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Internal Wave Generation by Submerged Bodies: Mean Flow Effects

Introduction

The passage of a body thru a density stratified fluid presents a
complex localized disturbance to the system. It is a generai property
of such systems that disturbance energy is propagated away from the

source region in the form of an internal gravity wave field. However,
in many circumstances, the complexity of the disturbance created by a
real body moving within a real fluid effectively destroys the possibil-
ity of an exact mathematical description of the radiated wave field,
and we must be content with an attbmpt to distill th4 essential physics
of the phenomenon. That is, we must isolate and understand those mech-
anisms which characterize the disturbance and its associated wave field.
particularly those mechanisms which transcend individual pecularities
of particular bodies and environments, in the hope that the physical

* picture which emerges will provide a useful and viable description of

the real phenomezion.

On a primitive level, the disturbance may be resolved into three
categories on the basis of temporal dependence. In nature we must denl
with real fluids, so that for physically interesting situations thf. dis-
turbance will be characterized by turbulence arising from boundary layer
instability. The essence of turbulent motion is randomness, and all
aspects of the phenomenon which require a stochastic description will be
designated as "random effects". The remainder of the motions associated
with the disturbance and the radiated wave field may be designated as
steady or "mean field effects" or unsteady or "transient effects". If
the body is in steady horizontal motion over a flat bottom, then in a
reference frame moving with the body, all non-random effects will be
mean field effects. In such a frame of reference, transient effects
arise only as a result of unsteadiness in the motion of the body or
apparent unsteadiness associated with the boundary configuration.

The mean field effects associated with a submerged body admit a
three-fold classification. The first effect is that which would be
created by the body in the complete absence of viscous effects. The
disturbance is associated with the fact that the body must systematically

displace and replace fluid as it moves, and will be referred to as the
"vhull effect" in the sequel. The second effect, the so-called "wake
collapse effect", arises because, in most physically interesting situa-
tions, a turbulent wake forms in the lee of the body. Mixing within the

1
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wake results in an effective perturbation of the ambient density field,

which brings into play relatively strong buoyancy forces tending to

destroy the density perturbation by flattening or collapsing the wake

region. The presence of a turbulent wake also presents the possibility
of an effective "displacement body" associated with streamline displace-

ments outside of the turbulent region arising from momentum redistribu-

tion within the wake region. This third effect, the "displacement

thickness effect", is distinct from the wake collapse phenomenon, being
similar in its internal wave making characteristics to the hull effect,

although its interaction with the ambient density field may result in

the distortion of the turbulent wake structure.

All of the mechanisms mentioned above are capable of affecting the

radiated internal wave field in some way, the exact details of the wave

field depending to some extent on the exact details of the body geometry,
unsteady motions and the ambient stratification. Because of the uncer-

tainty involved, exact comparisons of calculated waveforms are of limited

utility; in order to assess the relative importance of the various con-
tri)uting causes, their effects must be characterized by some global

property which is somev'l:at insensitive to the exact details of the flow

structure. For this reason, we choose the rate of internal wave energy

production as a convenient index of the source strength, and explicit

internal wave fields are not computed. It is hoped that the comparison,

based on 1his global property, of the relative importance of the various

contributing mechanisms as a function of the sensible parameters which

characterize the system, will contribute to the basic understanding of

the physics of the phenomena associated with the passage of a body thru

a density stratified fluid.

The hull effect

The passage of a solid body thru a fluid environment is accompanied
by a continuous readjustment of fluid elements. The bow end continu-

ously displaces fluid while fluid m:st continuously refill the void left

by the motion of the tail end, and the problem is then to understand the

processes involved in the interaction of this disturbance with the ambi-
ent density stratification of the environment. Most of the basic physics
of this phenomenon is contained in the standard mountain lee wave problem

for which an extensive literature exists (see reviews by Queneyet al,
1960, Miles, 1969, Zeytounian, 1969a, b, Vergeiner, 1971, Lilly, 1972;

see also Bretherton, 1969). Reducing the phenomenon to its pui-st form,
we consider the steady horizontal lotion of a body in an unhxunded uni-

formly stratified Boussinesq fluid . The problem may be solved by

In the Boussinesq approximation (see, for example, Phillips, 1966, sec.
2.4) density variations are considered important only insofar as they

determine the buoyancy, which is consistent with our program of retain-

ing only the essence of the problem.

