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1.0 ABSTRACT

This report describes an investigation into the problem «f the "exact"
calculation of three-dimensional 11fting potential flows. The designation
"exact” is used to denote a method that makes no approximations in its basic
formulation, such as small-perturbation or 1ifting-surface theories do,
Obviously, numerical realities require some approximate techniques in the
computer, but "exact" methnds can be numerically refined in principle to give
any degree of accuracy,

The first part of the study is a look at the problem of three-dimensional
1ifting potential flow from a fundamental standpoint, something almost totally
lacking in the literature. Unlike nonlifting flow whose "physics" and mathe-
matical description seem basically related, the mathematical description of
the 1ifting problem is merely a model to describe by means of an inviscid flow
a phenomenon that is ultimately due to viscosity. This 1is true even in two
dimensions, but in three dimensions it leads to certain logical difficulties.

The method of this report and all current "exact" methads of calculating
1ifting flows are based on the author's previous work on three-dimensional
nonlifting flows. This report describes the present method in general and
in detail, including all formulas and logic, Alternatives are discussed, some
of which are discarded, while others are incorporated into the program. The
present method differs from other current methods mainly in its use of finite-
strength surface vorticity distributions instead of concentrated 1ine vorticity
interior to the body and in its application of the Kutta condition, Comparisons
indicate advantages for the formulation of the present methoc.

A variety of cases calculated by the present method are presented to
illustrate its versatility and usefulness. Comparisons of the calculations
with experimental data are presented. The importance of viscosity in the
experimental results is illustrated.
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4,0 PRINCIPAL NOTATION

velocity induced at the i-th control point by a unit value of
source density on the j-th element. If there are N on-body
control points where a normal-velocity boundary condition is
applied, this is an N x N matrix. It fs the coefficient
matrix for the linear equations for the values of source
d?nsity. The same coefficient matrix applies to all onset
flows ;

* !

Constant of proportionality for the dipole strength along an
N-line., Local dipole strength along an N-1ine equals B times
the arc length along the N-line from the trailing edge. By
theorem of Appendix A, this means B equals: the value of
bound vorticity at the spanwise location of the N-line. Used
with superscript k to indicate value fof 3 at the midspan
of the k-th lifting strip.

1ntercepts of slanted sides of a lrapezoida] element with the
x~-axis of its own coordinate system (figure 20).

1ift coefficient for a complete body, |

pressure coefficient. Equals difference of local static pres-
sure from freestream static pressure divided by freestream

_dynamic pressure,

denotes an integration path. Also a constant multiplying a
second order dipole term used to produce contjnuity.

section 1ift coefficient. Lift force on a ctSnp of elements
on a wing divided by the projected area i the strip in a
plane containfng the chord 11ne and 'y freestream iynamic
pressure.

used with doubie subscript to denote 1ength of a side of a
quadrilateral element. A

subscripts and superscripts used to deﬁote quantities associ-
ated with the two N-lines bounding a 9€r1p of elements, F
denotes "first" N-line and S the "second"jN-line. ¢ is
also used to denote number of uniform onsetff1ows.

normalized moment of the -0 nf a trarepofdal elem op winy
respect to the axis of the eie.ent coccdinate sywie, enuas
tions (7.2.24) and (7.2.07],

a subscript used to denots quantitiey aruocteiec wiin the
i-th control point, particuiarle veiacities al thet poiny,
Used as superscript to dencte inngt point,

double subscript used to :emnie ~¥iact of Jotm picoiar o
j-th control point, partizulariv tnduned walte 'ty
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N-Tine

sy

i

unit vectors along the axes of a coordinate system based on
an element,

subscript used in vartous weys. k=1, 2, JB 4 denotes
quaniities associated with the four corner points of an element,
Also used as subscript and supersc#ipt to denote k-th 1ifting
strip or vorticity onset flow as§0c1ated with that strip.

arc lergth along an N-line. Also denotes total number of
Tifting strips of surface elements.

used in figure 42 to denote freestream Mach number

slopes of the slanted sides of a trapezoidal element with
respect to the y-axis of its own coordinate system (figure 20).

total number of surface elements at which normal-velocity boundary
conditions are applied. Includes both 1ifting and nonlifting
elements.

curve in wing surface, usually a fixed spanwise location, along
which input points are given. N-line continues aft to define
the trailing vortex wake. A strip of elements lies between

two consecutive N-lines.

unit normal vector. }
number of off-body points at which flow is to be computed

a general point in space.

distance between two noints. Used with subscript o to denote
distance from centroid of an element to po1nt where velocity

1s being computed., Used with subscript k ° to denote distance
between such a point and the corner point of an element.

deaotes a body surface on which a normal-velocity boundary
condition is applied.

arc length, especially arc length a]ongra N~-Tine.
~a<ium ‘iagonal of an element (figure 20;.
teral bk ye it
Citgw emracily at jemiloontral ooint,
s an et Tloa, muueciatly @ ouifod aset flow.,

ned oy d s p ’~$4 ingioding freastresm and vorticiiy = et
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x', y'y 2!
xO’ yO’ r4

ay By ¥

perturbation velocity due to body.

total flow velocity at i-th control point due to flow induced
abnut the body by the k-th vorticity onset flnu, With super-
script (=) the nonlifting flow about the body in a uniform
freestream,equation (7.13.4).

velocity components induced by an element at a point space
with respect to the coordinate system of the element.

velocity induced at the i-th control point by a unit value of
source density on the j-th element.

velocities induced at the i-th control point by a dipole
distribution on the j-th trapezoidal element that varies
linearally from zero on one paraliel side to unity on the
other, Superscript denotes the N-line containing the side
with ngnzero dipole strength.

width of a trapezoidal element in direction normal to the
parallel sides (figure 20). Also used with subscript k to
denote width of 1ifting strip for parabolic fit (section 7.11).

coordinates of a point in element coordinate system.

coordinates of a point in the reference coordinate system used
to input the body.

coordinates of the centroid of an element in the reference
coordinate system,

direction cosines of a point in space with respect to the
coordinate system of an element based on the centroid as
origin, Also used with subscript k to denote the same
direction cosines with origin shifted to a corner point.

total circulation around a closed path,

circulation about a c.osed path due to perturbation velocity
field of the body.

dipole strength per unit area.

v, ¥ coordinates of a point of an element in its own coordinate
syctem., Used with subscripts k to denote coordinates of the
corney moints,

d.stance criteria used to decide when multipole and far-field
formulas are to be used.

source density per unit area. Used with subscript j to denote
value on j-th element and with superscript k to denote values
calculated for k-th vorticity onset flow,
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velocity potential especially that due to a body or that due

to a surface element.

velocity potential due to a dipole distribution on an element

that varies as the g-th power of & and the q-th power of

™

equation (7.4.4
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5.0 INTRODUCTION

5.1 Statement of the Problem of Potential Flow

The problem considered is that of the flow of an incompressible inviscid
fluid in the region R' exterior to (or interior to) a given boundary surface
S. For definiteness S 1s shown as a single three-dimensional surface in
figure 1, but S may consist of several disjoint surfaces, and the problem
may be either two- or three-dimensional. It is convenient to express the
fluid velocity field V at any point P as the sum of two velocities:

V=V +V (5.1.1)

The velocity V_ is denoted the onset flow and is defined as the velocity
field that would exist if all boundaries were simply transparent to fluid
motion, It is assumed that V_ is known. Most commonly V_ represents a
uniform parallel stream and is thus a constant vector. The vector vV is the
disturbance velocity field due to the boundary surface S. Since the flow is
incompressible, both ¥V and V have zero divergence. It is further assumed

Figure 1. Potential flow about a three-dimensional body.
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that Vv is irrotational, i.e., has zero curl. Thus, v may be expressed as
the negative gradient of a potential function o,

V = -grad ¢ (5.1.2)

The cor, ..ion of zero divergence then yields Laplace's equation for ¢4,

V26 = 0 1in R' (5.1.3)

The boundary condition on S 1is derived from the requirement that on a
stationary impervious surface S the normal component of fluid velocity must
vanish, Thus,

§%=grad¢-'ﬁ='\7w-ﬁ on S (5.1.4)
where n is the unit outward nomai vector to S. Since the right side is
known, equation (5.1.4) expresses a Neumann boundary condition for ¢. If the
boundary § {s moving or if a nonzero normal velocity is prescribed, the
right side of (5.1.4) is modified 1in an obvious way.

A regularity condition at infinity is also required. In the usual
exterior problem the condition is

|grad ¢| + 0 at infinity (5.1.5)

In addition to the above equations, some applications require certain auxil-
jary conditions to be satisfied. However, in the absence of such conditions
and for a simply connected region R', the equations (5.1.3), (5.1.4), and
(5.1.5) comprise a well-posed problem for the potential .

In two-dimensional exterior prohblems, the reqion R' is not simply
connected, and equations (5.1.2), (5.1.3), (5.1.4), and (5.1.5) do not define
a unique velocity field, Define the total circulation r around any closed
path ¢ in the fluid as the line integral

r=fv-aE=fVm-H's‘+fV-a?=rm+y (5.1.6)
c c c




where
v=f7-a's‘ (5.1.7)

is the circulation associated with the disturbance velocity due to the body.
In the above

_—

ds = Tds (5.1.8)

where S 1s arc length along ¢, and t 1is the unit tangent vector, If ¢
does not enclose all or part of S, then 4 =0. If S is a single surface,
it can be shown (reference 1) that the velocity field v is rendered unique
by specifying vy for any c that encloses S. If S consists of several
disjoint surfaces, y must be specified for a set of paths, each of which
encloses exactly one of the disjoint surfaces that comprise S. The potential
¢ is unique if and only if y =0 for all closed paths,

5.2 Potential~Flow Model for Lift

The reasoning leading up to the formulation of the potential flow problen
in terms of equations (5.1.3), (5.1.4), and (5.1.5) seems very plausible.
However, when the problem defined by these equations is solved, the resulting
flow gives zero net force on a closed three-dimensional body. This is due to
the fact that all components of force cn a body — both the 1ift, which is per-
pendicular to the freestream, and the drag, which is parallel to the freestream —
are ultimately due to viscosity. Nevertheless, the goal of calculating at least
the 1ift component of the for-.e by a purely inviscid technique has been con-
tinuously pursued. It is important to realize that any such formulation is
simply a potential-flow model of real 1ifting flow, and that the two flows
are not necessarily related in any fundamental way, Formulation of the commonly
accepted potential-flow model of three-dimensional lifting flow has relied
heavily on results for the two-dimensional case.

In two-dimensional flow advantage can be taken of the indeterminacy

of the solution as described in section 5.1, For a single closed body in a
uniform stream, the drag force is zero, and the 1ift is proportional to the

13
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circulation vy, whicn is arbitrary. (For a uniform onset flow the total cir-
culation T equals vy, the circulation due to the disturbance velocity.)
Thus, in iwo-dimensions the problem is not that no 1ift is obtained but that
the 1ift can have aiy magnitude. Some auxiliary condition is necues to fix

the value of 11ft. For bodies with continuous slope no satisfactory auxiliary
condition has ever been formulated. However, a conventional airfoil has a
sharp corner at its trailing edge, and there is a unique value of y (and thus
a unique 1ift) that makes the potential-flow surface velocity finite at this
corner. Determining the value of circulation in this way also insures that a
streamline of the flow leaves the airfoil at the trailing edge with a direction
along the bisector of the trailing-edge. This condition of finite velocity

at the trailing edge, the so-called Kutta condition, is so well accepted that
it is normally not considered a mere modeling device but is assumed to have

a more fundamental connection with the real flow. However, the Kutta condi-
tion is inapplicable to smooth bodies, and for airfoils with sharp trailing
edges it gives values of lift that differ from experimental values by up to

20 percent,

The theorem that guarantees a unique solution for the flow about a two-
dimensional body with prescribed circulation y 1is guite general. However,
in a specific calculation procedure the question arises of how the condition
of prescribed circulation is to be applied. A1l procedures accomplish this
with the help of vorticity. A distribution of vorticity, consisting of either
concentrated filaments or finite-strength surface or volume distributions are
hypothesized to 1lie on or within the body in question. The total strength of
the vorticity distribution establishes the prescribed circulation,

Consideration of the above two-dimensional model suggests certain elements
of a model for lifting flow about a three-dimensional wing of the type shown
in figure 2. If the trailing edge of the wing is a sharp corner, a plausible
three-dimensional Kutta condition requires that the velocity remain finite
there all across the span, which means that a stream surface leaves the
wing from the trailing edge, Define the circulation about a particular wing
section as the line integral of the velocity in the form of equation (5.1.7)
about a closed curve lying in the wing surface as shown in figure 2. The
precise definition of this so-called section curve is not considered now. A
reasonable definition is that the curve lie in a plane parallel to the plane

14
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Figure 2. Nomenclature for a three-dimensional wing.

of symmetry of the wing. But for certain purposes the curve could lie in a
plane normal to the leading or trailing edge. In any case the value of the
circulation s different for curves at different locations, so that there is

a "spanwise" variation in “"section circulation." By analogy with two-
dimensions, 1t 1s expected that a proper adjustment of this spanwise variation
could render the velocity finite all along the trailiing edge. Presumably, the
circulation can be generated by some distribution of vorticity lying on or
within the wing. It seems evident that the direction of this so-called

"bound vorticity" should be generally along tlie span, roughly parallel to the
trailing edge. The net vorticity strength through each "section" is
proportional to the circulation around that section.

Define 0 and Yo as the values of circulation about two sections of
the wing, where the positive sense of the integral of (5.1.7) is taken as
clockwise to an observer at the wing midplane looking towards the right wing
tip, Unlike the two-dimensional case, the region exterior to a closed three-
dimensional body {is simply connected, so that if the flow is potential, i.e.,
has zero curl, and is free from singularities, then

V.ds=0 (5.2.1)
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for any closed path ¢, which implies S Y < 0. Thus, to obtain nonzero
values of section circulation, there must be some form of singularity in the y
exterior flow. The nature of the singularity can be exhibited by considering
the path ¢ shown in figure 3a, The line integral of velocity around this
path is

VoEeq-nt [@-0) & (5.2.2)
I

C

X where 1 s the straight path joining the two section curves and V; and V;
i are the 1imiting velocities obtained by approaching 1 from two different
: directions on the surface. If the line integral of (5.2.2) is to vanish, then
either Yy =y, or V; # VL, and there is a discontinuity of tangential
velocity along 1. If sharp corners in streamlines are to be avoided, such a
discontinuity can occur only across a stream surface of the flow, and thus

) either I 1s a locus from which a stream surface leaves or joins the body or
i else 1 1s a portion of a streanline on the surface. In any event 1 repre-
‘ sents the intersection of a sheet of vorticity with the body surface., To ;
{ complete the potential flow model, the first possibility, a stream surface ;
{
\
Ve
-
SECTION 1|
SECTION 2 ‘
y
i
q
TRAILING VORTICITY 1
(a) (b)
[}
Figure 3. Circulation on a three-dimensional wing. (a) Integration ‘
path c. (b) Discontinuity at the trailing edge. p
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leaving the body, 1s selected, essentially on physical grounds, It is

reasoned that vorticity is introduced only to the fluid that passes by the body
and that the path I of (5.2.2) must 11e along the trailing edge of the wing
(figure 3b). Thus, a vortex sheet issues from the trailing edge and for

steady flow it proceeds to infinity. The average strength of the sheet along

I 1is proportional to the difference Y] T Yo Taking the limit as the two
section curves approach each other gives the result that the local strength

of the trailing vortex sheet is proportional to the "spanwise" derivative of
the "section circulation."”

It follows from the above that the local strength of the “trailing
vorticity" that issues from the wing trailing edge equals the "spanwise"
derivative of the "bound vorticity." Tnus, trailing vorticity is of precisely
the right form so that the entire bound-plus-trailing vorticity system may
be thought of as being composed of constant-strength vortex lines of infin-
itesimal strength, each of which proceeds "spanwise" along the wing and then
turns and proceeds "streamwise" to infinity, the familiar "horseshoe" vortices.
This is crucial because, as pointed out in reference 2, the velocity field
due to a variable-strength vortex filament or a nonclosed constant-strength
vortex filament of finite length is not a potential flow. Only infinite or
closed vortex lines of constant strength give rise to irrotational velocity
fields,

As mentioned above, the trailing vortex sheet must he a stream surface of
the flow., Also, on physical grounds the pressure must be continuous across
the sheet, In principle, these two conditions allow the complete shape of the
traiiing vortex sheet to be calculated. The basic flow problem is nonlinear
because the location of the sheet changes for different onset filows. In
particular, the sheet changes location if the angle of attack of the freestream
changes.

The above contains the general features of the petential-flow model of
three-dimensional 1ift, It is considerably more compiicated than the simple
formulation of equations (5.1.3), (5.1.4), and (5.1.5), which represent the
nonlifting case., However, the nonlifting formulation appears to be fundamental,
while the 11fting formulaticn is basically a model adonted to simulate certain
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properties of real viscous flow by means of a potential flow., The nonfunda- |
mental nature of the 11fting model leads to some logical difficulties which
may or may not be important in a particular case. Some of these are discussed
in the next section,

5.3 Some Logical Difficulties in the Potential-Flow Model

The principal device by which 1ift is introduced into potential flow of
either two or three dimensions i< the trailing edge. To some extent the defini-
tion of a trailing edge is a matter of legislation by the user of the method
rather than a fundamental concept. Accordingly, difficulties may arise. In
two-dimensions the situation is rather simple. There is no logical difficulty
if the trailing edge is a sharp corner (the agreement of the model with real
flow may or may not be acceptable). On the other hand, if there is no sharp
corner, the difficulty is crucial, because the trailing edge cannot be
rationally defined, In three-dimensions some rather subtle borderline cases
arise in ordinary design applications. In regions where the wing has a sharp
corner as shown in figure 2, the choice of trailing edge is straightforward. \
Difficulty arises where the locus of the sharp corner ends, The question
arises whether the trailing edge ends or continues, and, if the latter, in

e —— ——— -
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what matter. {

A wing tip is the place where the above-mentioned difficulty most
frequently arises. Consider the type of tip shown in fiqure 4a, whose plan-
form is a semicircle. The trailing edge is well-defined by a sharp corner
out to the beginning of the tip. On the tip itself, the downstream side of
a "section" curve has a finite radius of curvature which approaches zero at {
the point A. Should the trailing edge end at A or should it continue over

the tip region despite the fact that there is no sharp corner? If the

L "section" curves on the tip region had sharp corners, presumably the trailing
edge would continue into the tip region all the way to the point B. For
highly yawed flow, the point B appears to be part of the leading edge.
Where should the trailing edge end in that case? The tip in figure 4b is a
half-body of revolution formed by rotating the symmetric section curve at
AR' about its symmetry line. In this case, ending the trailing edge at the
point A would probably be the choice of most users. However, the tips in
figures 4a and 4b differ mainly in their values of the ratio of "spanwise"

-~ e em .
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Figure 4. Wing planforms showing various tip geometries. i

extent to "streamwise" extent, For the "squared-off" tip shown in figure 4c
agreement to terminate the trailing edge at the point A would be virtually
unanimous, Nevertheless, the questfon arises as to what exactly does happen
on the tip itself. This type of tip occurs, for example, at the edge of
deflected flaps. Objections of the sort mentioned here are basic to the
potential-flow model and do not depend on the particular implementation used
to produce an actual program,

e

One "answer" to the above is that certain viscous effects are important
at wing tips, and potential flow is not expected to apply in that region. The
"tip vortex" leaves the wing well forward of the trailing edge with a finite
i diameter (see Appendix B ) in contradiction to the potential flow model. Thus,
the assumed potential tlow model treats wing tips in an approximate fashion
and is not applicable to very low "aspect ratios".

