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be slgnificant {1 the natural frequencles of such vscillatlons ave close to
the frequeacies o1 the rocket body oscillations. An analysis of these oncilla-
tions Ls of interest for evaluating the stabllity of the englne and for wore
precisely deteruining the reduced (1. t,
Selection of a scheme for determintng the form and frequencies of expan-
slon=contraction oscillations of the engine depends on the construction of
the engine and the wethod of s attachment ro the frame, and also on the
purposes ol the calculation For example, the Frame together with the englne
may be considered Lo be an elastic system In the form of a nonuniform rod.
The form of the natural oscillations of the tirst and second tones of such
4 system are given in Fig. 3.8. For each Lunme oF Lhe nabuara!l occiist i

an equivalent system may be presented by one osclllator.

If the mass of the frame is small in comparison with the mass of the
englone, and the rigidity of the frame is yreat, then the naturcal expansion=
contractfon oscillatlons of the engine may be analyzed Individually, assuming
the reglon where the engine 1s attached to the frame to be lumo tle. In such
a scheme the frame muy be presented Iin the form of an Iludividual voaclllatury

systenm with one degiee of freedomw.

Figure 3.7 Figure 3.8

In the case of lungitudinal osclillations of the body the oscillations
of the engine as a mechanical system may be consldered to be forced oscllla-

tions caused by the displacement of the suspeunsion polnt. The amplitude of
- lou-
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Induced vscillations of a concentrated wass of an osclilatory (we assue T
"

fubf.'f——ja(xc)“' P L"“ (‘”n / Wy, )y (3.40)

wg .

where fn(x‘). w, are the amplitude and frequency of osctllatlons of the suspou-

sion point of the englne; Yoo i1s the frequency of natural uscillations of the
s=th numbered osclllator.

The coefficlent rnse will slgnificantly ditter from the coefticlent l“(m‘)
Lf the frequency of natural osclllations of the s-th oumber ed tone of the
engine = is cluse to the frequency of the natural oscillations of the rocket
body. 1In analy:zlng the stability of u closed rocket systew with o liquid

propellant engine, both the value and the slgn of the coef!iclient ln\c are ol

great significance. If the frequency of the natural osclllations of the enytne
’

1s significantly greater than the frequency of oscillations of the rocket bod, .
that is, T is much greater than Wos and the mass of the cogloe Is small o
comparison wich the mass of fuel fn the tanks, then Ln the case of caleulat fuy
the longitudinal oscillations of the rucket Lody, the ol ticlty of the englin
suspension cannot be considered. In Lhis case the wasse s of the eugloe and
frame must be considered to be localized in a cross-section of the body with

the coordinate A,

For the fivst tone of matural oscillations of the body the satio o
frequencies we">un usually is fulfilled. However, for hicher tones the f[re-
quencies ©oe and w, may be close, and then 1t is necessary to consider the

elasticity of the engine suspension lun vider to study loavlitudinal oscillat ions,
.

7. Determining the Forms and Freguencles of the Nulueal Oscillations
of a Rocker Body

The model of a straight nonuniform rod with elustically suspended locali od
masses 1s used to determine the forms and frequencies of the natural loagttudi-
nal oscillations of a rocket body. These masses on springs, appearlog as the
mechanical analog of the oscillations of the englne and liquld in elastlec tank s,
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are suspended on the axis of symmetry In cross=sections of the rod corvespond-
ing to the location of the main frames of the bottom of the tanks and engine

(see Fipg. 3.2). A wechanlcal osclllator with a mass m . and 2 spring rigldity

ksj corresponds to each s~th numbered tone of the usri:}u!luus of the fluid.
The supplementary iudex j designates a cross=section with absclissa xj. For
example, if for a one-stage rocket the upper tank is labelled A and the lower
B, then for the upper tank jJ = A, and for the lower | = B. The localized

muIses o and the trequencies of thelr natural oscillatfons are determined

J
bv the method presented in Chapter 2.

