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THEORY OF A TWO-PHASE GAS-LIQUID
EJECTOR WITH A CYLINDRICAL
MIXING CHAMBER

Yu. N. Vasil'yev
INTRODUCTION

A gas-liquid or liquidegas ejector 1s a twowphase ejector in
which a iiquid enters one nozzle and gas enters another. In the
general case the process of mixing the working bodies in a gas-
liquid ejector can be accompanied by phase and chemical transforma-
tions. At ‘She ejector outlet, depending on the physical properties
and the paramneters of the state of the gas and the liquid, one of
the following mixtures can be formed: one-phase vapor-gas, two-
phase vapor=-gas-liquid, three-phase gas~vapor-liquid with solid
particlss, or, finally, a two-phase gas-vapor mixture with solid
particles. In a case where the gas ls dissolved in the ‘'iquid

a single-phase solution of gas in liquid may develop at tne ejector
outlet,

At the present time there is no general theory of a gas~

liquid ejector. The most studied case 1is that of a vacuum liquid-ges

ejector with a two-phase gas~liquid mixture. This ejector has been
used in various fields of technology for fifty years. A great
number of works have been dedlicated to it, although because of the
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complexity of the mixture-formation process and the uncertainty
concerning the prcperties of the gas-liquid mixture obtained, it
has not yet bean possible to create even a jualitative theory

for this ejector, Existing methods of calculsting a liquid vacuum
ejector (see [2-U4, 12, 13, 15, 16, 19~21]) are empirical and can
only be used in a relatively narrow range of change in the
parameters which describe its cperation. These methods are not
sufficiently reliable and in a number of c=ses provide rather
deviant results.

Unsuccessful attempts to create a theor: for a vacuum liquid-
gas ejector based on equations of the conseprvation of mass, energy,
and momertum are explained by a number cf zut:ors by the fac: that
the mass of ejected gas in such an ejector is thousands of times
less than the mass of the ejecting liquidgri thus cannot noticeably
influence 1ts velocity. This ildea has beem s¢ convincing that it
has been passed on unchanged from article €o article (see, for
example, werks [3, 12, 16]), For this reason the theory of the
liquid-gas ejector has remained virtually undeveloped in recent
years and all efforts have been directed <~ward the study of the
physics of the phenomenon (see [5, 11]) and the creating of
constantly improved empirical calculatior methods.

Dedicated to the theoretical study of z gas-liquid ejector
wiith a two-phase gas~liquid mixture is a shcrt article [17] in which
ejection equations are derived with the assumption that there is
no heat exchange between the liguid and the gas and in which the
cuc-off regime ¢f the combustion chamber is eoxamined. 8n attempt
was also made to develop a method of calzulating a gas.liquid
ejector with a two-phase gas-liquid mixture in [16]. Calculation
equations for a gas-liquidejector birzing ths parameters of the
flows in the inlet and outlet sections o0° ths nixing chamber wers
obtained by the authors usirgz a forma! tyans crmation sf gas ~jector
equations under the condition

(o]

I an incorvreszihls ejector medium.
However, this simplifiec method doss pot give full consideration
to the distingulshing charac.erictics g° €he rlow of & two-phase

v
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mixture formed at the outlet from the mixing chamber, and thus

the obtained equations can only be used in certain particular cases
where the parameters of the mixed media are assigned. In the
general case the use of the equations of [16] might lead to
erroneous results. In particular this applies to the calculation
for limiting regimes of ejector operation, which 1n most cases

are the most advantageous.

The present article presents a theory on two-phase gas~liquid
and liquid-gas ejectors with ceylindrical mixing chambers for a
case where a two-phase gas-liquld mixture is formed at the ejector
cutlet. EJection equations are derived which show the connection
between the flow parameters of the gas in the .iquid on the nozzle
edge and the parameters of the two-phase mixture in the ocutlet
section of the mixing chamber, Possible operational modes for an
ejector are described and classified. Possible systems are
examined for the flow of gas and liquid in the nozzles and 1in
the initial part of the mixing chamber and the conditions which
connect the flow parameters in different regimes are found.

The ejJection equations are derived under the assumption that
the two-phase gas«liquid mixture forming in the ejector is
homogeneous and that the particles of liquid and the gas are in
thermal and mechanical equilibrium. The article does not

examine the problem of the cases in which practical satisfaction
of these conditions would be possible.

It should be mentioned that the propozed theory does not
enable calculating ejectors in which, for one reason or another,
(for example, because of insufficient length of the mixing
chamber) the gas-liquid mixture does not satisfy the above mentioned
conditions. However, the efficiency of such ejectors is always
lower than for the case of a homogeneous and equilibrium mixture,
Thus, usling the equation which has been obtuained we can estimate
the limiting characteristics of the two-phase ejector. Comparison
of experimental characteristics with limiting theoretical

FPD-MT-24~2668-72 vi
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characteristics lets us judge the degree cf perfection of the
studied ejector and the possibilities of improving its effective-
ness. Furthermore, a qualitatively correct description of the
processes which occur in the flow part of the ejector enable us
to take direct measures in improving its parameters.

Testing the theory using a vacuum liquid-gas ejector as
the model gave encouraging results (see article [8] of this
collection). Methods based upon it enabled a substantial
increase in the efficiency of an ejector. Inrn this case the
experimental characteristics of improved variants of the ejector,
which provided more complete mixing of the flows and breaking
of the liquid jet, were in satisfactory agreement with theoretical
characteristics over a wide range of variation in the parameters
of the gas and the liquid.

Calculations made from theoretical dependences of the
present work indicated that just as in gas ejectors with high-
pressure drops, the most advantageous opnerational regime for
vacuum liguid-gas ejectors are critical regimes in wnich the
flow of the two-phase mixture in the outlet section of the mixing
chamber is supgrsonic. Losses in the direct plane shoeck, which
transforms the supersonic flow of the two~phase mixture into a
subsonic flow, comprise most of the losces which determine the
efficiency of such an ejector in limiting critical regimes with
the expanding diffuser which is usually used. Thus, it was
proposed that the expanding diiffuser should be replaced by a
supersonic diffuser with a throat, in which damping of the
supersonic fiow in the twoephase mixture wculd occur in systems
of angle shocks, cut off by the plane shock, with muci. lower~
losses, This idea was shown to be correct by an excerimencal
test on a series of vacuum ejectors.

In this case the total pressure of the mixture at the
ctor outlet and its efficiency increased 1.5-2.06 times (ser

). Thus, even the first attempts tc¢ e the results of

e
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this work enabled a considerable increase in the efficlency of
liquid-gas ejectors and pointed the way to further improvements.

o
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CHAPTER 1

GENERAL PPFPERTIES OF EQUILIBRIUM
TWO-PHASE Gas-LIQUID MIXTURE.
CALCULATING ONT~-DIMENSIONAL

FLOWS

In the present work, as we have already mentioned, we are
studying a gas-liguid ejector in which 2 two~phase gas-liquid
mixture is formed at the outlet from the mixing chamber. 1In
deriving ejection equations and calculating the flow of the
obttained two-phase mixture in the diffuser the following assumptions
were made:

1) the drops of 1iquid are equally distributed throughout
fthe entire mixture, and their dimensicns are so small that in
tne process of changing state they are *n <tiermal and mechanical
equilibrium with the gas;

2) changes in state of the mixturs are not accompanied
by chemical transfcrmations;

3) there is no mass exchange between the phases (evidently
the mixture sztisfles this condition if tne gas contained In :¢
does not dissolve in the liquid and if in the studied range of
temperature variation the saturation rrersure of the liquid is
much less than the pressure of “‘he gas);

e 28-1568.72 1
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) the gas is ideal and its physical constants do not
depend on temperature or pressure;

5) the heat capacity and specific weight of the liquld do
not depend on temperature or pressure.

Now we introduce the designations: p -~ pressure per kgf/m2;
T in °K and t in °C - temperaturej y in kgf/m3 - specific weight;
p in kg-az/mu - density; v in m3/kg - speclific volume; 1 in
Cal/kg - enthalpy; U in Cal/kg - internal energy; s in Cal/(kg X
x deg) -~ entropy; ¢ in Cal/(kg+'deg) - spmecific heat capacity
(cp and c, = specific heat capacities under constant pressure and
volume, respectively); R in kgf+'m/(kg-deg) - gas constant; J in
kgf+m/Cal - mechanical equivalent of heat; g in m/s2 - gravitational
acceleration; G in kgf/s - perwesecond mass flow ratej f 1in m2 -
area of cross section of streamj; W in m/s - velocity of flow;
a, in m/s - critical velocity; a in m/s ~ speed of sound;
A= W/a“ - reduced velocitles; M = W/a ~ M number; k = cp/cv -
adiabatic exponent; K = (':}‘_/G’K - ratio of mass flow rates of gas
and liquid in mixture, equal to the ejection coefficient.
Quantities with the subscript "c" corrzspond to the parameters
of the gas-liguid mixture; quantities with subscripts "r," "n,"
and "w," correspond to the parameters of the gas, vapor, and
liquid. Subscripts with "0" and "s" denote the parameters of
stagnation and saturation; subscript "k" - the parameters of the

flow in the critical section of the channel, where W = a = a, .

1.1. Physical Constants and Parameters
of State of the Mixture., Equation
of State

The properties of an equilibrium twowphase gas-liguid
mixture under the assumptions made above has been studied in a
number of works (see, for example, [14]). Thus, in this article
the problem is not thoroughly examined; below we present only
those relationships which are necessary for the following
analysis of the work of the ejector.

FTD~MT-24~1668~72 2
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The specific neat capacities g~? “b- adiabatic exponents ; ‘
of .1e studied “we-phase mixture, as ~an ‘e easily der- sstrated, ; ;
zre <. ermined ac follows: H
i
Kege+ey | : §
“p(:= K'!‘I M (lol) % é
!
M -
v — I\'c S R § :’é
o= (1.2) '
‘ vem S = Koprle (1.3)
Cpe Keyr == €y
The specific weight of the mixture °.- found from the obvious
relationship:
] .ﬁk;.{.ﬁ.:.?_f., (1.4)
: Tw e Te
5 which, considering equality
g Germ= Gyt Gue= G K+ 1), (1.5)
% leads to form H
£ _ K=+ (1.6)
Wr o1 ‘
i% Te Tw ‘
g If we consider that the specific weight of the liquid ¢-»n
=
g not depend on temperature and pressure, while the specifiec
g
| welght of the gas 1s determined by the Jlara2yron equation
2
fg . Pe=RyrTe, (1.7)
% then from equation (1.6) we ovtaln the =uuation of state of a
) two-phase gas-liquid mixture:
— e = K Ry.T.. (1‘8)
pc[l Yz(K"‘”] Ko el e
b Fro-Mr-2ba 6072 /2
. /
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If we introduce

X_R, (1.9)

Ri=o—rm

K+1

then we write equation (1.8) in the form of

16w b

p. [1 ".WFR‘V‘T" (1.10) b
Equation (1.10) is distinguished from the equation of state

of an 1deal gas with gas constant Rc only by the presence of the

term Yc/[Ym(K + 1)], which is equal to the relative volume of the

liquid in the mixturs VH/VC. In the case of gas concentrations

which are not very low and relatively low pressures the volume

of liquid is not great, and thus the behavior of the studied

two-phase mixture is very close to that of an ideal gas with

gas constant Rc. For example, for a waterwalr mixture at

K>0.05p, <2 kgf/cmz, and T = 288°K error in determining

P, and Yo without considering the volume of the liquid contained

P in the mixture does no% exceed #,5%, i

§; From equation (1.9) using equations (1.1), (1.2), and (1.3), ;
% and considering that an ideal gas is subject to the Meyer . 5
} equation

Rr-j(cpr—cu)’ (1.11)

we find

Rg’f(cpe-c")=lc,e(x¢—1)=Jcpc el (1.12)

e

| ; Thus, it follows that the studied two-phase mixture is also
subject to the Meyer equation, and, consequently, its internal
energy does not depend on pressure and volume.

o
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“orn. the ecua’ion of state of an
squllit o ur  eligut uixture Lo wrtster ar followse

dpe _4T: __ 4% ! =0 (1,72)
Pe 7. Te 1.—- e
(K1)

The specific internal energy of » twow-phase mixture under
“he above assumptions is determined by %he obvious relationship

Ue=¢ecTet+Uen.. (1.14)

where UC " is a certain initial value of the internal energy

- at temperature T . Since in the calculations we are always

2t CIH
’ : dealing with an energy difference, then quantity Uc " is eliminated,
! ) and for the sake of convenience we can assume that UC o= 0.

Then from equations (1.14) and (1.2), if we consider that

= T anéd U = ¢
Ur ¢, L, and L MTC, we get

W g s M 0,

W e w0

KU 2
UC=C,CTC=—-T<'-:—?—-. (1-15)

-y

The speclific enthalpy of the mixture equals:

B o

. e it P R 150 I S S

;— =l Pe .

* fe=Ut £ (1.16)
Thus, if we use relationship (1.20), (1.12) and (1.15), we find
;j: —_ Pe E
- He=tp ey (1.21)
% The derendence of the internal energy of the mixture on
g ‘ tempersz-ure hac the same form as for an ideal gas, while equaticn

(1.17), which is determined by the enthalpy of the . xture,
d contains a term which depends on pressure, which we do not have
in the analogous equation for an ideal gas. It should be mentioned,
however, that in most cases of practical interest the values of

the secc:d tarm in 20uation (1,17) are very low and can be ignored.

e i e i




Thus, for example, for wat terwalr mixtures a%t any value of ratio
Gr/Gm or pressure p, < 10 kgf/cm the difference between the
actual enthalpy of the mixture and vdlue c T does not exceed

pcec
0.3%,
:..2., Isentropic Process of State Change. : :
Jceed of Sound in the Mixture .
The change in state of the studied two-phase mixture occurs .

in internal equilibrium, and thus its entropy can be represented
as

; ‘ Tods,=dU -+ p.dv,. (1.18)

If we transform this equation by means of relationships
! : (1.10), (3.13),and (1.15), we get

L)
. o(L
I , R
ds -—CQedrch,‘ 1 .‘cl -TC—. (1019)

Te 1K+D
Hence, considering relationship (1.12), we get

[T —————

‘1 % =1
Se= € Lg me
C'vclnr [.& 1‘(K+l)] S ™
} %
] R c‘—l R -
Bl R, (1.20)

iy DD A 90 WM DI A D WO A ey

where Sc.n is the integration constant.

From equation (1.,20) it follows that in the case of an
isentropic change in state of the mixture Pos Yg and Tc are linked
by relationships:

e v

3 =1 :
.&2..-_—__ -T.i ¢ M B

Pet (Tcx) ) (1.21) :
A1 X .

1 Tt YxK+1 _ .:’_.) ¥l §

] :
1 1 =) =) (1.22)

Y2 (K41

T A e e
[#)Y

U e e L
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The speed of sound 1s determined by equation

ot i

at=(dp/do)s. conne (1.23)
subr4itution of which in equeZion (1.12) provides
g ==—YERETe _ _ pe Ere (1.24) |
- Te e RcTe . :
T (K 41) !

Hence it follows that, unlike the ideal gas, the speed of sound
in the studied two-phase mixture for the given composition
depends not only on temperature, but on specific weight and

As the relative volume of the liquid Vy/Vemye/lyw(K+1)]
tends tc zero, which for the given composition corresponds to the
case of P, * 0; the speed of sound in the mix‘ture tends to the

pressure.

" ‘;

value corresponding to the speed of
adiabatic exponent and gas constant
K, and Rc; when Vm/VC + 1, when the
mixture tends to zero, the speed of

sourd in an ideal gas, whose
are equai, respectively, to:
volume of the gas in the
sound in the mixture rises

A 0

to infinity.

MR

As an example Fig. 1 shows curves representing the charge in
the speed of scund in a twoephase water-air mixture as a function
of ratio Gr/GH, calculated from formula (1.24) for several values

[e——

HEARER e

of pressure at a temperature of TC = 2£%°¥,  Curves . = 0 corre-
sponds to the speed of sound in an ide:' -as when Ke = K and
g Br = Rc'

I we examine Fig. 1

we see thzt whan P. = 0 with a decreased

- gas content the speed of sound in the mixture decreases steadily
by -
from 340 m/: when K = 10~ to - m/s wher. K = 10 - and continues to
. decrease wiith a further drop in K = Gr/Gm. Thi- is explained by

the fact thgt with a decrease in K the adfabz-le exponent of

the mixture -ends to unity, while RC tends to zero, 1In a range
0" coefficient K from 103 tc 107% and mixture pressure

. 2
to & xgf/cm

of change
from zero

the speed of sound in the mix“ure practically
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coincides with the speed of sound in an ideal gas (curve P, = 0).
With an increase in pressure when K = const the speed of sound
in the mixture rises steadily, Thué, for example, when K = 0.01
with an increase in pressure from zero to 10 and to 100 kgf/cm2
the quantity a_ rises accordingly from 28 m/s to 63 and 360 m/s.
Curves ac(K) when P, = const and Tc = const have a minimum,
which with an increase in pressure moves toward greater values
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Fig. 1. Curves representing change in
speed of sound in a two-phase water-air
mixture depending on ratio Gr/Gw'

Designations: m/cek = m/s; wl/cM@ = kgf/em?
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1.3. Calculating One-2imensional Flows
¢y 1 Mixture Without Losses

il

Let us examine the established flow 67 the equilibrium two- g
phase mixture in a stationary channel of variable suction with §
heat-insulated walls, which was described above, According tc g
the assumption of mechanical equilibrium for the components of §
the mixture we will consider the velocity of the gas and the %
liquid in any section of the channel to be egual. Then, for the %
sake of simplicity, we will assume that there are no losses in §
total pressure of the mixture as it flows in the channel. §
1.3.1., General Case of the Flow %

|
: The equation of the conservatlion of energy for the studied %
r % flow is written, as we know, in the form of
Y—Z--}-i =const (1.25)
g 2 ' ° '

i from which, if we consider relationship (1.17) and introduce
stagnation parameters, we get

. S (1.26)
+ pTet e oo Twr

g O gy

For assigned flow parameters in the studied channel section
equation (1.26) lets us find the stagnation enthalpy of the
mixture. To determine Peo and TcO’ in addition to ecuation
(1.26), we must use the condition of isentropicity (sco = sc),
vhich, as follows from relationship (1.21), gives 1o

e

&9=(Iao_\,'=" _ (1.27)
. De Te i

If we substitute reiationship (1.27) ir (1.26), we get %he

xc—l
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whose solution provides the thought value Po’ T .~ is then

found from relationship (1.27).

c0

From equation (1,25) it follows that as the two~phase mixture
flows in a stationary channel with heat-insulated walls, when the
stagnation enthalpy remalns invariable, the stagnation temperature
can change. Quantity Tco when icO = const remains unchanged
only in the case of an isentropic flow, when total pressure
remains unchanged.

Let us find the parameters of state in a critical sectlon
of the channel, in which the velocity of the flow is equal to
the local speed cof scund, If we assume that W a, = a, .
then from equation (1,26), using relationships (1 10), (1.24),
and (1.27), we get the foilowing equation for gdetermining static

pressure p_ . in the critical section:
2= lc—l
e FoAYRG [RT Pe. x) 3 LPex Pes ]3
; 2R T (Pe.x) ¢ et;( 20 D 1xiK41) +
i %ot

+J Teo (}: ') ' +

=Jig. (1.29)

Peo 'Ix(K+ n

After determining Pe.wo from relationship (1.27) we find
T, 4» and then we determine W, o = &, according to formula (1.24),
From equation (1.29) it follows that for assigned physical
properties in a two-phase mixture critical drops in pressures

(pc.ﬂ/pco) and temperatures (Tc.n/Tco) depend on the stagnation
parameters Tco, Puo*

In conclusion let us give the calculation order for the
isentropic flow of the studieqd gas~liquid mixture for several
cases where the original parameters, encountered in studying

ejector characteristics, are given. The physical constants of the '
mixture will in this case be considered known.