LR TR

i A wing-fuselage junction (figure 5a) 1s another important application
: where the trailing edge must end at point A, It would make little sense to
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Figure 5. Examplas of terminating trailing edges. (a) Wing-fuselage ,
intersection. (b) A tip tank. F

t continue the trailing edge downstream along, say, the 1ine AB. However, !
the trailing vortex wake intersects the fuselage along AB and must do so

without numerical problems, The question arises of what happens to the

"bound vorticity" at a wing-fuselage junction, but that is as much a problem

of implementation as a problem in the basic formulation (see section 6.8).

A situation with elements of both the above is a wing with a tip tank
(figure 5b). Depending on its size, the tank may be considered a smail
fuselage or a big wing tip. Unlike the usual situation for a fuselage, the
flow about the tip tank has no right-and-1eft symmetry, and there is vorticity
trailing downstream from the tip tank, which must be accounted for.

# There are certainly other situations where the details of the potential-
flow model of three-dimensional 1ift are unclear. The examples of this
section simply serve to il1lustrate that such basic problems exist, regardless
of the particular implementation used to reduce the model to practice. The
implementations of course lead to problems of their own. 1
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+.0 GENERAL FEATURES OF THt McTHOD OF SNL:TION
6.1 The Method for Nonlifting Thrre-Hirmensionil *iow

References 1 and 2 review the long-term effort «f ¥YN¢ auther and kis
colleagues in the field of potential-flow célculation, Arong the methode
described are those for 1ifting two-dimensicnal flom: and nealiftina civcan-
dimensional flows. The latter 1s described in soirewhat greuter detai) (v
reference 3., This nonlifting method forms tiie has .2 oo which 1z byiiv tie
1ifting method to be described here. By way of ixtrcductlon, the nenlifeing
program is outlined briefly here, buc the references ure relied un to supply
all details.

P

A11 the potential flow methods of references 1 and I are bised on a dis-
tribution of source density over the surface of the body aboul vhich fiow is
to be computed. The norng.canponent of flura velority is Jiven on the
surface of the body. Usdally the normal vel.city fs zern. Applicetion of the
normal-velocity boundary condition yfelds an inteqrat squition for the dictri-
bution function of the source density, where the drmain n? integratian o tre
dbody surface. Once this equation {is solved for the sou~ce distribution, flinw
velocities both on and off the bodv surface can ne calculated., Implementing
this method for the computer requires an approximate veprasertstion <¥ the
body surface and.a numerical integration routine,

In the nonlifting program of reference 3, the hody i spacified o tF>
computer by a set of points, which presumably 1i{e exactly <r the hodr surface.
These points are associated into groups of f .ur "adjscent” points and 8 least-
squares plane passed through them, The four pcint: sre ther projected into
~ this plane to form the corners of a plane quadrilateral surface element. Whor
this process is completed for all of the points, the pody surface Is appro<i-
mated by a set of plane quadrilaterals. A hyootheticd) example 1S snown o
figure 6. Because of the process of rrojectinn, the edges of adiacent elumernts
may be not quite coincident, but errors from this source are small compared te
errors from the other numericdl approximations irherent in the methot.
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~ertain featurmss of the method of approximating the body surface are of
fmportance to the 1ifting appiicatfon., The peoirts defining the body are input.
inosuzh an crder that they define 2 family of approximately parallel curves
wwiryg in the hogry surface, Thase curves, which have scme of the feaiures of
surface coordinates have been designated “N-I%nes,“ as shown in figure 6.
{1n reference 3 the designation “colmn® {= used instead of "N-line." Zoth
have tre same meaning.) First all points along a certsin N-line are inpul in
order fron bottom tn top, and then the came is dane for the adjacent N¥-lire to
tre eight, Two adiacent N-lines bound a "strip” of elements of approxinately
cesstant width. The elsments are genera] quadrilazerels 2nd do wot recessarily
nave iwo paraliel sides or two aides of equal lemath, As & logical cevice 2
wmber of M.-lings can be associated Into ¢ "section.” Cften a section is
simoly an entire body, but serarate sections are often used tc¢ reprerant
seomelrically diffecent 9eris of the same body; #or axample, s wing and 2
fusalage, Alsd sections ave wsced to concentrat= ~lements ir certain /egions
of & a0y, Logically, the ccacept of a section means only that the last (or
#3421 “wline of the sectiun s not assaciated with the naxt [ov previuvus)
WY te form & strip of oiemerts,

SURFACE

ELE“EN%
T
-’ /////

CONT R
PGINTS

Figure 5. Representation 9% a non- 1Fting body oy guadrilateral
) surface elemenys.
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On each element one point is selected where the normal velocity boundary
condition is to be applied and where flow velocities are to be computed. This
point, which is designated the control point of the element, has been defined
various ways in the past but currently is identified with the centroid of the
element, Formulas have been derived that give the components of velocity
induced at a general point in space by a unit value of source density on a
general quadrilateral element. These formulas allow the velocities induced
by the elements on each other's control points to be calculated. Equating the
normal velocity induced by all elements at each control point to the negative
of the normal component of the onset flow (for the case of zero total normal
velocity) yields a set of linear algebraic equations for the values of source
density on the elements., Once these are solved, flow velocities can be
computed at the centroids and at any selected point in the flow field. For
the 1ifting application it is important to point out that the onset flow need
not be a uniform stream. Moreover, solutions for several onsets may be
obtained simultaneously. The onset flow affects only the right side of the
Jinear eauations for the source density not the coefficient matrix. Thus, if
a direct matrix solution is employed, several onset flows may be treated in
nearly the same computing time as a single onset flow.

6.2 Surface Elements for the Lifting Case

A 1ifting body and 1ts trailing vortex wake are approximated by quadri-
lateral surface elements in a manner very similar to that described in
reference 3 for a nonlifting body. The approximation procedure is outlined
here with emphasis on the differences from the nonlifting case.

As poninted out in section 5.3, certain portions of a general aerodynamic
configuration do not have well-defined trailing edges and are not normally
thought of as having their own bound vorticity; e.g., a fuselage. These
portions are denoted nonlifting portions to signify that they do not nossess
independent bound vorticity and that a Kutta condition is not applied on them,
However, in yeneral, the fluid exerts nonzero pressure forces on nonlifting
portions due to interference pressures from other nearby portions of the
configuration and due to extentions of the bound vorticity from Yifting portions
(see section 6.8). Nonlifting portions are approximated by general plane
quadrilateral elements in exactly the same way as in the nonlifting method of
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reference 3. In the main calculation such elements have source density but
not vorticity. The organization of the input datu by sections (see above) is
a natural way of isolating 1ifting and nonlifting portions.

Portions of a general configuration that possess definite trailing edges
(usually sharp corners) and contain bound vorticity are denoted 1ifting portions.
The most frequently occurring application with both 1ifting and nonlifting
portions 1s a wing-fuselage. Accordingly, this configuration is used as an
{1lustrative example in figure 7. On a 1ifting portion the N-lines are
approximately in the freestream direction. On each N-line points are input
beginning at the trailing edge, continuing around a "section curve" of the
wing, returning to the trailing edge, and proceeding downstream to define the
trailing vortex wake. The wake may be defined as far downstream as desired.
Provision has been made to consider the last element of the wake semiinfinite
so that wake definition may be terminated at any point aft of which the wake
curvature in the stream direction may be neglected. Usually a 1ifting portion
such as a wing 1s considered a single 1ifting section, but it may be divided
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Figure 7. Typical 1ifting configuration,
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into several 1ifting sections if desired.Within each 1ifting section all N-lines
must contain the same number of input points. Points on adjacent N-lines of a

lifting section are associated to form surface elements. The set of elements
formed from points on a pair of adjacent N-lines is denoted a "lifting strip"
of elements. The strip contains elements both on the body and in the wake.
Although two adjacent N-lines are not quite parallel in general, they are
nearly parallel in most cases.

=

Elements of 1ifting sections are taken as plane trapezoids. Each of the
- two parallel sides is formed from two input points on the same N-line. Thus

Al

the parallel sides are approximately along the N-lines. Of course, in the 7
general case the four input points that are associated to form an element do =
not even 1ie in the same plane, much less form a trapezoid. They must be
"adjusted" to do this. In the nonlifting program of reference 3 the input
points are adjusted to lie in the same plane but not to he trapezoidal. Thus,
1 the "adjustment” required is somewhat more for 11fting elements than for non-
1ifting. Adjacent elements have two input points in common, but the adjustment f
that these points are subject to is usually different for the two elements. )
Thus, in general, after adjustment the sides of adjacent elements are not .
coincident, and there are gaps between the elements, Such gaps exist for both
11fting and nonlifting elements, For the nonlifting case the unimportance of
the gaps is discussed in references 1 and 3. For 1lifting elements the gaps are K
presumably greater than for nonlifting elements, but it seems that in both cases %
the gaps should have the same order of magnitude, Thus, errors from this source
should be unimportant, It is pointed out in references 1 and 3 that for some
bodies the gaps between elements vanish. For 1ifting bodies the i:porict case :
for which this occurs is an untwisted wing, possibly swept and tapared, I-:ing -
the same airfoil section at all spanwise locations,

Y il e b
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The centroids of the elements are used as control points. Thus, for each
lifting strip the locus of control points is approximately midway between the
two N=Tines used to generate the strip. Elements of 1ifting strips have

source densities whose strengths are determined to give zero (or prescribed)
normal velocity at the control points.




6.3 Bound and Trailing Vorticity

In addition to the source densities on the elements, 1ifting portions
also possess a distribution of bound vorticity, As pointed out in section
5.2, the form of the bound vorticity uniquely determines the strength distri-
bution of the trailing vorticity, which lies along the input wake. The form
assumed for the bound vorticity contains a number of adjustable parameters
equal to the number of 1ifting strips on that 1ifting portion. The values
of these parameters are determined by applying a Kutta condition at the
trailing edge segment (figure 7) of each lifting strip. The simplest form
of the bound vorticity distribution utilizes a set of individual distribu-
tions, each of which i1s nonzero only on one lifting strip. The complete
distribution consists of a linear combinaticn of these inaividual distribu-
tions, each of which is nonzero on a different 1ifting strip. The combination
constants of the 1inear combination are the required adjustable parameters,
This is the type of distributfon used in the present methcd. Other existing
methods (references 4, 5, 6, and 7) also use this type of distribution.

The value of the parameter multiplying the distribution associated with a
particular 11fting strip represents the strength of the bound vorticity at
the "spanwise" location of that strip. Thus, as expected, the "spanwise"
variation of bound vorticity is determined by the Kutta condition. More
precisely the "spanwise" variation ¢f vorticity from one 1ifting strip to
another is determined by the Kutta condition. The “"spanwise" variation of
vorticity within the sma3l but finite span of each individual lifting strip
{s basically a question of the order of accuracy of a numerical integration
(see below for the options of the present method).

Even if the bound vorticity is of the type mentioned above, various
forms of this vorticity are possible. In addition, the "chordwise” or
"streamwise” variation of vorticity on a "section curve" at a particular
"spanwise"” location may be chosen at will, In the limit where an infinite
number of surface elements are used to approximate the body, it appears that
the calculated flow velozities are independent of the assumptions made con-
cerning bound vorticity. However, for practical element numbers, the form
_ assumed for the bound vorticity and its "chor. 'ise" variation have an
appreciable effect on the accuracy of the sol: <3.1. The methods of
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references 4, 5, 6, and 7 all use the same form for the bound vorticity, e
which consists of concentrated vortex filaments lying in the camber surface

of the wing. Some details are illustrated in figure 8a, which shows a )
single N-line representing a section curve of the wing. An equal number of :fé
elements is placed on the upper and lower surfaces. The input points defining B
the elements are arranged so that a pair of points, one on the upper surface
and one on the lower, lie nearly on the same perpendicular to the mean =
camber surface. The bound vorticity filaments, which appear as points in =
figure 8a, 1ie midway between corresponding points on the upper and lower =
surface, This arrangement maximizes the distance of the vortex filaments
from the wing surface and presumably reduces numerical problems associated
with the flow singularities at the filaments, Thus, in general the number
of vortex filaments is one less than half the number of surface elements in
the 1i1fting strip, although in certain formulations some vortices may be
given zero strength. The strengths of the bound vortex filaments are main-
tained constant over the "span" of each individual 1ifting strip., Thus,

SURFACE ELEMENTS - DEFINING POINTS

—
—ﬁ

e, e 8 M it 5 | s o mmntn e st o 5 e s bt

VORTEX (- MEAN CAMBER
FILAMENTS SURFACE
(a)
N-LINES BOUND VORTICITY FILAMENTS
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Figure 8. Representation of the bound vorticity by concentrated vortex
filaments lying in the mean camber surface. (a) A section
curve of the wing. (b) The complete three-dimens.inal .
vortex pattern. ]

' (b)
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the trailing vorticity is also in concentrated filaments. Forward of the

trailing edge these lie in the mean camber surface beneath the edges of the .
strip, i.e., midway between the portions of the N-lines on the upper and y
lower surfaces of the wing. Downstream of the trailing edge the trailing i
vortex filaments lie along the N-l1ines defining the assumed wake., A view of ‘

) the entire three-dimensional arrangement is shown in figure 8b., The formula-
' tions of the references use different "chordwise" variations of the vortex
f strengths. Reference 4 presents results for a distribution of zero strength

from 0% to 20% chord and from 80% to 100% chord. From 20% to 80% chord the

: distribution s constant. However, both reference 4 and the subsequent

' development of the method presented in reference 5 recommend use of a

"chordwise" vorticity variation approximately the same as the "chordwise"

' 1ift distribution. In a practical case this last might be determined from

linear theory or might be estimated from results for similar wings. Quite

different are the distributions used in references 6 and 7. Apparently,

reference 6 uses a vortex strength proportional to the local thickness of _

the airfoil section, while reference 7 uses a strength proportional to the ; i
|
r

T square root of the local thickness. Since exact solutions are not available

and experimental results are affected by viscosity, compressibility, and

testing error, the results of these calculations must be judged largely on 1 |
* their "reasonableness," e.g., lack of extraneous wiggles, etc. ? )

The present method uses a completely different form for the bound :
vorticity. Instead of concentrated vortex filaments interior to the wing,
there 1s a finite-strength sheet of vorticity on the surface of the wing,
i.e., the vorticity lies on the quadrilateral surface elements. The nature
of the singularity is thus reduced from . “ine s‘*ngularity to a surface
singularity. Some features of this formu!. *-.» 3re illustrated in figure 9 f
which may be compared with figure 8, The "chordwise" variation of the surface
vorticity strength may be chosen at will. In the present method the strength i
is taken as constant all around the airfoil section. This choice was influ- p|
enced by requirements of simplicity and by the fact that constant-strength
surface vorticity gives good results in two-dimensional cases (see below). ‘
The variation of vorticity over the “span" of a 1ifting strip of elements has
two options: constant and linear. In the former option the "spanwise" vari- A
ation of vorticity over the wing is a step function (figure 10a) whose values
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Figure 9. Representation of the bound vorticity by a finite-strength
vorticity distribution lying on the wing surface. (a} A section
curve of the wing. (b) The complete three-dimensional vorticity
pattern using a step function spanwise variation. (c) The
complete three-dimensional vorticity pattern using a piecewise
linear spanwise variation.
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Figure 10. Two forms of the spanwise variation of bound surface
vorticity. (a) Step function. (b) Piecewise linear.
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are determined by the Kutta condition, This form of the bound vorticity
has the advantage of simplicity and does not require special handling at
the end of a 1ifting section, e.g., a wing tip. However, the trailing
vorticity takes the form of concentrated vortex filaments along the N-lines
(figure 9b). This situation can be avoided by using a 1inear vorticity
variation aver the span of the 1ifting strip. In this case the trailing
vorticity takes the form of a vortex sheet over the surface of the strip,
i.e., over the surface elements (figure 9¢). If the vorticity distribution
were exactly continuous at the edges of the strips, i.e., at the N-lines,
there would be no vortex filaments on the N-lines. This 15 not possible in
general because, as mentioned in section 6.2, the edges of adjacent elements
are not quite coincident., Thus, there are small geometrical discontinuities
in the vortex sheet along the N-1ines. It is thus not worthwhile to attempt
to determine the "spanwise" rate of change of vorticity over a strip from a
condition of continuity of strength along the N-lines. Moreover, this type
of variation leads to serious numerical difficulties (reference 8). Instead
the spanwise rate of change on a strip is determined from a centered parabolic
fit over values of bound vorticity at the midspan of three consecutive strips
and strict continuity of strength at the N-lines is obtained only if the
"spanwise" varfation is truly parabolic. However, the discontinuity is of
high order, and the vortex sheet may be considered continuous to within the
order of the overall approximation. In this option the "spanwise" variation
of vorticity is a plecewise linear function as shown in figure 10b. The
trailing vorticity continues as a sheet into the wake, so that the velocity
has the desired behavior of discontinuity across the wake. The behavior does
not occur if the wake is composed of concentrated filaments as it is in the
methods of the references and in the above "step function" option of the
present method, The chief disadvantage of the "piecewise linear" option is
that special handling is required at the first and last lifting strips of a
section to determine the "spanwise" rate of change of vorticity (section 7.11).
Mcreover, in most cases that have been run with the present method using
both options for the bound vorticity, the calculated results are not very
different.

The accuracy to be obtained using various forms for the bound vorticity
may be investigated by considering the two-dimensional case for which exact

30




analytic solutions are available, Indeed this is a very natural procedure
because the essential three-dimensional feature is the "spanwise" variation
of vorticity which is determined by the Kutta condition., The form of the
bound vorticity and its assumed "chordwise" varfation have direct two- |
dimensional analogies, which are very similar numerically to what is being
calculated in three dimensions, The two-dimensional cases are obtained by
simply considering the "section curves" of fiqures 8a and 9a as two-
dimensional airfoils. The cases were run with the rather small element
numbers that are characteristic of the three-dimensional case rather than
the much larger element numbers that are available ir two dimensions to
obtain very high accuracy. Two cases are presented here that illustrate
different aspects of the situation.

The first case is a Karman-Trefftz airfoil, for which coordinates of
points on the body may be obtained very accurately using analytic expressions,
A rather extreme geometry was chosen so that differences in the solutions
could be seen more easily, The airfoil is 8.2 percent thick, has a 9°
trailing-edge angle and the rather large camber value of 24 percent. A sketch
of the shape is given in figure 11. Calculations were performed for an angle
of attack of 1.205°, The exact solution from the well-known formulas gives
a lift coefficient of 3.37. Using 50 surface elements, calculations were
performed with a constant-strength surface vorticity, as is done in the
present method, and also with interior vortex filaments whose strength is
proportional to the local airfoil thickness, as is done in the method of
reference 6. The calculated surface pressure distributions are compared with
the exact solution 1n figure 11, Neither calculated result is very good
because of the extreme geometry and the limited element number. However, the
error for the surface vorticity approach is about half the error for the
interior vortex filament approach. The "wiggles"” in the solution generated
from the interior vortex filaments are not due to inaccuracies in the points
defining the airfoil. These points are exact. The "wiggles" are apparently
due to changes 1n element lengths alony the surface. Adjacent elements differ
in length by no more than 25 percent, which appears quite reasonable. The
solution obtained from the surface vorticity does not respond to thic situa-
tion and 1s perfectly smooth.
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Figure 11. Surface pressure distributions on a Karman-Trefftz airfoil
of large camber at 1.205 degrees angle of attack.
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The second case 1s the conventional airfoil section shown in figure 12.
The coordinates of the points defining this airfoil were obtained by procedures
usual in design applications, and the result is that the point distribution is
not absolutely smooth but contains small irregularities. Calculations were
performed with 32 surface elements., Figure 12 shows the points defining the
airfoil and the locations of the 15 interior vortex filaments that were used
in the calculations with strengths proportional to local thickness. Calcula-
tions were also performed using the constant-strenath surface vorticity of
the present method. Surface pressure distributions calculated by the two
methods are compared with a very accurate conformal-mapping solution in
figure 12. The surface vorticity approach 1s unaffected by any irregularities
of the points and its results agree very well with the accurate solution.
In fact the point distribution of figure 12 is the one used with the present
method to produce the three-dimensional results of figure 42. The pressure
distribution calculated by the approach based on interior vortex filaments
has rather severe "wiggles" and also has a systematic error in pressure
level so that the 1ift coefficient obtained by integrating the pressures
differs from the exact value by 20 percent. !

