
AD-755 813

REPORT ON A WORKSHOP IN NEW TECHNIQUES
IN COGNITIVE RESEARCH

A. Newell, et al

Carnegie-Mellon University

Prepared for:

Air Force Office of Scientific Research

June 1972

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCF
5285 Port Royal Road, Springfield Va. 22151

Srcutv Classification_ 3
DOCUMENT CONTROL DATA - R & D

(ecu-Ity classificetion of title. body of abstract and Indexino annotelon me-a be entered when th* oserall report Is cins filed)

I. ORIGIUITING ACTIVITY (Corporate author) 2s. REPORT SCCURITY CLASSIFICATION

Comruter-Science Department UNCLASIFIED
Carnegie-Mellon University 2Ib. GROUP

Pittsburgh, Pennsylvania 15213
3 REPORT TI'L.E J

REPORT ON A WORKSIIOP IN NEW TECHNIQUES IN COGNITIVE RESEARCH .

4. i ESCRIfTIVE NOTiS (jpe of repor , nd inclusive date*)

Scientific interim
5. AUTHOR(S) (First name, middle Initial, last name)

A. Newell, H. A. Sinon, R. Hayes and L. Gregg

S 3. REPORT DATE 7&. TOT AL NO. OF PAGES 1b. NO. OF REFS

June 1972 54 25
$a. CONTRACT OR GRANT NO. 90. ORIGIN .TO$IrS REPORT NUMBER(S)

F44620-70-C-0107
b. PROJECT NO. 9769

,c. b. OTHER REPORT NO(S) (Any other number that may he asslgned
.61102F this reportL)

d681304 AFOSR - TR -7 - 03 01
[t0. DISTRISIJTION STATEMENT

Approved for public release; distribution unlimited.

It. SUPPLEMENTARY NOTILS 12.'SPOHSONING MILl rARY ACTI VI TY

Air Force Office of Scientific Research/NM
1400 Wilson BoulevardTECH., OTHER

. RArlington; Virginia 22209
33. ABSTRA CT

A nine day Workshop on New Techniques in Cognitive Research was held .at Car
* in June 1972 under the sponsorship of the Mathematical Social Science Board. The

workshop involved continuous on-line interaction with a: set of theory-laden program
systems (production systems, natural language understanding systems, simulation,
automatic protocol analysis systems and experimentation systems). A guide system T
(ZOG) was used to mediate the use of these systems.I This paper is the final

.report on the Workshop to the MSSB.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U S Depaotment of CommerCe
SpringfielI VA 22151

DD' I1473
Security Classification

REPORT ON A WORKSHOP IN NEW TECHNIQUES IN
COGNITIVE RESEARCH

held at Carnegie-Mellon University
21-29 June 1972

A. Newell, H. A. Simon, R. Hayes, and L. Gregg

Departments of Psychology and Computer Science
Carnegie-Mellon University

Pittsburgh, Pennsylvanaia

Approved for public "olease,
distribution unlimited.

-

Report on a Workshop in New Techniques in Cognitive Research

held at Carnegie-Mellon University, 21-29 June 1972

A. Newell, H. A. Simon, R. Hayes, and L. Gregg

In June 1972 an intensive workshop was held at CMU under the auspices

of the Mathematical Social Sciences Board (MSSB), in which a number of

cognitive psychologists explored and used some new computer techniques for

doing research on cogntive processes. This report provides a brief state-

ment of the goals, design issues and arrangements for the workshop plus

some description of how it all worked out.

Background. Since the mid-fifties there has been continuous develop-

ment in experimental psychology of the view that man is a processor of

information (see Miller, Galanter and Pribram, 1960; Reitman, 1965; Newell

and Simon, 1972; also compare Broadbent, 1958 with 1971). This growth

has taken a variety of forizs, from providing the conceptual framework within

which to ask experimental questions, to constructing computer programs to

simulate specific aspects of cognitive behavior. The computer has always

played a dual role in this: as a major source of the conceptual ideas

about information processing systems and as a means for constructing such

systems and exploring their behavior by simulation.

The problem of communicating and understanding research results has

always been acute in information processing psychology. Starting in the

late fifties the Social Science Research Council sponsored a number of

The Mathematical Social Science 1ioard is an autonomous group devoted to
the encouragement of the use of mathematical and quantitative techniques
in the Social Sciences. Its primary means currently are small scien-
tific conferences and workshops. Its support derives from an NSF Grant
(GS-3256) to the Center for the Advanced Study in the Behavioral Sciences.
Additional support for the Workshop was provided by the Advanced Research
Projects Agency of the Office of the Secretary of Defense (F44610-70-C-

0107), which is monitored by the Air Force Office of Scientific Research,
and by the National Institute of Mental Health Grant (MH-07722).

-- - 2 -

of intensive summer sessions on computer simulation at the RAND Corporation

(1958, 1960, 1962)* under a general program that was the direct progenitor

of the current MSSB. The emphasis in these early summer sessions was on

simulation programs and the use of list languages.

Two concerns provided the impetus for the present workshop. One

is the continued growch, in complexity and sophistication, of the computer

programs used for the study of information processing. This includes

direct simulations of cognitive behavior, basic studies in artificial

intelligence, and programs that aid the analysis of cognitive data. The

characteristics of these current programs appear to be that: (1) each

is an embodiment of some specific psychological content; (2) each permits

substantial variation and modification; (3) each has a language of inter-

action, which gives it some of the flavor of a programming language, but

a language that speaks directly in psychological terms; (4) each is

interactive, so that the user modifies and explores an existing system,

rather than creating something "from scratch: and (5) each is a large program.

The second concern is the continued ineffectiveness of scientific

communication of the content of these various programs via the standard

means of papers, hour-long lectures and even the half-day long sessions

that characterize the small invitational working conference. One diffi-

culty is that the underlying technical systems of computer science are

There have been other intensive summer sessions on computers for the
behavioral scientists during the interv.,ning decade, though in general
they have been concerned with the entire spectrum of computer use.

.. . ..--- .--- -- -

-3- 4,

not fully assimilated by the psychological community. This was the under-

lying motive for the intensive summer sessions in the fifties and sixties

(both for mathematics and for computer science). But the difficulties lie

also in the nature of the systems -- their size, complexity and the detailed

knowledge necessary for understanding and evaluation. These latter diffi-

culties can be seen at work even in sessions of experts.

In any event the time seemed appropriate for another attempt at an

intensive session. A plan for the workshop, submitted to the October 1971

meeting of the MSSB, was approved and the four authors of the present

report formed themselves into a steering committee to see the enterprise

through.

Goals, Difficulties and Design Decisions. The goals of the workshop

were to examine the existing state of the computer technology for cognitive

research, working within an information processing approach. The task was

not to introduce notions of man as an information processor to those still

largely unfawiliar with it, but to introduce new tools to those already

working within the field. Thus, established workers in cognitive psychology

were invited to participate. There were 20 participants, whose names and

affiliations are listed in the appendix.

The major thesis behind the workshop - working with actual programs

rather than talking about them - posed the main problems of organization

and preparation. First, substantial access to a good computer was required.

This dictated to all intents that the workshop be held at CMU, the site

of the organizers.

4-

A more important issue was the selection of programs. Only a few could

be included, but this implied an undesired emphasis on the specific ones

selected, for the goal of the workshop was to convey in depth the whole

range of things that could be done. The selection problem was compounded

by the requirement that the programs run at a given site (CMU), which

implied that the assemblage of programs would exhibit undue provincialism.

Any attempt to be very eclectic posed difficult problems of getting complex

programs up and running on foreign computer systems.

The solution was a compromise: to invite one scientist from outside

CMTT to participate and to bring his program up on our CMU system. We

invited Terry Winograd at the Artificial Intelligence Lab at MIT to join us

with SHRDLU, his program for exploring the understanding of natural language.

Other than Terry's, all the programs were in active use in the Psychology

and Computer Science Departments of CMU. We initially started with a set

of about a dozen programs, intending to eliminate some along the way. The

final number was seven. We list them here briefly, since we need to refer

to them below. Somewhat expanded descriptions are provided in the Appendix.

PAS-I (Protocol Analysis System I). A system for analysing the
verbal protocol of a subject solving a cryptarithmetic puzzle
to infer the knowledge state of the subject at each instant in
time.

PAS-II (Protocol Analysis System .I). A system patterned after
PAS-I, but freed of the constraint to work only on cryptarithmatic.

MAPP (Memory and Perception Program). A model and simulation of
storage of patterns (chunks) in LTM and their interaction with
perceptual tasks. (Applied mainly tochess perception.)

5-

PSG (Production System,. version G). A system used to model and
simulate the control aspects of cognitive processes. (Applied
mainly to cryptarithmetic and STM tael-s such as the Sternberg
paradigm.)

SHRDLU. A system for understanding natural language within a
small world (the world of blocks on a table).

CLS (Concept Learning Syste=,. A combined experimental and

simulation system for operating standard concept attainment
experiments (e.g., Neisser and Weene paradigm) on a small
laboratory computer, while running a simulation of a subject
in the main computer.

ATS (Semi-automatic Transcription System). A system used to
aid transcription of audio tapes (for protocols), in which the
computer segments the speech, displays it (auditorially),
permitting easy control and editing, and obtaining timing to
centiseconds.

The third and most severe problem was now to make possible usefui

contact between the participants and these several programs. The diffi-

culties were three-fold. (1) The programs themselves are complex and a

few days is a short time in which to understand them. (2) The participants

are generally knowledgeable about information processing but are not experts

in programming, and the gap between the participants programming knowledge

and the complexity and style of the programs was uncomfortably large. (3)

The programs themselves are all research efforts, unpolished for user use.

The programs are all specific systems that do something of cognitive interest.

Furthermore, they require substantial interaction, since they can be

specified to do a variety of interesting tasks within their general domain.

To compound this third problem the programs were written variety

of bigher level languages. The seven systems were written in six and

half languages: (Stanford Lisp, Mac Lisp, Snobol 4, Fortran, SAIL (the

Stanford AI Language), L* (a CMU system building language) and APCOL (the

6

language on the laboratory computer). In addition, all the program have

specialized sublanguages for run-time interaction. Furthermore, only a

few of the participants had had any experience operating on a PDPIO, the

comput'r system on which the workshop would run (actually, one part was on

the small laboratory machine in Psychology, the DDPll6, coupled to a 360/67).

The solution adopted to this third problem had three components.

First, the authors of each of the individual systems agreed to spend some

effort during the year making their systems more public (thus generating

at least one by-product of social value). Second, it was proposed to put

substantial :!ffort into polishing the structure as a whole, making sure

that all programs were in top working shape, that interaction with them was

convenient, and that aids and documentation were available. To this end,

the MSSB provided budget for one man-year of programming and the rental of

enough terminals to prevent a bottleneck at the interface. (Such costs,

especially the amount for programming, depart from the usual costs associated

with MSSB workshops, and thus put the entire program in a frankly experi-

mental category.)

The third component was to have an adequate staff available during

the workshop who were sophisticated generally about the total system, while

each was expert on some aspect of it. The magic rule seems to be one staff

member per participant (thuq if all else joes awry, all participants can be

personally diverted and entertalned). In the end we obtained a staff of

twenty-one, made up of the authors of the systems, graduate students of

Computer Science and Psychology (including a graduate student from MIT

-

working with Winograd), and staff from Computer Science and Psychology.

They are listed in the Appendix.

Substantial efforts went into all of the programs to put them into

shape for the workshop, even to the extent of dictating the direction of

some research efforts over the year of workshop preparation. For instance,

the decision te create PAS-II, an interactive and task-free version of

PAS-I, was made essentially to mesh with the demands of the workshop.

