides the optical and acoustical

modes in Fig. 9.

. =Ll ) 2 _ "2 =2 L
Setting f = 5 in (4.25)-(4.27) and using o, =a -« and aT/u.m-l.03
? for NaCl gives
/
b n+1] _ v =
""m\‘b—e> = 2.11, a, =0.757 ,
’ ——
’ a12 = 0.594, ao?‘ = 0.594 - (0.757)% = 0.0210 = (0. 145)2 .

The corresponding values for f SE -2!— are

i n+1 3 ~ -
w ——w—9> = 0, 9165 » al = 0.899 »
ozl2 = 0.811 , ao?' = 0.0028 = (0.053)% .

The following values of parameters in (4. 28) are used:

= ! '23 B p— ’23
m>—mc1—5.§9X10 g m_ - mNa—3.82x10 g ,
- -23 _ -8
m, = 2.32x10 ““g , an = 2,815 x10 "cm ,
i : n. = LS5, 1/p = 9.05 ,

B = 2.44 x 10! dyne/em? , e* = e=4.80 x 10710

esu ,




w = 3.09x 1013 rad/sec , w _=3.8x 1013 rad/sec {3_'s independent
ER% T oof w )
inx

o = 0.147 , a, = 0.757 ,
o1

1

3 1

Dp = 2.85, K = 5.92x10° cm ~ .

In Fig. 1, Bz cee 37 are plotted as the light curves. The sum B = ;_132 Bn, plotted
as the solid heavy curve, shows the approximate exponential beha:i_or of B. The
agreement between this theoretical result and experimental results (points and
crosses in Fig, 1) is good in view of the simplicity of the model and the assump-
tions made. By adjusting the values of two parameters in (4. 28), such as K and

De , the experimental data can be fit to within the scatter of the points. By changing
the value of the single interaction-strength parameter 1/p from 9.05 to 13.7, the
heavy dashed curve in Fig. 1 is obtained. Results for materials other than NaCl,

as well as computer evaluations of the multiple sums of 8 . withn=2 to 5 or 6,

will be presented in a future report.

Concerning the value of p, it should be mentioned that the higher-order
anharmonic coefficients are much more sensitive to the shape of the potential
curve than are the quadratic terms, which are used in the analysis of the binding
energy and bulk modulus. Thus, it would be reasonable to replace p by an
n-dependent factor Py - Since there appears to be no reasonable method of de-
termining the values of p,, from first principles or from other experiments at
present, the Py would have to be considered as adjustable parameters. This
would give five parameters to adjust in order to fit the experimental data in
Fig. 1. Even though it is neither surprising nor impressive that an extremely
good fit to the data can be obtained in this way, it is interesting that the value of

l/pz is equal to the usual value of 1/p and the values of 1 /p3, 1/p 4" are some-

what larger.
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The n-phonon regions, marked on Fig. 1 for n= 3-6, are given by the
relations (n-a) w, < w < (n+1 -0t) W, , with values of & ranging from 0.5 for
n =3 to 0.8 for n = 6. The n-phonon region cannot be taken as ne, <w <(n+le,,
0} < . & o
as nw <w< (n+ l)a,mx, or as nw; (<« (n+ 1) w, 5, as often done in the

literature. In fact, the n-phonon regions shift as the temperature changes.

It has not been established conclusively that the Lax-Burstein-Born
mechanism7 is negligible in polar crystals. l4a The fact that the present
: anharmonic-potential result explains the observed frequency dependence and
order of magnitude of B suggests, though by no means proves, that the con-

tribution of the anharmonic-potential mechanism is greater than that of the

Lax-Burstein-Born mechanism over the experimental range of values of w.
The absence of a resonance denominator (2. 1) in the Lax-Burstein-Born
result would eliminate the factor w'4 in (4. 28), thus giving a significant devi-
ation from an exponential frequency dependence. The frequency dependence
_and numerical values of the matrix elements in the Lax-Burstein-Born theory
may be difficult to determine accurately, since they are expected to be rather

strongly model dependent. (A simple rigid-ion model gives zero for the

matrix elements. )

In the two previous reports, 1,3 numerical values of 8 were obtained

by making approximations that were different from those of the present report.

Although the results are not too different, the present results are believed to

be the more accurate of the two, and the form of the present results certainly

is more convenient.

gt B ;&;’f%;.gg%;ﬁam#mw‘m R
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V. The Central-Limit Approximation

A0 o o B0

The central-limit theorem was found to be a powerful tool for obtaining
the values of Bn for large n, at which straightforward computer calculations
are impractical at present. However, considerable care must be exercised ir
the application of the central-limit approximation lest drastic errors should be
introduced. In the present section and in Szc, VI it will be shown: that the con-
fluence processes are negligible; that including the confluence processes and
using the central-limit approximation gives drastically incorrect results for B8;
and that truncating g(w) can give improved values of 8 when the central-limit
approximation is used and B(w) is approximated by the locus of the peaks of the

Bn(w) curves.

The central-limit approximation will be applied to two model problems in
order to illustrate these difficulties in applying the approximation to the present
problem. First, consider the function in Fig. 10a. The nth convolution of

f(w) = f1 (w) is

-] . -] -
fn(w) = j dw1 f(wl) y dwn f(wn) G(w-.E wn) L (5.1)

-0 1=1

From (5. 1) it is easy to show that

@
fz(w) = j‘ dw1 f(wl) f (w-wl) ; (5.2)
) |
fn(w) = X‘ dw.1 fn-l (wl) f (w wl) . (5. 3) ‘i
52




pa— i
f(w)-lb
Vo o+
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-5 -4 -3 -2 -1 0 1 2 4 S5
(2) w/w
£, (w)
1
|
\
[
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Central-Hmit - |
approximation B W/ i
=5 -4 -3 -2 1 2 3 4 5 1
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Fig. 10, The functon f(w), (a), and successive convolutions (b)-(e).
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The result of the successive convolutions in (5. 2) and (5. 3) is shown in Fig. 10
i
% t
forn=1,2,---35. § :
I
The central-limit approximation to fn(w) in (5.1) is %
{
1 ( -)2 { :
wW-nw
f (W) =*reeee—— e -], 5.4
0 /2an wg = 2n w ? -9
]
where ‘
-
w = 5‘ dw f(w)w = awmx ’ (5.5)
-0
=3 _ 2.3 2 ‘f
w” = S de f(w)w” = a Wox (5. 6) i
- '
and 1
W R R B
wc—w-w—aowmx. (5.7)
; ‘
Evaluating the integrals (5.5) and (5. 6) for f(w) in Fig. 10a gives 3 :
- _ 3 A 2 |
w = —g‘utm » w - 'ﬁ wm »
w2 = B w 2 (0.665 w )2
o 192 "mx . mx’ °

The result for n = 5 is shown as the dashed curve in Fig, 10e. The agreement
with the exact solid curve is poor, since the central-limit approximation is not
valid for the function in Fig, 10a unless n is very large. After convolving

f(w)n times, the Gaussian half-width of each peak is approximately vn'w o+°

where Woy = @y V48" is the Gaussian half -width of the positive half of f(w).

e = o
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] In order for the central-limit approximation to be valid, the width /'n" wg

P N

+
rust equal the spacing (3/4) w —_ of the two sections of f(w), roughly. This

gives n/48 = 9/16, or n = 27, Thus, n must be quite large before the central-

limit result is valid for this function with a gap. This simple example will be

© an ke o o e — 0

used in Sec. VI to show that confluence processes are negligible in the expo-

nential frequency region.

Next consider the function F(w) in Fig. 1la. The central-limit approximation

) to the function

- Fn(w) = j‘ dw1 F(wl) y dwrl F(wn) ]

- @©

n ;
) X 0(w-2Z w) :
. 1 '
, i=1 ;
is
e @ - nw)? 50
Fw) = 270w, exp 1~ 2nwy2 ’

where @ and w, are given by (5.5)-(5.7) with f(w) replaced by F(w). The
functions Fz(w) and Fé(w) are plotted in Fig, 11, For this smooth function

with no "gaps" the central-limit approximation is fairly gocd even for the !

very small values of n= 2 and 3.

The following discussion is included for those interested in the details

of the calculations. As a rough approximation to obtain preliminary results, 3 1

the curveof B = L ﬁn as a function of w was approximated by the locus of %
1,3
the peaks of the individual ﬁn . (The size of the error introduced is apparent

in Fig. 1.) Under this approximation, it is found that formally setting a
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}2/w F,(w) [
B /'/ Sl i
F_(w) i
1 A/ r (.) [ :
_ | A
3 ]
= |
| ;
!
| 1 i ] ]
0 1 2 w/w O -
1L2/wmx ; ;
F,(w) 2F_(w) * Fy(w) |
o~ Fyp(w) Flo(w) ,
|
! E
0 1
y b
L2/wmx 3
3
[’
1 1
0 1
‘ | Fig. 11, Rectanguiar function F(w) considered as the sum of two equal rectangular
: 4

functions Fz(w) and Fr (w). The dashed curves in (b) and (c) are the central-limit
approximations to F2 and F3 » Tespectively,
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low-frequency portion of the density of states g(w) equal to zero can increase
the values of . Increasing the value of f in (4.16), (4. 19), and subsequent
equations corresponds to such a truncation of g(w). The reason for this result
that decreasing the number of physical processes causes an increase in the
value of B can be understood as follows. In Fig. 1 it is seen that the value of

a given Bn’ say B6' at its peak can be much smaller than the value of Bn—l = BS )
at the same frequency. Truncating g(w) causes a reduction in the value of BS
(especially at its peak and on the low-frequency side of the peak), but also causes

the peak to shift to higher frequencies. This new peak lies nearer the true curve

of =1 Bn than does the old peak, as illustrated by the following example.

In order to examine the value of Fn(w) in Fig. 11 in the wings (away from

the peak), first consider F(w) as the sum of the two equal rectangular functions

F(w) = Fl'(w) + Fr(w) : (5.8)

as shown in Fig, 11a. The first convolution Fz(w) is then the sum of three terms,

e et e B A mesha———— e AT g Ty 4417

as seen by substituting (5, 8) into (5.2) with f(w) replaced by F(w). This gives

Fz(w) = S dw1 [Fz(wl) Fz(w-w1)+ Fz(wl) Fr(w-wl)

+ Fr(w) Fz (w -w1)+ Fr(wl) Fr(w -wl)] : (5.9)

-

b

Y

1
E

|
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The second and third integrals are equal as seen by making the transformation

S Rt A ook ST AR

@ - w = @ in either integral. Thus, (5.9) gives

= o
e i g s

F2(w) = FEZ(w) + ZFJ?,(w) & Fr(w) + Fr2(w) : (5. 10)

where * denotes the conivolution. In the convolution notation, Fzz(w)= Fﬂ, (W) = b}’ (w),
The three functions in (5. 10) are plotted in Fig, 11b, Similarly, F3(w) is the sum

of four functions, as shown in Fig. 11c. In this figure, note that at w /wrnx = 295,

' the central-limit approximation (dashed line) has a smaller value than the exact
result (solid line). Also note that at this value of w/ " the central-limit ap-

proximation to Frz(‘"’) is a closer approximation to the correct value than is the

central-limit approximation to F(w). That is, if F(w) is truncated to Fr (w).
the resulting central-limit approximation is more accurate in portions of the wings

' than the central-limit approximation to F(w) itself.

In the same way, F(w) could be truncated to the rectangular function Frr(w)

extending from w/w__ = 7/8 to 1. If the value of Bn in the wings of the expo-

B T
e W R v o .

* nential is important, formally truncating g(w), by making f large in (4. 16)-(4.19) Y
for example, may result in a more accurate value of Bn . This result was the
motivation for considering two values of f in Seq. IV. The result is similar to

the result considered above and in Sec. VI that the central-liinit approximations

| to B with confluence and splitting processes included is not as good an approxima-

tion as that obtained by including splitting processes only.

