
AD-755 936

HANDPRINTED CHARACTER RECOGNITION.

John W. Sammon, et al

Pattern Analysis and Recognition Corporation

Prepared for:

Rome Air Development Center

January 1973

DISTRIBUTED BY:

National Technical Information Service
C. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

11Nr1.AqT'TFT)Secunty Classification

DOCUMENT CONTROL DATA- R& D
fSecurtty Classification of title, body of abstract and indexing annotation must be entered when the overall repo.' Is classified)

I ORIGINATINC ACTIVITY (Corporate author) 2. REPORT SECURITY CLASSIFICATION

Pattern Analysis and Recognition Corporation UNCLASSIFIED
128 East Dominick Street 2b. GROUP

Rome, New York 1344o
3 REPORT TITLE

HANDPRINTED CHARACTER RECOGNITION

4 OESCRIPTIVE NOTES (7)po o tropot and nclueve dates)

Final Report
S AUTHORIS) (First name, middle Initial, last name)

Dr. John W. Sammon Robert J. McGrath
B' Dr. Jon H. Sanders David B. Connell

6 REPORT OATE 7T. TOTAL NO. OF PAGES 7b. NO. OF REFSJanuary 1973 114 3
Sa CONTRACT OR GRANT NO 9a. ORIGINATOR'S REPORT NUMBER(S)

)bF30602-71-C-0331

PAR Report 72-29
Job Order No. 55810214
J O r . 819b. OTHER REPORT NO(S) (Any other numbers that may be assigned

thla report)

RADC-TR-72-329
10 DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

It SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTI' ITY

None Rome Air Development Center (ISCP)
Griffiss Air Force Base, New York 13441

I1 ABSTRACT

Thi§ report discusses a research effort whose object is the design of a hand-
print alpha-numeric reader capable of human recognition rates. The effort included:

1. Collection of a large data base of unconstrained handprinted alpha-numeric
characters.

2. Editing the data to re-label mislabeled characters, remove noise, and
(delete totally illegible characters. A separate programming package (the Data Base

Editing Package) was designed and implemented for this purpose:

3. The design of new features to improve the performance of the system.

4. The design of the recognition logic using an OLPARS-like program, the
Alpha-Numeric Logic Package (ANLP), which used the expanded feature set.

5. An independent test of the logic using a set of 6127 characters net in-
cluded in the design set.

6. Analysis of the results of the independent test to develop reject strate-
gies to reduce substitution errors.

DD N 1473 UNCLASSIFIED
Security Classification

UN,'ASSIFIED
Security Classification

4 LINK A LINK 8 LINK C
KEY WORDS- - - - - -I ROLE WT ROLE WT AOLE WT

Features
Recognitiou
Alpha-Numcric
Handprint

SAC--Griffiss AFB NY UNCLASSIFIED

Security Classificat ion

Z

HANDPRINTED CHARACTER RECOGNITION

Dr. John W. -Sanuon
Dr. Jon M. Sanders
Robert J. McGrath
David B. Corngell

Pattern Analysis and Recognition Corporation

Approved for public release;
distribution unlimited.

1fTnn

lii

FOREWORD

This Final Report is submitted by Pattern Analysiu and
Recognition Corporation, 128 E. DominJck Street, Rome, NY,
under contract F30602-71-C-0331, Job Order Number 35810214,

for Rome Air Development Center, Griffiss Air Force Base, NY.
Mr. John Palaimo, ISCP, was the RADC Project Engineer.

This report has been reviewed 'y the Information Office,
01, and is releasable to the National Technical Information
Service (NTIS).

This technical report has been :zvLewed and is approved.

Ar~poved:
"JOHN PALATMO

Project Engineer

Ar proved: u,
WILLIAM P. BETHKE
Chief, Information Sciences Division

FOR THE COMMANDER:

FRED I. DIAMOND

Chief, Plans Office

i

ABSTRACT

This report discusses a research effort whose object is the design
of a handprint alpha-numeric reader capable of human recognition rates.
The effort included:

1. Collection of a large data base of unconstrained handprinted
alph-nuwaric characters.

2. Editing the data to re-label mislabeled characters, remove
noise, and delete totally illegible characters. A separate programlng
package (the Data Base Editing Package) was designed and implemented
for this purpose.

3. The design of new features to improve the performance of
the system.

4. The design of the recognition logic using an OLPARS-like pro-
gram, the Alpha-Numeric Logic Package (ANLP), which used the expanded

featur. set.

5. An independent test of the logic using a set of 6127 charac-

ters not included in the design set.
6i j 'alysis of the results of the independent test to develop

reject strategies to reduce substitution errors.

4

ift

TECHNICAL EVALUATION

This effort represents a significant advance in the area of
optical character recognition. The recognition logic developed
was designed on a 33 thousand character data base, one of the
largest if riot th'e largest data base ever compiled f'rf tis pur-
pose. The accuracy of the logic approaches human recognition
capabilities. In fact: when the ability of the human to employ
yntactical information to distinguish malformed character is

neiqted, the performance of the recognition logic becomes equiva-
lent .ith that of the human.

The character rejection rate which was found to be rather
high, can be traced to specific problems with source data prepa-
ration. The naceesity of exercising some controls on data
preparation are very evident. The implementation of minimal
printing constraints will reduce the substitution rate to 1'.
This is quite significant in view of the fact that the error
rate of unverified commercial keypunching is approximately 5%.

For all practical purposes the technique has been proven.
The follow-on to this work should be the implementation and
integration of hardware and software into a final system. It
shoul be noted that there are many variables (i.e. degree of
constraints, size of the data set, substitution and reject require-
ments, etc.) which influence the complexity and performance of a
handprinted character reading system. For this reason, there
exist the possibility for a family of readers, each tailored to a
particular set of these variables. It follows that the best
approach to a follow-on is not one directed at a geraral purpose
reader but at readers customized for specific applications.

N i'ALAIRO
Project Engineer

iv

17.. -

TABLE OF CONTENTS

Pag

1; . Introduction and Summary 1-1

2. 'The Standard Features 2-1

2. 1. Overview .2.1........ 2-1

2.2. Pre-Processing 2-1

3. The Special Features 3-1

3.1. The MIDUP Measurement 3-1
3.Z M D JP -3

3.3. MOTOP 3-4

[3,4. Average WdhMeasurements 3-5..........

4.1. Thi and BOTLIN 4-6

51. Recognition LogicEr Any 4-1

:4.1. The Decision Logic 4,1

4.2. Logic Optimization................................. 4-5

;5. Reject Strategy and Error Analysis 5-1

6. Data Base Editing Package 6-1

6. . Edit Function............. 6-1

6.?. Computer!un Deck Set Up 6........................ 6-33

7. Apha Numeric Logic Package (ANLP) 7-1

7.1. PHASEONE 7-1

7. 2. PHASONEA 7-10

7.3. TWO

• • 4 € 0 @ @ o @ o e e o e @ 0 6 0 (, @ @ @ @ @ • @ o 0 0 0 6 0 6 e

° V

Table of Contents (Continued)

7.4. Utility Programs 7-24

S. Conclusions and Recommendations 8-1

References

vi

SECTION 1

INTRODUCTION AND SUMMARY

A researcher unfamiliar with the variation in unconstrained hand-
printing might easily underestimate the amount of sophistication needed in
the design of an alpha-numeric reader. A great degree of complexity is
necessary to approach human recognition rates in any automated system.
The reason is that natural variations in shapes and/or breaks in a character
cause a "continuum" of character shapes, starting with a character in one
class and ending with a characte- in another. Figure 1-1 gives a few
examples of this.

The variations shown in Figure 1-1 occur frequently enough in
unconstrained handprinting to insure that substitution errors will occur.
Our goal was to design and implement a system whizh would minimize sub-

stitution errors, i. e., to- reduce the substitution rate down to the substitu-
tion one might expect from a human attempting to classify the characters.

To achieve this goal the following o-eps were taken:

S1. Collection of a large dAta base of nconstrained handprinted
alpha-numeric characters.

2. Editing the data to re-label mislabeled characters, remove

A . noise and delete totally illegible characters. A separate
programming package (The Data'Base Editing Package) was

designed and implemented for this purpose.

£. ,3. The design of new features to irmprove the performance. of

the system.

4. The design of the recognition logic using an OLPARS-like
program, The Alpha-Numeric Logic Package (ANLP), which
used the expanded feature set.

5. An independent test of the logic using a set of 6127 charac-
ters not included in the design set.

6. Analysi3 of the results of the independent test to develop
V reject strategies to reduce substitution errors.

;1i

~2

SC

" c o

K CJD

I!IC L

(ID

-2
g.0

L I LZ

.. 'w

In summary, the logic, designed on an edited data base of 33, 128

characters, was tested using four different reject strategies, D, C, B,
and A, The test set consisted of 6127 unedited characters.

Using reject strategy D (which rejects a character only in the case
L of ties), a substitution rate of 18.67% and a reject rate of 2. 010 was observed

on the test set data. Using reject strategy C (which rejects a character if
the madmum class receives 32 or less votes or if there is a tie), a sub-
stitution rate of 12. 87% and a reject rate of 6. 92%6 was observed on the test
set. Using reject strategy B (which rejects a character if the maximum
class receives 33 or less votes or if there is a tie), a substitution rate of

L 11.45% and a reject rate of 10. 18% was observed on the test data. Using
reject strategy A (which rejects a character if the maximam class receives
34 or less votes or if there is a tie), a substitution rate of 9. 14% and a
r eject rate of 16. 97% was observed on the test data. As pointed out before,

I confusion pairs accounted for all but I% of the substitutions using reject

9A substitution rate of 10% with a reject rate of 16. 97% on uncon-
strained alpha-numerics compares favorably with human performance and
represents a significant advance in the field of OCR. To our knowledge there
is no other alpha-numeric reader in existence which achieves these results
on unconstrained data. We feel that the system with reject strategy A
operates well enough to be of practical value as long as either; (1) certain
unresolvable pairs are not permitted in the same fields, or (2) some con-
straints are placed on members of these pairs.

1-3

~4

SECTION 2

THE STANDARD FEATURES

2.1. OVERVIEW

ThelhVuei etuestcnit fth pt 4sadr
features developed under a previous contract plus the 8 special features! described in Section 3.

The standard feature set consists of five measurements M(C) =
a, ... , a made on each of the convexities C of the left, right, top and
bottom conlours. Since each contour is forced to have 1, 3, or 5 convexities,
this results in a maximum of 21*standard measurements for each contour
and thus a maximum of 84 standard measurements from each character.

2.2. PRE-PROCESSING

k The first operation carried out was that of converting each charac-
ter from its octal format to a 24 x 24 raster. (We define the character matrix

A =Ka i""i, ... , 24 associated with a character by a.. 1

if a character mark is present in position i, j of the raster and a.. 0 if

not; where it is assumed that the rows of the raster are numbered from top
to bottom and the columns from left to right (unless otherwise stated)),

Next, a height normalization was performed. Each character was
"stretched" in the vertical direction so that it extended from the bottom row
(row 24) to the top row (row 1) of the raster (Figure 2-1). The height nor-
malization operates in three steps. First, the character is moved to the

f -~bottom of the original raster. Next, the height of the character is computed
and designated symbolically as H . Finally, the character is stretched by
the expansion factor M = 24/H as shown in Figure 2-2.

L After height normalization, the left and right histogram vectors,

L2 , L24 and R ... , R were calculated, where

* Due to certain redundancies, 4 of the 25 measurements taken from five
V.1 convexities are eliminated.

2-1

0 U 0000

U0 U0 a C 00
U0U000 1 000

030 I * 0000 noo
noo O* 0000 01000

*0i0*0000 000 0000 o

*)0 oojO 00000000
* nnjooooOuouo 0000 0000000

000O000000 * OO00onocoo
* nnO 00000 00000

O 000 000 00000

*U 0 0 * 000
000 n 00 0

*0 GO 000

4 no

Before Normalization After Norma lizati on

Figure 2- 1

FI -t-- N-

Ztii

I.. I -

Ls (R_) revresents the distance from the left (right) margin to the character

along the rhovz. The top and bottom istogram vectors T and B are
calculated in a si'riilar fashion affter rotating the raster 900 counterclock-
wise. Figures 2-3. a-c illu, rate th~e four histograsm vectors.