Detailing each of the preparatory activities would not be illumi-

nating, but a sketch of the efforts required to bring SHRDLU up on the

CMJ PDPIO will indicate the kinds of problems that had to be solved.

While SHRDLU was programmed to run on a PDPIO, the MIT and CMU systems

differ with respect to the monitor, the assembler, and the dialect of

LISP that are employed. A program did exist for translating, though

laboriously, from the one LISP dialect to the other; and this was used

to bring up a first version of SHRDLU on the CMU machine.

However, SHRDLU itself was in the process of being reprograimed at

MIT. We wished to use the newest version, but not to translate, pain-

fully, each revision. Two steps were taken to alleviate the difficulties

A member of our staff (Stu Card) worked with Winograd for six weeks at

MIT helping to construct the revised SHRDLU. In addiLlon, the MIT

We would like to express publicly our thanks to this staff for the
tremendous outpouring of energy and devotion to duty, whic had so
Auch to do with making the workshop a success. In addition to this
staff we. also had aecretarial and office support (Mildred Sisko and
Steve Lewis), as well as in-depth support from our computer operations
(especially Paul Newbury). We wish to express our thanks to these
people as well.

-A
____________ .-- - --

-8-

assembler was converted to run under the CMU monitor, thus permitting

nearly effortless program translation. This conversion absorbed two

man-months of effort, but left behind another valuable byproduct -- the

converted assembler.

Besides the efforts to polish the individual programs, we decided

to incorporate all of the programs within a submonitor-like system which

would buffer the participants both from variations in language and style

inherent in seven separate major programs and from the PDPIO monitor

system. This system, which came to be called ZOG, was the major programming

effort designed to make communication possible. The next section

describes it.

ZOG. As indicated, the problem was seven (i.e., an indefinite

number) major programs, written in seven (i.e., an indefinite number) of

diverse languages, each with a special sublanguage of interaction, embedded

in a monitor with its own conventions, with support facilities (e.g.,

editing systems) written in yet other languages. The participants were

somehow to be able to penetrate to the content of these systems almost

instantly. If they were really to do so, as opposed.to simply watching

the output of some canned runs, they had also to create files of data,

edit themprovide some additional specification within each system and

even do some programming.

The solution was to create another system that would be the primary

media for interaction between the user and the programs, this system to

,
Anyone who is running on the DEC 10-50 monitor and wishes to use MIDAS
should contact George Robertson, Computer Science Department, Carnegie-
Mellon University.

-- -*

-9-

provide a uniform and simple way of interacting with aids to help the

participant understand what was going on. The new system was christened

ZOG. We considered two basic choices for its design. It could be built

around a simple English-like system of commands (e.g., RUN PAS2 ON FILE

XYZ, TELL ME ABOUT PAS2, HOW DO YOU EDIT A FILE?, etc.). This has the

virtue that the language seems instantly familiar; it has the dis-

advantage that the total system and its limits are not easily representable

to the user and learnable by him.

The alternative, which we chose, can be described as a "key word"

approach. If you want to find out about the program, PAS2, type 'PAS2',

if about editing, type 'EDIT'. Not everything is designated by a single

word: within the totality of matters relating to PAS2, one can inquire

about: PAS2 DEMOSTRATIONS, PAS2 INSTRUCTIONS, PAS2 BACKGROUND, etc.

The language thus has a modicum of structure, but of the simplest type:

define what you want to attend to by a sequence of key words from the

most general to the most specific.

This technique leads to a tree-like structure. All communications

start at a top mode and a sequence of key words takes one down to a

subnode of the tree. When the user has reached a node, he can ask for

its list of subnodes -- all the subtopics reachable from the node. Since

the user is initially uninformed about the multitudinous aspects of all

The name is not acronymic for anything. It was chosen to be short,
pronounceable, capable of personification (e.g., "ZOG told me that ..."),
and non-conflicting with other names. The system was designed by
George Robertson and A. Newell; it was programmed by George Robertson;
and the major effort of creating the user system (the so-called ZOG tree)
was done by Phil Karlton. A report on the system is in preparation for
submission for publication.

10 -

the various programs and facilities, the problem for ZOG is not just to

communicate specific items of information, but to help the novice user

find out what he wants (or should want) to know about.

To meet this last requirement, we decided to make all the information

about the programs available via ZOG. That is, we decided not to have

eicumentation of the usual sort, consisting of manuals and operating guides.

Thus, ZOG was to contain the following types of material:

Orienting descriptions -- what a given program or facility was.

Demonstrations - evocable with essentially no knowledge on the
userts patrt.

Operating instructions -- how to execute the programs and
facilities to explore them.

Suggestions -- how to proceed in order to get into something

of interest.

As to content, ZOG should contain information about the following

sorts of things:

The seven major programs.

ZOG itself.

Basic facilities, such as editing, checking the status of the
systems, making suggestions, etc.

Miscellaneous other available programs that might be of interest
or just fun -- e.g., chess programs. This branch of the ZOG

tree came to be called the Sideshow.

We did send to the participants prior to the workshop some of the
scientific papers concerned with each of the major programs. Thus, there
was some general substantive knowledge about the domains of each of these
programs. We sent nothing in the way of documentation and operating
guides, so that the participants arrived total'Ly innocent as far as
making contact with the living programs was concerned, The mr.terials
sent were: Chase and Simon (1972), Newell (1971), Newell and Simon
(1972), Simon and Gilmartin (1972), Waterman and Newell (1971),
Winograd (1972).

- - - .--

By way of written documentation, we produced both an index to the

ZOG tree and a complete printout of its contents, called the ZOG book. The

ZOG index, included as an appendix to this report, contains about 350 nodes.

Since ZOG itself is an interactive system that had to be understood,

even to explore it, we attempted to keep its form genuinely simple. We

provided five basic actions. If a user had reached a specific node in the

ZOG tree, say SYSTEMS PAS2, he could do five things:

? This prints out the names of the subnodes of PAS2

?? This prints out all the textual explanation associated
with the node, PAS2.

I This executes the proper action associated with the
node, e.g., r,ns PAS2.

t This goes back up the next higher node, here the
node SYSTEMS.

ft This goes back up the top of the ZOG tree (called

TOP).

The Appendix provides a munber of examples of ZOG's operation, illustrating

a number of additional details that are critical for the system to be useful.

Besides these general operational aspects, some systems details were

extremely important. For instance, the user should not be required to

understand the PDP10 monitor system, hence, all errors, etc., should reti.rn

to ZOG, rather than to the PDP10 monitor. To accommodate many simultaneous

users, ZOG had to be sharable (i.e., all users access a single running ZOG

program).

A final design requirement concerns the building of the ZOG tree,

for the necessary expertise was distributed throughout the scientists who

------------------- !- -

-12-

had written the various programs. These people, though sophisticated

programmers, knew nothing of ZOG as a program. Thus, a system of commands

had to be added to a builder's version of ZOG (called BZOG) to permit easy

construction of the tree. Finally there had to be a process for assembling

user's ZOG from all the separate versions of builder's ZOG that had each

been worked on in isolation. This last act, of course, could be performed

only by a person who was truly sophisticated in ZOG (he became known as

"the Forester"). Add to the bove that ZOG had to operate with the

reliability and freedom from error of a well-used monitor system. Thus,

ZOG turned out to be'a major act of software design and construction.

Terminal Arrangements. A few words on physical arrangements for

access to the computer is appropriate. Communication with the PDPIO is

entirely via on-line terminals. The terminals are mainly Model 33 tele-

types, relatively slow 10 char/sec devices. We rented 8 30 char/sec hardcopy

(typewriter) terminals (Datanet 300) on the principle that novices really

want an exact past record of what happened, to mull over and to use as a

guide for the next session on the machine. In retrospect this decision

appears entirely correct.

This was the role played by Phil Karlton.

Again, details will be forthcomiing in the report in progress. Design
and construction of the basic ZOG system took essentially one man-month,
(ZOG was coded in L*). Several man-months went into the building of the
ZOG tree. The Forester worked essentially full time for a month prior
to the workshop.

J1

-13 -

The arrangements for the main room in which all meetings of the whole

would take place was, if anything, even more critical. The Computer Science

Department has a permanently assigned classroom which is wired for communi-

cation with the computer. We commandeered this room for the entire workshop.

It was arranged as shown in Figure 1, a large rectangular table around which

all the participants and staff could sit (35 people). At the head of the

table (actually the lower corner) there was an alphanumeric scope hardwired

to the computer, and capable of producing a fresh screen of text in a few

seconds. Around the inside of the table were placed a number of TV monitors,

slaved to the main scope, that allowed everyone direct and easy viewing of

what was going on. Another large monitor was placed at the head of the

room, so that the speaker could point at parts of the display. In addition

to the main scope, we kept another active hardcopy terminal in the room to

permit a second line of access to the machine, and also a telephone line

to the PDPIO operator. There was also an audio speaker, since some of the

programs (ATS) had voice output.

The Dress Rehearsal. In order to be sure that all would be ready

on time, and to exhibit the system to other faculty members and graduate

students in Computer Science and Psychology, we held a three-day dress

rehearsal on the 26 - 28 May. This consisted of two hours demonstration-

lecture on each of the seven systems plus ZOG. The rehearsal was open to

all interested people (including some from neighboring institutions). Thus,

it provided a genuine audience and forced a major effort to achieve

completion.

- r- ,r-_ -, P

- 14 -

SPEAKER M = Monitor scopes
. slaved to S

S = Alphanumeric scope
120 char/sec

- TTY = Typewriter-like
terminal
30 char/sec

Figure '

- 15 -

This dress rehearsal played a major role in bringing the system to

fruition. All programs had been brought to working order by the Dress

Rehearsal, and the four subsequent weeks were devoted to efforts at improve-

ment and completion. (However, the work of building the ZOG tree was done

in June, thus affording no opportunity to polish and fill out the tree.)

The Session. The course of the workshop itself is almost anti-

climactic, given all the details of preparation. The duration had been

set at nine days, with a view to making it highly intensive (it was

suggested that families not come and all participants were housed together

on campus). The general schedule was designed around morning, afternoon

and evening sessions for all nine days, from Wednesday through the weekend

until the following Thursday.

The initial conception of the schedule was simple: (1) demonstration-

lecture sessions on each of the systems as quickly as possible to make the

participants aware of what was available; (2) interlaced sessions on the

machine right from the start, so participants could begin exploring the

programs themselves; (3) leave open for future determination the exact

schedule after the initial period.

Besides the main programs three additional events were put into the

schedule. One was a demonstration of an eye movement apparatus being used

by John Gould. * It was thought that some of the participants might want

to generate some behavioral data during the nine days and analyse it using

Visiting at CMU for the academic year from IBM.

- 16 -

the various tools available. The second was a demonstration of the Speech-

Understanding System being developed at CMII in Computer Science (Reddy,

Erman and Neely, 1972). This program (in its initial task) attempts to

play chess by voice with a human user, making use of acoustic, lexical,

syntactic and semantic components (the last, a chess program). The third

event was a session on non-verbal protocol analysis by Richard Young

(a graduate student in psychology) of TV tapes oi young children seriating

blocks. This was of interest, since most 3ther work on protocol analysis

has been done with verbal materials.

After the introduction of the programs it was decided to dissolve

entirely into small groups and individual efforts. There were no meetings

of the whole again until the last day for the final wind-up session,

though smaller meetings of subgroups occurred continually.

How It All Worked Out. In the eyes of both the participants and the

organizers the workshop was a success. Such an overall judgment is

necessarily subjective, for the ultimate success of any such scientific

event must always be measured in terms of long range consequences for

future scientific work. No matter what the immediate glow of satisfaction,

these consequences are only revealed by the passage of time.