. L A,
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I. The parameters ol state and the velocity of the mixture

Z:. channel sectic: 3 with section area f, are zivern. We fiad the

parameters of sta‘c and the velocity of “he mixture n channel
section 2 with cross-section area f?.
1) From relationships (1,26), {1.27), and (1.28), we find

ter ¥ ix (: .

the stagnation parameters of the mixture (I _,, P_g» Tco)

2) If we solve equation

( Werterfet \"’ rR:TtO ( P \_"c - ! -!2:—
PR A VR
x -1
r P ) *c " 2 peg . Pez ) {
- Jqi=(22) s U= 1.30)
BelepT el ( po ) 1T R T e e

which 1s obtained from equation {1.26) .. "'ng the equation of
the conservation of mass

YeafeaWes == Te: ferWar. (1.31}

we ind statlic pressure Peoe

3) From formulas (1.27), (1.10), (1.21), and (1.24) we
calculate Tc2’ Yoo ch, and CEP after which we determine the
numbe

v M = W L
Y uc2 hc2/-'-1

Equation (1.30) gives us two values for pressure Peo+ The
8

lesser of these values ccrresponds to the supersonic flow of the

mixture, the greater - tc €he subsonic. In a case where the

area of the cross section ¢f €%1e channsl either rises steadily

or decreases steadily, th= surersonic root is realized orly when
M., > 1, and The subscnic - when M

Tl o
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The stagnation parameters of tiie mixture and the area
of the outlet section of the contracted channel are given.

II.

{
We i |
find the dependence of the flow rate, the parameters of state, :

and the outflow velocity for the mixture on pressure at the edge
of the channel,

.Y If we solve equation (1.29) we find p_ W which corresponds -
to tre shut-off regime of the channel, after which we find
TC.H’ Ye.n? and wc. = &g

K
(1.24).

x from reiationships (1.27), (1.10) and

2) We assign a serles of values P in a range from Ps. to

Y
p,o and from formulas (1.27) and (1,10) we find the values of T,
and Ye which correspond to then,

! 37 Let us find the outflow velocity cf the mixture
Te 240 _ P 1.32

after which we determine the flow rate ¢f the mixture and number Mc.

III.

[RS————

We assign the stagnaticn parameters of the mixture and
the areas of the critical and outlet sections of the supersonic
nozzle. We find the parameters of state and the velocity of the

mixture in the outlet section of the nozzle under 1its rated
operational mode,

1)

D T

According to point (1) of problem II we find the quantities
“CeK?

C.K? Yc.u’ and wc.u'

2) Further calculation is according to points (2) and (3) d
{ of problem I.

* s o MW‘MWML‘Jhum.’1||nimwhm.mumw»‘
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. . Liquid Volume in Mixture is oSmall
in Cuemparison to Gas Volume

Pc"'-"Re‘YcTc-

and (1.24), which are written as follows:

le=¢, T
—__
.89_=(1=3.\'==[I_=.-':\’°"’ .
Pt \Ya \ic '
ac____‘,‘é,_; o "'— .

Equation (1.26) is reduce to €the Tc¢onm

w? ,
-2';;+fpc7c=fpe7cc=’cz-e

2(x—=1) re
ac."’:V";(":':T'ch,:TQ=Vk+IgRCTcQ‘

If we introduce the reduced velocity Ac = wc/a“ W
e

from which, using (1.36), we find the c¢»f<lcali speed of

If the volume of the liquid in the mixture is negligibly
small as compared to the gas volume, then the equation of state
(1.10) is reduced %o the same form that it has for an 1deal gas:

(1.33)

The same thing happens with equations (1.17), {(1.21), (1.22),

(1.38)

then from

the relationships of (1.37), using formulas (1.33) and (1.35),

we get the known gas-dynamics functions:

T 2c—1 72 3
T ” s .
LI
=1
S P02 1\
elo)= m-—(I e+ ) "
—_
e (12 02) T
PR P Sy J
13
{
e e & SR . o o A it bt i S —

(1.39)
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which, together with functlons

enable us to greatly simplify the calculations,

MR

1

142\ %1,
g0)=, (1— BT 0)

1
z(A)=A "‘!.“'i: '

(1.40)

(1.41)

The quantity

A o? which is contained in these equations, can vary from zero

—l/"'“ . When A

get

Te=hk fe = (25 )

St

P =() T r=atty

1.3.3. The Amount of Liquid
in the Mixture 1s Very Great

1

zc(1)=2, )

= 1 from equations (1.39)-(1.41) we

_ (1.42)

This case 1s characteristic fer a vacuum liquid-gas ejector,
in which the mass flow rate exceeds the mass flow rate of the gas
(K = 10'3-10'5) by several orders, In this case the temperature
of the mixture as it flows 1n a channel of variable section
remains virtually unchanged, and thus the flow can be regarded

approximately as isothermic (Tc =

TcO =

const).

The equation of state (1,10) of a two~-phase mixture can be
written for the studied case as follows:

where

e

—— Pe 1— -—-.-L-—-]:b,
K+1) ‘!c[ 1x(K+1)

b=R:To=const.

14

(1.43)
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Fcr the speed of sound we obtain, expression (1.24) under
const the following expression:

= £ e (1.45)
bYc
According to the first law of thermodynamics,heat q; o which
3

is conducted to the flow through the wall of the channel in the

segment between sections 1-2, equals:

condition Tc =

W:l Wcl

q1-2= Ue?'— cl +""—'J—""+'_'(pc2'vc2— PerVer)- (1.46)

In the case of an isothermic flow Tc2 = Tcl’ and thus accord-

ing to relationship (1.15) we have

Uez—Uc1=0. (1.47)

i If we use equation (1.43), then we get

,
0 UG SR A > S L M S W g o o

L (v gt ) PR P 1.48
7 (Pe'ﬂ’ez Pd”o:l) !Ta (K = l) ( )

All of the heat which 1is conducted to the working body in
the studied isothermic process is spent in producing work, and

thus we can write

l .
\ @12 Tr};mh@

from which, using equation (1.43), we get

.| o (1.“9)

= --- In-£2
Gi,2 P

.

H
H
£

If we consider expressions (1.47), (1.48), and (1.29), and
the fact that according to our assumption there are no losses in
total pressure, we reduce the equation of the conservation of

~

‘,«r"‘?""’“'““"“’“"‘"‘w“ﬁ"'!“ HERGUNVION LG B 8, ason

bR :‘;‘WMM;,

Dl

i

energy (1.46) to the following form:
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‘2?+b Inp,y+ TERET, +b1n pes+

D =l ) Pey
ey SR Pe D

w=const, (1,50)

If the velocity values and the parameters of state are
assigned in a certain section of the channel, equation (1.50)
will let us tind the total pressure of the mixture. Quantity Yoo
is then determined according to formula (1,43).

The critical speed of sound a. u in an isothermic flow is
found from equation (1.50), which when W =1a_ =a, 18 reduces,,
using relationships (1.43) and (1,45),to the form of

' .‘12:-_".+bln {’?‘ (K'H)(i/% a"“-b)]+

4
-~
] /5 2\ P (1.51)

After we have determined the critical velocity, then from
expression (1.45) we find the ratlo p_ , /Y. .» and then from equation
(1.43) we determine the static pressure and the specific weight
of the mixture in the critical section of the channel.

From equation (1.50) we find the following expression for
determining the ocutflow velocity of the mixture from the nozzle
at an assigned ratio of values pc/pcos

W‘“]/zg[““%"' STD (‘_"'ffo')]' (1.52)

Let us assign the calculation order of an isothermic flow
of the mixture in @& channel without losses,

ot e
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Let the phvsical constants, the parameters of state, and the
set!

U V.

veloclty of the mixture 1in section 1 of the channel wi-

area fl be assigned. We find the flow parameters of the mixture

in sec%ion 2 of the channel with section area f,.

1) If we solve equation

1 ( Te efer [, Pen }2 Peo
L3 b s binp,—t
23{ Peafer [ I {K+1) } nP.k fu{K 2 1)
Zel (1.53)

a-zz-‘-.g.unp e
% MU

then we fi1.4 statlic pressure Peoe

2) From equation (1,43) we find the specific weight
oi’ the mixture Yoo

3) From equation (1.31) we determine the velocity of the

K]
mixture Wca.
1.4. Relationships for a Plane Shock

Let us assign the relationships which determine the parameters
of the flow for a plane shock developing in a supersonic

two~phase flow mixture. Subscripts "1" and "2" denote flow
parameters in front of and behind the shock, respectively.

1.4.1. General Case of the Flow

]
-
n

From the equation of continulty, considering that £, £

= £ ., we have

-

(1.50)

Q=

Wcz '

wiEre o= pclwcl is the per-second mass flow rate of the mixture

through a unit cf the area,
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The equation of momentum for sections 1-2 glves us

Per=h—mWes, - (1.55)

where h = mwcl + Pgye If we use relationships (1.54) and (1.55),
ther. from equation (1.1iG) we find '

pe ,_n..'"_—._':'_‘Zc.z_[."Zs.c_..'.____.’___], (1.56)
@7 gRe m aw(K+1)
If from the equation of conservatlion of energy (1.26) we

exclude quantities Peo and Tca, then using expressions (1.55) and
(1.56), we get

Tedly [aeh o m Yo o b L —Delig=0, (1.57
g Ve ._{m +cx(K+l)] at ey T Nel 57)
from which we obtain

Ve :e+1{m T (Kl —

%ek »n 2_ _._!'......_.. — 1 .
)/ [+ x| 2t [y l)gﬂ“’l} (1.58)

After we have determined the velocity of the mixture w02
behind the plane shock, then from relationships (1,54), (1.55),
and (1,10), we find the values of p_,, P 5, and T 5. Then,

from equation {1.24) we find the speed of sound a.o and number

Mc2 = wc&"/ac.?‘

Stagnation parameters T002 and Peo2 behind the shock are

found from equations (1,27) and (1.28) from known values of Poos

1.4,2, Case of a Relatively Large
Gas Content in Mixture

In the case where the volume of the liquid in the mixture is
very small, the two-phase gas-liquid mixture can be regarded as

18
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an ‘“eal pas., The parameters of '~ flow Leyond tus viore pher™

*sermined in thils case by nowr »2lationsh’'ps:

hegher =1 f1.5¢

= po L)) (L.60)
Peo2= Peot 7 0

Ter=Ten- (1.61)

1.4,3., Case of Isothermic Flow
This case was examined thoroughly in [18].

From the equation of the conservation of mass we have

Ye2=Yu1 W ’
from which, if we use expression (1.45), we find
Mey (1.63)

Pa==Per —;1: ’
where
M.=WJ/a. ~
If we transform the equation of momentum, which is wr:i-
in the form of
QQQW;’-chwzx‘:pc! - p._-'_'g ( l . (. . )

by means of cxpressions (1.45) and (1.63), then by introducing

the .umber M

., we get
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from which, after simple transformations, we get

MeMer=1. (1.65)

If we substitute this expression in relationship (1.63), we find

Pea=PaMar. (1.66)
From expression (1.43), using (1.66), we get
¢t 1 2
T (¥4 1) paMg (1.67)

Yo=K+ 1) + pais,

The speed of sound beyond the plane shock, as easily

demonstrated, equals:

. Pcleg 4 b1 (K4 1)
C e K+ D) (1.68)

In concluslion we note that all relationships obtained in this
.chapter will also be correct for the flow of a fwoephase gas
mixture and for rather small solid particles.
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CHAPTER 2
EJECTION EQUATIONS

2.1, Ejector System and
Basic Assumptions

The studied ejector system is shewn 'n Fig. 2.

The gas 1is supplied to the mixing c-amber through a convergent
subsonic or a divergent supersonic (dashed lines) nozzlie, the
liquid - through a convergent nozz.e.' in the mixing chamber,
which is eylindrical in shape, a homcgerneous two-phase gas-liquid
mixture is formed, which flows ouf of the 2jector through a
subsonic divergent diffuser or a surersonic diffuser with a
throat (dashe¢ lines). The mutual arrangement, the number, and
the shape of the cross sections of the nczzles can vary.

Tr.e flow parameters of the gas and the liquid in the inlet
cection of the mixing chamber, which ccincides with the outle*
tections of the nozzles, are denoted by tiie subscript "1," the
parameters of the mixture in the outle! gections ¢f the mixing

1The 1:guld nozzle in a case where pregssure cn its edgr in z
r12ed operatlional ejector regime is less €han saturation pressure
7., Can 8lso be a divergent-supersonic nozzle.
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chamber and the diffuser « by subscripts "3" and "L," Subscripts
"2" gnd "k" denote the parameters of the gas and liquid jets in
the shut-off section of the mixing chamber and in the critical
section of the supersonic gas nozzle, respectively.

| {

(1) (2) (3) e
tonna KOMEPT CHEULEHUR - [Aupeyaop 4 H
!" \ l: 2 \ J T
. -
('-l) wudxotme > =y 3 i -\ __~— !
" : . . F l.-... . —— . Sm— —n.
- i ll”\
4

Fig. 2. EJector system,
KEY: (1) Nozzles, (2) Mixing chamber;
(3) Diffuser; (U4) Liquid; (5) Gas.

As the baslic geometrical ejector parameters we use: coeffi- §§
cient a, which is equal to the ratio of aréas of the outlet sections
of the gas (f inm ) and liquid (f inm ) nozzles (a = f 1/f l),
‘coefficient 6 which is equal to the ratio of the total end
area of the nozzles (§ inm ) to the area of the cross section
of the mixing chamber (F in m2) (§ = §/F),and the relative area

‘of the critical section of the supersonic nozzle ‘fr L q/frl)'

[ S -

PP R

Losses in the nozzles and the diffuser of the ejector are
described by the values of the pressure recovery coefficient !

vrtu-f:‘og; v;luni'i‘!' Vv VH.S"’"%'NC; . (2.1)
n .

In deriving the ejection equations we make the following . ;
assumptions and limitations: 1) the walls of the nozzles, the
mixing chamber, and the diffuser do not conduct heaty 2) there is .
no friction on the wall of the mixing chamber; 3) the flow in )
the nozzles and diffuser is one~dimensional; 4) the mixing
4 process is mechanlical and is not accompanied by chemical conversion;
f T) the gas is ideal and does not dissolve in the liquid and its

22
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phvsical constants (c
or cressure; 6) the heat cavacity and the specific weight of

'the liguid in the mixture do rot devend on temperature or

rressure; 7)

.+ K_.) do nou depend on tempsrature

~
~

v r* Vv

in the outlet section of the mixing chamber a
thermodyr.amically and mechanically equilibrium gas-vapor-liquid
mixture is formed, in which the vapor conrntent is negligibly sma’'”;
3 the ejector axis is horizontal.

It should be mentioned that the absence of vapor is zssumed
cnly for the flow of the mixture in the outlet segment of the
mixing chamber and in the ejector diffuser, In the initiai
segment of the mixing chamber partial evaporation of the l!liquid
is possible; the flow of liquid in the nozzle can be accompanied

by evaporation.

2.2. Deriving Ejection Equations

otTéE

In order to determine the parameters of state and the veloc't
of the mixture in the outlet section of the mixing chamber we
sclve the equatlons of the conservation of mass; momentum, and
energy together, assuming in this case that the parameters of
the velocity of the gas and the liquid in the inlet section of

the mixing chamber are known,

The inlet section of the mixing chamber coincides with tae
outlet sections of the nozzles, and thus

fr+fm+8=F. (2.2)

If we introduce the geometrical parameter of the ejector u,

then from equation (2.2) we get:

rd Tt 1—=3

- Sa= g =i '2.3)
F _ff] a(l-—;,)
Tn=TF==rr (2.1t
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From the equation of the conservation of mass for the inlet
and outlet section cf the mixing chamber

Gcs- Gp,u"l‘ Gm,u=am.n(x+1) (2 . 5)
we get
vy Own{K+1
Yo = férn 2. (2.6)

In the general case the flow of liquid in the nozzle can be
accompanied by evaporation. In this case a molst vapor flows from
the nozzle, This i1s a twoephase vapor-liquid mixture, whose
state parameters and velocity are denoted by the subseript "n.w."
The amount of steam in this mixture is described by x = Gn/Gm.n =
= 6, /(G + G,), which is called the degrse of dryness or the
vapor content. When X, = 0 a liquid flows from the nozzle whose
parameters are marked by the subscript "w," and when x = 1 - dry
saturated or superheated vapor, whose parameters are marked as
"m." The ejection equations obtailned below are valid for all
of these cases, and thus to abbreviate the writing the parameters

of the stream at the edge of the liquid nozzle are indicated by
"now,"

From equation (2,6), 1f we use the relationship (2.3) and
the obvious relationship

Oun =Y Wy 1S Bl (2.7)
we have
Ver = (=K ) YW (2.8)
@+ D7
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The per-second flow rate of the gas equals

G,,= Pcorq (Ary) ay.r.nfey (.
R:T ron ’

w2 exrressfons (2,7) and (2.95, we get

-

Gy, 82018y r.nq (r) 0:914 (-e1) N
K=lrn : o : 2.10)
Gun R'Troﬂn.zllwn.ul Vo Wt .(”-r ~ 1R Tea ' (

Prex = DronVryy,.

The equaticn of momentum for the irie{ and outlat section:

of the mixing chamber can be representec in the form of

Vot B =i (Y +25) -
'%'l?i"i (W’“‘“ p“:f;_'g— ) K:zvr.;\’xjff.i?;)—-’a)' ‘2.1
where Py is pressure at the end of the nozzles,
If we introduce the designations
A e (2.12)
Moum = W bt . (2.13)
poelPE _B@ED _ ep (2.1.

I—13 T wtWir st

.

Gun

4

and solve equatlion (2.11) with respect tc the pressure of the

mixture, we get

] — W . .
pcs—.‘——————-——-—-‘:";‘('l':“")“"" (K-t g -ty — (A DA, (2.15)
by
i
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Static pressure Pqs which 1s contained in (2.14), and
represents static pressure in the stagnant region formed near the
dull edges of the nozzles, can be assumed in the first approxima-
tion to be equal to the static pressure at the edge of the gas
nozzles in a case where Arl
the
The

to:

< 1, or equal to the pressure at
edge of the liquid nozzle when Arl > 1, while Py < Pgq-
total pressure of the liquid at the edge of the nozzle 1s equal

pr! p:uOn xdu

The temperature of the mixture TC3 is found by usiw.: ecuations

(2,8) and (2.15) from the equation of state for a two=przse gase
liquid mixture (1,10):

W/z _1_[(“ + 1) (Kney + nin, xl+”l)+ (K+1) (1~5) W wt]Wes__
(K+1)(@+1)

- (Knr1+ My, xd - n])(l — 5) ‘V".‘,ﬂl } .
K+ @+D

(2.16)

To determine with the help of the equations (2.8), (2.15),
and (2.16) the parameters of state of the mixture from known
parameters of the gas and fluid at the inlet to the mixing chamber
we must know the veloclity of the mixture WC3. Quantity ch is
found from the equation of the conservation of energy. This

equation, with equation (1.26) considered, can be written in the
form of

W’a P 2] . e N li 2.17
"?c""'g‘lcperts'*' 1*(,(‘:. ) =;<_:I(K’r04+‘30n)""g'hcosv (2.17)
where
bon=Cp:Teow ‘0 *Uo+ —'fa:xu-:‘p&'
on ? x0s . Tt
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-f we use the relasionships of (2.15} and (..1R), sher tvom
eozaution (2.17) we get

——————

Wzl = | l1—2d. (2.18)
where
l-:'_lc ((1 = 1)(/(’1,.!-{- ”n.u.!'*'"!)"’ (;—;.!U'\' - i) ‘V...;u . " .
(e + 1) (a4 1) (K1) (2.19)
o == (1 —3) (Kitpy 3+ g+ 1) Woxi  _7e=—1 i ‘
e+ DD KS -.,____._‘g-w. (2.20)

while the guantities Koo K, Neqs O ow1e O and ico are determined
from (1.3), €.10), (2.12), (2.13), (2.14), and (2.17).

Formula (2.18) gives two velocity values for the mixture in
the outlet section of the mixing chamber at assigned parameters
of state and velocity of the gas and the liquld at the edge of
the nozzle. The lower of these values corresponds to the subsonic

(wg3 < ag3), the greater - to the supersonic (Wé3 > aéB) flew of
the mixture. 1In a case where the radicand expressicn in formula
(2.18) reverts to zero, the velocity of the mixture is equal :o
the critical speed of sound (Wc3 = aC3 = aK'c3). In the following

chapter we will discuss the problem of when a certain flow Is
realized.

10 e

2.3. Aprroximate Calculation %
of Mixture Parameters

2.3.1, Volume of Liquid in the Mixture
is Negligibly Small

In cases where the volume of the ligquid in the mixture is
small in comparison to the volume of gas, the mixture, as we have
already indi-:ated, can te regarded as an 1ldeal gas with physical
constants C c? Cv c? Koo Rc, which are determined according to

formulas (1.1}, (2.2), (1.3), (1.9). The equation of sta:ce of
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the mixture (1,1C) is in this case reduced to the form of (1.33), ?
while the heat content and the speed of sound are determined by i

(1.34) and (1.36).

r Here the critical speed of sound is written in the form of
(1.33), where the static parameters of the mixture are bound to
the stagnat®:n parameters of the relationship of (1.39).

