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THEORY OF A TWO-PHASE GAS-LIQUID
EJECTOR WITH A CYLINDRICAL
MIXING CHAMBER

Yu. N. Vasil'yev

INTRODUCTION

A gas-liquid or liquid.-gas ejector is a two-phase ejector in

which a liquid enters one nozzle and gas enters another. In the

general case the process of mixing the working bodies in a gas-

liquid ejector can be accompanied by phase and chemical transforma-

tions. At %he ejector outlet, depending on the physical properties
and the parameters of the state of the gas and the liquid, one of

the following mixtures can be formed: one-phase vapor-gas, two-

phase vapor-gas-liquid, three-phase gas-vapor-liquid with solid

particles, or, finally, a two-phase gas-vapor mixture with solid

particles. In a case where the gas is dissolved in the Liquid

a single-phase solution of gas in liquid may develop at tnc ejector

outlet.

At the present time there is no general theory of a gas-

liquid ejector. The most studied case is that of a vacuum liquid-gas
ejector with a two-phase gas-liquid mixture. This ejector has been
used in various fields of technology for fifty years. A great

number of works have been dedicated to it, although because of the

FTD-MT-24-1668-72 iv



complexity of the mixture-formation process and the uncertainty

concerning the properties of the gas-liquid rlmixture obtained, it

has not yet been possible to create even a jualitative theory

for this ejector. Existing methods of calcul::ing a liquid vacuum

ejector (see [2-h, 12, 13, 15, 16, 19-2l]) are empirical and can

only be used in a relatively narrow range of change in the

parameters which describe its operation, These methods are not

sufficiently reliable and in a number of cises provide rather

deviant results.

Unsuccessful attempts to create a theory. for a vacuum liquid-

gas ejector based on equations of the con.ervation of mass, energy,

and momentum are explained by a number of aut:.ors by the fact that

the mass of ejected gas in such an ejector is thousands of times

less than the mass of the ejecting liquidand thus cannot noticeabiy

influence its velocity. This idea has been so convincing that it

has been passed on unchanged from article to article (see, for

example, works [3, 12, 16]). For this reason the theory of the

liquid-gas ejector has remained virtually undeveloped in recent

years and all efforts have been directed toward the study of the

f physics of the phenomenon (see [5, 11)) and the creating of
constantly improved empirical calculation methods.

Dedicated to the theoretical study of a gas-liquid ejector

with a two-phase gas-liquid mixture is a short article [17) in which

ejection equations are derived with the assulption that there is

no heat exchange between the liquid and the gas and in which the

= cut-off regime of the combustion chamber IS examined. An attempt

was also made to develop a method of ca2lulating a gas-liquid

ejector with a two-phase gas-liquid mixture in [16]. Calculation
equations for agas-liquidejector binaLing The parameters of the

flows in the inlet and outlet sections o' the mIxing chamber were

obtained by the authors using a formal trans'cr.ation of gas -jector

equations under the condition of an incor.reszle ejector medium.

However, this simplified method does not Si-e full consideration

to the dlstinguishing characteristics Q h flow of" a two-pase

FTD-MT-2L-!660 -72 v
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mixture formed at the outlet from the mixing chamber, and thus

the obtained equations can only be used in certain particular cases

where the parameters of the mixed media are assigned. In the

general case the use of the equations of [16] might lead to

erroneous results. In particular this applies to the calculation

for limiting regimes of ejector operation, which in most cases

are the most advantageous.

The present article presents a theory on two-phase gas-liquid

and liquid-gas ejectors with cylindrical mixing chambers for a

case where a two-phase gas-liquid mixture is formed at the ejector

outlet. Ejection equations are derived which show the connection

between the flow parameters of the gas in Uhe liquid on the nozzle

edge and the parameters of the two-phase mixture in the outlet

section of the mixing chamber. Possible operational modes for an

ejector are described and classified. Possible systems are

examined for the flow of gas and liquid in the nozzles and in

the initial part of the mixing chamber and the conditions which

connect the flow parameters in different regimes are found.

The ejection equations are derived under the assumption that

the two-phase gas-liquid mixture forming in the ejector is

homogeneous and that the particles of liquid and the gas are in

thermal and mechanical equilibrium. The article does not

examine the problem of the cases in which rractical satisfaction

of these conditions would be possible.

It should be mentioned that the proposed theory does not

enable calculating ejectors in which, for Dne reason or another,

(for example, because of insufficient length of the mixing

chamber) the gas-liquid mixture does not satisfy the above mentioned

conditions. However, the efficiency of such ejectors is always

lower than for the case of a homogeneous and equilibrium mixture.

Thus, using the equation which has been obtained we can estimate

the limiting characteristics of the two-phase ejector. Comparison

of experimental characteristics with limiting theoretical

FTD-MT-24-1668-72 vi



characterLstics lets us judge the degree of perfection of the

studied ejector and the possibilities of improving its effective-

ness. Furthr-ermore, a qualitatively correct description of the

processes which occur in the flow part of the ejector enable us

to take direct measures in improving its parameters.

Testing the theory using a vacuum liquid-gas ejector as

the model gave encouraging results (see article [8] of this

collection). Methods based upon it enabled a substantial

increase in the efficiency of an ejector. In this case the

experimental characteristics of improved variants of the ejector,

which provided more complete mixing of the flows and breaking

of the liquid jet, were in satisfactory agreement with theoretical

characteristics over a wide range of variation in the parameters

of the gas and the liquid.

Calculations made from theoretical dependences of the

present work indicated that just as in gas ejectors with high-

pressure drops, the most advantageous operational regime for

vacuum liquid-gas ejectors are critical regimes in wnich the

flow of the two-phase mixture in the outlet section of the mixing

chamber is supersonic. Losses in the direct plane shock, which

transforms the supersonic flow of the two-phase mixture into a

subsonic flow, comprise most of the los.-es which determine the

efficiency of such an ejector in limiting critical regimes with

the expanding diffuser which is usually used. Thus, it was

proposed that the expanding diffuser should be replaced by a

supersonic diffuser with a throat, in which damping of the

supersonic flow in the two-phase mixture would occur in systems

of angle shocks, cut off by the rlane shock, with mucl. lowe-
losses. This idea was shown to be correct by an exerImen~a!

test on a series of vacuum ejectors.

In this case the total pressure of the mixture at the

ejector outlet and its efficiency increased 1.5-2.0 times (ser

']. hus, even the first attempts tc =-.;e the results of

FTD-MT-24-!668-72 Vii



this work enabled a considerable increase in the efficiency of.

liquid-gas ejectors and pointed the way to further improvements.
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CHAPTER 1

GENERAL PPrDERTIES OF EQUILIBRIUM
TW O-PHASE GAS-LIQUID MIXTURE.
CALCULATING ONE-DIMENSIONAL
FLOWS

In the present work, as we have already mentioned, we are

studying a gas-.1iquid ejector in which a two-phase gas-liquid

mixture is formed at the outlet from the Mlxing chamber. In

deriving ejection equations and calculat~ng the flow of the
J obtained two-phase mixture in the diffuser the following assumptions

were made:

tr1) the drops of liquid are equal.i; distributed throughout
the entire mixture, and their dimensions are so small that in

teprocess of changing state they are 'n.r t~.erral and mechanical
equilibrium with the gas;

2) changec in state of the mixture are not accompanied

bchemical transformations;

3) bhere is no mass exchange between the phases (evidently

the mixture 6atisfies this condition if tne gas contained In
does not dissolve in the li-quid and If In the studied ranrge of'
temperature variation the saturation rre:-sure of the liquid is
much les-s than zhe pressure Of tne Gas'.;

:-MT-24-1666.721
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4) the gas Is ideal and its physical constants do not

depend on temperature or pressure;

5) the heat capacity and specific weight of the liquid do

not depend on temperature or pressure.

2
Now we introduce the designations: p - pressure per kgf/m2;

T in OK and t in 0C . temperature; y in kgf/m3  specific weight;
2 43

p in kg-s Im - density; v in m3 /kg . specific volume; i in

Cal/kg - enthalpy; U in Cal/kg " internal energy; s in Cal/(kg x

x deg) - entropy; c in Cal/(kg'deg) - specific heat capacity

(Cp and cv M specific heat capacities under constant pressure and

volume, respectively); R in kgf'm/(kg'deg) - gas constant; J in

22
kgf 'r/Cal - mechanical equivalent of heat; g in rn/s - gravitational

acceleration; G in kgf/s - per-second mass flow rate; f in m2 -

area of cross section of stream; W in m/s - velocity of flow;

a in m/s - critical velocity; a in m/s speed of sound;
K

= W/a. - reduced velocities; M = W/a M number; K = C /cv -
pv

adiabatic exponent; K = G r/G ratio of mass flow rates of gas

and liquid in mixture, equal to the ejection coefficient.
Quantities with the subscript "c" correspond to the parameters

of the gas-liquid mixture; quantities with subscripts "r,"
1 "n,"

and "," correspond to the parameters of the gas, vapor, and

liquid. Subscripts with "0" and "s" denote the parameters of

stagnation and saturation; subscript "IK" - the parameters of the

flow in the critical section of the channel, where W = a = a .

1.1. Physical Constants and Parameters
of State of the Mixture. Equation
of State

The properties of an equilibrium two.-phase gas-liquid

mixture under the assumptions made above has been studied in a

number of works (see, for example, [14]). Thus, in this article

the problem is not thoroughly examined; below we present only

those relationships which are necessary for the following

analysis of the work of the ejector.

FTD-MT-24-1668-72 2
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The specif.i hieat capacities a t '.,- adiabatic exponents

of .estudied twc-thase mixture, as ?an e easily de:r, -strated,

'.re '-rmlned a- follows:

Kcpr+cx (1)
K+1

Y Cet r . C X€

V .+ (1.2)

* Cp KCpI. C(.3)

The specific weight of the mixture found from the obvious

relationship:

, G.. JrG'-rr  = -' ,( 1.14l)

-0 Yr Ye

which, considering equality

SG=r+ G, +GmK ) (1I.5 )

leads to form

Y += 2± .(1.6)- K" 1

If we consider that the specific weight of the liquid e-ri

not depend on temperature and pressure, while the specific

weight of the gas is determined by the ".apeyron equation

*pc=J~ryroc, (1.7)

then from equation (1.6) we obtain the e..uation of state of a

two-phase gas-liquid mixture:

Pc[ 2 -- .....--l= r/ ,.,"c (1.8)
" (+ ) -

FTD ,M-To /h.
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If we introduce

R., = K Rn (1.9)

then we write equation (1.8) in the form of

[-- 'x(K + 1) 1--Rc¥cc. (1.10)

Equation (1.10) is distinguished from the equation of state
of an ideal gas with gas constant RC only by the presence of the

term y C/[Y (K + 1)], which is equal to the relative volume of the

liquid in the mixture V /V c . In the case of gas concentrations

which are not very low and relatively low pressures the volume

of liquid is not great, and thus the behavior of the studied

two-phase mixture is very close to that of an ideal gas with

gas constant Rc . For example, for a water-air mixture at
2K > 0.05, P0 < 2 kgf/cm . and T = 288°K error in determining

PC and y without considering the volume of the liquid contained

in the mixture does not exceed 4.5%.

From equation (1.9) using equations (1.1), (1.2), and (1.3),

and considering that an ideal gas is subject to the Meyer

equation

we find

R(-___!.)J1 (1.12)

Thus, it follows that the studied two-phase mixture is also

subject to the Meyer equation, and, consequently, its internal I

energy does not depend on pressure and volume.

4*r 14



Ir a ''"" ....... - orm the e 'ua'Aon of state of an

equl~litL. ".• :-2ic'.' ixture wr-Itte. a.- follows:

dp d7 dyc 1 . (1.'")
PC 74 € 1"

The specific internal energy of' two-p.ase mixture undet

the above assumptions is determined by the obvious relationship

uc C. , + Ue.11 (1.14)

where U is a certain initial value of the internal energy
C@H

at temperature Tc Since in the calculations we are always
I"C H

V dealing with an energy difference, then quantity UC.H is eliminated,

, -and for the sake of convenience we can assume that U = 0.
Then from equations (1.14) and (i.2), if we consider that

Ur  c T and' =c Twe get
v rc W:1

KU1. + -i Uc----,J' K~r :'.(1.15)
U CC K-i

The specific enthalpy of the mixture equals:

i-U "PC
J7C

Thus, If we ,se relationship (1.10), (1.12) and (1.15), we find

Tht- de!endence of the internal energy of the mixture on

Stemperr;,re haz the same form as for an ideal gas, while equation

(1.17), which is determined by the entha'py of the x-ture,

contains a term which depends on pressure, which we do not have

in the analogo43 equation for an ideal gas. It should be menoned,

however, thatr, in most cases of practical interest the values of

the seco'2 : : err .- -atlion (1.17) are very low and can be ir,,red.

p -



Thus, for example, for waterwair mixtures t, any value of ratio

Gr /G or pressure pc < 10 kgf/cm2 the difference between the

actual enthalpy of the mixture and value Cp CT does not exceed

0.3%.

:-2. Isentropic Process of State Change.
.'3eed of Sound in the Mixture

The change in state of the studied two-phase mixture occurs

in internal equilibrium, and thus its entropy can be represented

as

rds, =dUc++pdc. (1,18)

If we transform this equation by means of relationships

(1-10), (1.13),and (1.15), we get

dT s c e (1.19)
ic 09 CK+, IYC 73m (K + 1)

Hence, considering relationship (1.12), we get

! 4 t= y(K + I) ,-3-C.b-

IC .

In +s..,- In ,, (1.20)
%Pc

where s is the integration constant.

From equation (1.20) it follows that in the case of an

isentropic change in state of the mixture Pc, yc and Tc are linked

by relationships:

Pet To, (1.21) '
] ci T __ /.L~

"1 "I ' - ---

Sm(K+l) (1.22)

6



The speed of sound is determined by equation

(1.23)

sub:titution of which in equation (1.!') orovides

a,- VgFR ICT PC 9% (1.24)Ye"f .7C C1

Hence it follows that, unlike the ideal gas, the speed of sound

in the studied two-phase mixture for the given composition

depends not only on temperature, but on specific weight and
pressure. As the relative volume of the liquid VmiVciyc/[¥..(K+I)]
tends to zero, which for the given composition corresponds to the

case of PC * 0; the speed of sound in the mixture tends to the
value corresponding to the speed of sound in an ideal gas, whose

adiabatic exoonent and gas constant are equal, respectively, to:

K and Rc; when V /VC * 1, when the volume of the gas in the

V mixture tends to zero, the speed of sound in the mixture rises
to i;ifinity.

As an example Fig. 1 shows curves representing the change in
the speed of sound in a two-phase water-air mixture as a function

of ratio Gr/G , calculated from formula (1.24) for several values
of pressure at a temperature of T = 2F % .. Curves o = 0 corre-

sponds to the speed of sound in an ide;A' -as when K = K andSr c
i-\ R.

r c

If we examine Fig. 1 we see that when pc = 0 with a decreased

gas content :'e speed of sound in the mixture decreases steadily
from 340 m/;" when K = 10- to " m/s when K =0- and continues to

, decrease wit.f h a further drop in K Gr/G m. h-- is explained by
the fact that with a decrease in K the ad. abat2.c exponent of
the mixture -ends to unity, while R tends to zero. In a range
of' change o" oefficient K from 103 to i0- .nd mixture pressure

from zero to 5 kgf/cm the speed of sound in the mixti.re practically

g.7
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coincides with ;he speed of sound in an ideal gas (curve pc = 0).

With an increase in pressure when K = const the speed of sound

in the mixture rises steadily. Thus*, for example, when K = 0.01

with an increase in pressure from zero to 10 and to 100 kgf/cm2

the quantity ac rises accordingly from 28 m/s to 63 and 360 m/s.

Curves a c(K) when pc = const and Tc = const have a minimum,

which with an increase in pressure moves toward greater values

of K.

a ", N/rH=T88K !T

40T -

, .&-,oo -Il--
P c: Kr/CMi

i I
, I

T-4/

S 0S 4 C'4--W 1W 'V
o _ i i_ _

4000 0,oal not . 0,01 7 I,0 IV 10 15%5 G

Fig. i, Curves representing change in
speed of sound in a two-phase water-air
mixture depending on ratio G /G .

Designationst M/V8e = m/s; KF/cm2 = kgf/cm 2 .
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1.3. Calculating One-DImensional Flows
c" "i Mixture Without Losses

Let us examine the established fLou cf the equilibrium two-

phase mixture in a stationary channel of variable suction with

heat-insulated walls, which was described above. 4ccording to
mthe assumption of echanical equilibrium for the components of

the mixture we will consider the velocity of the gas and the

liquid in any section of the channel to be eq'ial. Then, for the

sake of simplicity, we will assume that there are no losses in

total pressure of the mixture as it flows in the channel.

1.3.1. General Case of the Flow

The equation of the conservation of energy for the studied

flow is written, as we know, in the form of

..+i=const, (1.25)

from which, if we consider relationship (1.17) and introduce

stagnation parameters, we get

2 PCO (1.26)
2g) J(K + c - --  + I 1)

For assigned flow parameters in the studied channel section

equation (1.26) lets us find the stagnation enthalpy of the

mixture. To determine p 0 and T 0 , in addition to equation

(1.26), we must use the condition of isentropicity (S = )

which, as follows from relationship .2!), givp- A-

IC

S(1.27)

If we substitute relationship (1.27) ir (1.26), we get the

equation

C Pf-0 C + PC PC
PC J7i(K+1) Re( 8

9



whose solution provides the thought value pco; Tc0 is then

found from relationship (1.27).

From equation (1,26) it follows that as the two-phase mixture
flows in a stationary channel with heat-insulated walls, when the
stagnation enthalpy remains invariable, the stagnation temperature
can change. Quantity T 0 when ic0 = const remains unchanged

only in the case of an isentropic flow, when total pressure

remains unchanged.

Let us find the parameters of state in a critical section
of the channel, in which the velocity of the flow is equal to
the local speed of sound. If we assume that W. = as = at.K,
then from equation (1,26), using relationships (1.10), (1.24),
and (1.27), we get the following equation for determining static

pressure in the critical section:

Cc@ KC

/ r psrP

+CPTCo---- +-'- P JIg. (1.29)

After determining p from relationship (1.27) we find
T and then we determine W a according to formula (1.24).