From these two examples and others that have been run, it is concluded
that the representation of the bound vorticity by finite-strength surface !
vorticity is superior to the representation hy interior vortex filaments,
The former is far less sensitive to inaccuracy of the input data and tends
to give a more accurate solution even when the data is smooth,

6.4 Use of a Dipole Distribution to Represent Vorticity

From the previous section it can be seen that in the present method the
bound and trafling vorticity are represented by a general surface distribution
of vorticity, possibly with concentrated vortex filaments at the edges.
Formulas that express the velocity 1induced by such a vorticity distribution
are required. Derivation of such expressions is complicated by the fact that
the surface vorticity strength is a vector that varies in both magnitude and
direction, Furthermore, care must be taken to insure that the vorticity
distribution gives rise to a potential flow, i.e., that the individual
infinitesimal vortex lines either form closed curves or go to infinity. Use
of a surface dipole distribution circumvents these complications, because
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the dipole strength is a scalar and any arbitrary dionle distrihutuice grves
rise to a potential flow. A general result giving the relationshin Letueon
dipole sheet and a vortex sheet is given in Appeondix £, It mey e sumariced
as follows: A variable-strength dipole sheet is esuivalent to the sun of:

(1) a variable-strength vortex sheet on the :sme surface as the dimoie cheet
whose vorticity has a direction at right ang’es to *he grajient of the Jipoje
strength and a magnitude equal to the magnitude of iris gradisnt, and (2) a
concentrated vortex filament around the edge of the shaet whnse strength s
everywhere equal to the local edge value of «‘poie strerqth., inls re-ation.
which is a straightforward generalization of tte well-knowr two-dimencicral
result, does not appear explicitly in the literatuie, Its plausibility was

" discussed early in the present work by the 3:thor, 8.4.0. wmith, ard P 8.5,
Lissaman. The proof of this relation in App:ncix &, whith wa~ originally
outlined by the author in reference 9, is appyarently the first., A lste
derivation is contained in reference 10. In the presert wethoa all furnulas
are derived in terms of dipole distributions and the above relationship is uced
to interpret this situation in terms of the more phusicaily siunificant vorticity.
In particular "chordwise" dipole variation is equivaient toc "smanwise™ worticity
and "spanwise" dipole variation to "chordwise" vorticity. Also, if a dipole
sheet terminates with a nonzero strength, it results ir a concentrated vorter
filament.

6.5 The Kutta Corndition

It is an interesting and important fact that the "physicel® Kutta condition
of finite velocity at the trailing edge cannot be app'ied in a gereral nimericael
procedure for calculating flow. This s true in both two dinmensions and three
dimensions. If the general solution could be writter dowm in explicit aralytic
form, as is possible in a few simple two-dimensionai cazes, thea the appropviate
parameters could be adjusted to eliminate the singulur terms in the expression
for surface velocity. However, in a numerical solstion there §s no true singu-
larity, and a condition of finiteness without specifying a definite value cannot
determine specific values of a parameter. Accordinoly, the Kutta condition is
applied by indirect means} What 1s done is to deduce ancther property of the
flow at the trailing edge that is a direct consequence of the finritensss of vele
ocity and to use this related property as “th~ Kutta condition." Various properties
may be derived. Some are strictly valid onl' fcr the true flow (iimtt of infinite
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nurdeor of alements) and are aprlies wa a zase of finfte element number as an
ageroxiation,  Cthers napper to 5o trus far finite element number, and still
athars have divferest forws in casss oF infinize and of finite element numbers.
Ir gereral, cenfiticns a0t be wopliod exactly at the trailing edge if a
fFizite nunber of olements iv used  !sxcept in the sense that quantities can
be extripniated to the trifiing adae), Thus, "the Kutta condition" fs applied
a small gistanc2 away fram fhe Yr2iYing edge, and determining an appropriate
vaiue for this dizlance and its «ffact or the solution is part of the problem.
The situatisoe <an Le stfected by the fart that some flow conditions at the
trav!ing edqe are extremely local, and their values are quite different even
g smal} distance awey., Such very locil conditions cannot be applied to

cases % reasonable element nushers. '

Some related properties that may be deduced from the Kutta condition

are as follows:

Two=0imens ions:

(a) A streamlipe of the “low leaves the trailing edge with a direction
atnng the hisector uHf the trailing-edge angle.

) As At.n'e trafling edge fs approached the surface pressures (velocity
magnitudes) on the upper and lower surfaces have a common limit,
which 2quals stugnation pressure (zero velocity) if the trailing-
edge 2vng1e §s nonzero.

{c) Tha source deasity at the trailing edge is zero.

Three-pirersions.
{a) 2 stream surface of the flow leaves the trailing edge with a
dfrectior, that is known, or at least can be approximated (see

helcw),
{5} &5 the trailing edge is approached, the surface pressures (velocity
magnitudes) on the upper and lower surfaces have a common limit.

(c) The source density at the trailing edge is zero.

The exaaple properties above can be used to apply the Kutta condition in
czses of finite 2lement number. Property (a) in either dimensionality
o ffers from the others in that it must be applied off the body surface.‘
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Points downstream of the trailing edge are selected to be on the stream
surface or streamline and directiors normal to the stream surface or stream-
1ine are prescribed. Then a fiow tangency condition of zero normal velocity
is applied at these points just as if they were control points of ‘rface
elements., Selection of distances from the trailing edge at which to apply
the flow tangency condition is part of the problem. Properties (b) and (c)
are applied on the body surface. Since the flow on the body has meaning
only at the control points, these conditions are applied to flow quantities
at the control points of the elements adjacent to the trailing edge on the
upper and lower surfaces. In two dimensions there are just two such elements,
while in three dimensions there are two elements on each lifting strip. It
might be supposed that property (c) is applied by requiring source dersities
on elements adjacent to the trailing edge to be zero. This amounts to two
conditions per 1ifting strip and thus overdetermines the problem. The best
that can be done is to require that for each 1ifting strip the values of
snurce density on the two elements adjacent to the trailing edge be equal in
magnitude and of opposite sign. Similarly, condition (b) is applied by
requiring that for each lifting strip the maacnitudes of the velocity at

the control points of the two elements adjacent to the trailing edge be
cqual. This 1s done even in two dimensions where tne theoretical velocity
of zero is so local that the velocity is an appreciable fraction of freestream
velocity at the control point adjacent to the trailing edge.

In appiications, property (c) has not been used. The methods of
references 4, 5, 6 and 7 use property (a). The present method has the option
of using either property (a) or property (b) as "the Kutta condition.," If
property (a) is used the points where it is to be appifed and the normal
vectors at these points must be furnished to the program as input. Flow
velocities are computed at all contral points due to the bound vorticity
distribution associated with each 1ifting strip. Each of these flows is
considered as an onset flow to the body, Let the total number of quadri-
lateral source elements be N and the number of 1ifting strips be L. Then
there are L vorticity onset flows, each of which consists of velocity com-
ponents at: the N control points, the L points where property (a) is to
be applied (if that option is used), and any other off-body point where flow
is to be computed. For each onset flow a set of N values of source density
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on the elements is obtained that gives zero normal velocities at the N
control points. The same is done for the uniform onset flow that represents
the freestream, As described in section 6.1, the values of source density
are obtained as solutions of a set of linear algebraic equations whose

N x N coefficient matrix is the same for all L + 1 onset flows. The onset
flows simply yield L + 1 right sides for the equations. Using a direct
matrix solution all L + 1 sets of source density are obtained simultaneously.
The desired source density distribution is a linear combination of these
individual distributions. The constants in this linear combination are the
L values of bound vorticity associated with the various lifting strips, and
these are determined from the Kutta condition. (The solution corresponding
to the uniform stream enters with unit coefficient.) Flow velocities for
the individual solutions are computed only for the points used to apply the
Kutta condition — either the control points of the elements adjacent to the
trailing edge if property (b) is used, or the additional input points down-
stream of the trailing edge if property (a) °s used. The Kutta condition
results in L simultaneous equations whose solution yields the desired L
values of bound vorticity. In typical cases the number of 1ifting s*trips L
s 10 to 30, as contrasted with the number of surface elements N, which is
300 to 1000, Thus, solution of the equations expressing the Kutta condition
ts a regligible computation compared to solution of the equations for the
vajues of source density. The values of bound vorticity are used to compute
a single set of N values of source density — the "combined" values — that
are used to compute velocities at the control points of the elements,

An alternative numerical procedure for implementing the application of
the Kutta condition is employed in references 6 and 7. As mentioned above,
the bound vorticity associated with each 1ifting strip induces a velocity at
each control point. These may be treated exactly the same as the velocities
induced by the indfvidual source quadrilaterals (section 6.1), i.e., the 1.
values of bound vorticity may be treated as additional unknowns in the equa-
tions expressing the normal velocity boundary condition. This yfelds N
linear equations in N + L wunknowns. The Kutta condition supplies the addi-
tional L equations, If the Kutta condition is expressed as property (a),
as is done in references 6 and 7, the additional L equations are linear.
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As discussed in references 1, 2, and 3, the N x N coefficient matrix

due to the source quadrilaterals has a dominant main diagonal and is well
suited to numerical solution either by direct solution or by iterative solu-
tion. The additional L equations from the Kutta condition do not have
dominant diagonal terms so that the (N + L) x (N + L) matrix used in refer-
ences 6 and 7 is not well-conditioned. However, suitable partitioning of
this matrix (the partitioning is different in reference 6 from that of ref-
erence 7) yields rapidly convergent iterative solutions. If the property (b)
is used to express the Kutta condition, the additional L equations are
quadratic because they are applied to a vector magnitude. (In two dimensions
the surface velocity has only one component, and the equations derived from
property (b) are linear.) This might not be a serious handicap in an iter-
ative procedure, but it has never been tried,

The relative advantage or disadvantage of an iterative solution, like
that of references 6 and 7, compared to a direct soluticn, like that of the
present method, is primarily a matter of computing time. The situation is
affected by the particular computer being used and by the accounting
algorithm for multiple-user machines, However, by fcv the most important
considerations are the element number N and the type of body about which
flow is to be computed. A direct solution for a set of linear equations
requires a computing time proportional to N3, and this time is independent
of the body. An iterative solution requires a computing time proportional
to the product IN2, where I 1is the number of i1terations needed for
convergence, It is clear then that for sufficiently large N, the iterative
solution is quicker (assuming that I 1i5 independent of N, which appears
to be the case in the present application). Similarly, for sufficiently small
N the direct solution is quicker. The "“crossover" value of N, where the
two methods are equal is directly proportional to I. For simple
bodies, such as wing-fuselages, 1 1s approximately 15 and the crossover
value for N 1{s perhaps 800 for an IBM 370-165. In any event, the iterative
solution is clearly superior for N = 1000, and the direct solution is
clearly superior for N = 500, For more complicated bodies, and particularly
for sjtuations 1nvolving interior flows, I 1{s considerably larger, and thus
so 1s the crossover value of N. Such situations arise, for example, with
nacelles (reference 1) and with bodies in a wind tunnel (section 9.4). If
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the estimated computing times are not too different, the direct solution is
to be preferred, because the time required is predictable, It appears that
the most efficient procedure is one containing both direct and iterative
solut’ 5 of the linear equations as options. Inclusion of an iterative
solution in the present method is a desirable future extension.

In the present method, application of property (b) is straightforward
and requires no additional input. Its effectiveness can be judged simply
by the accuracy of the resulting calculation, as discussed below. Applica-
tion of property (a) (either in the present method or in the methods of
references 6 and 7) requires the answer to two questions: How far from the
trailing edge should it be applied? In what direction with respect to the
trailing edge should the point of application be situated? The answer to
the second question which will be considered first, appears to be related
to the direction by which the stream surface leaves the trailing edge of
the wing. However, this last turns out to be false in many applications.

The behavior of the vortex wake in the neighborhood of the trailing edge
of a three-dimensional 1ifting body has been worked out from basic principles
in reference 11 under the assumption of inviscid potential flow. The results
are easy to state. The only two quantities that affect the situation are
the local section 1ift coefficient and the local value of the average component
of velocity along the trailing edge (averaged between upper and lower surfaces).
Theoretically, the magnitudes of these two quantities are not important —
only their signs, Consider the usual case when the local section 1ift coef-
ficient 1s positive. Then reference 11 states that 1f the component of
velocity along the trailing edge is outboard, the vortex wake Teaves the
trailing edge tangent to the upper surface, If this velocity component is
inboard, the sheet Teaves tangent to the lower surface. The situation is
11lustrated in figure 13. If the local section 1ift coefficient is negative,
the situation is reversed.

The above results mean that the way in which the vortex wake leaves the
trailing edge depends on the final flow solution and is thus not known ahead
of time, On the face of it this is a problem. However, in many practical
cases it is obvious which way the flow at the trailing edge goes. 1In regions
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Figure 13. Theoretical behavior of the vortex wake at the trailing
ed?e of a wing. (a) Outboard trailing edge velocity.
(b} Inboard trailing edge velocity.
where there is some doubt the flow component along the trailing edge 1is
probably small compared to freestream, This situation, which occurs rather

often in applications, has an important effect on the application of the Kutta
condftton,

Reference 11 proves that for any outboard trailing-edge velocity, no
matter how small, the wake is tangent to the upper surface as shown in
figure 13a, Similarly, for any inboard velocity, no matter how small, the
wake is tangent to the lower surface, as shown in fiqure 13b. On the other
hand, it is physically evident that a small change in conditions at the
trailing edge gives a small change in the wake position a finite distance
away, That 1s, as the trailing-edge velocity changes from small and out-
board to small and inboard the wake position a finite distance downstream

does not "flip flop," but changes only slightly. The question is how can
this be resolved with results of reference 11.
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The only explanation appears to be that as the trailing-edge velocity
component becomes small — either inboard or outboard — the wake approaches
the trailing edge bisector at small finite distances from the trailing
edge. That is, the curvature of the wake at the trailing edge becomes large
as the velocity becomes small and in a very small distance the wake "curves
around" and approaches the trailing-edge bisector. The situation is sketched
in figure 14, The wake approaches the trailing-edge bisector more and more
rapidly as the velocity component along the trailing edge approaches zero,
The above argument requires only continuity and symmetry.

Thus, if the Kutta condition in the form of property (a) is applied, a
finite distance from the trailing edge (as it must be in the present method
and those of references 4, 5, 6 and 7) and if the sweep angle of the
trailing edge is such that the component of velocity along the trailing edge
is not large, then the point must 1ie along the trailing-edge bisector. For
example, the method of reference 6 applies property (a) a distance of 3 percent
of local airfoil chord downstream from the trailing edge and states that the
point should 1ie along the bisector of the trailing edge rather than the
tangent to the upper surface as required by reference 11, On the other hand,

\ WAKE FOR SMALL

INBOARD VELOCITY
TRAILING EDGE
BISECTOR /

\
WAKE FOR SMALL >
OUTBOARD VELOCITY

Figure 14. Behavior of the vortex wake near the trailing edge for
small values of the trailing edge velocity component.
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it is clear that for large positive sweep angles, the component of velocity
along the trailing edge becomes the same order of magnitude as freestream
velocity. Presumably, the Kutta condition should then be applied along the
tangent to the upper surface. At what value of trailing-edge velocity it
becomes necessary to change from one scheme to the other is not known, but
it certainly must be dependent on the distance of the point of application
from the trailing edge. Numerizal experiments presented in reference 6 and
similar experiments performed by the present author show that the calculated
results are rather sensitive to the direction of the peint of application of
the Kutta condition. For a typical trailing-edge angle the calculated 1ift
coefficient obtained from an application point on the trailing-edge bisector
can easily differ by 20 percent from the 1ift coefficient cbtained from an
application point on the upper-surface tangent,

Even when the direction from the trailing edge of the point of application
of the Kutta condition is not a problem, calculations using property (a)
(wake tangency) are affected by the distance of the point of application from
the trailing edge. This 1s to be expected. What is not expected, however, is
that 1f property (b) (pressure equality) is used in the manner described above,
the calculated results are not sensitive to distance from the trailing edge.
A study was made in two-dimensional flow, where the streamline is known to
leave the trailing edge along its bisector. The airfoil selected was a sym-
metric 10-percent thick RAE 101 airfoil at 10 degrees angle of attack. Bound
vorticity was provided by a constant-strength sheet of vorticity coincident
with the airfoil surface as described in section 6.3, Cases were run with
27, 53, and 103 surface elements. The results were also extrapolated to
infinite element number, Calculated 1ift coefficients are shown in figure 15,
Since property (b) (pressure equality) is applied at the control points of
the two elements adjacent to the trailing edge, there is just one 1ift
- coefficient for each element number. These are plotted at the chordwise
distance of the nearest control point from the trailing edge, which ranges
from 1.75 percent chord for the 27 elemant case to 0.25 percent chord for
the 103 element case. Remarkably, the calculated 11ft coefficients are almost
constant at a value of about 0,944, and the extrapolation to the trailing
edge ftself (infinite element number) yields a value of 0,943, For each
element number property (a) (wake tangency) was applied along the trailing-
edge bisector at distances from the trailing edge ranging from 0.25 percent
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chord to 4.0 percent chord. The calculated 1ift varies significantly with
both element number and distance of the application point from the trailing
edge. It appears that results are more sensitive to distance from the
trailing edge than to element number. If results are extrapolated both to
infinite element number and to zero distance from the trailing edge, the 1ift
coefficient is given as 0,942, This agrees with the value obtained by
extrapolating property (b) and with the value of 0.9423 obtained by a high-
accuracy conformal mapping solution. However, for the 27 element case

(a reasonable number in three dimensions) the extrapolated 1ift coefficient
for zero distance is 0.955, which is reasonably close to the correct value,
hut use of a point of application at 3 percent chord, as called for in
reference 6, gives a 1ift coefficient of 1.005, which is considerably in ervror,
Even for the extrapolation to infinite element number, a point of application
at 3-percent chord gives a 1ift coefficient of 0,989, Thus, it appears that
use of a pressure-equality Kutta condition applied on the body (property (b))
is more accurate and less sensitive than the flow-tangency Kutta condition
applied in the wake (property (a)), which is used in references 4, 5, 6 and 7
even if the direction by which the wake leaves the trailing edge is not a
problem,

6.6 Symmetry Planes

To conserve computing time and reduce the required input, the method is
equipped to take advantage of any planes of symmetry the flow may possess.
Either one or two symmetry planes may be accounted for. The xz-plane is
denoted the first symmetry plane. If thcre is one plane of symmetry,it must
be the xz-plane,and the points Jlefining the nonredundant portion of the body
must be input accordingly. The xy-plane is denoted the second symmetry plane.
If there are two symmetry planes, they must be the xz- and xy-planes, and the
input points must reflect this. Fach symmetry plane is designated either
“plus” or "minust? A plus svmmetry plane has zero normal velocity at all
points of the plane, {.e., it behaves as a solid wall. A minus symmetry
plane has zero velocity potential at all points of the plane. The usual
application in aerodynamics consists solely of plus symmetry planes. An
example of a negative symmetry plane 1s a free surface for the condition of

infinite Froude number. Thus, a hydrofoil traveling near th: water surface
has two symmetry planes — one plus and one minus.
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Symmetry is accounted for in the part of the calculation devoted to
the velocity induced by the quadriiateral surface elements. Recall that an
element may have on it either a source or a dipole distribution or both,
Velocities are computed at all control points due to the source and/or dipole
distribution on a basic element defined by input points. Then this element
is reflected successively in the symmetry planes, induced source and/or dipole
velocities at the control points are computed for the reflected elements,
and the induced velocities for the reflected elements are added to the cor-
responding quantities for the basic element. Reflection in a plus symmetry
plane requires a source distribution of the same sign as the original but
a dipole distribution of oppnsite sign. (A11 magnitudes of course are equal
to the original.) A minus symmetry plane yields the opposite situation, i.e.,
source changes sign, dinole does not.