) The parameters of the mixture at the ejector outlet are in
) this case calculated as follows,

1) By means of relationships (1.1), (1.3), (1.9), (2.10),
(2.12), (2.13), (2.14) znd (2.17) we find the quantities

! ] cp o Kg» Rc’ K, N Ny e Dy and 1003.

1 | 2) We find the stagnation temperature 4

N ’ ico 1 ,‘ .
Teo3 == one =-———0pc KD [KepsTeon + Exgu] (2.21)

and the critical velocity of the mixture.

3) We determine the reduced velocity of the mixture from §
the equation of momentum (2,11), which is reduced to the form of !

R ———

o

2t Kngi+Mnwrtny
e+l ara(K+1)

z()\cs)= D, (2.22) ;

from which we get %

, o =g (D £ VD). (2.23)

The plus sign 1in front of the root gives us the supersonic velocity
! value (Aé3 > 1), and the minus sign - the subsonic (A;B < 1) .
: velocity value of the mixture,

%
i
3
:-g
g
H
k-
3
3
%
3
3
]
E
2
E
z
3

=2
£
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") Trom the equation cf the conservation of mass (2.5,
by .ntroducing the reduced veloci-y of the mikture ani the
‘tarintion parameters, we find the twe vRlu~s of total pr333ure.
ot tue mixture (ply, and p003) at the outlet “rom the mix ne

chamber.

U= K+ 1) TuatWaaaRTens

Petw = (a4 1)aceq Ges) -
- (U —=3(K+1) Yoot W et l/ (%¢ - 1) ReTeta I
(@+1)q (cd) Tung (2.24)

and at the outlet from the diffuser
Peot = V43Pc0

5) Using the relationships of (1.39) we find T'3, T"3, Y, &3’
y"3, p'3, pc3, and then the veloclity values of the mixture

W'3 and wgB, which correspond to the sUpersonic and the subsonic
flows of the mixture,.

2.3.2, The Part by Weight of the Ga.
in the Mixture is Low

In this case the flow of the mixture can be regarded as
isothermic. The temperature of the mixturc for pressures
which are not too great can be fround from equation

; 1
Toy=T = ﬁi"m[lﬂpﬁ'mn*lm] (2.0°5)

if, however, TPOH and Tm differ only slightly, then we can

H

assume that Tc3 = Tco3 TM'H.

If from equation (2.15) we exclude Pe3 by using expressions
(1.10) and (2.8), then after simple transformations we get

Cwr o _,_(1-%)%.,1] (1) My Wy 5 .26)
Wer [K-H‘ a+1 oterhken T8= =0, (
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from which we have

[ W=t VRE=2d,. (2.27)
t where
PECE LA DICE LI (2.28)
2@+ (K+1)
:z-l—- (I—E)leu.xl bl: 2
= ®Fn @+ +g-]' - (2.29)
Ni=Kny+n, .+n; (2.30)
b=R.T.. (2.31)

The relationships of (2.27), (2.28), and (2,29) can also
be obtained directly from expressions (2.18), (2.19), and (2.20)

under the conditilon that Kc = 1 and ico = cp cTDO.

2.4, Estimating Ejector Efficiency

The efficiency of gas-liquid (meH < prOH) and liquid-gas
(meH > prOH) ejectors can be described by the efficiency,
which is equal to the ratio of useful work to work spent:

= Lpogesn . (2.32)
Ls:w
Depending on what we understand as useful and spent work,
different expressions are possible for determining ejector
efficlency. Let us examine the most interesting of them.

1) Adiabatic efficiency of a liguid-gas ejector ngér.
In this case the useful work is the work of adiabatic compression

of the gas from 1n;tial total pressure Peon to the total pressure
of the mixture Peot

_ . Xe=1
- Lnomn'—_‘or',cp el ron [(fi) -1 ] ) (2.33)
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wcrk spent 1s the work of exvanding the 1ic¢u’~ from “he 1 ~"%70:.~° § |
total pressure Pyo to the total pressure or Loe mixt. - © .: { §
. : !
H !
; ,
L0 L2 (2.30) L
REal S = i !
: i
bt 3 . o0 T, T iy 1 :
oo If we substitute these expression “or L_ . and Loarp * : iy
z equation (2.32), then we get : :
. xp—l ;
:;: . J"xcptTrOnK (_pﬁ') *r "’]] é
: ”:'J= c il ) (2 iy §
: Pagn— pey .35) ;
;% 2) Adiabatic efficiency of gas-liaquid ejector n;&m. ‘
i "ise®ul and spent work in this case we determine by relaticnship f
1e ‘Lnoaenuzozmz (2.36) ;L
Lypy=0Q.Jc, Ty {1—-(-”—‘9-\ o, {2.37> !
Peon/ i i 3
¢
H
whose substitution in equation (2.32) g ves us :
1
n:.:cz PO Pagx T (- 490 ;
FoN . | ) i
Jcpr"xKTlOK {1 - (;';—,;) ! i fg
i
3) Iscthermic efficiency of licuid-gas ejector nﬁ;r. i
In a number of cases (for example, i electing very hot gas ty =z i
large gquantity of liquid) the most convenient results are previded B
by an estimate of the effectiveness of the liquid-gas ejector )
using the isothermic efficiency, which is equal to the ratioc of :
. useful work of isothermic compression of the gas from pressure §
: ]
Pron to pressure ®.0 ;
Peo (2.39) %
. ¢ 37 4
Logsesn =GR T ol == - E
Fron g
3
3
3
3
%
;‘%
2 2
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the work spent in expanding the liquid from pressure Pron
pressure p.q» which is determined according to formula (2.34).
we use expressions (2.39), (2.34), and (2.32), we find

Peg
tog ~——
2 .3031 gK R I'TCD Og p’o“

Wep
Ty =

(2.40)
Pxx =P c0

) Isothermic efficiency of gas~liquid ejector n:;m.

Lsetul work in this case is determined by formula (2.36), and work
spent, by relationship

Zunrp"__'orRrTcOm _I_;;r:);n . (2.41)

The 1sothermic efficiency of the gas~liquid ejector 1is equal to:

ha e= Peo - P . (2.42)
2,3031,K Ry Teo log L2
Peo
32
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CHAPTER 3
CALCULATING FLOW IN THE NOZZLES

The equations obtained above enable us to find the parameters
0f a gas-liquid mixture at the outlet from the ejector provided
thet ti:e parameters of the gas and the liquid in the inlet section
of the mixing chamber are known. However, to calculate the
characteristjcs of an ejector these equations are not enocugh. We
must £ind additional conditions, which bind the parameters of the
flows in the inlet and outlet sections Of the nozzies gnd
consider their interaction ir the initial section of the nixing
chamber. These conditions depend on the¢ operational mode of the
ejector and can vary substantlally.

3.1. Calculating Parameters of a Gas
Flow on the Nozzle Edge

3.1.1. Convergent Nozzle

The efficiency of the convergent nozzle 1s usually described
by the velocity factor ¢F1H’ which is equal to the ratio or
gas velocitles on the edge of the nozzle for real ané :idea!
isentropic f.lows for the same ratio of static pressure Prq ©ON
the nozzle edge to total pressure Pron at the 1inlet to the rozzle
(s2e, for example, [1]):

u.ummm.pmm.muuumam&ﬁW ‘
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For the nozzles which are generally used in ejectors we can
assume ¢rlH = 0;98"0099'

At a given ratio of pressures the quantities Arl and Arlng

can be found from

' Fop = 1.2 ;r_l Pt . 2

| (12 )T =poa=2 (3.2)
~u=l Ve = =Pr .

] (1 © el x"’"‘) p()‘rlsu PrOn’ (3 3)

in the nozzle, is determined from formula

oy P (?wma) (3.4)

Yy =
s Pron 2 ()

In a shut-off regime, whe.. Arl = 1, this formula has a
_ conditional nature, since the geometry of real and ideal nozzles
{ g will be different. Actually, when A , = 1, as follows from
expression (3.,1), A > 1, and thus the ideal nozzle must be
i : divergent.

rlng

regime are described by quantity v » Which is determined by

rlv,.p

. 1
ki SN 1 o

Vit pt= ytl ‘[__.""-"l .,l.. ! gg—.(,'A)' (3-5)
2 L+ 1 oy Pe(1)

where
p(h)= (1-2d L, (3.6)
i et oy )
# The flow of gas through the convergent nozzle is determined

1w
by means of (3.4) or (3.5).

34

while the coefficlent of pressure recovery, which describes losses

Total pressure losses in the convergent nozzle in a shut-off

by formula (2.9), where p o1 2t an assigned value of ¢.,, 1s found




2.1.2. Divergent Nozzle

sty ““‘WWWWM "

} The :lvergent gas nozzle at an assigned relatlve area of uae
eritical -zz2%ion fr w = f /frl’ depending on the ratio of ola ¢
pressure p in the medium into which the :‘ream flows to total

at the nozzle inlet, can opecrate in three substorii

1) when the flow in the divergent part of

when the flow

. pressure p_g,
dirferent regimes:
~re nozzle %s supersonic when (Arl = Ar.p > 1)3 2)
1. Lhe 3divergent part of the nozzle is partially supersonic and
rtially subsonic and where the transition from the supersonic
} s egion of the flow,which borders the eritical section of the
) nozzle, 'nto the subsonic region, stretching to its outlet section,
: oceurs inshocks(}‘i_.K =13 A, <1 )3 3) when the flow over the
ertire length of the nczzle is subsonic (AL <1 Aeq < 1).

Do

il i i

W

oa
r

The coefficient of pressure vecovery in the supersonic nczzle
: car be represented irn the form of the ppoduct of coefficients of
] ]

i pressure recovery in its convergent (v_ H\ and divergent (vr,H)

i : parts:

= Prox Prot __
hm Pmn Prox

ol

= VesawVrixe (3.7)

Vet =

LT ——

P
[
b i

The'efficiency of the convergent part of the nozzle can be

described by ¢r.u.H = Ar.u/lr.a.nn' Then Ve okn is determined by

HOAMIGE i o o T

Vr.x-n’*'!'g_z‘;f?" ’ (3.8)

where reduced velocity Ar Kong is found from formul:

z

POhad= £t = (1B, YT, (3.9)

tf"l’"

In shut-off regimec in a supersoni: nnzzle, when Ar " 1,

we have

,
-
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Now let us introduce the relationghips which determine the
parameters of the flow on the edge of the divergent supersonic
nozzle for all regimes mentioned aboye (see [71).

Supersonic flow regime, This case is the most interesting,
since it corresponds to the most advantageous operational regimes

for a gas-liquid ejector,

The efficiency of the divergent part of the nozzle in this
case can be described by the quantity

hep—1 ., . (3.11)

= 3
Prtx lr.p.xx —1

from which we get

As‘-l’=‘?rlu("l-.xi-ul"' 141, ("r.p >1). (3.12)

The magnitude of the 1deal reduced outflow veloclty from the super-

sonic nozzle A_ pona > 1, which is contained in (3.11) and (3.12),

is found from formula
Qa0 =0c(1) oo (3.13)

where q()A) is the gas dynamic function, which is determined by
(1.40).

The coefficient of pressure recovery in the divergent part
of the nozzle in the case of a supersonic gas flow can be found

from relationship

- 9QRepms) g (D7
Vo= (LI o lu
rip q (ep) = qGr.p) (3 )

-

If we censider (3,10) and (3,14), then from equation (3.7) for
the studied case we get
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~ 1
Frap ( )
%t 1 Fr.u.n
b7 = Y
r!u‘p 2 7 O'I'.P) ¥ ( 3 . l) ’

[RS

where A_ _ Is found with the aid of (3.12) and (3.13).

“he veloclity coefficient of the divergent part of the super-
sonic nozzle, which has rather smooth contours, can be acsumed
in the first approximation to be equal to0 0.97-0.98.

In a one~dimensional study the calculation system for *“:ne
flow in the supersonic nozzle is realized by changing pressure p
in “he surrounding space from zero to a certain limiting value

pnp::pm\'rln.p;‘r.p‘] (Ar.p) T (";"i") ’ (3 . 16 )

o

correspcnding to the case where on the rczzle edge there develops

a rlane shocl, in which the change in gac parameters is described
by known relationships: Ar1xr2 = 1 and

pr02/pr01 N q(;\rl)/q()‘r?'

Nixed flow regimes. These regimes
the surrounding medium which exceed the
determined by (3.16).

develop at pressures in
ilulting pressure

The coefficient of pressure recovery in
the divergent nozzle 1in this case 1s uniquely determined by

e magnitude of the reduced outflow veliocily

- i Frx . (3.17)
Ym=p ( e/ Te (1) qC1)
where Arl can vary fror Arl max - l/kl_.p to Arl min? determined
by the relationship
90t pin) =, (1)L, Oy pn < 1)- (378

Veix.2

The mganitude of v_, a contained in expression (3.18) is the

coe"icient of pressure recovery in the divergent part o the

nozzie for a subsonic flow in the case of Ar W= 1.

N ke wtamon Aimemm e sTeme—= = xS mms m =

WS il

I .

%
=
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~ The maximal value of the pressure in the surrounding medium,
at which the studied flow system is still obtained, 1s determined
by the relationship ' ’

1 T m
Pnaxzprimx:"‘%‘; 7r.xp( j 10 R( :l n ln) (3.19)

Subsonic flow regimes of gas in divergent szzle. In this
case the pressure recovery coefficient in the nozzle can be found

from formula (3.7), where v_ = at assigned values of ¢y, and

A, 1s determined from (3.8), while the value V.14 1s found

from
; Cr, wi
[’m*‘l’m:-(xx “2 = (3.20)
from which we get
%p 2 . 9
Veax==1-— ;:;_"l'clx)‘r.uQ ()5 (3.21)

where qln is the resistance coefficient of the divergent part
of the nozzle when Ar g < 1, which is determined experimentally.

3.2, State Parameters and Speed of Sound
in a Two-Phase Vapor-Liquid Mixture

When gas-liquld and liquid-gas ejectors work in limiting or
near limiting regimes (see below) the static pressure of the
liquid in the nozzle and in the initial part of the mixing
chamber 1in some cases drops below saturation pressure Ps 4 and
the 1liquid begins to boil. In this case a two-phase vapor-liquid
mixture is formed, which,depending on the concentration of vapor,
can be elther a mixture of liquid and fine vapor bubbles or a
mixture of vapor and fine droplets, or, finally, a type of foam

formation. In calculating the flow of such a mixture we will

assume that 1t is also in a state of thermodynamic and mechanical

equilibrium and, consequently, the velocities and temperatures
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- ® .e particles of vapor and liquid are ne& =~smc at z y point
(.== g»z sure of the vapor 1s assumed equ:z’ . the sa:uratlion
poossure atove the plane phase contact surface). The parameters
of the corwone .. contained in the mixture {the boilir.- “*gu-d
and the dry sa“u::. ed vapor) can be found under the ass:mytlon
which we have taxen by using the thermod: amic tables (see, for
example, [9]).

The paramete: - of state of the studied vapor-liguid mixture,
which 1s saturated vapsr, are determined by the following
relationships (see, for example, [6]}:

V=T X (T =% (3.22)
in.x =i'+x‘_i”- ey (3.23)
Snox =8 x(s"—5"), (2.24

where v', 2', s', and v", i", and s" are tre specific volumes,
the enthalpies, and the entropies of the bailing liquid and dry
saturated vapor, respectively; x = Gn/(G_ + Gm) is vapor content.

The speed cf sound in the studiep eguilibrium vapor-liquid
mixture can be determined from {1.23}, which is reduced tc the
form of

an-w""‘]v/ '-8”3..;(;,,%& )‘_mn' (3.2%)

If here we substitute the expression found in 12 “or the

d
derivative [-22.) , then we get
V(0% ¢ /3o const

_Unx Varl
v -y [ ds’ dz r
(v'-—v'}‘f{'—-—{ —_— X -——"""')

‘!/ r a7 vdir T}
2 dv* dv*
; —x =05

i ar “ar

24 =

" I

- (3.26)
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The speed of sound in the boiling liquid during the transition
from the moist vapor region (x + 0) to the boiling liquid 1is
equal to: .

e .
— v Lo (3.27)
oy [Lm ) T8 z_.] 27
@=v) [ r. drf 4T

For dry saturated vapor (x + 1) we have, respectively,

Qa ( ‘1)5-"—"‘_—-'——_0:—@—._—-——-_—-—-:. (3 28)
nW{ X e e

- (= ple 0 _ 2] 4] ~
. l/(v"—u)T{ - {.Tﬂ.-}-ﬂ. T} T

Derivatives dv"/dT, dv!'/dT, dr/dT, and ds'/dT, which are
contained in these expressions, are approximately determined as
the ratios of final increments in quantities Av", Av', Ar, As'
to the increment in temperature AT by means of the saturated-vapor
tables. Since quantity p and T for saturated vapor are uniquely
bcund to each other, then the speed of sound a is a function
of only two independent parameters, for example, T and x.

The dependences an.m(t) when x = const for a moist wateir vapor, i
calculated from formula (3.26) by means of tables [9] when At = 1°,
are shown in Fig. 3. If we compare Fig. 3 to Fig. 1 we see that
the dependences of an.m(x) when p = const and t = const differ
substantially from the dependences of the speed of sound a, in the
gas-liquid mixture by the relative concentration of gas in it.

As the gas content decreases with p = const and t = const,
quantity a, first decreases to a certain minimal value, then
rises, and when K - 0 it tends to infinity, at the same time that
quantity a0 decreases monotonically with a decrease in the *

vapor content, and when x + 0 it reaches a2 certain minimal value,
which depends on t or p.

During the transition from the region of molst saturated
vapor to the liquid region the speed of sound rises intermittently
from a . 0, which is determined by (3.27), to a value corre-
sponding to the speed of sound in the liquid.

4o
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Fig. 3. Dependences of speed of sound in
moist saturated water vapor c¢n temperature
when x = const.

Desiganticn: MWM/cexk = m/s.

It should be mentioned that because of the presenc
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issclved in the ligquid, which might be iiberated in the
a pressurc decrezse, and also in connect on with the fact
rapid pressure change {which occurs, for example, durins .
flow of a spontaneously evaporating liquid in a nozzle or AT vy ep)
the processes of evapcration and condencation will be delaye
the actual values of the speed of sound in the saturated vaper,
particularly in the transition region between vapor and liguid
(x + 0) and the reverse transition, might differ noticeatly Irom
the values found from formulas (3.26) and (3.27]
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3.3, Calculating Liquid Flow
in a Nozzle

3.3.1., Convergent Nozzle

As the liquid flows from the convergent nozzle two cases
are possible; 1) when pressure Py at the edge of the nozzle
exceeds saturatior pressure ipl > Py H) and 2) when P4 < Pg

Case 1. In this case the liquid in the nozzle does not
evaporate. If its compressibility can be ignored, then the
outflow velocity from the nozzle 1is determined according t«
formula

Wt = 2utaW wten = uctn V 2805\ Py — But . {3.29)
where @umn=Wua/Waux 1s the velocity coefficient.