From equation (1.29) it follows that for assigned physical
properties in a two-phase mixture critical drops in pressures
(P /P0 and temperatures (To.K/To0 depend on the stagnation
parameters T 0o, Pc0"

In conclusion let us give the calculation order for the
isentropic flow of the studied gas-liquid mixture for several
cases where the original parameters, encountered in studying *

ejector characteristics, are gi!ven. The physical constants of the

mixture will in this case be considered known.

10
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I. The parameters olf state and the 7elocity of the mixture

:channel jectic'± 3 w-'th section area fare --iver. We find the

parameters of sta-:! and the velocity of '-he ix-ure -,'.n channel

sec',-on 2 with cross-section area e'

1) From relationships (1.26), (1.27), and (.),we find

* the stagnation parameters of the mixture ~cQ c'T 0 )

* 2) If we solve equation

t~~W,~e, conervtio of as

we (in sttcpe-'ep

Equhisoatine (1.30 iesusto vaes tor p esueio ofTh

lhescserv ithese v aluss~ epnst h uproi lwo h

YCtueth geaer- o h subsonic I a caewer1h

or de rease forme a s~y (1.27) (1.10)o , (1.1'1 sralid o1. ly when

calculand T e sun d a after which wedtriete



.- --- - ij.w ,, .. . . . .. . .. . ...

TI. The stagnation parameters of the mixture and the area

of the outlet section of the contracted channel are given, We

find the dependence of the flow rate, the parameters of state,

and the outflow velocity for the mixture on pressure at the edge

of the channel.

If we solve equation (1.29) we find pc. which corresponds

to the shut-off regime of the channel, after which we find

TC.K' YC.K' and W C. = ac. from relationships (1,27), (1.10) and

(1.24).

2) We assign a series of values pc in a range from p C, to

P 0 and from formulas (1.27) and (1.10) we find the values of Tc

and y which correspond to them.IC

3% Let us find the outflow velocity cf the mixture

1VcV2ZJC~cTco )+ (+

,, 2g pco . _pe(.32)
' W= 2~c~ Il+ (K+I) ' ,

after which we determine the flow rate of the mixture and number M.i C

III. We assign the stagnation parameters of the mixture and

the areas of the critical and outlet sections of the supersonic

nozzle. We find the parameters of state and the velocity of the

mixture in the outlet section of the nozzle under its rated

operational mode.

1) According to point (1) of problem II we find the quantities

Pc.K" To.KO YC.K and WC.K.

2) Further calculation is according to points (2) and (3)

of problem I.

12



1.3.2. Liquid Volume in Mixture is bmall
in CQ~nDarison to Gas Volume

if the volume of the liquid in the mixture is negligibly

small as compared to the gas volume, then the equation of state

(1.10) is reduced to the same form that it has for an ideal gas:

pC=RCYcTC. (1.33)

The same thing happens with equations (2.17), (1.21), (1.22),

and (1.24), which are written as follows:

l; 4= =T=;(1l, 3L;)

PC ) - ; (1.30)

a.= (1.36)

Equation (1.26) is reduce to t de f'-i

.1,-.p=Tcc --. (1.37)

from which, -sing (1.36), we find the c'-1t1cal steed of sound

-.%crr .(1.38)
• V + %C+

If we introduce the reduced velocity A = W then from

the relationships of (1.37), using formulas (1.33) and (1.35),

* we get the known gas-dynamics functions:

T

At- \ (1.39)

C

13



- " - - , . - - , - '- w

which, together with functions

q(~)X2 ( (1.140)

)(1.41)

enable us to greatly simplify the calculations. The quantity

A C.which is contained in these equations, can vary from zero

to It= %+ When A 1 from equations (1.39)-(1.41) we

get

+ ) C+
1

Pe#Il e  (1.42)
• \Xc+I/ ;qc(1)=Q,(1); zc(1)=2,-...@

1.3.3. The Amount of Liquid
in the Mixture is Very Great

This case is characteristic fc a vacuum liquid-gas ejector,

in which the mass flow rate exceeds the mass flow rate of the gas

(K = 10"3-10- 5 ) by several orders. In this case the temperature

of the mixture as it flows in a channel of variable section

remains virtually unchanged, and thus the flow can be regarded

approximately as isothermic (Tc = T const).
CO

The equation of state (1.10) of a two-phase mixture can be

written for the studied case as follows:

Pc~v~j~)~ ~i~d+I) -~(1.143)

where

b"Rco=const. (1.44)

1 /



For the speed of sound we obtain, expression (1.24) under

condition T - const the following express:or:c

a,= (1.45)

According to the first law of thermodynamics,heat ql, which

is conducted to the flow through the wall of the channel in the

segment between sections 1-2, equalsi

W2 _ -2

0,.2 U - 2 +wC-!, +-(Pc2 V2-p ,PVc1. (1.146)
2g/

in the case of an isothermic flow T 2 =Tc , and thus accord-

ing to relationship (1.15) we have

U,-UC1=O. (1.147)

If we use equation (1.43), then we get

1 Pc2'" (l.VIO

ii
All of the heat which is conducted to the working body in

the studied isothermic process is spent in producing work, and

thus we can write

2

!

from which, using equation (1.43), we get

q12 = 'In (1.49)

If we consider expressions (1.47), (1.48), and (1i)9), and

the fact that according to our assumption theee are no losses in

total pressure, we reduce the equation of the conservation of

energy (1.46) to the following form:

15
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Wlc-- Inp,,+ -- Pet+ = 22 b1
2g IK+ ~1) 2g

+ Pt2Pea . p ± •PG (1.50)

If the velocity values and the parameters of state are

assigned in a certain section of the channel, equation (1.50)

will let us find the total pressure of the mixture. Quantity Y,0

is then determined according to formula (1,43).

The critical speed of sound a Cd in an isothermic flow is

found from equation (1.50), which when W = ac = acK is reduced5,

using relationships (1.43) and (i.45),to the form of

4. - bIn y (K+1)(V± G".-b)1+
2g? L Ag

(s/I )b~pO' (1.51)
+~U$ aC.-J Po' x(K+1)

After we have determined the critical velocity, then from

expression (1.45) we find the ratio pc. /yc.K, and then from equation

(1.43) we determine the static pressure and the specific weight

of the mixture in the critical section of the channel.

From equation (1.50) we find the following expression for

determining the outflow velocity of the mixture from the nozzle

at an assigned ratio of values p c/PcO

WC&M 2g[b1nhSP±+ ~+)(~Ej.(1.52)W V, PC u (K + 1) vco.~l

Let us assign the calculation order of an isothermic flow

of the mixture in a channel without losses.

1.6



Let the phyisical constants, the parameters of state, and *;he

velocity of the nixture in section 1 of the channel wi; se ,_

area f be assigned. We find the flow parameters of the mixtur,

in section 2 of the channel with section area f2 .

1) If' we solve equation
I

~----~b b+ bInp + A
" Pc--( + 1n(K + ") JK ' )

then we fieid static pressure pc2'

2) From equation (1.43) we find the *pecific weight

of' -he mixture Y

3) From equation (1.31) we determine the velocity of the

mixture Wc2'

1.4. Relationships for a Plane Shock

Let us assign the relationships which determine the parameters

of the flow for a plane shock developing in a supersonic

two-phase flow mixture. Subscripts and "2" denote flow

parameters in front of and behind the shock, respectively.

1.14.1. General Case of the Flow

From the equation of continuit-,y, considering that f,! = f

S=, ,we have

0=,=' '==,(1.54)

w:xpre '- W cis the per-second mass flow rate of the mlxtur-

through a unit of the area.

17



The equation of momentum for sections 1-2 gives us

p-h-mW2, (1.55)

where i = mW + P If we use relationships (1.54) and (1.55),

the. from equation (1.10) we find

rc2='A-MWC2 r . (1.56)
gRe m Q(K+1) I

If from the equation of conservation of energy (1.26) we

exclude quantities pc2 and T 2, then using expressions (1.55) and

(1.56), we get

_."-(+) ]tW+ ,Kl ) +(,-1) gJo=O, (1.57)

from which we obtain

hs M

e QxK+1)ex(K+,. ( + OA-' (1-58

After we have determined the velocity of the mixture Wc2
behind the plane shock, then from relationships (1.54), (1.55),

and (1.10), we find the values of pc2' Pc2' and T 2 . Then,
from equation (1.2'4) we find the speed of sound ac2 and number

Mc2 =Wc2/ac2

Stagnation parameters Tc0 2 and pc02 behind the shock are

found from equations (1.27) and (1.28) from known values of pc2'

Tc2, and Wc 2.

1.4.2. Case of a Relatively Large
Gas Content in Mixture

In the case where the volume of the liquid in the mixture is

very small, the two-phase gas-liquid mixture can be regarded as

18/



7-

an '-,al gas. The parameters of' f"-ow bdtond t:j. ..'" ;",-

termined in this case by known e.elationsh'os-

).€2).¢1~ ~~ -'- : .59

q (.c,)

72= Tr. ( 1.61)

1.4.3. Case of Isothermic Flow

This case was examined thoroughly in [18].

From the equation of the conservation of mass we have

c2=YC1,, (1.62)

from which, if we use expression (1.45), we find

MI (I. 63 )PC2 -Pet M--2

where

i M,=\V~la,. "

If we transform the equation of momentum, which is wP,

in the form of

by means of cxpressions (1.45) and (1.63), then by Introducing

the iLumber M c, we get

_Mel,%I Pc2 1 __ -

b c2 b cl

19
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from which, after simple transformations, we get

MeiMa,--i. (1.65)

If we substitute this expression in relationship (1.63), we find

PC2 -PcIM2,. (1.66)

From expression (1.43), using (1.66), we get

uz ( + 1) pcIML,
C2=by (K+ 1 + PCM 1 ' (1.67)

The speed of sound beyond the plane shock, as easily

demonstrated, equals:

a.= ' pc b, (K+ 1) "(1.68)

In conclusion we note that all relationships obtained in this

chapter will also be correct for the flow of a two-phase gas

I; mixture and for rather small solid particles.

20
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CHAPTER 2

EJECTION EQUATIONS

2.1. Eljector System and
Basic Assumptions

The studied ejector system is shown 'n Fig. 2.

The gas is supplied to the mixing 3namber through a convergent

subsonic or a divergent supersonic (dashed lines) nozzle, the

liquid - through a convergent nozzle.' In the mixing chamber,
which is cylindrical in shape, a homcgeneous two-phase gas-14 au

mixture is formed, which flows out of 60 ejector through a

subsonic divergent diffuser or a superSonic diffuser with a
throat (dashed lines). The mutual arrangement, the number, and

the shape of the cross sections of the nozzles can vary.

Te flow parameters of the gas and the liquid in the inlet

_ection of the mixing chamber, which coincides with the outle'

oc-tio: '%f the nozzles, are denoted by thie subscript "1," th

parameters of the mixture in the outle Sections ef the mixing

'The liouid nozzle in a case where pressure on its edgn in a
ru;ed operational ejector regime is less tnan saturation pressure

can 4!so be a divergent-supersonic nozzle.

21



1W-

chamber and the diffuser w by subscripts 113"? and "1h" Subscripts

"2' and "K" denote the parameters of the gas and liquid Jets in

the shut-off section of the mixing dhamber and in the c.itical

section of the supersonic gas nozzle, respectively.

(C) (2) (3)
Con no Kamep CMELAHUR. 4U43 7Op 4

H3

(4) ,udIo"mo

(5)

H , 4

Fig. 2. Ejector system.
KEY: (1) Nozzles, (2) Mixing chamber;
(3) Diffuser; (4) Liquid; (5) Gas.

As the basic geometrical ejector parameters we use: coeffi-

clent a, which is equal to the ratio of areas of the outlet sections

of the gas (frl in m2 ) and liquid (f~l in m 2 ) nozzles (a = f If

-coefficient 6.,.which is equal to the ratio of the total end

area of the nozzles (S in m ) to the area of the cross section

of the mixing chamber (F in (6 = 6/F),and the relative areafr
of the critical section of the supersonic nozzle f = .f If )"

Losses in the nozzles and the diffuser of the ejector are

described by the values of the pressure recovery coefficient

,,rol; .PuI;. v C,"=.L. (2.1)

PrO" Pain PcO

In deriving the ejection equations we make the following

assumptions and limitations: 1) the walls of the nozzles, the

mixing chamber, and the diffuser do not conduct heat; 2) there is

no friction on the wall of the mixing chamber; 3) the flow in

the nozzles and diffuser is one-dimensional; 4) the mixing

process is mechanical and is not accompanied by chemical conversion;

C) the gas is ideal and does not dissolve in the liquid and its

22



ohvsical constants (.c r' Cv ' 4r) do no; depend on tempe-rature

or pressure; 6) the heat caoacity and the specific weight of

-e liquid in the mixture do not deoend on temperature or

pressure; 7) in the outlet section of the mixing chamber a

thermodynamically and mechanically equilibrium gas-vapor-liqud

mixture is formed, in which the vapor content is negligibly sma 'U;

) th ejector axis is horizontal.

It should be mentioned that the absence of vapor is a:ssumed

cn'.*., for the flow of the mixture in the outlet segment of the

mixing chamber and in the ejector diffuser. In the initial

segment of the mixing chamber partial evaporation of the liquid

is possible; the flow of liquid in the nozzle can be accompanied

by evaporation.

2.2. Deriving Ejection Equations

h In order to determine the parameters of state and the veloc'..ty

of the mixture !n the outlet section of the mixing chamber we

zclve the equations of the conservation of mass, momentum, and

energy together, assuming in this case that the parameters ofIi
the velocity of the gas and the liquid in the inlet section oP

the mixing chamber are known.

The inlet section of the mixing chamber cotncides wi'th .ie

outlet sections of the nozzles, and thus

,+h,., + -F. (2.2)

If we introduce the geometrical parameter of the ejector a,

then from equation (2.2) we get:

7 Xm'  ; '. 3)

F U4-! •2
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From the equation of the conservation of mass for the inlet

and outlet section of the mixing chamber

Gc-G..,,+ G,,,., =G,,..(K+l1) ( 2.5 )

we get

(2.6)

In the general case the flow of liquid in the nozzle can be

accompanied by evaporation. In this case a moist vapor flows from

the nozzle. This is a two-phase vapor-liquild mixture, whose

state parameters and velocity are denoted by the subscript "n.M."

The amount of steam in this mixture is described by x = G /G.n

SG/(G + G ). which is called the degree of dryness or the

vapor content. When xI = 0 a liquid flows from the nozzle whose

parameters are marked by the subscript "Im," and when x = 1 - dry

saturated or superheated vapor, whose parameters are marked as

'n. t" The ejection equations obtained below are valid for all

of these cases, and thus to abbreviate the writing the parameters

of the stream at the edge of the liquid nozzle are indicated by

From equation (2.6), if we use the relationship (2.3) and

the obvious relationship "
OnW fm(2.7)

we have

0I -- (K ')T..xA,:, . " (2.8)

YC3=(a + 1)W~

24
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The per-second flow rate of the gas equals

RrT "

" ,e .' exrreos":uns (2.7) and (2.9), we get

G.. rai C_ Prota,.r.,q 1041) aprow 0-ri) 1/ 2
.. . ,. .t v *) R.. * (2.10)

w'ere

Plot'PrlsV-.,.

The equaticn of momentum for the Inlet and outlet sections

o1' The mixing chamber can be represented in the fo-" of

+ Pr~f:

where p1 is pressure at the end of the nozzles,

If we introduce the designations

nW-i- Prifrtk %r+ t.) (.2

n,= ,P& -;a+I-) gp
9PI(2.1.

--nd solve equation (2.12' with respect to the pr'essure of thie

:,xture we get

-I

-r=  rl n --nn..' - (K"""2.15

+ +~~A:(u' -I °--- ---+

+ nn' +t--Wn'ml~ ~~~ - .X 'r.: .!



Static pressure pl, which is contained in (2.14), and

represents static pressure in the stagnant region formed near the

dull edges of the nozzles, can be adsumed in the first approxima-

tion to be equal to the static pressure at the edge of the gas

nozzles in a case where A < l, or equal to the pressure at

the edge of the liquid nozzle when X > l, while pMl < P s l "

The total pressure of the liquid at the edge of the nozzle is equal

to:

P&OI - PzWOu I.2c ,

The temperature of-the mixture Tc3 is found by us: .. ecuations

(2.8) and (2.15) from the equation of state for a two-phase gas-

liquid mixture (1.10)t

,W2 3 
[(a + 1) (Knr + nn..+nl)+ (K+ I-) W. I]W0_

Tc- (K 4) (a+ 1)

(Kn,+ n,.l + ni) (1 - ) l.., }(2.16)
(K + 1) (a+ 1)

To determine with the help of the equations (2.8), (2.15),

and (2.16) the parameters of state of the mixture from known

parameters of the gas and fluid at the inlet to the mixing chamber
-we must know the velocity of the mixture WC3. Quantity Wc3 is

-found from the equation of the conservation of energy. This

equation, with equation (1.26) considered, can be written in the

form of

W123+gJccT+ Vs •' (K40 ,i*- )=gJIo, (2.17)
i x(K+ 1) K .- I

where

ioa%=C4rTro; ( OR +" *Off.. , .
12"II A!*
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-f we use the relationships of (2.15) and (2.i1), t1e' tv.o

eo;at'on (2.17) we get

WO Cl 1 I't-2d. (2.18)

where

1-= c(a- 1)(Knr+n, +n)+(- ," - )I) + K ) .2.19)

d =(1 - Z) (Kit,, + ,,..,t+ ,) IWn . -- _ g(
( (A )(+l)(K + I) 2.20)

while the quantities K., K, nrl, nnml, n1l and i.0 are determined

from (1.3), (2.10), (2.12), (2.13), (2.14), and (2.17).

Formula (2.18) gives two velocity values for the mixture in

the outlet section of the mixing chamber at assigned parameter*

of state and velocity of the gas and the liquid at the edge of

the nozzle. The lower of these values corresponds to the subsonic

(W" < a the greater - to the supersonic ' > at ) flow of
c3 -c3' (Wc3 c3 f

the mixture. In a case where the radicand expressicn in formula i
(2.18) reverts to zero, the velocity of the mixture is equal to

the critical speed of sound (Wc3 = ac3 = aH.c3
) . In the following

chapter we will discuss the problem of when a certain flow Is

realized.

2.3. Approximate Calculation
of Mixture Parameters

2.3.1. Volume of Liquid in the Mixture
is Negligibly Small

In cases where the volume of the liquid in the mixture is

small in comparison to the volume of gas, the mixture, as we have

already indicated, can be regarded as an ideal gas with physical

constants CpC' Cvc' Kc Rc, which are determined according to

formulas (1.1), (2..2), (1.3), (1.9). The equation of stave of
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the mixture (1,10) is in this case reduced to the form of (1.33),

while the heat content and the speed of sound are determined by

(1.34) and (1.36).