58

!_




L.

P . Sec. B
|

VI, Effect of Confluence Processes on Bn

It will now be shown that confluence processes are negligible in the

exponential region. The analysis of Sec. IV, which is for the case of the

splitting of the fundamental phonon into n phonons as in Fig. 3a, can be easily
extended to include all confluence processes, such as those in (b) and (c) of
Fig. 3. The general confluence process has m output phonons and n - m+1

W input phonons. The method below sums the diagrams over all values of m.

? It can be shown that this generaiization to include all confluence and splitting

processes is accomplished simply by replacing 0 (£ - wQ) by 0(Q -wQ )-0(Q2+ wQ)

in (4.6), giving

o Ymx n(Q)+1
Oci(ﬂ)-— W g —-%—- ¢,.(Q)

x[G(Q-wQ)-6(0+wQ)]. (6. 1)
and defining g(-w) = g(w) and
n(-w) = -[n(w) +1] ; (6.2)

i.e., n(-w)+ 1= -n(w). Standard Green's function aq;alyses give the 6(Q +wQ)

terms automatically. See Eq. (4.19) of Ref. 6, for example. The resulting expres-

sions for {« +) are
ct

- aksdois - AR A SN B S e .
-

s o e R AT S s
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(a,) =@ g doﬁ-g %Q)”- 8,(Q)

X [G(Q-wQ)—6(0+w

Q)

w 2n(wA)+1
mE 5 Q& 4. 6.3)
N o " % +

and Zn + still are equal to the n-fold convolution of ¢ i(Q) as in (4.5):

<(¥ci)n ® @ n
T af oy, (Ao ) 4R 0, (@) 0(-T &)

{6.4)

Notice that the summation weighting functions o _(§) in Eq. (4. 6) of Sec. IV
are zero for negative £}, while the confluence weighting functions in (6. 1) are non-
zero for both negative and positive values. For example, if the angle factors ¢, (Q)

are approximated by a constant @ _, then (4.6) and (4.17) give

6<I>twmx n(§3)+1
ot(n)= _(_&:)_ Sodw g(w) —5— 6(Q-w) ,

6P w )
- tmx g n()+1 , i
ot(Q) ——<°‘1) g(fl) - for >0 e
=0,

for A< 0 .
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4 Similarly, (6.1) and (4. 17) give

6P, w !
oy + mx . n(Q)+1
Oct (&) ———_<aci) . dw g(w) =

X[0(Q-w) -0(R+w)] ,»
6, w
Q) - . mx n(Q)+1 >
Ter (V) (o) g() a for >0 ,
4

(6.6)
n(|@Q I)
)

, for2<0 .
aci |ﬂ|

6%
o £V g(| 2]

Note that the top expression in (6.6) is formally correct for 2 < 0 also, as seen

by writing &= - | Q | and using (6. 2).

The central-limit theorem could be used to evaluate the multiple integral
in (6.4). The results, however, are quite misleading, as will now be shown.
It is necessary to carry out the successive convolutions to obtain the values !
of Bz ; B3. *++, Consider En - in (6.4). In the example above, in which
! ¢,(Q) is approximated by a constant ®,, 0 c+(Q) is given by (6. 6). In the

high-temperature limit, n(8)+1 = n(Q) ~ 1/8; thus, if g(Q) ~ 02 over

1
its nonzero region, © c+(Q) is constant over its nonzero regions. The function
f(w) in Fig. 10a is therefore a reasonable approximation to ¢ e{_( Q) in (6. 6).

In fact, the ratio of 1 to 3 of the heights of the two peaks in Fig, 10a was chosen % ‘

with foresight to agree with the room-temperature ratio [n(£)+1]/n(£i)= 3 of !

the two peaks in O ot O the positive and negative {} axes, according to (6. 6). f

T

A i AN s
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Physically, the positive-axis peak in f(w) in Fig. 10a corresponds to the
creation of a phonon, and the negative-axis peak corresponds to the annihilation
of a phonon. It is not difficult to show, by considering the frequency regions over
which the various confluence processes can conserve energy, for example, that
this interpretation of the two peaks in Fig. 10a is consistent with the following
interpretation of the peaks in fn in Fig, 10b-e. The peaks in these functions
fn(w) correspond to the various splitting and confluence processes. For example,
the last peak on the right of f3 (w) corresponds to the splitting of the fundamental
mode into three phonons and the next peak to the left corresponds to the confluence
of a fundamental phonon with a thermally excited phonon to form two phonons, as

illustrated on Fig. 10c.

The splitting peak (last to the right) is not the largest peak for a given n
in general. However, in the present example, the other peaks can he neglected
in the region of current interest since they are obscured by the contributions of
lower-order terms (smaller n). For example, the last (splitiing) peak of n=3 4
gives a much greater contribution to B than does the second peak from the right

-1
in f5 (w): From (2.19) with the frequency dependence of (n & +1) neglected
3 \n \ n L3 - .
and T = {a) f @) /w 7, Bn is given by the expression
1

n
Bl'l ~ w4n! (<a>De) fl’l(w) »

where (o) D, =0.1. For the last B, peak in Fig. 10c,

I8 o= :
(By), ~ 3T 107 0.633/w ) , L
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and for the next-to-the-last BS peak

1 o)
—5—,'- 10 (0. 4285 /wmx).

(85 )2 =
Thus
(B.) /(B.) = 3.38x10 << 1
37" 8%
so that (g ), is negligible. This simple example clearly illustrates that the

confluence processes are negligible in the exponential frequency region; only

the splitting process should be included.

The errors introduced by formally using the central-limit approximation
to (6. 4), which includes both the confluence and summation processes, are
drastic. Direct calculation shows that the resulting values of B are incorrect
by orders of magnitude in some cases. The difficulty can be seen simply by
considering the positions of the peaks of the various Bn vs w curves. For
example, in Fig. 10e, the five-phonon peak is at w = wa. Experimentally,
this frequency is in the region of two-phonon peaks, not five-phonon peaks.

An even more dramatic error results at high temperatures, where the heights
of the negative-axis and positive-axis peaks are approximately equal. Then all
Bn (for reasonable values of n) peak near w = 0, which is, of course, below

the fundamental resonance frequency.

o A Rt I T T b
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VIL Effects of Terms Other Than VT 1) in X

In the previous sections, only the term V(n+ 1) in X [Eq. (2.4)] was
considered. In determining the effect of the other terms V(p) with p<n+1
in (2. 4), first the higher-order terms in the expansion of the square root in

R 2@ in (2.5) are needed. With the definitions

Gﬂm' Ym *

L Ed&m/ézm ’ A

and, formally,

L‘,'E=“2’ 6-2=Au,
(2.5) becomes
R -6 1/2
tm_m ey hu2i2 Ay r
m

Expanding the square root gives

m
(7.1)
where the binomial coefficients have the values
(1/2)=_1_ (l/2)=_-l_ (1/2) 1
1 2 2 8 3 16
(7.2)
(1/2)=-_§_ (”2)=_35_ (”2)=-_195_
4 128 5 128 6 5120 -
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Expanding each power of u2 +2Au in (7. 1) and collecting equal powers of u

gives
le -6 © .
=L ru , (7.3)
s=1
where

1 2 .4,
= 5 (-1+6A% -5A%) |

. <1/2> s> oA+ (1/2) 4\ s (1/2)(3) -
> s/\o 4 1/ 3/\ 2

2

= s A[3-10A%4+74%)

1 2 4 6

6

{
!
§
4
2
ER |
§
b
H

Expanding the powers of (R o 6)/6 gives the results displayed in Table I. »1
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-1
Multiplying each [(le - Glm) /0 em ]p by (-1)p (p! pp) and summing

gives

Xx=cz 4 o™, (7.5)
n=2
where
3Ba 3p2
C = nn
1-2p
and
2
-f. ) r1 _ A2
YD R
3
r 2r.r
hy=-—Lo 72 = - L (A% 3043 .30 |
3!p pr2! 3!p
4 2 2
‘g i r, ) 3r1 r, N r, +2r1r3
3 41pt 31p° 2102
= — [1A*+30(5p+2) A% - 6p(1+3p) A2+ 302 ] |
4!p
S 3 2 2
% L r 4r1 r, 3(1‘l r3+r,7r)) 2(r1r4+r2r3)
4 5 ] 7 S 3 + p)
Slp 4!p 3'p 21p

lﬁ [-A5+ 5p(2 -9p - 21p2)A5
5!p
- 100(1-6p-150%) A3 - 1502 (14 30) A7 ,
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: ] 6 _ 3 2,3 .. 22 .3
*hs- 6'p6 [r, -30pr; ' r,+30p (r;’T3+ 61 1)+ 31,'1,)

3 2 3 4 2
- 120p (3r1 r4+6r1r2r3+r2 )+ 3600 (2rlr5+2r2r4+r3 )]

- L (%1550 + 4500 - 12007 - 150)
6!p
+ At (18750 - 6750° + 240p% +15p) A% (765p% +2700%+ 1800%)
4 .3
+ (450% - 150%) . (7. 6)

The first term,

1 n+l
s 1 A
(n+1)! o1

’ - =

in each A - in (7. 6) corresponds to the value used in the previous sections.

It is tempting to approximate A = Sm < ﬁzm by 1 /»/T in (7. 6) and calcu-
late the ratio of ‘g - to the first term in %n " The results of the previous sections
could then be multiplied by the square of this ratio in order to approximate the
effect of the additional terms. Indeed, this increases the value of (B_,.) /B.)

n+Hl'my’ Nmx
by a factor of approximately 3.7 for small n, giving better agreeinent with experi-
ment. However, this result probzbly is not correct since considerable care must be
exercised in approximations of this type., For example, if A is approximated by 1/3

rather than by 1/3", the value of (B 1) /(B.)  changes erratically with in-
mx N 'mx

creasing n.
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From -?.2 in (7. 6) it is seen that replacing A3 by

Ad+3pA3 - 3pa

@.7)

takes into account all terms in '.Kz [in (2.5)]. Thus, (3m . gzm)s in 2.7) is

replaced by
(1+3p)(d_ - u, )3 -3p(b_ -
P)Om " Xam m
The corresponding value of @, in (2. 16) is replaced by

6
o, = X

“p (8 1) U Q) - U Q)
-2pU_@Q) [T - gm(Qz)]} s
For ﬁf = ;:, (7. 8) gives
@ = UQ)Y, Q) - pUXQ) Ux@Q,)
"PUE(Q) Ux(Q)) - 20 U, @) Uy Q)

~2pU, Q) UzQ) - cc .

69

Ezm) (Bllm ) El.m) .

(7.8)

.9

L g T

b
&
=

oy




PN e——— —v

Sec. B

Notice that the coefficient of Ux(Q I)Ux(QZ) from the extra terms
[3p A3 ~-3pA in (7.7)] vanishes. This is a general property of e for n = 2

resulting from the fact that all T, = 0 when A=1for n > 2. See (7.4).