2L
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followtig Dorodnitsyn (see Tareyev, 1965) and replacing the body by an

equivalent forcing function which stratifies the boundary conditions.
Conceptually, the simplest relevant forcing is that provided by a moving

dipole, for which solutions have been presented by Crapper (1959),

Crosch (1964) and Miles (1971a). The general formalism for the solution
of problems of general localized forcing in a stratified flow has been
developed by Lighthill (1967) and Liu and Yeh (1971). However, we will
approach the problem in the classical mountain lee wave tradition, devel-

oping an integral transform solution to the boundary value problem*. As
noted previously, there is a vast literature on the classical lee wave

problem, and therefore we will give a rather concise derivation of the

solution. A thorough discussion of integral transform techniques is

given by Sneddon (1972).

Although the full nonlinear problem for a two dimensional object
such as a ridge or horizontal cylinder aligned perpendicular to a uni-
form stratified flow may be solved by invoking Long's model (Long, 1953,

1955, see also Miles, 1969, McIntyre, 1972), the full three dimensional
problem remains intractable unless linearized by the assumption that

the disturbance is a small perturbation to the basic state. A measure
of the relative importance of nonlinear effects is provided by the in-
verse internal Froude number

U
where U is the speed of the oncoming stream (the speed of the body in a

stationary frame of reference), H is a characteristic value of the

vertical dimension of the body (the maximum radius of a body of revolu-

tion), and N is the Brunt-Vaisala frequency

Al (2)

where g is the acceleration of gravity and is the vertical

logarithmic density gradient in the basic stat. Conceptually, the
parameter F 1 is the square 7oot of the ratio ..f the work required to

raise an element of fluid to the top of the obstacle to the kinetic
energy density of the oncoming fluid. The availability of the finite

amplitude solution for the two dimensional problem permits the evalua-
tion of the validity of the linearized solution as a function of F" 1

for that problem (see Miles, 1969, 1971b). These two-dimensional

results indicate that the linearized problem should provide a reasonable

A somewhat more general approach to the boundary value problem for an

isolated body in a stratified fluid is considered by Mackinnon et al
(1969).
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approximation for F "1 less than 1/4 or 1/2 although, as will be discussed
later, some error may be introduced by the linearized boundary conditions
for smaller values of F-1 for certain body shapes. The approximate three
dJmensional solution in the limit of large F- 1 has been discussed by
Drazin (1961) and Grimshaw (1969), and that fer very small F 1 by
Hawthorne and Martin (1955) and Drazin (1961).

The linearized momentum balance equations for an inviscid, Boussin-
esq fluid in a reference frame moving with the body (Fig. 1) are

(3a)

-,,1 U '3b)
ON 4Aay

:i-LV=-L/2 - I-C9X /'0 a~ a (3c)

where U is the speed of the body, /4A is a reference density, and u, v,
w, /,o p are perturbations of the velocity nomponents, density, and
pressure. Mass conservation and incompressibility are expressed
respectively by

U a9 V 9 ', -0 (5)
OX a~y C-?

where 1O is the basic density profile, which is a linear function of the
vertical coordinate. Equations (3) - (5) may be combined to form a
governing equation for the amplitude function, 7

_( (6)

where (41 /d K , ' is the Laplacian operator and
is the horizontal Laplacian ( O/ax+a /ay ). Symmetry

arguments indicate that, if the body is symmetric about a horizontal
plane, the problem may be restricted to a semi-finite domain formed by
considering the symmetry plane as a rigid surface. Boundary conditions

4
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on ) are that ) be Fourier transformable in the horizontal directions,

and that ) (x,y,O) = h(x,y), where h(xy) is the half-body shape (includ-

ing the rigid surface on which the half-body rests). The upper z-boundary

condition is provided by a radiation condition of energy propagation away

from the disturbance, as required by our notion of causality (see, for

example, Atkinson, 1949).