Here the critical speed of sound is written in the form of

(1.33), where the static parameters of the mixture are bound to

the stagnat :n parameters of the relationship of (1.39).

The parameters of the mixture at the ejector outlet are in

this case calculated as follows.

1) By means of relationships (1.1), (1.3), (1.9), (2.10),

(2.12), (2.13), (2.14) and (2.17) we find the quantities

a C% Kc' Rc' K, n nn.l. n, and i
p rl, n n cO3*

2) We find the stagnation temperature

, 1
CP pc (K+ 1) [Kc pr ox 1,1,1 (2.21)

and the critical velocity of the mixture.

3) We determine the reduced velocity of the mixture from

the equation of momentum (2.11), which is reduced to the form of

z =-- K00 +=n. D.+fllD (2.22)

%c+1 I a.c3(K + 1)•

from which we get

S(DV5- -- 4). (2.23)

The plus sign in front of the root gives us the supersonic velocity

value (' > 1), and the minus sign - the subsonic (X" < 1)03 c3
velocity value of the mixture.
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) From the equation of the consprvso w of mass (2.5'.

by .ntroducing the reduced veloci-y of the bIXture -and th-

-taFi.'ation parameters, we find the two vatU-s of total presSure

of tue mixture (P 03 and p at the ou ...et fro. th, M

chamber.

(I - I.) (K 4+ 1) -.,, _,._~j

P': =(a + 1) all. cq () -

( - F) (K - 1) 0.Ic fl,.l ./ ( ) RcTc03
(a -- 1) q (AC3) 2, c (2.2 ;)

and at the outlet from the diffuser

Pc04 - V4,3Pc03"

5) Using the relationships of (1.39) we find T'c, Tt3, -1
Y c3 P.3" and then the velocity values of the mixture

' W'3 and W", which correspond to the sUlersonic and the subsonic
C3 c3
flows of the mixture.

I '

V 2.3.2. The Part by Weight of the Ga.;
in the Mixture is Low

In this case the flow of the mixture can be regarded as

isothermic. The temperature of the mixture for pressures
wblich are not too great can be fround from equation

73Tc- CO3= - + [Kcprm, io] Z

cpc0  Opc(K+ "'l

if, however, r'OH and T H differ only slightly, then we can

assume that T = T = T
c3 c03 H4.H'

If from equation (2.15) we exclude p03 by using expressions

(1.10) and (2.8), then after simple transformations we get

W ft1 Wj+('1 wea N1j?. 1 +gb-o (2.26"
4-I ,1 2 (a 4- ) (K + 1)
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from which we have

-,- -2dz'... (2 .27)

where

•+ 1) N1+ (I - (K + W) w=l= • :(2.28)
2(d+ 1) (K 

41)

d--L (1- bDNW,,"(- , a+1)+gb] (2.29)

0 z -- . n ., J ' , ;( 2 3

(2.30)
b=R=T..(2.31)

The relationships of (2.27), (2.28), and (2,29) can also

be obtained directly from expressions (2.18), (2.19), and (2.20)
under the condition that K =1 and i = cC c0 p cT :'

2.4. Estimating Ejector Efficiency

The efficiency of gas-liquid (p O < PrOH) and liquid-gas

(P > PrOH ejectors can be described by the efficiency,

which is equal to the ratio of useful work to work spent:

1., .(2.32)

Depending on what we understand ars iseful and spent work,

different expressions are possible for determining ejector

efficiency. Let us examine the most interesting of them.

1) Adiabatic efficiency of a liquid-gas ejector a"

In this case the useful work is the work of adiabatic compression

of the gas from initial total pressure prOH to the total pressure

of the mixture pc0

•r r 2- 3
L..,._,.--OJcprTg. [(As. P 'r ' -];] (2.33)
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work spent is the work of expanding the leu' , 'rom the

total .. esure p to the total pressure f tf nix .

flOP.43 aa~

If we substitute these expression.- 'or L and L i.nor~s P' aTp
~equation (232), then we get

,eo 7',oA ( r; o-, I
PXV PcO

(2.35)

2) Adiabatic efficiency or gas-li2utd ejector na .

'Tselul and spent work in this case we determine by relationship

Lflo~.~IIQX ~(2.36)

. -\OJeT. T P,. r ( "

whose substitution in equation (2.32) g'ves us

- 3) Iscthermic efficiency of licuid-gas e~ector T1m~ .3) of
In a number of cases (for example, it, ejecting very hot gas by a

large quantity of liquid) the most convenient results are provided

by an estimate of the effectiveness of the liquid-gas ejector

using the isothermic efficiency, which is equal to the ratio .)f

-seful work of isothermic compression of the gas from pressur.
Pro- to pressure DPco

Fs22
Pro"
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to the work spent in expanding the liquid from pressure p 0

to pressure p 0' which is determined according to formula (2.34).

If we use expressions (2.39), (2.34.), and (2.32), we find

2,8031*KRrTc g O"
Pr., - .(2.40)

POc _P CO

4) Isothermic efficiency of gas-liquid ejector fr '

Lsef'il work in this case is determined by formula (2.36), and work

spent, by relationship

L,.p =OrT.oh, Pro " (2.41)PCO

The isothermic efficiency of the gas-liquid ejector is eq.al to:

2, O3.... T41g '.(2.42)
t -

2,30,,=IKRro to& P__

' I

I * I
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CHAPTER 3

CALCULATING FLOW IN THE NOZZLES

The equations obtained above enabLe us to find the parameters

Qf a gas-liquid mixture at the outlet from the ejector prov.ded

that th;-e parameters of the gas and the liquid in the lnLet section

of The mixing chamber are known. However, to calculate the

characteristi~cs of an ejector these eqations are not enough. We

must f~dadditional conditions, which bti4 the parameters of the

flows in thne inlet and outlet rtections of~ tile nozzies and
consider their interaction irn the initial oection of the mixing

ejector and can vary substantially.

3.1. Calculating Parameters of a Gas
Flow on the Nozzle Edge

3.1.1. Convergent Nozzle

The efficiency of the convergent nozzle is usually described

by the velocity factor *flH which is equal to the ratio off

gas velocities on the edge of the nozzle for real and iea-

isentropic f.'ows for the same ratio of static pressure p on

the nozzle edge to total pressure prO at the inlet to the ro'zzle

(zee, for example, [!I)-
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Ara"x (3.1)

For the nozzles which are generally used in eJectors we can

assume .H 098.,.99,

At a given ratio of pressures the quantities X and Xri rlwA
can be found from

SP
(1 1..r- r1 ) .- pQ^r, &L; (3.2)

PrOi

while the coefficient of pressure recovery, which describes losses
in the nozzle, is determined from formula

I+ ~P (41H)4
vi_-rlA P2L "--- • 3+(3.14)

PMa P (41)

In a shut-off regime, whe.s = , this formula has a

conditional nature, since the geometry of real and ideal nozzles

ii will be different. Actually, when Arl = 1, as follows from
I-l

expression (3.1), rA > 1, and thus the ideal nozzle must be
1= divergent.

Total pressure losses in the convergent nozzle in a shut-off

regime are described by quantity V rl1 .p , which is determined by

Sr1 (3-5)
, + 1 Pro)1

where

p -+ (3.6)

The flow of gas through the convergent nozzle is determined

by formula (2.9), where pr0l at an assigned value of 0rlH is found

by means of (3.4) or (3.5).
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3.1.2. Divergent Nozzle

The i.vergent gas nozzle at an assigned relative area of *lte

critical :,.-,tion f. = f' /frl ' depending on the ratto of a c

pressure D in the medium into which the :*" eam flows to total

pressure p at the nozzle inlet, can operate in three subst- .

different regimes: 1) when the flow in the divergent part of

%,-- nozzle ts supersonic when (Xrl A 1 1); 2) when the flowrl. r.p
,, the divergent part of te nozzle is partially supersonic and

partially subsonic and where the transition from the sdpersonic

region of the flowwhich borders the critical section of the

nozz]Q.,Into the subsonic region, stretching to its outlet section,

occurs in shocks (A =; A 1 < 1 ); 3) when the flow over t!ie

entire length of the nozzle is subsonic (Xr.H < 1; Xrl < 1).

The coefficient of pressure recover,; in the supersonic nozzle

can be represented in the form of the product of coefficients of I
pressure recovery in its convergent (r.H and divergent

parts:

PrA tw PrW'37

The efficiency' of the convergent part of the nozzle can be

described by A. Then v is determined by
dsreb r..H r.K r.K.HA r..

i x'= (3.8)

where reduced velocity X is found from formul,.
r .* 14 H

( P) j-( I "- )k..wO"-- (3.9)

In shut-off regimec in a superson-., nozzle, when Ar=X1,
rR

w- have
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Now let us introduce the relationships which determine the

parameters of the flow on the edge of the divergent suDersonic

nozzle for all regimes mentioned above (see 17.).

Supersonic flow regime. This case is the most interesting,

since it corresponds to the most advantageous operational regimes

for a gas-liquid ejector.

The efficiency of the divergent part of the nozzle in this

case can be described by the quantity

r~p-! ;(3.ii)
TrIK

from which we get

'r.p=?ri,(O .p.,s-- )-+ • ('p 1). (3.12)

31. The magnitude of the ideal reduced outflow velocity from the super-

sonic nozzle X > 1, which is contained in (3.11) and (3.12),

is found from formula

i-

(3.13)

where q(X) is the gas dynamic function, which is determined by

(1.4o).

The coefficient of pressure recovery in the divergent part

of the nozzle in the case of a supersonic gas flow can be found

from relationship

S q(1r.p.nA) q, () 7r.c
:1 -- -- •( 3.14 )

q x..) -O .p)

If we consider (3.10) and (3.14), then from equation (3.7) for

the studied case we get
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2r +1 fr .)

where A.., .s found with the aid of (3.12) and (3.13).

The velocity coefficient of the divergent part of the super-

son.c nuzzle, which has rather smooth contours, can be assumed

in the first approximation to be equal toO0.97-0.98.

In a one-dimensional study the calculation system for '- .e

flow in the supersonic nozzle is realized by changing pressure p

in the surrounding space from zero to a certain limiting value

II'i " ~Pup Vrp'tV Or.p) T ( 3-.16 )

corresponding to the case where on the rczzle edge there develops

a plane shock, in which the change in ga. parameters is described

by known relationships: ArlAr2 = 1 and n q(lrl)/q(

_xed' flow regimes. These regimes develop at pressures in

the surrounding medium which exceed the 1J.:U~ting pressure

determined by (3.16). The coefficient of pressure recovery in

the divergent nozzle in this case is uniquely determined by
-ie magnitude of the reduced outflow velocity

Vr"=P ) (3.17)

where A can vary fror A = i/A to Ar m determinedr' r max r.P ri m~nL
by the relationship

The mganitude of v contained in expression (3.18) is the

coefficient of' pressure recovery in the divergent part of the

nozzle for a :;ubsonic f'ow in the case of A.= 1.
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The maximal value of the pressure in the surrounding medium,

at which the studied flow system is still obtained, is determined

by the relationship

P_3 &P (3.19)
2  . k fr.x. m X Irmin

Subsonic flow regimes of gas in divergent nozzle. In this

case the pressure recovery coefficient in the nozzle can be found

from formula (3.7), where vr.K.H at assigned values of *r•K•H and
Xr.K is determined from (3.8), while the value vrflH is found

from

Pot", (3.20)
2

from which we get

Vr-- 1), (3.21)

where i is the resistance coefficient of the divergent part

of the nozzle when X < 1, which is determined experimentally. ir K

i it
3.2. State Parameters and Speed of Sound
in a Two-Phase Vapor-Liquid Mixture

When gas-liquid and liquid-gas ejectors work in limiting or

near limiting regimes (see below) the static pressure of the
liquid in the nozzle and in the initial part of the mixing

chamber in some cases drops below saturation pressure p H and

the liquid begins to boil. In this case a two-phase vapor-liquid

mixture is formed, whichdepending on the concentration of vapor,

can be either a mixture of liquid and fine vapor bubbles or a

mixture of vapor and fine droplets, or, finally, a type of foam

formation. In calculating the flow of such a mixture we will

assume that it is also in a state of thermodynamic and mechanical

equilibrium and, consequently, the velocities and temperatures
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-f e particles of vapor and liquid are hq :'c at a y .oinT

. .sure of the vapor is assumed equa. the saturation

u_,;sure above the plane phase contact surface). The parameters

of the cor uont- contained in the mixture (the boilin i '"u'd

and the dry satu::; ed vapor) can be found under the ass .-tto:,
which we have tacen by using the thermody amic tables (see, for

example, [9)).

The paramete. of state of the studied vapor-liquid mixture,

which is saturated vapor, are determined by the followinr

relationships (see, for example, [6]):

(3.22)

NR W"-P',: (3.23)

where v', - , s', and v", i", and s" are the specific volumes,

the enthalpies, and the entropies of the boiling liquid and dry
saturated vapor, respectively; x = G,, (G_ + G ) is vapor content.

n'

The speed of sound in the studpo equilibrium vapor-l1quid

mixture can be determined from (1.23), which is reduced to the
form of

s-c~ng(3.2171

If 'ere we substitute the expression fjund in E10" "or the

derivativet, (-A-) ,then we get

de / _ - - -"F T 1" "(3,26)
de'• -~v'T-T --(1J

dT t~

where r is the latent heat of vapor formation.
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The speed of sound in the boiling liquid during the transition

from the moist vapor region (x + 0) to the boiling liquid is

equal to: VV
a(v' v (3.27)

(V - ) ,. d7 rz

For dry saturated vapor (x + 1) we have, respectively,

(V11- ) l _ ~v-(3.28)

Derivatives dv"/dT, dv'/dT, dr/dT, and ds
t/dT, which are

contained in these expressions, are approximately determined as

the ratios of final increments in quantities Av", AvL', Ar, As'

to the increment in temperature AT by means of the saturated-vapor

tables. Since quantity p and T for saturated vapor are uniquely
bound to each other, then the speed of sound a is a function

of only two independent parameters, for example, T and x.

The dependences a M(t) when x = const for a moist watep vapor,

calculated from formula (3.26) by means of tables [9] when At = 10

are shown in Fig. 3. If we compare Fig. 3 to Fig. 1 we see that

the dependences of a (x) when p = const and t = const differ

substantially from the dependences of the speed of sound ac in the

gas-liquid mixture by the relative concentration of gas in it.

As the gas content decreases with p = const and t = const,

quantity a. first decreases to a certain minimal value, then

rises, and when K + 0 it tends to infinity, at the same time that

quantity ane m decreases monotonically with a decrease in the

vapor content, and when x -l 0 it reaches a certain minimal value,

which depends on t or p.

During the transition from the region of moist saturated

vapor to the liquid region the speed of sound rises intermittently

from a + 0, which is determined by (3.27), to a value corre-roan. .

sponding to the speed of sound in the liquid.
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Fig.3. D~endncesof seed f so0,7i

Fit shul beementione t oa becaus of then prsnceo a-

dissolved in the liquid, which might be liberated inl the case o"'

a pressure decrease, and also in connection w~iith the fact tha-

in -, rapid preszl--re change (which occurs, for example, durin,:-

elow of a spontaneously evaporating liqui4d in a nozzle or

the processes of evaporation and condensation will be delaye and

tChe actual values of the speed of sound in the saturat-ed vapor,

particularly in the transition region betwe:,en vapor and liquid

(x -* 0) and the reverse tr.2nsition, might differ noticeably fromr

the values found from formula-- (3.26) and (3 .27).
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3.3. Calculating Liquid Flow
in a Nozzle

3.3.1. Convergent Nozzle

As the liquid flows from the convergent nozzle two cases

are possible: 1) when pressure p1 at the edge of the nozzle

exceeds saturation pressure (p1 > PS H) and 2) when P1 
< PS H

Case 1. In this case the liquid in the nozzle does not

evaporate. If its compressibility can be ignored, then the

outflow velocity from the nozzle is determined according t(

formula

WWI XIW1v 1 V'2gv~tp.*,-p~j), (3.29)

where TM=WH,/WH, HA is the velocity coefficient.

Total pressure and temperature on the nozzle edge can be

found from

P3.0 ( Jl 0 ,A)U" (3.30a)

TE:T~+ATE~,~.n+(3. 30b)

If the temperature of the liquid is close to its value at

the critical point, then condition v = const becomes roughly

approximate. At the assigned parameters of state of the liquid

at the nozzle inlet and static pressure at its edge, the outflow

velocity is found with the aid of the i-s diagram from formula

~ (3.31)

Then we determine the enthalpy of the liquid on the nozzle edge:

42
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the specific weight ywl' and entropy sl. Total pressure p 0 !

on the nozzle edge can be found with the tables according to the

values of i =i and s01O =S
iMOl MOH o Ml

Case 2. In this case in the outlet section of the nozzle-

between section s, where the pressure of the liquid becomes equal

to saturation pressure (p s = Ps ), and the outlet section of the

nozzle I - spontaneous evaporation of the liquid occurs. The

outflow velocity of the vapor-liquid mixture is determined by

relationship

- ?1'WwX1R : j/'Wfl 2gJ (Icol - 1
5SJe11fA)=

(3.33)

from which we get

fl.Ei I"1 I' .Iad=,-" ( .4 )

The value of in~l which is contained in these expressions

at assigned values for the state parameters of the liquid at the

nozzle inlet and static pressure in its outlet section is found

by the aid of the saturated-vapor tables from condition s n-l"A=
S , which gives us J

The vapor content of the mixture is determined from

~ [Q....~2) 'x~f ±?~tn.~NR~;]I(3.36)

after which, according to formulas (3.22) and (3.24) the quantities

vnl and s are calculated.

In cases where the compressibility of the liquid in a range

of variation from p 0H to Ps H can be ignored, expression (3.33)

is reduced to a more convenient form for calculation:

4
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where the magnitude of W is determined according to formula

W*,_'P0I J/2g'V3(P 0ft-P;9H). (3.38)

Quantities i .OH s and p .H SO contained in these expressions,
represent the enthalpy and pressure, respectively, of the boiling

liquid in nozzle section s flowing without losses (T M = T M.H

As the pressure decreases in the medium into which the stream

of liquid is ejected from the value p = pMOH to a certain minima.