The histogram vectors of a character define the contours which are
ased for character recognition. it seemed that the left and right histograms
contained enough information for hmmnn recognition of the numneric- charac-
ters in almost every case. It was felt that the left and right, as well as L~ae
uipper and lower histograms would suffice for separation of the alvha-
numerics, except for a fewr confusion cases.

A straight forward pattern a-r-alysis (using the Non-Linear Mapping

Algr"thmafOLPARS1 of the left and right histogram vectors was __rformed
redse iardicaephatiuste aalsisvd oFo the hiosta pectr hwh r tue
met)s n t tht dusrrec anelhod of ligthe ishgam eco nformt i

imerent ian the corec Ansis of t sazinl to "she ' ifoowinpa-
in.e e (etiorm in th etrFAayigur tesituato le to are easlleowigiedplaa

belonging to the character 2. Intuitively, we feel that they have simnilar
2h~e in that they bcth have two 'bumns" separated by a vertical seetion.

Their vectors, however, are no closer to each other than they are to the

left histogram in Figure 2-4. c.. which belongs to a 1. This is because the
shape' quality of the histogram is of a statistical nature so that comparing

the two vectors coordinate- by- coo rdaate (as we do in measuring Euclidean
distance) does not measure closeness of '-shape". For example, the vectors
of Figure 2-4. a. and 2-4. b. are similar in shape because of the "s t atistical"t
type of statement - "the coordinates aecrease gradually, then a sharp in-
crease occurs, then the coordinates are constant, followed by a slight de-
crease, followed by a sharp increase. " This type of word description
suggested thc a-,pproximation of the histogram with line segments having
quantized slopes and was the motivation bchind the string representation of
a wave.

Directned line segments having any of the five slopes were used, the
five directions be&,ing 2700, denoted by V , 00 denoted by +H; 1800 denoted
by -H; 2250 denoted by -S; and 3150 denoted by +S (Figure ?-5).

The length of the line segments e-ppro)ximating a given histogram
was measured by the number of rows (for vertical and slanted segrments) ur
number of columns (for horizontal segments) of the raster that the iine

-By statistical we mean a statement about a subset of the coordinates
rather than individual coo rdi nata~s.

-4

if-r - w O0

i O00O t* .OO0

* 0000 *

SGO0000

" ~O(OO

* OOC00000 *

- o0000 ooo
r:.co ' GOG000

•OOBO 0000 a

[. O000O 0000 *

S0000 0000 ** 0000 03000

00000 0000000000000
SG00000,13000000000000

0000000000
..-- " * 00000 G000

"- * 000

3-09* 00 *0000

sco

Character which generated
histograms

Figure 2-3. a.

2 -5

-'Rw

*Pp
.~OO~flG~O') TOOoo'

.t*1 flf0on OOD *nODD~n

ant -3 b

Fiur

2 6

HIST, UPPER HOR1ZnNTAL HIST- LOE HO0R1ZOVTAL

000000000a aqGfle0oDo~or
000000000000 oo0r30o00'0 00*
000000000000 D0000000*0 ol0*
DooOoebooCO 00000000*0 0
GDOGC0000009 0onooooo*0 00*
600000OOUO 00000000*0 00*
oonnoocI3 DOoVoooo*o n
00000:;oo 0000000o*0 09*
0O0nboo 00)00000*0 *

000003 00000000*0 p

000no00D0
r o ooooooooooo

00 0000000*0009*
A-00o 000 l0*flllilhffl D00~ o*

00 000f0000-0090

0 0000ODC 00000000000*

Figure 2-3. c.

2- 7

;Iitrram A gtram B

Histogrm IHEiogram
VetrVector

i A 8,6,-6,1 -77,7,6,5,4,,4-9 B 5,4,3,3,3,8,8,8,8,7,5,5,8
J- BI F59 JA - C %4_V

Figre2-

Z - 81

EHistogram C

Vector
C : 6, 6,6, 6,6, 6, 6,6,6, 6,6, 6,6

!I A- BI = ; IA- ci =/ ;In- cl ='/v'

Figure 2-4

2-8

w

i

12

Th

Ij V j +H -H

F I

r

V
g -s

fA

Iy

Figure 2-5

(

I 2-9
4

13

segment cut across. The ordering of the string associated with a given
histogram was determined by the ordering of the czrresponding line seg-
ments starting at the top of the raster for left and right histograms,
starting at the right for top and bottom histograms.

Just prior to generating the string representation some editing is
accon-plished to fl in certain breaks in the character and also to smooth
the histogram representation. No attempt has been made to eliminate salt
and pepper noise since it was felt that this type of noise is highly dependent
upon the actual scanner used and the quality of the paper being read. Salt
and pepper noise elimination algorithms should be included during the proto-
type development stage. The editing algorithm used here was chiefly con-
cerned with breaks along single stroke segments of the character. For
example, if Lio and L are the first and last (i. e., l0 - 1 25

Li1l 1 25) histogram coordinates of value Z5 in a consecutive string of

coordinates equal to 25, then the histogram coordinates Li0 , ... , L are

changed to the average value LiO-1 + Li+! . The effect of this editing is
2

shown in Figare 2-6.

Upon completing the editing function, a difference string is gener-
ated from the edited histogram representation. The dif'-erence string is
denotedA. where A. = Vi+l - V ' i- 1, 2, ... , 23 andV = V, Vz, ..., VZ4

represents an arbitrary histogram vector after editing. The A. string is
next used to "fit" the character contour with the straight line segments shown
previously in Figure 2-5. This procedure is conducted in a straight-forward
manner by first marking the position along the Ai string where sign changes
occur. Between the marks are segments where the histogram, elements are
either increasing or decreasing monitonically, depending upon the sign of the
Ai elem..nts of the corresponding segment. The slope of each segment is
computed and used to determine which straight line approximations of Fig-
ure 2-5 are appropriate. The criterion for fitting is given below.

Sop String Symbol

SL{ V s

- ;SL, 4 +S(, (s))

4 SL ±H(SL I)

S-.10O

0 0

0'

+~ N

-4 N c

o 0 in

tn
c4

4

4-3

11n

F 15
The following definitions apply to the above table:

SL = slope of the segment

(s) = the length of the segment

V(A (s)) = a vertical segment of length 2 (s)

S(g (s)) = a slant segment of length ',k (s)

H(ISL J) = a horizontal segment of length I SL

The sign is determined in accord with the sign of the corresponding A.
string. if a +H(N) is adjacent to a -H(M), the symbol V(2) is inserted
between. Upon completion of these steps a typical string for the character
three (3) might be: (left string)

-S(4), +H(6), V(Z), -H(5), V(Z), +H(8), V(3), -S(Z), -H(7), V(4)

This string representation will be used to determine the convexities, how-
ever, before proceeding to this step the first and last elements of the string
are modified. The width of the character i's measured at the top (designated
T) and bottom (designated B). Next, a -H(T) is appended at the beginning
cf the left string (a +H(T) at the beginning of the right string) and a +H(B)
is appended at the end of the left string (a -H(B) at the end of the right string.
If adjacent horizontals occur, they are combined as follows:

H(ll H(2 z -H(1 + 2 .

By forcing each string to start and end with -H (+H) and end with a IH (-FT)
we insure that the string has an odd number of convexities.

The number of convexities for each string of each character is now
calculated where a positive convexity is defined to be an increasing sub-
string of maximal length, a negative convexity is defined to be a decreasing
substring of maximal length where the symbols are ordered

+H(. .) 4S(..) V(. .) -S(..) -H(.. .

Example: negative convexity negative convexity

+H(3), +S(l), -H(5), V(6), +S(4), -S(4), V(5), +H(6)

positive convexity positive positive
convexity convexity

It is clear that every string (of length 2 or more) breaks down into an alter-
nating sequence of positive and negative convexities.

2 -12

For any character with more than 5 convexities in any of its strings

Find that segment in the string which has a minimal length and remove it.

This is subject to the condition that we do not remove an initial H or a
terminal H , nor do we remove any symbol which occurs between consecu-
tive H Is of opposite sign. After we remove a symbol we re-combine the
symbols adjacent to it if they are identical, e. g. , if +S(7), V(2), +S(6) is
a subsequence of a string, and we rrmove V(2), we would then combine the
two +S's to +S(13). After each removal we recalculate the number of con-

vexities until that number drops to 5.

In order to apply standard pat;tern recognition techniquce to the
classification of the strings of the previous section, it is necessary to define

R"; a function M(s), which maps each string s into a vector space in such a
way that strings with similar shapes are mapped into vectors which are close

to each other and strings with dissimilar shapes are not.

The map M(s) will be defined on the positive convexities and then
extended to arbitrary strings. For each of notation we replace the symbols

+H, +S, V, -S, -H by A1 , AZ, A3 , A4 , A 5 , * respectively. Next we add
314

symbols of the form A.(0) to every positive convexity so that every positive

convexity has the form Al (k), 22), A3 (k3), A4(k4), A5 (k). For example,

AI(Z), A3 (4), 'A4 (1) becomes A1 (2), A2 (O), A3 (4), A4 (l), AS(O) ; A1 (3),

A5 (2) becomes A A2 (), A3(0), A4 (), A5 (2), etc.

We define the vector representation D(s) of a positive convexity
i s = Al(kl), A2 (k2), A3 (k3), A4 (k4), A5 (k5) to be the vector kl, k2 , k3 , k4 ,

Sk 5 . Then M(s) is defined by M(s) kJ, kl + k 2 , k 2 +k 3 + k4 k4 +k 5 , k5

where D(s) kl, h2 , k3 , k4 , k5 . The first and fifty measurements, kJ, k5

are simply the lengths of the horizontal segments. The second, third and

fourth measurements are the lengths of the top horizontal leg, a , vertical
drop, b , and lower horizontal leg, c , respectively (figure 2-7). We deline
add symbols of the form A.(0) to it so that it has the form A (kl), A(k),

A3 (k3), A2 (k4), Al(k 5). For example, the negative convexity

* - These two sets of symbols will be used interchangeably.

2 - 13

17

I
I
II

a

k k

k5 k

kI k4
k5

c

Figure 2-7

2- 14

A4 (1), AZ(l), AI(3) becomes A (0), A4(1), A3(0), A (1), A (3). We define
415 4() A3() A 2(1

the inversion mapping I(s) on any negative convexity s = A5 (kl), A4 (k),

A3 (k3), A2 (k4), Al(k5) by I(s)= A (k A(k), A3 (k), A4 (k4), A5 (k5).

Clearly, this maps the negative convexities into the positive convexities.
Figure 2-8 illustrates the effect of this mapping.

The mapping M is defined on a negative convexity s by:

M(s) = (-a, -b, c, -d, -e) where

M(I(s)) = (a, b, c, d, e).

In order to define M on arbitrary strings*, we break the string down into
an alternating sequence of positive and negative convexities. The following
theorem shows that this is always possible.

Theorem:

Any string s of length > 1 can be written in a unique way as an
alternating sequence al, a2 , .. , ak of positive and negative convexities

where the last element of a. is the first element of ai , i = 1, ... , k-l,

i.e., if s=S, ... , s , n >1, then there exists unique integers

1i < i2 < . k < n such that a0, a 1 ... , ak is an alternating

sequence of positive and negative convexities where a= l, si

a S, , ... , s. ;."' ;ak Sk " S.n.

Proof:

The proof is by induction on the length n of the string. For any
string s =Sl, s of length n = we have either s I < s or s1 > s .

Thus, any string of length 2 is a convexity. Assume the theorem is true

* - Strictly speaking the strings we deal with are not arbitrary since A. (k)
followed by A (k') implies i j.

2-15

-HV(2),. +5(1) -~+H(l), VWZ, -S(O)

A (1), 3' (2) ' 21 1() A 3 (2), A 4 (1)

Figure 2-8

z16

for n=n o . Let sly ., s be any string oilength n .1. Now by
00

A the induction hypothesis there are unique numbera 1 < i 1 .n <i no

such that ao, .. ak is an alternating sequence of positive and nega-

tive convexities where a 0 = S1 , , " =S I s. ;a =
S1 12 k

Sik , .. s . Let us assumeak is positive. If sn +1 > sn then,no

k 0 0 0
ak = ak, n is still a positive convexity, and al, a2 , ... , akl, ak

is the required alternating sequence. Furthermore, this is the only alter-
nating sequence possible since the numbers il, i are unique (by the

induction hypothesis). If s s , then ak+l = O, so +1 is a nega-

tive convexity so al, a* ak , a k+l is the unique required alternating

sequence of positive and negative convexities. A similar argument holds if
ak is assumed to be a negative convexity.