Total pressure and temperature on the nozzle edge can be
found from

Pati= g [ 221 (1= o)+ S (3.30a)
1 .
Txd =Tx.u+ATac T wen +R (Pitu== Pa\-m“ ( 3.30b)

If the temperature of the liquid is close to its value at
the critical point, then condition v, = const becomes roughly
approximate, At the assigned parameters of state of the liquid
at the nozzle inlet and static pressure at its edge, the outflow
velocity is found with the aid of the iw.s diagram from formula

“Vxl =?xdnwudnn =Oxlu 1’ 2g', (iasOn""ialua)' ( 3 . 31 )

Then we determine the enthalpy of the liquid on the nozzle edge:

iml=(1“‘??g|") ixﬁn'*"‘?quiadun (3 . 32)
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the specific weight Y1t and entropy S’ Total pressure P01
on the nozzle edge can be found with the tables according to the
values of imOl = imOH and 8,01 = Sw1°

Case 2. In this case in the outlet section of the nozzle -
between section s, where the pressure of the liquid becomes equal
to saturation pressure (pm s = ps), andi the outlet section of the
nozzle 1 ~ spontaneous evaporation of the liquid occurs. The

outfiow velocity of the vapor-liquid mixture is determined by
relationshilp

Wn-ml = Qxluwn.mlua =Pl V 24‘-'1 (ix(m - tu.xdlll) =

=V 28/ (o= tnah (3.33)
from which we get
Iy =_(1-v?.du) bt T Phtube xtia, (3.34)
The value of in.mlnn which is contained in these expressions

at assigned values for the state parameters of the liquid at the
nozzle inlet and static pressure in its outlet section 1s found
by the ald of the saturated-vapor tables from condition s =

Nn.Hlung
= S.0n° which gives us

) s .t ' . ’0 S, —“' se '

‘n.xlnn=‘1+."‘lnx (il“"ix) =i, + ""i"gr"";?"‘" (“"‘ ':)° (3.35)
17 %
The vapor content of the mixture is determined from

1 0 : "

Xy == T —1 I(I -'?ilu) Lo +9,}mln-:xlun"‘1]v (3.36)
1 1

after which, according to formulas (3.22) and (3.24) the quantities

v 1 and s

S are calculated.

a.%l

In cases where the compressibility of the liquid in a range

of variation from Pyon to Py , can be ignored, expression (3.33)
is reduced to a more convenlient form for calculation:
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where the magnitude of Ws is determined according to formula

Wl:: 20 ’/2.20:( (pAOn"'p;u.n 3)' ( 3 . 38)

H.H S
represent the enthalpy and pressure, respectively, of the bolling

liquid in nozzle section s flowing without losses (Tm ¢ = T, H).

Suantities 1 and Puou s? contained in these expressions,

As the pressure decreases in the medium into which the stream
of liquid is ejected from the value p = L to a certain minimal
value, the outflew rate and the flow rate of the liquid rise
steadily and thei» values can be found from the condition
P=p, = pH.ml' Finaily, whea p = Prin the convergent nozzle
becomes cut off: a further decresse in pressure in “he surrounding
medium from Prpin to zero no longer results in an increased flow
rate of liquid or a change in the parameters of the flow on the
edge of the nozzle. Depending on the total pressure of the liquid
P L0 at the inlet, when Tm.n = const three shut-off regimes are
possible for the llquid nozzle: 1) when Py 2 Pgy the outflow
rate is equal to the speed of sound in the liquid (wml = aml);

2) when P = Pgo the velocity of the liquid on the edge of the
nozzle is greater than the speed of sound an.ml(x*O); 3) when
10 < Ps 4 the outflow velocity of the vaper~liquid mixture is
equal to the speed of sound in it (wn.ml = an.ml)‘

In the first case of shut-off the fluid flows along the
entire convergent nozzle, Since the speed of sound in the liquid
i1s very great, then this case 1is realized at extremely high
pressures of the liquid at the nczzle inlet. ¥For example, the

speed of sound in water under normal atmospheric conditions is

equal to a, = 1485 /s, If we substitute this value of the velocity

of the liquid in the equation of energy conservation, we find

by

d - = W‘V’M'Mﬁ T T T "'f‘
T~y

4
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Prow==10000 4- l@%?i‘;--:l,oss-m“ kgf/m? =10650 kgf/cm”.

The maximal flow rate of the liquid is found in this case from the
relationship

Gmax=‘?mlamif st
The studied shut-off case 1s realized at values of Py which

exceed PL0T* at which the conditions wm] =a. and Py =
are simultaneously fulfilled.

psl

In the second shut-off case the liquid also flows over the
entire length of the nozzle. Its velocity, if we ignore the
temperature change in the liquid due to friction, can be found
from formula (3.38) or from relationship (3.31) when imlnn =i, , =
= i;. The maximal flow rate of the licuid is determined in this

case by relaticnship G =y VW f .. At the assigned temper.

max M S WM s"HMl
ature of the liquid Tm " in front of the nozzie this shut-off

case 1is possible at vaiues of Prou which range from PuoT to
PuL0I1? at which the outflow velocity of the liquid from the
nozzle wm s1 becomes equal to the limiting value of the speed
of sound in the vapor-licuid mixture when x + 0. The value of
P01l when vV, © const depends only on thﬁ physical properties
in the temperature of the liquld and can be found from the
obvious relationship

' a2
D natte=0)

Puo1t = 2%

P (3039)

wnere the speed of sound a y i8 found from formula (3.27).

n.m( x>0
It is interesting to note that when PuoI > Puow ” PuoIl

pressure in the stream of liquid On the edge of the nozzle
-1 decreased counterpressure cannot drop lower than saturation

pressure p. by a finite value, since the flow on the edge of

the nozzle‘becomes supersonic (Wm .

{7

nowl(x»0)) 27 the slightest
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amount of vapor 1s developed and perturbations can no longer
penetrate into the nozzle,

In the third shut-off case, when P < Pg 4 @ stream of
moist vapor 1is ejected from .the nozzle, Evidently thils case can
only develop in the reglon 1in front of the nozzle where the
total pressure of the liquid changes from PuoII to PyoIIr =
= p,l Py The state parameters of the moist vapor and the

outflow veloc*tj in the shut-off regime can be found from

condition wn_wl = an W1

The calculation is pe:fgrmeg in the following sequs-ice.

1) A series of values is assigned for pressure Py ranging
from Pg & to zero.

2) From the saturated-vapor tables we find the values
corresponding to them T, v', v", ', 1", s', s", and r, after which
from formulas (3.33), (3.34), (3.35), (3.36), (3.22) and (3.24)

we determine quantities wn.ml’ in.ml’ X9 Voo and So.ml°

3) From formula (3.26) we find the value of the speed of
sound a0 w1? after which we graphically determine quantities
Y and Wn Wl which correspond to the shut-off regime.

4) For this value of Ph.u1 We calculate all the parameters

of the mixture on the nozzle edge in the same sequence.

Figure U shows dependences meII(t) and p

mOIII(t) = ps(t)
for water,

We see that the third shut-off regime of the convergent
nozzle, which corresponds to a flow of liquid with spontaneous
evaporation, is only possible at total pressures in the liquid

which are very close to the saturation pressure.

Thus, for example,
when t

= 100, 200, and 300°C we have respectively: PwoII =
= 1.039% kgf/cmz, Pg = 1.0332 kgf/em?; p .o = 16.540 kgf/cm2,

Py = 15.857 kgf/cm2 and Pyorr = 99,15 kgf/ch, pg = 87.61 kgf/zmn2,

L6
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The main shut-off regime of the convergen®t nozzles obtained in
the ejector will therefore be the second regime, in which

Pyr = Pgae
purfen? p xlfcm?
! £
2-4 pemum aaaapa':mn §
70 200
)
Prxon ol
Fcom™Ps
| & Pom™rs
95 ' 190 i
J-i pemum
/ f Janupanus
(2)
4 1
Y . ’/’f !
- | 1 | _
¢ 100 200 Jag tuC

Fig. 4. Dependences of total pressure of
the liquld on temperature for limiting
shut-off regimes of the nozzle.

KEY: (1) 2nd shut-off regime; (2) 3rd
shut-off regime.

Designation: «I/cm@ = kgf/cm2.

3.3.2. Divergent Nozzle

As the liquid flows in a divergent nozzle withk an assigned
relative critical section area fm i = T H/I‘ml, Just as in the
gas flow, three different regimes are possible:

1) the rated regime, in which a supersonic flow of mo’st
saturated vapor 1s obtzined in the divergent part of the nozzl

- i
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2) a regime in which regions of supersonic and subsonic

flows, separated by a plane shock, develop in the divergent part
of the nozzle;

3) a subsonic flow regime for the entire length of the
nozzle,

Supersonic flow regime. When Tm 0o const there are three

possible cases of supersonic flow in the divergent nozzle (Fig. 5),
depending on the total pressure value of the liquid p

et dhomire one et v i v ke S i iy s S e 8w, e ] *

WOHu* !

’"/'x/ms H_oMH
0 L.o=.--. * .,

(1 ) Wudroems Hacorwennety

b)
Pmos™?wor i Pmw®Psxi Pmer>Pmon”Pmon:  Puoz™Peow>Psxi
W k™ On i W mr®Onmr Pk™Psk » P Psni Wamx=8nxx
W Wi x> O (x+0)

Fig. 5, Three cases of supersonic flow in
divergent nozzle:

&= Dyt > P2 Pux” Pex
b = 2,01 > Pudn > Px0ll
€= Pupi] > Paom ™ Pax

KEY: (1) Saturated vapor; (2) Liquid.

We have the first case when Puon > Puol (see Fig. 5a). In

this case the liquid flows in the convergent part of the nozzle
and its velocity in the critical section wm

" is equal to the
speed of sound in the liquid a, K(Mm K = 1). In the initial

section of the divergent part of the nozzle (between sections #=s)
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the pressure of the liquid decreases to Py while its velocity
increases and becomes supersonic (Mm s > 1), In sec.lon s ezvapcra-
tion of the liquid begins and the speed of sound decreases

. ¢ te M number
intermittently from a, s to an.m(x+0) For this reason e

of the flow rises sharply (Mn.m s 2> M, ). In section s-1 of the
nozzle the velocity of the supersonic flow of the two-phase vapor-

liquid mixture and number Mn " rise smouothly, while pressure falls.

In the second case (see Fig. 5b), which develops when

Puor > Puow > PL0OTII? the static pressure of the liquid in the
eritical section of the nozzle 1s equal to saturation pressure

(P .x = Pg 4} s where Wew < 2 (Mm.K < 1), In the critical
section of the nozzle the liquid begins tc evaporate, and the
spee¢ of sound in the two-phase mixture which has formed aj .., .n)
is lower than the velocity of the mixture wn.m.u = Wm'u, and

thus the M number increases intermittently and cthe flow becomes
supersonic (Mn.m.n > 1). 1In the divergent part of the nozzle

the velocity and the M number of the supersonic flow which has
formed from the twoephase mixture rise steadily (Mn.ml > Mn.m.u)'
Thus, in the studied case the transiicion from the subsonic region
of the flow to the supersonic region in the critical section of

a divergent nozzle occurs intermittently. The velocity of the
Tlow 1s not equal to the speed of sound at a single one of the

points along the nozzle.

In the thirc case (see Fig. 5c), which is possible at valuers
of YLon ranging between PLOII and Py between sections He-s of
the convergent part of {ie nozzle the static pressure of the
liquid decreases to the value Pg» while the velocity increas:s
to the value Ws. In sectlon s the 1lic¢ .ld begins to evaporate,
and thus, as in the cases described above, the M number of the
flow rises intermittently, although the flow remains subsonic
(Mn.m g < 1). Between sections s~ the velocity of the formed
two-phase mixture increases and in the critical section becomes
equal to the speed of sound (M = 1).

N.MK
of the nozzle quantity Mn " rises steadily.

In the divergent part
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In the convergent part of a supersonic nozzle the flow is
calculated just as in the case described above Ior the flow in
the convergent nozzlie in a shut-off regime, A supersonic flow
in the divergent part of the nozzle with assigned geometry and
with fristion losses can be calculated if we use the equations
of the conservation of mass and energy, which are written in the

form of
-Wu.xlg—’=g}“'lﬁ' Un.ul? (3.40)
Gmax \? , , ..
(—}m:t-‘l-) ‘vg‘*l-‘-QEJ‘“'W‘ =28Ji g (3.41)

as follows:
1) If we assign a series of values Poowy < Phw K'and
determine with the aid of the saturated-vapor tables the values

corresponding to then

PR b} (3.42)

‘l-‘s;

and values Voo and :1.‘,”“l from formulas (3.22) and (3.23), then
with the ald of equations (3.41) and (3.40) we find the parameters
n.wlng? in.mlua’ vn.mlnn and the veloclity of the mixture
on the edge of the nozzle for a flow without losses in

of state p

wn.mlng
its divergent part.

2) According to formula

W xip = Puix (Waxtns ~ W) + Wi (3.43)

we calculate the outflow velocity from the nozzle in the presence
of losses, after which we find quantities v and 1n wl from
expressions (3.40) and (3.41).

Wl
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3) If we assign a series of values for P, wl? which somewhat
exceed the value pn.mlun' then using equation
fatmh =) (3.44)
h=1 "o
and the saturated-vapor tables we find the pressure on the edge
of the nozzle, and then from relationship (3.22) and (3.24) -
quantities xl and Sn.ml'

Mixed flow regimes. In these regimes in the divergent part
of the nozzle a plane shock develops, which transforms the
Supersonic saturated vapor flow into a subsonic flow of 1liquid
or saturated vapor, which depends on the location of the shock,
determined by the magnitude of counterpressure.

(1) (2)
- fpamog enavon
mudxocms yn/m@neﬂaw |

(3 )'lg:g’u;mwd .
a) b) c)

Fig. 6., Possible mixed flow systems in
divergent nozzle when Puor > Puoy > PuoIT

KEY: (1) Liquid; (2) Plane shock; (3) sat-
urated vapor,

Figure 6 shows the possible flow systems in the nozzle for
these regimes in the case where meI > Puoonw > meII‘

Figure 7 gives the Tws part of the diagram, in which the
dashed line indicates the process of expansion of the liquid in
the nozzle from the initial state, which is described by quantities
Phons imOH’ and Tm.ﬂ {point H), to states corresponding to the
points 1la, 1b, lc¢, 1d and le, at wnich a pPlane shock develops in
the nozzle. The values of the state Parameters beyond the plane
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shock lie along the dot-dash 'line (points 2a, 2b, 2¢, 28, and 2e).
Points 3a, 3b, 3¢, 3d, and 3e, lying along the 1line imOH = const,

correspond to the stagnation parameter of the flow beyonrd the
piane shock.

Ta

(1)

Mudxocme

e Lyou=const

K/ is

oy L1
5
=

h A Y
g 1 \ P
& 2
(4) 3§ LN |
5 ss 184 \ e
) -+ &2y \ \

Fig. 7. Processes of liquid expansion in nozzle with
formation of a superscnic flow of moist vapor and stag-
nation of the supersonic flow in a plane shock.

KEY: (1) Liquid; (2) Boiling 1line; (3) Saturated vapor;
(4) Pressure decrease.

If we examine Fig, 7, we see that if the plane shock is
located near the critical section total condensation of the vapor
occurs within it {points la, 2a, 3a; see also Fig. 6a). as the ’
shock moves from the critical section and as pressure decreases
in front of it, the pressure »f the liquid behind the shock,
beginning at a certain moment, also decreases and, finally, becomes
equal to the saturation pressure (points 1b, 2b, 3b in Fig. 7).
As the shock moves further in the direction of the outlet section
of the nozzle and with a further decrease in pressure in front of

r 02
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it, the pressure behind the shock drops below the saturation
pressure and none of the vapor 1is condensed; as the flow of
saturated vapor stagnates in the divergent part of the nozzle,
pressure in this case can rise above the saturation préssure and
the vapor can be completely condensed (points lec, 2¢, 3¢, 1d, 24,
3d; also see Fig, 6b), At even lower pressures ahead of the shock
a subsonic flow of saturated vapor develops behind it, which is
not condensed even when the stagnation velocity decreases to zero
(pnints le, 2e, 3e; also see Fig, 6c).

Let us assign the calculation order for the parameters of
state in the velocity of the flow on the edge of the divergent
nozzle for the studied regimes depending on the pressure on the
edge, which is equal to pressure p in the surrounding medium.

1. Let us find the parameters of state and the velceity of
the flow in the critical and outlet sectlions of the nozzle in
the supersonic flow reginme.

2. Let us calculate the parameters of state and the velocitles
of the flow behind a plane shock, located in the outlet section
of the nozzle (see following section 3.14).

If total vapor condensation occurs in the shock, then over
the entire possible range of variation in counterpressure, which
corresponds to the studied flow system, liquid will flow from the
nozzle. If for the sake of simplicity we assume that Yy © const,
then ve get

[
Wx - .
! =t/ (3.55)

from which it follows that the outflow rate is independent of
counterpressure; stagnation pressure P01 is determined by the
Bernoulll equation:

2

IV (3.46)

Paty = Py o+ 9
4

53

g

Ao o) o

et 0 e e il i

Wlladr

(




A o PO 8 Ao 3 S D%

Quantity Pyl in mixed flow regimes in the studied case can
vary from a minimal value of Pyl min? which corresponds to a
plane shock located in the outlet section of the nozzle (see

Section 2), to a maximal value of p » Which corresponds to

M1l max

. a case where the plane shock moves into the critical section and

where the liquid flows over the entire liength of the divergent
part of the nozzle,

Quantity p is determined from formula

KMl max

s .
Pximax = Pulix — '?:- (Culxng -~ W:le)v (3.47)

where zmla is the resistance cocefficient of the divergent part
of the nozzle for the liquid flow,’?

In a case where the vapor remains entirely uncondensed behind
the plane shock in the outlet section of the nozzle (points 2e¢, 24,
2e in Fig. T), the flow on the edge of the nozzle under different
couniterpressures is calculated in the following manner,

A number of values are given for pressure p ranging from
the maximal, which is found from relationship (3.47), to the
minimal, which is equal to pressure behind the plane shock on the
nozzle edge (see Section 2). When pressure p changes from p
to Pyy = Pgy @ stream of liquid flows from the nozzle, whose
velocity and total pressure when Yy = const are determined from
formulas (3.45) and (3.46); its temperature is determined from
(3.30b). Quantity Pgy is found as the intersection point of
curves Tml(pml) and Ts(ps). When pressure changes from pg; to
Pul min saturated vapor flows from the nozzls. TIts specifice

Ml max

Tn the case of Pwo1I > Pwow > Ps , In the critical section

and in the small region behind it a vapor flow is possible, although

in determining the quantity p
the first approximation,

wl max W€ can use formula (3.47) 4in
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volume and enthalpy when Poowl = const are determined from the
combined solution of equations (3.41) and (3.44), its outflow

velocity - from (3.40),

Subsonic flow regimes., These regimes are realized at pressure
values on the nozzle edge which exceed the value Pu1 max® found
according to formula (3.47). The parameters of these regimes
can be calcuiated by means of the relationships presented above.

3.4, Plane Shock Inflow
of Saturated Vapor

Flow parameters behind a plane shock, which transform a
supersonic saturated vapor flow into a subsonic saturated vapor
flow or into a liquid are found from the combined solution of
the equations of the conservations of mass, momentum, and energy

for sections in front of and behind the shock, written in the
form of

=2,
‘02 z y (3-“8)
=n—mW, (3.49)
i w”
D=ty (3.50)
Quantities m = p W and n =

nowl”'noml MW, w1 * Pn.uys Which are
contained in these equatlocns, depend only on the parameters of

the impinging flow; the subscript "2% denotes flow parameters
behind the shock, subscript "1" - parameters in front of the shock.

Since we do not know ln advance whether or not a liquid

flow or a saturated vapor flow will form behind the shock, the
calculation is made in two stages.
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First we assume that a liquid flows behind the shock. If we
assign a number of values V2 ranging from V.01 to V&l’ then from
expressions (3.48), (3.49), and (3.50), we find the correspondirg
values wmz, Pyos and im21. Using the thermodyanmic tstles from

.'
values Py and Vo We find the values of 1i2TT which correspond
5o them. Comparison cf these values with the values of iHZI
which we have found enables us tc determine the sought values
\ [ +
Pyos im2’ Vi wmz, and S Then quantity P,oo Cai be found from
the tables from the known values of the enthalpy and entropy of

1 = =
stagnaticn im02 1m and s s

OH w02 w2

If over the entire range of possible change in quantity Vo
dependznecs 1m2I(Vm2) and iMZII(VHE) do not intersect, then a
liquid flow behind the shock 1is impossible,

Calculation of the flow parameters behind a plane sho~% is
simplified if the liquid is considered incompressible. In - :is
case veloclty ng and pressure Do behind the shock are uni - 4
determined from equations (3.48) and (3.49), while the stagnation
temperature P02 is found from the Bernoulli equation:

1,V
Put2™ Puat ”‘2(*2 (3.51)

The temperature of the liquid behind the shock can be found
according to formula

=T g 020 2a02 (3.52)

180wt
It is obvious that the flow of fluid behind the shock can only

develop in a case where quantity Tm2 is Jower than saturation

temperature Ts when Py = Pyo-

In the case of a flow of saturated vapor behind the shock,
the parameters behind the shock will bz calculated in the follow-
ing sequence:
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1) 1if we assign a series of values P2 ranging from
P,.u top' with i =14 ., , then from expressions (3.49), (3.48),

and (3.50) we find values Wo w2 Vnow2? in.mzl, which correspond
to them; .