For g, (6m . ‘13”(,’“1)‘1 ‘n (2.7) is replaced by [ see ‘?'3 in (7. 6)}

[1+30(50+2)1(8 + o) = 60(1+30) (8, * 8y ) (g~ 3y1)

+3p° (Mg
The corresponding value of g in (2. 19) is

6
a, = L
3 m=1

{[1+3p(5p+2)] (Sm R ﬁf) Un@Qp U,Q,) U Q)

-30(1+3p) (5_ - u) U_Q)[U_Q,) - U, Q]

-3p(1430) U_(Q) U_(Q,) [u * U Q)]

+30°Tug - 4 @DITY Q) - U @) 1} : (7. 10)

TSI SRR N

b i SRS AR
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For Gf = X, (7. 10) gives

a3 = U,Q)) U,(Qp) U, Q) - 3p(1+20) [U,(Q)) U3(Qp U3 (Qy)

+UQ) Ux@Q) Ux@Q)) + Uy(Q)Uy(Q))Uy(Qy)

+U,(Q)) U,(Q,) UzQ)] + 36" [Uy(Q)) Uy Q) Uy Q)
U U U 8)

+ }:(Ql) Z(Qz) yQy+ ;(QI)U:(QZ)U;(QQ

+Uz(Q)) Uz@QUz(Qy)] -

(7.11)

These results (7.9) and (7. 11) are being used in the computer analyses,
to be discussed in a later report.
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In this section it will be shown for NaCl at room temperature that the

VIII. Higher-Order Processes In The n-Phonon Region

higher-order processes shown in Figs. 2b, 2¢, 12, 13, 14, and 15 are negligible
for reasonable values of n. The results suggest that higher-order processes
may be negligible for values of n of current interest, say n 2 8. Additional

analyses will be made elsewhere to establish the validity of this suggestion.

The process shown in Fig, 12a will be called the single-vertex, n-phonon

process. Processes with more than one vertex will be called higher-order
processes. For n =2 there are no higher-order processes except those of
the type in Fig. 12b, which can be accounted for simply by renormalizing the

phonons.

For n = 3, the only higher-order process of interest is shown in Fig, 12c.
The contribution to B3 can be obtained simply as follows: By standard perturba-

tion theory, the matrix eleinent for the process in Fig. 13a (with vertices

aQ,not AQ = a£b+a_yj—)is

= +otote Tt + +-
{fn I:&cab+ |1>-z4<1 273"t IA“Sb)szs a_ aja, I I'm'f )
Qm
« (rmte |l ak v, aeTal 1920300009y /e - - ) ‘
Ra) Vfm1 % m?1 ST 1" %m (8.1)

+
where | 17 )= | n; t1), lmo) = | nm) » €tc., and permutations of 2 and 3 and of
m and 1 in X give the factor of 4. Evaluating the sum on }Sm in (8. 1) by using

A( ]'sa) and using the well known values of the matrix elements gives

atH-'i =3 2 (nm+1)Vm23me1

(fn|3eg 1) b ¥ AW -wmw ) Vi =
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n
]
f ]
L3
2
(a) .
()
3
m 2
¢
1
(c)

Fig. 12, Phonon relaxation processes: (a) single-vertex, n-phonon process;

(b) processes with renormalized phonon lines; (c) three-phonon - summation

higher -order process.




S R

(c)

(@)

Fig. 13. Various time orderings of the process shown in Fig, 12(c).
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Fig. 14. Two-vertex, n-phonon process (a) and (n ~1)-vertex,
n-phonon process (b).
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(a) (®)

() acbh
(d)

() ®

Fig. 15, Various time orderings of the process shown in Fig. 14(b) for n = 4,
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where

(m |3y |1) = (1*2*3%¢ |A(K,)Vepps 1+ 2*3* a |1 050500y

The diagram in Fig. 13b gives tne same result as (8.2), but with W

replaced by -w _ and n  + 1 replaced by n.

The contribution from the diagram in Fig, 13c is

(ﬁllJ'Cba+|i) 5 20 +1DV_,aVe o5
/ Ny i 2 ‘
\fn|3C3|1) b__ I(w-w,+w Vg

and the contribution from the diagram in Fig. 13d is the same as (8. 3), but with

W and nm+1 replaced by e and nos respectively.

Adding these four terms gives

<nt3<3_22|i>_ 5 4@ Vit Vmas
(]3| i) b, 3'ﬁ[(w-wl)2'me]V

(8.4)

f123

The value of this ratio in the three-phonon region, say at w = 3.5 w [ see (5.5)]

is of interest. With this value of w and with w, = w and w, = w, (8.4) re-

duces to
(3G 0 11) 4 z YmVtm1 Ymo3 o
5 R ) v (8.5)
(|3 |1 hw” b £123

The value of Vf123 = VfQ1Q2Q3 is given in (2.15). This reéult (2.15) is

also valid for V 1,2+ (n+1) when written in the form:

7Y

s e et W o L-‘_______ e
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2
v _ 3pvH’ o Bann 1
1 n+l
n/2
x —L o (8.6)
\/m<' 2p m<ann
where
' 6
@ = 2o U XX U ®.7)
p=1
with
A i m_ )1/2
Ufp = 6p Sl (Tn_

Substituting (2. 15) and (8. 6) iqto (8.5) gives

- 1/2
(%0010 gy Bay gy Y 5 2fm1%m23
(nfse |1y 105 1-2p g2 \mems [y o @503

In evaluating the sum over bm in (8. 8), it will be assumed that the quasi-
selection rule that the matrix element for the splitting of a fundamental phonon
into two optical or two acoustical phonons in NaCl-structure crystals is negli-

gibly small. Wavevector consetrvation of the three output phonons will be

78
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neglected formally, and the value of { fn | X3 99 [i) / (fn| ¥y |i) will be

computed at w = 3.5, assuming that

W) = W, = Wy = w (8.9)

for the three output phonons. For NaCl, the three output phonons are longi-
tudinal optical (LO) phonons. Thus, the quasi-selection rule requires that the
intermediate phonon m be an acoustical phonon. The case of m being a longi-
tudinal acoustical (LA) phonon will be considered. Since brn = LA and b1= LO,
®oemi from (3. 2) can be approximated by (3.9). From this same equation (3. 9),
with Sp . ﬁf replaced by (m_ /m )1/ 2 Ump to account for the fact that o

2m23
does not involve the fundamental mode,

m 1/2 m ik a
< mx “nn
®om23 © ( mr ) U<k LAx - V mo Y>k_LAx© >
< m m

>
X M A ikaann
<k, LOx v m, >k, LOx®
m,. -ik3xann
X <u<k3L0x - '@ u>k3 LOx € S e (8. 10)

As in Sec. III, we set Ueiox = l/J 3, Us10x = g, UgiAx = 0, and
Us1Ax S 1 /»/ 3". These values, with (8. 10) and sin2 kmxann =—é— formally,
give

2mr

2
| %2m23 | =7 ms | (8.11)
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Next consider the value of « 3£123° The same arguments that gave (8. 11)

indicate that

2

i e 4
| %3123 1 = 77 8. 12)

is a reasonable approximation. Substituting (3.9), (8. 11), and (8. 12) into (8. 8)

gives

2 1/2
(fnl:ics_zzli)l =[_1_< ] Bann> m<2mr]/

- .0x10°2 .

(8.13

)

Even if the other two acoustical intermediate states contribute as much as the

LA state, the total ratio in (8. 13) is increased only by a factor of 3, giving

3x 1072 for the value of this ratio. Thus, the order-of-magnitude calcula-

tion suggests that the higher -order processes are negligible in NaCl for n = 3.

In considering larger values of n, several classes of diagrams can be
studied. First consider the n-phonon diagram in Fig. 14a. The energy de-

nominator corresponding to (w - wl )2 - wmz in (8.4) is

. ; S
(Wowy mwy =ee -ty p) -y

Assuming that w = (n+-§-)5 and wy = Wy = e = =W = W, this energy

denominator reduces to

_ _2 _ _
[n+ 58 -(n-2)&] - &% =5.25 &°
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The rest of the analysis is the same as that leading to (8. 8), and the results

are the same as (8. 8) with the appropriate changes in the matrix elements:

2 ' 1/2
(i 1% 9 0e1) 1) 4 (%) 1 By [ 5 Ho-1)im1---*2mnn-1
SIENTY 10.513/1-20 72 \mgm, b nfize--n
(8. 14)
The value of Uy nn-1 is given by (8. 11):
2 2 M
®mn-1] =27 T G159

With ali cutput phonons 1¢-°n as LO phonons and the intermediate phonon as a

LA phonon, the arguments leading to (3. 9) indicate that

2 2 m
~ 4 =g <
nf12-+on| =0 %n-nmi-e- | T @ m@y (8. 16)

A\

are reasonable approximations. A factor of 2/3 was included in (8. 16) as dis-

cussed in Sec, III. From (8. 14)-(8. 16) with ¥ = 3 formally,

bn
. 2 2
(fn IMn-Z(n-l) 1) ‘ os 1 (_1_1_)3 i Bann M, m,
(mlx_|i) 20.7 \3) \1-2p 52m< rn>3 . (8.17)

This result (8.17) is (n/ﬁl)2 times larger than the n = 3 resu't (8. 13). The ratio

in (8. 17) is equal to unity for n = 190. Thus, it is clear that the contribution to 8

from the diagram in Fig, 14a is negligible.
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Next consider the diagram in Fig. 14b. For n = 3, this diagram reduces to

that of Fig. 12¢, and the matrix element is given by (8. 13). For larger values

of n, a straightforward evaluation of the sums over the diagrams corresponding

to those in Fig. 13 would be tedious. A simple method of evaluating the sums is

first illustrated for n=3. Since the ratio {fn |3€3_22 [i)/{fm |3{3 | i) is inde-

pendent of temperature, aii occupation numbers, such as n

= in (8. 2), must sum

to zero. Thus, only terms containing factors of (n+1) need be considered. For

example, the diagrams in Figs. 13(a) and (c) are considered, and those in Figs.

13(b) and (d) are dropped. [ For the m arrow going from left to right, the term

v ;
a a . gives rise to n.
respondstoa_a_=n_.

% m ™ m m ]

+ 1, while the m arrow going from right to left cor-

Since the sum over the four diagrams contains the factor @ the energy

denominators can be expanded, and only the w,, terms retained. For example,

the energy denominator corresponding to Fig. 13(a) is

1 1 £

! + I
Wow e wewy (w_wl)Z

+-oo

w
m
R ... I N

- 2
(w E wl )
and that for Fig, 13(c) is

1 S “m
-(w-w1+wm) W= W
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(8.19)
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For large n, n+-%-.=-‘ n. Thus we set W= (n+71—)5 =nw, or w = 3w for
n = 3 in anticipation of the large values of n of interest. Adding (8. 18) and
(8.19) and using « = 3w and w = w gives

Zwm

(8.20)
3.5-1)° &2

which corresponds to

Zwm

(8.21)
@ 2

@-w)* -

in (8.4). For large n, the factor wmz in the denominator of (8. 21) is negligible,
and (8.20) and (8.21) are equivalent. To shorten the notation further, set
w= 3wg. W = w _and C = mwg in (8. 18) and (8.19). This reduces (8. 18)

g
and (8. 19) to

1 - E-’--a-
2-m 4

L .= Wy
-C+m) 4

and the sum is to 2m/4, which can be written as

= Em | (8.22)

(2!

*Jg

For n = 4, a straightforward evaluation of the sum over the energy denomi-

nators of the 24 diagrams gives

W 2
m; my m) mgy (2) my my
- = - (8.23)

i 9 (312
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This result (8. 23) can be obtained by the method above as follows: The energy

denominators corresponding to the diagrams in Figs. 15(a)-(f) are, respectively

-1
1 1 1 1 1
B-mp(Z-m,) 6 (l-ﬁ'ml) (I'T“‘z) = gmpmy

(=]

1
(3+ mD(Z + m2)

|
—-a-mlm2+

1 = _!'__*._2_ m,Im, 4-ce.
(3+m1)(1+ m1+ m2) 9 3 172
1 (1 2)
= |{=+%) mym, +...
(3-mlT(l-m1-m2) 9 3 172

. 1 : (i-1> FIeEb te-s
(2+m2)(1-m1-m2) 4 1772

1 1
T my)(Tmy +m,) (T'1> Ty T

Adding these six terms gives (2)2 m, m, /(3 !)2 in agreement with (8.23).
For n =5, adding the 24 terms gives

3
2 m1m2m3

(41)
By induction, for general n the corresponding result is

n-2
2" "mpmy eeem

[(n-1)1]2
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(8.24)
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Thus .‘
] !*
» . i .
(| ... |1)_ -2 )
. S 2 —2.n-2 b2 ek “n, """ “m Bt
(mlx_ |i) [(n-1)!1° (h&*) m, b"‘n? 1 -2 3
Vflmlvml m2 " Vm__,@-1)°
X v . (8.25)
fl12¢<°n
Substituting (2. 15) and (8. 6) into (8.25) gives
[ ! : n-2 4
(fn (X ... |i)=+ - 3 Ba |
(ml3G]i) 2(n-1)! | 2(1-2p) mq_g?
a2flmla2ml m22 © a2mn_2(n'1)n ‘ ;
Ak s = (8.26) z
ml m(n_z) nfil2+-°n
For n =3, the numerical coefficient 9/8 in (8.26) is slightly diiferent from the

corresponding value 9/10.5 from (8.8). The difference is that wm2 in (8.21)

was not neglected in the derivation of (2,15) and n + % was not approximated

B B oS

by n.