To solve equation (6), we introduce the two dimensional Fourier

transform

" jJ ( ) e -I xx yy
(7)

so that equation (6) is transformed to

t0

(8)

where primes indicate derivatives with respect to z. The solution which

satisfies the boundary condition at z = 0 is then

(9)

where = (X'# p.a) . The vertical wave number is rendered

determinate by the radiation condition. For X2 >/V we must have

n-1 ( as 2 -* c , while for X,74/2< N'A the vertical compon-e of group velocity aarlcql , where (X 114 AOM-

must be positive, so that X +I a+ 1

i sLP (x)/r: +)fli 7  -I) ; x A/

Z2 >~t A/ )Z (10)

Inverting the transform, we than have

I(( yA i2 .), r-,? L

To the linear approximation, the horizontal force on the body

associated with the wave field (the wave drag) is given by

CW:O 5

00!

D ZJO-xyo) IiI Iy l ic/. (12



and thus the rate of working against the drag or the rate of internal
wave energy production is given by

00

By employing the equationif motion (3) - (5) and Parseval's relation
(see, for example, Bremmerman, 1965, sec. 14.5) the expression (13) may
be transformed to

E 0( 9x +,(14)
-- '- - /u(14)

The expression (14) applies only to the upper half of the body. Restrict-
ing attention to symmetric bodies, we then have that

(15)

for the whole body.

If we consider an ellipsoidal body such that

X Y ""/

A (16)

then we have that Ly L,//" Xy/-
.4,

/- Y L y -

COJK~CO$/ O" (17)

which may be evaluated (Erdelyi et al, 1954, pp. 11 & 57) as

A -,IT '4

where we have set R = Lx/L , the aspect ratio, and L = Lx * is the

Bessel function of the first kind of order %; . The transform (18)

may be simplified somewhat by noting that the Bessel functions of half

6
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integral order may be expressed in terms of trigonometric functions, so

that

(19)

which may be inserted into the energy production integral (15), yielding

0 0

/ S' o ft (-,".R9' cos,[ /,i ) dxd., (20)

, L'x ? )V/2a
The expression (20) is nondimensionalized by defining

/ = ?41RA
I= N1/V IA

and introducing the normalization factor (Miles, 1969a)

S6= / WH,4o
where A is the frontal area, equal to V) 4/L IR for the

ellipsoid. In normalized form, then, we have

E5 -R 4-
0 0

sins/ 01Aai (21)

for the rate of internal wave anergy production by the steady horizontal
motion (time scale ?& = L/U) of an ellipsoid with length-width aspect
ratio R in a uniformly stratified fluid (time scale '; = 1/N).

The energy production integral (21) may be evaluated numerically
for various values of R and '2"*7' . Fig. 2 is a comparison between

the energy production rate for an ellipsoid with R 1 with that for
other three dimensional bodies for which computations have appeared in

the literature (Blumen, 1965, Mackinnon et al, 1969). A striking quali-

tative difference between the curves is apparent for 2 . '/ , the
production rate for the ellipsoid being markedly larger than that for

7
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the other "odies within this range, with the cur'vature of the E vs ?
curves of opposite sign. The structure for ellipsoids of various R is

illustrated for this range of ?/' in Fig. 3. This qualitative

departure is tentatively attributed to .ie breakdown of the linearized

boundary condition around the lateral edges of t..e ellipsoid. The

bluff sides of the ellipsoid require infinite vertical velocities at the

edge in linear theory, while the other bodies, although of infinite

extent, are smooth in the appropriate lateral directions, resulting in

finite vertical velocities which tend uniformly to zero as the height*
parameter tends to zero . A qualitative difference is also apparent in