To a first approximation ZOG and all of the programs functioned as

advertised throughout the workshop. The PDPIO operated thoughout the

entire period (0900-0600) without perceptable failure. Though there were

This latter qualification is necessary, since large time sharing systems

do occasionally crash and are brought back up within a couple of minutes
without essential loss of data. As long as there are few enough of these,
they are simply absorbed by the user community as an acceptable part of
normal operations. The actual crash rate was 1.1 per day.

17-

a large nunber of hours of demonstration (about 20), there were no major

failures during these demonstrations.

We had started out with a dozen or more programs as serious candidates

for the workshop, and eliminated those that did not make the deadlines. Thus,

the seven programs that got into the workshop were those that were in fact

operational. (However, the menu was sufficiently rich so we probably should

not have had more final entrants in any case.) We committed ourselves to

three major programimng efforts: ZOG, PAS-II (as a redesign of PAS-I), and

tbp revision of SHRDLU; and the effort in achieving these programs did strain

our resources. Explicit deficiencies in the workshop can be traced to each

of the three efforts.

The new version of SHRDLU was operational at the start of the work-

shop, but the full array of demonstrations and guides was not operational

until the last couple of days. The effort to make SHRDLU run on the CMU 10

(the conversion of MIDAS and MAC Lisp) was sufficiently expensive that it

captured much effort that was to go elsewhere, and delayed ZOG for at least

a month. The delay on ZOG resulted in a delay of efforts to redo PSG

(the production system). The new PSG did not get its command language until

half way through the workshop, and this also translated to an initially

minimal ZOG subtree for PSG.

PAS-II, though it became available in time for the workshop, did

not become available early enough for others beside the designers to do

There was one exception for the workshop as a whole. During the second
demonstration of the CLS system, which ran on the DDPI16 and the
IBM360/67, the 67 crashed and took 45 minutes for recovery.

- 18 -

much exploration with it. Thus, we did not have the extensive experience

with the new version that we had hoped for and this translated directly

into what could be said about the program during the workshop. In sum, all

the programs functioned but were not in fact as polished as they could be

and the effects of this could be seen in the amounts of individual instruction

that were required in dealing with the incomplete parts.

The idea of the ZOG interface proved successful. Essentially all

the participants were on the machine within the third hour after starting

the workshop on Wednesday morning. Several had never been on-line with a

large system before. But ZOG provided ways in which small responses by the

participants led to meaningful responses by ZOG, which then permitted inter-

action to explore the ZOG tree and execute a program or two.

Again, we have no fine grained evidence against which to measure

the success of ZOG, only the gross evidence that the participants immedi-

ately got into the system and interacted with the 10 at an extremely high

rate throughout the entire workshop. As a counter against assigning ZOG

too much credit, we did have a large number of staff members available to

serve as tutors and to correct bugs. Thus, we have no test of whether

ZOG alone could have produced the rapid acclimatization of the participants.

The statistics on the usage of the 10 show that the average number

of connect hours per participants (for the 20 participants) was 47 hours

for the 9 days, or about 5 hours a day. An average of 78 minutes of

central processor time was used per participant over the workshop, or about

8 minutes per day. These numbers include just the participants, not the

staff; thus they do not cover the use of the machine during the demonstrations.

-19-

They underestimate the time spent at the console in that, often two

(and occasionally three) p-nTile worked together at a single terminal. On

the other side, they overestimate it for a few people who learned the

trick of logging in on several terminals in order to run in parallel on

several tasks. As is true of all computing, the variance in use was high,

a few people logging almost 12 hours a day and using about 30 minutes of

processor time per day.

One of the major unknown factors in planning the workshop was how

many participants could be accommodated. Twenty proved fine for the

demonstrations and the interactions with the staff assembled. It was too

many for the computer system. The system was essentially loaded to

capacity at all times (though it became tolerable in the wee hours toward

the end of the workshop). The workshop commandeered the computer and

the terminal room in the morning from 0900 to 1200, but then shared the

system with the regular users (Computer Science Department) during the

rest of the day.

One important effect of the loading was to make ZOG less useful,

since the rate of interaction became strikingly slower as the system

approacbed capacity. Gradually, less and less purely textual exploration

of ZOG occurred and the ZOG indexes and books took over most of this

function. The loaded system forced this, but it probably would have

The workshop was a major imposition on the Computer Science Department,
almost putting an end to useful work on the machine durin5 half of June.
Faculty and students accepted the restriction cheerfully and we wish to
express our gratitude to them for their cooperation.

w - - . - . '-Ir

- 20 -

occurred in any event at the data rates possible with our terminals

(30 char/sec) and with growing familiarity with the system. On the other

hand, there remained substantial local use of ZOG text to determine how to

do something at the point when the user wanted to do it, but couldn't quite

recall how or had tried and done it wrong.

The participants explored the set of programs differentially. There

was, of course, an initial transient -- large numbers of people explored

program X right after the demnstration of X. But gradually they began to

make decisions about where to concentrate. It was clearly not possible to

deal incimately with all the programs. The participants largely moved in

their own independent ways. For example, by design no formal attention

in the wozkshop was devoted to the underlying programming languages (e.g.,

Lisp). However, several participants who had no prior exposure to list

languages decided to learn Lisp. Some additional material was added to the

ZOG tree on Lisp, and a small tutorial group was generated to discuss Lilp

programming. Thus, the workshop was moved in whatever direction seemed

appropriate to the participants.

The workshop had been deliberately designed to be this wdy. In particular,
ZOG had been conceived as a structure that permitted this. However, ZOG
proved to be somewhat inflexible in this regard. User's ZOG was non-
modifiable (since it was shared by all the users); thus we could not add
new branches and leaves to the tree freely and quickly in response to the
needs of the participants. Instead we had to cumulate a number of changes
and then reassemble the tree. This latter turned out to be a major
operation, which we only managed twice during the workshop. This inflexi-
bility in ZOG is mostly a correctable design failure on our part, though
it is complicated by basic limitations in the DEC monitor.

- -a---_-

-21-

The CLS system proved to be a special case. It was located in the

Psychology Department in a separate building and made use of a laboratory 'A

M
computer (DDPIl6) and the regular campus computer (360/67). All of these

characteristics put barriers in the way of exploiting it, since the main

arena of activity and learning was elsewhere. We were aware of this in

the planning stages, but the plans to couple the DDPI16 to the PDP.O, thus

tying them all together for the participants, were one of the items that

had to be abandoned.

It is apparent from the foregoing that the workshop was an extra-

ordinarily busy affair and that the participants exploited it fully.

However, two issues existed throughout that were never fully resolved, one

procedural and one substantive. Procedurally, there was a tension between

the demonstrations, in which the participants were passive, and the working

sessions, in which the participants could proceed actively. People felt

they were not having enough time on the machine, especially at the start.

Should the demonstrations be shorter with more time available on the computer?

But then some programs would have to wait until late in the workshop. The

issues were discussed explicitly several times, seeking a better solution,

but no alternative preferable to the original schedule was found.

The substantive issue concerned whether there should have been more

discussion of the psychological assumptions, content and implications of

the various programs. The main programs in tne workshop were all genuine

expressions of particular psychological theories and hypotheses.

The exceptions were ATS, the transcription system, and the eye movement
laboratory. Indeed, these were treated by the workshop as of lesser
concern than the programs with substantive content. (Note that the
protocol analysis system, though billed as a data analysis scheme,
incorporates a large amount of psychological theory of a particular stamp.)

-22

Though each of the demonstration-lectures did talk about the psychology

somewhat, this was clearly subordinated to the agenda of getting to know

and use the program. There waL never any cycling back to the programs in

major discussions, though there was, of course, individual talk about them.

Cost. The expenses of the workshop can be divided into two parts: $

operating costs and development costs. On the operating side there are

the travel and living costs of the participants, the costs of the staff,

and the costs of the computer. The only interesting cost figure here is

the cost of the computer. The high cost of staff is best measured simply

by counting heads, The cost of the computer was already quoted earlier

in terms of connect time and processor time for the participants. In terms

of the costing scheme used on the computer system this amounts to

$16,277, which is $814 per participant. If the capacity had been adequate,

so that the response time had not degraded, the participants probably

would have used two to three imes as much processor time, though little

more connect time. -

De-,elopment costs are again measured in staff time and in computer use.

Staff time is ambiguous, since all of the polishing on the major programs also

contributes to their stature as scientific efforts and can hardly be allo-

cated entirely to the workshop. It is probably fair to view the month prior

to the workshop (from about mid May) as being devoted almost exclusively to

preparation for the workshop by a dozen people.

In terms of computing use, the aggregate staff computing on the 10

for the workshop amounted to $39,535 (composed of 87 hours of processing

Which charges for memory use as well as connect and processor time.

-23-

time and 1500 hours of connect time). This was distributed among 15 people,

four of whose usage of the PDPIO programs differed little from those of the

participants. This usage was distributed over about six months, but most

of it occurred in the two months of May and June. Basic work on some of

the programs, e.g., PAS-II and MAPP, was carried on outside of the workshop

environment until the la-it couple of months. To this we must add the effort

put in at MIT on SHRDLU, and on the CLS system on the DDPII6-360/67.

Exact accounting of the costs is unnecessary, since the event is

unique in many ways and even if repeated (whatever that might mean) would

have an entirely different cost structure. It can be concluded that such

an event is indeed expensive, compared with normal workshope. (Perhaps

the best summary view is that it required roughly a third of a large

PDPIO system for a two month period). This expense is overestimated because

of the familiar phenomena of very high costs of development, which are not

all to be accounted to the single short term event. However, such efforts

at communication will always have a substantial developmental cost, even

if they should become a regular occurrence. The progressive nature of

science guarantees that.

Conclusion. The workshop demonstrated clearly that a group of

working psychologists, not themselves computer experts, could assimilate,

with an effort that was intensive but limited in duration, a set of highly

complex and sophisticated research programs and could make substantial

headway in assessing these tools in relation to their own research. The

necessary condition (beside the motivation of the participants) was a

highly instrumented environment with adequate computer resources operating

- 24 -

in a workshop-like fashion. The workshop indicates some ways in which

scientists can communicate effectively about research techniques embedded

in highly complex computer programs and about the scientific resullts that

depend on these programs.

The workshop was short enough so that it remained primarily a

communication event. However, even within its limited scope, one could

see the positive effect of being able to work with adequate computer tools

and resources. Implicit in the success of the workshop is a style of

operation for experimental cognitive psychology that has guch tools and

resources available as continuous working tools in the day to day course

of research.

p[

I

- --- - -

C, - -

- 25 -

Refe::ences

1. D. Broadbent, Decision and Stress, Academic, 1971.

2. D. Broadbent, Perception and Communication, Pergamon Press, 1958.

3. W. Chase and H. A. Simon, Perception in Chess, CIP Working Paper 182,
Psychology Department, Carnegie-Mellon University, 1971.

4. V. Colby and D. Smith, "Dialogues between humans and an artificial belief system,"
Proceedings of the International .o!nt Conference on Artificial Intpl.igence,
Washington, 1969.

5. A. de Groot, Thought and Choice, Mouton, 1965.

6. L. Gregg and H. A. Simon, "Process models and stochastic theories of simple
concept formation," Journal of Mathematical Psychology, 4, 1967, 246-276.

7. D. Klahr and J. G. Wallace, "Class inclusion processes," in S. Farnham-Diggory
,ed.) Information Processing in Children, Academic, 1972.