We replace the coglue as a mechanical system with oune mechanical os=cilla=
tor which 1s suspended in a section with abscisua X, () = ). If it becowes
necessary to consider several tones of the elastic oscillations of the engine,
then it is necessary to place several oscillators In this section. We conslder
that the turbine pump assembly s riglidly connected with the engine and is
Included fn the mass ue: the mass of the englone, the mass of the turbine pump
assembly, and the mass of the liquid fuel located io the coudults below the
bottom of the tanks. The method of successive a proximatiouns may be success=
fully used for determining the forms and frequencles of the lover tunes of the
natural osciilations of a nonuniform rod with elastically suspended locallzed

masses; for high tones of the osclllations the solution s derived very slowly.

We will use the Initial parameter method, which was presented Lo section
4, in order to calculate the forms and frequencles of the natural o illatlons
of a nonuniform rod.” We divide the rod into sections of constant i, 1dity
EF(x) and linear mass m(x). The length of the scctions /l may be diiferent.

.

If between uniform sectlons 1 and i+l there is a section with clastically
suspended localized masses, then on the transition from the L=rh to the I+l-th
section a jump In the normal (axial) force will ne observed equal to the total
of the reactions of the oscillator springs (Fig. 3.9). The conjugation condi-

tions of such sections are

Salli)=[fasn (W),

5o
EF(1) fmull)=[EF ) fa(0 )iy, }::'V:I. (3.41)

s=1
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Table 3.2

Rod % _ Forw of oscillations
Section

N N /2 S Ja S5
0 1,0000 5 1,0000 1,0000 l:ufnm 1 1,0000
TR 0,968 - | 09932 | 0,9805 0,9631 0,8882
4 0,9897 0,9779 0,9369 0,5819 0,6371
i 6 00,9529 0,9210 0,7778 0,5930 —0,0:88
LR 00,9208 _u,xsu 0,5856 0,2523 | —0,5293
10 01,8958 0,7796 0,3901 —0,0910 —1.,3628
T 0,7085 0,2495 0,2037 | —0,4989 | —2.6386
1,3559 3,1491 | —0,2416 0,0823 0, 1605
14 0,7685 | —0,2445 0,2932 | —0,7248 | —3,2073
16 0.6574 | —0,7350 0,2826 | —0,9023 | —3,1336
18 0,5126 | —1,4869 0,2559 | —1,1182 | —2,3479
20 0.3516 | —2,2351 0,2274 | —1,3189 | —1,4636
22 —0,0015 | —2,9777 0,1972 | —1,5016 | —0,5179
24 —0,0949 | —4,3402, 0,1971 | —1,8699 0,4133
—0,8427 3,602 | —0,0403 | 0,1677 0,0011
26 —0,0967 | —5.2135 0,2037 | —2,1578 0,9185
—0,1679  |—v0,4188 | —0,1197 0,5008 | —0,0476
28 —0,0974 | —3,2974 0,2132 | —2,358 1,2502
30 —0,0977 | —3,3248 0,2164 | —2,1266 11,3675
wp B 1! sec 103,37 151,27 257,08 351,21 |+ 621,90
m, 3650 . 619860 300 1760 2250
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Having replaced the functions w and ¢ in equation (4,38) by their exprese
sions from (4.40) and (4.39), we dtermine the arbitrary constant

15

e

To(ea)

n

Having determined the pressure where n = 1 from formula (4.35) and having
substituted it into equation (4.33), we obtain

~ Jo)] o2__12R : (4.44)
%’l + T Q Py | AE— ﬂ'—'-‘-‘- l' 2’ 3 epe)e
[ JO(Fn)] a? ( . | )

We phall limit ourselves to the cases where nz < Yzlxaz. This inequality
satisfies nearly all the technical applications of the problem under considera-
tion, On the basis of equation (4.44) we conclude that the roots M of the

Bessel functions must be imaginary.