B L T

.

Cr Ly e

2) 4if we compare this value of 1,.u21» With the value of
in.mZII’ which 1s determined from

. . Uia ~ Y
Iy =l (= b) ——— (3.53)
then we find quantitiles P2 and 1n Wo? after which we calculate
Y specific volume Vo.u2e 88 well as entropy !
8 w2 and vapor content X, of the mixture behind the shock by =

formulas (3.49), (3.48), (3.23) and (3.24).

velocity W
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CHAPTER 4

CALCULATING CHARACTERISTICS FOR
EJECTOR WITH DIVERGENT DIFFUSER

.1, Possible Operational Modes
£ Ejector

b
o}
Let us describe the possible working modes of the ejector.
¥ith thls obJject we examine its choking characteristics, which
represent the dependence of total pressure of the mixture on
the ejection coefficient under invariable parameters of the gas
and the liquid at the ejector inlet. Typical choking characteris-
tics of a two-phase ejector for different assignments of gas and
ligquid parameters at the in°2t are shown in Fig. 8.

The gas-liquid mixture is a compressible medium, and thus
under assigned state parameters for the gas and the liquid at the
ejector inlet it is always possible, if we decrease counterpressure,
to obtain a regime in which the flow in the divergent diffuser
between section 3-4 (see Fig. 2) will be completaly supersonic.
Point 1 on the curves corresponds to <his regime.

As counterpressure in the supersonic stream flowing from the
diffuser increases, increasingly powerful angle shock develops
and, finally, the perturbations penetrate inside the channel.

In a one-dimensional study penetration of the disturbance inside
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the channel 1s only possible from the moment that the plane shock
develops in the outlet section (point 2 of curves in Fig. 8). It
is obvious that the totalepressure values cf the mixture in the
outlet section of the diffuser in regimes corresponding to points
1 and 2 or the curves are distinguished from one another by a
value which 1s close to the losses in the plane shock.

Pece

0
Pocy Pocr
7(A >1) ‘1(&,,,,»)
= c4
Prr=Pu W =Wsx "i\'@;\
5

J

Fig. 8. Choking characteristics of two~phase ejector for

different assignments of gas and liquid parameters at
inlet. :

A¢ counterpressure increases from values corresponding to

~points 2 of the curves the normal shock moves deep within the

diffuser and, finally, into the outli~<t section of the mixing
chamber. Here total pressure of the mixture increases steadily,
since losses in the plane shock decrease. Sections 2-3 of the
curves correspond to these modes,
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- Due to the fact that with a change in the total pressure of !

[ the mixture from the value corresponding to point 1 to values
corresponding to points 2. and 3, the flow in the mixing chamber

r of the ejector does not change, and the ejection coefficient also
remains invariable. Thus, point 1 and section 2-3 of the curve

} lie aiong a single vertical line,

If we ignore the contrast in losses in the diffuser for
supersonle ané subsonic flows, then in the case of a low relative
volume of liquid in the mixture, the total pressure value at
point 3 of the curve can be expressed as the value which corresponds

| tc pressure at point 1, as follows:

i Peotinn = Peons (R

(%) ;

-

1
where AcB > 1,

In the particular case, when the velocity of the mixture
P in the outlet section of the mixing chamber is equal to the speed
b1 of sound (A 5 = 1) points 1 and 3 coincide,

‘; Regimes corresponding to the points of the vertical branches
i of the curves, at which the flow rates of the gas and the liquid

> do not depend on the conditions at the diffuser outlet, are called
the cut-off [cnoking] regimes of the ejector.

| N In gas-liquld and liquid-gas ejectors with convergent nozzles,
whose trailing cdges have a zero thickness (8 = 0), two types of
cut-off regimes can be realized, depending on the state parameters -
of the gas and the liquid:

-

1) critical regimes in which the flow at the outlet from the
mixing chamber is supersonic (Ac3 > 1)
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2) cut-off regimes of the mixing chamber in which the
velocity at the outlet from the chamber is equal to the critical
velocity (AC3 = 1),

The limiting critical regime and the limiting cut-off regime
of the mixing chamber are also those regimes in which the flow
in the diffuser is completely subsonic. 1In a case where the
edges of the convergent nozzle nave a zero thickness the limiting
critical regime and the limiting cut-off regime of the mixing
chamber correspond to the vertices of the vertical branches of
the curve (points 3 in Fig. 8a, b, 4, e).

In an ejector with & superconic gas nozzle and a convergent
liquid nozzle, in addition to the critical regimes and cut-off
regimes of the mixing chamber, in a certain variation range of
the parameters of state qf the gas and the liquid cut~off regimes
in the nozzles can also develop in which the velocity of the
mixture in the outlet section of the mixing chamber and in the
diffuser will be subsonic (the region of tne subsonic flow which
does not occupy the entire cross section of the mixing chamber
extends up to the edge in the cut-off modes of the nozzles). In
these regimes a sonic stream of moist vapor flows from the
convergent nozzle. This stream expands suddenly in the initial
section of the mixing chamber and becomes supersonic. In the
divergent part of the gas nozzle a normal shock develops, which
leads to a supersonic flow in the subsonic part. Depending
en counterpressure the position of the shock can change, and thus
when K = const quantities Arl’ P01+ and, consequently, P.qy can
change. Sections 3-4 of the choking characteristiecs correspond
to the cut-off modes of the nozzles in Fig, 8c and f.

The cut-off modes of the nozzles can also develop in an
ejector with a converjent gas nozzle when its edges have a finite
thickness. In this case the change *n value Peoy when K = const
and Ac3 < 1 occurs due to the fact that with an increase in
counterpressure as compared to the value corresponding to the
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limiting critical regime, there is an increase in pressure

1 in the stagnant reglons, formed at the trailing edges of the
nozzle,

It should be mentioned that the transition from the super-
sonic region of the flow to the subsonic in a diffuser does not
actually occur in a plane shock, but in complex systems of bridge .
shocks, in which losces, generally speaking, can be distinguished
from losses in a plane shock, However, as tests on gas and liquid- .
gas vacuum ejectors with cylindrical mixing chambers indicate,
when the chamber is sufficiently long (on the order of 12-18 calibre)
losses in these shock systems in the limiting critical regimes are
very close vo losses in the plane shock.

With an increase in counterpressure as compared to counter-
pressure ialues corresponding to points 3 (see Fig, 8a, b, d, e)
or 4 (see Fig. 8c and f) from the diffuser the disturbances
penetrate into the convergent parts of the nozzles, and, depending
on the nature of the flow in the initial part of the mixing
chamber, there begins a decrease in either the flow rate of the
liquid (see Fig. 8a, c, e) or in the gas (see Fig, 8b, d, f) or
in both simultaneously (see Fig. 8 - dashed curves). The total
pressure of the mixture in this case rises monotonically, while
the ejection coefficlient either rises steadily (see Fig. 8a and c),
decreases steadily (see Fig. 8d and r), or first decreases (rises),
and then rises (decreases) (see Fig. 8b and e). In the regime
K = = the flow rate of the liquid is equal to zero and gas
alone flows through the ejcctor, When K = 0 only liquid flows
through the ejector (Gr = 0),

The curve shown in Fig. 8a, b, ¢ corresponds to the gas-liquid
ejector (proH > meu)’ wnhile the curves in Fig. 8d, e, f correspond

to the liquid-gas ejector (pmoH > proH).
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Regimes in which the change in counterpressure is accompanied
by a change in the ejection coefficients are called suberitical
regimes. The sloping segments of the choking curves 6-3 or 6-4
in Fig. 8 correspond to these regimes, Obviously when the ejector
works in subcritical modes all the way from the inlet to the outlet
section, there will be a contlnuous subsonic flow region through
which perturbations willl be transmitted,

<
H
H
H
g
i
Y
:

4,2, Critical Regimes

ol

The critical operational regimes of two-phase gas~liquid
and liquid~gas ejectors, as we have already mentioned, are those :
regimes in which the flow in the outlet section of the mixing g
chamber 1s supersonic. In studying the critical regimes of a §
two-phase ejJector we assume that when one of the streams on the
edge of the nozzle 1s sonic or supersonic and the other is ;
subsonic, then the latter, as a result of its compression by the §
diverging supersonic stream, is driven in the initial part of the ;
mixing chamber (between sections 1-2, see Fig. 2) to the maximal i
possible velocity.

In a case where the stream of liquid 1s subsonic, then when
Puor > Puon > Puo1I its veloclty increases to the value Wsz, and
when Poo1r > Puon > Pgo2s when during compression of the liquid
stream 1t is evaporated, the velocity of the stream increases to
a value equal to the speed of sound O w2 in the stream of
saturated vapor.

In a case where the stream of saturated vapor or gas is
subsonic, then its veloecity in the initial section of the mixing
chamber rises to the speed of sound (this case is obtained in
eritical regimes of a supersonic gas ejector ~ see, for example,
[7]). Section 2 (see Fig. 2) of the mixing chamber, in which the
velocity of the subsonic stream reaches the maximal possible value,
is called the cut-off section,

+ ongdH e i 5
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Figure 9 shows theoretically possible systems of a flow in
nozzles and in the initial section of the mixing chamber,
corresponding to the critical operational modes of a two-phase

ejector with supersonic nozzles at different values of the
and invariable values

A s B, b ol
thlly

characterlistic pressure ratio ¢ = prOH/meH
The patterns of flow in the liquid nozzle

e

TrOH’ Pyon and Tm.u’
in cut-off regimes and regimes close to it correspond in Fig. 9 v

to the case where PuoI > PLon > Puo1I” The patterns of flow in
the initial section of the mixing chamber and the conditions of ;

stream interaction remain the same for cases where PuoH > meI

and p, o7 > Pyon > Pgp (see Figs, 5 and 6).

At values of characteristic pressure ratio ¢ which exceed

a certain maximal value omax the static pressure of the gas on
= A >1’

the edge of the nozzle in a rated flow system, when Arl’ F.p .
greatly exceeds the pressure of the liquid, and thus the supersonic A
gas stream, as 1t expands in the initial section of the mixing o
chamber, fills its entire cross section (see Fig. 9a). The flow

rate of the liquid in this case is equal to zero (Gm = 03 K = =), i
is impcessible. :

The ejection process when g > Gmax

When o > 0 > 0yuy (see Fig. 2b) the static pressure of

the gas at the edge of the nozzle for the rated flow pattern

exceeds, Just as before, tne pressure of the liquid (p‘_l > pml)’
although the supersonic gas flow, as it expands in the initial
section of the mixing chamber, no longer fills its cross section.
The pressure of the liquid in the critical section oi the nozzle

in these regimes exceeds the saturation pressure, and t' us liguid
The velocity of the liquid in the

. flows for the entire length.
initial section of the mixing chamber increases and, in keeping

with the basic hypothesis of critical regimes, reaches the maximal
in Section 2.

AR TR R S e T VR P

) possible value for a convergent nozzle wm2 = ws2

With a decrease in o from O max to Oxus the divergent regicn

of the gas flow in the initial section of the mixing chamber
decreases, and thus the area of the cross section of the liquid

kb o
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stream fm2 and the flow rate of the liquid increase. In this i
case the veloclity of the 1liqulid in the critical sectlion also
increases. When o = 04,y the liquid nozzle is cut-off: the
static pressure of the liquid in the critical section becomes
equal to the saturation pressure (pm.H = Pg H), while the velccity

and the flow rate of the liquid reach maximal values (wm.u =

=W, ., G =G max) (see Fig, 9c¢), With a further decrease
in ¢ the flow in the convergent part of the liquild nozzle remairs
unchanged (pm.u = Ps w2 Wm,u = Ws W Gm = Gm max)'

In a o variation range from oy uy to o4, the flow scheme
shown in Fig. 94 and e is obtained. 1In the initial section of the
mixing chamber, just as in the preceding cases, the supersonic
gas flow (Arl = Ar.p; Py > pml) expands and the flow from the
! liquid nozzle contracts, In connection with the continuing increase
ia the area fm2 and decrease in pressure on the edge of the liquid
rozzle, a supersonlic flow of saturated vapor develops in its
‘ i divergent part, which 1is transformed into a subsonic flow in

i - the plane shock, which when ¢ = oy, reaches the outlet section
i o the nozzle (see Fig. 9f and g). At values which are not too
low for the relative area of the critical section of the 1liquid

~

—— - ] - oo
R

nozule fm.H = fm.u/fml in the plane shock there occurs a total

condensation of vapor, regardless of the position of the shock

: in the nozzle, 1.e., for the entire o variation range from o ,,

; to 0gy. Here, in the initial section of the mixing chamber a
liquid stream flows, whose velocity in section 2 is equal to

. Wsp (see Fig. 9d and ), At values of f  waich are lower than
a certain minimal value, a flow of 1liquid on the edge of the nozzle
and between sections 1-2 of the mixing chamber is only possible
wilth a change in ¢ from g,,, to a certain value of Oxuxy» at which
the pressure of the liquid on the edge of the nozzle becomes
equal to the saturation pressure. Here the flow schemes shown in
Fig. 6a and b develop in the liquid nozzle. At values of ¢ between

! Ogxgxy and Oyy a subsonic stream of saturated vapor flows from the

ot o SN e b
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nozzle. The veloclty of this stream in the initial section of the

mixing chamber increases to the speed of sound <wn = a

JHZ n.wme?

see Fig. 9e and g).

When ogye > 0 > o* (see Fig, 9h) supersonic streams flow from
both nozzles (A_y = Ar.pi W2 an.ml)’ and in the initial
section of the mixing chamber the gas stream expands and the
stream of saturated vapor contracts (prl > Phwl
Py tends to p and when o = o¥* pressures on the edge of the

Wl
nozzles become ldentical (prl =p ); the streams which flow

). As o decreases

.Ml

from the nozzles when o = o% have a cylindrical shape (see Fig. 91).

With a further decrease in ¢ the flow pattern in the gas
and liquid nozzles and in the streams in the initial part of the
nixing chamber undergoes a reverse change. From the liquid
nozzle flows a supersonic stream of saturated vapor, whose static
pressure p_ . exceeds the pressure in the gas stream Prqs and
thus it expands and constri-ts the gas flow.

When o% > g > o*¥* a supersonic stream, in which angle shocks
develop (see Fig. 9j), flows from the gas nozzle. With a decrease
in ¢ the intensity of the angle shocks increases, and when ¢ = o¥*#¥
on the edge of the gas nozzle a plane shock is established (see
Fig. 9k). The subsonic gas stream which develops behind the
plane shock is driven between sections 1-2 from Arl = l/kr.p to
the speed of sound (Ara = 1),

At even lower values of o the plane shock penetrates into the
divergent part of the gas nozzle and, finally, when g = g¥###
it reaches its critical section. The flow pattern for regimes

with o*#* > g > g**% znd ¢ = g*##% are shown in Fig. 97 and m,
respectively.

When g*%% > 5 > ¢ over the entire length of the gas nozzle,

min
the flow is subsonic (Ar.u < 1) With a decrease in ¢ the range

or expansion of the supersonic stream of vapor increases and,
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finally, when o = Omin the stream of vapor fills the entirs cross

section of the mixing chamber. When o < cmin the flow rate'of
the gas is ecual to zero (Gr = 03 K = 0) and the ejection process

is impossible,

Let us find the conditions which bind the flow parameters on
the edge of the gas and liquid nozzles for an ejector working in
critical modes for all of the flow schemes above. With this goal
let us examine the flow in the initial part of the mixirng chamber .
between sections 1-2 (see Fig. 9) for cases where one of the streams
at the inlet to the mixing chamber is subsonic and the other is
sonic or supersonic. In addition to the assumptions made ’n
deriving the ejection equations and in scvudying the flow of gas
and liquid in the nozzles, let us assume that:

1) the streams in the initial part of the mixing chamber do
not mix;

2) <there is no heat exchange between the streams;
3) the flow is isentropic;

4) both streams in the cut~-off section are one-dimensional,
and the velocity vectors are parallel tc the ejector axis.

lpunamei 8 (3)

! 2 megpuu IaKoH
- = uamenenus p
.::o:‘ﬂ};)o&an J
cmpyn - : (4
-~ S dedemb '/ne)ﬂb
' uméns~ .
,,/ == Wend Jaxon ug-
/ o Tt~ MEHEHUR P
] Cepxabyxolan - —— = .
(2) cmpyR h : S
? 2

Fig. 10. Replacing the actual pattern of distribution of static
pressure in the cut~off section by a step~wise pattern - with a
break on the flow boundary.

KEY: (1) Subsonic stream; (2) Supersonic stream; (3) Pattern of
change in p assumed in theory; (4) Actual pattern of change in p.
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According tc this last assumption, the iknown pattern of
static pressure distribution in the cut-off section and, conse-

quently, the actual pattern of velocity Jdistribution, is replaced,

Just as in the theory of a gas ejector (sce [,]1' by a step-wise

pattern with a break on the flow boundary (Fig. 10).

Let us solve jointly the equations for the conservation of
mass, momentum, and energy for sections 1-2.

According to our assumption Ppgp = Pro1 and Tr02 = TrOl'
Considering this, from the equation of the conservation of mass

for the gas stream we get
70 r=q da)fa (4.2)

The analogous relationship for the vapor-liquid stream is
written as

meﬂWn.x.i? u-:;2=Tl-a1Wu.a;:lf;l‘ (4.3)

If we use relationships (2.3) and (2.4), as well as the
obvious condition

Fat Fema=1, (4.4)
then from (4.2) and (4.3) we find

G(I—;) q(l.-z)'g___l—-? Tu.x!wa.sl. (I(.S)
g+l qGp) 641 TuoWoe

The equation of momentum for sections 1-2 can be represented

in the following form:

G (W + 25 L0) 4.0y (Wt £ L) ag g
="0ra(Wrc +M)+Gu.x2( nowg+ Saexfnx2 "’) (4.6)

G2
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If we consider that Gr2 = G[_1 = GF.H, G;_“m2 - Gm.H
and rl‘r'02 = TrOH’

then we transform this equation by means of
expression (2,12) into the form of -

7‘; * Kax.r.u [z(lrl) - z(k-'l)l:n"'”“z—n"'”d - ( 4. 7
p
where

nn.a;'l:w/n-aﬂ +.p_p.:v,.:__%£' ( 4.8 )

while the sets nn wl and n1 are determined from formulas (2.13)
and (2.14),

The velocity of the saturated vapor in the cut-off section,
which is contained in equations (4.5) and (4.7), is found from
the equation of the conservation of energy

Wi xz w2, .
2—;‘,!'4‘:”'*’:—2—;;-*-! +iu.*z =im0n' ( u . 9)
which gives us
Wn22=v2g'l (ixﬂn"" in-m?)' ( 4,19)

At the assigned value of pn.m2 of the saturated vapor in
the cut-off section quantities Vo w2 and in.m2 can be found from
expressions (3.22) and (3.23), and the value of the vapor content,
contained in these expressions, can be found from condition

S = sn.ml from formula

L4
Sa.xt — S

xg=‘_:-;:'_3;"—' (4.11)
Equations (4.5), (4.7) and (4.9) can be usea in calculating
the criticsl regime in the variation ranges of o from o to
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X
max CO Oxx at the assigned
temperature of the liquid, depending on pressusc Pyon and
quantity f,H " in the initial section of the mixing chamber, three
flow schemes are possible for the stream flowing from the liquid

nozzle:

In the o¢. variation range from ¢

1) when a ligquid flows between sections 1-2 (see Fig. 9b,
c, d, £);

2) when a liquid flows from the nozzle, but when partial
evaporation occurs between sections s-2;

3) when there is & subsonic flow of saturated vapor
between sections 1-2 (see Fig, 9e, g).

The first case is realized at total-pressure values of the

liquid P01 which exceed quantity Pho1IT’ which is determined from

formula (3.39), where subscript "1" corresponds to the paramecters
of the liquid on the edge of the nozzle, In this case additional
conditions which determine the flow of the streams in the initiszl

part of the mixing chamber will be: A = Ar_ ; = 0

ri p? Xy %

Pyp = Pg2 (wm2 = wsz)'

In the second case, which arises at total-pressure values

P01 between PL01TT and Pgos the additional conditions will be:

Arl = Ar.ps e 0(pml g psl)5 wn.m? = a

n.me

In the third case the additional conditions will be the same
as in the second, the only difference being that Xy 2 0.