1 o value, the outflcw rate and the flow rate of the liquid rise
steadily and thei, values can be found from the condition

P = P I = PH " Finally, when p = pin the convergent nozzle

becomes cut off: a further decrease in pressure in the surrounding

medium from pmin to zero no longer results in an increased flow

rate of liquid or a change in the parameters of the flow on the
edge of the nozzle. Depending on the total pressure of the liquid

p at the inlet, when T const three shut-off regimes are
PM0H at4 th inewe

possible for the liquid nozzle; 1) when p, > pal the outflow
rate is equal to the speed of sound in the '.iquid (W aml
2) when p1 = p5 0 the velocity of the liquid on the edge of the

nozzle is greater than the speed of sound an.ml(xO); 3) when

P< P the outflow velocity of the vapor-liquid mixture is
equal to the speed of sound in it (W = a l)

In the first case of shut-off the fluid flows along the

entire convergent nozzle, Since the speed of sound in the liquid

is very great, then this case is realized at extremely high
pressures of the liquid at the nozzle inlet. For example, the
speed of sound in water under normal atmospheric conditions is

equal to a 145 mn/s. If we substitute this value of the velocity
of the liquid in the equation of energy conservation, we find
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p,==1OOo 00 . -1,065.10- kgf/ 2 =10650 kgf/cm2
2g

The maximal flow rate of the liquid is found in this case from the

relationship

The studied shut-off case is realized at values of pm0H which

exceed p 0I' at which the conditions W = and p =

are simultaneously fulfilled.

In the second shut-off case the liquid also flows over the

entire length of the nozzle. Its velocity, if we ignore the

temperature change in the liquid due to friction, can be found

from formula (3.38) or from relationship (3.31) when iml"A 4S H

= i. The maximal flow rate of the !.quld is determined in this
H

case by relationship Gmax s At the assigned temper-

ature of the liquid T in front of the nozzle this shut-off

case is possible at values of p9 0H which range from pm0 I to P

Pm11' at which the outflow velocity of the liquid from the

nozzle W becomes equal to the limiting value of the speed

of sound in the vapor-liquid mixture when x + 0. The value of

when v. = const depends only on te physical properties

in the temperature of the liquid and can be found from the

obvious relationship

t ; 1 (x-O)
PWO It-P.".(3.39)2g

where the speed of sound anm(x+0) i found from formula (3.27).

It is interesting to note that When pH01 > P 0 >P

I preosure in the stream of liquid or, the edge of the nozzle

_i, :-v*t* decreased counterpressure cannot drop lower than saturation

pressure ps by a finite value, since the flow on the edge of

the rozzle becomes supersonic (W nL(x0) the slightest
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amount of vapor is developed and perturbations can no longer

penetrate into the nozzle,

In the third shut-off case, when p., < Ps Hs a stream of

moist vapor is ejected from .the nozzle. Evidently this case can
only develop in the region in front of the nozzle where the
total pressure of the liquid changes from pm0 II to P

P P The state parameters of the moist vapor and the

outflow veloc!ty in the shut-off regime can be found from

condition Wn.wl = a n.ml

The calculation is performed in the following sequeice.

1) A series of values is assigned for pressure p, ranging

from ps to zero.

2) From the saturated-vapor tables we find the values

corresponding to them T, V', v", i',li', s', s", and r, after which

from formulas (3.33), (3.34), (3.35), (3.36), (3.22) and (3.24)

we determine quantities Wn.ml in. Xl, Vn l and s,.,l.

3) From formula (3.26) we find the value of the speed of

sound an.,l , after which we graphically determine quantities
Pn and Wn.*l, which correspond to the shut-off regime.

4) For this value of pn.Ml we calculate all the parameters

of the mixture on the nozzle edge in the samne sequence.

Figure 4 shows dependences p M 0 II(t) and pMOiii(t) = ps(t)

for water. We see that the third shut-off regime of the convergent

nozzle, which corresponds to a flow of liquid with spontaneous

evaporation, is only possible at total pressures in the liquid

which are very close to the saturation pressure. Thus, for example,

when t.H = 100, 200, and 300 0C we have, respectively: pMOII =

1.0394 kgf/cm2, p = 1.0332 kgf/cm 2; pm01  = 16.540 kgf/cm 2 ,

Ps - 15.857 kgf/cm 2 and pm0 I1 = 99.15 kgf/cm 2, ps = 87.61 kgf/cm 2 .
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The main shut-off regime of the convergent rozzles obtained in

the ejector will therefore be the second regime, in which

P = Ps1 "

Sp

2"2 penuM .2anupaifuu -1

I ,. Pmo~

t , (!') t

Ml 81.

1 ] o ,~oo zoao

00200 &7V t; C

Fig. 4. Dependences of total pressure of
the liquid on temperature for limiting
shut-off regimes of the nozzle. A

A KEY: (1) 2nd zhut-off regime; (2) 3rd
shut-off regime.

Designation: Kr/cM2  kgf/cm2.

3.3.2. Divergent Nozzle

As the liquid flows in a divergent nozzle with an assigned

relative critical section area M.= f.H/l, r ust as in the

gas flow, three different regimes are possible:

1) the rated regime, in which a supersonic flow of rolst

saturated vapor is obtained in the divergent part of the rozzle;
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2) a regime in which regions of supersonic and subsonic

flows, separated by a plane shock, develop in the divergent part

of the nozzle;

3) a subsonic flow regime for the entire length of the

nozzle,

Supersonic flow regime. When T H = const there are three

possible cases of supersonic flow in the divergent nozzle (Fig. 5),

depending on the total pressure value of the liquid p

InI

(2)

I f ItsK x

ItI111K

v/'. 1 . ' ".' .'.-. ...... .. .....-.

| * o*ee * '

If a) " b) c)

ffXJ'a(X ;%WM,'>annc PM K"PSK PPk.N<S1; wn k p,:Iln> K

Fig. 5. Three cases of supersonic flow in

divergent nozzle:

b - P01 > pd > P01

KEY: (1) Saturated vapor; (2) Liquid.

We have the first case when pO > P 01 (see Fig. 5a). In

this case the liquid flows in the convergent part of the nozzle

and its velocity in the critical section W is equal to the

speed of sound in the liquid aM = 1). In the initial•.1 H.K

section of the divergent part of the nozzle (between sections K-s)
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the pressure of the liquid decreases to Ps, while its velocity

increases and becomes supersonic (M > 1). In sect°on s tvapora-

tion of the liquid begins and the speed of sound decreases

intermittently from a s to a n.(xO). For this reason t e M number

of the flow rises sharply (Mnom s 
> > MW s). In section s-1 of the

nozzle the velocity of the supersonic flow of the two-phase vapor-

liquid mixture and number M rise smoothly, while pressure falls.

In the second case (see Fig. 5b), which develops when

P > Pm0 H > P 0 II' the static pressure of the liquid in the

critical section of the nozzle is equal to saturation pressure
(P. H) where W < a (M < 1). In the critical

M.KI. SHWK m m WON

section of the nozzle the liquid begins to evaporate, and the

speed of sound in the two-phase mixture which has formed an. M( x O)

is lower than the velocity of the mixture W.. W .and
l.NI.K M. K

thus the M number increases intermittently and the flow becomes

supersonic CM > 1). In the divergent part of the nozzle
n.m. K

the velocity and the M number of the supersonic flow which has

formed from the two-phase mixture rise steadily (Mn.l > M . .0).

Thus, in the studied case the transition from the subsonic region

of the flow to the supersonic region in the critical section of

a divergent nozzle occurs intermittently. The velocity of the

flow is not equal to the speed of sound at a single one of the

points along the nozzle.

In the thirc case (see Fig. 5c), which is possible at value-

of P0H ranging between p 01 I and Ps H5 between sections H-s of

the convergent part of tie nozzle the static pressure of the

liquid decreases to the value Ps, while the velocity increas.:s
to the value Ws . In section s the liCqAid begins to evaporate,

and thus, as in the cases described above, the M number of the

flow rises intermittently, although the flow remains subsonic

(M .o sn  < 2). Between sections s-K the velocity of the formed

two-phase mixture increases and in the critical section becomes

equal to the speed of sound (Mn.. ) In the divergent part

of the nozzle quantity M rises steadily.
now
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In the convergent part of a supersonic nozzle the flow is

calculated Just as in the case described above for the flow in

the convergent nozzle in a shut-off regime. A supersonic flow

in the divergent part of the nozzle with assigned geometry and

with friction losses can be calculated if we use the equations

of the conservation of mass and energy, which are written in the

form of

.W,.,-= .E.V.0;(3.410)
w ..=, = -g - .. , ( 3 .4o1 )

as follows:

1) If we assign a series of values pn.ml <P.M.K and

determine with the aid of the saturated-vapor tables the values

corresponding to them I

X , (3.42)

and values v and i from formulas (3.22) and (3.23), then
with the aid of equations (3.41) and (3.40) we find the parameters

of state pn.lN' i n and the velocity of the mixture

Wn.mI1A on the edge of the nozzle for a flow without losses in

its divergent part.

2) According to formula

W.- - W..K + ,.. (3.43)

we calculate the outflow velocity from the nozzle in the presence

of losses, after which we find quantities vnl and i from

expressions (3.40) and (3.41).
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3) If we assign a series of values for p which somewhatexceed the value PnmlmAf then using equation

.- 3.-1
V (3.44)

-;_
and the saturated-vapor tables we find the pressure on the edgeof the nozzle, and then from relationship (3.22) and (3.24)
quantities xI and sn.ml*

Mixed flow regimes. In these regimes in the divergent partof the nozzle a plane shock develops, which transforms thesupersonic saturated vapor flow into a subsonic flow of liquidor saturated vapor, which depends on the location of the shock,determined by the magnitude of counterpressure

i ( .1 ) C 2 )
MUU rocmb ynm eu

I t

(3 flaIteF
a) b) C)

Fig. 6. Possible mixed flow systems in
divergent nozzle when pm0 l > P > P
KEY: (1) Liquid; (2) Plane shock; (3) Sat-urated vapor.

Figure 6 shows the possible flow systems in the nozzle forthese regimes in the case where p > > pW" PM0H PMOii

Figure 7 gives the T-s part of the diagram, in which thedashed line indicates the process of expansion of the liquid inthe nozzle from the initial state, which is described by quantities
PM0HI io0s and T.H (point H), to states corresponding to the
points la, lb, lc, ld and le, at which a plane shock develops Inthe nozzle. The values of the state parameters beyond the plane

51



shock lie along the dot-dash line (points 2a, 2b, 2c, 2d, and 2e).
Points 3a, 3b, 3c, 3d, and 3e, lying along the line i MO= const,
correspond to the stagnation parameter of the flow beyond the
plane shock.

(1) H( Og.Q,TM)
m K-UM1- oconst

ja (3)36CblU4EIIbl4

formation of a supersonic flow of moist vapor and stag-
nation of the supersonic flow in a plane shock.KEY: (1) Liquid; (2) Boiling line; (3) Saturated vapor;(24) Pressure decrease.

If we examine Fig, 7, we see that if the plane shock is
located near the critical section total condensation of the vapor
occurs within it (points la, 2a, 3a; see also Fig. 6a). as the

shock moves from the critical section and as pressure decreases
in front of it, the pressure of the liquid behind the shock,
beginning at a certain moment, also decreases and, finally, becomes
equal to the saturation pressure (points lb, 2b, 3b in Fig. 7).
As the shock moves further in the direction of the outlet section
of the nozzle and with a further decrease in pressure in front of
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it, the pressure behind the shock drops below the saturation

pressure and none of the vapor is condensed; as the flow of
saturated vapor stagnates In the divergent part of the nozzle,

pressure in this case can rise above the saturation pressure and

the vapor can be completely condensed (points lc, 2c, 3c, ld, 2d,

3d; also see Fig. 6b). At even lower pressures ahead of the shock

a subsonic flow of saturated vapor develops behind it, which is

not condensed even when the stagnation velocity decreases to zero

(points le, 2e, 3e; also see Fig. 6c).

Let us assign the calculation order for the parameters of

state in the velocity of the flow on the edge of the divergent

nozzle for the studied regimes depending on the pressure on the

edge, which is equal to pressure p in the surrounding medium.

1. Let us find the parameters of state and the velocity of

the flow in the critical and outlet sections of the nozzle in
the supersonic flow regime.

2. Let us calculate the parameters of state and the velocities

of the flow behind a plane shock, located in the outlet section

of the nozzle (see following section 3.4),

If total vapor condensation occurs in the shock, then over

the entire possible range of variation in counterpressure, which

corresponds to the studied flow system, liquid will flow from the

nozzle. If for the sake of simplicity we assume that y= const,

then we get

w, at ( 3. 45)
7W1ft 1

from which it follows that the outflow rate Is independent of

counterpressure; stagnation pressure p 0 1 is determined by the

Bernoulli equation:

(3.46)
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Quantity P M in mixed flow regimes in the studied case can

vary from a minimal value of P~l mlmn' which corresponds to a

plane shock located in the outlet section of the nozzle (see

Section 2), to a maximal value of pml max: which corresponds to

a case where the plane shock moves into the critical section and

where the liquid flows over the entire length of the divergent

part of the nozzle,

Quantity p I m is determined from formula

Pxnax-PAk - (3 47

where r is the resistance coefficient of the divergent part

of the nozzle for the liquid flow.'

In a case where the vapor remains entirely uncondensed behind

the plane shock in the outlet section of the nozzle (points 2c, 2d,
2e In Fig, 7), the flow on the edge of the nozzle under different

counterpressures is calculated in the following manner.

A number of values are given for pressure p ranging from
the maximal, which is found from relationship (3.47), to the

minimal, which is equal to pressure behind the plane shock on the
nozzle edge (see Section 2). When pressure p changes from p'l max

to Pm, = P.1 a stream of liquid flows from the nozzle, whose
velocity and total pressure when yM = const are determined from
formulas (3.45) and (3.46); its temperature is determined from

(3.30b). Quantity ps1 is found as the intersection point of
curves Tml(pl) and Ts(ps). When pressure changes from psi to

PmI min saturated vapor flows from the nozzle. Its specific

'In the case of p > P > P in the critical section

and in the small region behind it a vapor flow is possible, although
in determining the quantity Pml max we can use formula (3.47) in

the first approximation.
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volume and enthalpy when p const are determined from the

combined solution of equations (3.41) and (3.44), its outflow

velocity - from (3.40).

Subsonic flow regimes. These regimes are realized at pressure

values on the nozzle edge which exceed the value p~l ma' found

according to formula (3.47). The parameters of these regimes

can be calculated by means of the relationships presented above.

3.4. Plane Shock Inflow
of Saturated Vapor

Flow parameters behind a plane shock, which transform a

supersonic saturated vapor flow into a subsonic saturated vapor

flow or into a liquid are found from the combined solution of

the equations of the conservations of mass, momentum, and energy

for sections in front of and behind the shock, written in the

form of

W2 (3.48)

A!-W;(3.49)I -!

W1

2g] (3.50)

Quantities m = W and n =mW + P which are
fl.Hl 11.ml( nlH

contained in these equations, depend only on the parameters of

the impinging flow; the subscript 112'- denotes flow parameters

behind the shock, subscript "1" - parameters in front of the shock.

Since we do not know in advance whether or not a liquid

flow or a saturated vapor flow will form behind the shock, the

calculation is made in two stages.
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First we assume that a liquid flows behind the shock, If we
raningVt' then from

assign a number of values v 2 ranging from vm0 1 to V,

expressions (3.48), (3.49), and (3.50), we find the corresponding

values Wm2 , Pm2 , and im21 . Using the thermodyanmic talles from

values p,% and v we find the values of i which correspond.K2 m2m211

;o them. Comparison of these values with the values of i 21

which we have found enables us to determine the sought values

m22' i vm2 Wm2. and s.2- Then quantity p)02 can be found from

the tables from the known values of the enthalpy and entropy of

stagnaticn i 0 2 = iMO H and s m 2 = s 2.

If over the entire range of possible change in quantity v 2
depend: nces i (v ) and i (v -) do not intersect, then a

liquid flow behind the shock is impossible.

Calculation of the flow parameters behind a plane sho,'c is

simplified if the liquid is considered incompressible. In -i,

case velocity Wm 2 and pressure PM2 behind the shock are un. - d

determined from equations (3.48) and (3.49), while the stagnation

temperature P02 is found from the Bernoulli equation:

P*0222+ I 2  (3.51)

The temperature of the liquid behind the shock can be found

according to formula

*2-Tw (3.52)

It is obvious that the flow of fluid behind the shock can only

develop in a case where quantity T 2 is lower than saturation

temperature T when ps = pm2"

In the case of a flow of saturated vapor behind the shock,

the parameters behind the shock will b4 calculated in the follow-

ing sequence:
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1) if we assign a series of values pnm2 ranging from

Pn.ml to p' with i = imol, then from expressions (3.49), (3.48),

and (3.50) we find values W v I 21 which correspond

to them;

2) if we compare this value of in.21, with the value of

i n.211 which is determined from

' ( ; " '-VI (3.53)

then we find quantities pn.m2 and in.w2l after which we calculate

velocity Wn..2 , specific volume Vn.m2 , as well as entropy

S and vapor content x2 of the mixture behind the shock by

formulas (3.49), (3.48), (3.23) and (3.24).
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CHAPTER 4

CALCULATING CHARACTERISTICS FOR

EJECTOR WITH DIVERGENT DIFFUSER

4.1. Possible Operational Modes
of Ejector

Let us describe the possible working modes of the ejector.

Wtith this object we examine its choking characteristics, which

represent the dependence of total pressure of the mixture on

the ejection coefficient under invariable parameters of the gas

and the liquid at the ejector inlet. Typical choking characteris-

tics of a two-phase ejector for different assignments of gas and
liquid parameters at the in>3t are shown in Fig. 8.

The gas-liquid mixture is a compressible medium, and thus

under assigned state parameters for the gas and the liquid at the
ejector irnlet it is always possible, if we decrease counterpressure,

to obtain a regime in which the flow in the divergent diffuser
between section 3-4 (see Fig. 2) will be completely supersonic.

Point 1 on the curves corresponds to this regime.

As counterpressure in the supersonic stream flowing from the

diffuser increases, increasingly powerful angle shock develops

and, finally, the perturbations penetrate inside the channel.
In a one-dimensional study penetration of the disturbance inside
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the channel is only possible from the moment that the plane shock

develops in the outlet section (point 2 of curves in Fig. 8). It

is obvious that the total.pressure values of the mixture in the

outlet section of the diffuser in regimes corresponding to points

1 and 2 on the curves are distinguished from one another by a

value which is close to the losses in the plane shock.II
pe%, Poo :k

IPoc>? N >I1) 6
PrI-P*m  '" Pr =Pmv I

r p 6 6 .' .1.."