In symmetry cases it is assumed that the y-direction is essentially
"spanwise" on the wing, so that the first symmetry plane is the midplane of
the wing. The second symmetry plane (if any) is then available, for example,
as a ground plane. Fiqure 16 shows a section of an element and its bordering
N-1ines, together with their reflections. 7The N-lines are labeled "first"

z |
FIRST
N-LINE
LIFTING
5 ;k\\\l/r~‘ELEMENT
SECOND
Y

e

S F

Figure 16. Reflection of an element and its associated N-lines in
symnetry planes.
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and "second} and in the case shown the "first" N-line is inboard from the
"second" one with respect to the span direction on the basic element. It caun
be seen that reflection in the y-direction reverses this relationship while
refiection in the z-direction does not. This condition affects the assembly
of the dipole velocities, and thus the input points should be compatible with
the above assumption,

6.7 Multiple Angles of Attack

The method can calculate flow about a 1iftina configuration for several
angles of attack of the freestream in essentially the same computing time
as that required for a single angle of attack. In the latter case, sets of
) source density are obtained for L + 1 onset flows — 1 uniform stream at
angle of attack, and L bound vorticity onset flows, Here L 1is the number
of 1ifting strips and is generally in the range 10 to 30. The Kutta condition
k then yields L combination constants for these vorticity flows. It is also
possible to input several angles of attack, say F, and obtain F + L basic

Sl e

source distributions for the F uniform flows and L vorticity flows.

\ Then the Kutta condition is applied to each of the F uniform stream solu-

| tions separately to obtain a complete set of L combination constants for the
vorticity flows. Using these constants, a "combined" source density distri- 1 \
bution is obtained for each angle of attack in the manner described in section
6.5. The output consists of a complete set of surface pressures and off-body
velocities for each angle of attack, For comparison purposes nonlifting )
solutions may also be obtained by computing strictly from the source densities E
obtained from the uniform onset flows. :

When computed in the above manner, the solutions for all angles of attack
have the same position for the trailing vortex wake. This is, of course, an
approximation, because the true position of the wake changes with angle of
attack. However, as will be discussed in section 8.5, the calculated surface
pressures are very insensitive to angle of inclination of the wake with the
range of practical interest, Thus, solutions obtained by the multiple angle-
of-attack option are essentially as accurate as can he expected from potential
flow.
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6.8 Some Special Situations

The basic theoretical difficuities with the potential-flow model for
11ft (section 5.3) have their effect on the method of solution by necessitating
special handling of certain frequently occurring situations, The special
features that have been bujlt into the rethod to handle these situations are
discussed in this and in the following section. Other special situations may
be discovered in the future.

Two special situations exist where elements must be placed inside the
body surface. No normal-vejocity boundary condition can be applied at such
elements ard no source density should be applied to them, Thus, these elements
do not count as far as the watrix of induced velocities is concerned. How-
ever, they do have dipole distributions and these must be accounted for.

The first situation occurs when a nonlifting portion of the body inter-
sects a lifting portion at a finite angle (often nearly normal) without \
breaking the continuity of the trailing edge. An example is provided by
the wing-pylon intersection shown in figure 17. A certain portion of the

A l [ [ [/

INTERSECTION

/ PN/

m LIFTING

STRIPS

LIFTING
ELEMENTS
INSIDE THE
PYLON

Figure 17. Handling of a wing-pylon intersection.
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11fting body surface is "“inside" the pylon. Howevar, vhe dijsre disteidution
should be continuous through this regfon to :ivofd nuemerical Avffrouities,

i (3]

Thus, as far as dipole calcilations are concernel, the “ingide” elenprts ore
normal members of the 1ifting strips to which trey belang. bBut ihey are
ignored as far as source calculations or be.rdaiy conditinns ary corcerned,
Such elements are designated "ignored elemarts ™ Thoy uiualiy comprive oty

part of a 1ivting strip.

The second situation occurs when a 1ifting portion of tne body intersects
a nonlifting portion at a finite angle (often nesriy namal o Vre dnmor tant
case of this is the wing-fuselage intersectson, =5 fi-u-trated 1u fiogre 10,
As 1s well-known, the local"section 1ift coefficiert” on the wing dues nut

~- EXTRA SIS S Lol b SWERIS

(\DWCLE STRENLTS (onnTan
WNOSTANWCRE (NSEC VDN

N-LINE ALONG
WING-FUSELAGE INTERSECTION

G POV
LOCANTEL AR
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Figure 18. Handling of a wing-fu:ricor 1iterymiiin,
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fall to zerc at the fuselage intersection, Thus the dipole strength on the
N-1ine 1ying along the intersection is not zero. However, the 1ifting section
cannot simply be terminated, because that would result in a concentrated
vortex filament right on the surface. Accordingily, an addiiional or "extra"
1ifting strip is added to the 1ifting section (see figure 18). It is either
the first or the last strip of the 1ifting section. The extra strip lies
inside the nonlifting body and is & complete 1ifting strip including wake.

No source densities or normal-velocity boundary conditions are applied to

the elements of the extra strip., The dipole strength is taken constant in
the "spanwise" direction across the extra strip, The value of the dipole
strength on the extra strip is such that the dipole strength is continuous
across the N-1ine lying along the wing-fuselage iatersection., The interior
edge of the extra strip has nonzero dipole strength and may lead to a concen-
trated vortex in the streamwise direction. For example, . shown in figure 18,
the vortex may lie along the fuselage centerline and its downstream extension,
If the 1ifting configuration has a right-and-left symmetry, e.qg., a fuselage
with both wings, ond i. +the flow is also symmetric, e.qa., zero yaw, the

extra strips for the right and left sides have the same strenaths on their
tnterior edges. Tnur, in this case thera is no discontinuity of dipole
strength and no concentrated vortex, I[f, however, the 1ift {is not symmetric,
there will be a concentrated vortex, This is unavoidable vecause t is
physically real. An example is the hub vortex orf a propeller. This also
occurs at a tip tank, which 1s essentially a rmall fuselage with only one
wing, However, the case shown 1n section 1C.) exhihits no numerical difficulty.

6.9 Summary cof the Logic of the Calculation

The overall logic of the ncthod is rather similar to that of the method
for nonlifting potential flow described in section 6.1. There are, of course,
certain additions, The order of the various parts of the calculation and
their functions are outlined below,

The geometry of the three-dimensional configuration 1s input to the
program in the form of coordinates of a set of points, The points are input
along N-Tines, which are essentially coordinate curves in the body surface
(figure G), The configuration is divided into 1ifting and nonlifting portions
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as discussed in section 6.2. Each of these may be further aivided into
sections — 1ifting and nonlifting. The nonlifting sections are input first,
The N-lines of the 1ifting section define both the body and the trailing
vortex wake. Coordinates of points off the body in the flow field where
flow calculations are desired are input after the points defining the body.
If the Kutta condition is applied by a condition of flow tangency downstream

of the trailing edge in the wake, coordinates of these points and the cor-

o An el

responding normal vectors are input between the on-body and the off-body

' points. The remaining input consists of control flags governing the logic
of the calculation plus a few parameters, such as angle of attack.

T

-

Surface elements are formed from input points in the manner described
in section 7.2 for lifting sections and in the manner of reference 3 for
nonlifting sections. The “formation" of an element consists of the calcula-

il

tion of various geometric quantities associated with that element, dincluding
7 coordinates of the control point (centrnid), components of unit vectors along :
the axes of a coordinate system based ¢n the element, one of which is the j |

unit normal vector to the element, and moments of the area of the element. 7!
Elements of 1ifting sections are logically associated into 1ifting strips :
of elements, which consist of those elements fotrmed from the same two N-lines. T

Every element has on it a constant source density. Lifting elements also
have a dipole distribution. Formulas have been derived that enable velocities
Tnduced by the elements at points in space to be calculated (section 7.0 for :
14 fting elements and reference 3 for nonlifting elements). For each element .
the velocities induced by {ts constant source density at all control points ;

[T O B EE R

and off-body points are computed and saved in low-speed storage (tape or disk).
If there are symmetry planes, velocities induced by the reflections of an
element are added to the velocities due to the element itself, This is the
vector matrix of induced velocities. For each element of a 1ifting sectinn
velocities induced by its dipole distribution at all caintrcl points and
off-body points are computed. These, however, are not saved individually,
Instead, dipole velocities tor all elements of a 1ifting strip, including
wake elements, are added to ovtain veiocities due to the entire strip. Thus,
if there are N source element:, at whose control points tne normal-velocity
boundary condition 1s to be applied, 0 off-body points, and L 1ifting
strips, there is a (N + 0) x N matrix of induced source velocities and a

51




(N +0) x L matrix of induced dipnle velocities. For the “"step function"
bound vorticity opticn, the dipole (vorticity) velocities induced by a lifting
strip are those due to a spanwise constant dipole distribution and they can
be computed in a straightforward manner. For the "plecewise linear" bound
vorticity option, two sets of induced dipole velocities are computed for
each lifting strip: one due to a spanwise constant dipole distribution and
one due to a linear distribution with unit rate of change in the spanwise
direction and zero value at the "midspan" of the strip. These are then
combined using the mechanism of the parabolic fit and the conditions at

the ends of the 1ifting sections to obtain L sets of induced dipole
velocities, each of which is proportional to the midspan value of bound
vorticity on one 1ifting strip. The calculations outlined in this paragraph
comprise one of the two time-consuming parts of the method.

The first N rows of the induced source velocity matrix are the
velocities at the control points. Components of these velocities along the
local normal direction are computed to yield an N x N scalar matrix of
induced normal velocities. This is the coefficient matrix of the linear
equations for the source density. The right sides of the linear equations
censist of components along the local normal direction of: F uniform onset
flows at various angles of attack and the first N rows of the induced
dipole velocity mc.rix., The linear equations are solved by direct elimination
to yield (F + L) sets of source densities on the N source elements.

The matrix solution is the second time-consuming part of the method.

Flow velocities are computed for all (F + L) sets of source density
at the points used to establish the Kutta condition. These are the 2L
control points adjacent to the trailing edge on all 1ifting strips if the
condition of equal upper and lower surface pressure is used. If the condition
of flow tangency in the wake downstream of the trailing edge is used, the
points are L particular off-body points input to the program, The Kutta
condition is formulated as L equations for the L values of bound vorticity
on the 1ifting strips using each of the F uniform-stream flows in turn
with the L vorticity flows. The result is F sets of L values of bound
vorticity. For each uniform onset flow a “combined" set of source densities
is obtained as a linear combination of the basic L sets of source densities
corresponding to the vorticity flows and the set of source densities for
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the uniform flow itself. The combination constants for the vorticity flows
are values of bound vorticity obtained from the Kutta condition. There are
F sets of N values of the combined source densities. Similarly, the same
values of bound vorticity are used as combination constants to obtain a
"combined" onset flow at all N + 0 points where velocities are to be
computed. There are, of course, F such "combined" onset flows.

A complete flow solution is computed using each set of combined source
densities and 1ts corresponding combined onset flow. Such a solution consists
of: flow velocities and pressures at all control points, flow velocities at
all off-body points, the bound vorticity values used to satisfy the Kutta
condition, and integrated forces and moments on each 1ifting strip, on each
1ifting and nonlifting section, and on the entire configuration. An option
also exists for computing a nonlifting solution at each angle of attack by
setting all values of bound vorticity equal to zero.

53
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7.0 DETAILS OF THE METHOD OF SOLUTION

7.1 Order of the Input Points

As mentioned previously, the points defining the body surface are input
N-line by N-Tine, and the points on a given N-line are input consecutively,
The order of the input determines the direction of the outer normal vectors
to the elements, i.e., determines whether the case in question is an interior
or an exterior flow, The rule for insuring that normal vectors point into
the field of flow rather than into the interior of the body is the same as in
reference 3: If an observer in the field of flow looking towards the body
surface sees N-lines input from left to right, he should also see individual
points on an N-line input from bottom to top. An example of correct input for
the right wing of an airplane is as follows: The N-lines are input from tip
to root. On each N-line the points are input beginning at the trailing edge,
traversing the lower surface to the leading edge, returning to the trajling
edge along the upper surface, and continuing intdo the wake. The alternate
way of inputting a right wing is to input the N-lines from root to tip and |
on each N-1ine to input upper surface points first followed by the lower !
surface points and the wake points. Both of these input schemes produce '
identical surface elements., However, they lead to somewhat different
implied surface dipole distributions, This matter is discussed in section 7.3,
The conclusion is that the first of the two input schemes above is to be '
preferred. In any case, the logic of the program for determining which ‘ ﬂ
elements are on the surface and which are on the wake requires that the first
point on an N-1ine of a 1ifting section be at the trailing edge.

7.2 Formation of the Elements from Input Points

This section outlines the way that the elements are actuaily formed
from the input points. There are two principal differences between the
formation of 1ifting elements and that of nonlifting elements. The first
js the manner of adjusting the input points to make a plane quadrilateral.
The second is the calculation of area moments up to fourth order. The
procedure for forming nonlifting elements is given in reference 3 and wili
not be repeated in this section, which is concerned solely with 1ifting
elements,
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Let the coordinates of the input points that are used to form an
element be denoted x:(, y;, zl. k=1,2, 3, 4, These coordinates are with
regpect to the reference coordinate system, the system in which the physical
lifting configuration is defined. It simplifies the equations to use vector
notation, so define

i i i
X = % T+ yl T+z K (7.2.1)

where 71, J, K, are unit vectors along the axes of the reference coordinate
system. Recall that an element is formed from points on two consecutive
N-1ines. The input points k =1 and 2 are on one N-line, the "first"
N-1ine, and the input points k = 3 and 4 are on the "second" N-line. In
what follows, subscripts F and S are used to denote quantities associated %
with the first and second N-lines, respectively. The numbering k =1, 2, 3, 4

is cyclic around the element to be consistent with reference 3. The adjustment

of the input points, which is shown in figure 15, is as follows.

First form the N-line vectors

PF =X2"‘X], PS=X3—X4 (7.2-2) ;:
|
1
3 CORNER POINTS 2
INPUT POINTS 1
SECOND FIRST 7 |
N-LINE N~LINE - ‘
i
MIDPOINT OF VECTORS e <
F
4 )
INPUT INPUT
POINTS 4 CORNER POINTS — i POINTS

Figure 19. Adjustment cf the input points to form a plane trapezoidal
element,
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The two parallel sides of the trapezoid are taken as parallel to the weighted
average of these two vectors, In the coordinate system of the element this
is also the direction of the x-axis. The unit vector parallel to the two
parallel sides of the trapezoid is denoted Tk to show it is also the unit
vector along the x or £ axis of the element coordinate system., It is
computed from

P+ P
T = A (7.2.3)
l?} + Fél

where IVI means absolute magnitude of the vector Vv, i.e., the square rout
of the sum of the squares of its componerts. The parallel sides have the
direction of ?é. The calculation insures that each parallel side has the
same midpoint and the same length as the segment of N-line from which if is
formed. In fact, once the elements are formed the original N-line

segments are replaced by these parallel sides. The side lengths are

de = |FF| dg = .FS' (7.2.4)
The midpoints in vector form are
~ _ ) =, =i -~ ) =~ -

The endpoints of the two parallel sides, which are thus the corner points of
the trapezoidal element are, in vector form,

-~ 1 - _ = 1
Xy = Xp —7 deTe Xy = Xp + 3 dcT
(7.2.6)
- 1 , - _= 1 =
X3 = ¥g * 3 dgip s Xy = g — 7 dgig
The normal vector to the plane of the elemnt is
-hz lin -—* il _L {
N (x4 xz) X (x3 x]) (7.2.7)
The unit normal vector is
- (7.2.8)
IN}
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This is also the unit vector along the z-axis of the element coordinate system.
The unit vecter along the y or n axis of the element coordinate system is

- _ -
Jp=nx T, (7.2.9)

In comf ‘nent form the three unit vectors are
Te=anT+aT+ a5k

= a217'+ a223~+ azjf (7.2.10)

-

no= K otugy T+ agd + agk

The 3 x 3 array of a’s 1is the transformation matrix that is used to trans-
form coordinates of noints and components of vectors between the reference
and element coordinate systems in the manner described in reference 3.

Temporarily the origin of the element coc-dinate system is taken as the
point whose coordinates are the averages of those of the input points. (The
same averages are obtained using the corner points.) In vector notation, the
average point is

- )~ -
Xav ° ?'(XF + xs) (7.2.11)

With this origin, the element coordinates of the corner points are

*

£ = 3y (% = xg ) ¥ Ay —y, ) gz -z,

* (7.2.12)
n = 3y =g ) gty —yg) +ag(z —z,)

k =1,2,3,4

where in accordance with vector notation, Xi» Yir 3, are the coordinates of

?k from (7.2.6). It will turn out that
* * [ ] *
n] = n2 and na = n4 = - n; (7.2.]3)
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The width of the element is

* *

_ _ *
W= m —ny=2n

The slopes of the nonvertical sides of the element (figure 20) are

%* *

_2T 5

M3z w

* *
9T

M4 w

with respect to the m aﬁis. The coordinates of the centroid are

. we  Map — My
- F = E3 * 3
L
YN
%o 2 "o
The reference coordinates of the centroid are
X0 = Xav * aHgo * a21”0
Yo = Yav T 1280 * 2227
2o = 23y 3385 * 300
3
SLOPE=m 35
FIRST
(£3.73) w —0b3; N-LINE
SECOND
N- LINE ¢ I-L=AF
=A /
HEASN f ¥ 7
fl':AS"'BS€ b4| \F,:AF{.BFf
(£4.m4) —
Figure 20. A plane trapezoidal element.
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The centroid is now taken as the origin of the element coordinate system and
replaces the average point in all subsequent calculations. With respect to
the centroid as origin, the element coordinates of the corner points are

E &~
(7.2.18)
*
where

These are the corner point coordinates used in all subsequent calculations.