In the 0 variation range from c¥¥* to Ornin? when in the
initial part of the mixing chamber the supersonic stream of
saturated vapor expands and the subsonic stream of gas contracts,
the additional conditions for the system of critical regime

equations will be: Wn wl = wn M.p > ag Wl and Arq = 1.
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At the assigned values for the geometrical parameters of the
ejector, as well as for the physical propertiés and stagnation
parameters of the gas and the iiquid at the nozzle inlet, in order
to calculate the critical regime we must know in which of the
above ranges the assigned value of the characteristic pressure
relationship is found, For this purpose we must compare the

: . ® O RE RER
assigned value of ¢ with the values O . ., Cyyy; Cyy, 0 , 0 , O

and Omin® In determining these values Prgy €20 be considered

variable., Let us assign the calculation order for these quantities.

The quantity o__  1s found from equations (4.7) and (4.5)

with the aid of expressions (2,10), (2.13), (2.14) and (4.8),

assuming that Arl = Ar P and that at the limit, ass the flow rate

of the liquid tends to zero, wml‘* 0, Py ” P,

OH:
J@+l) py ] 1
8, =11 =
""‘.[ T e St e G =0 (4e12)
where the value of Ar2 max is found from formula
1=2y .
90 md=2022 g, ). (4.13)

Quantities 0,4y and oy, can be found from equations (4.7)

and (4. = =
(4.5), which, if conditions Ay Ar'p and v_,_ Ve1n.p 2F€
considered, is written in the form
... - Yo, m1W . ms (o st o R == B0, . 4,14
¢ Pt 80P amVrix.pd Grp{2G)—2 (el ! ( )
a(l =) (r.p) Tu.2aW 3.x2
M) = = . .1
9( n) @4+ 1) 100 Wasz = (G ~ ) fr.saWr.x1 (4.25 )

Unknow s o
nknown quantitie Yrn.owl? wn.ml’ Tnom2? “nom2? w1 ™ and Dhom20

contalned in these formulas, zan be found by calcu’ating the flow

of liquid in the nozzle and betwzen sections 1-2 of the mixing
chamber.
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When 0 = Oy44 these quantities can be calculated, in a case
where the compressibility of the liquid can be ignored, in the
following sequence:

1) we 22termine the maximal flow rate of the liquid through
the nozzle Gmax and guantity POk (see Section 3.3), after which,
from formulas (3.45), (3.47), (3.46), (3.30b), (2.13) and (2.14),
we calculate quantities wml’ Pu1® Puo1? Tml’ Nqs Ny and from the
saturated-vapor tables we find the saturation pressure p., = Py o3

2) from expressions (3.27) and (3.39) we find quantities
8. m(x+0) #Pd Pyorirs

= = = y!
3) 1f Py 2 Pyorrre WHeR X5 = 0y Pyo = Pgys Yy T Y5 and
the velocity Wn W2 is calculated according to formila

Wome =W =V 280, (Pagt— Pst) - (4.15a)

after whieh from (4.8} we determine quantity N oo = Ngos

y) 1ir Puoi1r > Pwo1 > Ps1? then in the cute~off section flows

a sonlc stream of saturated vapor. Quantities Po.w2? Ya.m2 and

wn w2 = an . w2 are deterinined in the same order as the third cut-off
case of the liquid nozzle (see Section 3.3).

When o = 04y the parameters of the stream which flows from
the liquid nozzle in sections 1 and 2 is calculated as follows:

1) we determine the state parameters and the velocity of the
stream of saturated vapor on the edge of the supersonic liquid
nozzle in its rated operational regime (see Section 3.3), after
which, with the ald of relationships presented in Section 3.4,
we find the parameters of the subsonic fiow of liquid or saturated

vapor behind the sheck located in the outlet section of the nozzle,
as well as quantities n.o.a and n

v

1?
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2) if in the shock the vapor 1s completely condensed, then '
we calculiate the parameters of the liquid stream in section 2 ’
according to parts 2, 3, 4 of the preceding calculation;

3) if a subsonic flow of saturated vapor develops behind the
shock, then the state parameters of the vapor in section 2 are
celculated from conditions s

- — A

now2 - Sa,ml and wn.m2 = 8 w2
according to part U4 of the preceding calculation.

= ,* b &3 &Y = :
When o ¢* suprersonic streams \ﬁn.ml wn'm.p > a. w1’
Arl = Ar b > 1) with identical pressures flow from both nozzles.

From the condition ¢f equality of pressures Prq = Py.w1 ¥ have

Pu.x.p 1
¢* == \ Y.
Pwdn Veinpp O‘r.p) ( 16 )

where Pow 5 iz the static pressure on the edge of the liquid

nozzle for a supersonic outfluw veloeity.

Quantities o** and o¥¥* can be found from equations (4.7) and
(4.5}, which are written as

4 ez.x.Pwﬁ.x." t emep ot A= An0)

= : (4.17)
? 2eponvrtn : ¢, 2 (1) = 2 ()]
R Al T O L L L T
Ve ¥ nx = N e () — a1 —3)q ) (4.18)

where the subscript "p" denotes the flow parameters of the saturated

vapor on the :1dige of the nozzle in a supersonic outflow.

When o = o¥** the additional conditions will be:

MNi=1, and Vi, =va, 00000 M),

and when o = o*** - relationshios (3.17), (3.18).

Quantities o¥*¥ and o*¥* according to formulas (4.17) and (4,318)
are calculated, after determining the parameters of state and the

T4
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velocity of the supersonic stream of saturated vapor on the
edge of the nozzle, as follows,

A series of values p_ ., are assigned ranging from Pr.m.p to

zero and values v}, vg, i3, ig, 53, sg, which correspond to them,
are found from the saturated vapor tables, According to formulas
(4.11), (3.22), (3.23) and (4,10) we calculate the corresponding
values of Xos Ypom2 = l/vn.mz, in.m2 and wn.mz. By determining
the values of the product Yn.woWn . up from equation (4.18) we find
the sought value Py, u2? after which w calculate the quantities
wn_mz, n_ .o corresponding to it and, finally, values o¥¥

Ya.m2?
and o¥¥* according to formula (4.17).

When o ~» Omin W have: Arl + 03 Vein * 1. From equations
(4.17) and (4.18) in this case we get

Bun= v"'*'PW"-*-P(nﬂ-"'P + 1 — o2 : ( b .19 )
HCPupu
(!-—-.ﬁ-) gr (l) Yitash. p‘r"u.s.'.r

@+ ()

Yu.x!wnux's‘:

(4.20)
We calculate quantity Opnin Just as quantities o** and ghkR

After determining the range in which lie the assigned value
of o and, consequently, the additional conditions which determine
the flow of the streams in the nozzle and in the initial part of
the mixing chamber, we calculate the parameters of the stream
on the edge of the nozzles in the critical operational mode as
follows.

L

case Omax> J>0ss

1. We determine the parameters of the supersonic gas flow
on the nozzle edge.

1
l

n
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2. We assign a series of values for static pressure cn the
edge of the ligquid nozzle in the necessary range and determine
the corresponding parameters of state and veloecity of the liquid
or vapor-liquid nozzle in sections 1 and 2,

3. By substituting the obtained values in equation (4.5),
we find the corresponding values of Arz.
L, " By solving equation (4.7) we find the unknown value

of pressure on the edge of the liquid nozzle, after which we
determine all remaining parameters of the streams on the edge of
the nozzles, which are needed to find the parameters of the
mixture at the ejector outlet.

; Cage gxu>o>_c“ .

‘ In this case in the critical regime the rated flow pattern

i (A, = Ar.p >1, W, .= wn.m.p > an.ml) is realized in both

: supersonic nozzles., The flow rates of the working bodles and
the parameters of the streams in the inlet section of the mixing

; chamber are in thls case determined from calculating the flow in

i the nozzles (see above),
Case 0**>0>0mn

l. We find the parameters of the supersonic flow of
saturated vapor on the edge of the nozzle,

2, We assign a series of static-pressure values Py w2 and
using the saturated-vapor tables we find the corresponding
parameters of the supersonic vapor flow in the cut-off section.

3. From equation (4.5) we calculate the value of the reduced
veloclity of the gas Arl on the edge of the nozzle,
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4, From the valuves cf Ar which we have found, using the

1
additional conditions which determine the flow of gas in t..e nozzle
for the supersonic range of o variation, we find the guantities
Veyp? Gr and K.

5. Using the flow narameters which we have found, by means
of equation (4.7) we find quantity P w2? which corresponds to the
critical operational mode of the ejector, and then, according to
parts 2, 3, and U4, we determine all the parameters of the gas

flow on the edge of the nozzle.

The flow patterns shown in Fig. 9 are realized in the critical
regimes of gas-liquid and liquide-gas ¢jectors, when both nozzles
are divergent and supersonic,

In a case where the gas nozzle is divergent and the liquid
nezzle convergent, at values of o between O max and o#%*, the flow
for the entire length of the liquid nozzle will be subsonic, and
in sections 1 and 2 either liquid or saturated vapor can flow.
When o%* > ¢ > Opmin the same flow patterns develop as shown in
Flg. 91-90, except that the outflow velocity from the 1liquid
nozzle, depending on the magnitude of Pon? €an be equal elither : 1

to Wsl or a

n.ml’

In an ejector with a convergent gas nozzle and a divergent
liquid nozzle when Gmax 20> o* the flow patterns presented in
Fig. 9a~91 develop, and the velocity at the edge of the gas nozzle
1s equal to the critical speed of sound (Arl = 1); when o¥ >0 >
> Gmin in the initial part of the mixing chamber the supersonic ‘
stream of saturated vapor expands and the gas stream, whose
velocity for the entire length of the nczzle is subsonic, contracts.

In a case where both nozzles are convergent there occurs a
sudden expansion of the sonic gas stream and a contraction of the
subsonic stream flowing from the liquid nozzle in the range of




o variation romo . . to o¥% in the initial part of the mixing :

chamber; the adcdltional conditions determining the critical regime

will in this case be: Arl =13 ng = wsg or wn.mz = 80 w2
Waen o¥ > ¢ > o, in.the initial part of the mixing chamber *
there occurs a sudden expansion of the sonic (wn.m1 = an.ml) .

3 -
or the supersonic (wSl > an.ml(x+0)) stream of saturated vapor
and a contraction of the subsonic stream of gas, whose reduced

velocity ir the cut-off section becomes equal to unity (Ar2 = 1.

The critical regimes in all of these cases are calculated
just as in the case examined above for the two supersonic
nozzies.

Let us note in conclusicn that a number of assumptions made
in the work during derivation of the equations of critical regime
for a two=phase ejector require experimental varification. In
the case where vetween sections 1-2 a liquid flows (see Fig. 9a,
b, ¢, d, f), this refers primarily to the proposal that the flow
of liquid is in a stream (it is possible that under certain
conditions the flow of liquid will break up into drops before
section 2).

In the case where in the nozzle or the initial section of
the mlxing chambar (particularly under conditions of g < o¥%)
spontaneous evaporation of the liquid occurs, this is relatad to
] the assumption of thermodynamic and mechanical equilibrium of
the saturated vapor which has formed; actually, due to the lag in
the evaporation process, the pressure of the vapcr can be lower
than the saturation pressure, ana thus the liquid will be overheated.

Note also that in addition to the above cases of a two-phase
gas-liquid or liquid-gas ejector working in critical modes, in the
r iiquid-gas ejector another case is possible - the case where the
fiow of both streams at the edge of the nozzles is subsoniec. This
case will be thoroughly examined in the following chapter.
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4.3. Cut-Off Regimes of Nozzles

When the e!.ctor is operating in critical regimes, when the
characteristic pressure ratio lies between Umax'o*** (see Fig. 9b)
and a***-cmin (see Fig. 9n), the flow of one of the working bodies
for the entire length of the nozzle and the initial part of the
mixing chamber will be subsonic. Thus, with an increase in
counterpressure, as compared to the counterpressure value corre-
sponding to the limiting critiecal regime, the ejection coefficient
immediately begins to change and the ejector shifts to a subcritical
working regime. The limiting critical regime in this case is
simultaneously the limiting cut-off regime of the ejector (point
3 in Fig. 8a, b, 4, e).

A different pattern is observed when Ogxs > 0 > ogh#¥ (506
Fig. 9d-97). 1In this range of o variation in the eritieal
regimes in the divergent part of both nozzles there are regions
of supersonic flow, through which perturbations cannot penetrate
into the ejector inlet, With an increase in counterpressure,
as compared to the counterpressure value corresponding to the
limiting critical regime, the flow rate of the mixed media do not
vary and the ejector shifts to cut-ors regime in the nozzles
(section 3-U4 of the vertical branches of the curves in Fig. 8¢, f).
In these regimes in the divergent part of 2t least one of the
nozzles there develops a plane shock, which as counterpressure
increases shifts toward the critical section. Finally, at a
certain counterpressure value the limiting cut-off regime of thne
nozzle devslops, in which the plane shock reaches the critical
section of the nozzle (points 4 in Fig. 8¢, f). With a further
increase in counterpressure suberitical regimes develop.

Possible flow schemes in the nozzles and in the initial part

of the mixing chamber for the limiting cut-off nozzle regime when
Puow 2 Puorr 2ve shown in Fig, 11.
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When Oyyy > 0 > 0 pI in the divergent part of the gas nozzle
a supersonic flow (Arl = A p),is realized, and in the divergent
part of the liquid nozzle, which operates in a cut~off regime
(wH.K = ws ke 0P Wk T an.m.n) a subsonic nozzle is realized,
where, depending on the magnitude of the characteristic pressure

relationship, p_; > B,y OF Py < Py (see Fig. 1lla).

(1) (1)
fpaund cxavow
L .!” %2 \ I‘L\ 11

Pr1&Pasre 2=

fMpawold. Crayox
£ - BN g2

o~ H ‘2 i !

7
.
2) 6run>6 56051 ArsmApp,; b) €=6ppr Ars =7/7’~r.p;Pn=le; c) 5:p1>5>5;‘pl; Por=pPxt;

Wi =Wy (ww'“w). L AT/ (AL Py Ve x=Wsic; A ep>Ar1>Nermin

2 L g (1l)2 \__ * 32 '
. Npsmoil. , 2-» ('1) .

Z

29 g 1 o
Q) 6618, Pr1=Pr1 A r1=Ae1mix e 61p26>6rpm; Pri=pPnxi1, f )6~Grpm; Pr1=pPr.xi; Ar=!
Aee=liWp o ~Wox(Waxx"Bany)  Arx=l; Wik =Wk | W x=Wsx ; Ar1=Arimin

Wamt <®gxts Aet=Arsmin

A\ i! i

Fig. 11, Possible flow schemes !
in nozzles and in initial part ; \
of mixing chamber for limiting :
¥ . . cut~off regime of nozzles in a
>6,6%4%: 5 = .
EXrpu>so e1=Arimin case where p . > Pu0II" 1

Pr1#PnwiiWami>@nutiAew=? ypy. (1) Plane shock.

With a decrease 1n the value of 0 from og ., to O oI ard

Gr.pII the flow pattern in the liquid nozzle does not change. :
When ¢ = o. oI a plane shock develops cn the edge of the gas nozzle {
(Arl = l/kr.p’ see Fig, 11lb). )

When or.pI >0 > gr.pII the plane shock is found in the
divergent part of the gas nozzle (see Fig, 1llc¢) and wanen ¢ = or.pII
is in its c¢ritical section (see Fig, 11d). In the range of o varia-
tion from cr.pII to o**¥% the flow in the gas nozzle remains
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invariable; .in the divergent part of the liquid nozzle when
°r.pII >0 > or.pIII a plane shock develops (see Fig, lle), which
when o = g oIII is located in 1ts outlet secticn (see Fig. 11f).
r.pIIl > 0 > o#** (see Fig., 1llg) a supersonic stream of

= v b
saturated vapor (wn.ml wn'm.p > an.ml) flows from the liquid
nozzle,

When o

Let us find the values cr.pI’ °r.le and Gr.pIII’ assuming

that the physical constants of the gas and the liquid, as well as

the state parameters of the liquid are assigned, and quaniit

y prDH
is variable,

The streams which flow from the nozzles in regimes o = ¢_ pI?
F.pIII are subsonic, and thus static pressures
in them are identical,

o = °r.pII and 0 = ¢

When o = o pI from condition prl = L.y 1f we use expression

T KL
(3.15) and assume that Aq = l/A‘__p and v_, = Vriw,p» then we get

2 Pxi max 1

e X R R W '
T
fr.sﬁ(‘ Froux ; ()T.p ) 1'."

gr-él =

(4.21)

where the value of P, max in a case where the compressibility of
the liquid can be i

gnored is found from fermula (3.47) using
expression (3.45).

For Gr.pII from condition Pry = Poy» using the relaticnship
of (3.19), we get the following expression:

s — - Pximez Yot rin
) i+l Pxow

— . (4.22)
SrxP (:'_"— ;?‘(;, wmin)
Feku

w1l max are found from (3,18) and (3.475.
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The quantity ¢_ pIIT can alsc be found from relationship

y _‘ F %
(4,22) if in place of Pu1 max is the static pressure ®h.m1 OT
1Y behind the plane shock, located at the edge of the liquid
nozzle, wrare the velocity of the supersonic flow of saturated
vapor in rront of it is equal to wn'm.p.

Now let us assign the calculation order of the flow parameters
in the inlet section of the mixing chamber for an ejector working
in a limiting cuteoff nozzle regime for different assignments of 0.

If the assigned value of 0 lles petwesn Ogyy and O ,pI* then
the parameters of the liquid at the edge of the.nozzle are found
frcm formulas (3.45), (3.46), and (3.47), where quantities G ox?
Ve kon® and ws y are determined by calculating the flow in the
convergent part of the noc.ie in the cut-off regime, For a gas

flow in this case we have
Mi=kep and Veta=Vrlip:

in the case of Ur.pI >0 > Ur.pII the flow parameters on the

edge of the liquid nozzle are found just as in-the preceding case.

To determine the parameters of the gas flow on the edge of
the nozzle a series of values are assignei for reduced velocity Ar’
ranging from l/)t‘_'p to Arl min’ From formula (3.17) we find
corresponding values {or the coefficient of pressure recovery
Veln? and then the values of static pressure Pey = prOHvrlﬂp(Arl).
The values sought for Arl and Ve.q, are found thereafter from the
condition Pry = Pyuye

In a case where the defined value cf o lies between 0. pII
and cr.pIII (Ari = Arl min), quantity V., and static pressure
Pry = Pr1 pax in the limiting cut-off regime of the ejector are
found from (3.18), (3.17), and (3.19). The flow parameters on
the edge of the liquid nozzle are found from calculating the flow

in the neczzle in the presence of a plane shock in its divergent
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part from condition Py = The calculation is

Pry O Py,mz = Pra-
performed as follows:

1) the parameters of state and velocity of the flow in
critical section or tre liquid nozzle in its cut-off regime are
found, and then quantity Gm max is calculated;

2) assuming that a liquid flows from the nozzle (xl = 0),
then from formula (3,45) we find the outflow velocity W _,, and then
from expression (3.46), assuming that Py = Prps Ve find the
quantity p, gy, after which from expression (3.30b) we find the
temperature of the liguid Tml If quantity Prq exceeds Pgq at
Tml’ then the calculation ends here;

3) if P < Pgy» then {rom the nozzle flows saturated vapor,
whose state parameters and outflow velocity are found as follows,
From the assigned value pn wl = Pr1 from the saturated~vapor tables
we find the quantitles vy, vl, i, ‘{, after which from expressions

{3.41) and (3.44) we find the quantities 1.1t vn.ml( a. ml) and
from fcrmula (3.40) we find the value U w1t
When ¢ > g > g¥#*% the parameters on the edge of the

e pIII
gas nozzle are determined just as in the preceding case. Here
the liquid nozzle works in the calculated supersonic outflow
regime (wn.ml = wn.m.p > an.ml)'
I the particular case, when the gas nozzle is divergent,
and the liquid nozzle convergent, the cut-off regimes of the nozzles

can develop in a range of ¢ variation from ¢ to o

; r.pl r.pII°
Quantity Gr.pl and or.pII are found from ccndition Prq = Puye where
in both cases the liquid nozzle works in the cut-off regime

(ﬁml =W,yorW, . .=a, ). Inthis case, when the gas nozzle
is convergent and the liquid nozzle divergent, the cute-off regimes

of the nozzles are reallzed at values of o wnich 1lile in the range

83




|
i
|
M wuw!
i

of Ur.pII >0 > or.pIII; in determining value qr.pII and Gr.pIII
we assume that Pr1 = Pyy and Arl =1,

In an ejector with convergent nozzles the cut-off regimes
of the nozzles can develop in a case where § > 0. In the limiting
cut-off regime of the nozzles in this case A ; =1, W, = W, or
. Wowl = Bnuml (which depends on the magnitude of meH)’ while i
: precsure p, in the stagnant regions, which develop near the
dull edzes of the nozzles, is equal to the lesser of pressures v
(prl or pml) or: the edge of the nozzle, The cut-off rggimes of
. the nozzles in this case are realized in a range of ¢ variation
? % from Oy at which Pr1 > Pyupe to T at which Pry € Py Quantities
gy and 0, are found from the equations of the critical regime (4.,5), i
(4.7), and (2.10), respectively, under conditions

ulal e 8w

b b ot sy i L b bt
g e

Ar=1; Wiwe= Wama=aru (Wae= V= Wa)
and Wapua=apmi(Wua=Wa); An=Ai=1.

b4, Suberitical Regimes §
Let us examine a twowephase ejector operating in suberitical '
regimes, where with a change in counterpressure there 1is a
corresponding change in the flow rate of the mixed media and, |
consequently, in the ejection coefficients. 1In these regimes, ]
Just as the critical regime studied above and the cut-off regimes
of the nozzles, depending on the maguitude of tne characteristic
pressure ratio o, various flow patterns can develop in the nozzles
and :n the initial part of the mixing chamber (Fig. 12). Analysis
of these patterns enables us to find the conditions which relate
the flow paraﬁeters on the edge of the nozzles.