Using this theorem we extend the map M to azbitrary strings as
follows: If s = sl, ... , s is an arbitrary string, then we define

n

M(s) = (M(a (a2), ...,M(ak)) where at..., ak isthe

alternating sequence of convexities associated with s as described in the
:° above theorem. Since each string has 1, 3, or 5 convexities we thus have

5, 15, or 25 measurements for each string respectively,

2- 17

iI

21

SECTRYON 3

T HE SPECIAL TA _Tt ES

3. 1. TrHE MIMP ME-1SUIRE !NTN
mhe frst of the eight special measurennents is designated I VIP.

As the name implies, this feat.re measures a characteristic related to the
umward view of the character from a row scew ne e around *--e middle of
the character. The row used is row 16. The upward view of the charac-
ter from row 16 is ol-tained bv conmuting a 'midlie-up" histogram desig-

zated M I ST. The I' element of MHIST, designated MH!ST(I) is simply
the row number of the first non-zero bit encountered when scanLing the
column uward from (and including) the 16th row. in the case where no
non-zero bit is found, the value of IM!ST for that column is set equal to
zero. rhe midline-up histogram for the character 'two" of Figure 3-1
is listed in Table 3. 1.

TABLE 3. 1.

Midline-Up 1Istogram Topdown Ifstogram

I MST(I) THIST(I)

1 0 24

4 04

5 0 24
6 0 24

i -7 8 4
8 16 4

:>9 16 3
10 16 1
11 I 16 1

"'"12 14 1
LN/ 13 14 3

; 14 12 3
.;15 9 6

S17 0 21
.18 0 2 1

.19 12 12

20 0 24
' 21Z 0 24

"22 0 24
"-.23 0 Z4

24 0 24

3-1

1 22

Co6

7 2306 8 I 1357~013

8 0000 0!160000 0

29!! 0

300 1 1 11 0

4 0 111 i 1 0

52 0 1 1 1 1 1 0

6 0 1 1 ! 0

7 0 1 1 1 0

8 0 11 i 0

9 0 1 0

10 0 1 1 1 0

11 0 1 1 0

19 0 111 1 0 Rows

13 0 1 1 1 1 0

1 0 1 1 1 1 0

15 0 0

$16 0 1 1 11 0

17 0 1 1 1 1 0

18 0 1 1 1 1 0

19 0 1 1 1 1 1 1 0

fzo 0 1 1 1 1 1 1 0

!21 0 111 13}1 I1 111111 0

23 0 1 1 1 l 1 1 1 1 1 1 0

24 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

Figure 3-1

3-2

23

7TBe midine-= histogram is ruse tz) detexrbne the beng=
col==w! ancf the =er prionm of he character, 6-,e

co1=ns being esimat BEWGi M' ;: EN respedfveIy. et h

=== !=stogram valire T_. calvznns BE iN thr~gh BE iN+3 inclusive is faom
--- desigmaed 3Num!AX. -me =z; histogram Valu'e in eOlInns -7ND-6
thromugh ENDI inclusiv'e is fmomd anAdvesigabed W, :_. F-i1J-y, the rrin-_
LmumAf ;'"st gram vahze in eolurn=s BE M--+3 dxro~gh ED inclasiv-e is Lpond

* an-ddesi;gmated IUN. L--ese tireemeas r= ets are cimbi-ned asLDfo.os
to vroonce the v'Ae of the IDUIP feature.

- ! AXZ- . N E -BE > 7

wh ere

ILMAX! = MAX ,9HST(I) I = BEG,- BEGINi1, B. ., B +3

M _,-= E ... , MEND

MI-N = MINCRUST(!)' i = BEGW,--3, ..., ME-ID-4

Referring to Table 3. 1., it is seen that for the raster of Migure
3-I

BEGIN = 7th Column (I)
END = 19th Colunn (I)
MAXI = 16
MAX2 = 14
MIN 9
MIDUP = 16+14-2.9-12

3.2. MJIDTJPZ

The second special feature is designated MIDUP2. Its value is
determined by counting the number of rows between "middle" row 16 and
the row containing the first non-zero bit along the Jth column, where

J = L. -1, when scanning upward from (but not including) roy, 16. Stated16
differently, he column to be checked for a non-zero bit is determined by
scanning the 16th row from the left until the first non-zero bit is found.
By Packing off one colium.., the column which wiR2. be scanned next is deter-

mined. This coj-mn is simply 1.16 - 1. Finally, the L 16 - 1 column is

scanned upward from row 16 until a non-zero bit is found. The row number
containing this bit is subtracted from 16 to produce MIDUPZ. Turning to

3-3

tbe soNy in Flgure 3-1, it is seen that L 1 - iLdat the ro.
coutini~g t~he --frst non-zero bit ism.o 8-. 7Ihs =16 -8=8

-e ,EIDP an 4_XUD-P2 features zre useful in discr-i-ting
cer-tain szevens from eithier fours, nines or A's. Consider for examqple,
se-ens such as-

ana1

The first sevem -ll resenible a cosed-toD four or a skew- A a f- te second
wilresem~ble a mine vdien j.-e-wng these char-acters frcm the left a--, right

sides. The iiew Irm the bottom of the first 7 may be obscured by the
Aanted stem of t 7. Wwever, the MIDUP and 1 P2 measureents

,= or- these se to be disting-shed since the view up from the ='middieI
line oz- both fouirs, nines and As -wilfl be block,_i by a relatively low horizontal
stroke w ich is not present in the case of a seven

1. 3. MOTOP

1he third of the eight special measurements is designated MOTOP.
Effeci-ively, this feature measures the degree of openness at the top of a

character and hence the name "open top measurement" symbolically
refereaced MOTOP. This feature is derived from viewing the character
from the top row and is computed from the values of a "tordown" histogram
designated TW-ST. The value of the Ith element of ThIST is TIST(I)
and is simp!y the row nun -er of the first non-zero bit in the Ith column.
The topdown histogram for the character "two" of Figure 3-1 is listed in
Table 3. 1. 7he T=IST histogram is first used to determine the beginning
column and the ending colum-a of the character to be used for the MOTOP
comptfation, the columns being designated BEGIN and END respectively.
Next, t.±te maximum histogram value in columns BEGIN+2 through END-Z
inclusi-, is found and designated TM-AX. The minimum histogram value in

column. BEGIN through BEGIN+3 inclusive is determined next and desig-

nated TMINI. Finally, the. zrinimum histogram value in columns END-3

through END inclusive is found and designated TMIN2. These measurements
are combined to produce the value of 6he MOTOP feature as shown below:

rZ" TMAX - (TMINl + TMI NZ) END-BEGIN > 8
MCTOP

17 Otherwise

3- 4

I

7169Ax = -I-AAX 17 RniST(T) I = BEG!N+-, BEGIN-.3, -rN., -

* ThI]N = LEN AMST(I). I * = BEMN, BEGIN-i,. ,BEI3

A 2= N- T (!, I= Z D- , END -B,

Re-"-ring to Table 3. 1., it is seen that for the raster of :2guzre 3-1.

BEGIN = 7th column (I)
= 19th Column (1)

TMAX = 21

T "MI-2 = 12

and therefore MOTOP = 2-21 - (1+12)= 29.

1 3.4. AVEEAGE WVIDTH M_.ASUREMENTS

Three additional special features are measured which Dertain to f!

ime average width of the character. -ne first of these measures is mhe
avera-ge width across a segment located near the bottom of the character
and is designated BOTAVF. The second measure is the average width
across a segment located near the middle of the character and is desig-
nated MIDAVE. The last measure is the average width over a large central

region of the character and is designated OVRAVE. The width of the Ith

row is given by RIUST(I) - LHIST(I) + 1, where RHIST and LHIST refer to
the break-corrected histograms. Using this notation, the three average
width features are given by:

1 :

BOTAVE = 1 (RHIST(I) - LHIST(I) + 1)

S~=16.

MIDAVE = - (RHEST(I) - LHIST(I) + 1)
;6

20

OVRAVE (RIST(I) - LHST(I) + 1
316

3-5

26
Using the left and right histogram values listed in Table 3-2

corresponding to the 'two" of Flgure 3-2, the following values are
comapute1:

BOTAV [43/6] = 7

IUDAVE P [7/6

OVRAVE E 96/i =5

in each case, the lower integer value is used as the feature value.
I

1' 3.5. TOPLIN and BOTLIN

The remaining two of the eight special features are related to the
n mnber of line segments which are crossed when scanning across a speci-
fied group of rows. For the purpose of this computation, a line segment is
defined by the presence of one or more consecutive one bits which are bor-

lI dered an the left- an, right by zeros when scanning a row of the character.
For example, the following row contains two line segments:H9

0000110001110000

The first of these features, designated TOPLIN, is simply a count of the
total number of line segments determined by scanning rows 5 through 9

inclusive. The second, designated BOTLIN, is a count of the total number
of line segments for rows 16 through 20 inclusive. Following this pro-
cedure on the "two" of Figure 3-1, it is determined that:

, TOPLIN = 8
BOTLIN = 7

It should be evident that the TOPLIN and BOTLIq features are
highly related to the discrimination of eights, H's and X's from other
characters. These are sometimes malformed in the sense that the shape
information derived from the contours is unreliable. In these instances,
the presence of two line segments at the Lop and the bottom, resulting in
large TOPLIN and BOTLIN values, are very useful.

3-6

27

TABLE 3-2

SLefV. Flistogram Right Histogram

I LHJST(I) Rh-IST(I)

1 10 12
Z 12
3 9 14
4 14

5 14
6 7 15
7 7 15

87 15
9 13 1510 12 14

I!1 12 14

12 11 19
13 10 13
14 10 13
15 25 (9 after break 25 (1Z after break

correction) correction)
16 8 11

17 8 11
18 8 11
19 7 15
20 7 15
21 7 19
22 8 19
23 8 19
24 8 19

3-7

28

1 000 0 0 0 0 00 0 0 0 0 0

2 0 0

3 0 1110

4 0 1 11 10

6 0 1 1 11 11 11 0

7 0 1 11 11 0

8 0 11 1 0

9 0 11 0

10 0 1 11 0

I11 0 1 111 1 0

12 0 1 1 1 1 0

13 0 0

14 0 1 1 1 1 0

15 0 1 1 1 1 0j

16 0 1 1 1 1 1 1 0

20 0 0

21 0 0

22 0 0

23 0 0

24 0

Figure 3 - 2

3- 8

SECTION 4

RECOGNITION LOGIC

4.1. THE DECISION LOGIC

As explained in Section Z, measurements are taken from each of
the four contours, left, right, top and bottom, of each character. These
standard measurements in addition to the special measurements comprise
the feature vector upon which the logic operates. * For each of the

36 x 35 = 630 pairs of classes a partial decision is reached by operating
2

on a subset of the feature vector composed of the standard measurements
taken from two of the four contours plus the 8 special measurements. The
two contours used depend on the particular character class pair in question.
For example, for the pair H/N, the top and bottom contour are used since
these contours correspond to the two "looks" which give the best discrimina-
tion. That is, looking from the left and right these characters appear iden-
tical, but looking from the top and bottom they do not. The two contours
used for each character pair are listed in Appendix B of (3).

The outcome of each pairwisc decision can be a vote for one of the
two classes or a no vote decision. Thus, if the character class pair were
A/B the outcome would be a vote for A, a vote for B, or a vote for neither.
The final decision is reached by adding all the votes for each character
class and choosing the class which has the maximum number of votes. If
two or more classes receive a maximumA number of votes the character is
rejected. **

Before we discuss the details of how each pairwise decision is
made, a discussion of linear discriminant logic is in order.

Let us denote the feature vector X of character by:

- A detailed description of the program which implements the recogni-
tion logic is contained in Section 7.

* - Reject strategies based on the number of votes the maximum class
receives are discussed in the following section.

4-1

F
30

x

X . L (4. 1.)

L

A linear discriminant is computed by taking the inner product of the discri-
minant vector d with the character featr'e vector X where:

d 1]

d • L (4.?.)