Several other geometric quantities are needed in future calculations.
These are now computed. The intercepts where the sides intersect the x or
¢ axis (figure 20) are

£3n2 —-€2n3 €4n] ~'€]n4
b32 T w b41 ST W (7.2.20)

The maximum dfagonal of the element is

2 2
t = Max .\/(52 - 54) + (n2 - n4)

\/(§3 - 51)27+ (n3 -n7)2 (7.2.21)
The lengths of th= sides are
42 = % d3q = dg (7.2.22)
d3p =WVl *mg dgy = wV1 +mg,

Also needed are the total arc lengths along the N-lines from the trailing edge
up to the element in question. These are

e = ) d Lg= ) G (7.2.23)

where the sums are over previcus elements of the 1ifting strip.
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Finally the normalized moments of the area of the element are required,
These are defined by

E
where the region of integration is the area of the element. For example,

tZI00 is the area of the element, t4120, t4I]], t4102 are the moments of

inertia or second moments. The first moments 110 and 101 are zero because
the centroid is used as origin of coordinates. The order of a moment is the
sum of its subscripts n + m, There are three second-order moments, four
third-order, and five four ' h-order. The present method uses up through fourth
order. The moments are calculated by a straightfc ward but rather lengthy set
of formulas which are given below,

First, normalize the corner point coordinates b& the maximum diagonal,

gn = Ek/ti nk = £k/t’ k = ]. 2, 3, 4 (7.2.25)
Now the normalized moment may be defined in terms d% certain auxiliary
functions
(32) (4% , mloontl n+l ‘m+l, ntl tn+l
T = o * T ¢ TRy 0 (8 g iy g )]
(7.2.26)
The auxilfary function Iﬁ%z) is as follows*
If ‘m32| > 1
(32) S+l me
oy = e T L T3
1 1 ‘n+2 ‘m-2
_(n+T)(n+mﬁ]—35[€ W]a
m 1 . .
R CERN ORI CIER) oz (g3 19
(7.2.27)
m(m — 1)
B CER N CEFIICERI CER S T [e™ am-212
m{m — 1)} (m — 2) i
* T TTTn + 20(n + 300 ¥ 8)(R ¥ 5) T [ o3

fm —1)(m ~ 2)(m ~ 3) Lo
~n +4q Eh FZ)n+ 3)(n+4Y{n+5){n+0) 'g“ [€n+6 nm-4]§
2
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If |m32| < 1t
(32) _ 1 n m+2
e CER T 2) mayp (e 13
(et om™3p2
T Tm ¥ m + 2)(m + 3) 3? 3
n(n - 1) n3 [En -2 m+4]
(m + 1)(m+ 2)(m+ 3)(m+ 4) 732 3 (7.2.28)
_ n{n - 1)(n = 2) [ *n-3 m+5]
W m + 21w + 37 + &) (m +‘57’m32 ¢ 3
+ n(n = 1){n —2)(n —3) [ *n-4 m+6]
m+ 13 (m+ 2)(m+ 3)(m + 4)im + 5){m + 6) m32 & 3
where the bracketed symbols are defined by
[2F aP13 = ¢k o — ¢ o (7.2.29)

(The superscripts in the above equations denote simple powers of the quantities
except for the bracketed double superscript (32), which denotes the side of
the quadrilateral.,) It is clear from the above that the calculation of Igiz)
requires m + 2 terms of (7,2.27) or n + 1 terms of (7,2.28). The calcu-
lation is simply terminated at this number of terms, ‘The auxiliary function
Iﬁ;]) is obtained from the above by an obvious substitution of subscripts.
A11 the above geomeiric quantities associated with a given element are

saved and used as needed to calculate velocities induced by that element,

At this stage, some of the generated quantities are output, and the calcu-
lation may, if desired, be terminated. The purpose of this option is to
provide an opportunity to discover errors in the input points before the
execution of the lengthy calculations of the main part of the program,

7.3 Form of the Surface Dipole Distribution

7.3.1 Genperal Form. Order of the Input Points

The surface of the lifiing section is imagined covered with a dipole
distribution that varfes in the foliowing manner. The dipole strength . is
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fixed as zero at the first point of each N-line on the trailing edge. Along
each N-line the dipole strength is proportional to distance along the section
curve. This curve goes completely around the body and back to the trailing
edge, at which point p has some final nonzero value, Behind the trailing
edge . 1s constant and equal to its final trailing edge value. In the first
input example of secton 7.1, a right wing is input from tip to root, and
points on an N-line traverse the lower surface to the leading edge and return
to the trailing edge along the upper surface. For this example the dipole
variation is as shown in figure 21. The constant of proportionality that
expresses the variation of j along each N-1ine is initially unknown and its
value is ultimately determined from the Kutta condition. Since the N-lines
are roughly "chordwise" or "streamwise" on the lifting surface, this constant
1s the derivative of . with respect to distance in the chordwise direction.
Thus, acccrding to the result of Appendix A, the proportionality constant
that determines the growth of . along each N-iine is essentially the
"spanwise" vorticity strength at that N-line, which is the bound vorticity
that gives the lift,

As mentioneu in section 7.1, points along an N-line of a 1ifting section
are input beginning with the trailing edge, traversing the section curve of

UPPER ON BODY:pu LINEAR
SURFACE WITH ARC LENGTH

LAST ON-BODY POINT
B = J(FINAL)

LOWER O~ - WAKE

ORDER OF € SRV
INPUT POINTS  SURTACE FIRST POINT ...
40 WAKE 1 = CONSTANT = (FINAL)

Figure 21. Variation of dipole strength a'ong an N-line.
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the wing and continuing intc the wake. The order ¢ :upgl wmav e arnaseed
so that either the lower surface is input first, as i lustrvates vn tigere 21,
or else the upper surface is input first, in which case tha seciaon wiree o
traversed in the opposite sense tn that shown ir fiquee &7 dcourte ciciivace
instead of clockwise), Thus, the positive direc:ion «t avc Tenc % a ong the
section curve is opposite in the two input scherez. 1+ tho «.ioees of Bound
and trailing vorticity are to be identical, as tier =it 2 37 (he wane body
is input two ways, then the constants of proportichna’- vy ihel siiate Diivie
strangth to arc length along the N-line for each nf 1ri Lrd fnput sihpmes
must turn out to be equal in magnitude and opposize i~ Iiyn  TO A luuiurate
the two cases, let the constant of proportionality & tfeprine & 200 ers
length along the section curve be denoted s. Tnen .. = ks 37 fno S
order is that of figure 21, and u = =Bs if the ordrer s copate, ine
dipole strengths along the N-line for the two ¢ cet 2re illusisalis 'n
figures 22a and 22b. The dipole strengths in the wake sro equed beoaste the
reversal of sign of the normal vector cancels out (& afarsrt Siwgn reveria)

Voo ——r\s se JsiTQT

—_—— 2
T—— C —— H
——t -
e T - - c. - e
A ® Bs, “e HOOSITY,

V.. /——"———1\‘_\ P I
M ——
IO
- 'r‘" —* ’ B BEYOT j , -
F'“[B'(TO'”‘S'B ' PR S A I

SR

45 B a(roT)

(b)

————— pebylrn-y
— .
_’_’”,_.,..«——" B D U
Mo B tToTy pn

(c)

Figure 22, Three variations of dipole stre-iih alons a ~ection curye
(N-Tine). (a) Clockwise order ~f irp.t points {Toeer suvfuge
input first). (b) Counterclock. Tse ceder oF input noines
(upper surface input first). 1) Zomstant oipoie strengin
on body obtained by subtracting totcy (a2} 3na {4, ]
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of the dipole strength . The two solutions represented by figures 22a and
22b may be subtracted to give the solution illustrated in figure 22c, which
has a constant dipcie strength B - s(tot.) all around the profile curve and
zero strength in the wake. Since both the bound vorticity strength B and
the total arc length around a section curve vary with "spanwise" location,

the dipole strength of figure 22c varies in the "spanwise" direction but not
in the "chordwise” direction. Thus, according to Appendix A, the related
vorticity distribution consists of closed constant-strength filaments lying
around the section curves. For the usual case of a wing with right and left
symmetry at zero yaw, the symmetry insures a zero total strength for this
vorticity distribution. Moreover, the flow solution of figure 22c has no
uniform onset flow, which was canceled in the subtraction of the solutions
corrnsponding to figures 22a and 22b. The solution corresponding to figure 22c
is continuous, because the wake singularity is zero, and it satisfies the
classical problem defined by equations (5.1.3), (5.1.5), and (5.1.4) with zero
right side. This problem has a unique solution, namely the trivial solution.
Thus, the solution of figure 22c represents zero flow, and the solutions of
figures 223 and 22b are identical as they should be,

The tagoretical considerations cf the previous paragraph are strictly
true for closed bodies in the limit of an infinite number of surface elements.
An "open" wing tip of the type illustrated in figure 4c¢ is excluded. For
practical element numbers, numerical experiments must be performed. Results
of such an experiment are presented in section 8.4 and are anticipated here.
When a wing was input in the two ways discussed above, the resulting bound
vorticity distributions were identical. The resulting surface pressure
distributions were arly identical except near the wing tip where the input
scheme illustrated in figures 21 and 22a seemed to give the more reasonable
solution. Accordingly, 1t was concluded that points on K-lines of T1ifting
sections should be input with the lower surface first, as shown in figure 21,
However, two wing-fuselages input with the upper surface first have very
reasonable surface pressures. The preceeding applies to positive angle of
attack, for which the lower surface faces the onset flow, For more general

flows the word "lower" in the above is replaced by "windward".
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7.3.2 Variation Across the Span of a Lifting Strip

The variation of . between the two N-Tines used to form a 1ifting strip
is assumed to be one of two forms that correspond to the "step function" and
"piecewise 1inear" options for the spanwise bound vorticity variation, as
discussed in section 6.3, For the "step function" optinn the proportionality
constants on the two N-1lines bounding the strip are set equal. This conmon
value is essentially the bound vorticity on the strip and is determined
directly by the Kutta condition. In general, the bound vorticity is different , )
on adjacent 1ifting strips. Thus, there are really two values of "the" pro-
portionality constant on an N-line, namely those corresponding to the two
1ifting strips on either side of the N-1ine. The dipole distribution is .
discontinuous across the N-line, which implies a discontinuity of bound vor- &
ticity and a concentrated trailing vortex filament along the N-line. The
“piecewise 1inear” option essentially assumes a Tinear "spanwise" variation .
across a lifting strip for the "chordwise" proportionality constant of the s
dipole strength, The "spanwise" derivative is determined by the parabolic
fit discussed in section 7.11. The discontinuity at the N-1ine {s reduced
to a higher order effect. As is shown below, this optiva requires an
additional dipole term in the wake.
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7.3.3 Varfation Over a Trapezoidal Element

Consider now a typical trapezoidal 1ifting element, as shown in figure 20,
As defined 1n se:tion 7.2, the 1ifting strip to which the element belongs is ; 1
bounded by two N-Yines, which are designated the "first" N-1ine and the "second"
N~1{ne and which are represented by subscripts F and S, respectively. The )
constants of proportionality for th2 dipole strength along the N-lines are ' {
BF and BS’ respectively. Thus, if s denotes arc length along an N-line:

bl el b ot

pos BFs along the first N-line
(7.3.1)
T 355 along the second N-Tine
On the element itself, the paraliel side at n = ny is a segment of the
first N-1ine, and the parallel side at =~ = n3 is a segment of the second
N-line (figure 20). The dipole strength varies linearly along each side,

namely
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" AF + BFg on n

A

n]

(7.3.2)
s ¥ Bt on  n =g

M

On the element the arc length along the N-lines is simply the coordinate ¢
and the direction of increasing arc length is the positive ¢ direction. On
each s{de the constant A 1is the value of n for & = 0. Thus,

A = Be (tctal arc length of g-axis from trailing edge)
(7.3.3)
= BFhF

From figure 20 ard eguation (7.2.23)
Similarly

AS = BshS (7.3.5)
where

hS = LS ~ £y (7.3.6)

Now the dipole distribution . on the element is assumed in the form of
a general two-variable second degree polynomial. When conditions (7.3.2) are
applied, it turns out that u must have the form

B, -8B AL —A Ben, = Ben Acny — Apn
p:.Lw—S.€r|+Fan+S]wF3E+S]wF3+C(ﬂ—n3)(n—n])
(7.3.7)
or, using (7.3.3) and (7.3.5)
“=%[gn+th—nsg—n3hF+CW(n—n3)(n—n])]BF
(7.3.8)

-'% [en + hSn -k = n]hs + cw(in — n3)(n - n])]BS
where C and ¢ are arbitrary constants. The absence of a term in 52 is
due to the orientation of the parallel sides along the ¢ axis. A1l other
terms of the general second degree polynomial are present in general. If,
however, BF = BS’ as is true in the "step function" option, then the
quadratic terms vanish and . 1s a linear function of ¢ and n.
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7.3.4 Variation Between Elements of a Lifting Strip

The varfation of dipole strength across the N-lines, i.e., the variation
from one 1ifting strip to the adjacent one, is discussed above. 1t remains
to discuss the variation along a 1ifting strip, i.e., the variation from one
1ifting element to the next one of the strip. The dipole strength along the
"top" side of the element between the points (53' “3) and (52, n2) (see
figure 20) is obtained by setting ¢ = Maon + b3, in (7.3.7). The result is

w(32) = u(linear) + (B — B) fow’ + wmy,) [F (2-1)]  (7.3.9)

L
=
“E
=1
=
o
2
=~
=
=
&
=
=7

In the square bracket s denotes arc length along the si<e and L the total
length of the side (L = d3» in the notation of seciton 7.2). The function
p(linear) 1s a Tinear function that varies from the value of . at the

point (g3. n3). which equals BS' (arc length of the point from the trailing
edge) to the value of p at the point (52, “2) which equals B~ (arc
length of the point from the trailing edge). On the adjacent element, the
"bottom" side that lies between the points (54, n4) and (g], n]) is the
one that 1ies along the side discussed above. The dipole strength along this
side is

k(41) = u(linear) + (B; ~B)) (e +wmy) (B (E-11  (7.3.10)

Ignoring the small gaps between elements produced by the projection of the
innut points, the quantities wu(linear), s, and L are identical in equa-
tyaes (7,.3.9) and (7.3,10), as are By and Bg. The only quantities that
ar+ different are those in the curly brackets. Here ¢ and w correspond
to different eTements, while the slopes M3y and May correspond to dif-
ferent sides of different elements. It is clear from figure 20 that the
products W and wny, are just the changes in the ¢-coordinate between
the endpoints of the side question. These may be put in vector ferm, Let
the vector between the endpoints of a side be denoted m. Since a common
side of two adjacent elements 1is being considered (ignoring any higher order
gaps produced by the “adjustment” process of section 7.2), the same vector
m applies to both elements. Then the change in ¢-coordinate over that side
is m ° ?k where as defined in section 7.2, TE is the unit vector along
the g-axis. Now the change in dipule strength across the side common to
two elements s
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b= (B — Bg){a(w’c) + i - (BTN G- 13 (7.3.11)

where any quantity preceeded by 4 represents a change in that quantity. If
the N-1ines are straight and the elements are coplanar, ATk = 0. 1If the
angle between twe elements is small ?k is of the order of the square of the
angle, Moreover, this angle is small if the slope of the surface is continu-
ous and if enough elements are used to insure calculational accuracy. Thus,
in the present method the parameter ¢ 15 set equal to zero for all elements
on the body surface. The resulting discontinuity in dipole strenyth between
elements of an N-line is of higher order than the other approximations of the
method if the slope of the body is continuous. At a slope discontinuity

the dipole strength can be made continuous by having the N-lines intersect
the line of discontinuity at right angles, so that m -'Tk = 0. However,
this appears to Le generally unnecessary for good accuracy.

One exception to the above rule is the trailing edge. The local slope
discontinuity is quite severe, and requiring the N-lines to be perpendicular
to the trailing edge is undesirable. Thus, if only the on-body dipole
distribution 1s considered, there is a discontinuity of dipole strength at
the trailing edge, having the parabolic variation of the square-bracketed
term in (7.3.11) and thus a concentrated vortex filament of this form would
lie along the trailing edge. This difficulty is disposed of by adding a dipole
term of the correct form to the distribution in the wake., In the wake, the
dipoie strength 1s constant along N-lines and thus has the form of equation
(7.3.7; with B = B
of' BF and BS multiplied by the total on-body arc lengths of the respective
N-lines). Thus, a value of C may be chosen which is proportional to
(BF - BS).
C may be replaced by ¢, 1n a manner analogous but not identical to the
redefinition involved in going from egquation (7.3.7) to (7.3.8). The resulting
formulas are given in section 7.9, which deals with the wake elements.

=0 (AF and Ag are set equal to the actual values

That eliminates the discontinuity. By factoring out (BF - BS)
The discontinuity discussed above, together with its remedy, occur only

if the "piecewise linear" option is used for bound vorticity. I1f the "step

function" option {s used, then on an element BF —-BS = 0, and the discontinuity
disappears, This is another simplification connected with this option.
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7.4 Overall Logic of the Calculation of the Velocity Induced
by a Lifting Element at a Point in Space =

The basic formulas of the present method are those giving the velocity }
induced by an element at points in space. These are applied to obtain the
effects of the elements at each other's control points. For an element of a
1ifting section on the body surface there are two kinds of induced velocities,
that due to the constant source density on the element and that due to the -
dipole distribution of the form (7.3.8). For different ranges of distance k
between the element centroid and the point where velocities are evaluated, s
different sets of formulas are used. The three ranges are denoted: (1) the :

S e

far-field or point singularity regime, (2) the intermediate field or multipole

regime, and (3) the near field or exact regime. The near-field formulas are

obtained by an exact integration over the elements. Such formulas are necessary

to obtain the desired accuracy at points near the element, but are quite time-

consuming. At points further from the element approximate integration formulas

are used to reduce computing time, When the distance between the element

centroid and the point where velocities are being evaluated exceeds a certain ;
multiple of the maximum diagonal of the element, approximate formulas are used. ,
In the far field, velocities are calculated directly in the reference coordinate '
system, In the intermediate and near fields the field point where velocities §
are to be evaluated is transformed ‘nto the element courdinate system using |
the transformation matrix (7.2.10). Then velocities are computed in element

coordinates, and finally the computed velocities are transformed back to ref-

erence coordinates using the transformation matrix, This procedure is well

known and will not be discussed further here. A complete description is

contained in reference 3,

Now notation will be introduced for the velocity calculation. It is
assumed that the velocities that are being computed are due to the j-th
element and are beiny evaluated at the control point (centroid) of the i~th
element. Clearly, any point could be substituted for the i-th control point.
The velocity due to the constant source density is denoted Vij' In element
coordinates i1t has components Vx(source), Vy(source), and Vz(source),
i.e.,

o - . r -
V1j = Vx(source) et Vy(source) Jg Vz(source) Ft (7.4.1)
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For a general gquadrilateral element of a nonlifting section, this source
velocity is the only induced velocity, and it is computed by the formulas of
reference 3 in all three ranges. For a trapezoidal element of a 1ifting
section the calculation of source velocities is the same as for a nonlifting
element in the far field and the intermediate field (a trivial difference is
the use of normalized area moments), In the near field advantage can be
taken of the fact that the element is a trapezoid to shorten the formulas
and conserve computing time,

To develop formulas for the velocity induced by the dipole distribution
on an element, some additional notation is required. Furthermore, it simpli-
fles the development to consider the velocity potential initially rather
than the velocity components. The potential due to the dipole distribution
on the element at points of space is obtained by integrating over the element.
Namely,

¢ =ff¢(d1'pole) p(£,n) dedn (7.4.2)
E

where u(g,n) 1s given by (7.3.8),where the integration is over the area of
the element, and where ¢(dipole) 1is the potential of a unit point dipole
with axis normal to the element, i.e.,

o(dipole) = 4 77 (7.4.3)
[z =)+ (y = n)? + 2%

Here (x, y, z) 1s the point where the potential and velocity ate being

evaluated expressed in the coordinate system of the element., Now define
the auxiliary potentials

boq = Jt[ ¢(dipole)sPn® dedn (7.4.4)
£

where p and q are integers. MNow from (7.3.8), (7.4.2), and (7.4.4), the
potential of the element is