Fourier space, where, because of the slope discontinuity, the lateral

transform of the ellipsoid falls off as 1 "2, while that for the
other (infinitely smooth) bodies falls off exponentially. This slow

decay associated with the slope discontinuity may in fact dominate the
behavior for small rm/7j. However, as will become appar- ' later,
the behavior of the energy product' - te curve in this ameter

range is not of crucial importan-, 'le that for larger 11714 ,

which is illustrated in Fig. 4 for various values of R, appears to be

reliable, providea the height ocale H of the body is sufficiently
small so that F 1 ' 1/2. For prolate spheroids (ellipsoids of revolu-

tion), this requirement reduces to u /' R. Although there is
no a priori justification for the extrapolation of two dimensional

results to the three dimensional case, it should be noted that, in the
two dimensional problem, the effect of at least mild nonlinearity, such

that upstream influence and separation (see, for example, Miles 1971)
are not brought into play, is to increase internal wave energy produc-

tion rates above those predicted by linear theory (Miles, 1969). For

very strong nonlinearity >> / R) we expect a reduction in the
energy supply to the wave field, since in this limit the flow is con-

fined predominantly to horizontal planes (Drazin, 1961, Grimshaw, 1969).

Wake collapse effect

In a real fluid, as the flow proceeds around the body, a boundary
layer of retarded flow develops which, in the cases of physical interest,

rapidly becomes unstable and degenerates into turbulence. Within this

turbulent boundary layer and its extension as a turbulent wake, turbu-
lent diffusion acts to reduce the ambient density gradient, creating a

gravitationally unstable situation, which is rectified by the release

of the stored potential energy into kinetic energy of collapse as the
wake is flattened vertically. Disturbance energy associated with this

collapse process radiates into the surrounding fluid in the form of an
internal gravity wave field. Although some theoretical progress based
primarily on traditional dimensional and similarity arguments, has been
made on the problem of turbulent wakes in density stratified media

(Onufriyev, 1970, Ko, 1971; see also Monin and Yaglom, 1971, ch. 4),

For the bodies considered by Mackinnon et al (1969), the height
parameter is in fact the half-width of the body. See appendix for a

discussion of an approximate approach which removes the difficulty

associated with the bluff sides of the ellipsoid.

8



a complete description of the process of wake generation, growth, and

collapse, including the interaction of the wake with the surrounding

fluid, is not available. We can, however, obtain bounds on the rate at
which energy is supplied to the wave field by invoking rather basic

similarity and dimensional arguments and relying rather heavily on

available empirical data.

Wake collapse is a continuous process, active whenever buoyancy
induced potential energy exists within the wake region. However,
wake potential energy is created at tt: expense of turbulence kinetic

energy, which is in turn fed by mean flow velocity gradients within the
wake region, so that sensible creation of wake potential energy is con-

fined to a finite distance behind the body. This aspect of the phenom-

enon is reflected in the observation that a dyed wake expands to a
maximum vertical size and then flattens out. After the passage of the
point of maximum vertical expansion, we can expect that sensible poten-

tial energy production is sharply curtailed, so that the amount of
potential energy created during the expansion stage should be proportional
to the rate of internal wave energy production.

We may estimate the amount of available potential energy by con-

sidering the wake cross section at the point of maximum vertical expan-

sion. As a model, we may consider an ellipsoidal figure, with horizontal
major axis, within which there is a uniform stratification with Brunt-
Vaisala frequency Ni, the surrounding fluid being characterized by the
Brunt-Vaisala frequency N, so that we may define a mixing factor

f At- (22)

In order to account for potential energy which has been lost during the
expansion stage, we replace the ellipse by a circle with equal area.