II d
L L J

The inner product generates a scalar Z (i. e., a number) which is used to
make a decision between two classes. If the value of Z exceeds a thresh-
old 0, the decision is made for one of the classes; otherwise the other class
is decided. Specifically, the inner product is given by:

L

z = x> d T =, dix'1 (4.3.)

i=l

As seen in equation (4. 3.) a linear discriminant is nothing more than a

weighted linear combination of the features x,. Our problem simply
amounts to computing good weights (or equivalently a vector d) for dis-
criminating the pair of classes in question. The optimal procedure used
for both the numeric and alpha-numeric logic is based upon the Fisher
Linear Discriminant. (1

Programs PHASEONE and PHASONEA of the ANLP produce weights
such that the difference between the mean value of Z (equation (4. 3.) for
the two classes is maximized relative to the sum of scatter of Z for the
two classes. * The mathematical derivation of the optimal linear discrimin-
ant is given in (2).

The scatter is a statistic closely related to the variance. The scatter is

equal to (N-!) times the variance where N is the number of samples used
to estimate the variance.

4-2

31

The following geometric interpretation of the decision procedure
may be helpful. Consider the case where L = 2 ; that is, only two features
x and x2 are used to discriminate the classes I and J. The sample

data from the two classes are represented as feature vectors in the xl, x 2

space as shown in Figure 4-1. The decision rule specified by a linear dis-
criminant requires that the inner product between an unknown vector X

nd the discriminant vector 0 be computed. It is easily shown that an
equivalent form of equation 4.3. is:

Z = Cos OC (4.4.)

where jd is the vector length of the discriminant vector,

d --1"1

The discriminant vector is normalized such that I and so

Z X lI cos o< , where c(is the angle between the vectors X and

d. Therefore, . simply is the orthogonal projection of X onto the direc-
tion of d as shown in Figure 4-1. Since the decision rule is:

Decide I if Z _! Q (4.6.)
Decide J if Z < 0

the decision boundary is given by the locus of all points such that Z = 0.
For this case, the decision boundary is simply a straight line perpendicular
to the direction of d at a distance cf 0 from the origin along A . In
general the decision boundary implemented by a linear discriminant is a
linear hyperplane which divides the feature space into two regions, one
associated with class I and the other with class J.

We now return to the detail of how each pairwise decision is made.
The type of logic was determi. ad by the number of available samples from
the two classes. The following rules were used:

4

4.. 3

32

X2

x

\\ Sample
\ " Feature

di Vectors

I ' J0 From
\ Class I

d

decision boundary

Figure 4-1

Linear Discriminant L = 2 Geometric Interpretation

4-4

3-3

Z Nj < 2 Decide I

NJ> Z N I < Decide J

NI 2 N 2 No Vote
I J

T T N- - 2Optimal Linear Discriminant

where NI equals the number of samples frem class I. Types 1-3 were

used in approximately 65% of the pairwise cases. The reason for this is
due to the fact that every character has a preferred set of sort groups where
it will normally be found, where the sort group is determined by the num-
ber of convexities a character has in each of two specified contours. For
example, the numeral seven will be in the 3, 1 sort group when viewed from
the left and right, respectively; i. e., it will have 3 convexities on the left
and one on the right most of the time.

In contrast, an E never has Just one convexity on the right and thus
is never in the 3, 1 sort class when viewed from the left and right. Since
the left and right looks are the ones used in the E/7 test, and since charac-
ters are grouped by sort class prior to entering the decision logic, the
decision logic for E/7 in the 3, 1 sort class simply is "decide 7". Similarly, in
the 1, 5 sort class (when vicwing from left and right), since no sevens can
occur there and E commonly occurs there, the logic is simply "decide E".

4.2. LOGIC OPTIMIZATION

The following is a description of the optimal strategy for sequencing
through the logical computations pertinent to reject strategy A (see next
section). Let K denote the number of classes (K = 36. for the alpha-
numeric problem) and assume that the rejection strategy requires that some
class receive all of the possible votes (i.e., (K-1)), otherwise the charac-
ter is rejected. Furthermore, let us assume that all of the logic for the
K(K-1)/Z pairwise tests resides in core. Now, since the computer is a
sequential device we must direct it to compute the pairwise tests in some
prescribed order. We could compute all tests in an arbitrary order and
simply tally up the votes for each class at the completion. Any class
receiving (K-1) votes would be 'he decision class, otherwise a rejection is
signaled. This strategy can easily be improved upon since it is possible to
make a final classification or rejection without computing all K(K-1)/2 pair-
oise decisions. The optimal strategy which produces the fewest number of
tests and therefore insures the fastest throughput would operate as follows;
first, all of the pairwise tests, say I vs J (TIj) would be ordered in accord

with the class probabilities, (i. e., rank order T I such that T > T RQ

4 -5

34

iff r P< J > PR I= R Suppose the ranking were as follows for a

four class problem: PI > P > P3 > P4 ; the pairwise tests would then be

ordered 1/2, 1/3, 1/4, 2/3, 2/4, 3/4. The first test would be 1 vs 2. The
next test will be determined on the basis of the outcome of the preceding
test. For example, suppose the vote goes to class 1. In this case, class Z
cannot rec;-ye the maximum number of votes (i. e., (K-I) = 3) and thus the
only classes in contention are 1, 3, and 4. Therefore, we would select the
next highest probability pair not involving class 2. In this example, 1 vs 3
would be chosen. Now suppose that class 3 receives the vote, in which case
neither 1 nor 2 can win. Repeating the above procedure, the next highest
probability pair not involving classes I or 2 is the 3 vs 4 test. Suppose the
outcome of this test is a vote for class 3. Now we know that classes 1, 2,
and 4 cannot be winners, however, we do not know if class 3 is the winner

without checing to see if class 3 receives the maximum number of votes.
Thus, we would next perform the 2 vs 3 test. If 3 wins, then the final
decision is 3, otherwise a rejection is issued. Notice in this case 4 tests
were required. In general, the table below lists the number of tests
required assuming P1 I - P 2

>- P3 > ... - PK"

True Class # of Tests Required

1 K-I

2 K-I
3 K
4 K+1
5 K+2

K 2K- 3

Table 4 - 1

The expected number of tests is given by

K

T P K- 1I + P [K + 1 3]

I=Z

4-6

Notice, if all the classes were equally likely, then PT= Il K and

- ~K)

I I

P,- 1/K

IK(K+1)l
K K- 2) +(K- 1)(K- 3)1+P=

It is interesting to compare P = I/K to the total number of pair-

wise tests in order to appreciate the significance of the potential savings.

K T / Total Tests = K(K-1)/Z

3 2.33 3

10 12.6 45
36 50.5 630

Notice that for 36 classes the expected reduction in computation time mightfbe in the order of 80%o

The above strategy could be extended to the case where the entire
pairwise logic cannot fit into core at the same time. In this case, -; e must
consider the access time required to retrieve the pairwise logic from. the
mass storage device. The optimal strategy must not only consider thei. number of tests but also the time to retrieve the test from storage. The
strategy actually used during the independent test of ur alpha-numeric logic
was of this nature and is described in Vote Assignment, Vote Tally, and

P1 Logic Select Procedures in Section 7 of this report.

4-7

I
86

SECI0N 5

REJECT STRATEGY AND ERROR A.&A LYSIS

As described previously, ihe decision logic operates by a vote
counting procedure. In order to investigate the utility of reject strategies

based on the number of votes the winning class received, the resultsc of tHe
indevemdent test were analyzed. The output of the TWO progra-m of the

ANLP which performed the independent test listed the maximn number of_

votes each character received and indicated which class(es) received that

number of votes.

The reject strategy which resulted in the lowest number of rejects
is to amply reject a character in the case of ties. Thus, if the class which

received the maximum number was unique and matched the true identity

class of the character, a correct decision resulted; if the class which

received the maximum number of votes was unique and was not the true .

class identity, a substitution occurred; if more than one class received a
maximal number of votes the character was rejected. This strategy,
Strategy D, may be considered minimal since there was no way (based on
vote counting) of making a logical decision between two or more classes
all of which received a maximal number of votes, and thus the character
must be designated a reject.

Since there were 36 classes in the alpha-numeric set, the nicst
votes a character could receive for any one class was 35. For example,
the class D could gain one vote if each of the 35 pairwise tests A/D, B/D,
C/D, E/D, F/D, ... , Z/D, OlD, ... , 9/D was decided in favor of D. By

insisting that the class have at least 35 votes and rejecting in case of ties,
we obtain reject strategy A. By replacing 35 by 34 and 33 respectively
in the above sentence, we have the definitions of reject strategies B and C
respectively.

The error and reject rates on the independent test using strategies

A, B, C, and D are indicated in Figure 5-1. As we would expect, the
errors decrease in the order D, C, B, A, and the rejects increase in the

order D, C, B, A, since a character which is rejected using strategy D
will surely be -rejected using strategy C, a character rejected using strategy
C will be rejected using strategy B, etc. That is, if the maximum charac-

ter class is tied it certainly satisfies the criteria of receiving less than 33
votes or being tied; if the maximum character class receives less than 33
votes or is tied it certainly receives less than 34 votes or is tied, etc.

5-1

37

18.67%

16. 97%

Per

Cent .4

2% Rejects

DC B A

Reject Strategy

Figure 5-1

Error and Reject Rates Using
the Various Reject Strategies

5. 2

T h e m sution rate of, 9. 1476 using strategy A a-eirst
seened higher Chan erected. Analysis of the suti±ontable (Fi=2gur-e 5-2)
bowei-ex, r-evezled that certain character vLairs have inhordimatel1y high sub-
-ftiations betwee n f---emn Thp-se " r - F - reirs " acco =-t for a large iorozan
of the sumbstitation. Figure 5-3 lists the-, mst conm=*only confused character
M~irs and the nu~ber of characters in confusiona usin~g reject strategies A,

B, and C, where the number of chacers in confusion for pair x, y is
d'efi-ie tc, be the number of characters of true class z -_ose decision class
was y lus the number of characters of true class y whose decision class

As expected O's and O's, S's and 5;s, Z's amd Z's, G's and 6's,
V s and l's, V's and 's, and B's and 8's head the list- D;scounting just
these confusion pairs reduces the substitution rate (using reject strategy A)
:from 9. 14% to 3. Discounting the rest of the confusion pairs in Figure 5-3
reduces the substitution rate to 1%. A review of Migure 1-1, Section 1, is

i1 all t is needed to appreciate why these pairs are in cozfAsion. The

U, characters contained in Migure 5-4 through Figure 5-6, taken from the test
-et data, further ilustrate whv"y cer tain character vairs are in c-nfusicn.