The values of the multiple sum in (8.26) can be estimated by formally ]

S ks .

setting
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and using (8. 11) and (8. 16), which gives

2
!<m|3c3-22--- Il) = n 5/2" Bann
BRCAEN 24(n-1)! | 2(1-2p) m<52

(8.27)

Since the value of the ratio in (8.27) decreases with increasing n and is negli-

gible for n = 3, the order of magnitude calculation suggests that the contribution

to B from the diagrams in Fig. 14b is negligible,

Althcugh the temperature and frequency dependence of B for the higher-
order processes is of academic interest only since these processes are negli-
gible, it is mentioned that the frequency dependence of the higher-order pro-
cesses is different from that of the single-vertex process. The formal expression
for the temperature dependence of the higher-order phonon processes is the same
as that of the single-vertex n-phonon process. However, wave-vector conserva-

.tion in the intermediate states may cause the final-state phonons to be different
in the single-vertex and higher-order prccesses, thus giving some difference in
the temperature dependence of the two types of processes. Furthermore, the
factors B, a . and W in (8.27) are temperature dependent. At the present state
of knowledge ( of the phonon dispersion relations and the coefficients in the scat-
tering Hamiltonian, for example) these temperature differences could not be

used to distinguish between the two typves of processes.
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IX. Anharmonic-Einstein-Oscillator Model

A study of the absorption of electromagnetic radiation by a collection of
non-interacting but arharmonic oscillators has been initiated as an alternate
approach to the multiphonon absorption problem. A pveliminary report of the
results is presented here. A complete presentation will be given in a future
report,

Since most of the experimental measurements of interest to this study
have been carried out at room temperature or higher, purely classical methods
were useﬂ. The first step was to derive an expression for the absorption coef-
ficient of the oscillator array, assuming the system in thermal equilibrium at
temperature T. The resulting general form may be applied easily and quickly
to compute the absorption coefficients for a number of anharmonic potentials of

physical interest.

The Liouville equatioa for the classical distribution function p{q,p,t) of
the oscillator array in the presence of a spatially uniform driving field of fre-
quency w was treated by perturbation theory to obtain a classical form of the
well known Kubo formula for the absorption coefficient. The Kubo formula was
then reduced to a form that may readily be computed once the nature of the par-
ticle orbit in the anharmonic potential is known. The final form is particularly
convenient for use in the quasi-harmonic region, where anharmonic corrections
to the particle orbit are small. This is the temperature region of interest in the
discussion of both solids below their melting temperature, and for molecular

gases below the temperature at v hich dissociation occurs.
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The formula was applied to the case of particles whose motion is governed
by the Morse potential, an anharmonic potential used frequently in molecular
physics. In this quasi-harmonic region, we obtain a particularly simple result
for the absorption coefficient. If the fundamental vibration frequency of the
molecule is @y then the intensity of the nth harmonic absorption at W =nw o
is given by the simple expression

n-1

Pn = . (-]%:) P1

where D is the dissociation energy, and Pl the strength of the fundamental ab-
sorption line at w 0° For tem_eratures near room temperature, kT << D,
and a plot of Pn against n gives a form very close to the exponentially decaying

form observed in many crystalline materials,

Mangir and Hellwarth15 have treated the same problem from a quantum
mechanical point of view and obtained a result that reduces to ours in the
correspondence-principle limit i » 0. A detailed comparison between our

calculation and theirs should prove most illuminating,

We believe a form similar to the result quoted above will very likely
emerge for large n from the study of any potenti»l for which the deviations of
the srnall-amplitudé motions from the harmonic approximation are small. It is
interesting to coﬁtrast this near -exponential behavior with that appropriate to a
potential for which the harmonic approximation camot be a_Zplied. An example
of such a potential would be a simple square-well potential, with a flat bottom
and infinitely steep sides. Applying the method to this problem indicates that

at high frequencies the absorption does not fall off in a near exponential manner,
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but rather as 1 /wz. We plan to examine two or three more potentizl functions
to see whether or not one can make a clear systematic statement about the rela-
tion of the form of the potential function, and the frequency dependence cf the

absorption coefficient at high frequencies.

The comparison between the results for the Moxse potential and the square
well leads us to conjecture about the possible role of certain impurities in in-
creasing the linear absorptior coefficient of crystals above tlie value expected
for the intrinsic processes apparently responsible for the near-exponential tail
at high frequencies. It is well known that in the alkali halides, certain impuri-
ties (Li and Ag, as examples) move in potential wells that are very flat, since
very low, strongly temperature-dependent frequencies are assoc:ated with these
impurities. It may be that the presence of these impurities will give contribu- :
tions to the absorption coefficient which falls off like w2 rather than exponen-
tiaily with frequency. Consequently, at high frequencies, the value of the

absorption coefficient may be greatly affected by these impurities.

The results obtained to date will enable us to make semi-quantitative
estimates of the impurity concentrations required to give rise to a given value
of the absorption coefficient. The simplicity of the method may make it useful

in other problems, such as examining nonlinear absorption mechanisms.
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C. THEORY OF INFRARED ABSORPTION AND MATERIAL
FAILURE IN CRYSTALS CONTAINING INCLUSIONS

Small amounts of macroscopic inclusions in or on the surface of a
nonabsorbing host crystal, in some cases a fractional volume of ~10-7 to
1078, can give rise to a value of the optical abscrption coefficient f of 1074
cm-1 (a typical value of current interest). For various types of inclusions, the
frequency dependence of B ranges from increasing as w?, 1o independent of w,
to exponentially decreasing with w. The temperature dependence ranges from
independent of T to increasing as TP in the high-temperature limit, where
p = 2 -4 typically. Simple expressions for the absorption cross section are
derived for various cases of practical interest. The cross sections are used
to derive expressions for § for the four cases of large inclusions of strong
and weak absorbers and of small inclusions of dielectric and metallic particles.
A result of general interest in the theory of scattering is that the absorption
cross section of large spheres is equal to (1 - R 4 )'naz, where R 1 is the re-
flection coefficient for normal incidence, rather than (1- (R ))‘na2, where
(R) is the geometric-opucs average reflection over the illuminated hemisphere.
The material failure resulting from local heating of macroscopic inclusions is a
far greater problem in high-intensity short-pulse systems than in low-intensity;. '

long-pulse or cw systems having equal average intensity. Microsecond pulses

with energy densities as low as ~5]/cm2 can cause material failure.
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I. Introduction

Several theoretical studies of intrinsic infrared absorption are currently

,15'173'1' = It is expected that the results of these studies, especially

|

|

underway
in conjunction with experimental investigations, will afford estimates of the
values of B for various materials that could be approached by removing the
extrinsic sources of absorption. The present investigation is concerned with :
another aspect of the problem -- that of extrinsic absorption by macroscopic

{ inclusions. Since the inclusions may be either in the bulk of the crystals or

on their surfaces, the results are of interest in surface studies as well as

studies of bulk properties.

Absorption is of greater interest than scattering in the study of high-power
infrared windows. A value of 8 = 10 2em™! for the absorption coefficient can

cause sufficient heating for the system to fail, for example, by thermal defocus-

18-20 B¢ an equal amount of scattering B 1074

ing or by window fracture. b

cm"l may be tolerable. Thus, scattering will be neglected heve, except to \
mention that the observation of the associated scattering may help to identify

the absorption mechanism in some cases. Winsor21

has shown theoretically 1
that scattering, especially in conjunction with total internal reflection at the

host crystal boundaries, may increase the measured value of B by increasing

the path lengths of the rays in the crystal. {

terials for high-power infrared windows. Materials of current interest include

ZnSe, CdTe, KC1, KBr, and TI 1173 glass (Ge2 8Sb12 Se60 ). Results, such as

There is great interest22 in lowering the value of 8 for candidate ma- j
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those presented here, concerning the magnitude and the temperature and
frequency dependence of B for extrinsic and intrinsic processes are needed
in the material-improvement programs. The effects of inclusions on absorp-
tion in the infrared have not been studied experimentally. Such experimental

studies would be welcomed.

It has been realized for some time that windows in high-power infrared
laser systems can cause the system to fail with or without actual mechanical

failure of the window.ls-20

Examples are thermally induced fracture of the
window material and thermal defocusing of the laser beam by the window
resulting from uneven hLeating of the window, respectively. The increase in
the spatial average of B resulting from inclusions can cause either type of
failure. In addition to this overall heating of the material, localized heating

in the vicinity of inclusions can cause material failure. This local-heating

failure effect is considered in Sec. V.

For sufficiently large concentrations of inclusions, the localized heating
can also cause considerable optical degradation of the beam. In the present
study it is assumed that the concentration of inclusions is so small that this
localized-heating type of ontical distortion is negligible. However, it should
be mentioned that scattering may be cons’derably larger at high-power levels
than at low levels as a result of the scattering by the heated host material near
the inclusion. This effect should be greatest for scattering near the forward

angle,
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II. Analysis of Absorption Cross Sections

Consider a sample consisting of a nonabsorbing host material of dielectric

constant €, (real) containing NI inclusions per unit volume, each inclusion ; H

having absorption cross section ¢ abs * Multiple scattering will be neglected --
a reasonable approximation for the present case of small impurity concentrations.

The well known result for the absorption coefficient 8 of the sample is then
B = Opg Ny - @.1)

Only the case of spherical inclusions of radius a will be considered. The ‘
absorption cross section is not generally equal to the geometrical cross section
ﬂaz. For ka << 1, where k = 2 ﬂ/AH , with AH the wavelength of the radi-
ation in the host material, the value of ¢ abs typically is small (o abs << 'na2 ).

In the case of ka >> 1 and | € | >> 1, where ¢ = eI/GH, with 3 the dielectric
constant of the inclusion, the reflection at the surface of the sphere is great,

- 2 :
which again makes Oabs << ga”. | ‘

Simple expressions for © abs for various limiting cases will be derived
23,24

from the classic result of Mie:

Oahs =

=~ )
=

2 | 2 2
LEI (24 +1) [Re(az+bz)-|az| = |bz‘ ] (2.2)

where Re denotes '"the real part of." The values of a, and b, in the regions

of interest are given below in Eqs. (2. 3), (2.7), and (2. 8).
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4,25

2
For small spheres (ka << 1), the sums are well approximated by

the single term containing a 1° where

a __i_2_€-1
1 3 e+

(ka)3 .