The potential energy created per unit wake length may then be estimated
as the work required to create this partially mixed circular area of
fluid by distorting the ambient density field. Referring to Fig. 5,

the displacement J of a fluid parcel frcm its equilibrium poiition

is given by

S = f Z (23)

The buoyancy force acting on a fluid elentnt whose equilibriiua position
is zE is given by

so that the potential energy density within the wake cross section is

given by ZA

S((25)

9



and the total potential energy per unit wake lerth is

"t / " oA (26)

where the integral is over the cross sectional area. For the circular

partially mixed region, we thus have• rV

/~/-

(27)

where r is the radius of the circle. The energy per unit wake length
supplied to the internal wave field sbould then be proportional to

this. Choosing the constant of proportionality to be unity, the rate of
internal wave energy production by the wake collapse mechanism is approx-
imated by -7

S,4 /V(28)

Normalizing as before, we then have that

M4 Jq - (29)

where H is the body radius. If H is a characteristic length scale

for the wake, such as the body raaius (Ho = H in this case) or a pro-
peller radius in the case of self-propulsion, then we have that

(30)

where R = L/H and fE = r2 /H 2 , the ratio of the wake cross sectional
area at maximum vertical expansion to the characteristic wake area. In

order to proceed further, we must invoke basic similarity arguments.

If we assume that the potential energy, which derives from the wake
kinetic energy, scales by the external parameters U and Ho, then we
have that

so that the scaling requires

C./cons (32)

where Fw' is the inverse internal Froude number based on the wake

10
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characteristic scale Ho . Thus, we arrive at the relationship

for the normalized rate of internal wave energy production by the wake
collapse mechanism.

In order to evaluate the .oniitant of prcgortionality, recourse
must bs rnaae to empirical data. Fig. 6 is a plot of fE as a function

of Fw , ba ed on available data (Schooley and Stewart, 1963, Stock-
hausen et al, 1966; unpublished data provided by K. G. Williams of NRL)

from experimental studies with self-propelled bodies*, the self-propul-

sion mode being the most physically relevant. Although there is no

theoretical justification for such a choice, the data is consistent
with a relationship of the form

6 (34)

Examination of Fig. 7, which illustrates normalized vertical density
profiles near the vertical centerline of a wake at maximum vertical

expansion based on the data in the report by Stockhausen et al (1966),
indicates that an equivalent uniformly mixed wake would have Ni2 :1/2,

for Fw2-I 0.04. Thus, based on the relationships (32) and (34) and

this single piece of data, we obtain the approximate relationship

-t~a. (35)

It is important to emphasize that there is no theoretical basis for the
expressions (34) and (35), although they are consistent with the avail-
able data and the relationship (32) derived from similarity arguments.

In deriving (32), what in fact we have done is to replace the generating
body with a virtual wa;.e source, so that when results which are incon-

sistent with the reality of the body are encountered, the validity of
the model comes into question. The basic constraints which must be
satisfied i the model is to be at least internally consistent are that

:!M e 1 and fE :' 1, which introduces the bounds

0. 0/ !: , <- ZS (35)

Within these bounds, we then have an approximate expression

E .t 0. 0 O. (

The experiments by Williams involved simulated self-propulsion, in
which a model with attached propeller was towed thru a tank, the pro-
peller being driven at a rate such that the pitch of the propeller

times the rotation rate was equal to the forward speed of the model.

11



for the rate of internal wave energy production by the wake collapse
process.

The normalized rate of energy supply to the internal wave field
as determined above is illustrated in Fig. 8. Included in Fig. 8 is
an indication of the rclative location of the data points which went
into determining the expressions (34) and (35). The important feature
of the assumed functional form for the relationship (33) is the inverse
proportionality of Ew and 7% / , which is at least consistent with
the idea that a faster body will create a more energetic wake, and the
expression (37) should provide a reasonable estimate of the rate of
internal wave generation, at least over the parameter ranges
covered by the model studies.

The displacement thickness effect

The presence of the boundary layer of retarded fluid adjacent to
the body causes an outward displacement of streamlines in the surrounding
fluid which is perpetuated by the turbulent wake and results in an
effective increase in the size of the body over that presented to the
system in the absence of viscous effects. The dynamics of such near
field flow processes will be largely decoupled from the ambient strati-
fication provided the characteristic time scale 2, of the process is
small compared to that associated with the environmental density
gradient = N-1 . If we assume that 1 <( , and if the body is

essentially axisymmetric, then the mean flow in the near field may be
described by the Stokes stream function j , where

<9 # - (38a)
0 r

a 3" (38b)

where u and v are the axial (x direction) and radial (r direction, where
r2 = y2 + z2) velocity components. Cylindrically shaped surfaces of
constant 3b are the Stokes stream surfaces, which are the axisymmetric
analog of streamlines in two-dimensional flows.