8. M. Levine, "Hypothesis behavior by humans during discrimination learning,"
Journal of Experimental Psychology, 71, 1966, 331-338.

9. G. Miller, E. Galanter and K. Pribram, Plans and the Structure of Behavior,
Holt, Rinehart and Winston, 1960.

10. M. Minsky (ed.) Semantic Information Processing, The MIT Press, 1968.

11. U. Neisser and P. Weene, "Hierarchies in concept attainment," Journal of
Experimental Psychology, 71, 1966, 640-645.

12. A. Newell, "A theoretical exploration of mechanisms for coding the stimulus,"
in A. W. Melton and E. Martin (eds.) Coding Processes in Human Memory,
Winston, 1972, 125-139.

13. A. Newell and H. A. Simon, Human Problem Solving, Prentice-Hall, 1972.

14, R. Reddy, L. Erman and R. Neely, Working Papers in Special Recognition,
Computer Science Department, Carnegie-Mellon University, 1972.

15. W. Reitman, Cognition and Thought, Wiley, 1965.

16. R. F. Simmons, "Natural language question-answering systems: 1969," in R. Banerji
and M. Mesarovic (eds.) Theoretical Approaches to Non-numerical Problem Solving,
Springer-Verlag. 1970.

17. H. A. Simon and M. Barenfeld, "An information processing analysis of perceptual
processes in problem solving," Psychological Review, 76, 473-483.

18. H. A. Simon and K. Gilmartin, A Simulation of Memory for Chess Positions,
CIP working paper 206, Psychology Department, Carnegie-Mellon University, 1972.

19. H. A. Simon and L. Siklossy, Representation and Meaning: Experiments with
Information Processing Systems, Prentice-Hall, 1972.

- 26 -

20. E. Tulving and W. Donaldson (eds.) Organization of Memory, Academic
Press, 1972.

21. D. Waterman, "Generalization learning techniques for automating the
learning of heuristics," Artificial Intelligence 1, 1970, 121-170.

22. D. Waterman and A. Newell, "Protocol analysis as a task for artificial
intelligence," Artificial Intelligence Journal 2, no. 3/4, 1971 285-318.

23. D. Waterman and A. Newell, Preliminary Results with a System for Automatic
Protocol Analysis, Department of Computer Science, Carnegie-Mellon
University, 1971.

24. T. Winograd, "Understanding natural language," Cognitive Psychology 3,
1972, 1-191.

25. W. A. Woods, "Procedural semantics for a question-answering machine,"
in Proceedings of the Fall Joint Computer Conference 1968, 33, AFIPS.

4Fw

-27-

Appendix

1. Participants in the Summer Workshop

2. Summer Workshop Staff

3. Announcement: New Technologies for Cognitive Research

4. Summaries of Programs

Automatic Protocol Analysis
A Simulation of Perceptual Processes in Chess
Production Systems
Semantic Understanding Systems
Concept Learning System
Machine-aided Transcription System

5. ZOG

Index
Examples

- 28 -

PARTICIPANTS IN THE SUMMER WORKSHOP

Doris Aaronson Richard B. Millward
Associate Professor of Psychology Profassor of Psychology
New York University Brown University

George Baylor John Morton
Assistant Professor of Psychology Member, Scientific Staff
Universite de Montreal Medical Research Council, Applied

Psychology Unit
Robert A. Bjork Cambridge, England
Associate Professor of Psychology
University of Michigan Raymond S. Nickerson

Vice President and Director,

Albert S. Bregman Behavioral Science Division
Associate Professor of Psychology Bolt, Beranek and Newman, Inc.

McGill University
Gordon Pitz

Jerome Elkind Professor of Psychology

Director, Computer Science Laboratory S. Illinois University
Xerox Corporation
Palo Alto, California Zenon Pylyshyn

Associate Professor of Psychology and

James Greeno Computer Science

Professor of Psychology The University of Western Ontario

University of Michigan
Jay E. Russo

Richard W. Haller Assistant Professor of Psychology
Assistant Professor of Psychology University of California at San Diego

University of Oregon
Richard M. Shiffrin

L. Rowell Huesmann Professor of Psychology
Assistant Professor of Psychology Indiana University
Yale University T

Tom Trabasso

Neal F. Johnson Professor of Psychology

Professor of Psychology Princeton University

Ohio State University
Paul C. Vitz

Paul E. Johnson Associate Professor of Psychology

Professor of Educational Psychology New York University
University of Minnesota

Kenneth R. Laughery
Professor of Psychology
SUNY at Buffalo

- 29 -

SUMMER WORKSHOP STAFF

Ruven Brooks - Psychology (graduate student)

Stuart Card - Psychology (graduate student)

William Chase - Psychology (faculty)

Charles Faddis - Psychology (staff)

Kevin Gilmartin - Psychology (graduate student)

John Gould - Psychology (faculty)

Lee Gregg - Psychology (faculty)

John R. Hayes - Psychology (faculty)

Dennis Jazudek - Psychology (staff)

Philip Karlton - Computer Science (graduate student)

David Klahr - Psychology (faculty)

Henry Mashburn - Psychology (staff)

Donald McCracken - Computer Science (staff)

Alln Newell - Computer Science and Psychology (faculty)

George Robertson - Computer Science (staff)

Andee Rubin - MIT Electrical Engineering (graduate student)

Michael Rychener - Computer Science (graduate student)

Herbert A. Simon - Psychology and Computer Science (faculty)

Donald Waterman - Psychology (research associate)

Terry Winograd - MIT Electrical Engineering (faculty)

Richard Young - Psychology (graduate student)

- 30 -

cognitive workshop general information

NEW TECHNOLOGIES FOR COGNITIVE RESEARCH

A SUMMER WORKSHOI'

AT CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA

21 - 29 June 1972

This brief, intensive workshop will examine and discuss recently developed

techniques for studying human information processing at the cognitive level:

INFORMATION PROCESSING MODELS OF COGNITION

TECHNIQUES OF DATA ANALYSIS

REPRESENTATION OF COGNITIVE STRUCTURES

ANALYSIS OF TASK ENVIRONMENTS

The models and techniques to be examined will be exemplified in computer

programs available to the workshop participants for manipulation and

modification in an interactive time-sharing environment. The examples will

include simulation programs and data analysis programs (on a PDP-10 and/or an

IBM 360/67), as well as programs for running cognitive experiments with

laboratory subjects (on a DDP-116).

Systems that will be available for study and experimentation are:

An automatic system for protocol analysis;

A concept formation system, for human experiments in the laboratory, and

for simulation;

Production systoms for expressing co,,nitive theories (e.g., cryptarithmetic

problem solving);

-31-
cognitive workshop general information

A system for understanding natural language;

A system for simulation phenomena of visual perception and memory in chess;

A system for machine-aided transcription of audio tapes;

A computer- controlled laboratory system.

PARTICIPANTS. Participation will be invited from psychologists and computer

scientists active in research on human cognitive behavior. General familiarity

with information processing psychology will be assumed, as will (substantial)

experience with computers, (but not' with the specific languages and computers to

be used in the workshop).

Workshop systems will be polished to permit interactive use by persons not

initially familiar with them. Prior to the workshop, background material will

be circulated.

In order to permit adequate access to the computer facilitics, the number

of participants will be limited 'to about 20.

PROGRAM. The workshop will hold sessions of the entire group each afternoon.

Evenings and most mornings will be left free, with the expectation that most

participants will want to work at the computer consoles with programs, or in the

laboratory constructing and testing experimental designs. The workshop will bG

instrumented as fully as possible, so that participants need not merely talk

about programs and experiments, but actually explore and test out concrete

techniques and ideas.

Participants will bring to the workshop experimental situations, phomomena

and paradigms that are of particular interest to them, and will have an
--

- 32 -

cognitive workshop general information

opportunity, with their colleagues, to investigate the relevance of a range of

techniques for their theoretical and experimental concerns.

ORIENTATION. The theoretical orientation of tho workshop is best described by

the typical contents of the journal COGNITIVE PSYCHOLOGY, or of the newly

published book by Newell and Simon, HUMAN PROBLEM SOLVING (Prectice-H.ll).

The technical orientation will be toward maximal use of computers and

programming languages in formulating and testing theories, running experimenis

and analysing data.

ARRANGEMENTS. The workshop is being organized in the Departments of Psycholog-y

and Computer Science of Carnegie-Mellon University, by a committee consisting of

Allen Newell, Herbert A. Simon, John R. Hayes and Lee W. Gregg. It is

sponsored by "the Mathematicaf Social Sciences Board under a grant from the

National Science Foundation. Other faculty riemnbers at Carnegie-Mellon

University and Terry Winograd from MIT will collaborate in developing and

presenting the programs and systoms of instrumentation.

Travel and living expenses will be provided for participants, as well as

necessary funds for preparation of materials. Housing for participants will be

available on the Carnegie-Mellon campus. (Because of the brief, intensive

nature of this conference participants are encouraged not to bring their

families.)

Workshop sessions will begin on the morning of Wednesday, June 21, and will

run through the aftcornoon of Thursday, Juno 29, i.,c'.uding the weekend as well as

weekdays of this period.

,--- - w-

- 33 -

cognitive workshop general information

INQUIRIES about the workshop should be addressed to:

Professor John R. Hayes

Department of Psychology

Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213

- 34 -

Automatic Protocol Analysis

Verbal protocols are a primary form of data for the analysis of sequential

problem solving behavior on symbolic tasks. Within the general theory in

Newell and Simon (1972), the subject is viewed as following a trajectory in a

problem space, where each point 1,L the space corresponds to a particular state of

knowledge about the task. The protocol is used to infer the subject's trajectory,

i.e., to obtain a description of what the subject knows about the task at each

moment. This final trajectory is called the Problem Behavior Graph (PBG).

We currently have a program, PAS-I (Protocol Analysis System I, Waterman

and Newell, 1971, 1972), which performs the data analysis described above. It

takes as input the transcription of the subject's verbalizations (segmented in

units corresponding to approximately one task relevant topic) and provides as-

output a Problem Behavior Graph. In so doing, it constructs a semantic repre-

sentation of the subject's utterances and infers therefrom what the subject must

have known or done to come by tile evident bits of knowledge. PAS-I must know in,

detail the task what the subject is attempting, for many of its inferences are

based on knowledge about the task. Thus, PAS-I works exclusively on crypt-

arithmetic, a task environment in which our theoretical understanding of humn

behavior is well developed (see Newell and Simon, 1972). PAS-I currently

performs analyses at a level that is substantively interesting, though not yet

quite up to manual analysis.

Systems for automatic protocol analysis have implications for achieving

volume analysis of protocols, for obtaining objectivity in analysis and for

developing measures of the contribution of various components of the data to

the models the data is supposed to test and validate. The programs, being

sophisticated inference programs in their own right, also have independent

interest in revealing what is going on in understanding natural language.

For the workshop PAS-I will be available and can be explored, used and

modified. A second system, PAS-II is also available. It consists of an inter-

active system that contains the task independent parts of PAS-I and permits

the user to provide the task dependent parts. Thus, it provides a machine-

aided framework within which to carry out protocol analyses in a range of task

environments. The scope of PAS-II is still unknown, but should include tasks

such as chess, theorem proving, complex concept -formation, etc.

Mai"

- 35 -

A Simulation Of Perceptual Processes In Chess

This program, MAPP, was designed to simulate chess players of varying skill

levels extracting information from a chess position after brief visual exposure

to it, holding that information in short-term memory, and using it to replace

the pieces on the board. The program reproduces a well-known experimental

phenomenon -- that a chess master can do a very much better job of reproducing

a position from an actual game than can a weaker player, but not a position con-

structed by random processes. The program is written in SNOBOL.