N

2.3)

The time dependence is taken as exp(-iwt). Some authors24 use exp (+iwt), in

vthich case all factors of i in (2. 3) and below would be changed to -i. With

2
€ = ‘ﬂ"'i%’ substituting (2. 3) and |a1| << Re a; into (2.2) gives

12 ¢, ka
. = 3 2

Ta for ka << ]
abs 2 2 ’
(€R+2) + €

: @.9

Two limiting cases of (2.4) are of interest. For ¢ 9 << ER , which is
satisfied for nonmetals at frequencies not too near the fundamental resonance

frequency or the high-frequency absorption edge, BI and € g are related

the expression

€ k ;
BI = ZJm(n)k = m . (2. 5) ;
2
Using this result to eliminate €3k in (2.4) gives %
12 R 2
Oabs = —%‘ (Bla)‘”a ’ €J < GR . 2. 6) 3
(e, +2)
R
The second limiting case of (2. 4) is that of small metallic inclusions.
The Drude expression for the dielectric conétant is
2
P
€= €_ - ) . 2.7)
€gw” + iwl)
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where T is the electron relaxation frequency (often written as 1/7), €, is
the contribution to € from the core electrons, and wp = (41!Ne2/m)l/ = is the
plasma frequency, which has a typical value of wp = 5X 1015 rad/sec. At
10.6ppm, w == 1,9X 1014 rad/sec. There are two contributions to the relaxa-

tion frequency I': T = rBu + rSu’ where the bulk contribution rBu has a typical

-1

value10 of rBu = 5X 1013 sec The value of the surface-scattering contribu-

tion rSu is ~vF/a, where the Fermi velocity Vg has the value Ve o= 108

13 8

cm/sec for many metals. With rBu = 5x10 sec"1 and Vg = 10” cm/sec,

o~
Tg, > Ty, for a 200 A.

For typical metals at 10.6¢m, wp2 >> |w2+ iwI‘], and (2.7) gives
w2 w
p p ( .r)
(€ €y =~ = - , 1-i— 1}, €, +2=¢, . (2.8)
N w2+iw1‘ c.‘:2+I‘f b R R

Both the real and imaginary parts of the dielectric constant are large in magni-

tude for small particles of typical metals at 10.6pum. Substituting (2.8) into

(2.4) gives -
372 2
_ w? Ta _2. 2 2.
Ope = 12€y = T ma“ ; W >> |w*+iwl |, 2.9)
P

for metals, This simple expression for the absorption cross section will be
used in Sec. III.

Next consider the case of large spheres, so that

ka>>1, é- Ba >> 1 2.10)
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are satisfied, where BI = 2kdm n is the bulk absorption coefficient of the
inclusion, n = V€', and dm denotes "the imaginary part of." The inequality

%Bla >> 1 typically is satisfied for metals and strongly absorbing dielectrics.

It will be shown that

_ 2 1
Oibs = (l-R_L)ﬂa ’ ka,-i-BIa>>1 (2.11)

2
where R g = | (n-1)/(n+1) | is the reflection coefficient for normally inci-

dent radiation.

The asymptotic expressions for the a, and bf. in (2.2) arezsa

.L _-ika sinx -ncosx tany

a, = -i" e — ’ for £ = ka
£ 1-in tany (2. 12)

= 0, for £ > ka

~ ;4+1 -ika cosx t:a.tﬂ-nsinx

bz = i e fany +1n ’ for £= ka
(2.13)

= 0, for £ > ka

where x = ka - -;-(z +1)m and y =nka - %—(24—1)# . The approximation
tany = i is valid when d m(n)ka >> 1 is satisfied, as seen from the expres-
sion

ny . Sin2A +isinh2B _ =%
tan (A+iB) = <08 I AT cosh 2B =jtanh 2B =i , @. i4)

where the approximations are valid for B >>1,
Using tany == { and
g i+l .
- i " 1
iz“"le ika = (e -2- ) ika i.x (2. 15)
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reduces (2,12) and (2.13) to

-ix isinx+ ncosx ~ .~IX cosx+insinx
1+n % bl.‘e 1+n s €.16)

a, =
, = e

for £ = ka. From (2.16), it is easy to show that

2

2 2
|2, [+ |5, a-ll";l;:—lli , a, +b, =1, (2.17)

for £ = ka, and from (2.12) and (2.13),a)z = )) >0 for £ > ka.

Substituting (2. 17) into (2. 2) with the upper limit in the sum replaced by ka and

using
1 In|®+1 - e L R (2.18)
ln+11*  |a+1]* 2 1
gives
o, = 21 1 (1-R)§a (2£+1) (2.19)
abs - 2 7 172 ’ g
K 2=1
This expression, with
ka 2
Z (24+1) = (ka) , for ka >>1 , (2.20)
£=1

gives (2. 12),

When —;— rra >> 1 is not satisfied, that is, when a ray traversing the inclu-
sion is not completely absorbed, it is reasonable that (2. 11) should be replaced by

the approximate expression

Ops = (1-R,)(1 -e'ﬁla)ﬂa2 : @.21)
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The well known result that the extinction cross section ¢ it = Odpe +0 ——
is equal to twice the geometrical cross section when ka >> 1 follows dircctly
from (2.17). Substitining a, + bf, =1 for £ = ka and a, + bJe =0 for £ = ka

into the expression

_ 27 .
O'ext = -]:2— zi:l (22+1) Re (dl+b[:)

. . 2
and using {2.20) gives Oyt = 2wa”,

For large spheres with (2. 10) satisfied, it is not difficult to show that using

geometrical optics approximations gives the result

_ - 2
O = (1-(R))ma", (2.22)
where (R) is the value of the reflection coefficient averaged over the illuminated

hemispherical surface:

1 1
(R) = S d(cos?8) R = S d(cos® T)R , (2.23)
0 0

where 8 is the angle between the surface normal and the wave vector of the inci-

dent radiation, T= = 7-0, and R = | r |2+ |t |2 with r
t 2 » p n » p
Fresnel reflection coefficients for the two polarizations. By numerical evaluation

and T the

of (2.23) for specific values of n, itis not difficult to show that R 1 # {R) in gen-
eral, although they do not differ greatly for a number of different values of n.
Yor example, for n = 1.27 +1 1.37, (R) = 0.66 {p. 292 of Ref. 24) and

R = 0.72. These two values differ by 8%, which is a typical value of other

values ¢f n congidered.
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It is believed that the result (2, 11) is correct since it was derived from :
the exact theory of Mie.2 =y The difference between (2.11) and (2.22) is not im- E
portant in the present study since the small difference is overshadowed by other
effects, such as deviations of pazticle shapes and sizes from the assumed spheres
of common radius. In passing, notice that the phenomenological expression (2. 22)
results from using geometrical optics approximations and assuming that the re- l
flections for both polarizations from the (curved) differential area on the ¢phere
are the same as those of a plane semi-infinite medium at the same angle of inci-
dence. With these approximations, the Franz, Depperman, Foch26-28 surface
waves do not arise and surface wave "spray" is neglected. The exact theory of
Nie 23,24 does contain these effects.

Limiting values of the absorption cross section have been discussed above.
For example, (2.4) and (2. 11) ax;e the expressions for ¢ ahs for the two cases of :
ka << 1 oud ka, 71'313 >> 1, respectively. In some cases the two limiting
values ar¢: joined smoothly by a monotonically increasing function of particle
radius a, as illustrated schematically in Fig, 1. In other cases, Oaps 882
function of a may exhibit a maximum, as illustrated in Fig. 2. In this figure,
the value of (rabs/‘n'a2 at ka = » was corrected (1 - R .l.) = 0,75, as compared
with 1 - {R) = 0.66 in the reference).

The value of © abs 2t the pea'k not only is greater than the a > » limiting ]
value, but also may be greater than 1ra2. In Fig. 2, for example, ¢ aBE 2‘tl'a2 "i
at the peak. An absorption coefficient greater than the geometrical cross section
ﬂaz is possible since the electric field in the inclusion may be larger than the {

incident field, as is well known in electromagnetic theory (large fields near sharp

cracks in dielectrics, for example).
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inclusion radius a in arbitrary units

Fig, 1. Schematic illustration of & monotonically increasing cross section.
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n=1.27-1.371
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Fig. 2. Example of a cross section with 8 maximum value greater
than ¥a2, Afer Vam der Hulst, Ref. 24, p. 276.
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i III. Absorption Coefficients for Various Types of Inclusions
t The results (2.1), (2.4), (2.11), and (2.21) will now be used to determine
the effects of various types of inclusion in crystals. First consider the case of
ka > 1 and ﬁIa >>1. From (2.1)and (2.11) i
]
!
B = ﬂaz(l-R_L)NI , for ka, fa >> 1. 3.1) 3

! This result for 8 is essentially indeper.dent of temperature in many cases of inter-
est. In the infrared region, t:c frequency dependence of large metallic inclusions

is either 8 ~ wl/ 2 or B independent of w, as discussed at the end of the present

section. Near the reststrahl region of dielectric materials, R L is strongly fre-

i quency dependent; otherwise R 1 is relatively constani in the infrared region.

If the absorption coefficient BI of the inclusion becomes too large, R 1
approaches unity and 8 becomes small., In the other limit of small ﬁI

- rm g e 12 4o

( ﬁIa << 1<<ka), the rays traversing the inclusions are not completely ab- )

sorbed, and B becomes small again.

R LT FAR

Consider this latter case of large inclusions (ka >> 1) that absorb only a 1

fraction of the radiation in the inclusion Bia<<1). From (2.1)and (2.21),

B = %(I-R_L)fﬁl : Bla << ] << ka , (3.2)

3

where f = 4 7a NI /3 is the fractional volume of inclusions.

R RS e, 6 I 3 R
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; Next consider the small-inclusion case of ka << 1. From (2.1) and (2. 4)

9€J
B = 3 fk , ka<<l] . (3.3)

(eR+2)2+ € -

For nonmetals, where € 9 << ‘ﬂ typically is satisfied, (2. 1) and (2. 6) give

===

9Ren
2
+2) +€J

w

: 5 | Bif for ka <<1, 21, (.9
€

R
where the factor in the bracket typically has a value near unity. For very strongly
absorbing dielectric materials (w near the fundamental resonance or the elec-

tronic absorptior edge, for example), the result (3. 3) should be used, otherwise

(3. 4) is more convenient.

The absorption coefficierts in (3. 2) and (3.4) are strongly temperature and
frequency dependent in general., If BI is controlled by, say, the n-phonon sum-
mation process, then f ~ po-l in the high temperature limit and 8 decays

exponentially with frequency.
For the case of (1 - R, ) = 9Re(n) [ (€. +2) + 2-1=-1 (3.2) and
e case of i A= [ R € ] =1, @3.2)an 4
(3.4) give | ‘ ‘
B=tg , for both ka >>1 and ka << 1 . (3.5) L

For the cases above [ (3.2), (3.4), and (3.5)] for which 8 ~ BI' a small fraction

of the radiation entering the inclusion is absorbed, while for 8 ~(1 - R a1 ) ‘naz in

.

(3.1), essentially all the radiation entering the inclusion is absorbed, roughly

speaking. 3

|
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Next consider the case of small (ka << 1) metallic inclusions. From

(2.1) and (2. 9),

|
‘ o 9nH3w221"f . 3.6)
P

e PR AR Y P s AR VAo e i €

cw
P

This expression (3. 6) shows that B increases quadratically with frequency and i 4
is independent of temperature, roughly.

The absorption by small metallic inclusions has a peak that lies in the

10
ultraviolet or visible region typically. The value of B at this peak is much

i greater than the value in the infrared. Thus ultraviolet and visible measure-

i ] ments can be used to verify the source of absorption by small metallic particles

in the infrared.

Consider, as an example, small potassium spheres in KC1 or KBr.