A number of parameters have been developed to describe the proper-
ties of boundary layers and wakes. For the purposes of this report, two
integral parameters are of interest, the displacement thickness 6., and
the momentum loss thickness c , where we define*

*These definitions differ somewhat from the more traditional defini-
tions which are carry-overs from two dimensional theory. The present
definitions are used to facilitate interpretation in the sequel. A
thorough discussion of the concept of displacement thickness is given
byLighthill (1958).

12
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f(39a)

" 0(39b)

where rb is the local body radius and u is the axial flow speed in the
boundary layer. Since we are primarily interested in the effects asso-
ciated with the turbulent boundary layer and its extension as the turbu-
lent wake, it is convenient and conceptually advantageous to replace
the body with a momentum source along r = 0 which will produce an equiva-
lent boundary. In this case, rb = 0 and, to the boundary layer approxi-
mation*, the displacement thickness S may be ±nterpreted as an effective
outward displacement of the Stokes stream surface 0, insofar as the
flow outside the boundary layer is coucerned. To illustrate this inter-
pretation, consider a flow such that u = U for r>cf. For e ) S , the
stream function 3b is gin by

b -- -. r U '- " a "

- 6 'U - -

If, however, the stream surface = 0 were situated at- = , instead
of r = 0, and the flow were uniform ( .# L/ ), we would haveP-

- ULtj _

Thus, the displacement thickness is interpreted as the radius of an
equivalent body in potential flow. This is the "displacement body".
The momentum loss thickness J is a measure of the frictional drag on
the upstream portion of the body.

A number of techniques for computing turbulent boundary layers in
general are available (see, for example, Kline et al, 1969) some of
which possess fairly straightforward generalizations to boundary layers
or, txisymmetric bodies (see, for example, Tsakonas and Jacobs, 1960,
Yamz3ka, 1963, Nelson, 1964, 1966, Tetervin, 1969). If the body is
self-propelled, the computation is rendered considerably more compli-
cated by the pressure gradients near the tail of the body induced by

See sections Ha and XIXa of Schlichting's (1968) book for a discussion
of the boundary layer approximation.

13
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the propeller. In this case, iterative procedures (see, for example,

Amtsberg, 1960, Hucho, 1969; see also Beveridge, 1969) may be used to

compute boundary layers which compare favorably with experiment over

all but the very tail end of the body, in the immediate vicinity of

the propeller.

Behind the body, the turbulent boundary layer is extended as a

turbulent wake. In the absence of self-propulsion, the wake is charac-

terized to the boundary layer approximation by a constant momentum loss

thickness. The condition of self-propulsion, on the other hand, dras-

tically alters the integral properties of the boundary layer. Again
to the boundary layer approximation, the condition of self propulsion

requires that = 0, that is, that there is no net drag on the body-
propeller system. A corplete description of the interaction between

the boundary layer and the propeller is not possible with the present
state of the art of hydrodynamic theory. However, since we are pri-

marily interested in the displacement thickness of the wake, which is

an integral property and hence should be somewhat insensitive to the

details of the flow structure, we oay estimate the change in cf, on

passing thru the region of strong propeller influence in a fairly

simple manner, using the condition of sell propulsion.

A slight distance upstream of the propeller, the displacement
and momentum thicknesses are c, and SA , while downstream, the

displacement thickness is CF , with Sxw = 0. Representing the

downstream velocity as V + Up , where u is the upstream velocity
profile and 14p is the modification thereof induced by the propeller,

we have
liS,': ((u-.) --dr.