The program consists of a learning component and a performance component.

The learning component, on exposure to a sequence of partial patterns of pieces

on a chess board (e.g., pawn chains), grows a discrimination net (EPAM net) to

store these patterns as coherent "chunks." The performance component, on exposure

to a chess position, recognizes familiar configurations by sorting them through

the previously stored EPAM net, and holds the names of familiar chunks (up to a

limit of k) in short-term memory. It then uses this information to reconstruct

the position. The limits on its accuracy of reproduction depend on the variety

and complexity of the chunks that have previously been familiarized in the

learning phase. The performance program also incorporates attentional processes

that identify salient pieces in the position, and determine the order in which

the board will be scanned.

For the workshop, the program can be manipulated in a variety of ways: the

size and contents of the recognition net can be varied through training pro-

cedures, or by direct intervention, to simulate different levels of chess skill.

Its attentional strategies can be altered. It can be presented with chess

positions of a variety of kinds -- actual or random. Its performance can be

compared with the performance of human players (data are available) on identical

positions.

The chess perception program illustrates the use of a few basic components

derived from earlier cognitive simulations (discrimination nets, attention-

control strategies) to build a program for a new task environment and to simulate

experimentally recorded data there. It allows one to formulate and test theories

of attention, and of the interaction of short-term and long-term memory.

For background of the task and program (see de Groot, 1965, Chapter 8;

Simon and Barenfeld, 1969; and Chase and Simon, 1971).

ja

- 36 -

Production Systems

A
There are several options available for representing the information

processing system of a human subject when solving a problem. Typically one has

written programs in a list processing language (IPL or LISP), sometimes in a

regular higher level language (ALGOL, FORTRAN, PS/1) or a list processing

augmentation of such a language (SLIP). An important new option is the pro-

duction system (see Newell and Simon, 1972), which casts the program in the

form of a set of situation-action rules with a uniform control structure of

evoking the rules.

Putative advantages are (1) the appropriate nature of the factorization

of the total performance system into individual locally relevant rules, (2)

the uniform nature of the encoding, (3) the close-coupling to models of the

immediate memory and immediate processor, (4) the potential for learning and

development of total systems by the accretion of rules, and (5), on the data

analysis side, the ease of induction from the problem behavior graph as

inferred from the subject's protocol. Not all of these advantages have yet

been fully realized. However, enough uses have occurred to make production

systems a major contender as a theoretical substrate for representing human

information processing systems (Newell and Simon, 1972; Waterman, 1970;

Klahr and Wallace, 1971).

PSG, a system for the interdctive use of production systems will be

available for the workshop. It consists of a basic language for expressing

production systems and for running them under user control. In practice Qne

runs with a partially defined production systems (being at some intermediate

point in an analysis), with the user and the machine working cooperatively.

The system takes the next step and displays the result. The user accepts

this, modifies it, extends the production system, or substitutes his won

response for that of the system (this latter being used to pass over the

incompletenesses of the partial system). Thus, a production system is created

step by step using the computer to check and verify the model as it develops.

This system is described in Newall (1972).

- 37 -

Semantic Understanding Systems

In moving beyond cognitive tasks of a highly restricted nature (e.g.,

limited task environments such as puzzles), the representation of the

general knowledge of a subject is critical. Coupled with this, though in

many ways independent, is the question of the internal representation of the

knowledge obtained by a subject upon interpreting received utterances in

natural language.

The current state of the art in the representation of general knowl-

edge is confused and partial, though highly active. The linguists have, from

time to time, focussed on something called deep structure, but this has not

matured into a well defined system that can be worked with in a reasonable

way. Currently, some linguists are entertaining representation for semantics,

within the predicate calculus. Recently in artificial intelligence several

systems have come into existence that have enough generality and power to be

worth serious investigation. The most well known of these are the systems of

Winograd (1972), Woods (1968) and Colby and Smith (1969). There are a number

of somewhat earlier and more partial efforts (for reviews and collections, see

Simon and Siklossy, 1972; Minsky, 1968; and Simmons, 1970). Besides this,

two or three psychologists have begun similar systems, these have not yet

come to fruition (see a recent conference, Tulving and Donaldson, 1972).

Such models are not yet serious psychological theories in terms of any

detailed body of data. However, within the next few years serious theories

will probably emerge, based on these systems (or an amalgams thereof). Thus,

these systems represent important techniques for developing adequate cognitive

models. Winograd's program, called SHRDLU, will be available at the workshop,

as an example of a semantic understaDding system.

- 38 -

Concept Learning System

One view of the concept attainment problem suggests that the critical

aspects of behavior it-olve the management of memory in hypothesis testing

and generation, -ad t~e perceptual analysis of the stimuli. The concept

learning system attempts to integrate the empirical tools of the Computer

Controlled Psychological Laboratory (a DDP16) with simulation models avail-

able on the large scale systems. The system provides a way of testing models

of learning strategies against data obtained in the laboratory under several

experimental paradigms. In the laboratory, concept attainment studies using

the same stimuli can be run under (1) random selection of instances with

yes/no responses, (2) simultaneous presentation of two instances, one which

is always correct with left/right choices, and (3) single instances selected

by the subject with yes/no responses to the instance displayes. The simulation

program is designed to run interactively so that subroutines corresponding to

subject se'.ction and learning strategies can be modified zasily.

This system demonstrates the way in which computer technologies can be

useful adjuncts in creating process models. It illustrates the interaction

of data acquisition system with simulation programs. Data from live subjects

can be compared with the same kind of data generated by the programs. The

rapid turn-around time is an important way to facilitate scientific under-

standing.

Stimuli for the laboratory experiments are patterned after those used

by Neisser and Weene (1962). The discrimination learning paradigm where a

positive instance is paired with a negative instance in simultaneous presen-

tation was used by Levine (1966). A general orientation to the process model

analysis of concept learning is given in the paper by Gregg and Simon (1962).

- 39 -- \

-39-

Machine-aided Transcription System

The transcription of verbal'protocols from audio tapes is a necessary

step in using verbal protocols for the analysis of human problem solving

behavior. The production of transcriptions raises questions of the amount

of work 1ivolved, of accuracy and objectivity, of obtaining timing information,

avd of obtaining prosodic and paralinguistic informatiin. Some of these

questions, such as objectivity, can only be successfully approached by fully

automatic protocol analysis systems (i.e., by the extension of work such as

PAS-I toward accepting audio input). But other aspects can be approached

with lesser means.

We have running currently a computer-aided transcription system. The

system itself is part of a larger effort on developing speech-understanding

systems by R. Reddy of the Computer Science Department. It permits the

digitization of the audio tape and the human transcription of segments of the

tape under computer control. The system will detect and segment the next non-

silent interval of speech, play it (auditorily) as often as desired for

transcription, associate the typed-in transcription with it and store it on a

computer file. Each.segment is timed to the nearest 10 ms. Segments can be

broken into subsegments by the user and can be timed and stored as distinct

intervals. The ultimate file can be edited, etc., just as can any file on the

computer.

The system will be available for the workshop and can be demonstrated

and used. It will undoubtedly play a minor role, since new data will not be

generated in any volume during the workshop. However, it new data is generated,

the system may be used to make it available in reasonably short order for

subsequent analyses.

'¢i

- 40 -

TOP - Zog is a Guide ...

1.+ SYSTEMS - The Systems that are Available.

1.+ PAS-I - Protocol Analysis System #t1
1.+ DESCRIPTION - Analyzes Cryptarithmetic Protocols ...

1.+ IMPLEMENTATION - Divided into Three Major Parts
1. PHASE-1 - Snobol Front End ...
2. PHASE-2 - Lisp PBG 3uilding Functions ...
3. PHASE-3 - Lisp PBG Display Functions ...

2.+ LIMITATIONS - PAS-I is not Flexible
1. CRYPTARITHMETIC - Works only on Cryptarithmetic ...
2.+ PROBLEM-SPACE - Subjects limited to an Augmented Problem Space ...

1. PRESENT - Process One Column at a Time
2. EXTENSIONS - Simultaneous Equations ...

3. D+G=R--C+R=D - DONALD+GERALD=ROBERT and CROSS+ROADS=DANGER ...
3. PBG - Problem Behavior Graph ...

2. HOW-TO - Type 'TOP SYSTEMS PAS-I RUN!'
3.+ -EXAMPLES - Examples of Running PAS-I ...

1. ! EXI - First 15 segments of Subject 3 on DONALD + GERALD = ROBERT ...
2.! EX2 - First 50 segments of Subject 3 on D + G = R ...
3. ! EX3 - First 50 segments of Subject 4 on D + G = R ...
4. ! EX4 - First 50 segments of Subject 4 on CROSS + ROADS = DANGER ...

4. ! RUN - Run Node for PAS-I

2.+ PAS-I - Protocol Analysis System **2
1.+ DESCRIPTION - An Overview of PAS-I

1.+ APPLICATION - Help in the Analysis of Protocols
1. ANALYZE-PROTOCOLS - PAS-II is used to Analyze Protocols ...
2. RAW-TEXT - PAS-I Starts with Raw Text ...

2.+ ORGANIZATION - Organization of PAS-II
1. MODULAR - Modular Design of PAS-I! ...
2. INTERACTIVE - PAS-II Interacts with the User ...
3. PROBLEM-SPACE-INDEPENDENT - PAS-II is Problem Space Independent ...

3.+ REFERENCES - Backround for Theory Underiying PAS-I
1. PAS-I-REF
2. PRODUCTION-SYSTEMS
3. CRYPTARITHMETIC
4. PROTOCOL-ANALYSIS

2. EXAMPLES
3. HOW-TO - Type 'TOP SYSTEMS PAS-I RUN!'
4.+! RUN - Run Node for PAS-II

1. ! SAVE - USE THIS NODE TO SAVE YOUR CORE IMAGE
2. ! RESTORE - USE THIS NODE TO RESTORE YOUR CORE IMAGE

5. ! RUNC - Compiled version of PAS-Il. Faster but Untested

3.+ ATS - The semi-automated system for transcribing protocols
1.+ DESCRIPTION - System overview ...

1. ORGANIZATION - How the ATS is organized ...
2.+ EXAMPLE - A quick and easy example of the system in action

1. HOW-TO - How to run the examp!e ...
2. ! RUN - Type ! to start the example. (Do EXAMPLE HOW-TO ? first?!)

3.+ HOW-TO - Procedures, documentation, and running
1.+ PROCEDURES - Where things are and how to get at and use them

r wA

- 41 -

1. TAPE-MAKING - Tips on how to record the protocol ...
2. JAWING - Processing your audio tape ...
3. SET-UP - Setting up the special hardware ...
4.+ RUNNING - How to actually run the system

1. ! MAG-TAPE - What you need to know about mag-tapes ...
2. ! STARTING - How to start the program going ...

2. ! DOCUMENTATION - How to obtain manuals for the system ...

4.+ MAPP - MEMORY-AIDED PATTERN PERCEPTION
1. DESCRIPTION - MAPP is a SNOBOL program for learning ...
2.+! LEARN - READ <L.EARN>s DESCRIPTION -- OPTION 5 --

1.+ EXAMPLES - OF NETS AND PATTERNS.
1. ! CHESS-NET-FILE - a small net of 28 nodes ...
2. ! CHESS-PATTERN-FILE - a list of patterns ...

2.+ BUILDING-NEW-NETS - Information, instructions, and input files
1. DESCRIPTION - THE NET-FILE REQUESTED AS INPUT ...
2.+ EXAMPLES - TO SEE NEW-NET FILE FOR CHESS OR TIC-TAC-TOE ...