¢ = ¢FBF - ¢SBS (7.4.5)
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where

=1 - -
o =i Loy * Mpogy —ngoqq — n3hesgq * cvo]

i ‘\‘L‘H‘ Lr N

_1 e |
o5 = i Loy * hsogy ~nydyp ~ mPgegg * cwe ] (7.4.6)

Ad
]

¢ = %02~ (ny * n3degy * mngeqq

As stated in the previous section, the term ¢ is not currently used for
1ifting elements on the body. For completeness, it is included in the formu-
lation, and equations are given in the subsequent sections. These last are
needed for wake elements in any event. The velocity due to the dipole distri-
bution is

Vij(dipole) = - U (7.4.7)

where VvV denotes the gradient operator. In element coordinates this is
Vo= T 47 2% (7.4.8)

From (7.4.5) and (7.4.7) it is clear that |

e R _ F) S)
Vij(d1po1e) = Bp ng + Bg ng (7.4.9)
where
#{F) . wS) . '
viJ R T ij - 9o (7.4.10)

M

The desired velocities are these 'Vij,'vgg), and Vgg). In the far field
these are calculated directly. In the near and intermediate field the source
velocity 1s evaluated directly, but the dipole velocities are broken up into

separate terms in the manner of (7.4.6). Thus to evaluate the dipole velocities,

o il

formulas are needed for the derivatives of %00° %10° ¢0], ¢]]. and %02°
These formulas are presented in the following sections.

e AUM‘

\ As mentiored above, the integrals (7.4.4) can be evaluated analyticaily
and the resulting expressions differentiated, This is what is done for the
near field (section 7.7). The resulting expressions are quite involved and

A




time-consuming to evaluate. To save computing time, approximate formulas are
used when the field point is some distance from the element. This is accom-
plished by means of a multipole expansion. The basic idea is to expand
¢(dipole) from (7.4.3) in a two-dimensional Taylor Series about ¢ =n =0,
This process is a standard development in the textbooks. The result is

. 2
s(dipole) = Foa(x,ys2) + Fio(x,y,2)6 + Foa(xy,2)n + Foalx,y,2)e
+ F”(X’y,Z)En + Foz(XQsz)nz + ... % Z Z an(x.y.l)innm + ...
n m

(7.4.11)
where the an are the derivatives of ¢(dipole) at the origin of element
coordinates and are indeperndent of ¢ and n. When (7.4,11) is inserted into
(7.4.4), the F"n(x,y,z) are taken out of the integral, the remaining
integrals are of the form (7.2.24) and are thus moments of the area of the
element, which can be normalized by division by the appropriate powers of t,

In the intermediate field the expansion (7.4.11) is used through the
second-order terms, F20’ F]], F02. In the far field only the initial, zero
order, term is used, It is clear from the form of {7.4.11) that F00 is the
potential of a unit point dipole at the origin of element coordinates (centroid).
In the far field every auxiliary potential (7.4.4) is a multiple of the point
dipole potential and thus so are the combined potentials (7.4.6). Thus,
induced velocities 1n the far field may be expressed directly in reference
coordinates using the well-known formulas for a point dipole.

The above discussed only the dipole velocity, but the same procedure is
followed for the source velocity. In fact, the development for this case is
given in detail in reference 3.

7.5 Far-Field Formulas for the Velocity
Induced by a Lifting Element

First calculate the distance o between the centroid of the element
and the field point where velocities are to be calculated. If the reference
coordinates of the centroid are Xor Yor Zo and the reference coordinates of
the field point are «', y', z', then
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r =V = x )Ty —y )k (2 =) (7.5.)

Now test r /t, where t 1s the maximum diagonal of the element., If
> * .2
rO/t 1 (7 5 )
where oy is a certain criterion, then the far-field formulas are used.

Currently oy is set equal to 4.0. The far-field formulas calculate
velocities directly in reference coordinates. First define the vector

ro= (x =x )T+ (y' =y )T+ (2" =2k (7.5.3)

The source velocity is

t1,. T
- 00 ‘o
Vij = ';Z'" F; (7.5.4)
0
The dipo'e velocities are
Vf-?’ = -qf
(7.5.5)
=S) _
Vi3 QSU
where
Q. = EE 1 [t%1,, = noh I+ cw(tZI + I,4))
Frw '3 117 "3 00 02 7 M"3%00
0
(7.5.6)
2
_t51 2 2
O =5 3 (704, = nihglgg *+ ew(t™lg, + nynglgy)]
0
and where

5= - \:3(F ;:0) i—(‘;-—ﬁ} (7.5.7)

It will be recalled that n is the unit normal vector of the clement (n is
not connected with the field point) and that Inm denotes rormalized moments
as given by {7.2.28), A comparison of (7.5,6) with (7.4.6) shows that the
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o0 and %10 terms have dropped out because they are multiplied by the zero

value moments 101 and 110.

7.6 Intermediate-Field or Multipole Formulas for the
Velocity Induced by a Lifting Element

1f ro/t <oy transform the reference coordinates x', y', 2' of the
field point by the transformation matrix to obtain element coordinates x, v,
of the field point. Now perform another test. If

where Py is another input criterion, which ic currently taken as Py = 2.5,
then the multipole formulas are used. The dipole velocities are taken in the
form (7.4.10), which means that derivatives of all quantities in (7.4.6) must
be calculated.

First define direction cosines

X
O!=r—, B=I.L) 7 =

- (7.6.2
.6.
[e] o] rO )
Next define certain "derivative functions" as follows:
First Order
u =-Q Uy & 7 B, b, =7 (7.6.3)
Second Order
U.xx = de -1, uX‘V = /O‘B) uy:, = 562 -1
5 (7.56.4)
u, = Sy Uy = 3B7, u., = 3y =1

Third Order

W= als =Py, u = 380~ P),  u 27(1 - %P}

KKX Xy XX
; 2 2
Uy = 2l - 5E7) Uy = = 15087 u o, = 2l =97)  (7.6.5)
_ - 2 ozt @l \ _ Iy el
u, = 380 - 567 U, = 371 = 587) Vg = 3B = 577
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Fourth Order

umm=9~9oof?+1o:5ozl+ : )
Uy = L5B(TF = 3)
u o, = 15 (T - 3) §
Yyy = 2 = 15(cf + 7) + 1056782 :
Wepr = LPY(0F - 1)

Qs =0 15(&2 +92) + 10567 72 (7.6.6)

Uy = L0B(TEY - 3)

W = 1507(78% = 1)

Uy, = 1508(7F = 1)

uyyyy =9 - 9052 + lQﬁSLl I !
Uy = 15B7(T6° = 3) '
Uz = 3 - ].5(!32 + 72) + 1055272 ‘

Then the source velocity components are

£ 1tV :
= = {~ -=(= + 2 +
Vx(source) r2 IOOux 2 (ro> [IQOuxxx ('Illuxxy IOEuxyy]
o
2 2
t . 1/t . ¢
= = {- -={= + + 7.6.7
Vy(SOurce) x: Too%y ~ 3 <r0> [IQOuxxy aIlluxyy Iozum] ( )
° {
2 2 - ?
t 1/t wee ,
Vz(source) = :é - IOOuz 3 (r—o-) [Izoum + alnuxyz + IOQ‘lyyz]
o

These are identical to the miltipole formulas of reference 3 with a slightly
different notation,

Specific formulas for the derivatives cf the various dipole potentials

¢ appearing in (7.4.6) are given on the following page. To illustrate the
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Dipole Derivatives for Multipole Expansion

Far-Field 1st Order 2nd Order

2.
. - i! tIOOuxz - (%é)/[tlé‘%xé f 10{“(.,4] * (%'j') | B0tz ¥ 2T * Ioa“xyyz]

005 e - (VA eloed] * () [t * 2Pt * Toate] | 7:6.0)

o}

2 [t~ B ol # 268o4el] * () [t * Batgus * Totes)

t
r
3619 _t° TR 2r ]l
Tox - T :3' gllé"l‘z = (g) [120uxxz + Inuxyz] + ('r—o') _Ijouxxxz * 2L Uy * Tty )
°

*

N;;O = ~i—§- }Iléuk - (:‘-:) [120uxy7. + Illuyyz] + (%;)2 [I}O“xxyz + 2121“xyyz + IlQuyyyz] % (7.6.9)
32;0 = -% {'iléuéz - (%;) [Izouxzz * Illuyzz] * (:-_o-)g [Iﬁouxxzz + 2I21uxy'zz + Il.zuyyzz] 1
i 3231 = —% tofuéz - (:,_0_) [Illuxxz * Iozuxyz] + (f-;)a [121uxxxz * 21J.2"lxxyz + IO}“xyyz] [
: o1 _ ¢ xfué_(t_)[;iu + 1 u ]+(-t-'-—)2[12u +2L u _+ 1. _]}(7.6.10)
i Ay rz 0 r, L xyz 02 yyz r, 1 hayz 12 xyyz 03 yyyz
’ |
‘ 3221 =" :z Io{uéz - (:'—o) :Illuxzz * Io2uyzz] * (f';)z [IZIuaotzz * 2112uxyzz * IO}“yyzz] } l
agalcl = -f_% %Illuxz - (%;) :Izluxxz * Ilz“xyz] * (:-_0')2 [I31“xxxz * 2t Il.}“xyyz];
D‘Z;l - —% {Inuyz - (:—O) :Iﬂuxyz . Ilzum] + (t—;)e [Inuxxyz +2Lu o+ quym]} (7.6.11)
aq;;l = -% %Illuzz - (::_o) [Izluxzz * Im“yzz] (:o)e [Ibluxxzz + 2122uxyzz * Il}“yyzz]%
aii? = _§ gloa“xz - (%O_) [Ilzumz M Io}uxyz] * (%:)2 [Ieeuxo(z + 2I].}“xxyz * Ioh“xyyz]
3232 = —i;’ %Ioauyz - (:'.—o) [Imuwz + Iojum] + (-:’7;)2 [Izaumz teLgu ot Iohuyyyz] (7.6.12)
6222 = % {Ioeuzz - (P:) [Ilzuxzz * IO}“yzz] (%;)2 [Izeux:xzz
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development, the terms containing the moments I]0 and IO] are written down,
They are then cros~ed out to show that such terms need not be calculated
because I]0 = IO] = 0. (Inclusion of these terms generalizes the formulas
to the case where the centroid is not used as origin.)

7.7 Near-Field Formulas for the Velocity Induced
by a Lifting Element

If ro/t < Pos the near-field or exact formulas are used to compute
induced velocities. The calculation starts with the element coordinates
X, ¥, 2 of the field point and the geometric quantities associated with the
etement that are discussed in section 7.2. In particular, the correr point
coordinates £ Mio k=1, 2, 3, 4 are needed, together with the width w
from (7.2.14), the slcpes Mo and Mgy from (7,2.15), the intercepts bas
and b4] from (7.2.20), the maximum diagonal t from (7.2.21), and the side
lengths dy,, dj), dags dgys from (7.2.22). These quantities are illustrated
in figure 20. In addition to the basic near-field equation, there are special
1imiting formulas for small values of r_ and z. However, the bacic near-

0
field formulas are used in the large majority of cases.

Preliminary quantities to be calculated are:

2
rk = V(x - gk) + (y - nk)e + ZE} k = 1'1 2, 5’ Ll'
(7.7.1)
X =t y=n
- k _ k oz
o = i B, = ol 7, = ;; k=1, 2,3, 4
(32] 2 2
P, ) =mpplz” + (y =) - (k- dly—n), k=3or2
(41 2 2 7
P, ) - myple” + oy =) - - g )y = n), k=bord (7.7.2)
The basic functions are
r +r ~-4d
L(mn) = log m'—d—— , m, n consecutive, i.e.,
m mn = 12, 23, 3k, or 4l (7.7.3)
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and
(32} o{32) ]
W32) o 1l .
fk = tan ar,, ) ¥ = 3or2 1
p(141) (7.7.4)
T(hl) = tan~ X , k=4%orl
K zr
k
Also needed are derivatives of the T's and L's. The derivatives of T£32)
are , ‘
(32) 2 (32) )
ka L i(rkﬁk + Py ak)
0x - (32)
Dk
(32) - 2 _ ()
oTy i Z[(emﬁeﬁk o )ry ~ Py B,
oy (2
k
\ k=3o0r2 (7.7.5)

6'1‘192) 2m}222rk - p}({je)(rk + 27}-;)

oz 1)
Dy
D(Ee} = 22 e + [ (52)]2 ;
P S ) |
H There is an analagous set of formulas for the derfvatives of T£4'). \
The derivatives of L(mn) are
BL(mn) BL(m“> i (™)

X = Dmn(am + an)) 'Ey Dmn(ﬂm 4 ﬁn)’ —-5-[-—— = Dmn(ym + 7,n)

2d

n = mn

M (r 4 ) -l (7.7.6) {
!

mn = 12, 25, 34, 41 j

Now in terms of the above functions the source velocities and dipole potential
derivatives needed in (7.4.6) can be written.

!
1
4
1
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The source velocit{es are

Vx(source) o ——t L(52) b L(hl)
2 2
\[1 * Psp Vi * oy,
Vy(source) = e L(lz) + L(Bh) + ——méz— L(BZ) - JL——- L(m‘) )
5 5 (7.7.7
\/1 + m52 1+ m)_*1

Vz(source) = - Téje) + T§32) + Tghl) - Tﬁhl)

To evaluate the dipole potential derivatives, the derivatives of Vx and
V. are needed (since Vz * 400" its derivatives are exactly a potential
derivative). The derivatives of v, and Vy are

be(source) o 1 BL(}Q) . 1 BL(M)
Ax N = ox > Ax
VY B Vi oM
BVx(eource) o 1 BL(.32) . 1 BL(M)
oy " y oy
1+ mgz \/1 + mﬁl
BVx(source) _ 1 _ BL(52) . 1 aL/.hl)
Jz - S dz 5 dz
1+ 1'1152 \,l + mh] (7'7'8)
aVy(source) _ BL(I'_Q_) N aL(jh) . My BL(Z»Q) - My, aL(hl)
ox o 7 S A% ox
2
Vi M Vi ™
avy(source) - aL(]Z) . aL(Eu) . mss BL( 32) oy aL(14]_)
Ay dy dy oy %
1+ m2 \/1 + m2
%2 L1
Bvl(source) L BL(L?) . aL(}h) . Fzo aL(BZ) o my E,L(L')_)

dz az dz = dz — &
1+ mge \/1 + mil
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Now the potential derivatives are as follows.

3 ar{?2) arl32) aplt1) p{M)
o _ _ "2 D + L -3

dx ox ax % ox

sy ) wfD D )

e T + - (7.7.9)

Yy 3y dy -y 3y

dogy L) ar{?) b (i)
S T T e e T T T T T

a¢01 dV (source) E¢OO
STt Y e

3¢ V. (source) d¢
-Sgl ==z S5 +y 350 + V_(source) (7.7.10)
a¢01 AV (source) a¢00 .
—SE_ = -2 ~ +y —52— - V&(soarce)
3¢ OV (source) d¢,
_5%9 = -y X - + x ago + Vz(source)

a¢10 L. BVx(source) . 5 B.@O (7.7.'”)
oy - oy dy

d¢ JAV_(source) A
—S%Q — X—BZ + x ago - Vx(source)

Fvaluation of the derivatives of 1 and %92 requires certain auxiliary

02 and their derivatives.

quantities J]] and H
r,—r r, —r
Jll - ) 22 + 1 eh
1+ m52 1+ m’#l

Thus define

+ ————1:£——7— (x ~-m,,y —b )L(jg)
(1 + m'(_’ )'j 2 32 32
g

mhl

T Ty T
41

(k1)

(7.7.12)




- wey - -y

e b i m e e 8 i o

3J a, = m, n a2
2 2 (32) 2 - -
et T 87 I S b3p) Tox
1 + m52 \l + m32 52
41)
a - m m BL(
1% 41 (k1) 2 (x — -1, .)
+ - Lt - S az T Y T P Tax
1+ mil (1 + mil)372 (L + mhl)B <
2 (32)
J B, = B n oL
1. P37 P T L(32)+__L7_(x_m Yy = b))
= - 2 \3/2 32 3/ T dy
oy 1 + m%e (1 + m§2)3/2 (1 + m32)3
2 (41)
B, — B my, 4 m,, AL
e 2 3/2L( )-—W(X‘%y“bn)—r‘y
+ o (1 + o) (1 + m,)
32)
J Y 72 m)2 _ _ BL(
S e f Ty T T T
(k1)
AN My - oL
+ = 2 - 2)32(x_m)41y-°1+1) oz
(7.7.13)
lsing the above
3¢ dJ b d¢ d¢
d dJ 3J ¢ b
;;1 -, 6}1(1 . %’31 iy "5;"0' - xy ..35,9 ~ 2V, (source) (7.7,14)
¢ g D¢ J¢ 3¢
11 11 0l 10 _ 0 , 5
TR TR YR TR T
Also define
r, —r. r, Ty
H.y = My — +m
o2 2P )+ m%e Iy 1+ “ﬁl
1 (z2)
G ———— (x — m, y—b-, )L (707-]5)
(v m)? R R

1 (41)

b1

3
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il

Lasi - - v —
’ - T =
1

ok Ty, m§2 2 0 (1 mig)3 2 (L + m§2)5/2 ox
+ - (o ~a,) L AR 7MY o) BL(M)
: L+ mﬁ b 1 (1 + mﬁl)3 2 (1L + mﬁl)wz ox
My _ M (. —B.) - ) 132, (x = mgpy = bg5) 5 (32)
3y 1+ m§2 2 > (1 + m%z)3 2 (1 + m%,,)3/27 dy
. ('~
’ ! m m (x =my .y = b .)  (¥1)
, . (B —B.) + b1 L(ul) _ b1 41/ 3L
b L mlgu Y e mlan)j ° (1 + mil)3/2 K
%;{02 i n1322 (72 . . (x = m35Y —3;52) 8%32)
z 3 2 2 z
i 1+ mg (1 + m32)
': ™y _ o myyy =By ) 5 (1)
+ 2 (7)4 71) ) z/q oz
' 1+mnm (1 + o=, )7/ 2
| Using the above )
3 a4 3 3 ‘
02 02 oL _ ;.2 . 2y %0
3 % Tox *ay & (y" +27) X
3¢ JH 3¢ 3¢
—ng- =z -§§;§- + 2y -6—3—1- —( 2 ze) «a-%)-- zzvy(source) (7.7.17)
a¢ OH a¢ aw
02 02 oL _ ;.2 . .2y “%0 -
YRl pa < + 2y ~ {(y© + %) S0 + }{02 22,@00




7.8 Some Alternate Near-Field Formulas for Use in the
Plane of the Element

If the point where the velocity induced by an element is being calculated
lies 1n the plane of the element, i.e., if 2z = 0, there may be numerical
difficulties in the evaluation of the formulas of section 7.7 for
%00 = Vz(source) and its z-derivative, To avoid possible difficulty special
formulas have been derived for this case.

If
|z/t] < 0.00) (7.8.1)

the point (x,y,z) is considered to be in the plane of the element and 2z is
set equal to zero. Now Vz(source) is 2n for points inside the element and
zero for points outside, Some tests for this condition have encountered
problems of numerical significance. The following tests are currently used.