= —

PRV SN

F centers can be transformed to colloidal potassium (small spheres) by heating

i
the crystal. 29-51 The transformation is enhanced by ultraviolet radiation. The

wavelengths >‘0 of the peaks for the small potassium spheres in KC1 or KBr

are 0.730 and 0.7704m, respectively.lo In the visible and ultraviolet,

I? << &, and (2.7) and (3.3) give, with k = n, w/e

2 2
w w
€ = ¢, - —Lo +iDB { , -
eHw eHw ; ‘
;
B = , (3.7) !
2| 22 2, 2 !
(W™ -wy™) + (Twy" /w) !
z
|
1
104 |
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where
w 2 9n 3w 4
w 2 = B = __—H_o.. f
0 ¢H+ clm pk cwp?'I‘

Notice that for fairly narrow lines (T < “y /10), B = Bpk at the peak at

w = Wy, and T is the full line wicth between the points § = 5 By -

0’

Dividing Bpk by the infrared absorpticn coefficient (3.6) gives

4
B w
Pk _ __ 0 )
3 -2—r2- (3.8)
IR @R
_ 14 -1
For ko = 2‘nc/w0 =0.75ym, AIR = 10.6pm, and I' = 5x 107" sec ,
(3. 8) gives
Box ' 3
FP—- = 6.4 x10° , (3.9)
10. 6

If it is assumed that the limit of detectability of color for the coiloids in

KBr or KC1 corresponds to Bpk = 0.03 cm™!, the value of Bio.6 from (3.9)

6cm-l. Thus the contribution to B from potassium colloids

6

is Bjgg = SX10°
in water while KC1 or KBr crystals should be less than ~5 x 10° cm'l, accord-
ing to the order-of-magnitude estimate. Colored crystals could have a greater
contribution to B from this source. It should be mentioned that impurities in
the form of F centers which give rise to strong absorption in the visible region,

may not give rise to detectable absorption in the infrared.
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The usua: concept of reilectivity loses its meaning when ka << 1. However,

¥

! in this case of a small sphere, the incident electric field is nearly constant across

the sphere, and the field EI inside the sphere can be obtained from simple electro-

static theory. The well known result is

-~ _ 3
c‘I'e+2EH *

where EH is the field in the host crystal in the absence of the inclusion. Thus,

for a sphere with | € | >> 1, the field inside the sphere is much smaller than

that in the host material.

Consider the frequency dependence of 1 - R 1l in (3.1). For the case of
T2 >> w?, (2.8) gives the familiar result

. 2

e = P _ 4n0

J = = »
ele" eHw

where ¢ = wpz/ 4qT is the conductivity. For € = ie‘9 , the value of n is

1/2
n=veis (2"" ) / (1+i), and (2. 18) gives

_ [ 8
l-Rl- (-E_,:o- — . (3.10)

)1/2 (2“"H )1/2

With (3. 1), this gives B ~ wl/ 2, as discussed under (3. 1). ;

For the case of I‘2 = I‘Bu2 << w2 , (2.8) gives

n=ve = fP—r%‘l 1+ i2% (.11
2n, . W 1-‘Bu )

H
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Substituting (3. 11) inte (2. 18) gives

2n,, I,
s H "Bu 2 ~ 2 2
S e e = rBu << W = (3.12)

1-K
1 P

From (3.12) and (2. 1), B is independent of frequency, as mentioned in the second

case under (3.1). The temperature dependence of B in this case is determined

by Iy, in the usual case in which ny; and w, are nearly independent of T.
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IV. Examples

Volume fractions of various inclusions in a nonabsorbing host for g = 10.3 cm

will be calculated in this section. For large nonmetallic particles with 1 - R_L ~1,

(3.1) gives B = ‘rra2 NI‘ Thus, a single nonmetallic particle of radius 2 = 504 m ;

rmbm

(with ka, BIa >>1)inal cm3 crystal gives

B = 10°%cm™! . i

oSy Y

The volume fraction for this inclusion, f = (41ra3

-4

N /3), is £ = 5X 10”7, The

same value (=1 cm3) is obtained with 100 particles per cubic centimeter of

a = Sum (with, say, k = kh 2k = 47 /10um, so that ka = 27 >> 1

ost = “%va
dm(n) =1). The volume fraction of inclusions in this case is f = 5 X 10-8.
Clearly, such macroscopic inclusions must be essentially eliminated in order
to obtain srnall values of 8. Metallic inclusions (with ka >>1) are not as trouble~ ‘
some as nonmetallic. For a tnetaiiic inclusion with R L= 0.95, or1-K = 1/20,
20 times more inclusions are required to give § = 10-4 cm-l. Even with such a

reduction in absorption, the absorption by large metallic inclusions i< not negli-
6

gible; the volume fractions in the two examples above become 10-5 and 10

which are still quite small.

For the small inclusion case of 9Re(n)[ ( €R+ 2 )2 + € JZ] =1 in (3. 4), or

for %(I-Rl)z 1in (3.2), with £ =10 and B, =10cm™", (3.4) or (3.2) gives

B= 1074 enL For B = 103em™!, £= 1077 gives B = 10, Consider the specific

example of ZnS in ZnSe, which is of interest because Kodak's Irtran 4 is polycrys-

talline ZnSe. Until recently, ZnS was added to inhibit grain growth, It is believed

108




» Sec, C

that ZnS collects along grain boundaries. With Ren; =2.47 and f; = 0.4cm™! '

I

for ZnS and n, = 2,89 for ZnSe, Ren == n 2= (), 855, and for ka €< 1 and € <<1,
(3.4) gives
-1
B = 0.38 f cm "
The volume fraction corresponding to 8 = 10-4 cm-1 is f=2.6x% 10'4. The
results for fja << 1 << ka from (3.2) are § = 0.29 f em™! and B = 1074em™!

for f= 3.4 x 1074

tem71,

. Thus, ~0,01 to ~0.03 volume percent of ZnS in ZnSe gives
B =10

The present theory indicates that the 10.6um value of 8 = 0.1 em™! for
Irtran 4 is not a result of ZnS in the crystal. Since B; = 0. dgem’L, approximately
25 percent ZnS would be required to give 8 = 0.1 cm'l. Even the doped samples
did not contain such a large fraction of ZnS.

Next consider the case of very small metallic inclusions. For w = 2X 1014

14 15

rad/sec, T = rSu =5x10 sec-1 (for a = 20A), wp = 5x 10" rad/sec, !

kvac =2m/10.64m, and €y = 4, (3.6) gives _ :

B = 2000 fem™) .

For a very small fractional volumeof f = 5 X 1078, this gives B = 1074em™! '

for the small metallic inclusions,

As a final example, consider the problem of a surface contaminated by,

say, a polishing compound. Since polishing compounds contain light elements

such as oxygen, aluminum, and carbon (in order to obtain hardness), their funda-

mental resonance frequencies are high, that is, near the 10. 64 m frequency. i
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Thus, their absorption coefficients are large at 10. 64m. For example,

extrapolating the A1203 data on the range 4ym <X < 5,54m to 10.64m

4 1

gives ﬂ[ = 102 -10°cm . Even though the extrapolatior procedure gives a

highly uncertain value of ﬂI, a value of ﬂ[ = 100 cm-1 seems quite reasonable;
the values of B for LiF, MgO, and GaP at 10.6um are 50, 60, and 123 cm'l,

respectively.

As a simple specific model, consider particles of adius a = 711-‘““ ina

surface layer of thickness LSu = 22, The fraction volume in the surface layer

is taken as fSu = 10'2, and the value of ﬁI is assumed to be 100 cm-l. The

value of B for the surface layer, from (3.5), is ﬁSu = fS“ BI = 1, The fraction

of the energy absorbed in the surface layer is ﬁSu LSu = 55X -10-5. Thus, the

fractional absorption at two surfaces is ~10'4.

In spite of the fact that the cross sections are often much less than naz,

they are quite large in a number of important cases. As a point of reference,
recall that the real and imaginary parts of the wavevector are equal for

B; = 4m/10.61m = 104cm-1, roughly, at 10.6p4m. See Eq. (2.5). For

N = 1023 cm”s, the corresponding cross section is 0 = 8/N = 10'19 cm2.

9 1

These large values of 0 = 10-1 cm2 or B = 104 cm  are typical of values

at the fundamental resonance in ionic crystals.

4

For a value of 8 = 10~ em™! and a volume of £~ 1077 to 1078, which

15 16 impurity atoms per cms, the value of the cross

5 -19 to 10-20cm2.

corresponds to ~107" to 10

section per impurity atom is ~10"3/10% to 107471010 = 10
Thus, the average cross section per atom in a highly absorbing inclusion is
large, approaching that of an atom in a solid absorbing at the fundamental

resonance.




V. Material Failure From Local Heating ;

N

The heating of macroscopic inclusions can give rise to localized regions ;
of high temperature that can cause material failure when the intensity i ' large. é .

This is not a nonlinear effect, but is usually important only at relatively high

e

intensities. Consider the same model, used in the previous sections, of a !
uniformly heated spherical inclusion of radius a in an infinite host crystal
that does not absorb the laser radiation. For times short with respect to a
characteristic time for heat to diffuse by a distance a, very roughly speaking,
most of the energy absorbed by the inclusion remains in the inclusion. Thus
the temperature in the inclusion increases linearly with time. For times large
with respect to the characteristic time, part of the absorbed energy has dif-
fused into the host crystal, and the temperature rise in the inclusion is con-

siderably less than the value obtained by neglecting diffusion. Thus, a given

e b A A T s AT WA

amount of energy will cause a greater temperature rise if it is deposited in a

time that is short with respect to the characteristic time than if deposited in

a time long with respect to the characteristic time; the local heating of macro-
scopic inclusions is a more severe problem in high-intensity short-pulse systems

than in low-intensity long-pulse or cw systems of equal average intensity.

The criterion for failure of the window material depends on thc details of
the laser system and the type of material and inclusions. Since there is no uni-
versal criterion, it will be agssumed that a temperature rise of 1,000 K conati- i
tutes failure. This is a reasonable choice for the following reasons: This
temperature is approximately the correct value for melting temperatures and 1

fracture-inducing temperatures. The latter have typical values of the order
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of 0 /a E, where g is the material strength, a the linear thermal

5

expansion coefficient, and E the Youngs modulus. For 0 = 10° psi, a =10
and E = i07 psi, the temperature corresponding to fracture is 1,000K. Heats

of fusion have typical values corresponding to several hundred degrees Kelvin. i

Ac 1,000K above ambient temperature in materials which do not melt, the
ionic diffusion may be important. Although order-of-magnitude accuracy in

temperature usually is not sufficient, order-of-magnitude accuracy of intensi-

ties corresponding to failure is all that can be expected at present, and this is t

often sufficient. Since the present interest is in this failure intensity If and

the failure temperature Tf is linearly related to If, the value Tf = 1,000K

should be sufficient for present purposes.

Some differences between the failure criteria for high-power windows
and for previous studies of glasses for glass-host lasers (at 1,06 m, for
example) should be mentioned, In the latter, highly focused, single nano-
second pulses are used, and breakdown occurs in a small volume. In the

former, all of the window is illuminated, apart from edges, . - :. “rt-structure

9
shadows, Cassegranian-optics "shadows", etc., and operati - itions range %
from microsecond pulses with repetition rates of a few hundred p.lses per ' %
serond, to ~1 sec pulses with several seconds between bulses in order to %

3

allow the window to be cooled, to continuous operation,

Thus, two important features of high-power laser-window failure are
that faiiure of the weakest part of the window can constitute system failure,
and that fatigue and other multiple-pulse effects must be considered since re-
peated pulses must be withstood, As an example, in a single-pulse measure-

ment, a laser glass conceivably could melt locally and recrystallize without




leaving detectable damage. For a window in a pulse-operated system, the

’ local absorption coefficient could be changed by the high temperature associ-

ated with the first pulse or the first 11 pulses, thus causing increased absorp- :

tion in subsequent pulses with eventual faiiure. 1

Bloembergen has suggested that local field enhancement, such as that ;
occurring at the edge of a crack in a material, may give rise to local intensi-

ties up to 100 times greater than the nominal external intensity. This effect

could lower the values of the breakdown intensities calculated below by a factor

of ~100. !