.

f-

4 :. 5-3

39

.. 1 I. u l L L .L tI _ I l1 ! I I - - <

I H __ 3 I I I I I_ I I I Io

I l I I i I I- -
H IT II 1 11 : -

I - li l-
-,

-_

L-
I

L

I

C%. N :i 3
I n

5 -
o

- - o- -- 4-0

--
°

'

0
'

I -

True Class Identity

5-4

> --

a I
0 ;

U) u -CI
N 1 -I I In

%00

-

N M

'.5 '"5

41

Confusion with Reject Strategy

Pair A B C

0/0 158 161 162
S/5 56 59 59
Z/z 48 61 63
G/6 47 48 48

I/1 31 32 33

v/U 24 28 28

B/8 17 20 22

Q/O 15 15 15

V/Y 11 11 12

c/6 11 12 14

Y/4 10 10 10

K/X 9 16 17

7/9 8 8 10
O/D 7 9 11
Q/0 7 8 8

D/O 7 7 7

N/H 6 6 7

4/9 6 9 10

6/L 6 10 10

T/7 5 5 6
H/W 5 9 10

5/6 5 9 12

Figure 5-3

5-6

~42

• *O A 12787 * *0 A 12576 *

* * *** * **

. ** * ** * **igr

* *****i ***** **t*t*** **t

* ** ** * **t

• t t * ,* *

* **

~43

• Z A j4439 * *2 A 01727 *

* •t* * 00• •

0 *4t~we * •• ooo *•~e

* *00• * * •0*0oe 0

0 & * * *0

* 00 * * •~
0 * * * 00

* ,0 * 02 *S *00*0*0 0
t* e*t~~~e~ 0 0e~*w s••

* • *

• * 0

* 0i• * 0

11 o*s,;•* * **• •*

* •*0 0 0*# *

• ee*0 • * * 0

000 ew~ 0 0 *
0 00 e * 0 *00*
0e *Og *~e we 0 *e~wwwee

0 *000 * 5*8

44
*6 A 02181 * *Q A 117A7 *

*0*0*****000000*00
* 0* * * * *
* *00* 0 * *00 *

00 * * ** 0
* ** * * ** *

** ** * 000* ** *000 * * ** 0*0 ** ** *0 * * * * 00*00*000

00:::: * 00 * 0::

*0**0* 00
** *00*
00

*00*0* * 0*00*000 0
0 0 0

0 * * * Figure

~

:0000000000000.*0: :*000000000000000: 5-6

*8 A 01879 * 00 A 11047 *
000000000000000000 000000000000000000
0 00* 0 * *0*
0 00*0. 0 * 00* *
0 0000 0 0 00*00*
0 000 00 0 0 00* *0

0 00 *0 I
0 0*0*0 *0

0 00 00* 000*00 *

0 00* *0* 0 * 00*0 00* 0
0 0*000 0 0 0*00 *0 0 I~ 0* 0 ~ oo 000*0 0* 00 0 0*00 *0000 0 0
* * 0 0* 0**00,~ 0
* * * 0*0,000 0
* 0 *000 0
*00**0*00~***00000 oooooooooooo~o~o.o

45-9

SECTION 6

DATA BASE EDITING PACKAGE

In an attempt to improve the design of the decision logic, PAR
elected to develop a data base editing package. This package was used to
prepare a data base suitable for logic design. In addition to correctly
labeling mis-labeled characters, certain noise elimination operations were
implemented. Specifically, rows or columns of noise caused by an inter-
mittant zwrap around" effect of the camera were eliminated, as well as
stray noise bits, Jn all cases the noise was separate from the character
so that these eliminations did not alter the shape of the character. In addi-
tion, characters which were so malformed as to be humanly illegible were
deleted. This was essential to good logic design since illegible characters
as represented in the feature space have the same deleterious effect as noise
on the design, of optimal discriminant boundaries.

It should be noted that no editing was performed on the test data
since any such editing would be counter to the objective of testing the sys-
ter-n on "live" unconstrained characters.

.4The data base editing package was implemented on the CDC-1604

using the BR-85 as the inspection medium. To reduce the programming
effort to a minimum, the CDC- 1604 operating system and various existing
routines developed by PAR for the manipulation of the BR-85 display were
employed.

The input to the editing programs is a tape containing a digitized
version of each character scanned by the Image Dissector and written by
the PDP-8 at a density of 800 BPI. Since the CDC-1604 requires an input.density of not more than 556 BPI, PAR has written a simple pormwhich

is operable on the Honey-well 645 to generate a tape with identical format
and with an acceptable density. It is this converted tape that is used as
input to the edit package.

[The remainder of this section will discuss the edit function offered
to the operator (Section 6. 1.), the computer set up and run deck construction

to activate the package (Section 6. 2.) and program flow charts.

6.1. EDIT FUNCTION

Each function made available to the operator may be executed by
selecting and depressing the appropriate function key; 1 - 30 are used. The
following describes each key and the associated function:

6-

Key 1: Read a character from the input tape.

This operation will read the next character from the
input tape, matrix size is 36 x 30, and display it on
the BR-85. In addition, the character and author
number are displayed over the character matrix.

Key 2: Not Used

Key 3: Backspace the input tape one character.

On occasion the operator finds the need or desire to
examine the character just processed; this function
allows the repositioning of the input tape to accom-
modate this condition.

Key 4: Not Used

Key 5: Write End-Of-File on output tapes on logical units 4,
5, and 6 (an example of the tape setup is shown on
page 6-5).

At the completion of each editing session the operator
will write EOF on each of the output tapes by selecting
Key 5; and in addition, the selection of this key will
cause the system to punch a card with the character
ID and author number of the last character processed.
This card provides a means of automatically position-
ing the input tape to last character processed in sub-
sequent editing sessions.

Key 6: Not Used

Key 7: Delete a row of noise.

This function is used to delete all data points in the

row selected by the light gun. Action: (a) Depress
Key 7; (b) Select any data point in the row to be

deleted using the light gun.

Key 8: Delete a column of noise.

To delete all data points in a given column depress
Key 8 and select any data point in the desired column
with the light gun.

6-2

.47

Key 9: Delete one data point of noise.

Any given point of noise may be deleted by depressing
Key 9 and selecting the point to be deleted with the
light gun.

Key 10: Delete column one of the character matrix.

To delete column one, depress Key 10. Due to a
programming error in the PDP-8 character matrix
generation program, column one and two frequently
contain erroneous data points. This special function
was included to speed the editing phase (Key 15 may

be used to delete column two).

Key 11: Change character ID.

The PDP-8 character matrix generation program
assigns a character ID in accord with the position of
the character on the input form. If the physical
character displayed on the BR-85 disagrees with the
assigned character ID the operator may change the
ID by depressing Key 11 and depressing the correct
ID on the BR-85 keyboard.

Key 12: Not Used

Key 13: Restore an erroneous delete.

After the completion of a delete operation, the user
may restore the row, column, or point deleted by
depressing Key 13. This operation will restore only
the last deletion made.

Key 14: Set output author number (ID)

The number system employed by the PDP-8 program
and that used by the FEATURE EXTRACTION and
OLPARS programs are inconsistent. This function
compensates for that inconsistency.

Key 15: Delete column two of the character matrix.

See description of Key 10.

Key 16: Not Used.

6-3

48

Key 17: Sort E6ited Alpha/Numeric tape (physical unit 2).

This function is used to extract characters from the
tape on logical unit 10 and write them on logical
unit 11 if numeric, on logical unit 12 if the character
ID is an alpha, and on logical unit 13 ii it is a special
symbol.

Key 18 & 19: Not Used

Key 20: Write an edited character on physical unit 16.

The characters written by this function are of a very
distorted contour but are still recognizable. They
are not included in the initial design of the decision
logic but instead are included in a subsequent redesign
of the decision logic. The function is activated by
depressing Key 20.

Keys 21, Backspace physical unit 4, 5, or 6.
22, & Z3:

Backspace one record (character) on the selected
physical unit; it is activated by depressing Key 21,
22, or 23.

Key 24: Find a character on the input tape.

This function allows the operator to resume proces-
sing from the last character processed in the previous
editing session. The function requires that the card
punched when Key 5 (write EOF on units 4, 5, 6) was
activated be in the card reader following the "EXECUTE"
card. When Key 24 is depressed, the program w-.ll
read the card in the reader and read the characters
from the input tape (unit 2) until a match on charac-
ter ID and author ID has been found.

Key 25: Not Used.

Key 26, Skip to end-of-file on units 4, 5, or 6 (the output
7, & 28: tapes).

These functions, when selected, will advance the
selected tape to the last record previously written
on the tape.

6-4

49
Key 29: Not Used.!I
Key 30: Write the character on physical 4 and if an alpha

character on physical 5.

When the operator decides a character is acceptable
I for inclusion in the data base, he will depress Key 30.

The resulting operation is to write the character on
physical unit 4 regardless of nature (alpha/numeric)
and if the character is alpha it will also be written
onto physical unit 5.

Note: The two tape options, Key 20 and Key 30, will effect a write to the
appropriate unit and will automatically read the next character on
the input tape (physical 2).

Tape Setup II
Tape Unit

Physical Logical De s cription

1 System master

2 10 Input character tape

3 Edit overlay tape (binary)

4 11 Alpha/Numeric output tape

5 12 Syrn'.ols output tape

6 13 Difficult character output tape.

5

____ ____ __ _ ___ 50 _ _ _ _ _ _

0 ~ ;4 Ne ;40 t

0 00

xc k

00 0 _ VI OD$4 c

4) 0 Cw

0.0 -'. N o N .

N 4 44 ~ Nu 0 N
0 to wNO04 %

00

44 0
4J 0. 4-:

'0 tf0 '0 0 0

0014
0O

Q___________ 4)__________ .11d

44 Tju 44 146-6

PROGRAM: TAG START

Purpose: This is the EDIT package program; it connects the subroutine

entry point addresses with tLe appropriate keys on the BR-85.

START

Clear right

key module

Set bit mask to
activate appro-
(~priate keys in th(

le.t key module i

DOCUS I
onnect subrou- I
tines with keys

I

~key program (Key #1 - "CONTROL").

6 7

52

SUBROUTWNE: CONTROL

Purpose: CONTROL will read one character from the input tape
(physical 2) and display the character matrix on the BR-85.
In addition it extracts and displays the character and author
1D.

CHARRD
read 1 char,

unit 2

Housekeep
disp.ay
buffer

(SETDISP

clear character
display buiffer

extract charactei
and author ID &
convert to dis-

play codes.

eposit charact
author ID in

display buffer

6-8

53

A

SETDISP
add top border

to display
/

b
fer

Unpack a row
of character
data points

TIMESI

ave display b

6

54

SUBROUTINE: TIMES3

Purpose: Extract character data bit from input buffer and move it to
the process buffer (3 bits at a time)

START

BIT - set MPONT

= value of teI

selected__ bit

deposit
I, MPOINT in

process buf-
fer

No its checke

6-10

55
SUBROUTINE: SETDISP

Purpose: Insert BR-85 control and position character for one display
line in the process buffer.

START'

Insert start

coordinate

Insert x
coordinate

top or % es Insert a

-,bottom? rwo

SInsert _
End Code

L Update y
coordinate

ETU

6-il

SUBROUTINE: CHARID

Purpose: Change the ID of the current BR-85 display.

START

READISP

PAGEA

ALFDISP

Accept input
from BR-85 key
board (new

character ID)

jWRTDISP

in BR-85
p icture

IUI
Acc~r-Acept

ETU

111'

57
SUBROUTINE: SETHREF

Purpose: Used in construction of a character mat.2ix. This matrix is
generated from the BR-85 display buffer which contains all
modifications made by the operator (3 bits at a time).

START

FUNCTION PKBIT

set the bit in out-
ut buffer = 0 if
lank; or 1 if * I

A

13

58

SUBROUTINE: SKIP 11, SKIPI 2, SKIP1 3

Prose: Advance the appropriate tape to the EOF and backspace over
the EOF mark.

START)

Rea tap

IY
s

euno etur

6 -14

SUBROUTINE: MEBOB

Puarpose: This is a dunrny routine and should never be entered. Its
function is to return to DOCUS if an illegal function key is
depressed and honored.

6O

SUBROUTINE: HARD

Purpose: Reconstruct a character matrix from the BR-85 display
image and write it on physical unit 6.

START

OUT CHAR
ead display

rmage & create
character

Write charac-
ter matrix o

unit 6

CONTROL

read next char.
ninput tape &

di~play

no return

6-16

, SUBROUTINE: RESTORE

Purpose: -Restore the last deletion (row, column, point) made by the

operator. When the operator selects any of the delete keys
the display image is read into two buffers; one buffer is
saved unchanged and the other is used to make the modifica-
tion. The modified buffer is then transferred to the BR-85.
When this program is activated it transfers the unchanged
buffer to the BR-85.

START

WRTDISP(move =nchange
buffer to the

BR-85

KRTRN(6)

no return

6- 17

SUBROUTINE: DPOINT 62

Purpose: Set parameter MIND=3 to indicate a delete point operation
is to be executed.

START

MIND =3

CDELETEXIi make deletio

no return

618

SUBROUTINE: DCOL 6

Purpose: Set parameter MIND=2 to indicate a delete column operation
is to be executed.

START

DELETE

make deleti I

no returr.

6 - 19

SUBROUTINE: DROW 6

Purpose: Set parameter MIND= 1 to indicate a delete row operation is
to be executed.

START

MIND =1

DF LETE)

make deletia

no return

6-20

p5
SUBROUTINE: TBAC K

rPurpose: Backspace input tape (physical 2) one record.

START

IiT

Backspace 1

KRTRN(6)

no return

SUBROUTINE: NEWTAPE

Pnhrpose: Sort the input tape (physical 2) and write the numerics onI physical 4, the alpha characters C, X, T, X, and Z on

physical 5, and special symbols on physical 6.