1. ! CHESS-NEW-NET
2. ! TIC-TAC-TOE-NEW-NET

3. NEW-NET-PARAMETERS - for Chess and Tic-Tac-Toe ...
4. NEW-NET-FILE - TO BUILD A NEW-NET FILE ...
5. ! PATTERN-INPUT-FILE - Take action to type out example

3.+ SALIENCY
1. SALIENT-SYMBOL - A symbol is salient ...
2. DEFINITION - Saliency = ...
3. SALIENTPOINTS - SALIENTPOINTS ARE DEFINED AS BEING SALIENT
4. SALIENCYCRITERION - The default value of saliencycriterion = 1.

4.+ AVAILABLE-INPUT-FILES - NET, PATTERN-INPUT, AND STIMULUS FILES ...
1. ! NET-FILES-CHESS - CHESS PATTERN RECOGNITION NETS ...
2. ! PATTERN-FILES-CHESS - SETS OF CHARACTERISTIC PATTERNS ...
3. ! STIMULUS-FILES-CHESS - SETS OF CHESS POSITIONS: ...
4. ! NET-FILES-T-T-T - NETTTT (114 NODES)
5. ! PATTERN-FILES--T-T-T - INTTT (43 PATTERNS)
6. ! STIMULUS-FILES-T-T-T - INTI (1 STIMULUS)

5. DESCRIPTION - MAPP USES A PROGRAM, <LEARN>, TO BUILD ...
3.+! RECALL - READ <RECALL>s DESCRIPTION -- OPTION I

1. DESCRIPTION - MAPP USES A PROGRAM, <RECALL>, TO RECOGNIZE ...
2.+ STIMULUS-FILES

1. DESCRIPTION - A stimulus file contains one or more
2.+ EXAMPLES

1. ! CHESS - Take action to type out example
2. ! TIC-TAC.TOE - liake action to type out example

3. ! SAMPLE-RUN - Take action for sample run of <RECALL> program

5.+ PSG - Productior system to model human behavior (version G)...
1.+ DESCRIPTION - Gives the scheme for the model itself, not how to use it ...

1. PS - Production system ...
2.+ PD - Production ...

1. CND - CONDITION ...
2.+ ACTION - ACTION ...

1. ACT - (ACTION (...)(...)...) executes a sequence of actions
2. FAIL - FAIL or (FAIL) terminates the execution of action elements
3. OPR - (OPR (...) ...) executes the rest of the list as a program ...
4. PD - (PD X) executes the production X
5. PS - (PS Xi executes the production system X repeatedly

- 42 -

6. PS.1 - (PS.1 X) Executes the production system X for one cycle.
7. == - (X1 == X2) sets variable or class name X1 to have value X2 ...
8. ==> - (X1 X2 ... ==> YI Y2 ...) does replacement in first STM elm ...
9. ===> - Replacement on second STM elm, otherwise identical to -=>

10. --- > Replacement on third STM ELM, otherwise identical to =>

11. NTC - (NTC X) searches STM for X and brings it to the front ...
12. DATA - (...) puts a copy into STM if not a defined action ...

3. STM - Short Term Memory ...
4. ELMS - Elements -- the encoded chunks of knowledge ...

2.+ TASKS - Task environments (= experimental paradigms)
1.+ ST - Sternberg paradigm: binary classification task ...

1. ! RUN
2. ! DEMOI - A run-through of a trial of a simple Sternberg experiment

2.+ CA - Counting and adding (including subitizing, estimating) ...
1. ! RUN
2. ! DEMO - A run-through of a simple subitizing experiment (after Klahr)

3.+ CY - Cryptarithmetic puzzle ...
1.+ CY2 - PS for $2 (the eye-movement subject in N&S Chapter 7)

1. ! RUN
2. ! DEMOI - A run-through of first couple of seconds of S2

4.+ NJ - Neal Johnson induced chunking task
1. ! RUN - This runs without calling user, so operates as a demo

5. I DEMO-TASK - A few simple productions to show their operation ...
6. I NEW-TASKS - Execute to get new tasks since ZOG went to press

3. ! RUN - Basic system without any specific production system defined ...
4.+ HOW-TO - Basic style for running PSG and creating new production systems

1. BASIC-RUN - To run a prepared production system under TASKS ...
2. OWN-RUN - To run your own production system ...
3. CREATE-PS - To create your own production system
A. CREATE-FILE - To create a file for a production system ...

5.+ USER-CTRL - Scheme for the user to control and monitor the system ...
1.+ CTRL-STATES - The control states in which user can gain control

1. START/C - At the beginning, waiting for a. production system
2. PS/C - Ready to commence next cycle on PS
3. PD/C - Ready to try a PD (PD not necessarily satisfied)
4. CE/C - Ready to commence match with next condition element
5. MCH/C - Ready to match condition and STM elements
6. CND+/C - Finished matching PD and it is satisfied
7. CND-/C - Finished matching PD and it is not satisfied
8. ACT/C - Ready to apply an action
9. CALL/C - Action is operator -- seeking output from TTY

10. VARSET/C - Ready to set a value of a variable
11. TE/C - Ready to take a TE action
12. BHV/C - Ready to take a BHV action
13. ! NEW-STATE - Additional control states defined after ZOG went to press

2.+ COMMANDS - Available PSG commands
1. <CTRL>Z - 1Z returns control to the system, executing actions ...
2. (-- - X - - Y sets the number named X to have the value Y ...
3. ACCEPT/PD - Forces the acceptance of a rejected PD (CND-/C only)
4. BEGIN - Goes back to the begrinning of the PS (at PS/C with TZ)
5. DEFINE - Use X:(YI Y2 Y3 ...) to define a new list with name X ...
6. DO - X DO! executes the action X ...
7. PSG.EDIT - X EDIT! begins editing of X, as does (EDIT X) as action ...
8. FILES - FILE.EXT RDF! reads in a properly prepared file ...
9. HOLD - Stops time from advancing until a RELEASE eccurs ...

-43 -

10. IGNORE - Ignores the pending event defined by the control state ...
11. OFF - X OFF! turns off the process X ...
12. OFF.ALL - X OFF.ALL! turns off all the processes in the list X
13. ON - X ON! turns on the process X ...
14. ON.ALL - X ON.ALL! turns on all the processes in the list X
15. PD - X PD! executes the production X, as does (PD X) as an action ...
16. PR - X PR! prints X (both name and structure), as does (PR X)
17. PRVL - X PRVL! prints the value of variable or class X, as does (PRVL X)
18. PS - X PS! executes production system X, cycling repeatedly
19. PS.1 - X PS.]! executes productions system X, as does (PS.1 X) but ...
20. "PSG.DEMO - PSG.DEMO! sets the pattern of processes in list DEMO.LIST ON
21. PSG.WHIZ - PSG.WHIZ! turns all processes off (with the exception of CALL)
22. RELEASE - RELEASE! permits time to move forward again
23. RESET - RESET! initializes the system ...
24. ! RESTART - RESTART is a ZOG action to save a PSG run image
25. ! SAVE - SAVE! will save the entire run, just as is, provided ...
26. START - X START! does a RESET and then a PS
27. STM-1 - STM-1! deletes one cell off the '.,ack end of STM
28. STM+1 - STM+1! adds on cell with NIL to the back end of STM ...
29. USE.DSK - FILE.EXT USE.DSK will send the output to your ...
30. USE.TTY - USE.TTY! uses the TTY to output everything
31. WHERE - WHERE! prints out the current control-state
32. ! NEW.COMMANDS - Additional commands defined after ZOG went to press.
33. OLD.COMMANDS - Commands superceded by this new control scheme: ...

3. SYMBOLS - Miscellaneous symbols ...

6.+ SHRDLU - WINOGRAD'S NATURAL LANGUAGE UNDERSTANDING SYSTEM ...
1.+! RANGER-STATION - ORIENTATION.]--> ! ME FIRST OF ALL.

1. ! MAP - 'MAP!' FOR MAP OF SHRDLU FOREST.
2.+! DESCRIPTION - ONE PAGE GENERAL DESCRIPTION OF WHAT SHRDLU IS

1.+ IMPLEMENTATION - MACHINE DETAILS AND VERSION INFO
1. ! DESCRIPTION

2.+ LISTINGS - Program listings of SHRDLU and MICROPLANNER. Beware! ...
1. ! BREAK - Debugging and trace utilities listings
2. !. GLOBAL - Global variables listing
3. ! SYSCOM - Common functions + executive listing
4. ! PROGMR - Support functions for PROGRAMMAR listing.
5. ! GINTER - PROGRAMMAR interpreter listing
6. ! GRAMAR - English grammar listing
7. ! SMSPEC - Semantic Specialists listing
8. ! SMUTIL - Semantic Specialists utility functions listing
9. ! SMASS - Semantic functions for answering listing

10. ! NEWANS - Answer routines listing
11. ! DICTIO - Dictionary listing
12. ! BLOCKS - BLOCKS WORLD (written in MICROPLANNER) listing
13. ! DATA - Initial facts for BLOCKS WORLD listing
14. ! SCENE - Internal data for CRT display listing
15. ! PLNR - Interpreter for MICROPLANNER listing
16. ! THTRAC - Trace package for MICROPLANNER listing
17. ! ALL - all the listings (caution > 200 pages)

3.+ EXAMPLES - EXECUTE EXAMPLES BELOW TO SEE HOW SYS WORKS
1.+ PARSER-TRACE - Parser traced for the sentence ...

1. ! DESCRIPTION -]--> HOW THE PARSER WORKS ...
2. ! RUN - TO RUN ON TTY
3. ! PRINT - PRINTS EXAMPLE ON PRINTER

- 44 -

2.+ SEMANTIC-STRUCTURES-TRACE - Oss,RSS:TSS traced for the sentence
1. I DESCRIPTION - 1--> HOW THE SEMANTIC SPECIALISTS ARE CALLED
2. I RUN - TO RUN ON TTY
3. I PRINT - PRINTS EXAMPLE ON PRINTER

3.+ INFERENCE-TRACE - MICROPLANNEP traced for the sentence ...
1. I DESCRIP T ION
2. ! RUN - TO RUN ON TTY
3. 1 PRINT - PRINTR EXAMPLE ON PRINTER

4.+ WALLPAPER - Above three traces combined
1. I DESCRIPTION
2. I RUN - TO RUN ON TTY
3. I PRINT - TO PRINT ON PRINTER

5. ! DESCRIPTION
6.+ BUILD

1. ! DESCRIPTION
2. ! RUN - TO RUN ON TTY
3. ! PRINT - TO PRINT ON PRINTER

4. ! RUN - ! ME TO RUN CLEAN UNTRACED SHRDLU
5. ! HOW-TO - ! ME FOR 1;GW TO RUN SHRDLU

7.+ CLS - Concept Learning System
1. GENERA.-DESCRIPTION - This system is run ...
2.+ SYSTEM-STRUCTURE - The system employs two computers,

1. DDP-116 - This real-time computer controls ...
•2. IBM-360/67 - An interactive message handler,
3. INTERFACE - The two computers communicate

3.+ EXPERIMENTAL-PARADIGMS - The stimuli are displayed ...
1. ED-JOHNSON - the display is a string
2. NEISSER-WEENE - The display is a string ...
3. BOURNE - The display is a sentence ...
4. DO-IT-YOURSELF - The experimenter-user will be prompted ...
5.+ VARIABLES - Under the Control of the User ...

1. DIMENSIONS
2. RANGE - Number of Values in each Dimension==> 2-8
3. SYMBOLS
4. POSITIONS

5. RULES
6. FIXED-VS-PERMUTED - dimensions in the displays.
7. DISTRIBUTION - proportion of positive instances may be varied.
S. INSTRUCTIONS - files can be created and displayed.