Since 02 is a positive number and Qﬁ is also a positive number for the
conservative system, then from (4.43) it is possible to conclude that g, < 0
and ai > 0. The solution of equation (4.41) where ai > 0 may be consist of
trigonometrical functions. With regard to conditions (4.36) and (4.37) we

ohbtain

Xn (g) = Sil‘l ang.

The following values satisfy condition (4.26):

__(@2n— )=
G="—p— (n=1, 2,...). (4.45)
The following values satisfy condition (4.37)

@n=nn (n=1,2,.,.). (4.48)

The nunbers B have the same values as the dimensionless frequencies of
the natural osciliations of a compressible column of liquid in a pipe with

ripid walls.

-182~































































































































































































































































w = aIZZk

where a2 is the speed of sound in the combustion chamber; lk is the length of
the combustion chamber. The value of g may be calculated according to the
formula

: am) HekiTs <5V B

" . v
The frequency of the first tonme of radial and tangential oscillations [16] 1s:
— a a
wnd—-l.22 -27‘ y ©,.5=0586 .2_;.- .
Here N is the radius of the combustion chamber. As is seen, in the case of
comparatively ghort combustion chambers (tkfw Zk) tangential oscillations of
the first tone have the lowest frequency.

The mechani.ws of ﬁon-dalpin; high-frequency oscillatipns are based on
these saws phenomeua of the interaction of gas pressure oscillations in the
combustion chaub.r with oscillations of fuel feed into the chamber or with
the burning rate (couversion rate), as in the case of low-frequency oscilla-
tions. However, temporal relationships are necessary but insufficient for the
developuent of high-frequency vscillations. A favorable spatial location of
the burning zone is sti1ll necessary. Histor!cally, the importance of the
spatial distribution of enerr, in tie case ot burning is not new. Farraday
First wen.doncd 10 4a (848 aud 4n 1878 the phenomenon of ‘singing flames’ was
e .awined by Raylel; h.

I the burning jrocess 4s congentrated near a junction surface, then

secillitions of Lhe corresponding type will be dampened, since they are not

in a condition to excite the energy .uffié&ont for maintaining them. The burn=
lug process way have great influence on pressure oscillations only in the case
Af the turniuy coue 13 located where the amplitude of pressure oscillations is
great. OUsciliactions of the bdrning rate and the liberati m 6f energy in these
regions will immediately influence ghn pressure in this zcne, intensifying the
osciliatory process. The probability of the appearance of such a type of oscil-
latlons 15 L1 griatest when combustion in the ideal case is concentrated on

tue surface where the ampliiude of pressure oscillations is maximum. In this

=267~

































of oscillations with .cnerallzed cgordinates q, and Q. the diagram of inter~
action of tne body *iti the disclarge line is shown in Fig, 6.4.
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Figure 6.4

If it 1s necessary to simulteneously calculate more than two tones of
the body osctllu!icﬂs. then the dynamic scheme in which the longitudinal oscil-
lations of the body are expressed in the form (6.1) becomes very cumbersome.
This deficlency uay ve climinated 1f the longitudinal oscillations of the body
are expr.ssed by the complex function (6.5). The complex function (x, w)

consider: wli ton> ol the oscillations.

In calculatluy the lung!tudlnal osclllations of the body in the form (6.5)
the oscillations of (he characterlstic sections are determined separately-—the
bottom of the tank, the collectors, the' engine with-the turbopump unit, from
each action of the pressures P? plop' plpf' The oscillations of the bottom
of the tanks ¢f th* oxidant and the fuel are determined to the values of the

complex funClA‘nﬁ‘JWO.(;[f for the masses of the mechanical oscillators
> >
Al

("o.:}. ‘}".S uy g$f7=2¢8l'

he deviation ot the velocities "0 and Vog in accordance with (6.11) {is
equal t ‘he san of the devietio s due to the oscillations of the pumps and
the Lot of tne L onurs. A c¢ilogram of the interaction of the body with the
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