First define
hgp = M3y (¥ = ng) = (x = &3)

(7.8.2)

Then a point is inside the element if all three of the following tests are
satisfied and outside if any one is not satisfied.
rO/t < 1/2
h32h4] <0 (7.8.3)
(y =)y —=ng) < 0
The velocity Vz(source) is simply set equal to 2n or to zero as appropriate.
Numerical difficulty can be encountered in the evaluation of the

z-derivative of ¢00 when the point (x,y,0) 1is on an extension of a side of
an element. This condition can be determined by testing the above-defined h's

and the y - n. Specifically, the point is considered to be on a side if any
of the follcwing tests are satisfied (refer to figure 20 for element geometry):




by

i

Point on Side 12 if |y —-n]|/t < 0,001
Point on Side 23 1f  [hy, |/t < 0.001
Point on Side 34 if |y — ng}/t < 0.001 (7.8.4) ,
Point on Side 41 1f  [h, |/t < 0,001 ;

If none ot the above tests are satisfied, the formulas of section 7.7 are
used for the z-derivative of ¢,,. Only one of the conditions (7.8.4) can be
true. If this occurs, then the following substitution is made in equation
(7.7.9).

a7(32) 57(41) m m
Side 12: 2 .43
' az az T =67 Ix =4l
(32) (32)
S 2Ty 313777 My 1 1
Side 23: ~ 33 +BZ = ]S’-nr_ly—n[
i
W’] + m§2 3 1
3T3 8T4 m m
Side 34: - - 32 ____ 4l -.
) az 3z [x =g3l % = g4l '
(41) (41)
Side 41: aT] _ 3T4 - M4 (] 1 . 1 ]>
: 37 32 Yy —n y —n
\[] + mg] 1 3

The remaining two T derivatives of equation (7.7.9) are evaluated by the
formulas of section 7.7,

7.9 7The Velocity Induced by a Wake Element

In the wake the dipole strength is constant along N-lines, as illustrated
in figure 1. The form of the dipole distribution on a wake element is
obtained by setting BF = BS =0 1in equation (7.3.7). Specifically,

Bo= [(AF = Agln + Agnq *'AFn3] + C(n = n3)(n -mn) (7.9.1)

1
W

Denote by L (total) the total arc length along an N-line from the trailing
edge around the section curve of the body and back to the trailing edge. This
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arc length is computed in a manner similar to (7.2.23), namely

Le (total)
(7.9.2;

) s

where the sums are over all on-body 1ifting elements of the strip lying
between the two N-lines., Now from the form of the dipole distribution shown
in figure 21 i1t {1s clear that the constant values AF and AS assumed along
the N-1ines in the wake are equal to

LS (total)

Ap = Belp (total)
(7.9.3)
Ag = BSLS (total)
Thus, velocity potential due to a wake element has the form
¢ = ¢FBF -¢SBS (7.9.4)
just as in equation (7.4,5). Here, however,
op = Logy = nyoggiLy (total) + ce
¢g = %-[¢0] —-n];oo]LS (total) + ce. (7.9.5)
¢c = g2 ~ {ny* n3)eqy * nynasyg

These replace (7.4.6),

The dipole velocity is given as before (see (7.4.7),

(7.4.9), and (7.4.10) by

ez B TF) 4 g S
VU. = -ve = BULL + BT (7.9.6)
where
7{F). 7S .
i " ~T¢ps ij = *76¢ (7.9.7)

To evaluate (7.9.6) in the near and intermediate field, the derivatives of
9920 ¢01° and ¢gp are evaluated by the formulas of sections 7.7 and 7.8,




——— e g 1

In the far field the formulas for the dipnle velocities due to a wake
element are

=(F) _ =~S) .
Vi = -QFﬁ iy e Qsﬁ (7.9.8)
where
21 21
_ t~ "00 _ t- 00
QF = “;r:g— n3LF(t0t) QS = *w—'::;— n]LS(tOt) (7.9.9)
0 0

and where as before (see (7.5.7))

R L)

- ner\T.
D:-3( : °)r—°-n (7.9.10)
0 0

There is no source density on wake elements and no source velocities are
computed.

As discussed in section 7.3.4, the values of ¢ o¢n wake elements are ?
not zero if the "piecewise linear" option for bound vorticity is usec. :
Instead, the value of ¢ on the first wake element is determined to avoid
a discontinuity in dipole strength at the trailing edge. Values of ¢ on
the remaining wake elements are chosen to eliminate discontinuities between
adjacent wake elements along the 1ifting strip, Let superscript (1) denote
quantittes associated with the first on-body element of a lifting strip and
superscript u denote quantities asscciated with the last on-body element of
the strip. Similarly, the superscripts wl, w2, etc. denote the first wake
element, second wake element, etc, of the same lifting strip. The important
value of ¢ s c(wl), i.e., the one for the first wake element. It is
computed from

(u)[w(u)c(u) + m:(}g)] _,w“)[w(])c(” + mg})]

Jwn) Y
Y

(7.9.11)

where the quantities w, Maos Mgy have their usuai meaning. Values of ¢
for the remaining wake elements are obtained from

(WD (w152 (w2l (w2dgz o (w3)p (wW3)92 . | (7.9.12)

8%



7.10 Option for a Semi-Infinite Last Wake Element

In most cases of interest the trailing vortex wu. exterds to infinity,
To factflitate accounting for this cond{tion, ‘provisfon has been made for con-
sidering the last element of the wake to be semi-infinile, A finite element of
the sort shown in figure 20 15 formed at the end of the wake, ircluding a1l
the geometric quantities of section 7.2. The induced velocity calculation for
this element 1s performed using the origin of coordinates approoriate to the
finite element, but the formulas used to calculate induced velocities are
aypropriate for the semi-infinite element. Natural!ly, all points in space are
in the "near field" with respect to a semi-irfinite element, sc¢ it i5 the
formulas of section 7.7 that apply. These “ormylas are modified by setting

m32 =10 {7.10.1)
hy e Eg =
This yields immediately
Gys Bys Yo 340 B40 Vg unchanged (7.10.2)
ag = up = -1y By " Ey =y =y =0

The log functions (7.7.3) and their derfvatives (7.7.6) are replaced by

LYY < unchanged, a1l derivatives unchanged  (7.10.3)
L(BZ) = 0, all derivatives equal zero
(12) ,  (34) _ rg = (x = t,)
-L +L = log P = (0= (7.10.4)
208 e W02 eyl
3X rg — (x — 5JT ax r - (x - g{)
., (34) g L 02) B
HLQv - _-’zx — .;La = —]ﬁ — (7.10.5)
3) 4 ‘g y 1 1
2 39 R "4 2112) . N
¥ rg — (x = i,) 9z ry -~ !
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small compared to the source-velocity matrices. Each of the velocities :; '
(7.11.1) represents the velocity due to a dipole distribution on the strip

that is unity on one N-line and zero on the other with a linear "spanwise"
variation in between,

-

The characteristic onset flow velocities due to a strip are
SOV g{S) , w{F)
Vik ‘V1('k * ik
(7.11.2)
(1)
Vv

1 S)
ik [ng -
The first velocity of (7.11.2) is that due a dipole distribution on the strip
that is constant in the "spanwise" direction. The secend velocity is that due
to a dipole distribution that varies linearlly in the "spanwise" direction and

l
has zero value at "midspan ". These velocities are used to form the basic : 1

circulatory onset flows ng).

1
7 Vik

—_—— -

If the "step function" cption for bound vorticity is used (section 6.3),
the proper form of the dipole distribution is simply constant in the "sparwise"
direction over a lifting strip, and the velocity Vgg) is precisely thke onset

<42 18 P et 8 i S S 8 il

, . Y
t flow. Thus, for this option, the vorticity onset flows are
ng) =V$2) . k = ]’ 2’ eesy L (7.]].3) : i

The above yields L onset flows, each of which corresponds to a unit value
of the "streamwise" dipole derivative B on one lifting strip and zero values
of B on all other 1ifting strips. (Recall that the "streamwise" derivative
of dipole strength is essentially the value of the bound vorticity,) No
special handling is required at the ends of the lifting section.

The machinery for the “piecewise linear" option for bound vorticity s
somewhat more complicated. The "spanwise" variation of the "streanwise"

4 dipole derivative B (bound vorticity) is linear in the "spanwise" direction

across a lifting strip, Thus, t'2 velocity at the i-th point (control point

or off-body zoint) due to the k-th strip is

‘AAQAL_._ [ S )

pr 3

T, (strip k) = V( ) B, + wkvfl (7.11.4)
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where is the "spanwise" width of the strip, B' is the "spanwise"
derivative of B, and subscripts k denote quantities associated with the
k-th Tifting strip. The derivative BL is evaluated by a parabolic fit
through Bk-]‘ Bk, and Bk+]‘ Specifically, define

" ["k k+1]
k w, t 1/2(wk_] + wk+17’ Wy + W

E, = Mk M M Mt wk-]] (7 11.5)
koW 217200y F W et ey et e

. ¥k W wk-]]

kow P el F e T L ¥ Wi

Then (7.11.4) is approximated numerically by

- . _=(0) 1)
Vi (strip k) =V K B + ng [DkBk-1 +tEB + F Bk+1] (7.11.6)

k'k

The velocity (7.11.6) contains values of the "streamwise" dipole derivative B
for three consecutive strips. However, a proper circulatory onset flow is
proportional to the value of B on a single strip. Since each Bk enters
V; (strip k) €or three consecutive strips, its three contributions may be
summed to give the basic vorticity oncet flow.

V(k) = V‘O) + + V(1 F + V(]

i ik 1 k 1 k 1 (7.1.7)

Sk+1 Dy

In performing the above parabolic fit (7.1..6), the values of the function
B to be Tit are of course the values of bound vorticity on the strips. Each
of these has been associated with an abscissa or "independent variable" that
expresses the spanwise position of each strip. Differences of these abscissas
appear as combinations of the widths Wy - Calculation of the Wy is not
obvious, because in general the "span" or width of each strip is not constant
but varies in the "chordwise" direction. Accordingly, it was decided to input
the quantiiies necessary to deduce the spanwise positions of the 1ifting

strips. The input quantities consist of a set of widths W for all 1ifting

strips. [If a strip is trulv of constant width, it is natural tc input that
width, If the strip varies in width, some average value must be input as

_&

b




where w, is the "spanwise" width of thi. strip, B' 1is the "spanwise"

derivative of B, and subscripts k denote quantities associated with the
k-th 1ifting strip. The derivative B} is evaluated by a parabolic fit

k
through Bk—l’ Bk' and Bk+1' Specifically, define

o - My [“ k+1]
k RRCCPRIEE R E EP T
w w ot w W, t W
K k¥ Mt e
- [ - ] (7 11.5)
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Then {7.11,4) is approximated numerically by

- . 1)
T, (strip k) = 1k g+ T [o.8, |+ EB * P (7.10.0)

The velocity (7.11.6) contains values of the "streamwise” dipole derivative B
for three consecutive strips. However, a proper circulatory cnset flow is
proportional to the value of 8 cn a single strip. Since each Bk anters
Vz (strip k) for three consecutive strips, its three contributions may be
summed to give the basic vorticity onset flow.

k) w0, 50 1) 1)
R R IR (7.11.7)

In performing the above parabolic fit (7.11.6), the values of the function
B to be fit are of cuurse the values of bound vorticity on the strips. Each
of these has been associated with an abscissa or "independent variable" that
expresses the spanwise position of each strip. Differences of these guscissas
appear as combinations of the widths Wy - Calculation of the Wi i< not
obvious, because in general the "span" or width of each strip i5 not constant
but varies in the "chordwise" direction. Accordingly, it was decided to input
the quantities necessary to deduce the spanwise positions of the lifting
strips. The input quantities consist of a set of widths Wy for all lifting
strips. f a strip is truly of constant width, it is natural to input that .
width, 1If the strip vavies in width, some average value must be innut as -

ik b e e
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the Wy for that strip, and this average is decided upon by the user,
These W, are used only in performing the parabolic fit. To facilitate
fitting at the first and last strips of a 1ifting section, it was decided
originally to input widths for ficticious strips adjacent to the first and
last strips of the section. Thus, if the strips of a 1ifting section were
input from left to right, the table of Wy would consist of the following
sequence: & value of Wy for a ficticious strip to the left of the first
1ifting strip, the values of Wy for the 1ifting strips of the section in
order from left to right, and finally a value of Wi for a ficticious strip
to the right of the Tast strip of the section. Thus, if the section has L
1ifting strips, L + 2 values of W, are input. This is still the format
of the input. However, for certain frequently-occurring situations, the
program overrides the input and puts in a predetermined value of Wy . In
fact, it is only for the "extra strip" condition described below that input

values of Wy corresponding to ficticious strips are actually used in the
calculations.

Physically, a lifting section may end in various ways, some of which
involve logical difficulties in the basic potential-flow model (cecticn 5.3).
The various wiys a 1ifliny section may end require various procedures for
performing the parabolic fit of the piecewise-linear vorticity option. These
procedures are outlined below. In future work perhaps still other procedures
#1711 be required for situations that are unanticipated at present.

Sometimes a single 1ifting portion of a three-dimensional configuration
is divided into two or more lifting sections. This may be done to concentrate
elements in a certain region, as shown in figure 23, or it may be done simply
for convenience. In this case the division into seclions is purely logical
rather than physical, and the bound vorticity distribution should vary smoothly
from one section to another, As regards the parabolic fit, the last 1ifting
strip of the first section and first lifting strip of the second should be
regarded as adjacent strips of a single 1ifting section and the fit performed
accordingly. This situalion has been designated "continue" in the method.

If the 1ifting section has a physical ending in the fluid, such as a
wing tip, the bound vorticity strength must fall to zero, A ficticious logical
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127 SECTION

Figure 23. An example of division of a single physical Tifting portion
of a body into two 1ifting sections.

strip. is imagined adjacent to the tip in the fluid (figure 24a). The bound
vorticity slope at the midspan of the strip of elements adjacent to the tip
(figure 24) 1s obtained by fitting a parabola through the value on the strip
itself, the value on the next strip inboard, and a zero value at the midspan

of the ficticious logical strip, Various assumptions about the width of the
ficticious logical strip were tried, and it was concluded that taking its

width equal to that of the 1ifting strip adjacent to the tip i¢ about as good

2 choice as any, and this has been built into the program as an override to any
input value. A zero width of the ficticious strip has a certain appeal, because
in the 1imit of infinite element number the bound vorticity must be zero right
at the tip. However, this choice leads to poor results. This type of end to

a lifting section is denoted "normal."

If a jifting section ends st 4 positive symmetry plare of the fiow
(figure 24b), the proper procedure is obvious. Physically, there is a strip
adjacent to the last strip of the section on the other side of the symmetry
plane, and these two strips have equal widths and equa’l values of bound
vorticity. The parabolic fit is performed accordingly.
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Figure 24. Special procedures at the ends of a 1ifting section for thg
parabolic fit used with the piecewise linear vorticity option.
(a) Wing tip. (b) Positive symmetry plane.

If there is an extra strip of elements adjacent to the end of a lifting
section, as described in section 6.4, the width of the extra strip is input
as the last (or first) W, ©of that section and used in the parabolic fit.
For purposes of determining the parabola, the value of bound vorticity on
the extra strip is taken as equal to the value at the midspan of the last
ordinary lifting strip of the section, even though this is not strictly true
unless the slope of the bound vorticity on the last ordinary strip is zero.

7.12 The Linear Equations for the Values of Surface Source Density

A dot product is taken of each source velocity V}j at each on=body
control point, i =1,2, ..., N, with the unit normal vector of the surface

element contatning the control point. Specifically,

AA-"F-'V.. i=],2,...,N

ooy 35=1,2, «u., N

(7.12.1)

The scalar N x N matrix Aij represents the normal velocities at the
control points due to unit values of source density 5 on the elements.
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Z Ao i= 1,2, ooy N (7.12.2)

31

where the source densities cj are as yet unknown, are the nommal velocities
at the control points due to the entire surface source distribution. For the
ucual condition of zero normal velocity at the control points (7.12.2) must
be set equal to the negative of the normal velocities due to the onset flow.
This is done for each onset flow. Normal components of the basic

circulatory onset flows (7.11.3) or {7.11.7) are obtained by taking dot
products with the unit normal vectors in a manner similar to (7.12.1), i,e.,

Ngk) =n. ° k) k=1,2, ..., L (7.12.3)

where L 1is the number of 1lifting strips. The same is done for the uaiform
onset flow V , i.e.,
A (7.12.4)

1 1 @

As discussed in section 6.7 more than one uniform onset flow may be considered
simyltaneously, in which case there is an Ngw) for each of them.

The linear equations that yfeld the values of source density on the
elements are

N .
(k) _ (k) - w
Z Agoi) = ] K=1,2, .is L, (7.12.5)
j=1

These are solved by a direct elimination procedure. There is a set of N
values of o, for each onset flow, including all uniform onset flows.

7.13 Application of the Kutta Condition

For each uniform onset flow a single combined set of source densities
is calculated from

R IR 51,2, e, N (7.13.1)
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where L is the number of lifting strips and where the B(k) are as yet
unknown. The combination constants B(k) are the values of the streamwise
dipole derivative (bound vorticity) on the 1ifting strins, Similarly there
is a single combined onset flow

L
Vﬁ‘”: Vf“) + Z B(k)'\?gk) P21, 2, i N0 (7.13.2)
et

The total velocity at any point is

N
- ! O)
i Z Viios v Y

v
=1

n

.

i=1,2, ...,N+0 (7.13.3)

(7.13.4)

k=1,2, ..., L

are the velocities at the control points for the individual onset flows., It
is important to point out that velocities (7.13.4) are calculated only for the
points where the Kutta condition is to be applied. Only the velocity (7.13.3)
is evaluated at all points,

As mentioned in section 6.5, there are two rather different means of
applying the Kutta condition.

7.13.1 Flow Tangency in the Wake

The first method for applying the Kutta condition is based on property
(3) of section 6.5, i.e., the condition that a stream surface of the flow
leave the body at the trailing edge. This is implemented by inputting L
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points and L normal vectors. The prints are considered to be the first L
off-body points, and both points and normal vectors are designated by subscripts
i=N+1,H+2, ..., N+ L., The total velocity at these points is given by
(/.13.3) tor these values of 1i. The dot product of each velocity is taken

with the corresponding input normal vector, which is presumed to be the unit
rormal vector tc the stream surface. The results are set equal to zero, i.e.,

L
= e o= =le) Z (k)= =(k) _
n, Vi =y vi + B n, vi = 0
k=1
i=N+1, .... N+ L (7.13.9)

[ L
Thus, there are L 1linear equations for the L unknown values B‘k), namely

L
Z DikB(k) = -D‘it i = N + ]s ey N + L (7.]3.6)
k=1
vihere
Dik = 'Vf-k) k=1,2, ..., L
- [ (7.13.7)
D'im:n'i.v‘{i) i=N+]9.--,N+L

If more than one uniform onset flow is considered, the same matrix Dik applies
to al1 of them, Only the Dim are different,

7,13.2 Pressure Equality on Upper and Lower Surface at the Trailina Edge

The second method of apnlying the Kutta condition is based on property
(b) of section 6.5, i.e., the condition that the pressures be equal at the two
control points of each strip that are adjacent to the trailing edge. The

pressure at any point is uniquely determined by the square of the velocity
magnitude, which is

L
A A AR D PRI R LY

k=1
Lot
LYY N 2 Tl
k=1 m=] k=l
Lot
. >_ z Mikmg(k)g(m) (7.13.8)
k=1 m=]
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where the M's are defined by equation (7,13,8). Now let the integer q
denote the 1ifting strip, 1.e., ¢ =1, 2, ..., L, and define

= Mikm (at control point adjacent to trailing edge of q-th strip
on upper surface)

“qkm

(7.13.9)

“Mikin (at control point adjacent to trailing edge of g-th strip
on lower surface)

Similarly define

H . =M. (upper g-th) —M, . (lower g-th)
gmk ik feok {(7.13.10)

an - Mfm (upper g-th) —'Mim (lower g-th)

where the expressions in parentheses in (7.13.10) are intended to be
abbreviations of the rarentheses in (7.13.9)., With this notation, the equal-
pressure condition is

L L
- (k)g! Z -
= j[: j{: HokmB t 2 qny * Ho. 0 (7.13.11)

k=1 m=1

(k).