1! START

Read tape F "JBI

Write record on 4, 5, 6
on appropri-
ate tape

HALT]

6-22

SUBROUTINE: OUTCHAR 6?

Purpose: Retrieve the current BR-85 display image of the character
in process and reconstruct the character matrix. This format
is identical to the PDP-8 image dissector matrix, however
it reflects any changes made by the operator.

START

READISP
read display

image

Extract & conve t

the code for chaj.-
cter & author ID,

deposit in output

SETHREE
onvert image

data pts to corrs-
onding bit val es

R TUR

6 - 23

SUBROUTINE: SETA 68

Purpose: Set the author number to desired value. This operation per-
mits the operator to set the author numbe'r to be assigned to
the next output character written on either physical 4, 5,
or 6.

START

READ A
CARD FOR-

T (SRI)
Cols 1-5

Set JNUM(1)
i- JNUM(5) 1.I
output card.

KRTRN(6)

no return

6 - 24

69
SUBROUTINE: WEOF

Purpose: Write EOF on the three output tapes (physical 4, 5, and 6).

START

Write 2 EOFs'
on physical

Punch a card cn
aininkg the char.
& author ID of the

.st char. ro ed~e
in ut ta e

Rewind
4V5,6

PAUSE 7777

KRTRN(6)

no return

6 - 25

7401

SUBROUTINE: CHARRD

Purpose: Read a character from the input tape (physical 2)

START

Read a EOF Prn
character "CHANGE

INPUT TAPE"

Normal ----

Record

ETU N

PAUSE 4

6 -264

SUBROUTINE: CHARWRT

Purpose: Write the current BR-85 display image on the appropriate
output tape(s).

START
OUTCHAR

convert display
age to a char-
acter matrix

Write the EOT Print "END
character on OF TAPE

unit 4 UNIT 11"

*!

Noin rtn

Write the Print "END
character on EO FTP

unit 5 UNIT 12"

PAUSE 1001

no r etur n

6 - 27

SUBROUTINE: DONE

Puirpose: Set parameter MIND-4 to indicate that row one is to be
deleted from the display image.

START)

MIND 4

DELETE
make deletio

no return

6-28

SUBROUTI : DTWO :1
Purpose: Set parameter MIND=5 to indicate that row two is to be deleted.

START;

MN 5

m: !

~make deleti

VI

n r tII
iP

TEL T i

ii
-~4

SUBROUTINE: DELETEX 74

Purpose: This program will identify the delete operations selected by
the operator, retrieve the current BR-85 display image,
make the appropriate changes to that display and transfer
the new display image to the BR-85.

\ START

;Ielete Yes

No

GUN ,OO01\

select a dat.
point

convert data
position t 5

gow & column.
v3~alences j

RMADISP

retrie-tz imzge___________
\ NI ion

It

A

6 -3

~75

A)

READISP
retrieve image

S\ efor a delete

restorettozeo

Is

oe Ios rede

t a pI ntY e S e t s e le c te d

' delete? point to zero;

- -ji I
€f

it a colurmi in the col
delete ? to zero. I

No

Set all points
in the row to

zero

\Z R-85 ,

no retua'n

The following routines were written for OLPARS and are docu-
mente,~ -,n Final Report to Contract F3C602-71-C-0367, RADC-TR-72-71,
March 1972:

WRTDISP

KRTRN(6)I

ALFDISP
READISP
GUNLOOP
FRAMER
CHKBIT
PKBIT

itz

6.2. COMPUTER/RUN DECK SET UP

6. 2. 1. Dev-sity Conrersion

The input tape to the Edit package is a 556 BPI tape with one
charactea per physical record. This tape is generated on the 645 by using
the original character generated on the PDP-8 at 800 BPI.

The following program will affect the 645 density convers'ion:

$ IDENT /ISCPNAME ,OCR ,00331,5581
$ OPTION FORTRAN
$ FORTRAN LSTOU
$ INCODE IBMF

DIMENSION M(64)
CALL FLGEOF(I 0, NE)
CALL FXOPT(40, 1, 1, 0)

10 READ (10)M
T,, t. Tc, EQ 1) GO TO 300
WRITE (11)M

GO TO 10
300 CALL FCLOSE(10)

END FILE 11
STOP
END

$ EXECUTE DUMP
$ LIMITS 23, IlK
$ FFTLE 10, NBUFFS/Z, BUFSIZ/67, MLTFIL, FIXLriiG/164, NSS)DLB, NOSRLS
$ TAPE 10, AID,, NAME
$ FFILE I1, NBUFFS/2, BUFSIZ/67, MLTFYL, FIXLNG/64, NSTDLB, NOSRLS
$ TA5;E 1 1,BID,,99999
$ ENDJOB
-FOF

Note: In the abcve program tape unit 10 is the input and unit I is the
outpu. tape. The "JOB' card must specify a density of 800 BPI for
the input a--d 556 BPI for the output tape.

6.2.2- Edit PEE

Tape Asi gnent

To exercise this package the foiio-wing tape assignment are
required:

6 - 33

78

Tape Unit

Physical Logical Description

1 1 System master with punch

Z 10 Input character tape

3 3 Edit overlay tape

4 11 Alpha/numeric output tape

5 12 Symbol output tape

6 13 Difficult character output tape

Run Deck Setup

(* is a 7, 9 punch in column 1)

*BEGIN JOB EDIT
*COOP, 116, EDIT, 1/101S/Il/12/13/56, 60, 9999904 , EDIT
*EXECUTE,, 56.

BLANK CARD (Z cards)

** may be either a blank cord .or it may contain the character and
author ID generated by the operator in a previous editing run when he selec-
ted Key 5 - WRITE EOF ON OUTPUT TAPES to terminate processing.