A/

0o

If we represent up as a uniform velocity over the upstream boundary
layer thickness S where U - u = 0 for r > , then we have that \

14



The condition of self propulsion ( c. = 0) then requires that

(40)

In practice, s may be of order 307 to 50% of the maximum body
radius H, / may be 15% to 25% of H, and the shape parameter
Hjr. = 5j/ d. will generally be greater -than 1.3 and may be greater
than 2 (Burstein, 1965, Reed et al, 1966, Hucho, 1969), so that up
may be from 7% to 10% of U, and Shc may be from 10% to 20% of the
maximum body radius.*

As noted previously, the dynamics of turbulent wake development
in a stratified medium is not fully understood. However, for the
momentumless wake in a homogeneous fluid, an extensive experimental
investigation exists, due to Naudascher (1965). At sufficiently
large distances downstream of the generating element, Naudascher
found an essentially velf-preserving wake form. Taking advantage of
the self-preserving qu:ality of the wake, we may use Naudascher's data
to examine the change in displacement thickness with distance down-
stream. Fig. 9 illustrates the decay of the normalized displacement
thickness A S.,/H as a function of nondimensional distance downstream
x/He, where A is a constant which depends on the exact shape of the
self-preserving form of the wake. Extrapolation of Naudascher's data
indicates that the displacement thickness is reduced essentially to
zero at a downstream distance x/HO = 150. This indicates that for a
self-propelled body with length/diameter aspect ratio R = 7 1/2 and
Ho/H = 1/2 in a homogeneous fluid, the displacement body associated
with the turbulent wake would be approximately 5 times as long as the
generating body, although as indicated previously, the maximum radius
of the displacement body would be only 10% or 20% of the maximum
radius of the generating body.

In order to assess the relative importance of the displacement
thickness effect, we must consider its interaction with the hull and
wake collapse effects. In obtaining estimates of the size of the

effective displacement body associated with the turbulent boundary
layer and wake, we have been forced to rely on data and arguments
which are strictly applicable only to homogeneous fluids. If the
time scale * = L*/U, where L* is the half-length of the effective
displacement body, becomes comparable to 76, we may expect some dis-
tortion of the displacement body due to buoyancy effects. This distor-
tion should be reflected in a distortion of the turbulent wake structure

which is similar to but distinct from that associated with the wake

For model studies in which the propeller radius is nearly equal to
the body radius, f,,may be a considerably larger fraction of the
body radius.

15L



- -W

collapse mechanism, although in general we would expect the effect of

this interaction to be of minor importance. Potentially more important
is the interaction with the hull effect. An examination of Fig. 4

indicates that the presence of an effective extension of the generating

body will enhance the supply of energy to the hull effect internal wave
field. The exact magnitude of the relative increase in hull wave making

propensity would be difficult to assess with the relatively cri:de models
discussed in this report. For the parameter range considered above
(maximum displacement thickness of approximately 1/2 Ho, H(%/H Z 1/4)

the increase should be slight, although for model studies for which
Ho/H is generally of order unity the effect may be sensible, and signif-
icant increases may be found for non-self propelled models for which,
due to the absence of the propeller contraction, the maximum displace-
ment thickness is greater, and for which the characteristic length of
the displacement body is substantially increased (see, for example,
Tennekes and Lumley, 1972, sec. 4.2 and 4.3).

Conclusions

We have systematically invvstigated the basic physical processes
which are associated with the passage of a body thru a stratified
fluid and which result in disturbance motions which are steady in a
reference frame moving with the body. Three dominant mechanisms are
involved in the flux of energy into the internal wave field which is
stationary with respect to the body. The first two mechanisms (the
hull effect and the wake collapse effect) act somewhat independently,
and have different parametric spheres of influence. For a given body
shape and size and a given environmental stratification, the body

effect dominates he wave field at relatively low speeds, while the
wake collapse effect dominates at relatively high speeds. For example,