) -0o c)

Poc4 Pe, Poe' +X S

r" 53 2.-I : r$

I 'z

0 K0 N0 /a) C )

' Fig. 8. Choking characteristics of two-phase ejector for
different assignments of gas and liquid parameters at
inlet.

; AL counterpressure increases from values corresponding to

* points 2 of the curves tile normal shock moves deep within the

diffuser and, finally, into the out_-.t section of the mixing

chamber. Here total pressure of the mixture increases steadily,

since losses in the plane shock decrease. Sections 2-3 of the
curves correspond to these modes.
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Due to the fact that with a change in the total pressure of

the mixture from the value corresponding to point 1 to values
corresponding to points 2. and 3, the flow in the mixing chamber

of the ejector does not change, and the ejection coefficient also

remains invariable. Thus, point 1 and section 2-3 of the curve

lie along a single vertical line.

If we ignore the contrast in losses in the diffuser for

supersonic and subsonic flows, then in the case of a low relative

volume of liquid in the mixture, the total pressure value at

point 3 of the curve can be expressed as the value which corresponds

to pressure at point 1, as follows:

(40.1)PcoIz Po4Jq );. ,) ~
q

where A' > i,C3

In the particular case, when the velocity of the mixture
* in the outlet section of the mixing chamber is equal to the speed

of sound (X = 1) points 1 and 3 coincide.
c3

Regimes corresponding to the points of the vertical branches

of the curves, at which the flow rates of the gas and the liquid

do not depend on the conditions at the diffuser outlet, are called

the cut-off [choking] regimes of the ejector.

In gas-liquid and liquid-gas ejectors with convergent nozzles,

whose trailing edges have a zero thickness (6 = 0), two types of

cut-off regimes can be realized, depending on the state parameters

of the gas and the liquid:

1) critical regimes in which the flow at the outlet from the

mixing chamber is supersonic (Xc3 > 1);
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2) cut-off regimes of the mixing chamber in which the

velocity at the outlet from the chamber is equal to the critical

velocity (X03 = 1).

The limiting critical regime and the limiting cut-off regime

of the mixing chamber are also those regimes in which the flow

in the diffuser is completely subsonic. In a case where the

edges of the convergent nozzle have a zero thickness the limiting

critical regime and the limiting cut-off regime of the mixing

chamber correspond to the vertices of the vertical branches of

the curve (points 3 in Fig. 8 a, b, d, e).

In an ejector with a superconic gas nozzle and a convergent

liquid nozzle, in addition to the critical regimes and cut-off

regimes of the mixing chamber, in a certain variation range of

the parameters of state of the gas and the liquid cut-off regimes

in the nozzles can also develop in which the velocity of the

mixture in the outlet section of the mixing chamber and in the

diffuser will be subsonic (the region of tne subsonic flow which

does not occupy the entire cross section of the mixing chamber

extends up to the edge in the cut-off modes of the nozzles). In

these regimes a sonic stream of moist vapor flows from the

convergent nozzle. This stream expands suddenly in the initial

section of the mixing chamber and becomes supersonic. In the

divergent part of the gas nozzle a normal shock develops, which

leads to a supersonic flow in the subsonic part. Depending

on counterpressure the position of the shock can change, and thus

when K = const quantities Arl , Pr01' and, consequently, pco4 can

change. Sections 3-4 of the choking characteristics correspond

to the cut-off modes of the nozzles in Fig. 8c and f.

The cut-off modes of the nozzles can also develop in an

ejector with a conver;ent gas nozzle when its edges have a finite

thickness. In this case the change n value pc04 when K = const

and A.3 < 1 occurs due to the fact that with an increase in
counterpressure as compared to the value corresponding to the
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limiting critical regime, there is an increase in pressure

Pl in the stagnant regions, formed at the trailing edges of the

nozzle.

It should be mentioned that the transition from the super-

sonic region of the flow to the subsonic in a diffuser does not

actually occur in a plane shock, but in complex systems of bridge

shocks, in which losses, generally speaking, can be distinguished

from losses in a plane shock. However, as tests on gas and liquid-

gas vacuum ejectors with cylindrLcal mixing chambers indicate,

when the chamber is sufficiently long (on the order of 12-18 calibre)
losses in these shock systems in the limiting critical regimes are

very close to losses in the plane shock.

With an increase in counterpressure as compared to counter-

pressure ialues corresponding to points 3 (see Fig. 8a, b, d, e)

or 4 (see Fig. 8c and f) from the diffuser the disturbances
penetrate into the convergent parts of the nozzles, and, depending

on the nature of the flow in the initial part of the mixing

chamber, there begins a decrease in either the flow rate of the

liquid (see Fig. 8a, c e) or in the gas (see Fig. 8b, d, f) or
in both simultaneously (see Fig. 8 - dashed curves). The total

pressure of the mixture in this case rises monotonically, while

the ejection coefficient either rises steadily (see Fig. 8a and c),
decreases steadily (see Fig. 8d and f), or first decreases (rises),

and then rises (decreases) (see Fig. 8b and e). In the regime

K = the flow rate of the liquid is equal to zero and gas

alone flows through the eJoctor. When K = 0 only liquid flows

through the ejector (G = 0).
r

The curve shown in Fig. 8a, b, c corresponds to the gas-liquid

ejector (prOH > PMOH )' while the curves in Fig. 8d, e, f correspond

to the liquid-gas ejector (p 0O > r0H "
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Regimes in which the change in counterpressure is accompanied

by a change in the ejection coefficients are called subcritical

regimes. The sloping segments of the choking curves 6-3 or 6-4

in Fig. 8 correspond to these regimes. Obviously when the ejector

works in subcritical modes all the i ;ay from the inlet to the outlet

section, there will be a continuous subsonic flow region through

which perturbations will be transmitted.

4.2. Critical Regimes

The critical operational regimes of two-phase gas-liquid

and liquid-gas ejectors, as we have already mentioned, are those

regimes in which the flow in the outlet section of the mixing

chamber is supersonic. in studying the critical regimes of a

two-phase ejector we assume that when one of the streams on the

edge of the nozzle is sonic or supersonic and the other is

subsonic, then the latter, as a result of its compression by the p

diverging supersonic stream, is driven in the initial part of the

mixing chamber (between sections 1-2, ste Fig. 2) to the maximal

possible velocity.

In a case where the stream of liquid is subsonic, then when

P 01 > PM0H > P 0II its velocity increases to the value Ws2, and

when pM0 1 I > P 0O > ps2 . when during compression of the liquid

stream it is evaporated, the velocity of the stream increases to

a value equal to the speed of sound a n.m2 in the stream of

saturated vapor.

In a case where the stream of saturated vapor or gas is

subsonic, then its velocity in the initial section of the mixing

chamber rises to the speed of sound (this case is obtained in

critical regimes of a supersonic gas ejector - see, for example,
(7]). Section 2 (see Fig. 2) of the mixing chamber, in which the

velocity of the subsonic stream reaches the maximal possible value,

is called the cut-off section.
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Figure 9 shows theoretically possible systems of a flow in

nozzles and in the initial section of the mixing chamber,

corresponding to the critical operational modes of a two-phase

ejector with supersonic nozzles at different values of the

characteristic pressure ratio a = Pr0H/P 0H and invariable values

TrOH' PMOH and T MH. The patterns of flow in the liquid nozzle

in cut-off regimes and regimes close to it correspond in Fig. 9

to the case where pm0 i > P > P The patterns of flow in

the initial section of the mixing chamber and the conditions of

stream interaction remain the same for cases where p > P

and P > Pm0H > pS2 (see Figs. 5 and 6).

U At values of characteristic pressure ratio a which exceed

a certain maximal value 0 max the static pressure of the gas on
the edge of the nozzle in a rated flow system, when Ar1  Ar>p1,

greatly exceeds the pressure of the liquid, and thus the supersonic

gas stream, as it expands in the initial section of the mixing

chamber, fills its entire cross section (see Fig. 9a). The flow

rate of the liquid in this case is equal to zero (G = 0; K = w).

The ejection process when a > a is impossible.i -- max"

When 0 max >a > 0 (see Fig. 9b) the static pressure of

the gas at the edge of the nozzle for the rated flow pattern
exceeds, just as before, the pressure of the liquid (p > pI)'

rl> m
although the supersonic gas flow, as it expands in the initial

section of the mixing chamber, no longer fill- its cross section.

The pressure of the liquid in the critical section oi the nozzle

in these regimes exceeds the saturation pressure, and t: us liquid

flows for the entire length. The velocity of the liquid in the

initial section of the mixing chamber increases and, in keeping

with the basic hypothesis of critical regimes, reaches the maximal

possible value for a convergent nozzle W 2 = W in Section 2.
m2 s2

With a decrease in a from amax to a*** the divergent region

of the gas flow in the initial section of the mixing chamber

decreases, and thus the area of the cross section of the liquid
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stream f m2 and the flow rate of the liquid increase. In this

case the velocity of the liquid in the critical section also

increases. When a = a*** the liquid nozzle is cut-off: the

static pressure of the liquid in the critical section becor"es

equal to the saturation pressure (p .K = PS K). while the velocity

and the flow rate of the liquid reach maximal values (W .

= Ws K G= Gmmax) (see Fig. 9c). With a further decrease

in G the flow in the convergent part of the liquid nozzle remains

unchanged (p.K = PS K' WhK = WS K1 GH = Gm max ) .

In a a variation range from a*** to a** the flow scheme

shown in Fig. 9d and e is obtained. In the initial section of the

mixing chamber, Just as in the preceding cases, the supersonic

gas flow (A Xr ep; Pl > pMl ) expands and the flow from the
liquid nozzle contracts. In connection with the continuing increase

in the area fm2 and decrease in pressure on the edge of the liquid

nozzle, a supersonic flow of saturated vapor develops in its

divergent part, which is transformed into a subsonic flow in

the plane shock, which when a = a** reaches the outlet section

of the nozzle (see Fig. 9f and g). At values which are not too

low for the relative area of the critical section of the liquid

nozzle fM.K= MK/f.1 l in the plane shock there occurs a total
condensation of vapor, regardless of the position of the shock

in the nozzle, i.e., for the entire a variation range from a***

to a*** Here, in the initial section of the mixing chamber a

liquid stream flows, whose velocity in section 2 is equal to

Ws2 (see Fig. 9d and f), At values of f .K which are lower than

a certain minimal value, a flow of liquid on the edge of the nozzle

and between sections 1-2 of the mixing chamber is only possible

with a change in a from a*** to a certain value of a***l, at which

the pressure of the liquid on the edge of the nozzle becomes

equal to the saturation pressure. Here the flow schemes shown in

Fig. 6a and b develop in the liquid nozzle. At values of a between

0***l and a** a subsonic stream of saturated vapor flows from the
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nozzle. The velocity of this stream in the initial section of the

mixing chamber increases to the speed of sound (W = an.m2 ,n.w2 wl
see Fig. 9e and g).

When a** > a > a* (see Fig. 9h) supersonic streams flow from

both nozzles (X = AX ; W > a , and in the initial

section of the mixing chamber the gas stream expands and the

stream of saturated vapor contracts (pri > P As a decreases

Prl tends to pn.wl and when a = a* pressures on the edge of the

nozzles become identical (prl = Pn.ml ) ; the streams which flow

from the nozzles when a = a* have a cylindrical shape (see Fig. 9i).

With a further decrease in a the flow pattern in the gas

and liquid nozzles and in the streams in the initial part of the

rMixing chamber undergoes a reverse change. From the liquid
nozzle flows a supersonic stream of saturated vapor, whose static

pressure Pn m exceeds the pressure in the gas stream Pr., and

thus it expands and constri-ts the gas flow.

When a* > a > a** a supersonic stream, in which angle shocks

develop (see Fig. 9j), flows from the gas nozzle. With a decrease
in a the intensity of the angle shocks increases, and when a = a**

on the edge of the gas nozzle a plane shock is established (see

Fig. 9k). The subsonic gas stream which develops behind the
plane shock is driven between sections 1-2 from Arl 1/A to

the speed of sound (Ar2 =

At even lower values of a the plane shock penetrates into the
divergent part of the gas nozzle and, finally, when a = a***
it reaches its critical section. The flow pattern for regimes

with ** > a > a*** and a = a*** are shown in Fig. 9t and m,

respectively.

When a'** > a > min over the entire length of the gas nozzle,

the flow is subsonic (Ar. K < 1) With a decrease in a the range
of expansion of the supersonic stream of vapor increases and,
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finally, when a = amin the stream of vapor fills the entire cross

section of the mixing chamber. When a < a the flow rate of

the gas is equal to zero (G. = 0; K = 0) and the ejection process

.s impossible.

Let us find the conditions which bind the flow parameters on

the edge of the gas and liquid nozzles for an ejector working in

critical modes for all of the flow schemes above. With this goal

let us examine the flow in the initial part of the mixing chamber
between sections 1-2 (see Fig. 9) for cases where one of the streams

at the inlet to the mixing chamber is subsonic and the other is
sonic or supersonic. In addition to the assumptions made :n

deriving the ejection equations and in studying the flow of gas

and liquid in the nozzles, let us assume that:

1) the streams in the initial part of the mixing chamber do

not mix;

tii

2) thez-e is no heat exchange between the streams;

3) the flow is isentropic;

4) both streams in the cut-off section are one-dimensional,

and the velocity vectors are parallel to the ejector axis.

1 ' ! I p~tfbuH 5, 8

= JzfCM aR Pv bIL (14)
timopuu 2amon \o -..... U.Keilu C

NfefleHUOP /

(2 mp(21 2.

Fig. 10. Replacing the actual pattern of distribution of static
pressure in the cut-off section by a step-wise pattern - with a
break on the flow boundary.
KEY: (1) Subsonic stream; (2) Supersonic stream; (3) Pattern of
change in p assumed in theory; (4) Actual pattern of change in p.
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According to this last assumption, the known pattern of

static pressure distribution in the cut-off section and, conse.-

quently, the actual pattern of velocity distribution, is replaced,

just as in the theory of a gas ejector (see [' by a step-wise

pattern with a break on the flow boundary (Fig. 10).

Let us solve jointly the equations for the conservation of

mass, momentum, and energy for sections 1-2.

According to our assumption Pr02 -- Pr01 and Tr0 2 = Tr0 1 .

Considering this, from the equation of the conservation of mass

for the gas stream we get

(4.2)

The analogous relationship for the vapor-liquid stream is

written as

(4. 3)
I: A

, If we use relationships (2.3) and (2.4), as well as the

obvious condition

(4.4)

then from (4.2) and (4.3) we find

l~~~ao-o q , (4-0T.,n ,,, (4.5)
a+1 q~g + h.gp2I

The equation of momentum for sections 1-2 can be represented

in the following form:

0 ( W" + "t" ) N+O..'(W."- )_+;_'"....
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If we consider that Gr2 = G[l = GF.H; Gn.P2 2 Gn.l -: GM. H

and Tr02 = TrOH, then we transform this equation by means of

expression (2.12) into the form of

i ±. KaK.,..[z(k,) - z(X..2)]=a,.-l,. i-f,, (4.7)

where

n . - W t.,,, .+ AP,n.*2Pw
Sw2=. . (4.8)

while the sets nn.ml and n1 are determined from formulas (2.13)

and (2.14).

The velocity of the saturated vapor in the cut-off section,

which is contained in equations (4.5) and (4.7), is found from

the equation of the conservation of energy

W2

(4.9)

* which gives us

.. 1 =2gJ ("n.f- ). (4.10)

At the assigned value of pn 2 of the saturated vapor in

the cut-off section quantities v n. 2 and In.m2 can be found from

expressions (3.22) and (3.23). and the value of the vapor content,

contained in these expressions, can be found from condition

Sn.m2 = sn.jHI from formula

Sn.11 "" 2

-2 = . (4.11)

Equations (4.5), (4.7) and (4.9) can be usea in calculating

the critical regime in the variation ranges of a from a to
max

** and from a** to amin'
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In the a. variation range from amax to o** at the assigned

temperature of the liquid, depending on pressu.. p.0H and

quantity f HK in the initial section of the mixing chamber, three

flow schemes are possible for the stream flowing from the liquid

nozzle:

1) when a liquid flows between sections 1-2 (see Fig. 9b,

c, d, f);

2) when a liquid flows from the nozzle, but when partial

evaporation occurs between sections s-2;

3) when there is a subsonic flow of saturated vapor

between sections 1-2 (see Fig, 9e, g).

The first case is realized at total-pressure values of the

liquid pm01 which exceed quantity pm0 11 1 ' which is determined from

formula (3.39), where subscript "i" corresponds to the parameters

of the liquid on the edge of the nozzle. In this case additional

conditions which determine the flow of the streams in the initial

part of the mixing chamber will be: Ar = Ar.p; x1 = x2 = 0;

Pm2 = Ps2 (Wm2 = Ws2)"

In the second case, which arises at total-pressure values

PM 0 1 between pM0 1 M and p s2 the additional conditions will be:

r1 = Ar.p; xI = O(pl > Psl); W an. 2 .

In the third case the additional conditions will be the same

as in the second, the only difference being that x1 > 0.

In the a variation range from a** to amint when in the

initial part of the mixing chamber the supersonic stream of

saturated vapor expands and the subsonic stream of gas contracts,

the additional conditions for the system of critical regime

equations will be: W W an I and A= 1.

n~m nliil.p i!1 i
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At the assigned values for the geometrical parameters of the

ejector, as well as for the physical properties and stagnation

parameters of the gas and the liquid at the nozzle inlet, in order

to calculate the critical regime we must know in which of the

above ranges the assigned value of the characteristic pressure

relationship is found, For this purpose we must compare the
assigned value of a with the values s ,  a1 1 , a , a , a

and amin* In determining these values pr0H can be considered
variable. Let us assign the calculation order for these quantities.

The quantity ama is found from equations (4.7) and (4.5)

with the aid of expressions (2.10), (2.13), (2.1h) and (4.8),

assuming that Arl = Ar p and that at the limit, as the flow rate

of the liquid tends to zero., W I- 0, P

[ 1

'- pzonl avr~..1 (A.p)[~z (% x)- ( ' (4.12)

where the value of Ar2 max is found from formula

; +(4.13)

Quantities a4* and a** can be found from equations (4.7)

and (4.5), which, if conditions Ar = r.p and VrlH V rlH.p are

considered, is written in the form

P-- __, = 1.,IW.,.,! (a,.., + n- 1 ..- 2) (4.14)
pXO, gp. 4Vr1,.pq Or.p) [Z ( - Z Or.0)

q -O q,.0 T .*.(4.15)

S(a+ 1) Ya.m2 Wtt x - ( 1 1 . "

Unknown quantities In.H2' "n.H2' nn.fl, nI and nn
contained in these formulas, can be found by calcu'ating the flow

of liquid in the nozzle and between seetions 1-2 of the mixing

chamber.