The temperature rise for T < Tm, where Tm is the melting tempera- ;

e S L

ture, can be calculated simply for the following model. The spherical inclusion
of radius a has temperature-independent values CI and KI of heat capacity per
unit volume and thermal conductivity. The host crystal has temperature-

independent values CH and KH. The boundary between the two is assumed to

WG T TS R T T e

be thermally perfect; that is, there is no thermal impedance. Heat absorption {

by the host crystal is assumed negligible,

% The thermal time constant ’

T = CaZ/4K

-
b e st 5

is the time required for heat to diffuse a distance a, roughly speaking. For
short times t << Tre Tye where the subscripts I and H denote the values

of T in the inclusion and in the host crystal, respectively, the diftusion of |

heat out of the inclusion is negligible. Thus, the heat-flow equatfon ‘
-Kv2T+cg_'{=s , (. 1) I
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’ where S is the heat source (W/cm3 ), can be approximated by

oT

I _
CI -a—t_ = Sl » for t << TI,T (5.2)

H .

Uniform volume heating of inclusion. First consider the case of spatially

constant heat generation in the inclusion (for example, BIa << 1 or, in metals,

i

skin depth 6 >> a). The source term can be written as S = 0 in the host ma-

terial and

_ 3 _
S = 3°absI/4 ma (5.3)

in the inclusion, where I is the incident intensity and ¢ is the cross section of
the inclusion, as discussed in Sec. II. It should be mentioned that (5. 1) will be
solved separately in the inclusion and in the host material, and the appropriate
matching of the temperature and heat flow at the boundary will be made. Thus
K is a constant in each region, and the usual spatial derivatives of X do not I

appear in (5.1).

For T defined as zero at the time the laser is turned on (t=0), the

solution to (5.2) is

: 3
TI 3oabslt/41ra CI 5 for t << Ty Ty - (5. 4)

There is a steady-state solution to (5.1), which can be obtained as follows.
The function

S 2
_ 12 - T
TI -Tc R? ) o —Tc AT (—a') y t >> TI, TH ’ (5.5)
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with

AT = (rabsI/S‘lraKI 5

is a solution to -KI V2 TI = SI’ as is easily seen by substitution, since

2 2 2 3r’

_ 1 9 -
Vr-?-é-;r =6 .

[« Y

o

T

Here Tc is the temperature at the center of the inclusion and AT is the tem-

perature difference between the center and edge of the inclusion.

The heat flow across the surface r = a is

aT
Q, = -41ra21(1 (-5—1) = -31;-41ra351 ) (5.6)
T /r=a

Physically, this result indicates that the heat generated in the inclusion flows

out of its surface in the steady state.

Next consider the steady-state solution of (5. 1) in the host crystal. It is

ot M s 8 e

well known, from the electrostatic potential of a point change, for example, that
v2(1/r)~6(x), where & is the delta function, Thus, v2(1/1) =0 for >0,

as is easily verified by taking the derivatives, Thus, the solution to -I(HV2 TH =0

for r > a is
TH = aTa/r F (5.7)
From (5.7), the value of Qa is

BTH

= —Amal - .
Qa = -4ma” K, <3r >r_a = 4'rrakHTa 5 (5. 8)

-~ i A-, .
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where Ta is the temperature at r = a. Equating the values of Q A in (5.6) and
(5. 8) and using (5. 3) gives

Ta = oabs1/41raKH . (5.9)
From (5.5) with 12 = a2
g, I
abs
Ta—Tc-AT=Tc-m - (5. 10)

From (5. 9) and (5. 10), the steady state value of Tc is

2K 30, 1
I abs 1 _ 1 2 1
T . = &aT 1+'K_)='8'_'K—" xr—°= ('K"'""‘K_) (5. 11)
o ( H TaRets eff 3 H I /-

The first term in (5. 11) is the temperature rise in the inclusion and the second
term is the temperature rise in the host crystal. The value of K off is determined

by the smaller of KH and KI when one K is much larger than the other. Thus
e . . ~ 3
for a metallic inclusion in an infrared window material, Keff =5 KH .

The results (5.4) and (5. 11) are illustrated schematically in Fig, 3 for the
three cases of K; << 3K, K; =Ky, and 3K, << K in the (a), (), and (c)
parts of the figure, respectively. For all three cases, T s increases linearly
with time according to (5.4) for t << Tett* Consider the values of Tc for
t << Teff' For KH 2> o, (5.9) gives Ta = 0; the infinitely conducting host
maintains the temperature of the surface of the inclusion at T = 0. In this case,
(5.11) and (5.5) give Tcm = AT = -%—TTI, and the Tcw asymptote lies below
=K

TTI in Fig. 3a. In Fig. 3b, for K = 2T

I H’ c¢co IT°
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Fig. 3. Schematic illustration of the temperature at the center of a uniformly hested
spherical inclusion for three limiting values of Ky/K;. See Eqgs. (5. 4) and (5. 11).
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For KH = 0, (5.11) gives Tc°° -» » . There is no finite steady-state
solution since the host crystal conducts no heat out of the inclusion. The tem-
perature of the inclusion rises linearly with time for all times according to

(5.4). For KH large but finite, Tc°° is large as illustrated in Fig. 3c.

Surface heating of inclusion. Next consider the case in which the heat is

generated near the surface of the inclusion, rather than uniformly throughout
its volume. Such is the case for typical metallic inclusions in dielectric hosts
or in the extreme case of fa >> 1 for other types of inclusions in dielectric
hosts. As an example of the latter, for B = 104cm'l and a = 10pym, Ba=10.
The skin depth § for a metal isa5

1,2
6=c(2r00) (5.12)

in Gaussian units, where c is the velocity of light, w is the angular frequency,

10
and 0 is the conductivity. A typical value for 6 is 40 1{ for Cuwith A = 10 m.

Energy is absorbed in the metal at a rate which decreases exponentially with dis-

tance into the metal [S = E? « exp(-2x/8)].

For spherical inclusions with radius a >> 0, we assume that heat is gen-
erated uniformly within a layer of thickness 6 over the entire surface of the in-
clusion. This is a good approximation for a << X because the electric field is
nearly constant over distances of order a. For larger radii, there will be local
hot spots over the surface not only on the front surface but also on the rear sur-

face ,

118

T

i ok o T S S

e et o ar——— i ¢ S A




There are three characteristic times of interest. First,

2
Tg = 4C;0° /1K, (5.13)

is roughly the time in which heat diffuses out of the skin depth, assuming negli-
gible diffusion into the host for small time since KH (dielectric) << I(I (metal).

Second'

T, = 4C a2/9ﬂl(l . 14)

is the time in which heat diffuses from the inclusion surface to the center,

roughly speaking. Third,
Ty = Cya /3K (5. 15)
H H H ‘

is roughly the time in which heat diffuses a distance equal to the radius of the
inclusion into the host. The values of the numerical coefficients in (5. 13)-(5. 15)

are chosen for later convenience.

The temperature at the inclusion surface will now be determined for four
time scales: For t << Tgo heat does not diffuse out of the skin depth, and the
surface temperature is linear in time. At later times, but with t << T, heat
is diffusing out of the skin depth and the thickness of the heated region increases

1/ 2. Thus, the surface temperature increases as t1/ 2. For still larger

ag t
timeé T, <<t << Ty» the temperature within the sphere reaches a spatially
constant value and increases linearly with ime. Finally, for t 3 TH* heat

diffusion into the host becomes important and ihe temperature within the inclu-

sion reaches an equilibrium value.
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For t << Ts and 6 << a, the spherical shape of the inclusion surface
is not important, and we can solve the easier problem of heat generation in a

thin plane slab. The Laplace transform of the diffusion equation (5. 1) i336

2

d” T(x, p) 2 S 2 pc

——Z-—L—qT=—, q = s (5. 16)
A% Kp K

In the present problem, heat is generated at a rate S = [ 9bs / 411a2 0 in the
slab 9 < x < 6, where x = 0 corresponds to inclusion surface r = a. Equa-

tion (5. 16) inside, outside, and within the skin depth of the inclusion becomes

CTE 5 o
'Txf—"qITI =0, x<0 (5.17a)
2
d” T, @)
H 2
___d.__z__..qH TH(P)=() ) x>0 (5. 17b)
X
2
d” T (p)
o) _ 2 (p) N S

Equation (5. 17) has the solution

0 - el o x<0 (5. 18a)
-qu
TH(p)= Be ’ x>6 (5. 18b)
S A ~qr*
Té(p)=;2;-+Ce + De , 0<x<b. (5.18c)
I
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The constants A through D are determined from the boundary conditions- that

T and K%'-i- are continuous at x = 0 and x = a:
A== 1
=——+C+ D (5. 19a)
P C
qlA = qIC - qID (5. 19b)
-q q -qa
Be Ha=—2—s—+Cela+De..I (5. 19¢)
P C;
'qHa qla 'qla
-KHqHBe = KIqICe S KIqIDe 3 (5. 19d)

The temperature at the inclusion surface is given by T(p) = B exp (- qHG ).
Solving (5. 19) for B gives

YC. K

T(x=6,p) = -5 11 1 (l_e'qla)
G VORI GR) F

Inverting and keeping the dominant term for t small gives

S S
T(x=06,t) = = t, t << Ts

C
I (/CIKI +\/CHKI_I )

Notice that for CI KI >>Cy KH (appropriate for metal in dielectric)

T(x=05,t) = St/ CI as one would expect. From this last equation with

S=1 Oabs / 4'na2 6, the surface temperature of the inclusion for small

times is
vC, K Io Io
Ta=Cl‘ I1 alz’sta-—qza—bi-t, t<< 15 . (5.20)
I (\’CIKI+»/CHKH) 47a°b 47a GCI
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In (5. 20) and in equations below, the approximate equalities are valid for

C.K; >> C; K. For 1 <L 7KL T,» We can still use the approximation of i

heat generation in a plane slab with the heat generating region approximated by

a delta-function source at x = 0. Solutions to the heat-diffusion equation (5. 16)

are now
q; X
TI(p,x) = Ae , x<0, (5.21a)
-qu
TH(D:X) = Be ’ x>0. (5.21b)

The boundary conditions are that TI = TH at x = (0 and that the heat flux away

e 2,
from x = 0 is Icabs/4‘na .

—2F = AK[q + BK,qy - (5.22)

A=B, i
p 4na

Solving (5.22) for A or B gives

Io
T(x=0,p) = 1 abe 31/2 : (5.23)
VT K, +/CK) 4ma® p

The inverse transform of (5. 23) is the temperature at the inclusion surface

1o
T = 2 abs ,1/2 <«<t<<T, . (5.24)

.
2V VT K +/CK)) 4na’ 0 =

When t >> 7 a’ the temperature inside the spherical inclusion reaches

a spatially uniform value. The present problem then is equivalent to uniform
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heat generation within an inclusion of infinite conductivity, and we can use the

previously calculated result (5. 4) to obtain

3Iaabst
Ta e —s Ta << t <L TH R (5.25)
41ma CI

For t >> Tys the temperature inside the spherical inclusion reaches an
equilibrium value, and the temperature in the host is given by TH = Taw (a/r).
The constant, Taw » is determined by equating the heat flux away from the

inclusion to I o s’

a 2
Iaabs = 47a KH Taw/a ;
or
Io
- abs
ae = e, t >> Ty - (5.26)

H

This result is equivalent to (5. 11) with KI = o (80 that the temperatures at the

edge and center of the inclusion are equal).

The temperature at the surface of the spherical inclusion is sketched in

Fig. 4 for the various time regimes. The extrapolated low-temperature linear

1/2

time depender.ce of the temperature intersects the t curve at t = t,.