if we consider a body with characterisitc half-length L = 50 m and
length-breadth aspect ratio R = 10, travelling in a fluid with
N - 10-2 sec" 1 , then, assuming a propulsive system such that the
characteristic wake radius is 1/2 the characteristic body radius, we

may expect the body effect to dominate the radiated wave field for

speeds less than approximately 1 m/sec, while the wake collapse effect
should dominate for speeds in excess of 2 m/sec. The third effect is

important insofar as it interacts with the other effects, the dominant

interaction occurring with the hull effect. This mechanism, the dis-
placement thickness 9ffect, produces an effective extension of the

body, and a consequent increase in the supply of hull effect type
energty to the internal wave field. Although the net increase in

radi.,ed energy due to this effect is probably of minor importance in
situations similar to that described in the above example, it may be
of sibnificant importance in model studies which do not involve self

propul:sion, resulting in a misleading amplification of hull-type
internal wave energy in such situations.



Appendix

Problems associated with the bluff sides of an ellipsoid may be
satisfactorily, albeit not rigorously, resolved by considering a new
body obtained by multiplying the local height of the ellipsoid by the
vertical projection of the outward normal of the ellipsoid at that
point. The intuitive justification of such an approximation arises
from the fact that linear theory accounts directly for only the verti-
cal component of induced velocity. Thu&, we replace the body shape

by the new shape

IL Hl 1  Al

for which the induced vertical velocity vanishes around the edge.

We may proceed as before, obtaining the Fourier transform of this

modified body shape

hrx,,)- i?" L t , l, .

Z A2

so that the rate of internal wave energy production is

00 (x14

A3

Nondimensionalizing and normalizing as before, we then have that

'>'; I " /'r A - li )"
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This expression would then replace the expression (21) for the normal-

ized rate of internal wave energy production associated with the hull
effect.
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Fig. 2 - Normalized internal wave energy production rates (E) as a
function of the ratio'u /*rb = NL/U for various three
dimensional bodies,

z2  x2 Hellipsoid: - 4=

--- generalized Witch (Blumen 1965): H2 +

------vertical discs (after Mackinnon et al 1969):

body #1. 4, = exp 1- (X + Z)1

body #2. 2L = I(I + Y)§ -2

for ratios H/L = 0.1 (a) and 10.(b).
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Fig. 3 - Anomaalous behavior of normalized energy production rate
(W for small values of the ratio 1 u/?b = NL/U for
ellipsoids with aspect ratio R. It is expected that
production rates illustrated in this figure are geuerally
larger than those actually realized (see text).
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Fig. 4 - Normalized internal wave energy production rate (E) as a
function of the ratio Tu/ Tb = NL/U for ellipsoids
with aspect ratio R. Production rates illustrated in
this figure are expected to be reliable provided that

-r ,/Tb < 1/2.

26



N2

Ni2
y-

Fig. 5 - Idealized model of cross-section of partially mixed

wake, as defined by isopychnals, illustrating the

displacement function 6 . Stratification inside

mixed region has Brant-Vaisala frequency Ni, that in

environment has N.
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Fig. 6 - Wake expansion factor (fE = AE/Ao, where AE is the

cross-sectional area at maximum vertical expansion and

Ao is the initial or characteristic area) as a function

of FW" 1 = NHo/U, where Ho is the initial radius. The

dashed line has a slope of -1/2.

a- Schooley & Stewart (1963)

A- Stokhausen, Clark & Kennedy (1966)

o - Williams (unpublished)
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Fig. 7 - Normalized vertical density profiles near the vertical
centerlime of a wake at maximum vertical expansion,
W = 0.04; dashed diagonal line is undisturbed
profile. (after Stockhausen, Clark & Kennedy, 1966)
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Fig. 8 - Normalized power (EW) associated with wake potential
energy density as a function of u/rb = NL/U, for
various body aspect ratios (R = L/H), where H/HO is
the ratio of body radius to characteristic initial
wake radius. Normalization is the same as that used
for "hull effect" internal wave energy production
rate. Points indicate parametric locatio of data
used in evaluating the constant of proportionality
in expression (31).
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