72



When a = ** these quantities can be calculated, in a case

where the compressibility of the liquid can be ignored, in the

following sequence:

1) we d4etermine the maximal flow rate of the liquid through

the nozzle G and quantity p (see Section 3.3), after which,
max O

from formulas (3.45), (3.47), (3.46), (3.30b), (2.13) and (2.14),

we calculate quantities W I, pwpI P,01, T.1 , n.1 , n1 and from the

saturated-vapor tables we find the saturation pressure psl= Ps2;

2) from expressions (3.27) and (3.39) we find quantities

anm(x+0) and Pm0olI;

3) if P1 p OlP0II' then x2 = 0, Pm2 = P s l, Ym 2 = y and

the velocity Wn 2 is calculated according to formula

II
~~after which from (4.C) we determine quantity nn2= ns2

4) if p 01II > P Ol > Psio then in the cut-off section flows

a sonic stream of saturated vapor. Quantities p n.m2' n.m2 and

W n. 2 are determined in the same order as the third cut-off

case of the liquid nozzle (see Section 3.3).

When a = a** the parameters of the stream which flows from

the liquid nozzle in sections 1 and 2 is calculated as follows:

1) we determine the state parameters and the velocity of the

streami of saturated vapor on the edge of the supersonic liquid

nozzle in its rated operational regime (see Section 3.3), after

which, with the aid of relationships presented in Section 3.4,

we find the parameters of the subsonic flow of liquid or saturated

vapor behind the shock located in the outlet section of the nozzle,

as well as quantities nn. 1 and n
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2) if in the shock the vapor is completely condensed, then

we calculate the parameters of the liquid stream in section 2

according to parts 2, 3, 4 of the preceding calculation;

3) if a subsonic flow of saturated vapor develops behind the

shock, then the state parameters of the vapor in section 2 are

calculated from condttions sn.m2 .s and W 2= an.2

according to part 4 of the preceding calculation.

When a = a* supersonic streams (Wn-ml = Wn,. p  an.mi

Arl rep > 1) with identical pressures flow from both nozzles.

From the condition cf equality of pressures prl = Pn.ml we have

0 Q' r ,, ~ )' (4.16)
PXOH VjIU.PP.O

where p i the static pressure on the edge of the liquid

nozzle fo?' a supersonic outfluw velocity.

Quantities a** and a*** can be found from equations (4.7) and

* (4.5), whiTch are written as

--- - .. (4.17)
" (1--dmt' W~~I-Qr) '

(E + 1) q, 1) -a -7) q .•(4.18)

where the subscript "p" denotes the flow parameters of the saturated

vapor on the- Age of the nozzle in a supersonic outflow.

When a = a** the additional conditions will be:

X.,= /. and v, ,, v'l,,.,,. /q 0) 'P.),

and when a = a** - relationships (3.17), (3.18).

Quantities a** and a*** according to formulas (4.17) and (4.8)

are calculated, after determining the parameters of state and the
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velocity of the supersonic stream of saturated vapor on the

edge of the nozzle, as follows.

A series of values pn.m2 are assigned ranging from pn.m.p to

zero and values vt, v', it, it, st, s", which correspond to them,

are found from the saturated vapor tables, According to formulas

(4.11), (3.22), (3.23) and (4.10) we calculate the corresponding

values of x2 , Yn.m2 = l/V n.m2  n.m2 and Wn m2. By determining

the values of the product yn.m2Wn.m2 from equation (4.18) we find

the sought value pn.m2' after which w calculate the quantities

Yn.m2' Wn.m2, nn..2 corresponding to it and, finally, values G**

and a*** according to formula (4.17).

When a - amin we have: Arl - 0; VrlH -" 1. From equations

(4.17) anxd (4.18) in this case we get

Vn.x.pW.z.p (fn..p + n - n..,) (4.19)

Yi,.2WU-2- -(14.20)
(U + 1) qr (1)

We calculate quantity amin just as quantities a** and a***.
mi

After determining the range in which lie the assigned value

of a and, consequently, the additional conditions which determine
the flow of the streams in the nozzle and in the initial part of

the mixing chamber, we calculate the parameters of the stream

on the edge of the nozzles in the critical operational mode as

follows.

Case a=m> 1>0**

1. We determine the parameters of the supersonic gas flow

on the nozzle edge.
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2. We assign a series of values for static pressure on the

edge of the liquid nozzle in the necessary range and determine

the corresponding parameters of state and velocity of the liquid

or vapor-liquid nozzle in sections 1 and 2.

3. By substituting the obtained values in equation (4.5),

we find the corresponding values of Xr2 .

4. By solving equation (4.7) we find the unknown value

of pressure on the edge of the liquid nozzle, after which we

determine all remaining parameters of the streams on the edge of

the nozzles, which are needed to find the parameters of the

mixture at the ejector outlet.

Case >c>v*

In this case in the critical regime the rated flow pattern

(r X is Wn  = W a is realized in both(rF Ar~p > .nml n~mep > .nl !

supersonic nozzles. The flow rates of the working bodies and

the parameters of the streams in the inlet section of the mixing

chamber are in this case determined from calculating the flow in

the nozzles (see above).

Case' G">a>oIu

1. We find the parameters of the supersonic flow of

saturated vapor on the edge cf the nozzle.

2. We assign a series of static-pressure values pn.m2 and

using the saturated-vapor tables we find the corresponding

parameters of the supersonic vapor flow in the cut-off section.

3. From equation (4.5) we calculate the value of the reduced
velocity of the gas Arl on the edge of the nozzle.
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4. From the values cf A which we have found, using the

additional conditions which determine the flow of gas in t..e nozzle

for the supersonic range of a variation, we find the quantities

V tiH' Gr and K.

5. Using the flow parameters which we have found, by means

of equation (4.7) we find quantity pn.m2' which corresponds to the

critical operational mode of the ejector, and then, according to

parts 2, 3, and 4, we determine all the parameters of the gas

flow on the edge of the nozzle.

The flow patterns shown in Fig. 9 are realized in the critical

regimes of gas-liquid and liquid-gas -jectors, when both nozzles

are divergent and supersonic.

In a case where the gas nozzle is divergent and the liquid
nozzle convergent, at values of a between amax and a* , the flow

for the entire length of the liquid nozzle will be subsonic, and

in sections I and 2 either liquid or saturated vapor can flow.

When a* > a > amin the same flow patterns develop as shown in
Fig. 9i-9o, except that the outflow velocity from the liquid
nozzle, depending on the magnitude of Pm0H' can be equal either

toW or a.

In an ejector with a convergent gas nozzle and a divergent
liquid nozzle when amax > a > a1 the flow patterns presented in

Fig. 9a-9i develop, and the velocity at the edge of the gas nozzle
is equal to the critical speed of sound (A = 1);whena*>a

> amin in the initial part of the mixing chamber the supersonic
stream of saturated vapor expands and the gas stream, whose

velocity for the entire length of the nozzle is subsonic, contracts.

In a case where both nozzles are convergent there occurs a
sudden expansion of the sonic gas stream and a contraction of the

subsonic stream flowing from the liquid nozzle in the range of
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o variation from 0 max to a* in the initial part of the mixing
chamber; the additional conditions determining the critical regime

will in this case be: XA! = i; Wm2 = Ws2 or Wn.m2 = an.w2

When a* > a > am in .the initial part of the mixing chamber

there occurs a sudden expansion of the sonic (W a
n.ml fl.m')

or the supersonic (W sl > a n.ml(x- ) ) stream of saturated vapor

and a contraction of the subsonic stream of gas, whose reduced

velocity in the cut-off section becomes equal to unity (A = i)•
r- 2

The critical regimes in all of these cases are calculated

just as in the case examined above for the two supersonic

nozzles.

Let us note in conclusion that a number of assumptions made

in the work during derivation of the equations of critical regime

for a two-phase ejector require experimental varification. In

the case where between sections 1-2 a liquid flows (see Fig. 9a,

b, c, d, f), this refers primarily to the proposal that the flow

of liquid is in a stream (it is possible that under certain

conditions the flow of liquid will break up into drops before

section 2).

In the case where in the nozzle or the initial section of

the mixing chamber (particularly under conditions of a < a*)

spontaneous evaporation of the liquid occurs, this is relatad to

the assumption of thermodynamic and mechanical equilibrium of

the saturated vapor which has formed; actually, due to the lag in

the evaporation process, the pressure of the vapor can be lower

than the saturation pressure, and thus the liquid will be overheated.

Note also that in addition to the above cases of a two-phase

gas-liquid or liquid-gas ejector working in critical modes, in the

liquid-gas ejector another case is possible - the case where the

flow of both streams at the edge of the nozzles is subsonic. This

case will be thoroughly examined in the following chapter.
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4.3. Cut-Off Regimes of Nozzles

When the ejlctor is operating in critical regimes, when the
characteri'stic pressure ratio lies between amax -C,* (see Fig. 9b)
and a**-ma (see Fig. 9n), the flow of one of the working bodiesminfor the entire length of the nozzle and the initial part of the
mixing chamber will be subsonic. Thus, with an increase in
counterpressure, as compared to the counterpressure value corre-
sponding to the limiting critical regime, the ejection coefficient
immediately begins to change and the ejector shifts to a subcritical
working regime. The limiting critical regime in this case Is
simultaneously the limiting cut-off regime of the ejector (point
3 in Fig. 8a, b, d, e).

A different pattern is observed when a,* > a > 0*** (see
Fig. 9d-9O). In this range of a variation In the critical
regimes in the divergent part of both nozzles there are regions
of supersonic flow, througn which perturbations cannot penetrate

into the ejector inlet. With an increase in counterprebsure,
as compared to the counterpressure value corresponding to the
limiting critical regime, the flow rate of the mixed media do not
vary and the ejector shifts to cut-off regime in the nozzles
(section 3-4 of the vertical branches of the curves in Fig. 8c, f).
In these regimes in the divergent part of at least one of the
nozzles there develops a plane shock, which as counterpressure
increases shifts toward the critical section. Finally, at a
certain counterpressure value the limiting cut-off regime of the
nozzle develops, in which the plane shock reaches the critical
section of the nozzle (points 4 in Fig. 8 c, f). With a further
increase in counterpressure subcritical 2egimes develop.

Possible flow schemes in the nozzles and in the initial part
of the mixing chamber for the limiting cut-off nozzle regime when

P MOH PM011 are shown in Fig. 11.
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When *** > > r.pI in the divergent part of the gas nozzle

a supersonic flow (A 1 = Ap).is realized, and in the divergent

part of the liquid nozzle, which operates in a cut-off regime

(WM.K = WS K' or Wn.W.K = an.m.K) a subsonic nozzle is realized,

where, depending on the magnitude of the characteristic pressure

relationship, prl > PM1 or Prl < PD. (see Fig. !la).

(1) (1)
/lpnur Oema1ox flpauod cet qolg.

W Wsx =iV.(W.1 saXZ"".,) t.,.a'ws ( . ua 1 -tx x) Wx=WVsc; 1/Ar.p>fr1>r1

ft / ~A ft
-1 - 1 li fz/ 4_.,

d) 6 r;.p ppn Xr. e)er.pa-as>rpj,;Pr,=p, ,; f) @Gr.pu P;Fry: p.m,; Xr.,=?

Arsmt1-WaVWSK(WnsXw-aunL) ?-EK1 ; W.K-WIC; Wgg~r.WpS, k~ri 1 mlan,

V,5, 'caslk; krt-rtin

.,L i Fig. 11. Possible flow schemes
in nozzles and in initial part
of mixing chamber for limiting
cut-off regime of nozzles in a

g.6,;rP>r--6***; r'=Xrv min case where p OH > PAOI

KEY: (1) Plane shock.

With a decrease in the value of a from a*** to ar.pI and
ar.pII the flow pattern in the liquid nozzle does not change.

When a = a .pI a plane shock develops on the edge of the gas nozzle

(A = !/Ar.p, see Fig. llb).

When ar.pI > a > qr.pII the plane shock is found in the

divergent part of the gas nozzle (see Fig. llc) and wnen a = o .pii

is in its critical section (see Fig. lld). In the range of a varia-

tion from ar.pII to a*** the flow in the gas nozzle remains
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invariable; in the divergent part of the liquid nozzle when
or.p I > a > a r.pil a plane shock develops (see Fig. lie), which
when a = ar.piii is located in its outlet section (see Fig. llf).When a r.pi> a > a*** (see Fig. 11g) a supersonic stream of

saturated vapor (Wn.mi = WnM p > a nml) flows from the liquid
nozzle.

Let us find the values ar.pI , Or.pIl and Or.pIlI , assuming
that the physical constants of the gas and the liquid, as well as
the state parameters of the liquid are assigned, and quantity prOH
is variable.

The streams which flow from the nozzles in regimes a = a_a = ar.pII and a = a r.piii are subsonic, and thus static pressures

in them are identical.

When a = a r.p from condition pr! = PwIs if we use expression
(3.15) and assume that Ar I/Ar.p and rl rl,.p, then we get

2 P
r 1 -- "I \

'! 
•

where the value of Pi in a case where the compressibility of
the liquid can be ignored is found from formula (3.47) using
expression (3.45).

For ap from condition P = Pl' using the relationship
of (3.19), we get the following expression:

Or-pit 2rirtml (4.22)

where Ar! min and p m max are found from (3.18) and (3.47).
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The quantity ar.pI can also be found from relationship

(4.22) if in place of pl max is the static pressure Pnl or

PMl behind the plane shock, located at the edge of the liquid

nozzle, wkere the velocity of the supersonic flow of saturated

vapor in front of it is equal to W

Now let us assign the calculation order of the flow parameters

in the inlet section of the mixing chamber for an ejecto:' working

in a limiting cut-off nozzle regime for different assignments of 0.

IT the assigned value of a lies oetween a* and ar.pi, then

the parameters of the liquid at the edge of the. nozzle are found

from formulas (3.45), (3.46), and (3.47), where quantities Gmax'

VM.K.H ,and WS K are determined by calculating the flow in the

convergent part of the no..ie in the cut-off regime. For a gas

flow in this case we have

4i -Xr and vrtu=vT,,.p-

In the case of a > >a the flow parameters on ther.pI , r,plI
edge of the liquid nozzle are found just as in-the preceding case.

To determine the parameters of the gas flow on the edge of

the nozzle a series of values are assignei for reduced velocity Arl

ranging from 1/Ar.p to Xrl min' From formula (3.17) we find

corresponding values for the coefficient of pressure recovery

rH, and then the values of static pressure Prl = PrOHVrlHP(Ar!)"

The values sought for Arl and vrl H are found thereafter from the

condition prl = Pl"

In a case where the defined value of a lies between o .pII

and a r.pii (Ari = Arl min )' quantity Vr1H and static pressure

Prl = Prl max in the limiting cut-off regime of the ejector are

found from (3.18), (3.17), and (3.19). The flow parameters on

the edge of the liquid nozzle are found from calculating the flow

in the nozzle in the presence of a plane shock in its divergent
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part from condition p = pr or p = P The calculation is

performed as follows:

1) the parameters of state and velocity of the flow in a

critical section of te liquid nozzle in its cut-off regime are

found, and then quantity Gm max is calculated;

2) assuming that a liquid flows from the nozzle (xI = 0),

then from formula (3.45) we find the outflow velocity W.1 , and then

from expression (3.46), assuming that p = P1 l' we find the

quantity p.0 1 ' after which from expression (3.30b) we find the

temperature of the liquid Tl. If quantity prl exceeds p at

then the calculation ends here;

3) if Pr < Psi' then from the nozzle flows saturated vapor,

whose state parameters and outflow velocity are found as follows.

From the assigned value pnml = Prl from the saturated-vapor tables

we find the quantities vt, v , i, 1I, after which from expressions

(3.41) and (3.44) we find the quantities inml, Vnml(yn. l) and

from fcrmula (3.40) we find the value Wnml"

When a a > o*** the parameters on the edge of the

r.PIII

gas nozzle are determined just as in the preceding case. Here

the liquid nozzle works in the calculated supersonic outflow

regime (Wnml= Wn.m.p  .ml)"

I, the particular case, when the gas nozzle Js divergent,

and the liquid nozzle convergent, the cut-off regimes of the nozzles

can develop in a range of a variation from ar.pI to r.p I .

Quantity ar.pi and ar.pII are found from condition p.l = P.l' where

in both cases the liquid nozzle works in the cut-off regime

(WNl a Wsl or WnNml = a n~l). In this case, when the gas nozzle

is convergent and the liquid nozzle divergent, the cut-off regLmes

of the nozzles are realized at values of a wnich lie in the range
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of a > a > in determining value i and ar

vl p I:Ir.pII r.pIII

we assume that prl =p and Xr1 = 1.

In an ejector with convergent nozzles the cut-off regimes

of the nozzles can develop in a case where T > 0. In the limiting

cut-off regime df the nozzles In this case Xrl = i, W l I Wsl or

Wn~ 1 = anl (which depends on the magnitude of p 0H ) , while
pressure p1 in the stagnant regions, which develop near the

dull edges of the nozzles, is equal to the lesser of pressures

(Prl or pMl) on the edge of the nozzle. The cut-off regimes of

the nozzles in this case are realized in a range of a variation

from a1, at which Prl > P I, to 2' at which Prl < Pml" Quantities

a and a2 are found from the equations of the critical regime (4.5),1a2
(.7), and (2.10), respectively, under conditions

and Wv.w1_ax (W 1= W,); )rXrr =1.

4.4. Subcritical Regimes

Let us examine a twophase ejector operating in subcritical

regimes, where with a change in counterpressure there is a

corresponding change in the flow rate of the mixed media and,

consequently, in the ejection coefficients. In these regimes,

just as the critical regime studied above and the cut-off regimes

of the nozzles, depending on the magnitude of the characteristic

pressure ratio a, various flow patterns can develop in the nozzles

and In the initial part of the mixing chamber ('ig. 12). Analysis

of these patterns enables us to find the conditions which relate

the flow parameters on the edge of the nozzles.