P

At values of ¢ which exceed the quantity O pINO® a supersonic
flow (Arl = Ar.p’ see Fig. 12a) 1s realized in the divergent
part of the gas nozzle over the entire range of possible change in
the ejection coefficient from K = = (pml = meH) to K = K,

whicli corresponds to the cut-off regime of the ejector.
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Fig. 12, Possible flow schemes in nozzles and in initial part
of mixing chamber in suberitical regimes.
KEY: (1) Plane shock.
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The quanity o pINO® which corresponds to the regime in which
the flow pattern shown in Fig. 12b 1is realized, can be found from

formula

2 1
0= S 1 r(—’-—)k ) (4,23)
. f!'o‘p (7 “') xr-p T.p

At values of o which lie between o_ ..o and o_ . (see
Fig. 12d), which is determined from formula (4.21), depending on
pressure on the edge of the liquid nozzle two different flow
schemes can devleop. In a variation range of Pui fpom Py1 maii

[relationship (3.47)] to p,, ., which is determined from formula

Puae= 2 o (o ) opuanT (557) M (4.24)

a supersonic stream (Arl = Ar.p’ see Fig. 12a) flows from the
gas nozzle, ’

-

When Puia > pml > Puon in the divergent part of the gas
nozzle a plane shock develops (see Fig., 12¢); suberitical regimes
are in this case calculated by means of (3,17).

When GrspI >0 2 cr.pIImO the flow scheme shown in Fig. 12¢
is realized over the entire range of possible change in the
ejection coefficient (» > K > K3). In this case the suberitical
regimes are also calculated by means of (3.17). Quantity o

r.pIIx0
(see Fig. 12e) can be found from formula

A 2 At mlo

r.F —— l~ 1 -
L e () T O
O &

(4.25)

Depending on quantity Pua» two flow schemes correspond teo
the values of o which lie between or.pIImo and Ur.pII
which 1s determined by (4,22)., With a change in pressure on the
edge of the 1liquid nozzle from p,, ... [relationship (3.47)] to

Puig? determined from formula

86

it
!
i

(see Fig. 12g),

" i e e 0 it ww e v




— — -y T T T T
-_-_--_,.’.‘.’.'_":_1 I3 ! f_1 T (Actmin) '
Pxie 2 el (?r.x.n ) SPAyon m’wlmiu ’ (4.26)

the flow scheme shown in Filg. 12c¢ develops. With a change in
pressure on the edge of the liquid nozzle from Puie to Py on OVer
the entire length of both nozzles the flow is subsonic (see

Fig. 12f). An additional condition enabling us to calculate these

regimes will be Pry = Py

When °r.pII >0 > or.pIIrO with a decrease in the static
pressure of the gas on the edge of the nozzle from Prou to P.q =

= Pyl max [relationship (3.,47)] the flow in both nozzles is subsonic
(see Fig. 12f). With a further decrease in quantity P, from

Pr1 = Py max F° Pry max’[relationship (3.19)] in the divergent

part of the liquid nozzle a supersonic fiow of saturated gas

develops which 1s shut off by the plane shock (see Fig. 12h).

The flow pattern for the regime ¢ = °r.pIIr0 is shown in

Fig. 121 in this regime p_, = p_g, (Arl = 0) and Pyl = Pul max®
Quantity Pr . pIIr0 is found from the obvious relationship:

(4.27)

O p11:0= Pt sl Puctyss

Quantity p » contained 1n this relationship, is found

from (3.47),

w1l max

The flow scheme shown in Fig, 12h is also realized when
Ur.pIIrO >0 > Gr.pIII over the entire range of change in the

ejection coefficient (fromkK = =, Pr1 = Prgy = Py FO K3, Prq =

= Prq max)' The flow pattern for regime o = or.pIII is shown in

Fig. 12j. Quantity o pIII can be found from formula (4.22), where.

in place of Pyl max ¥© should substitute static pressure Pr.win.c
behind the plane shock, which develops in the outlet section of
the liquid nozzle (see Fig. 121).
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Pu.xin.c
Pt (4,28)

S d

three flow schemes are possible, When p_,. > Py > P, uwin.c

a flow with a plane shock develops in the liquid nozzle (see ; i
: Al

Fig. 12h) and when pn.mln.c > Prq > Pr1 max a supersonic stream : ]

of saturated vapor flows from the liquid nozzle (see ?1g, 12k).

The flow pattern shown in Fig, 12k when ¢ < g pITIrO-iS realized
for the entire possible range of change in the ejection coefficient

(from K = 0 to K = K3).

{ . Having determined which of the possible ranges of change in

; characteristic préssure ratlo contains the assigned value of a,
then, if we use the conditlons described above and the relation~
ships which determine the flows in the nozzles (see Chapter 3},
then we can find the flow parameters on the edges of the nozzles
for the entire possible range of change in the ejection coefficient
and, finally, by using the ejection equation we can find dependence

w

WSRO 2 R 6 BN 1 | ven

Pooy(K) and n(X).
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k.5, cCut-0ff Regimes of Mixing Chamber

Analysis of the ejection equation system shows that in a
two-phase ejector with fixed geometry the critical regimes and
the cut-off regimes of the nozzles can only be realized in a

i i
. certain range of change in the parameters of state of the gas and
Within this range the ejection .

AT I A i ey e

the liquid at the nozzle inlet.
equations for conditions at the inlet to the mixing chamber,

which correspond to critical regimes ard cut-off regimes of the
nozzles, do not have solutions: the subradical expression in
(2.18), which determines the velocity of the mixture in the outlet

section of the mixing chamber, becomes negative.

e T U ——
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The cut-off regime of the ejector is in this case the cut-off
regime of the mixing chamber, in which the subradical expression

in relationship (2.18) reverts to zero, which corresponds to
= 1), With a

fulfillment of condition Wc3 =W, = a:3 (Mc3
decrease in counterpressure from the value corresponding to

regime K = 0 or K = » (point 6 in Fig. 8), in this case even
before the advent of the critical regime (point 3 in Fig. 8) or
the cut~off regime of the nozzles (point 4 in the same figure) the
mixing chamber (point 5!') can be cut off, and thus with a further
decrease in counterpressure quantity K becomes invariable, while
the total pressure of the mixture decreases accordingiy (sections

5'~7 of the curves in Fig., 3),

The cut-off regime of the mixing chamber can also develop in

a range of counterpressure variation corresponding to the cut-off

regimes of the nozzles (point 5' in Fig. 8f). The boundary of

the region of cut-off regimes of the mixing chamber corresponds

to the values of the state parameters of the gas and the liquid

at the ejector inlet at which the conditions of the c¢ritical
regime or the cut-off regime of the nozzles and the cut-off regime
of the mixing chamber are fulfilled simultaneously.
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CHAPTER 5

SOME OPERATIONAL PECULIARITIES
OF A LIQUID-GAS EJECTOR WITH
CONVERGENT NOZZLES

Let us study more thoroughly the work of a liquid-gas
ejector with convergent nozzles whuse edges are of zero thickness.

5.1. Subecritical Regimes

- When a liquid-gas ejector with convergent nozzles operates
in subcritical regimes three flow schemes are possible in the
nozzles and in the initial part of the mixing chamber:

1) when both flows are subsonic;
2) when the gas nozzle 1s choked;
3) when the liquid nozzle is choked.

In the first case an additional condition to the system of
ejection equations is the condition of equality of static pressures
on the edges of the nozzles (prl = Py OF Pq = pn.ml)’ in the
second case -~ cor.dition Arl = 1, and in the third ~ the condition

wm1 = Ws 1 or wn.ml = an.ml‘ Pcssible flow schemes in the initial

part of the mixing chamber for these cases are shown in Fig. 13.
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Fig. 13. Possible flow schemes in initial part
of mixing chamber of liquid-gas ejector with
convergent nozzles in suberitical regimes,

In the case where prOlpr(l) > Psy and p_y, < P,g,s condition

Pry = Py is fulfilled in a range of variation in the outflow
N

veiocity of the liquid from the minimal value of wml min? which
corresponds to regime Arl = 0, to the maximal value of wml max®
in which Arl = 1 (see Fig. 13a); when Pron > Puon this condition
is fulfilled in a range of variation in wml from zero (Arl min) to
wml max (Arl = 1). At values wml which exceed Wml nax the
condition Arl = 1 is fulfilled; here the sonic gas flow suddenly

ggpandé:in the initial secticn of the mixing chamber and

" constricts the stream of Yiquid (see Fig. 13b),

In a case where prOlpr(l) < psl, condition Py =P is
fulfilled at values of krl which lie between zero (when Proy <
< meH) or quantity Arl min (when Pron > meH)’ determined from
condition Pry T Puon® and the quantity Arl max’ which is
determined when Puon > Pyopp from relationship p(Arl max) =
= psl/prOI' When Puorr > Puon > Psys» this quantity 1is determined

from formula p(Arl max) = Ph.ud min/Pr01® Where Pr.wl min 1S
found from condition wn Wl ™ @p.m1°

When Arl > Arl max condition wml = wsl, or Wn.ml = e,
is fulfilled; in the initial part of the mixing chamber there is
a sudden expansion of the supersonic stream of saturated vapor
and a contraction of the subsonic stream of gas (see Fig. 13e¢).
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5.2. Critical Regimes and Cut-Off
Regimes of Mixing Chamber

Theoretical analysis of flow conditions in the mixing
chamber of the ejector indicate that a supersonic flow of the
mixture of gases is possible only when at least one of the
flows mixed in the outlet section of the nozzles or in the initial
part of the mixing chamber is supersonic. In a case where both
fiows at the inlet to the mixing chamber of the ejector are
subsonic, a supersonic flow of the mixture is impossible, since
this would contradict the second law of thermodynamicé (the entropy
of the mixture becomes less than the total entropies of the
mixed gases), This is explained by the fact that the eritical
velocity of the mixture aiways lies between the critical velocities
of the high-pressure and the low-pressure gases, and thus the.
transition tc the supersonic region of the flow at subsonic
velocities of the mixed streams is only possible as a result of
the development of an expansion shock.

As indicated above, in gas-llquid and liquid-gas ejectors
with divergent nozzles the supersonic flow of the mixture which
corresponds to an ejector working in critical regimes, can also
develop in a case where one or both of the streams in the initial
part of the mixing chamber is supersonic (see Fig. 9). 1In the
particular case of an ejector with convergent nozzles the flow
schemes shown in Fig. 14 can correspond to the critical regimes,
depending on the parameters of state of the gas and the liquid.

When pr01pr(l} > pyq (see Fig. 1lda) in critical regimes the
velocity of the gas on the edge of the nozzle is equal to the
local speed of sound (Arl = 1), where Pry > Pyy+ In the initial
part of the mixing chamber there occurs a sudden expansion of
the gas stream, whose velocity in section 2 becomes supersonic
(Ara > 1), The stream of liquid between sections 1-2 is compressed
and its velocity rises to the maximal possible value (W

w2 = W2
or W, w2 = 2;.42)+ When Prg1P-(1) < py; (see Fig. 1Ub) in the
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critical regime the liqu*d nozzle 1is cut off (wml = wsl, or

Wi = an.ml)’ and p_, > p.;. Between sections 1~2 of the
mixing chamber a supersonic stream of saturated vapor develops
(Wn.m2 > an.ma), which, as it expands, compresses the gas stream,
and thus the velocity of the latter in the cut-off section becomes
equal to the speed of sound. '

&) Apf=ti B> Pars 0) W= W (Wm0 )i
W)KI‘WSI (wn_”‘z‘a"xz) Pﬂ">i’f" H ;\rz-,;
Ap>1 Wnax?> Qnaw2

Fig. 14. Possible flow schemes in
eritical regimes for liquid-gas
ejector with convergent nozzles,

An interesting feature of the liquid-gas ejector, which
distinguishes it from the gas and gas-liquid ejectors, is the
faet that under certain conditions critical regimes can develop
in it at subsonic velocities of the gas and liquid flows. This
is explained by the fact that the speed of scund in the two-phase
gas~liquid mixture can be considerably lower than the speed of
sound in its components. For example, when tc = 15°C; P = 0.1
kgf/cm2 and K = 107°-10"2 the speed of sound in an equilibirum
water«alr mixture varies in a range from 5 to 30 m/s, while under
the same conditions the speed of sound in water 1s equal to

1400 m/s, and 340 m/s in air (see Fig. 1).

The conversion of subsonic gas and liquid flows into the
supersonic flow of the twoephase mixture in the mixing chamber of
the ejector can therefore occur as a result of the drastic decrease
in the speed of sound in the process of the formation of the
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mixture, rather than from the increase in the velocities of the
gas and liquid particles,

To i1llustrate this Figs. 15, 16, and 17 show three possible
flow schemes in the mixing chamber for a liquid-gas eJector,
which correspond to the ejector operating in regimeg in which the
velocities of the gas and liquid streams are subsonic and differ
insignificantly from one another (er P Wml). In .this case the
mixing of the gas and liquid streams occurs at almost invariable
values of static pressure P, (pc N Pry- = pml) and velocity
W, (W, X W piv er) along and across the mixing chamber, The
speed of sound a, and numbér.MG of the two-phase gas-liquid flow
(hatched regions in Figs. 15-17) in this case change only in
connection with the change in the relative concentration of gas
in the mixture, described by the quantity K = Gr/Gm'

Between sections I=III of the mixing chamber the stream of
liquid is broken up into drops and a steadily expanding two=-phase
flow region is formed, which borders on the flow regions of the
liquid and the gas (dashed lines). Between section III, in which
there are no longer individual streams of gas and 1liquid, and the
outlet section of the mixing chamber there occurs a total mixing
of the gas and liquid particles and the formation of a homogeneous
two=phase gas=liquid flow, '

In arbitrary section II in the region between points 1 and 2
flows a supersonic gas stream (Mr ~ Mrl < 1), while between
points 5 and 6 - a subsonic liquid stream (Mm P Mwl << 1), Between
polnts 2 and 5 flows a twoephase gas~iliquid flow, and the magnitude
of ratio Gr/Gm varies from @ on the boundary with the gas stream
(point 2) to zero on the boundary with the liquid stream (point 5). .
Since static pressure over the section of the mixing chamber does
not change, then the speed of sound in the mixture a, with the

transition from point 2 to point 5 first decreases from a value of

a, = a_ to a certain minimal value of 2. min’ and then rises to a
value of a, = am, Number Mc first rises from Mc = Mr to a certaln
mazimal value of Mc max and then decreases to MG = Mm.
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If the velocity of the mixture flow W, (dashed 1line in Fig. 1)
is less than 8. min for a givenzvalue of P (see, for example
curve a_(K) when p, = 10 kgf/em” in Fig, 1), then the velocity of : 1
the twoephase flow of the mixture will be less than the speed of : ‘
sound over the entire range of change in ratio Gr/Gm from » (points § ?
24 1 in Fig, 1) to zero (points 6; 5 in Fig. 1). Since quantities .
Pg and wc along the mixing chamber remuin virtually unchanged,
then in the studied case the flow of mixture will be’'subsonic
for the entire length (solid lines in curves of Fig. 17). ;

As the pressure of the mixture decreases at wc = const this
flow pattern is preserved up to the moment when quantity . min

becomes equal to W_ [curve ac(K) in Fig, 1 touches line W_ = const

at point Ka J. If in this case the assigned value of the

¢ min

ejection coefficient K = G_ /G does not equal K . » then,
FoH THeH 8. min

as follows from Fig, 1, the flow ip the outlet part of the mixing
chambei (secticns III and IV in Fig. 17) will be subsonic. Here
the velocity of the mixture reaches the speed of sound only in
the initial parf of the mixing chamber along a certain line (the
dash-dot curves in Fig. 17).

In a case where G_ /G = K » the velocity of the flow
+H TH.N 8, min

in the outlet section of the mixing chamber 1s equal to the speed
of sound, and for the entire length there exists a line (or a
narrow region) on which W, = a, (dotted curve in Fig. 17).

At even lower values of the mixture curve ac(GF/Gm) intersects
line W_ = const at two points [curve ac(Gr/Gm) at p, =1 kgf/cm2 ' -
in Fig. 1]. Here, in the range of variation of ratio G_/G, from :
the value corresponding to point 3 to the value correspending to - é
point U4 (see Fig, 1 and also Figs. 15 and 16) the flow of the f
mixture is supersonic. If the assigned value of the ejection
coefficlient lies between quantities (Gr/Gm)3 and (Gr/Gm)u (point C!
in Fig. 1), then the range of supersonic flow of the mixture
extepds the gntire length of the mixing chamber, so that Mc3 > 1
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(see Fig, 15), If, however, K < (G_/G,), or K > (Gr/Gm)3
(points C" and C"' in Fig. 1), then the range of supersonic flow
exists only in the initial part of the mixing chamber, while the

flov at the outlet from the mixing chamber will be subsonic
(see Fig. 16).,

It is interestling to note that the transition from
the supersonic region of the flow to the subsonic in the last

case 1s accomplished without shocks and only as the result of a
change in the distribution of the relative content of gas in the

Wt B Bty L)

mixture.