7

6 -B

I ; Digitize 800I
Characters

~~~L1~~ 556 635 Change1

BPI Density

1604 556
Edit/Sort -- ("P

CharactersBP

800 635 Charac-
BPI ter Matrix

Reduction

635______________ 800
Feature I BPI

Extraction

H0
635 Data
Conversion

(alpha-num)

PHASEOAETOE-l

oupu

/6 - 3taIS



PDP-8 CHARACTER DIGITIZE - This program (provided by RADC)
controls t&-e IMAGE DISSECTOR (ITT) and converts each hand-
printed character to a matrix of 36 rows by 30 columns.

A character ID, determined by the character's position on
the input form, and an author number is assigned, added to
the digitized matrix and written on the output tape.

Figure -1 is a sample form used in the collection of data.

635 TAPE DENSITY CHANGE - Since the PDP-8 has a fixed
density of 800 BPI and the CDC-1604 requires a density of
either 256 or 556 BPI, this program is required. The only
function performed is a density change, matrix size and
organization are not affected.

CDC-1604 EDIT/SORT - The EDIT program is provided to compensate
for human and hardware error and thereby possibly save a
character that otherwise would have been deleted from the
data base. Some typical problems that may be resolved are:
a. Mislabeled characters - an "Al character written on

the form in a box where a "B" should have been,
b. Camera noise indicating a non-existent data point.
c. An incomplete erasure with a ch-- erwrite.
d. Character overwrite without an
e. A character written so lightly that t. -ttrix is

incomplete.

The 1604 SORT program processes a tape with a random
sequence of characters and produces an output tape with all
characters of a given class (class A, B, 1, 2, etc. ) grouped
in consecutive records.

635 MATRIX REDUCTION - This routine is necessitated by the
conflict in the matrix size (36 x 30) of a character digitized
by the PDP-8 and the expected matrix size (24 x 16) of the
FEATURE EXTRACTION program. The various algorithms
in the FEATURE EXTRACTION subsystem were designed
uising a matrix of 24 x 16; any variation in this matrix size
would render these algorithms useless.

635 FEATURE EXTRACTION - These algorithms convert a
digitized zharacter matrix into an OL.I'ARS vector that, when
in correct ormat, may be used for either t-haracter recog-
niton design or character evaluation.

6 - 36



LI
~8i

635 DATA CONVERSION - The input tape to the Edit package is
a 556 BPI tape with one character per physical record. This
tape is generated on the 645 by using the original character
generated on the PDP-8 at 800 BPI.

PHASEONE The PHASEONE(Pl) package computes an array of sums and
a matrix of squared sums for each character for which logic
is desired. The input to P1 consists of a series of feature
vector tapes generated on the Honeywell 635 computer as
described-previously. The output from P1 is up to three (3)
sum/sum square (S/SSQ) tapes which are used as input to the
PHASONEA(P1A) package.

PHASONEA The PHASONEA (PlA) package computes the logic for all
pairs of classes in the design character set. Logic is designed
for one look pair (TR, TB, TL, RB, RL, or BL) for each
pair of classes (36 classes results in 630 class pairs) for each
of the 9 sort classes. Therefore, the decision logic for 36
classes contains 5670 (9 x 630) decision points. The input to
PlA consists of the set of up to 3 S/SSQ output tapes from P1
and a deck of cards consisting of one card for each class pair

I; with the pair looks to be used for that class pair. The out-
put is a logic tape containing one record for each class pair
and a printout of the logic. PIA may be started at any desig-
nated class pair and terminated after any desired class pair.
A set of utility programs for merging a series of logic tapes
generated by PlA is provided in the utility package (a complete
logic tape for 36 classes will consist of 630 records).

TWO The TWO package evaluates the vectors on the Standard Input
Tape (SIT) against logic generated by the PIA package.

3

6 - 37



U- > 00 a r

00 0

1-4-W

0d
U)

0 o

38~



SECTION 7

ALPHA NUMERIC LOGIC PACKAGE (ANLP)

The ANLP performs the generation of discrimination logic, pre-
liminary evaluation, and independent testing of handprinted alpha-numeric
characters. Three major program packages have been developed to perform
these tasks along with a small set of utility programs for tape editing. Each
set of programs will process up to 48 separate characters; however, for the
current contract only the 10 numerics and 26 alpha characters have been
processed. Each program will be described in the following format: (1)
an introduction to the purpose and general operation of the program; (2) a
description of the input cards and tapes, output cards and tapes, and general
run time instructions; (3) a listing of possible program pauses and correc-
tive measures (if possible); and (4) a functional flow diagram of the program
package.

To generate and test logic via the ANLP package, then, requires
the user to operate the following program packages in sequence: PHASEONE,
PHASONEA, TWO; where PHASEONE computes a measurement sum array
and scatter matrix for each possible look pair from the Standard Input Tape
(SIT), PHASONEA utilizes PHASEONE output and the pair look deck to
generate a final logic tape, and TWO evaluates the logic against vectors
on any SIT. Two basic inputs, then, are required by ANLP: The SIT and
the Pair Look Deck, Page A-8, A-9, A-13, A-14, A-15/A-16.

7.1. PHASEONE

The PHASEONE(P1) package computes an array of sums and a
matrix of squared sums for each character for vwhich logic is desired. The
input to P1 consists of a series of feature vector tapes generated on the
Honeywell 635 computer as described previously. The output from P1 is
up to three (3) sum/sum square (S/SSQ) tapes which are used as input to
the PHASONEA(PIA) package.

OLPARS Alpha-Numeric Data Tape Format

The data tape for the ANLP package (P1 and TWO) is represented
symbolically as follows:

7-1



84

B 2113

R 2113

T 2113

L 2113

A 2613

C Al

S 15

CB II

CR Il

CT Ii

CL I1

B: Bottom view measurements, 21 numbers, 3 characters/number
R: Right view measurements, 21 numbers, 3 characters/number
T: Top view measurements, 21 numbers, 3 characters/number
L: Left view measurements, 21 numbers, 3 characters/number
A: Additional measurements, 26 numbers, 3 characters/number )
C: Character Symbol
S: Sequence number
CB: Number of bottom convexities
CR: Number of right convexities
CT: Number of top convexities
CL: Number of left convexities

7-2



85

The input tape from the 635 will be a BCD tape. Each vector on
the tape will consist of three BCD records, each record consisting of 120
decimal characters. Each vector is broken into three parts: (1) standard
measurements, (2) additional measurements, and (3) identification data.

(1) Standard Measurements

The standard measurements occupy the first 252 decimal
characters of each vector. Each measurement occupies three decimal
characters and includes a sign of two decimal digits. The total of 84 stan-
dard measurements are divided into four equal subgroups of 21 measure-

ments each. The four subgroups represent the four "looks" used to
measure the character; namely, bottom, right side, top and left side, in
that order. Each subgroup is further divided into five convexities. The
first convexity pertains to the first five measurements of the subgroup,
the second through fifth convexities each pertain to four measurements,
making a total of 21 measurements in all. The subgroups always contain 21
measurements even when only three or one convexities are actually slipplied.
If one convexity is supplied, it will occupy the first five measurements of
the subgroup, with the remaining 16 measurements set to zero. If three
convexities are supplied, they will occupy the first 13 measurements of the
subgroup, with the remaining 8 measurements set to zero. Each ol the four
subgroups will always contain at least one convexity.

(2) Additional Measurements

Z Following the 252 decimal characters which contain the

standard measurements are 78 decimal characters which contain room for
26 aciditional measurements. Each measurement occupies three decimal

characters and includes a sign and two decimal digits. Eight additional
measurements were calculated from the character to further help recogni-
tion. The number of additional measurements to be used for each character
is supplied by the pair-look parameter deck. The eight additional features
supplied for each character occupy the first eight additional measurement
positions for this vector with the remaining 13 measurements set to zero.

(3) Identification Data

Following the 330 decimal characters which contain the
standard and additional measurements, are ten decimal characters which
contain identification data pertaining to this vector. The first character
of the identification data contains the actual character in question. The
next 5 characters contain the author ID, as four digits and a sign. The
remaining !our characters contain four decimal digits which parta'n to the
four looks described above. Each digit contains either a 1, 3, or 5, depend-
ing upon the ntunber of convexities contained in the corresponding subgroup

7-3



86

within the standard measurement portion of this vector. The first digit
corresponds to the first subgroup, the second digit to the second subgroup,
etc. The remaining 20 decimal characters of the vector are not used.

Pair Look Deck Format

The pair-look parameter deck contains pertinent information con-
cerning all possible pairs for a given 635 BCD input tape. Needed for each
possible pair is such information as which looks are to be used when evalua-
ting the pair, as well as the number of additional measurements to be used
for this pair (see (Z) above). To facilitate easy updating of this deck, each
pair will be represented by a separate card. Each card will have the fol-
lowing format:

Columns

1 Class 1 character
2 Class 2 character

3-7 Blank
8 Look 1 (1 = bottom, 2 = right side, 3 = top, 4 =left

side)
9 Blank

10 Look Z (same as Look 1)
11-16 Blaak
17-18 Number of additional measurements to be used for

this pair, right adjust.

For each character, fifty-four (54) records (6 "look" pairs of 9
sort classes each) are written on the S/SSQ tLpes in the following sequence:

Look Pair # Sort Class # Record #'s

Looks TR* Sort Class 5,5 1
5,3 2
5,1 3
3,5 4

1 3,3 5 1-9
3,1 6
1,5 7
1,3 8
I,1 9

2 Looks TB !0-18
3 Looks TL 19-27
4 Looks RB 28-36
5 Looks RL 37-45
6 Looks BL 46-54

- T indicates top view, R - right side, B - bottom, L - left side

7-4



~87

Thus, each vector input to PI contributes to six records, one for
each look pair. Each S/SSQ tape contains the data for up to sixteen (16)
alpha-numeric characters. In addition, a header record is written on each
S/SSQ tape containing the number of classes to be input and their symbols
in sequence. Under this contract, S/SSQ #1 has characters 0 - F (0, 1, 2,
3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F); SSQ #2 has G - V (G, H, I, J, K, L, M, N, O,
P, Q, R, S, T, U, V) and SSQ #3 contains W - Z (W, X, Y, Z). The P1 package
may operate in the tape initiate or tape modify mode. In the initiate mode,
the 54 records for each character are written in the order of character in-
put. The tape modify mode reads the previous S/SSQ matrix for the charac-
ter onto the data drum of the 1604B, adds the information from the new
vectors to the various matrices, and outputs the modified records. In both
modes, a restart c.pability allows the user to commence operation with any
character. Sense switch settings allow the user control over system wrap-
up and data printouts. In either mode, vectors may be eliminated from
consideration by use of a discard vector tape generated by program MAKE
(See Utilities Section).

Run Time Instructions for PHASEONE

(1) Compile and Execute the P1 package.

(2) The program will halt at Pause 111 (1118 in the A register
on the 1604 console) to allow for mounting of tapes.

(a) Mount a scratch tape on physical tape drive 3 to be
used as the output S/SSQ tape.

(b) Mount the appropriate current S/SSQ tape on physical
tape drive 4 (the appropriate S/SSQ tape is that tape containing the character
with which the current run will begin input).

(c) Mount the appropriate input tape on physical tape
drive 5.

(d) Mount the Discard Vector tape (if appropriate) on

physical tape drive 6.

(3) A nm-nber of sense switch (SS) settings "ar available which
allow the user to control program wrap-up and printouts. To set a sense
switch during program operation the user may hit the carriage return, then
type "f,n/l", where n is the sense switch number to be set. The procedure
for setting and clearing sense switches is further discussed in the COOP
Users' Guide, Page 5-1. For the P1 package, setting SS1 will cause the
program to complete its output at the completion of 'he current data tape;

7

7-5I



88

SSZ will have the same effect at the completion of the current data charac-
ter input; SS3 will suppres!: printout of the feature values of each input
vector; and SS4 will supprtess printout of the entire vector, heading as well
as feature values.

(4) Two data cards are required for the operation of Pl:

(a) A card with column 1 punched with the initial charac-
ter to be processed under the current run. Pl will search the input tape
for this charactei- and will copy the current S/SSQ tape onto the new S/SSQ
tape those characters which fall before the initial character on the appro-
priate S/SSQ tape. Column 2 of this card contains the program mode indi-
cator. For Mode = 0, Pl assumes no previous data output and expects a
third input card to follow card 2. This mode is to be used only when
initializing a set of S/SSQ tapes. When Mode = 1, an update procedure will
be performed. SISSQ tape records will be expected on the current tape,
and will be added to the vectors input from the current data input tape.
For Modes 2, S/SSQ records will be created entirely from the input data
set and the current S/SSQ tape will only be utilized to copy those SISSQ's
which fall prior to the initial character to be processed on the current in-
put operation.

(b) The second input card signals the existence of a Vec-
tor Discard tape on physical tape drive 6 via a non-zero character in columns
1-5.

(c) The third input card (necessary orly if column 2 of

card 1 = 0) contains the number of data characters to be input in the entire
design (Columns 1-2) and up to 48 class symbols for the data set (columns
3-50). The character punched in columns 30-50 must be listea in the
order of data input.

Pause Number E-ent Continuation Action

22 End of Tape on Tape 4 Restart
23 Parity on Tape 4 Restart
32 End of Tape on Tape 3 Restart
33 Parity on Tape 3 Restart
77 Parity error on data Continue; vector will

input tape be skipped
600 Program Entrance Mount tapes & continue

610 Character in col. 1 of Restart; correct
input card 1 not found in appropriate card
class list

704 Character on input tape

7-6



89

START

PAUSE 111

read card 1;
Set INITIAL=O
ISKIPAIRinitial

char; IVDTmod(

read card Z;
Set ITDIS=# of
vectors to

adiyscard md

Read cad 3;7Se



B

Initialize and Is
copy TAPE3 to Yes CLASSIN f
TAPE4 for all ISCPAI &
classes prior to Il IAL5O"-
ISKIPAIR inI

CLSSIS No sI
ITIAL> Yes

CLASSIN C

Writ e T APJ4

from drum

=S 1 ? Ys PA USE 121

Is~I
C Co

7-8e



IsI
IDI

pair of looks

Set IBLK=IBLK +N; where N is
relative block for this set of

pair looks, i. e.,

5,5 =8 3,5 =5 1,5= 2
5, 3 =7 3,3 =4 1, 3=1I
5, 1 =6 3,1 =3 1,1 =0

Add vector measurementf
to appropriate su.in and
sum square matrices

Set IBLK=I: IBLK + 9

Is > Yes st data e No

Yess

LPUS



92

704 End of Data Input Tape a. Mount another tape
and continue

b. Set sense swi,.h 1
and continue; P1
will complete output

1211 Final Output Complete None

7.2. PHASONEA

The PHASONEA (PIA) package computes the logic for -ll pairs of
classes in the design character set. Logic is designed for one look pair
(TR, TB, TL, RB, RL, or BL) for each pair of classes (36 classes zesults
in 630 class pairs) for each of the 9 sort classes. Therefore, the decision
logic for 36 classes contains 5670 (9 x 630) decision points. The input to
PlA consists of the set of up to 3 S/SSQ output tapes irorn P1 and a deck of
cards consisting of one card for each class pair with >he pair looks to be
used for that class pair. The output is a logic tape containing one record
for each class pair and a printout of the logic. Pl may be started at any
designated class pair and terminated after any desired class pJair. A set of
utility programs for merging a series of logic tapes generated by PlA is
provided in the utility package (a complete logic tape for 36 classes will
consist of 630 records). The logic records are ordered in the following
manner for n classes:

Logic Tape Record Number Class Pair

1 -- n- 1 1. -- .n

n-- 2n- 3 2.3- 2. n

Zn-2------ 3n - 5 3.4 3. n