At values of a which exceed the quantity arpl O , a supersonic
flow (Xrl = A r.p see Fig. 12a) is realized in the divergent

part of the gas nozzle over the entire range of possible change in

the ejection coefficient from K - (p I ' PM0 ) to K = K3 ,

which corresponds to the cut-off regime of the ejector.
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Fig. 12. Possible flow schemes in nozzles and in initial part
of mixing chamber in subcritical regimes.
KEY: (1) Plane shock.
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The quanity a which corresponds to the regime in which

the flow pattern shown in Fig. 12b is realized, can be found from

formula

21
or.plm0~w i f\ (4.23)

At values of a which lie between ar.pIwO and ar.pl (see

Fig. 12d), which is determined from formula (4.21), depending on

pressure on the edge of the liquid nozzle two different flow

schemes can devleop. In a variation range of pM1 from PM1 max-

[relationship (3.47)] to P la' which is determined from formula

T ( ' ) 4 (4.24)

a supersonic stream (X X see Fig. 12a) flows from the
ri r~pt

gas nozzle,

When Pmla >PMl > PMOH in the divergent part of the gas

nozzle a plane shock develops (see Fig. 12c); subcritical regimes

are in this case calculated by means of (3.17).

When a > a > a the flow scheme shown in Fig. 12cr.pI -r.pIImO

is realized over the entire range of possible change in the

ejection coefficient ( > K > K3 ). In this case the subcritical

regimes are also calculated by means of (3.17). Quantity arplI 0

(see Fig. 12e) can be found from formula

- . MID ( 4 .2 5 )

fTr(41 MO

Depending on quantity pmis two flow schemes correspond to

the values of a which lie between a rpllm0 and a r.p I (see Fig. 12g),

which is determined by (4.22). With a change in pressure on the

edge of the liquid nozzle from p I x [relationship (3.47)] to

P determined from formula
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O+ I 'lI (4i.26)Pxsia -2 fr.KP XAKIrmiU

the flow scheme shown in Fig. 12c develops. With a change in

pressure on the edge of the liquid nozzle from p to P 0H over

the entire length of both nozzles the flow is subsonic (see

Fig, 12f). An additional condition enabling us to calculate these =

regimes will be pl P~1 "

When ar.pI > a > ar.pir 0 with a decrease in the static

pressure of the gas on the edge of the nozzle from pr0H to Prl =

SMHl max [relationship (3.47)] the flow in both nozzles is subsonic

(see Fig. 12f). With a further decrease in quantity pr from

Psirl = Pml max to Pcl max [relationship (3.19)] in the divergent
] part of the liquid nozzle a supersonic flow of saturated gas

develops which is shut off by the plane shock (see Fig. 12h).

The flow pattern for the regime a = Ur plarO is shown in
Fig. 121 in this regime Prl PrO0H (Arl = 0) and PIl = Pml max'
Quantity p is found from the obvious relationship:

Of.p,, =p~a.,.i/p ,. (4.27)

Quantity psi max' contained in this relationship, is found
from (3.47).

The flow scheme shown in Fig, 12h is also realized when

a a > a.pIII over the entire range of change in the

ejection coefficient (from K = c, Prl = PrOH AP to K3, Prl =
ar- max . The flow pattern for regime a = ar.pill is shown in
Fig. 12j. Quantity ar pIII can be found from formula (4.22), where.
in place of PI max we should substitute static pressure Pn.In.c

behind the plane shock, which develops in the outlet section of

the liquid nozzle (see Fig. 12Z).
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In the range of a variation from ar.pIII to ar.pIIr0'

determined from formula

"r.P 11"40 (4.28)

three flow schemes are possible. When prOH P-l > Pn.wIn.c

a flow with a plane shock develops in the liquid nozzle (see

Fig. 12h) and when Pn.wln.c > P rl > Prl m a supersonic streamI

of saturated vapor flows from the liquid nozzle (see Fig. 12k).

The flow pattern shown in Fig. 12k when a < ar piir0 is realized

for the entire possible range of change in the ejection coefficient

(from K = 0 to K = K3 ).i3
Having determined which of the possible ranges of change in

characteristic pressure ratio contains the assigned value of a,

then, if we use the conditions described above and the relation-

ships which determine the flows in the nozzles (see Chapter 3),

then we can find the flow parameters on the edges of the nozzles

for the entire possible range of change in the ejection coefficient

and, finally, by using the ejection equation we can find dependencesPc4(K) and n(K).

4.5. Cut-Off Regimes of Mixing Chamber

Analysis of the ejection equation system shows that in a

two-phase ejector with fixed geometry the critical regimes and

the cut-off regimes of the nozzles can only be realized in a

certain range of change in the parameters of state of the gas and

the liquid at the nozzle inlet. Within this range the ejection

equations for conditions at the inlet to the mixing chamber,

which correspond to critical regimes and cut-off regimes of the

nozzles, do not have solutions: the subradical expression in

(2.18), which determines the velocity of the mixture in the outlet

section of the mixing chamber, becomes negative.
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The cut-off regime of the ejector is in this case the cut-off

regime of the mixing chamber, in which the subradical expression

in relationship (2.18) reverts to zero, which corresponds to

fulfillment of condition We3 = W ' (M = 1). With a
c3 Cac 3  03

decrease in counterpressure from the value corresponding to

regime K = 0 or K (point 6 in Fig. 8), in this case even

before the advent of the critical regime (point 3 in Fig. 8) or

the cut-off regime of the nozzles (point 4 in the same figure) the

mixing chamber (point 5') can be cut off, and thus with a further

decrease in counterpressure quantity K becomes invariable, while

the total pressure of the mixture decreases accordingly (sections

5'-7 of the curves in Fig. 3).

The cut-off regime of the mixing chamber can also develop in

a range of counterpressure variation corresponding to the cut-off

regimes of the nozzles (point 5' in Fig. 8f). The boundary of

the region of cut-off regimes of the mixing chamber corresponds
to the values of the state parameters of the gas and the liquid

at the ejector inlet at which the conditions of the critical

regime or the cut-off regime of the nozzles and the cut-off regime

of the mixing chamber are fulfilled simultaneously.

89



CHAPTER 5

SOME OPERATIONAL PECULIARITIES
OF A LIQUID-GAS EJECTOR WITH
CONVERGENT NOZZLES

Let us study more thoroughly the work of a liquid-gas

ejector with convergent nozzles whose edges are of zero thickness.

5.1. Subcritical Regimes

- When a liquid-gas ejector with convergent nozzles operates
in subcritical regimes three flow schemes are possible in the

nozzles and in the initial part of the mixing chamber:

1) when both flows are subsonic;

2) when the gas nozzle is choked;

3) when the liquid nozzle is choked.

In the first case an additional condition to the system of

ejection equations is the condition of equality of static pressures
on the edges of the nozzles (prl = P.1 or p = in the
second case - condition Arl = 1, and in the third - the conditionrJ.
W~9 = W 1 or W a Possible flow schemes in the initial

part of the mixing chamber for these cases are shown in Fig. 13.
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Fig. 13. Possible flow schemes in initial part
of mixing chamber of liquid-gas ejector with
convergent nozzles in subcritical regimes.

In the case where Pr01Pr(1) > P51  and Pr0H < PHOH' condition

Prl =PMI is fulfilled in a range of variation in the outflow
velocity of the liquid from the minimal value of WI mn' which

,: corresponds to regime Ai 0, to the maximal value of Wi max"
V in which Al = 1 (see Fig. 13a); when pr0H > pH0 this condition

is fulfilled in a range of variation in Ww from zero (A ) to
(rl min)

W max rl i). At values W which exceed Wml max the
condition Ar1  1 &s fulfilled; here the sonic gas flow suddenly

* expands in the initial section of the mixing chamber and

constricts the stream of iquid (see Fig. 13b).

In a case where Pr01Pr(l) < pSI, condition pl P I is
fulfilled at values of Xrl which lie between zero (when Pr0H <

< P0H) or quantity Arl min (when prOH > PM0H )' determined from
condition prl = P and the quantity Al max' which is
determined when p > P 01 1 from relationship p(A )

MOH ROIIrl max=sl/Pr0l When POII P pOH > PSI' this quantity is determined
= from formula p(Al max)fo frm rl max Pn.l min/PrOll where p. min is

found from condition WnHl a

When Ar1  rl max condi-ion w = Wn,H n.mi
is fulfilled; in the initial part of the mixing chamber there is

a sudden expansion of the supersonic stream of saturated vapor
and a contraction of the subsonic stream of gas (see Fig. 13c).
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5.2. Critical Regimes and Cut-Off
Regimes of Mixing Chamber

Theoretical analysis of flow conditions in the mixing
chamber of the ejector indicate that a supersonic flow of the
mixture of gases is possible only when at least one of the
flows mixed in the outlet section of the nozzles or in the initial
part of the mix~ng chamber is supersonic. In a case where both
flows at the inlet to the mixing chamber of the ejector are
subsonic, a supersonic flow of the mixture is impossible, since
this would contradict the second law of thermodynamics (the entropy
of the mixture becomes less than the total entropies of the
mixed gases). This is explained by the fact that the critical
velocity of the mixture always lies between the critical velocities
of the high-pressure and the low-pressure gases, and this the-
transition to the supersonic region of the flow at subsonic
velocities of the mixed streams is only possible as a result of

the development of an expansion shock.

As indicated above, in gas-liquid and liquid-gas ejectors
with divergent nozzles the supersonic flow of the mixture which
corresponds to an ejector working in critical regimes, can also
develop in a case where one or both of the streams in the initial
part of the mixing chamber is supersonic (see Fig. 9). In the
particular case of an ejector with convergent nozzles the flowschemes shown in Fig. 14 can correspond to the critical regimes,
depending on the parameters of state of the gas and the liquid.

When PrOlPr() > ps1 (see Fig. 14a) in critical regimes the

velocity of the gas on the edge of the nozzle is equal to the
local speed of sound (Arl = 1), where Prl > p I' In the initial
part of the mixing chamber there occurs a sudden expansion of
the gas stream, whose velocity in section 2 becomes supersonic

(Ar2 > 1). The stream of liquid between sections 1-2 is compressedand its velocity rises to the maximal possible value (W2 =Ws 2

or W n.2 a n.N2). When pr01Pr() < Ps1 (see Fig. 14b) in the
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NdN
critical regime the liqui~d nozzle is Cut off (Wl = Wsl or

W n.mi = anl), and p > Prl" Between sections 1-2 of the

mixing chamber a supersonic stream of saturated vapor develops

(W > a which, as it expands, compresses the gas stream,
n.m2 nm

and thus the velocity of the latter in the cut-off section becomes

equal to the speed of sound.

r 22

Arz>I.

£Fig. 114. Possible flow schemes in +

i+l

+ ! critical regimes for liquid-gas-
' ejector with convergent nozzles.

-X J

+ An interesting feature of the liquid-gas ejector, which
distinguishes it from the gas and gas-liquid ejectors, is the

Sfact that under certain conditions critical regimes can develop 11
i in it at subsonic velocities of the gas and liquid flows. This !

+ is explained by the fact that the speed of' sound in the two-phase i

gas-liquid mixture can be considerably lower than the speed of
sound in its components. For example, when tc = 150 C; Pc = 0.1

kgf/cm2 and K = I05-I0 -2 the speed of sound in an equilibirum
water-air mixture varies in a range from 5 to 30 m/s, while under
the same conditions the speed of sound in water is equal to

+1I400 mn/s, and 3140 rn/s in air (see Fig. 1).

The conversion of subsonic gas and liquid flows into the

supersonic flow of the two-phase mixture in the mixing chamber of

the ejector can therefore occur as a result of the drastic decrease
in the speed of sound in the process of the formation of the
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mixture, rather than from the increase in the velocities of the

gas and liquid particles,

To illustrate this Figs. 15, 16, and 17 show three possible

flow schemes in the mixing chamber for a liquid-gas ejector,

which correspond to the ejector operating in regimes in which the

velocities of the gas and liquid streams are subsonic and differ

insignificantly from one another (Wrl W^V ). In-this case the

mixing of the gas and liquid streams occurs at almost invariable

values of static pressure PC (P ' Prl and velocity

W (W V Wl X W ) along and across the mixing chamber. The
c c 'IV rl

speed of sound a c and number .Mc of the two-phase gas-liquid flow

(hatched regions in Figs. 15-17) in this case change only in

connection with the change in the relative concentration of gas

in the.mixture, described by the quantity K = Gr/G *

Between sections I-III of the mixing chamber the stream of

liquid is broken up into drops and a steadily expanding two-phase

flow region is formed, which borders on the flow regions of the

liquid and the gas (dashed lines). Between section III, in which

there are no longer individual streams of gas and liquid, and the

outlet section of the mixing chamber there occurs a total mixing

of the gas and liquid particles and the formation of a homogeneous

two-phase gas-liquid flow.

In arbitrary section II in the region between points 1 and 2

flows a supersonic gas stream (Mr  Mr, < 1), while between

points 5 and 6 - a subsonic liquid stream (.4 "' MMl << 1). Between

points 2 and 5 flows a two-phase gas-liquid flow, and the magnitude

of ratio Gr/G varies from w on the boundary with the gas stream

(point 2) to zero on the boundary with the liquid stream (point 5).

Since static pressure over the section of the mixing chamber does

not change, then the speed of sound in the mixture a with the

transition from point 2 to point 5 first decreases from a value of

ac = ar to a certain minimal value of ac mn' and then rises to a

value of a = a . Number Mc first rises from Mc = Mr to a certain

maaimal value of M and then decreases to M = M
c max C M
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If the velocity of the mixture flow W (dashed line in Fig. 1)

is less than ac mi for a given value of Pc (see, for example

curve a (K) when pc = 10 kgf/cm2 in Fig. 1), then the velocity of

the two-phase flow of the mixture will be less than the speed of

sound over the entire range of change in ratio Gr /G from - (points

2; 1 in Fig. l) to zero (points 6; 5 in Fig. 1). Since quantities

PC and Wc along the mixing chamber remuin virtually unchanged,

then in the studied case the flow of mixture will besubsonic

for the entire length (solid lines in curves of Fig. 17).

As the pressure of the mixture decreases at W= const this
c!

flow pattern is preserved up to the moment when quantity ac min

becomes equal to Wc [curve ac(K) in Fig. 1 touches line Wc  const

at point K ]. If in this case the assigned value of the
a min

ejection coefficient K = / does not equal Ka , then,

as follows from Fig. 1, the flow in the outlet part of the mixing

chambe 1 (sections III and IV in Fig. 17) will be subsonic. Here
the velocity of the mixture reaches the speed of sound only in

the initial part of the mixing chamber along a certain line (the

dash-dot curves in Fig. 17).

In a case where GH /G. = Kac mm' the velocity of the flow

in the outlet section of the mixing chamber is equal to the speed

of sound, and for the entire length there exists a line (or a

narrow region) on which W = ac (dotted curve in Fig. 17).

At even lower values of the mixture curve a (G /G ) intersects
C r = W

line Wc = const at two points [curve a (Gr/G ) at PC = 1 kgf/cm

in Fig. 1J. Here, in the range of variation of ratio G /G from

the value corresponding to point 3 to the value corresponding to

point 4 (see Fig. 1 and also Figs. 15 and 16) the flow of the

mixture is supersonic. If the assigned value of the ejection

coefficient lies between quantities (Gr/Gm) 3 and (Gr/G) 4 (point C'

in Fig. 1), then the range of supersonic flow of the mixture

extends the entire length of the mixing chamber, so that M > 1
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(see Fig. 15). If, however, K < (Gr/Gm)4 or K > (Gr/G

(points C" and C"' in Fig. 1), then the range of supersonic flow

exists only in the initial part of the mixing chamber, while the

flow at the outlet from the mixing chamber will be subsonic

(see Fig. 16). It is interesting to note that the transition from

the supersonic region of the flow to the subsonic in the last

case is accomplished without shocks and only as the result of a H

change in the distribution of the relative content of gas in the

mixture.

For the purpose of showing the operational peculiarities of

the liquid-gas ejector with convergent nozzles in critical regime,

the results of calculating the parameters of the mixture for a

water.-air ejector at a 3.3; 1 = 0; P 0H 5 kgf/cm2; T .H

= Tr0ii = 288 0K and several total-pressure values of the ejected

gas are presented below. For the sake of simplicity in the

calculation it was assumed that in the initial part of the mixing

chamber vapor from the liquid is absent, the liquid contains no

dissolved gases, and the flow in the nozzles occurs without
total-pressure losses, The results of calculating the parameters

2of the mixture at prOM = 3; 1.0 and 0.1 kgf/cm are shown in

Table 1 and in Figs. 18, 19, and 20.

If we examine Figs. 18-20 we see that at the assigned

parameters of state of the gas and the liquid at the nozzle inlet

and fixed geometrical parameter of the ejector the formal solution

of the ejection equations provides for each value of the ejection

coefficient two velocity values for the mixture (WI and Wi' ) andc3 C3
two values for the speed of sound in the mixture (a' and a")

3 c3'
where Mt W / > 1, and M" = (W" /at) < 1 (see Table 1).
whee 3 =(W/3 3 >1c3 c3 c3

With an increase in the ejection coefficient the difference between
the velocities of the mixture W' W" and the speeds of sound

a-' and a" decreases and, finally, at a certain value of thec3 c3
ejection coefficient it becomes equal to zero (W' = W" = a' =c3 c3 c3
= a03 ; '3 = 3" = 1, points a in Figs. 18-20). At values of

the ejection coefficient which exceed the quantity corresponding

to point a, the ejection equations do not have a solution.
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Weii
710 N zt. -

a3.35=Op~ 0 ~~kg/cm;~~-T 2800KK

* IU

Fig. 19. Results of calculating parameters of mixture
at outlet from mixing chamber of water-.air ejector at

a=3.3; 6 = 0; pmO 5 kgf/cm ; T. T= 2800K

and p10 kgCM2

Designationst Mi/ceH =M/s; H/CM2  kgf/cm; aT =at.
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4,"; Jt;X.~'B00.

Fpro, 41 kf/cm2

Fig. 20, Results of calculating parameters of mixture

at outlet from mixing chamber of water-air ejector at

a -3.3;k0; p 0  5 kgf/cm;T - TO 2806K
and pr0H 0,i kgf/cm2 .