4.+ SIMULATION-PROGRAMS - in the form of production systems.
1. MEMORY-STRATEGIES - Three hypothesis selection strategies ...
2. OTHER-PARAMETERS - The size of short-term memory,

5.+ RUNNING-EXPERIMENTS
1. LOADING - The CCPL staff must load ...
2. AVAILABILITY - The system will be available ...
3. START - On the DDP-116 console, type: ...

8.+ SIDESHOW - MISCELLANEOUS GAMES AND DEMONSTRATIONS.
1. I ELIZA - PSYCHOLOGICAL COUNSELLING ...
2. I LESCAL - PERSONALIZED CALENDERS ...
3. 1 LIFE - STYLIZED EVOLUTION ...
4. 1 3-D-TTT - THREE-D TIC-TAC-TOE ...
5. I HANGMAN - RELIVE YOUR CHILDHOOD DAYS ...
6. I DIGITS - HOW RANDOM CAN YOU BE? ...

- 45 -

7. ! AIQUIZ - Artificial Intelligence Quiz ..

9.+ CHESS - TWO CHESS-PLAYING PROGRAMS ...
1.+! TECH - THE TECHNOLOGY CHESS PROGRAM

1. DESCRIPTION - SHORT DESCRIPTION ...
2. BASIC-INSTRUCTIONS - MINIMAL INSTRUCTIONS TO RUN TECH ... I, -

3. ADVANCED-INSTRUCTIONS - FOR THE MORE ADVENTUROUS ...
4. EXAMPLES - TO GET YOU STARTED ...
5. ERRORS - WHAT TO DO ...

2.+! GREENBLATT - THE GREENBLATT CHESS PROGRAM ...
1. DESCRIPTION - SHORT DESCRIPTION ...
2. BASIC-INSTRUCIONS - MINIMAL INSTRUCTIONS TO RUN THE GREENBLATT PROGRAM
3. ADVANCED-INSTRUCTIONS - FOR THE MORE ADVENTUROUS ..
4. EXAMPLES - TO GET YOU STARTED ...
5. ERRORS - WHAT TO DO ...

2.+ ZOG - How to Use ZOG ...

1.+ NOTATION - Basic Commands for Moving in the Tree ...
1. QM-COMMAND - ? =--> Give Options ...
2. DQM-COMMAND - ?? ==> Identify this Node ...
3. EXCL-COMMAND - ! ==> Execute Proper Action ...
4. UP-COMMAND - T or up ==> Go Up one Level ir the ZOG Tree
5. TOP-COMMAND - TT or TOP ==> Go to the TOP of the ZOG Tree
6. <NUMBER> - <number> ==> Go to Option <number> of this Node
7. HELP-COMMAND - HELP ==> Type Options for NOTATION ...
8. NOVICE-EXPERT - Modes to Control Amounts of Zog Output
9. DEMO-NODEMO - Modes for giving Demonstrations ...

10. TQM-COMMAND - ??? ==> ?? and then ?
11. OPTION-LIST - Meaning of '..., '+', and '!

12. EXCL-QM-COMMAND - !? ==> Print Pr c':, Action

2.+ TTY-EDIT - Limited editing of messages to or from TTY
1. <CONTROL>O - TO ==> Suppress teletype printout until an input is requested.
2. <RUBOUT - RUBOUT or DEL ==> Delete the last character typed.
3. <CONTROL>U - TU ==> Delete the entire input line now being typed.

3.+ CONTROL - Function of Zog Control Characters.
1. <CONTROL>A - TA ==> Escape to Zog I/ Continue Sub-job -
2. <CONTROL>B - 1B -=> Input from TTY /Input from Command File
3. <CONTROL>F - TF ==> Suppress Output If Emit Output ...
4. <CONTROL>G - TG ==> Quote Character (Not a Switch) ..
5. <CONTROL>N - IN ==> Input from Proper Action // Input from User ...
6. <CONTROL>R - TR (or 1CIC REENTER) ==> Panic Button (Not a Switch)...
7. <CONTROL>T - Force Zog to Send TTY Input to Sub-job ...
8. <CONTROL>V - tV ==> Ecno Commands // Suppress Echo of Commands ...
9. <CONTROL>W - TW ==> Comment u ,til next ,CR> or TW ...

10. <CONTROL>Y - TY ==> Ready the Sub-job (Not a Switch)
(11. <A'T-SIGN> - # ==> Execute a Command File ...

12.+ EXAMPLES - Sample. Command Files
1. ! EXI - EX1.CMD[KARLTON] ==> Types EX2.CMD[ROBERTSONJ
2. ! E.<2 - Demonstrates the use of all Control Characters ...

13. OTHERS - Other Control Characters ...

7w

- 46 -

4. RUNNING - What happens when you RUN! ...

5. EXITING-ZOG - In order to leave Zog type ZOGOUT.

6.+ SUGGESTIONS - Things to try and do.
1. COMMAND-FILES - Automatic Execution of Actions often' Repeated ...

3.+ BUILDING - Commands for Building Trees ...

1. INODE-COMMAND - [<name>] INODE ==> Insert Node <name> ...

2. DNODE-COMMAND - [<name>i DNODF ==> Delete Node <name> ...

3. RPACT-COAMAND - RPACT ==> Replace Proper Action ...

4. PRPACT-COMMAND - PRPACT ==> Print Proper Action ...

5. RNID-COMMAND - RNID ==> Replace Node Identification ...

6. SVTREE-COMMAND - SVTREE ==> Save the Tree ...

7. RDTREE-COMMAND - RDTREE ==> Read a Tree ...

8. ZOGOUT-COMMAND - ZOGOUT ==> Leave ZOG ...

9.+ STYLE - I-low to Write Node Id's ...
1. FORMAT - Format of Node Id's ...
2. EDITING - Editing of Node Id's ...
3. COMMENT - Zog Provides '...', '!', and '+'

10.+ DIFFERENCES - Differences between BZOG and ZOG
1. CORE-SIZE - BZOG is much Larger ...
2. PPNS - [<name>] Does Not Work in BZOG.
3. ZOGOUT-COMMAND - ZOGOUT in BZOG Does Not Logout Top Level Job.
4. START-UP - BZOG Asks for Initials to use in Node Names
5. ILLEGAL-NAMES - BZOG gives noError Message ...
6. BUILD-FACILITIES - Build Facilities are Missing from ZOG ...
7. <CONTROL>R - TR and 'CIC REENTER fail during RDTREE ...

11.+ NOTE-BENE - Things that Should be Noted
1. WHERE-TO-BUILD - Build Trees only from Existing Nodes ...
2. DOUBLE-QUOTES - Do not (NOT!!) use Double Quotes ...
3. EXCLAMATION-POINT - ! ==> Reset IF, TV, IG ...
4. <CONTROL>R - IR and TCtC REENTER fail during RDTREE ...
5. NODE-NAMES - Characters riot Allowed in Node Names ...

4.+ UTILITIES - Utilily Programs: Edit, Copy, Print, etc.

1.+! EDIT - Edil or Create a File
1. DESCRIPTION - Line Editor ...
2. HOW-TO - Type'"FOP UTILITIES EDIT!'
3.+ COMMANDS - Commands to the Editor

1. I - I<Ni> or I<NI>,<N2> ==> Insert Line <NI> ...

-- ----.---------.- -

- 47 -

2. D - D<NI>or D<NI>:<N2> ==> Delete Line(s),..3. E - E ==> Save the Current File and Exit the Editor
4. P - P or P<nl> or P<NI>:<N2> ==> Print line(s) on TTY ...

5. L - L or L<nl> or L<NI>:<N2> ==> Print line(s) on Line Printer
6. W - W => Save the Current File (World) ...
7. F - F<string><altrmode> ==> Find <string> ...
8. B - B ==> Go to Beginning of File

4.+ EXAMPLES - Create and Edit a File
1. I CREATING - Creates a 3 Line File
2. 1 EDITING - Ediis File Created by CREATING

2. 1 TYPE - List a File on the User'., TTY ...

3. ! PRINT - List a File on the Line Printer ...

4. ! MAIL - Send a Message ...

5. ! COPY - Copy a File ...

6. ! DIRECTORY - List of Existing File Names ...

7. ! DELETE - Delete Files ...

8. ! RENAME - Rename a File ...

9. ! OPERATOR - Ask the Operator to do Something

10. ! STATUS - Gives the Status of the POP-1O

11. FILE-S.TORAGE - [<name>] References <name>'s File Storage Area ...

12. ! GRIPE - Suggestions, Comments, and Complaints ...

13. MAIL-PENDING - You have been Sent Mail ...

5. PEOPLE - List ot Users and Builders ...

6.+ LANGUAGES - Languages Used by the Systems

1.+ L*(G) - L*(G) IS A KERNEL SYSTEM-BUILDING SYSTEM ... ,
1.+ DOCUMENTATION - NO WRITTEN DOCUMENTATION EXISTS FOR L*(G)

1. ! LISTINGS - THE PROPER ACTION HERE GIVES YOU L*(G) LISTINGS
2. GENERAL - A GOOD GENERAL INTRODUCTION TO L* SYSTEMS ...

2.+ PRINCIPLES - THERE ARE SEVERAL DESIGN PRINCIPLES ...
1. PI - SMALL INITIAL SIZE (SIMPLICITY) --

2. P2 - SELF-SUFFICIENCY FOR INTERNAL GROWTH --

3. P3 - TOTAL ACCESSIBILITY (NO DESIGNER'S PREROGATIVE) --

4. P4 - MULTIPLE USE OF STRUCTURE --...
5. P5 - INTEGRATED PROGRAMMING ENVIRONMENT --

6. P6 - PERSONALIZATION --

7. P7 - DESIGN ITERATION --

8. P8 - SELECTIVE EFFICIENCY --

3. USAGE - USE OF L*(G) AT CMU IS NOT WIDESPREAD; HOWEVER,

48 -

4. ! SCRIPT - AN INTERACTIVE SCRIPT FOR TEACHING L*L,
5. ! DEMONSTRAIlON - AN L*(G) DEMONSTRATION SESSION IN 6 PARTS ...
6. ! RUN - THIS NODE GETS YOU INTO L*(G)A,

2. ! SAIL - Sail is an ALGOL Dialect ...

3.+ LISP
1.+ STANDARD - LISP INTERPRETER

1. DESCRIPTION - TO INITIALIZE, USE TN OR tT TO ENTER YOUR RESPONSE
2. ! RUN - RUN MODE FOR LISP

2.+ AUGMENTED - LISP INTERPRETER IN 16K, DECIMAL, WITH 'TEST' FUNCTION
1. DESCRIPTi'N - THIS IS STANDARD LISP PLUS THE FUNCTION 'TEST'
2. ! RUNA - RUN MODE FOR LISP WITH 'TEST' FUNCTION

4.+! SNOBOL - (STRING-ORIENTED SYMBOLIC LANGUAGE)...
1. ! MANUALS - TWO MANUALS ARE AVAILABLE ...
2. ! EXAMPLE1 - A VERY SIMPLE SNOBOL PROGRAM ...
3. ! EXAMPLE2 - A MORE COMPLEX SNOBOL PROGRAM ...
4.+ SNIP - SNOBOL INTERACTIVE PACKAGE ...