For the purpose of showing the operational peculiarities of
the liquid-gas ejector with convergent nozzles in critical regime,

the results of calculating the parameters of the mixture for a

water-air ejector at a = 3.3; § = 05 p,,, = 5 kgf/cm2; T =

WoH
=T o1 = 288°K and several total-pressure values of the ejected

; gas are presented below.
]

For the sake of simplicity in the
calculation it was assumed that in the initial part of the mixing
chamber vapor from the liquid 1s absent, the liquid contains no

dissolved gases, and the flow in the nozzles occurs without
1 total-pressure losses,

of the mixture at p

The results of calculating the parameters

FOH 33 1.0 and 0.1 kgf/cm2 are shown in
Table 1 and in Figs. 18, 19, and 20,

If we examine Figs., 18-20 we see that at the assigned
parameters of state of the gas and the liquid at the nozzle inlet
and fixed geometrical parameter of the ejector the formal solution
of the ejection equations provides for each value of the ejection
coefficient two velocity values for the mixture (Wé3 and wg3) and

two values for the speed of sound in the mixture (aé3 and agB),
1 1 "t = 1 1"

. where Mc3 (w03/ac3) > 1, and Mc3 (wc3/ac3) < 1 (see Table 1).
With an increase in the ejection coefficient the difference between

the velocities of the mixture WéB, W;S and the speeds of sound
aé3 and 823 decreases and, finally, at a certain value of the

ejection coefficient it becomes equal to zero (Wé 03 = aé3 =
= ag3s Ml = M{y = 1, points a in Figs, 18-20). At values of
the ejection coefficient which exceed the quantity correséonding

to point a, the ejection equations do not have a solution.
b B

eI TR

3 = W, =
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! Fig. 18. Results of calculating parameters of mixture
i i at outlet from mixing chamber of water-alr ejector at

: s 2 2
: @ =3.3; 6 =0} pyg, =5 kgf/em; T = TQOH = 280°K

and p_5. = 3 kgf/cm2,
Designations: m/cex = m/s; k['/cn2 = kgf/em®; at = at.
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: Fig. 19. Results of calculating parameters of mixture
* i at outlet from mixing chamber of waterwalir ejector at
a=3.3; 8 =05 p,, =5kef/en’; T, =T = 280°K
. and Prou = 1.0 kgf/em™,
‘ Designaticns; m/cex = m/s; Wl /eme = kgf/cme; ar = at.
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Fig. 20, Results of calculating parameters of mixture
at outlet from mixing chamber of waterealr ejector at

a=3,3; 6 =03 Pyou = 5 kgf/cma;'Tm'H =T o, = 280°K
and Pron * 0,1 kgf/em™.,

As the total pressure of the ejected gas decreases from
3 to 0,1 kgf‘/cm2 the maximal possible value of the ejection i
coefficient, which corresponds to the cut-off regime of the i '
mixing chamber, decreases steadily - from 0.0185 to 0.0019, while
the velocity of the mixture, which is equal to the critical speed
of sound, decreases from 43,43 to 19.84 m/s, From Figs., 18-20 it
follows that when Peon ™ const the velocity of the liquid at the
edge of the nozzle is virtually independent of the ejection
coefficient, while the velocity of the gas with an increase in the
ejection coefficient from zero to K3 rises according to a nearly

linear law from zero to er max? which exceeds the velocity of -
the liquid.

o

At a certain value of K, which depends on the total pressure «
of the gas Pron? the velocitles of the gas and the liquid &t the
edge of the nozzle becomes the same and equal to the velocity of 2
the mixture in the outlet section of the mixing chamber (point b

N
o
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in Figs. 18-~20). When p com > 1 kgf/cm2 point b lies on curve W"3(K),
which corresponds to the subsonic flow of the mixture (W r1 w =
W"3), and when p_, -< 1 kgf/cm » 1t lies on curve W! 3(K), which ;
corresponds to the supersonic flow of the mixture (W 1 wml 03) : |
As total pressure of the ejected gas decreases from 3 to 0,1 kgf/cm? !
the speed of sound a.3 in regime Wey = wml = wc3 decreases, and the §
velocity of the mixture W e3 in the outlet section of the mixing
chamber increases. Thus, the number M c3 increases steadily (from
M,3 = Mgz = 0. 49 at Pron = 3 kgf/cm to M;3 = 1 at a value of : '
prOH which somewhat exceeds 1 kgf/cm , and to M 3 = 4,19 at Proy = |
= 0.1 kgf/cm ) (see Table 1),

v, | i

In order to determine the physically possible operational
regimes of the ejector Figs, 21 and 22 show dependences n" (K)
and n' (K) for a number of values of P, and regions where
N,y > 0 obtained from the same calculation. At values of
Pron which are equal to 3 and 4 kgf/cmz, as follows from Fig. 21
and Table 1, a subsonic flow of the mixture at the cutlet from
the mixing chamber 1is physically possible for the entire range
of variation in the ejection coefficient from zero to K3, since
at no place does quantity nas exceed unity.
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Fig. 21. Dependences of n" (K) and n (K) for water-air
) ejector at p_,. = 3 kgf/cm‘ and Pron = u kgf/cm .
Designation: «l[/cm2 = kgf/cm .
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Designation: HI‘/cr.2 = kgf/cme.

With an increase in the ejJection coefficient from zero to §
: the value corresponding to regime W_, = wml = dg3 (point b), the
efficiency of the ejector steadily inereases from zero to unity

’ !
but with a further increase 1in the ejectlion coefficlent quantity
£ ﬂ"
] z

!
!

D T ) PO

decreases to a certain minimal value correéponding to the :
cut-off regime of the mixing chamber (point a). In a case where
Pron = 3 kgf/cm the eff.ciency value in regime K = K3 = 0.0185

T T

W

is greater than zero (n!_ = O, 566); in a case where Proy = 4
kgf/em™ in a range of variation in the ejection coefficient from
0.0335 (point f) to K = K

= 0,0483 efficiency becomes negative.
The range of negative values of "33 at Pron = it kgf/cm2 corresponds

to the physically possible regimes in which total pressure of
the subsonlec flow of the mixture i1s less than the total pressure

of the ejecte. gas (pg 3/pr=4 < 1). In the studied case the

flow pattern shown in Fig, 17 develops in the initial part
\ of the mixing chamber.

' Analysls of the calculation materials 1lndicate that the
! supersonic flow of the mixture at the outlet from the mixing

chamber at values of Prou which are equal to 3 and 4 kgf/em® is

o SRR e
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not‘possible at any values of the ejection coefficient, since
this would contradict the second law of thermodynamics. Actually,
; in the range of variation of the ejection coefficient from zero

. to the value which corresponds to point e (see Fig, 18 and
i Table 1) the effective work of gas compression is accomplished
under a negative energy expenditure, which is absurd (vhe total

) pressure of the mixture in these regimes exceeds the total pressure
of the ejected liquid, and thus efficlency is less than zero).
. In the range of variation in the ejection coefficient frem values

corresponding to points e, to values corresponding to points ¢

(in Fig. 18), the advent of a supersonic flow of the mixture is

also impossible, since although p003 < Prou? the effective work

of gas compression c¢xceeds the expended energy (n:3 > 1). Finally,
in the range of change of the ejection coefficient from values which
correspond to points ¢ (see Fig. 21) to values of K = K3, where

the work expended is less than effective work (n‘;3 < 1), the
superscnic flow of the mixture cannot be realized, since it can

only develop as a result of an expansion shock, where the

entropy of the mixture decreases as it passes through the shock.

\ Thus, at values of Proy which exceed the vélue of the
corresponding case, where in regime wrl = wml the velocity of the
mixture V c3 1s equal to the speed of sound a_ (in the studied
example this value of p ~OH is equal to 1.3 kgf/cm ), the flow of
the mixture cannot be supersonic. In this case the cut-off regime
of the ejector is the cut«off regime of the mixing chamber.

Now let us examine dependences n (K) for the total-pressure

values of the ejected gas Proy = 1.0; 0 3 and 0.1 kgf/cm (see
Fig. 22 and Table 1),

We see that with an increase in the ejection coefficient

. from zero to K3 quantity nga inereases steadily. The subsonie
flow of the mixture, according to the second law of thermodynamics,
is possible only in a range of ejection coefficient variation from
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zero to values corresponding to points ¢, at which quantity ngg
becomes egual to unity, The work of the ejector at greater

values of the ejection coefficient in the case of a subsonic

flow of the mixture is impossible, since in these regimes n;a > 1,

A subsonic flow of the mixture when Proy = 1- 0, 0.3, and 0.1 . s
kgf/cm s as follows from Fig, 22 and Table 1, is theoretically
possible only in regimes in which Wey = Wq (nHa = 1, points b). .

When er # wml a supersonic flow is impossible in view of the fact
that the efficlency of the ejector exceeds unity, while the
entropy of the mixture is less than the sum of entropies of the
gas and the liqulid at the eJector inlet. Thus, it follows, that
for a change 1n counterpressure from the value corresponding to
the zero flow rate of ejected gas (K = 0) to the value which
corresponds to the regime in which er = Wml’ the flow at the
outlet from the mixing chamber can be only subsonic [segments of
curves n:B(K) and WgB(K), lying to the left of points d in

Figs. 19, 20 and 22].

The static pressure of the mixture p"3 1n these regimes
(unlike the case where p Foy = 3 and 4 kgf/cm ) substantially
exceeds the static pressure at the mixing chamber inlet. Thus,
for example, when Pron = 0.1 kgf/cm2 and Arl = 0,01 the ratio
of static pressures pc3/pr1 1s equal to 18.4, but when Arl = 0.1
(regime W, = W$33 this ratio is equal to 17.4, This can be
explained by the fact that in the studied regimes in the mixing
chamber at the bou:idary of the stream there develops an increasingly !
extensive supersonic region in the two-phase flow (see Fig. 15), §
which 1s transformed 1nto a subsonic flow in the shocks. "

When regime wrl = wmi 3 is reached the flow in the .
outlet part of the mixing chamber becomes completely supersonic
(points b in Figs. 19 and 20) and the transition to the subsonic
reglon of the flow is accomplished in the plane shock (points d
in the same figures). It is obvious that with a decrease in
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counterpressure as compared to counterpressure corresponding to
the regime in which velocities er and wml become identical,

disturbances no longer penetrate the mixing chamber and the '
ejection coefficient does not change. The ejector in this case é
operates in a cut-off regime, which in the studied case is the : §

critical regime.

bR R i

The distinguishing feature of this critical regime, as already
mentioned, is the fact that it develops at subsonic velocities
of the gas and liguid streams at the inlet to the mixing chamber
as a result of a drastic decrease in the speed of sound in the
{ r formation of the two~-phase mixture.

} X Thus, the condition for realizing the studied critical
; regime when TrOu = Tm.u in a case where the liquid does not
* ' contain dissolved gases and where saturation pressure is consider-
i ably lower than the pressure of the ejected gas, is the equality
' of the velocities of the gas and liquid streams in the inlet

r : section of the mixing chamber:

i Wri= Wy (5.1)

Condition (5.1) when Teon = Ty, Blves us the ultimate

attainable value for the ejection coefficient:

K. -=a X BPrr____RPeoVpinP (+1) . )
am= Tt =7ﬂ!RrT ™ TR Tx (5.2)

This condition can be used in qualitative analysis of the
. characteristics of a vacuum liquid-gas ejector and in estimating
ts effectiveness. 1In calculations of the critical regimes of
actual ejectors it should be kept in mind that since the process
: of breaking the liquid streams into drops is incomplete, and
* % due to the effect of friction losses against the walls of the
: mixing chamber and the pecullarities of the flow in the near-wall
. regions (particularly separation of the liquid on the walls and
b : the development of reverse current), which are not considered in
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the theory, the ratlio of velocltles wrl/wml will be less than
unity. For this reason relationship(5.2) can be written as

g YL g OPe1 .y SPonVeinP (A1) (5.3) (
K, 7 Tx1 4,'l:mlkrr ® TR Tx
where guantity ¢
=Y

depends on the physical properties and the state parameters of
the liquid and the gas, the number and configuration of nozzles,
and on the geometrical parameter of the ejector a. This quantity
is determined experimentally.
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5.3. Vacuum Liquid-Gas Ejector
with Supersonic Diffuser

The calculations which have been performed (see Table 1) showed
that when the gas which is drawn in has total-pressure values which
are less than a certain quantity the actual operational regime
of a liquid-gas ejector with a cylindrical mixing chamber and an
expanding diffuser is the limiting critical regime. In this
regime, which is characteristic of a vacuum liquid-gas ejector,

a supersonic flow of the twoe-phase mixture develops in the outiet

section of the mixing chamber., This 1is transformed into a

subsonic flow in the plane shock; in this regime the flow of the

mixture for the entire length of the expanding diffuser is super=-

sonic, v

——— TR —

! The dependences of number Mé3 and the pressure recovery
7 : ccefficient Yae ® P203/Péo3 in the plane shock, located in the
‘ : outlet section of the mixing chamber, on total pressure of the

eJucted gas, plotted from the results of calculating the parameters
= * 2. = -

of the mixture for a = 3,.3; Puon = 5 kgf/cm; Tm.n TFOH = 288°K

are shown in Fig. 23, .
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If we examine Fig. 23, Wwe see that with a decrease in the
total pressure of the ejected gas number Mé3 of the supersonic
flow of the mixture in front of the plane shock rises steadily,
whille the coefficient of pressure recovery in the shock decreases
accordingly. In a variation range of Pron from 1 to 0.5 kgf/cm2
quantity MéB rises slightly (from 1.2 tc 1.7}, and thus losses
in the plane shock are relatively low, With a further increase
in the pressure of the ejected gas quantity M'3 ?isgs sharply,
reaching a value of Héa = 7.7Tatp = 0,03 kgf/em™~, The

rOu
coefflclent of pressure recovery in the plane shock decreases in

this case to Voo = 0.46,

The values of péOB and n&a for the iimiting eritisal
regime, shown in Table 1, correspond o deceleration of the
supersonic flow of the mixture in an i1deal supersonic diffuser
of the reverse Laval nozzle variety. If we compare these quantities
to 9203 and nza we find that total-pressure losses in the plane
shock at low pressure values of the ga: which 1s drawn in result
in a substantial deterioration of the efficiency of the vacuum
1iquid-gas ejector, Thus, when Proy = 0.1 kgf/cm (K = 0,39 x
x 107 ) the limiting efficlency of the ejector, when tbe expanding
diffuser is replaced by an ideal supersonic diffuser, rises from
0.34% to 1,0, while total pressure of the mixture increases from
2.0687 to 3.8023 kgf/em®. Thus, 1t follows that one of the basic
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rieans of increasing the efficiency of a vacuum liqulidegas ejector
at low pressure values for the gas which is drawn in is to

decrease losses which develop during deceleration of the supersonlc

flow of the twoephase mixture, Thils can be achleved by replacing

t
the expanding diffuser by a supersonic diffuser which has a
throat.

Figure 24 shows the scheme of the vacuum lliquid-gas ejector

with a supersonic diffuser, When such an ejector 1s operating in

a rated regime the flow of the mixture in the outlet part of

the mixing chamber will be supersonic (M 3 = M'c3 > 1), In the

convergent part of the diffuser a system of angle shocks develop

in which the velocity of the supersonic flow of the two-phase

mixture Jlecreases from M'3 to M! - > 1, The trans:tion into éhe

supersonic region of the flow occurs in the plane shock, located

in the throat of the diffuser., In the divergent part of the

diffuser there occurs a deceleratl!on cf the subsonic flow of the
mixture.

3) Kame( 3 ) ( b )
y& Mudrngems c:;‘aemu Npamad cxguox

;rms'?p?z CMPULEHUR | t‘aepnb‘ymdau autpwwop

Fig. 24. Scheme of vacuum liquid-gas ejector
with supersonic diffuser,.

KEY: (1) Gas; (2) Liquid; (3) Angle shocks;

(4) Plane shock (5) Mixing chamber; (6) Super-
sonic diffuser; (7) Throat.

The total pressure of the subsonic flow of the mixture

pgoh(cs.n) at the outlet from a supersonic diffuser operating in
a rated reglime can be represented in the form of

pcouu a)=pc68 A 3V r' e \4 o+

(5.5)
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where

v"t3=p;m-' IP,:-“; Vpr, g &= P;c,.. IP;D,' ——-—V()\;"o); V4o == pgoneOr’

are the coefficients of pressure recovery in the convergent part
of the supersonic diffuser, in the plane shock developing in the

throat, and in the divergent part of the diffuser for a gubsonic
flow, respectively.

Analysis of (5.5) shows that at assigned values for the
relative area of the cross section of the throat ?} = £ /F, as
well as the parameters of state and reduced velocity of the
supersonic flow of the mixture at the outlet from the mixing
chamber, product vr,’3v(lé'r,) in the variation range of value
vr,’3, which 1s of practical interest to us, is only very slightly
dependent on this value, This can be explained by the fact that
with a decrease in value Ve 3 the velocity of the superéonic

flow of the mixture in the tﬁroat of the diffuver and, consequently,
losses 1in the plane shock,

Thus, to simplify calculations we can assume, with a degree
of accuracy sufficient for practical purposes, that the deceleration
of the supersonic flow in the convergent part of the diffuser occurs

without total~pressure losses, Relationsnip (5.5) is in this case
written as

p:m (en.u)=p;mv ()';..r') Vayre (5.6)
The total pressure of the mixture at the outlet from the

ejector in the case of an expanding (subsonic) diffuser ‘can,
according to the discussion above, be represented 1n the form of

p::!R {1032, R)ap;a&’ (1;3) Va3, (5.7)

where v(AéB) is the ccefficient of pressure recovery in the plane
shock, located in the outlet section of the mixing chamber,
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In expressions (5.6) and (5,7) we :-

#

Peo(en.n) v (";.r') Yarr v h:::-) (
7 = —. 5.8)
Peo (088, x) v (lca) V43 = v (%3)

From this it follows that when a vacuum liquid-gas ejector
is working in the most advantageous limiting critical regime,
replacement of the expanding subsonic diffuser by a.supersonic
diffuser with a throat will result in arn increase in total
pressure of the subsonic flow of the mi::ture, other conditions
being equal, by a number of times which iz approximately equal
to the ratio of pressure recovery coefficient in the direct shocks,
located in the throat of the supersonic nozzle and in the outlet
section of the mixing chamber, respectively,

Obviously the lower the relative arca of the cross section in

the throat of theée supersonic diffuser, the greater will be the

advantage gained by wusing it, In the case of an unregulated

supersonic diffuser, which can be brought to the rated regime

by simply changing counterpressure, the minimal 'value of the

relative area of the throat ‘} min can be found from the condition

that in the presence of a plane shock in the outlet section of
the mixing chamber the veloecity of the mixture in the throat is

equal to the critical speed of sound. Quantity E; min
calculated as follows:

1) using the ejection equation system for the limiting
3 1" " =
critical regime we find quantities Peo3r Teo3* K» R G, = G_/F,
! 1 t
and pcO3’ wc3, Y3’

2) 1if we consider that the flow of the mixture in the case
of a vacuum liquid~gas ejector can be regarded as approximately
isothermic and, if we assume that there are no losses in the
cenvergent. part of the diffuser in the subsonic flow, then from

equation (1.51) we determine the critical speed of sound a, . = wc -
froem the quantities pga3, T303, X, R, which have been found;
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3) from expressions (1,45) and (1.43) we-calculate quantities

pc.u = pc.r’ Yc.a = Yc.r5

) from formula
.7 rain= —;h’c-nac‘x (5.9)

we find the sought value of the minimal relative area of the throat
of the unregulated supersonic diffuser,

After determining Fr min W€ can find the total pressure of
the mixture at the cutlet from an ejector working in the limiting
eritical regime, when thé plane shock is located in the thrcat

of the diffuser.

1. If we assume that p', = pé03 (see above), then from

clr
equation
e
ey Per Mgy b Per
27 {Pc.r,rmll + T (K + 1) + nP‘..,.+ 1=K+ 1)
=bln ply, 4 —— (5.10)

K+

we determine the statle pressure pé r of the supersonic flow of
the mixture in the throat of the diffuser, and then from
equations (1.43) and (1,45) - quantities YL -0 8}

c.r’

2, According to formula W! _ = Ec/yé ~fr min We calculate
the veloecity of the supersonic flow of the_mixture in the throat
and number Mé'r ='Wé'?/aé'r.

3. Using relationship (1.65), (1.66), (1.67) and (1.68) we
find quantities Mg'r, pg'r, Yg.r’ ag.r, and wg_r, which correspond
to the subsonic flow of the mixture in the throat behind the plane

shocek,

FTD-MT-24-1668-72
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4, 7vwom equation (1.50) we determine the total pressure

P : of the subsonic flow of the mixture in the outlet section of
the throat and the total pressure of the mixture at the outlet é
= nit
§ i‘I’()l1l t:k)(a GE.j e (:1; or I) C)() l‘ ( ce. J‘ ) - I) E:()t- "\)1‘ , r fte ) {
: g Total pressure of a mlxture at the outlet from a vacuum- P

liquld gas ejector with an unregulated -upersonic diffuser when
E} = E} min? &S indicated by the calculation and the experiment
(see [8]), substantially (1.5~-2 times) exceeds the total pressure
of the mixture at the outlet from the same ejector with an

expanding. diffuser,

o o .90

e
" {

5.4. Lstimating Value of Total Pressure
of Mixture in the Case of a Vaccum
Liquid-~Gas Ejector with Expanding
Diffuser

g s

3 The calculations indicated that at assigned values of

b Z o 3, Puon? Tm.n and TrOH the total pressure of the subsonic
3 flow of the mixture pgos in the outlet section of the mixing
chamber of a vacuum liquid-gas ejector working in a limiting
critical regime changes only slightly with a change in the : A
ejection coefficient and, consequently, total pressure of the
ejected gas. For this reason it is possible to estimate the

total pressure of a mixture in a vacuum liquid-gas ejector
according to the Borda-Carnot formula for a flow of an incompress«
ible liquid in a region of sudden tube expansion,

ot

If we assume that K = 0, Py = P,y = P, » and consider v
expression (2.3), then we get

D SO

p2m=v.u..{f.o.[1..(;_ Psn )(uﬁ)'-*], (5.11)

Vin Patn a1

The total pressure of the mixture at the outlet from the
ejector can be found from formula

i pio.=vmv,.x..p,.;o-;[l —(1 -;;-i—’;,—;)(j—% 2}‘ (5.12)
! FTD-MT-24-1668-72
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