As the total pressure of the ejected gas decreases from

to 0.1 kgf/cm2 the maximal possible value of the ejection
coefficient, which corresponds to the cut-off regime of the

mixing chamber, decreases steadily - from 0.0185 to 0.0019, while

the velocity of the mixture, which is equal to the critical speed

of sound, decreases from 43.43 to 19.84 m/s. From Figs. 18-20 it .

follows that when pr0H , const the velocity of the liquid at the
edge of the nozzle is virtually independent of the ejection

coefficient, while the velocity of the gas with an increase in the

ejection coefficient from zero to K3 rises according to a nearly

linear law from zero to Wrl max' which exceeds the velocity of

the liquid.

At a certain value of K, which depends on the total pressure

of the gas prOH the velocities of the gas and the liquid at the

edge of the nozzle becomes the same and equal to the velocity of

the mixture in the outlet section of the mixing chamber (point b
A
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in Figs. 18-20). When Pr0H > 1 kgf/cm2 point b lies on curve W" (K)cuv I'
which corresponds to the subsonic flow of the mixture (Wrl = W i =

= W 3 ), and when p < 1 kgf/cm2 , it lies on curve W 3 (K), which
corresponds to the supersonic flow of the mixture (W = W W? MRS

rl Ml c3As total pressure of the ejected gas decreases from 3 to 0.1 kgf/cm 2

the speed of sound as3 in regime W = W =W decreases, and the -

c3 rl 2 l c
velocity of the mixture W in the outlet section of the mixingc3chamber increases. Thus, the number M increases steadily (from

c3M 3 = M 3 =0.49 at P0 3 kgf/cm2 toM 3 = 1 at a value of
2PF0H which somewhat exceeds 1 kgf/cm2 , and to M = 4.19 at cr03 -2= 0.1 kgf/cm2 ) (see Table 1).

In order to determine the physically possible operational
regimes of the ejector Figs. 21 and 22 show dependences Tl (K)
and n' (K) for a number of values of prOH and regions where

1 P13 > 0, obtained from the same calculation. At values of
Pr0H which are equal to 3 and 4 kgf/cm2 , as follows from Fig. 21
and Table 1, a subsonic flow of the mixture at the outlet from

the mixing chamber is physically possible for the entire range
of variation in the ejection coefficient from zero to K3, since

at no place does quantity ni' exceed unity.

11tIIt

I II

UrICI

Fig. 21. Dependences of in" MK and n' MK for water-air

ejector at p kgf/cm2 and p = 4 kgf/cm2 .t2 rOH
Designation: KF/cM2 = kgf/cm
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to3

7 . r.".7rc '0

H3 2'()frwtrareetravalues of p equal to 0,1, 0.3, and 1.0 kgf/cm0 1H 2 2

Designation: KF/cr.2 a kgf/cm2

With an increase in the ejection coefficient from zero to

the value corresponding to regime W = W Wit (point b), thei-i Ml c3
efficiency of the ejector steadily increases from zero to unity,

but with a further increase in the ejection coefficient quantity
nIf decreases to a certain minimal value corresponding to the

143
cut-off regime of the mixing chamber 'point a). In a case where

2 3
rOH kf/m the efficiency value in regime K = K 0.0185

is greater than zero (r" = 0.566); in a case where prOH 4

kgf/cm 2 in a range of variation in the ejection coefficient from

0.0335 (point f) to K = K = 0.0483 efficiency becomes negative.
The range of negative values of n" at p 1 kgf/cm 2

H3 rOHcorresponds
to the physically possible regimes in which total pressure of

the subsonic flow of the mixture is less than the total pressure

of the ejected gas (Pi0 s/P0. < 1). In the studied case the

flow pattern shown in Fig. 17 develops in the initial part

of the mixing chamber.

Analysis of the calculation materials indicate that the

supersonic flow of the mixture at the outlet from the mixing
2chamber at values of pr0H which are equal to 3 and 4 kgf/cm is
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not possible at any values of the ejection coefficient, since

this would contradict the second law of thermodynamics. Actually,

in the range of variation of the ejection coefficient from zero

to the value which corresponds to point e (see Fig. 18 and

Table 1) the effective work of gas compression is accomplished

under a negative energy expenditure, which is absurd (the total

pressure of the mixture in these regimes exceeds the total pressure

of the ejected liquid, and thus efficiency is less than zero).

In the range of variation in the ejection coefficient from values

corresponding to points e, to values corresponding to points c

(in Fig. 18), the advent of a supersonic flow of the mixture is

also impossible, since although pc03 < P the effective work

of gas compression exceeds the expended energy (n" > 1). Finally,I'3

in the range of change of the ejection coefficient from values which

correspond to points c (see Fig. 21) to values of K = K3, where

the work expended is less than effective work (n' < 1), the
M43

supersonic flow of the mixture cannot be realized, since it can

only develop as a result of an expansion shock, where the

entropy of the mixture decreases as it passes through the shock.

Thus, a# values of p which exceed the value of the

corresponding case, where In regime Wr = W the velocity of the
mixture W is equal to the speed of sound ac3 (in the studied

c3 c
example this value of pr0H is equal to 1.3 kgf/cm2), the flow of
the mixture cannot be supersonic. In this case the cut-off regime

of the ejector is the cut-off regime of the mixing chamber.

Now let us examine dependences ns(K) for the total-pressure
2values of the ejected gas pro = 1.0; 0.3 and 0.1 kgf/cm (see

Fig. 22 and Table 1).

We see that with an increase in the ejection coefficient

from zero to K3 quantity r" increases steadily. The subsonic

flow of the mixture, according to the second law of thermodynamics,

is possible only in a range of ejection coefficient variation from
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zero to values corresponding to points c, at which quantity n"

becomes equal to unity. The work of the ejector at greater

values of the ejection coefficient in the case of a subsonic

flow of the mixture is impossible, since in these regimes n" > 1.
MS

A subsonic flow of the mixture when pr0H = 1.0, 0.3, and 0.1

kgf/cm 2, as follows from Fig. 22 and Table 1, is theoretically

possible only in regimes in which W = W (nt = 1, points b).

When Wrl Wl a supersonic flow is impossible in view of the fact

that the efficiency of the ejector exceeds unity, while the

entropy of the mixture is less than the sum of entropies of the

gas and the liquid at the ejector inlet. Thus, it follows, that

for a change in counterpressure from the value corresponding to

the zero flow rate of ejected gas (K = 0) to the value which

corresponds to the regime in which Wrl = W i, the flow at the

k outlet from the mixing chamber can be only subsonic [segments of

cuMrves nM and W"s(K), lying to the left of points d in
Figs. 19, 20 and 22].

R, The static pressure of the mixture pit in these regimes
C3 2

(unlike the case where pr0H = 3 and 4 kgf/cm ) substantially

exceeds the static pressure at the mixing chamber inlet. Thus,

2for example, when pO= 0.1 kgf/cm and Arl = 0.01 the ratio
of static pressures pc/Plis equal to 18.4, but when l = 0.1
(regime W = W.,) this ratio is equal to 17.4. This can be

explained by the fact that in the studied regimes in the mixing

chamber at the bou dary of the stream there develops an increasingly

extensive supersonic region in the two-phase flow (see Fig. 15),

which is transformed into a subsonic flow in the shocks.

When regime Wr1  Wi W? is reached the flow in the

outlet part of the mixing chamber becomes completely supersonic

(points b in Figs. 19 and 20) and the transition to the subsonic

region of the flow is accomplished in the plane shock (points d

in the same figures), it is obvious that with a decrease in
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counterpressure as compared to counterpressure corresponding to

the regime in which velocities W and W become identical,

disturbances no longer penetrate the mixing chamber and the d

ejection coefficient does not change. The ejector in this case

operates in a cut-off regime, which in the studied case is the

critical regime.

The distinguishing feature of this critical regime, as already

mentioned, is the fact that it develops at subsonic velocities

of the gas and liquid streams at the inlet to the mixing chamber

[ as a result of a drastic decrease in the speed of sound in the
[ formation of the two-phase mixture.

Thus, the condition for realizing the studied critical

regime when TroH T.. in a case where the liquid does not
contain dissolved gases an4 where saturation pressure is consider-L ably lower than the pressure of the ejected gas, is the equality

of the velocities of the gas and liquid streams in the inlet

section of the mixing chamber:

Wm,-w,. (5.1)

Condition (5.1) when Tr0 H = T,.H gives us the ultimate

attainable value for the ejection coefficient:

(5.2)

This condition can be used in qualitative analysis of the
characteristics of a vacuum liquid-gas ejector and in estimating

its effectiveness. In calculations of the critical regimes of

actual ejectors it should be kept in mind that since the process
of breaking the liquid streams into drops is incomplete, and

due to the effect of friction losses against the walls of the

mixing chamber and the peculiarities of the flow in the near-wall
regions (particularly separation of the liquid on the walls and
the development of reverse current), which are not considered in
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the theory, the ratio of velocities Wl/W will be less than *1

unity. For this reason relationship (5.2) can be written as

3 .- p, _ . ~ ,. ~ . (5.3) 'i

where quantity

SI (5.4)

depends on the physical properties and the state parameters of
the liquid and the gas, the number and configuration of nozzles,

and on the geometrical parameter of the ejector a. This quantity

is determined experimentally.

5.3. Vacuum Liquid-Gas Ejector
with Supersonic Diffuser

thatThe calculations which have been performed (see Table 1) showed

that when the gas which is drawn in has total-pressure values which =

are less than a certain quantity the actual operational regime

of a liquid-gas ejector with a cylindrical mixing chamber and an
expanding diffuser is the limiting critical regime. In this

regime, which is characteristic of a vacuum liquid-gas ejector,

a supersonic flow of the two-phase mixture develops in the outlet

section of the mixing chamber. This is transformed into a

subsonic flow in the plane shock; in this regime the flow of the

mixture for the entire length of the expanding diffuser is super-

sonic.

The dependences of number Mt and the pressure recovery03
coefficient v p 03 /P 03 in the plane shock, located in the A

outlet section of the mixing chamber, on total pressure of the

ejcted gas, plotted from the results of calculatir the parameters
2of the mixture for a a 3.3; P0 = 5 kgf/cm;T . UTrH = 2880K

are shown in Fig. 23.
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0- - Fig, 23. Number MI3 and coefficientP C ' ' I I I= ,
8 03

" of pressure recovery v = P1P
ne c03 c03

in plane shock as a function of total
vpr x r/c ! pressure of ejected gas. 2

l j r,'T- Designationt Hr/cM2 = kgf/cm.

0 0. prOjX. zl "'/"

If we examine Fig. 23, we see that with a decrease in the

total pressure of the ejected gas number Mt3 of the supersonic
c3

flow of the mixture in front of the plane shock rises steadily,
while the coefficient of pressure recovery in the shock decreases

2accordingly. In a variation range of PrOH from 1 to 0.5 kgf/cm
quantity M3 rises slightly (from 1.2 to and thus losses

in the plane shock are relatively low. With a further increase
in the pressure of the ejected gas quantity Mt3 rises sharply,
reaching a value of Mc 7.7 at PrOH u 0.03 kgf/cm , The

c3 0 03k/cTh
coefficient of pressure recovery in the plane shock decreases in

this case to v n.c  0.46.

The values of p0 and if for the limiting critical
C03 13

regime, shown in Table 1, correspond Zo deceleration of the

supersonic flow of the mixture in an ideal supersonic diffuser

of the reverse Laval nozzle variety. If we compare these quantities

to P" and n" we find that total-pressure losses in the planec03 IA3
shock at low pressure values of the ga: which is drawn in result

in a substantial deterioration of the efficiency of the vacuum2I
liquid-gas ejector. Thus, when p

ria0.1 kgf/cm (K3 - 0.39 xx 10" ) the limiting efficiency of the ejector, when the expanding

diffuser is replaced by an ideal supersonic diffuser, rises from

0.31 to 1.0, while total pressure of the mixture increases from

2.0687 to 3.8023 kgf/cm2. Thus, it follows that one of the basic
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neans of increasing the efficiency of a vacuum liquid-gas ejector

at low pressure values for the gas which is drawn in is to F

decrease losses which develop during deceleration of the supersonic

flow of the two-phase mixture. This can be achieved by replacing

the expanding diffuser by a supersonic diffuser which has a

throat.

Figure 24 shows the scheme of the vacuum liquid-gas ejector

with a supersonic diffuser. When such an ejector is operating in

a rated regime the flow of the mixture in the outlet part of

the mixing chamber will be supersonic (M = M' > 1). In the
convergent part of the diffuser a system of angle shocks develop

in which the velocity of the supersonic flow of the two-phase

mixture lecreases from Mt to Mt > 1. The trans.tion into the
supersonic region of the flow occurs in the plane shock, located

in the throat of the diffuser. In the divergent part of the

diffuser there occurs a deceleration of the subsonic flow of the

Cmixture.

,3(2 KOCbi& (4)

KEY: pC) Gas; (2) Liquid; (3) Angle shocks;

~(i) Plane shock; (5) Mixing chamber; (6) Super-
sonic diffuser; (7) Throat.

The total!rssr of the subsonic flow of the mixture

Pc04(ce.ji) at the outlet from a supersonic diffuser operating in

. 4!"<
a rte rgie an be eprsnwnte fro

Fi11 5

wihspesncdifsr

KEY: ~ ~ ~ ~ > (1 Gas (2) Liui;.3)...socs



where

are the coefficients of pressure recovery in the convergent part
of the supersonic diffuser, in the plane shock developing in the

throat, and in the divergent part of the diffuser for a subsonic

flow, respectively.

Analysis of (5.5) shows that at assigned values for the
relative area of the cross section of the throat . fr/F, as
well as the parameters of state and reduced velocity of the
supersonic flow of the mixture at the outlet from the mixing
chamber, product ., 3 v(AL .,,) in the variation range of value

Vrf,,3 , which is of practical interest to us, is only very slightly
dependent on this value, This can be explained by the fact that
with a decrease in value vr',3 the velocity of the supersonic
flow of'the mixture in the throat of the diffuuer and, consequently,

losses in the plane shock.

Thus, to simplify calculations we can assume, with a degree
of accuracy sufficient for practical purposes, that the deceleration
of the supersonic flow in the convergent part of the diffuser occurs

without total-pressure losses, Relationship (5.5) is in this case ii

written as

(5.6)

The total pressure of the mixture at the outlet from the
ejector in the case of an expanding (subsonic) diffuser-can,
according to the discussion above, be represented in the form of

PAoN (AO3.A) NCV k) V4(5.7)

where v(AXt ) is the coefficient of pressure recovery in the plane 2C3
shock, located in the outlet section of the mixing chamber. A

3

--- --
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In expressions (5.6) and (5.7) wt.-

Pco(e,.a V (, ) 4r
(5.8)

From this it follows that when a vacuum liquid-gas ejector

is working in the most advantageous limiting critical regime,

replacement of the expanding subsonic diffuser by a supersonic
diffuser with a throat will result in an increase in total

pressure of the subsonic flow of the mivzure, other conditions

being equal, by a number of times which is approximatelj equal

to the ratio of pressure recovery coefficient in the direct shocks,

located in the throat of the supersonic nozzle and in the outlet

section of the mixing chamber, respectively.

Obviously the lower the relative area of the cross section in

the throat of the supersonic diffuser, the greater will be the

advantage gained by using it. In the case of an unregulated

supersonic diffuser, which can be brought to the rated regime

by simply changing counterpressure, the minimal value of the

relative area of the throat fr mi can be found from the condition

that in the presence of a plane shock in the outlet section of

the mixing chamber the velocity of the mixture in the throat is

equal to the critical speed of sound. Quantity f_- mn is

calculated as follows:

1) using the ejection equation system for the limiting

critical regime we find quantities p " K, Rc Uc GIF..c03' c03' c =
and pt03" Wc3, c, 3;

2) if we consider that the flow of the mixture in the case

of a vacuum liquid-gas ejector can be regarded as approximately

isothermic and, if we assume that there are no losses in the d
convergent part of the diffuser in the subsonic flow, then from

equation (1.51) we determine the critical speed of sound ac.R = W

from the quantities p" c03' K, R which have been found;
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3) from expressions (1.45) and (1.43) we calculate quantities
PC.K Pc.r' YC.K = T c.r;

4) from formula

7,,n= IYc c.x (5.9)

we find the sought value of the minimal relative area of the throat

of the unregulated supersonic diffuser,

After determining fr n we can find the total pressure of

the mixture at the outlet from an ejector working in the limiting

critical regime, when the plane shock is located in the throat

of the diffuser.

1. If we assume that Poor = pco3 (see above), then from
r P0I3

equation

, j r . * . lb, .4 ''

[b+ 1) Jn,.,________,P~ Pea.
27 PCfrlu R~i Tbn~ 7( 1)

=bnflP - (5.l0)

we determine the static pressure p' of the supersonic flow ofc~rI
the mixture in the throat of the diffuser, and then from

equations (1.43) and (I4-5) - quantities ycr' at

2. According to formula W' = Gc/Y' f we calculate
c.r C C .r r min

the velocity of the supersonic flow of the mixture in the throat

and number M = W'./lMc. r C c .r

3. Using relationship (1.65), (1.66), (1.67) and (1.68) we
find quantities M" " a" and W" which correspond[;r, rP .r ) ¥.r a  r;.' o

to the subsonic flow of the mixture in the throat behind the plane

shock.

FTD-MT-24-1668-72
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4. T'Iom equation (1.50) we determine the total pressure

of the subsonic flow of the mixture in the outlet section of

the throat and the total pressure of the mixture at the outlet

from the ejector Pc04(ce.A) = lipr r""

Total pressure of a mixture at the outlet from a vacuum-
liquid gas ejector with an unregulated 2upersonic diffuser when

fr r min as indicated by the dalculation and the experiment

(see [8]), substantially (1.5-2 times) exceeds the total pressure

of the mixture at the outlet from the same ejector with an

expanding. diffuser.

5.4. Estimating Value. of Total Pressure
of Mixture in the Case of a Vaccum
Liquid-Gas Ejector with Expanding
Diffuser

The calculations indicated that at assigned values of

a;6, p MOH' Tm H and TrOH the total pressure of the subsonic

flow of the mIxture P03 in the outlet section of the mixingC03
chamber of a vacuum liquid-gas ejector working in a limiting
critical regime changes only slightly with a change in the

ejection coefficient and, consequently, total pressure of the

ejected gas. For this reason it is possible to estimate the

total pressure of a mixture in a vacuum liquid-gas ejector

according to the Borda-Carnot formula for a flow of an incompress-

ible liquid in a region of sudden tube expansion.

If we assume that K = 0, p1 = P! = Ps n' and consider
expression (2.3), then we get

The total pressure of the mixture at the outlet from the

ejector can be found from formula

(5.12)

FTD-MT-24-1668-72
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