(n-2)(n-1)/2 + (n.-2)

---. (n-Z(n-l)/Z + ( 1-1) (n-2)(n-l) --- a (n-Z)(n)

n. (n-1)/2 (n- l)(n)

7 -10



93

Therefore, the logic records produced for the 36 alpha-numeric
characters begin with the character 0 vs. character 1 logic, then 0/2,
through 0/Z, followed by 1/2 through Z/Z, etc. The individual logic
records are formatted as follows:

Word

1 Number of words within the physical record
2 5, 5 sort class logic type code

1 = Decide class 1 - There were 2 or more class one
vectors for this pair and sort class, but 1 or less
class two vectors.

- Decide class 2 - There were 2 or more class two
vectors for this pair and sort class, bvt 1 or less
class one vectors.
3 = No Vote - There were 1 or less vectors in both
classes for this pair and sort class
NDIM = number of weights for a Fisher Record of 1
discriminant line.
N(NDIM) - where N i; the number of discriminant
lInes. (If this field is negative it implies that the
Fisher record has been reversed; i. e., the B/A logic
was constructed by reversing the A/B logic).

3 5, 3 sort class logic type code (see (5, 5))

10 , 1 sort class logic type code (see (5, 5))
11 - last Fisher and discriminant logic for all sort classes for

this pair. A Fisher record will consist of NDIM
weights followed by a threshold. Onediscrim nant
line will consist of NDIM weights followed by a
threshold. For two or more discriminant lines for a
sort class, there will be N(NDIM) weights fo 1 owed
by N thresholds, where N is the number of discrimin-
ant lines.

Card Lnput Format

There are two input cards containing parameters to this program.
These bards will be read at tht- beginning of each run. The format of theseI. ca'ds is as follows:

7 -11



94

Card One
Columns Format Description

1 - 4 14 The total number of PROGRAM ONE
output tapes (maximum 10) (IPO)

5 - 8 14 Total number of special OLPARS
discriminant tapes (maximum 10)(IOD)

13 - 12 14 Total number of characters (currently 36)

13 - 16 14 Number of sort classes per pair
(currently 9)

Run Time Instructions ior PHASONEA

(1) Compile and execute the PIA package.

(2) The program will halt at Pause 1111 (11118 in the A register
on the 1604 console) to allow the mounting of tapes.

(a) Mount the S/SSQ Tape #1 on physical tape 3

(b) Mount S/SSQ #2 on physical tape 5

(c) Mount S/SSQ #3 on physical tape 4

(d) Mount a scratch tape on tape drive 6 to be used as
the output logic tape.

(3) Two sense switch settings are available to allow user con-
trol over program wrap-up and printout. Setting SS1 will suppress the
output of the logic record printout. Setting SSZ will cause PIA to complete
processing following the next logic record output.

(4) One data card is required in addition to the pair look deck
(which follows the data card) for the operation of PIA.

(a) The start card contains the initial pair of classes for
which logic is to be designed on the current run. The higher indexed class
for the alpha-numerics, in the array 0 1 2 3 4 5 6 7 8 9 A B CD E FGH
I J KL MN O P QR S T UVW X Y Z, is punched in column 1 and the
lower indexed claF s in column 2.

7 - 12



o..

~95

Pause Number Event Continuation Action

104 End of tape on SISSQ tape
during record skipping Hardware malfunction

105 Parity on S/SSQ tape during
record skipping Continue

114 End of tape on SISSQ tape

during read of first class Hardware malfunction

115 Parity on SISSQ tape during
read of first class Continue or restart

214 End of tape on S/SSQ tape
during read Hardware malfunction

215 Parity on S/SSQ tape
during read Continue or restart

504 End of tape on S/SSQ tape
during record skipping Hardware malfunction

505 Par.ty on S/SSQ tape during

record skipping Continue

11111 Program Entrance Mount tapes ana continue

105105 Program Completion None

7 -13



S 96
LI

STARTI

PAUSE ]11111

Read Card 1
ISKIPAIR = initiaL

class pair

read pair
look deck int
IPAIR array

read S/SSQ #1

for # of classes

and list of
class symbols

Set J = 1st class
index & K = 2nd
class index (in

initial class pair)

Set J & K mode 16
& set ITAPE to |
appropriate tape
drive M sorre c t

II LRR = 0

I=J

A j
7 - 14



AVI
Skip ISKIP=J
mod 16 *54
records -

LREC

load 1st cis
onto drum

blocks 0-53

skip K mod

ISKIP + 54
records

7lc s5-1 7



B

read block

ILK

~compute mear
& co-v.ariance
for block

IIBLK

IBL
IBLK + 5

[rad block
IBLK

compute mear
& covariance

Yes pfr bylorehaNIBL ii

E vectors NVEF

7 16



____ - 4

99

i comnpute Fisher
discrini. for the

2 classes for
sort class L

C =I

C.I=~

LI N

reor
(I> O l No D

J#ofc .1.. D

I

Yes :--# of classes No Y

PAUSE 1051

STOP7-7

SE 1051 __i



F

IsI

EC2Is
7 o f

6cU



7.3. TWO

7The TWO package evaluates the vectors on a Standard Input Tape

(SIT) against logic generated by the PlA package.

The inputs to the TWO logic evaluation consist of the following:

o a complete block of logic for each designation class

o the table of pairwise "looks" which indicates which measure-
ments are to be used in evaluating a vector under all possible
pairwise class evaluations.

The output of PROGRAM TWO logic evaluation consists of the
following:

o for each logic error made (that is, a pairwise evaluation when
one class of the pair is the true class designation) the following
is printed under headings on the right side of the printer
paper: the Vector Index, the sort class Record Type, the
Number of logical errors accumulated for the current vector
index value, and the Class to which the vote is assigned.

o for each vector evaluation error made (that is, a final
classification made to an incorrect class) the following is
printed under heading on the left side of the printer paper:
the Vector Index, the correct class evaluation, the votes
tallied for and against the correct class, the final (incorrect)

class evaluation, and the votes tallied for and against the
incorrect class.

o for each evaluation tie made (that is, the logic evaluation
resulted in a tie between the correct class and one or more
others) the following is printed under headings on the left
side of the paper: the Vector Index, the true class symbol,
the votes tallied for and against the correct class, and the
other classes involved in the tie.

o for each complete class of vectors evaluated a recap of the
logic results is printed which contains the following: the
class symbol designation, the total number of vectors evalu-
ated under that designation, the votes required for a perfect
evaluation (that is, no logic errors made for an individual
vector), and the number of correctly classified vectors which
accumulated each vote count.

7- 19



102

The Vote Assignment Procedure

The vote assignment procedure is described below:

o The vector is first evaluated using its "true" class logic
against all other class possibilities. After a logic run is
completed the vote tally, and, if necessary, the logic select
procedures are operated.

o For each pairwise evaluation which has not been accomplished
previously, a pair index is computed (total pairs - (number of
classes - lower class index) . (number of classes - lower
class index + 1) / 2 + higher class index - lower class index.

0 The appropriate pair "looks" are selected for the computed
pair and the sort class values for those looks are extracted
from the last word of the vector. The number of measure-
ments to be used is computed at this time ((sort class I value
+ sort class @ value) * 4 + 2 + extra measurements). The
logic record type is determined.

0 If a Fisher or Discriminant evaluation is called for, the
number of lines is computed (number of lines = I record
type I / number of measurements to be evaluated), and the
location of the "weights" and the "thresholds" are found
within the logic record. The proper measurements are then
extracted from the vector and the standard evaluation is per-
formed, a "win" vote and a "loss" vote is assigned, and the
evaluation continues (after a logic error printout if appro-
priate)

o If an arbitrary vote record type is assigned the "win" and
"loss" votes are assigned (a "no decision" record causes
"loss" votes to be assigned to both pair classes) and the
logic evaluation continues.

The Vote Tally procedure is described below:

o The Vote Tally procedure operates at the conclusion of each
logic run (that is, the in-core logic has been evaluated for
each pairwise combination for the current vector).

S7- 20



0o A "temporazy winner" is found by selecting a class which has

the most "win" votes and has completed its vote tabulaH-on
(the sum of "win" votas and "loss" votes for that class equals
the number of classes minus one).

o A "final winner" is determined when the "temporary winner"
is found to have the fewest 'loss" votes among all the classes
including those for whom vote tabulation is incomplete. When
a "final winner" has been determined it is checked against
the true class, the appropriate printout generated (if neces-
sary) and the next vector called for evaluation.

o I thb..re is any class which has fewer "loss" votes than the
temporary winner, the Logic Select procedure is operated.

If there are one or more classes which have the same number
of "loss" votes as the temporary winner, then each class in
that category is checked to determine if ;he vote tabulation
is complete for that class. If there are any of these classes
which fail this check, the Logic Select procedure is placed
into operation, otherwise the tie vote printout is generated
and the next vector called for evaluation.

The Logic Select procedure is described below:

o The Logic Select procedure describes which class logic is to
be evaluated when a "final w,4inner" cannot be determined at
the end of a logic run.

0 The class logic selected is determined by finding the class

with the fewest losses which has not had a complete vote
tabulation. If there are more than one of these, the one with
the highest number of "win" votes is selected.

Run Time Instructions

(1) Compile and execute the TWO package.

I (Z) The program will come to Pause 111 (1118 in the A regist.er
on the 1604 console).

(a) Mount the SIT on physical tape 5

(b) Mount the design logic tape on physical tape drive 3.

7 -21



(3) Four sense switch settings are available to allow user con-
trol over program wrap-up and printout. Setting SS1 will cause TWO to
output final class statistics and complete operations immediately. SS3
set will cause the system to generate a primary audit trail for each logic
evaluation event. If the usei sets SS4, each incorrectly evaluated vector
will be printed; and SS6 -will cause the generation of a detailed audit trail
for each input vector.

(4) Two data cards are required for the execution of TWO:

(a) Card 1 contains an integer value in column 1 repre-
senting the operating mode of TWO. When the mode is zero (0), all vectors
on the input tape will be evaluated. Currently, a mode value of one (1)
evaluation of a single class will be limited to 101 consecutive vectors, after
which the SIT vectors will be skipped until a new class vector is input. A
mode value of two (2) will cause a printout in the format "a/b nnnnn" for
each input character where a is the final character evaluation, b is the
symbol attached to the input character, and nnnnn is the author identifica-
tion value for that character. *

(b) Card 2 for program TWO is the same as card 3 for
P1; thiat is, the number of data characters in the logic design in columns
1-2 and the class symbols for the data set in columns 3-50 listed in the order
of original data input.

Pause Number Event Continuation Action

1 End of file on logic input
tape Hardware malfunction

2 Parity error on logic
input tape Continue or restart

77 Parity error on data
input tape Continue

ill Program Entrance Mount tapes and continue

710 End of file on data input a. Set sense switch and
tape continue

b. Mount another input
tape and continue

1211 Program Completion None

* - Not implemented

7 -22



1053

STAR)

PAUSE 111

read card 1t mde settan j

=i drfclsesiud sg
tap ineisto

decvector

Vaecito

drum3

STO



7.4. UTILITY PROGRAMS

7.4. 1. MAKE

Program MAKE creates a discard vector tape on physical tape 6
for input into P1 from a punched card deck. The input deck consists of
card 3 from P1 plus a card for each vector to be discarded with the symbol
for the vector in column 1 and the author identification value in columns
2-6. The cards must be grouped by class and ordered (by class) in the same
manner as the design data input. The output tape receives the total num-
ber of discarded vectors, a table of indices into the first vector to be dis-
carded from a given class, and a list of up to 3000 author identification
values to be discarded.

7.4. 2. S/SSQ TAPE MAKE UTILITY and LOGIC TAPE COMBINE UTILITY

These utilities are a set of tape handling routines which copy and/or
skip non-formatted records from one tape to another. Subroutine SKIP(I, J)
skips I records on logical tape J (where J = 1 for physical tape 2; 10 for
physical tape 5; or 20 for physical tape 6). Subroutine COPI(J, J) copies I
records from tape J to a tape mounted on physical tape drive 6. Subroutine
CLEAR(I, J) writes 54 null records for each class symbol in the design set
from class index I to class index J. Subroutine WRTHEAD writes an S/SSQ
header record on tape 6. Subroutine COPY(I, J) copies 54 records for each
of I classes from logical tape J.

7 - 24



IWO

SECTION 8

CONCLUSIONS AND RECOMMENDATIONS

f The importance of careful data collection and editing to the genera-
tion of good logic shouid not be underestimated. Due to mislabeling, noise,
and drop-outs caused by ink-camera incompatihLiity, many charactrs were

. unsuitable for inclusion in the design set data ba~se. The system Yor cor-

recting these faults (the Data Base Editing Package) by either re-labeling,
noise elimination, or deletion, was of great importance in arriving at a
usable data base.

The alpha-numeric recognition system with reject strategy A
achieved recognition rates comparable to humans. Most substitutions
occurred when the substituted character looked like a character in the
decision class due to breaks in the characters or to similarity of the shape
of the character with the decision class. Some errors, however, were due
to insufficient sample size in the design class in the particular sort lass
to which the character belonged. We recommend strengthening the logic
by increasing the number of samples of a given character class in those sort
classes where it is needed.

The existence cf confusion pairs such as Z and 2, S and 5, 0 and
0, makes the totally unconstrained alpha-numeric character set an impos-
sible set upon which to achieve practical recognition rates. We recommend
the adoption of some constraints, e, g., slashing zeros and Z's, and
insisting that the upper right horizontal bar on the 5 not be curved down in
confusion with an S - eo that the confusion between certain character pairs
is removed. The ANISf set of guidelines for handprinting may be used as
a fairly rigid set of constraints or a less stringent set of constraints which
.attempts only to differentiate characters in the confusion pairs may be
designed.

The amount of constraint depends upon the specific application
chosen. If a controlled group of people generates the handprinting, more
constraints can be placed on the printing since training the people to follow
the constraints would be possible. If the input to the recognition system
comes from an uncontrolled environment, such as the general public,
constraints must be kept to a minimum.

The amount of constraint will dictate the parameters of the

machine. If mild constraints are chosen, then constraints must be effec-
tively "built in" to the recognition logic, resulting in a "tight" machine

8

8-1



which rejects a character unless it satisfies the built-in constraints. If
rigid constraints are chosen and followed, then the machine can be of the
"open" variety, where more variability in character shapes are permitted.

The technique has been tested and proven to provide a capability
comparable to human recognition. As in any development program, it is
difficult to proceed beyond a certain point without a specific application.
Furthermore, refinement of the technique will only be accomplished via a
specific problem application.

We recommend that a specific application be chosen and appropri-
ate constraints be adopted so that a solution tailored to the character set
with the particular constraints may be achieved.

8-2



REFERENCES

1. S. S. Wilks, Mathematical Statistics, New York, Wiley, 1962,
pp 573-581.

2. Sammon, J. W., "An Optimal Discriminant Plane", IEEE Trans-
actions on Computers, Sept. 1970.

3. Sammon, J..W., Sanders, 3. H., Dimeo, M.P., et. al., "Hand-
Printed Character Recognition Techniques, " Final Report to
Contract F30602-69-C-0374, RADC-.TR-70-206, October 1970.

i AD876 875

f.. . . . . . . . . . . . . . . . . .