1. I MANUAL - A 9 PAGE SNIP MANUAL IS AVAILABLE ...
2. I RUN - TO RUN THE SNOBOL INTERACTIVE PACKAGE ...

5.+ MACLISP - LISP AT MIT'S Al LABORATORY ...
1. ! DOC - ! TO PRINT SOME DOCUMENTATION ON PRINTER ...
2. ! RUN

5. APCOL

7.+ MICROPLANNER - PROGRAMMING LANGUAGE.
1. ! RUN
2.+! DESCRIPION

1. ! MANUAL - I TO GET MANUAL ON PRINTER ...
3.+ EXAMPLES

1.+! PCTP - PREDICATE CALCULUS THEOREM PROVER ...
1.+! DESCRIPTION

1. ! MANUAL
2. ! RUN

8.+ CONNIVER - PLANNING LANGUAGE. ALTERNATIVE FORMULATION OF PLANNER ...
1.+ EXAMPLES - 'FRINGE' EXAMPLE. VISITS LEAVES OF A TREE.

1. ! LISTINGS - LISTS 'FRINGE' EXAMPLE ON PRINTER
2. HOW-TO - HOW To RUN FRINGE EXAMPLE ...

2. I RUN

- 49 -

..zoG -
NAME: KARLTON
TYPE TOP?? FOR INTRO, HELP FOR HELP.

7-Z 0~ C, -4 &A Top??

>TOP??
- TOP - +
Zog is a Guide
You are at the top of a tree (the ZOG tree). A system
(ZOG) is used to enable you to move around in this tree and
more importantly to let you use and learn about the systems
that ZOG can introduce to you. Type HELP to learn how to
use Zog and move around in the Zog tree.>HELP ,. "an " j~rLP I ,Z46... z r.,.T r , z OG Z V,

Basic Commands for Moving in the Tree
To move down into the tree, type the name of the node you
want to be at. e.g. to get more help type 'TOP ZOG
NOTATION'. Other commands are explained by the options
under this node.
1. QM-COMMAND - ? ==> Give Options ...
2. DQM-COMMAND - ?? ==> Identify this Node ...
3. EXCL-COMMAND - ! ==> Execute Proper Action
4. UP-COMMAND - T or up ==> Go Up one Levet in the ZOG Tree
5. TOP-COMMAND - TT or TOP =m> Go to the TOP of the ZOG Tree
6. <NUMBER> - <number> ==> Go to Option <number> of this Node ...
7. HELP-COMMAND - HELP ==> Type Options for NOTATION ...
8. NOVICE-EXPERT - Modes to Control Amounts of Zog Output ...
9. DEMO-NODEMO - Modes for giving Demonstrations ...
10. TQM-COMMAND - ??? ==> ?? and then ?
11. OPTION-LIST - Meaning of '...', '+', and '!' ...
12. EXCL-QM-COMMAND - !? ==> Print Proper Action ...

. , a,.~Ztc~ To P

>9

- TOP - +
1.+ SYSTEMS - The Systems that are Available.
2.+ ZOG - How to Use ZOG ...
3.+ UTILITIES - Utility Programs: Edit, Copy, Print, etc.
4. PEOPLE - List of Users and Builders ...
5t- LANGUAGES - Languages Used by the Systems

L~~L~tiA)L ~q ly L,,y 6 E G ,

>SYSTEMS?
- TOP SYSTEMS - +
1.+ PAS-I - Protocol Analysis system #1
2.+ PAS-I - Protocol Analysis System #2
3.+ ATS - The semi-automated system for transcribing protocols
4.+ MAPP - MEMORY-AIDED PATTERN PERCEPTION
5.+ PSG - Production system to model human behavior (version G) ...
6.+ SHRDLU - WINOGRAD'S NATURAL LANGUAGE UNDERSTANDING SYSTEM

- 50 -

7.+ CLS - Concept Learning System
8.+ SIDESHOW - MISCELLANEOUS GAMES AND DEMONSTRATIONS.
9.+ CHESS - TWO CHESS-PLAYING PROGRAMS(. 3 d., .CL.. ,

- TOP UTILITIES - +
1.+! EDIT - Edit or Create a File
2. ! TYPE - List a File on the User's TTY ...
3.! PRINT -List a File on the Line Printer ...
4.! MAIL Send a Message ...
5. ! COPY - Copy a File ...
6. ! DIRECTORY - List of Existing File Names ...
7. ! DELETE - Delete Files ...
8. ! RENAME - Rename a File ...
9. ! OPERATOR - Ask the Operator to do Something ...
10. ! STATUS - Gives the Status of the PDP-10
11. FILE-STORAGE - [<name>] References <name>'s File Storage Area ...
12.0 GRIPE - Suggestions, Comments, and Complaints ...
13. 1 MAIL-PENDING - You have been Sent Mail ...

.- ---eL _ -4. *-*d 4 , ..; I . . ,,

How to Use ZOG "F-o"q Zg "

The nodes under this node of the tree give information about
different aspects of ZOG. To find out what options are
available type ?. To get information from one of those
options, type its name or number and follow that by ??.
Good luck.
- TOP ZOG - +
1.+ NOTATION - Basic Commands for Moving in the Tree ...
2.+ TTY-EDIT - Limited editing of messages to or from TTY
3.+ CONTROL - Function of Zog Control Characters ... ,
4. RUNNING - What happens when you RUN! ... -6 ., .,
5. EXITING-ZOG - In order to leave Zog type ZOGOUT ... ,-cuc.a .
6.+ SUGGESTIONS Things to iry and do.

>?PAS-I EX-1! ... ,/

?INVALID NAME IN "EX-1!

IVV

- TOP SYSTEMS PAS-I - +
J.+ DESCRIPTION - Analyzes Cryptarithmetic Protocols
2. HOW-TO - Type 'TOP SYSTEMS PAS-I RUN!'
3.+ EXAMPLES - Examples of Running PAS-l The ...
4. ! RUN - Run Node for PAS-I

-51-

>EXAMPLES? -r I 6 h P P
-- lOP SYSTEMS PAS-I EXAMPLES - +
1. EXI - First 15 segments of Subject 3 on DONALD + GERALD = ROBERT
2.! EX2 - First 50 segments of Subject 3 on D + G = R ...
3. ! EX3 - First 50 segments of Subject 4 on D + G = R ...
4. ! EX4 - First 50 segments of Subject 4 on CROSS + ROADS - DANGER ...

-TOP SYSTEMS PAS-I EXAMPLES EXI - U -'

First 15 segments of Subject 3 on DONALD + GERALD ROBERT
Elementary Example: Shows no commands.

Copying Example Segmentrd Text File
Running PAS-l Snobol Phase

P1+s- .e--a,•

BI. EACH LETTER HAS ONE AND ONLY ONE NUMERICAL VALUE --

()
B2. EXP

(EXP)
23. THERE ARE TEN DIFFERENT I ETTERS

()
B4. AND EACH OF THEM HAS ONE NUMERICAL VALUE

(AND)

t 1B. -4>. ((M)

15. THEREFORE , I CAN , LOOKING AT THE TWO D 'S --

(THEREFORE) (NUM D 2)

<65>. ((THEREFORE) (NUM D 2))

86. EACH D IS 5
(EQ D 5)

B7. THEREFORE , T IS ZERO
(THEREFORE) (EQ T 0)

<86-7>. ((BECAUSEOF ((EQ D 5)) ((EQ T 0))))

B8. SO I THINK I 'LL START BY WRITING THAT PROBLEM HERE .
(THEREFORE)
-t38>. ((?))

TR

REENTERING ZOG AT TOP - r'oTPe. ... , TOP,
>TOP CHESS?? ? o , - - -.---. A
?AMBIGUOUS:
SYSTEMS MAPP RECALL STIMULUS-FILES EXAMPLES CHESS
SYSTEMS CHESS

- 52 -

>SYSTEMS CHESS?' .&.rIv, en,-t . J .0 &vos..,.- -'-7

-TOP SYSTEMS CHESS - +
1.+! TECH - THE TECHNOLOGY CHESS PROGRAM ...
2.4! GREENBLATT - THE GREENBLATT CHESS PROGRAM ...
>1!

TECH: I SEP 1972

1. T A .t c

-- TOP SYSTEMS CHESS TECH-+!
THE TECHNOLOGY CHESS PROGRAM

TECH WAS DEVELOPED AT C-MU BY JIM GILLOGLY IN 1970-71
AND IS STILL BEING MODIFIED. IT HAS A CLASS D RATING ,.. 10,
(1286) IN THE U. S. CHESS FEDERATION, AND WON THE
SECOND PLACE TROPHY AT THE 2ND ANNUAL COMPUTER CHESS ,
CHAMPIONSHIPS (CHICAGO 1971), PLACING BEHIND CHESS 3.5 ,, D11

OF NORTHWESTERN UNIVERSITY.

- TOP SYSTEMS CHESS TECH - +!
1. DESCRIPTION - SHORT DESCRIPTION ...
2. BASIC-INSTRUCTIONS - MINIMAL INSTRUCTIONS TO RUN TECH ...
3. ADVANCED-INSTRUCTIONS - FOR THE MORE ADVENTUROUS ...
4. EXAMPLES - TO GET YOU STARTED ...
5. ERRORS - WHAT TO DO ...

>2? BA-51lJ.- IISTVCTIOf'5 --
- TOP SYSTEMS CHESS TECH BASIC-INSTRUCTIONS -

NO OPTIONS 0-k., * i /.. . "
>??

- TOP SYSTEMS CHESS TECH BASIC-Ir..,TRUCTIONS -
MINIMAL INSTRUCTIONS TO RUN TECH

WHEN TECH GIVES THE MOVE NUMBER (WHITE) OR SPACES
(BLACK), YOU CAN INPUT YOUR MOVE IN STANDARD ENGLISH
NOTAIION DISAMBIGUATED BY SLASHES WHENEVER NECESSARY
(E.G., P-KI OR N/Q4XP), OR YOU CAN GIVE ONE OF THE
FOLLOWING COMMANDS:

PW<CR> THE PROGRAM IS TO PLAY WHITE.
PB<CR> THE PROGRAM IS TO PLAY BLACK.
B<CR> PRINT THE CURRENT BOARD.
SC<CR> PRINT THE SCORE. TECH WILL PROMPT 'SCORE'

YOU ANSWER 'Y'.
DR<CR> ASKS IF IT WANTS A DRAW.
1N<CR> RETURN TO ZOG.

PROMOTIONS ARE INDICATED WITH '=', E.G. P-Q8=Q. EN
PASSANT CAPTURES MUST BE FOLLOWED BY THE SINGLE LETTER
"E', E.G. PXNPE FOR PXNP EN PASSANT.

>lA

- 53 -

PW

TECH PKO I

1. P-K4 P-K4
2. N-KB3 N-0.B3
3. P-Q4 B

*R -*B*Q*K*B*N*R
*P*P*P*P -*P*P*P

- - *P - - --p

~N-
P PP--P PP
RNBQKB-R

3. ... PXN
ILLEGAL

3. _

>UP ERRORS??
- TOP SYSTEMS CHESS TECH ERRORS -

WHAT TO DO
IF YOUR MOVE IS SYNTACTICALLY IN ERROR, AMBIGUOUS OR
ILLEGAL, TECH WILL COMMENT APPROPRIATELY; REPEAT YOUR
MOVE, THIS TIME CORRECTLY. IF YOU DETECT AN ERROR
BEFORE YOU <CR>, USE <RUBOUT> OR <DELETE> TO BACKSPACE.

PXp
4. NXP NXN

5. QXN N-83
6. N-QB3 B

•R -*E3BQ*K*B -*R
,P*P*P*P -*P*P*P

-*N --

N - --p

P P P-- P P P- BN
R-B-KB-R

6 . .. TN

EXIT

>70GOIJT
LEAVING ZOG

0 -. ,,/ (I-

z o