Equating (5.20) and (5. 24) gives

i1}

4c, 62/1rKI ) (5.27)
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§

T=const; (5.26)

3 ac
|
| T~ t; (5.25) |
| -
! // | /,-—*'/ ;
T, 1/2 / ’"T
B Tet" 3 (.24) , - | |
© / I i
TR N ER— |
a ; / | i
E Trt3(5.20)5/ | . :
/ | |
I {
| |
| |
. S | | B
t,=T =P __1
1 o t2 a ts— C_E ‘TH
tme t

Fig, 4, Schematc illustration of the temperature at the surface of spherical
inclusion with uniform heat generation within skin depth 6 << a at the surface.
The opprorimiation C;K; >> C, K, is made in the values of the parameters. See
Egs. (5.26)-(5. 31).
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Att = t these extrapolations give

- . l&oabs 1 ‘/CIKI N Idoabs -
17 22 K;(fCIKIh/CHKH) 1!2321(1 e

At t = t the extrapolated tl/ 2 curve intersects the next linear region given

by (5.25). Equating the temperatures in (5. 24) and (5. 25) at ), we find

432CI2 ‘
= ' =T, - . == 3 (5.29)
Qy(JcHKchIKI) | ' o —
At t =t , (5.29) and (5.25) give
o o % % 10hs . o
2 = =3 7 =3 | oot
37 a-(‘ﬁCHgH+/CIKIT)_ . 3n aKI | | |

CAtt ='t3 , the extrapolated liniear curve (5.25) crosses the equilibrium value

(5.26). Equating (5.25) and (5.26) yields

t, = .:CI.a = 91. T, h : SOy - . (5. 31)
3 3KH CH H e 92
T3 = Tao c |

'For absorption in a metallic inclusion at A = 10pm, with 6 = 4x10™ cm,

C; = 2J/em’K, a = 10pm, K = 2W/emK, and Ky = 107 0 103 W/emK,

(o ""A-.

(5.27), (5.29}, and (5. 31) give
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Sec. C
t, = 2x 10713 gec R 4 = 1077 see F
(5. 32)
= 1073 t0 107 sec.

ts

The values of Y and t, are shorter than pulse lengths of current high-power

ed CO, lasers. For a pulse length of 1jusec, the temperature is given
puls p)
by {5.25).

The various time regimes in Fig. 4 depend on inclusion size in such a
way that if the pulse length is fixed, long times in Fig. 4 are associated with
small inclusions. For example, the time ty at which the temperature reaches

/2

equilibrium is equivalent to an inclusion of radius a = (3 KHt / CI )l for a

pulse of duration t.

The above results also apply to dielectric inclusions with BIa >>1, as
well as to the metallic inclusion used in the examples. However, in the case of
strongly absorbing dielectrics the following differences should be noted: First,
the approximation l(I >> KH is not generally valid and KI S KH is perhaps
more generally true. Second, the radiation penetrates to a greater depth into

the inclusion, Generally g < 10%*cm™

so that the radiation penetration depth
is usually greater than 1l m, as compared to ~40 X for good conductors. As a
result, the first linear region of Fig, 4, (5.20), which was only of academic
interest in the case of metals, will be importani, and the size at which volume

heating rather than surface heating applies will occur at a larger radius.

For repetitively pulsed lasers, the above results may be applied directly
to each pulse if the temperature relaxes to the initial value between pulses. In

the case of a fast repetition rate, the temperature will not relax and the failure
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temperatures will be reached at a lower intensity than calculated for single

woan-

pulse. This will occur for two cases: First, if the time between pulses is

v_.

less than Tyo heat will not diffuse away from the inclusion before the next '

pulse. Second, for a large density of inclusions, heat that diffuses away

from one inclusion appears at another, and the background temperature of
the entire window is increased. This occurs when the time between pulses |
is greater than about CHL‘/'/ 4 KH’ where £ is the distance between inclu-

sions, but less than the time constant for cooling the window.

R P ] Do

3
In the following contractual period the dielectric or metallic inclusion i

] ' temperature will be calculated as a function of inclusion radius for various i

pulse durations. The heating of platinum inclusions in a glass host by 30nsec
duration pulses has also been considered by Hopper and Uhlmann.37 They
assumed Yabs = ﬂaz € ( € = emissivity ) which is not valid for small in- 3

clusions (long times). Using the absorption cross sections discussed in

A g b

Sec. II, our preliminary results indicate that the plot of temperature versus

size in their example does not have a maximum as they found, but instead T

 ih
sl

is a monotonically increasing function of a.

Preliminary calculations show that micron-size metal or dielectric inclu- i

sions can typically be heated to the failure temperature of 1,000K by a single

PUTRRRNER

microsecond pulse with It less than SOJ/cm2 (I=5% 107 W/cm2 with t=1ysec).

R —

In cases of optimum heating, local material failure can occur at microsecond

duration - pulse energies s low as 5]/::5:2 . Even though the failure tempera- ]
ture is reached in repe'itively pulsed systems of these energies, cw systems 1

with the same average intensity will only heat the inclusions to about 1K.
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3

As mentioned by Bloembergen, 8 local electric field enhancement

for inclusions near imperfections such as cracks in th:c hst material could

lower the calculated material damage pulse energy by 2s much as a factor

of 100.
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V1. Conclusions

T
A

Small amounts of macroscepic inclusions in or on the surface of

transparent crystals can cause substantial absorption. For example, a

7 15

fractional volume of f ~ 107 to 103, which corresponds roughly to ~10

to 1016 impurity atoms per cm3, can give rise to g = 10-4cm~l for some

types of inclusions, The corresponding effective average cross sections

19 20

per atom, ~10"~ to 10° cm?, are quite large. o]

Simple expressions for the absorption cross sections of spherical in-

clusions were derived for the cases of ka €< 1 [Eq. (2.4)] and of ka >> 1 i

[Eq. (2.16)]. The results were used to derive expressions for B for the

four cases of large inclusions (ka >> 1) of weak and strong absorbers and

of small inclusions (ka << 1) of dielectric and metallic particles. The

B S IR NN ey

results are summarized in Table I, which contains expressions for 8, typi-

T T . T T
SV

cal temperature and frequency dependences, and typical numerical resﬁlts.

e 1

The result that the cross section (2,6) for ka, Bla >> 1 contains R )y : ‘

Fat AT,

AR

rather than (R), is of general interest in the theory of scattering.

The local heating of macroscopic inclusions is a far greater prohlem in
high-intensity short-pulse systems than in low-intensity long-pulse or cw sys-

tems having equal average intensity. Preliminary results indicate that material

R AR TE

failure can occur for pulse energies as low as 5]/cm2 with microsecond pulse

G a5 N S o e bR

SRR

durations. Bloembergen has suggested that local electric field enhancement

near imperfections such as cracks in the host material could lower the calcu-
lated material damage pulse energy by as much as a factor of 100. The deter-
mination of the thresholds for damage in typical window materials will be further

explored during the next contractual period.
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Sec. D

D. COLLECTION OF EXPERIMENTAL RESULTS FOR B(w)

Information on the frequency dependence of the absorption coefficient has
been collected from the literature. All these results have been plotted on the

same scale for convenience of comparison. Figs. 1-17 contain all the results

O R e

collected 6 date. Figs. 18-22 give comparisons of alkali halides, alkaline
earth fluorides, zincblend-structure semiconductors, and type IV elemental
semiconductors plus Ba Ti 03 » Yespectively. Fig. 23 shows a comparison of
one material from each of the above groups, plus Ba Ti 03 . In this last curve,
the elements in KBr, ZnSe, and Ge are from the same row in the periodic

table. The lozenges denote the 10. 6 gm values from references 39 and 43.

For Figs. 1-7, the solid-curve data was presented in the original re’~r-
ences as graphs of conductivity 20 vs w or imaginary part of the dielectric

constant €, Vs . According to the relations,

g - 27(20) g - wey
- n ’ ~ ¢n °

the values of the index of refraction n (w) are needed to obtain the values of f.
Since the values of n(w) used in these references were not given, the following
values (lowest-wavelength values from AIP Handbook) were used formally:

n. = 1.5 for KBr; n_ = 1.2 for KC1 and NaCl; n, = 1.1 for LiF; n. = 1.4 for
Ban; n,

data is in the vacinity of the main resonance, where n_ is a strong function of w.

= 1.4 for Ser; and n = 1.3 for CaF2 . Notice that this solid -curve
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1 2 3 4 5 6 7 8
w/w,

Fig, 1. Experimental frequency dependence of the infrared absorption coefficient 8
for KBr after Horrigan and Deutsch (+,@) Ref. 39, and Genzel (—), Ref, 40,
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Fig. 2. Bxperimental frequency dependence of the infrared absorption

coefficient 8 for KC1 after Horrigan and Deutsch (+, X, @,0) Ref. 39,
Smart et al (- °—) Ref, 41, and Genzel (— ) Ref, 40,
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- Fig, 3. Experimental frequency depemdence of the infrared absorption
coefficient 8 for NaCl after Horrigan and Deutsch (+,@) ) Ref. 39, Smart etal
(- «—) Ref, 41, and Genzel () Ref. 40,
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10

10}

L 1 1
2 3 4 5 6 7
w /o.>f

Fig, 4. Experimental frequency dependence of the infrared absorption
coefficient 8 for LiF after Horrigan and Deutsch (+,@ ) Ref. 39, Smart etal
(— ~ =) Ref, 41, and Genzel (~—) Ref, 40.
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Fig, 5. Experimental frequency dependence of the infrared absorption
coefficient 8 for BaF, after Horrigan and Deutsch (+,®), Ref. 39, and
Denham et al (- ) Ref, 42,
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Fig. 6. Experimental frequency dependence of the infrared absorption
coefficient B for Sle after Horrigan and Deutsch (+,®) Ref. 39, and
Denham et al (- ) Ref. 42,
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. Fig. 7. Experimental frequency dependence of the infrared absorption

coefficient B for CaF2 after Horrigau and Deutsch {+,® ) Ref, 39, and
Denham et al (~) Ref. 42,
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Fig. 8. Experimental frequency dependence of the infrared absorption coefficient 8
for Cd Te after Horrigan and Deutsch, Ref. 48,
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Fig. 9. Experimental frequency dependence of the infrared absorption coefficient f
for ZnSe after Horrigan and Deutsch, Ref, 43,
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Fig. 10, Experimental frequency dependence of the infrared abr.; ption coefficient
for Ga As after Johnson, Ref, 44,
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Fig, 11, Experimental frequency dependence of the infrared absorption

coefficient B for AlSb after Turner and Reese, Ref, 45,

142

. _M




l(]l6 § T T T T T T
10t} ZnS
w, = 303cm”]
1L
-~
E
-
w
1 =
1021
104l | L | 1 1 1
1 2 3 4 5 6 7
W/ w

f

Fig, 12, Exper'inental frequency dependence of the infrared absorption
coefficient 8 for ZnS after Destsch, Ref, 46.
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Fig. 13, Experimentel frequency dependence of the infrared absorption
coefficient B for InAs after Johnson, Ref, 44,
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Fig. 14. Experimental frequency dependence of the infrared absorption
coefficient § for Ge after Johnson, Ref, 44,

145

;
%
%
¥
g
E
- ki
f!

)
&
%,
]
&
",“}’
"B

B e s M i AT R B




10

wf: 625 cm

s i

I PETR = ( L T ro
A el R TN R A S

B(cm™1)
>

[
§
1

S S

10 "} "

lo"'l 1 ] I |
1 2 3 4 5 6 7 8
- w/w £

o T Al B g LT i Tl Feap e RNORRN R e
AT - TS ded

Fig, 15, Experlmenul'frequency dependence of the infrared absorptior
coefficient B for Si after Johmson, Ref, 44.
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Fig, 17. Experimental frequency dependence of the infrared absorption

coefficient 8 for BaT10, after Rupprecht, Ref, 4,
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Fig. 18, Comparison of the absorption of the alkali halides, from Figs, 1-4, The
curves here are smoothed curves through the loci of the lowest points in Figs, 1-4.
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Fig. 19, Comparison of the absorption of the alkaline earth fluorides, from the
curves in Figs, 5, 6, and 7,
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