The method of solution is a Newton-Raphson iterative procedure. Define the

This represents L quadratic equations in the L unknown values of B8

derivative
L
G P =?ZH (M 4 2n =1, 2 L (7.13.12)
wr B e ash o
m=1 k=1, 2, eour L
Then (7.13.11) 1s solved 1terat1ve]y by solving successive sets of linear
equations for the changes AB( in the values of B( ). Namely,
alk) _ -
Zqu“B - P a=1,2, ..., L (7.13.13)

At any stage qu and Pq are evaluated using(i?e B(k) from the previo%i)
iteration. Then (7.13.13) 1s solved and new B computed by adding ¢B

to the previous values. The rate of convergence of this process nr even the
existence of convergence, cannot be proven on theoretical grounds. Hcwever,
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in virtually all cases convergence of this iterative process has been very
rapid. There can be difficulties, however, in extreme cases (see section 8.8). 1
If difficulties should arise in the future perhaps (7.13.11) should be solved 1
by a different iterative procedure than that roprescented by (7.13.13), In any
event the procedure of section 7.13.1 can be used with confidence since no
iteration is invalved,

[f several uniform onset flows are considered, the same¢ H
to all of them,

qkn aprplies

7,14 Final Flow Computation

Once the B(k)
uniform onset flow) is computed from (7.13.1) and a single onset flow from

are known, a single set of source densities (for each

(7.13.2)., Then flow velocities at the on-body control points and of f-body
points are computed from (7,13,3). Pressure coefficients at control points
are computed from

2 ;
Lpi = 1 »/,i (7.14.1)

Forces and wmoments are computed by assuming the pressure to be constant over

each element., If S1 denotes the area of the i-th element, the force on
this element s

F} = -n].cms1 (7.14.2)

and the moment of the force on the element is

My = 0

;X ri (7.14.3)

where ?i represents the vector displacement of the ccntrol point of the ele-
ment from an input moment reference point, With the above assumption forces
and moments on the body are obtained by simple summation

1 .

(7.14.4)
M= E M,
i 1
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Various ranges of summation are used in (7.14.4) so that forces and moments

on different parts of the confiquration may be calculated. In particular
(7.14.4) is performed for: each nonlifting section; each lifting strip; each
lifting section; and all elements of the entire case.

7.15 Computation Time, Effort, and Cost

In the past when computing machines executed one program at a time,
computation time, effort, and cost had definite and agreed-upon meanings. The
total elapsed time necessary to execute the program was measured, and this was
charged to the user at a rate of a certain amount of money per hour. Thus,
computatian time and cost were simply proportional., Computational effort was
slightly less direct, since elapsed time included all necessary inputs and
outputs and certain other operations in addition to straiqhtforward arithmetic

and logic., Nevertheless, it was customary simply to define computational effort

as the time required to execute. Thus, program descriptions customarily
reparted conputing times, but by implicit assumption they were also defining
computational effort and cost.

The situation was changed considerably by the widespread use of computer
systems that process several unrelated programs simultaneousiy. Computing
time, effort, and cost are no longer essentialiy identical; and indeed their
precise relationship cannot be specified, except possibly in terms of a
particular computing facility. Generally, the time the so-called central
processing unit spends on a particular program is recorded. This "CPU time"
is that required for the arithmetic and logic of the program. From CPU time
an imaginary "computing time" is calculated by an arbitrary formula that
accounts for the number of inputs and outputs. Finally, cost is determined

by multiplying "computing time" by a rate that depends in a complicated way
upon the fraction of the total capacity of the computer that is engaged on
that particular problem, i.c,, how much high-speed core slorage is required,
how many low-speed tape or disk units are used, etc. The relationship between
CPlIl time ard “computing time" varies from facility to facility, as does the
formula for computing cost from "computing time." Thuc, no general statements
can be made, A change in the accounting procedure can significantly alter the

cost of a computer run. A program that is optimized for one accounting
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procedure may perform poorly on another. Often the use of less high-speed
storage will result in increases in cumputing Lime and effor:. but a decreasc
in cost,

While nothing definite can be said, still there is a need for some simple,
comanly-accepted measure of the size of a program. It has becowe fairily
common to use CPU time for this measure. There are many valia objections to
this, but no other quantity is more acceptable. 1t should always be “emembered
that CPU time is merely a rouah guide to the order of magnitude of the program,
For the present application CPU times are aiven for the IBM 270-1£5 computer,

Below are CPU times obtained for typical cases, all of which had ore
plane of symmetry, which was accounted for in the calculations. The elenent
numher N refers to those describing one half of the body.

Element CPU Time
Number N in Minutes
250 1.7
500 6
650 12
950 36

The times for the lower element numbers are quite acceptabie, The rapid
increase 1n CPU time with element number for the larger cases {s presumably
due to the use of a direct solution for solving the simultaneous equations,
Clearly an iterative solution should be used for N > 1000, and probably for
N = 800, On the other hand, the direct solution is seen to be very efficiant
for N < 500 and probably should be used for N <« 700,
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8.0 NUMERICAL EXPERIMENTS TO ILLUSTRATE VARIOUS
ASPECTS OF THE METHGD

3.1 %Zlement. Number on an Isolated Lifting Wing

It is ifampartant in three-dimensional problems to be «ble to estimate
c¢lement numbers that make the error in the potentiai flow calculation consistent
with the corrcrs inherent in the approximation of a real flow by a potential flow,
e.g., errors due to neglect of compressibilizy or viscosity. Too small an
element rumber may give useless results, while too large an element number
Teads te a needlessly large compuling time, For good accuracy, complicated
three~dimensiconal gepmetries require more elements than any program makes
aveitable and would raquire very ltong computation times. For such cases the
decicion regarding element number is an sasy onc; simply use the maximum per-
missible numher of elements and accept a lesser accuracy. For simpler cases
a study of the matter may prove worthwhile, In the course of developing the
present method some studies of this type were conducted. The results are
included here in the hope that tiiey will be of value to future users. Obviously,
only a few cases could be studied ir detail. If a design application invoives
many cases of similar geometry, an element-number study for that particilar
geomatry srould be conducted by the user before proceeding.

The simpiest case is that of an i1solated winjg. Two questions must be
answered, dow mony lifting strips should be placed across che span of the
wing? ilow many 1i¥ting elements should 1ie on each strip? The second of
thase gquestions can be answered by running two-dimensional cases using the
method of referurce 1, These cases are, of course, very focst and cheap
compared to tha three-dimersional cases that must be run to answer the first
question, For this investigation, as well as some others to be discussed
below, the geometry chliosen was an untwisted wing, which i3 described fully in
referernce 12, The planform is shown in figure 25, and the airfoil shagpe in
sections parallel to the symmetry plane of the wing is swmmetric ard is 7.6
percent * 1+ &, Two-dimensional considerations lead to the use of 30 iifting
elements on each strip — 15 on each of the upper and lower surfaces. This
appears to be about a minimum number for acceptable accuracy, but on the other
hand it appears sufficient for most applications.
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Calculations were performed for this wing with various numbers of lifting
strips. Four of the cases are shown in figure 25. They range from 6 to 20
Tifting strips on the right half of the wing. In comparing solutions the
quantiﬁy used is the local section 1ift coefficient as a function of spanwise
location. This quantity is obtained from a numerical integration of the cal-
culated pressure, which is assumed to be constant over each surface element.
As explained in section 9.1, this quantity is considerably more sensitive than
pressure distribution in the sense that two pressure distributions that appear
nearly identical may have section 1ift coefficients that are noticeably dif-
ferent, but the reverse is never true. The cases run to investigate the
effect on accuracy of the number of 1ifting strips used the “step function"
bound vorticity option (section 6.3) and applied the Kutta condition by means
of the condition of équal-pressure at the first and last control points of
each 1ifting strip (section 7.13.2). Calculated section 1ift coefficients at
eight degrees angle of attack are shown in figure 26 for cases of 8, 13, and
20 strips (figure 25). The results for 13 and 20 strips are nearly identical
except for a small region near 90 percent semispan, and the 20-strip results
are thus taken as correct. The values of 1ift calculated for 8 strips are
somewhat too large but may be close enough for many purposes. Huwever, it
appears that if 13 strips are used, accurate results are obtained, and this
is thus the recommended neighborhood for the number of 1ifting strips. Thus,
in the present example a total of 30 times 13 or 390 1ifting elements are

desirable,
8.2 Two Forms of the Kutta Condition

Tn sectizsn 5.5 two forms of the Kutta condition are described. They may
be dennted tne wake-tangancy condition (oroperty (s} of section 6.5) z:G the
eagat-oressyure concition (property {b) of section 6.5). ix fiqure 15 calcu-
Tatnd rasylts are sompared for a two-dimensional case where the sti~eam surface
Teayimg the 9ody s Lnown te 14e along the trailing-edge bdisector. For a wing
2 the fype shown In Figure 25, the theory of reference 11 {sectfon 6.5 and
Sigure 13) states tnet tha strean surface leaves the wirng along the tangent
v the uper surfecs,  However, ss discussed in section 6.5 and reference 6,
it §e oftlen more acsurzte to agnly the wake-tangency conditfon along the
syiailirg-pdge bisectur, Tha Bestrip casa of Yigure 25 was rur at 8 deqree
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angle of attack using the "step function" option for bound vorticity with a
wake-tangency condition applied at a distance of 2 percent of local chord
from the trailing edge. Calculated section 1ift coefficients are shown in
tigure 26 for points of application of the wake-tangency condition lying on
the trailing-edge bisector and also on the upper-surface tangent. For the
8-strip case the error “or the case where the trailing-edge bisector is used
is seen to be about twice as large as that obtained with the equal-pressure
condition out to about 80-percent semispan., Application of the wake-tangency
condition at a point on the tangent to the upper surface gives results that
are very seriously in error.

Based on the above results the equal pressure condition appears superior
to the wake tangency condition, for ordinary cases. Unless otherwise
indicated, 1t is used for all cases presented in this report.

8.3 Step Function and Piecewise Linear Bound Vorticity

As discussed in section 6.3, the present method has two options for
treating the variation of the bound vorticity over the small but finite "span”
of a lifting strip. The bound vorticity may be taken either constant or
tinearally varying over the "span" of each strip to yield an overall spanwise
variation over the wing that 1is, respectively, a step function or a piecewise
Tinear function (figure 10). 7o investigate the differences between these
two representations of the bound vorticity, the 13-strip wing of figure 25
was run at 8 degrees angle of attack with an equal-pressure Xutta condition
using each of the bound-vorticity options, For e rl case the bound vorticity
as a function of "spanwise" location on the wing w¢ anizined by fairing a
smooth curve through the computed vdalues of bound voriicity at the "midspans"
of the 1ifting strips. Thus, in comparing the bound vorticity tunctions
computed by the two options, the detailed variation over the individual strips
is ignored. The calculated results are shown in figure 27, (Because of the
sign convention adopted, bound vorticity leading to a positive Tift has a
negative value of the proportionality constant B8, if the N-Tine is irput
with the lower surface first as recommended in sections 7.31 and 8.4.) The
results are seen to be virtually identical. Surprisirgly, agreement is best
tn the regfon of rapid variation near the tip and worst in the region of
relativily siow variation near the plane of symmetry of the wing.
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To further compare the two bound-vorticity options, section 1ift coef-
ficients were computed by numerical integration of the surface pressures. The
results are shown in figure 28. Agreemeht of the two calculations is good
except for the region near the tip. A comparison with the presumably more
accurate results from the 20-strip case (figure 26} indicates that the section
1ift coefficients calculated by the step function option are more accurate
than those calculated by the piecewise linear option. The values of pressure
near the tip are affected by the spanwise velocity component, which is sensi-
tive to the details of the parabolic fit used at the wing tip to extrapolate
the piecewise 1inear bound vorticity to a zero value in the fluid (sections
6.3 and 7.11). However, a limited amount of experimentation with the para-
bolic fit failed to improve the calculated distribution of section 1ift
coefficient near the tib.

Based on the above results it is concluded that there is no apparent
advantage to using the more complicated piecewise 1inear form of the bound
vorticity, at least for simple cases. Accordingly, the simpler step function
form of the bound vorticity has been used for all cases presented in this
report. However, further experimentation with the piecewise 1inear form of
the bound vorticity seems tc be destrable, particularly for more complicated
geometries. Evidently, an improved wing tip condition would be desirable.

8.4 Order of the Input Points

As discussed in section 7.3.1 the input can be arranged so that the
points on an N-line are input in one of two orders. In any case the first
point input is at the trailing edge. Then the puints may be input along the
Tower surface of the wing to the leading edge and back along the upper surface
to the trailing edge. Alternatively, the points may be input along the
upper surface to the leading edge and back to the trailing edge along the
lower surface, (Recall that a different order for the N-l1ines is required
in each case.) The distinction between these two cases is illustrated in
figure 22, It is concluded in section 7.3,1 that the calculated values of
bound vorticity should be equal (corresponding proportionality constants B
equal in magnitude and of opposite sign) in the two cases and that the differ-
ence between the two calculated results (figure 22¢) should vanish in the
1imit of infinite element number,
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The situation described above was investigated by calculating flow about
the 8-strip wing of figure 25 at 8 degrees angle of attack using both possible
orders for the input points. Both cases used the step function option for
bound vorticity and applied the Kutta condition by means of the equal-
oressure condition, Calculations were performed using an "open" wing tip
. finite thickness and repeated using a "closed" wing tip, for which the
section curve at the tip was arbitrarily given zero thickness., There was no
essentfal difference between results for the open and closed tips, so only
the former case s presented here. Figure 29 compares calculated spanwise
bound vorticity distributions obtained for the two orders of input points.

The two distributions are seen to be virtually identical, as pradicted.

Figure 30 compares calculated spanwise distributions of section 1ift coef-
ficient, which are abtained by integrating surface pressures. Agreement is
good except near the wing tin where the solution obtained by inputting the
Tower surface first is clearly to be preferred. What has occurred is that

the difference of the two solutions, represented by the solution of figure 22c,
does not vanish near the tip because of the finite element number.

On the other hand, effects like that of figure 30 do not always occur.
Two of the wing-fuselages of sect’s 9.3 were computed using an order of input
points such that the upper surface of each section curve of the wing was input
before the lower surface. Moreover, the wing tips in both cases were of the
"open" type. The calcnlated spanwise distributions of section 1ift coefficient
(figures 40a and 42a) appear reasonable. Of possible importance is the fact
that the strip of elements adjacent to the wing tip is considerably wider in
both wing-fuselage cases than-in the 8-strip winy of figure 25, Evidently
this matter deserves further study. However, inputting the lower surface
first has never led to trouble,

[t is conciuded that ordering the input so that the lower surface .f a
11fting section is input before the upper surface is a desirable procedure,
and it is followed in all cases presented in this report unless otherwise
stated. The terms "lower" and "upper" refer to the usual case of a wing at
positive angle of attack. The essential condition is the orientation of the
surface to the direction of the onset flow, Thus, for a general flow the
term "Tower" should be replaced by "windward" and the term “upper" by
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"leeward." If in any application there is difficulty deciding which side of
a 1ifting body is Teeward and which windward, then almost certainly it will
make little difference which is chosen. Finally, the differences in the

calculated results for the two orders of input are small except near a wing
tip.

8.5 Location of the Trailing Vortex Wake

As discussed in section 6.3, the location of the trailing vortex wake
must be furnished as input to the program. In practical applications the
exact location is not known, but an approximation may be estimated from
experience. To determine the sensitivity of the calculated results to
wake location, several geometries were calculated with different wake loca-
tions, Among the geometries considered was the wing described in section 8.1
and another wing of fdentical planform with camber and twist. Wakes were
assumed that left the trailing edge along the bisector and also along the
tangent to the upper surface, Straight wakes were used and also wakes that
curved and became parallel to the direction of the uniform onset fiow. None
of these permutations gave any significant charge in the surface pressures
or 1ift distributions on the wing. It is thus concluded that for ordinary
moderate values of angle of attack, trailing edge angle, and degree of camber
any reasonable wake location gives a satisfactory solution,

It may be recalled that the two solutions of figure 26 obtained for
a wake-tangency type of Kutta condition differed very markedly from each other,
This was due to the locations of the point of application of the wake-tangency
condition not to the assumed wake location.

As part of the present study, a review of the literature on wake location
was carried out. In view of the above, the results of the review do not
appear to be of paramount importance to the present method. This is fortunate
because the amount of published information on this subject is not very large.
The literature review 1s summarized in Appendix B.

It should be emphasized that what was proved in the above study is that
the flow on a 1ifting body is insensitive to the position ¢f its own wake.
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Obviously if the wake from one 1ifting body passes near another body, the
flow on the second body is sensitive to the location of this wake. This
occurs, for example, in problems of wing-tail interference.

8.6 A Wing in a Wall. Fuselage Effects

A very comon application of the present method is a wing-fuselage. For
an isolated fuselage much larger surface elements can be used to obtain good
accuracy than can be used for a wing. The question then arises as tc whether
this same rather sparse element distribution can be used for a fuselage on
which a wing 1s mounted. To investigate this point, calculations were per-
formed for a straight wing protruding from a plane wail. The basic geometry
i1s shown in figure 31a. The wing has a rectangular planform with span equal
to five times chord. The airfoil section.is a symmetric one with a thickness
of 10-percent chord. The plane wall extends a distance of five airfoil chords
from the airfoil in both fore-and-aft and sideways directions.

Two studies were performed. In both of them the uniform onset flow is
parallel to the plane of the wall and is at 10-degrees angle of attack with
respect to the wing. In the first study the width of the "extra strip" of
elements that 1ies on the opposite side of the wall from the wing was given
a fixed span equai to one airfoil chord as shown in figure 31a. Three ele-
ment distributions on the wall were used, as shown 1n figures 31b, 31c, and
31d. The dense element distribution of figure 31b has wall elements of the
same chordwise exient as the elements on the wing, whiie the sparse distribu-
tion of figure 31d has only two wall elements over the span of the wing.
Section 1ift coefficients on the wing calculated with the three different wall
element distributions differ by one unit in the fourth decimal place, which
1s utterly negiigtble,

The second study used the wall element distribution shown in figure 31d
and considered three different spanwise extents feor the "extra strip:" one
chord, as shown in figure 3la, three chords, and one-third chord. Calculated
values of section 11ft coefficients on the wing differ by one unit in the
second decimal place. This is of some importance but a very large range of
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spans is being considered. Certainly it can be concluded that the span of
the extra strip is not crucial,

The spanwise variation of section 1ift coefficient at 10 degrees angle
of attack for the case with a one-chord extra strip is compared in figure 32
with that obtained at the same angle of attack for the isolated wing of aspect
ratio 5, and that for the aspect ratio 10 wing obtained by reflecting the
wing in the plane of the wall. This last case corresponds to use of an
infinite plane wail, It can be seen that the wall of fiqure 31 has almost
the sxme effect as the infinite wall., The difference lies not in the finite
element size but in the finite extent (5 chords) of the wall.

8.7 A Sudden fChange in Element Shape

Section 9.3 presents results for a wing of rectangular planform mounted as
a midwing on a rectanqular fuselage. Section 10,1 investigates the effects
of external stores mounted on this wing-fuselage. As part of this latter
study, two different element distributions were used on the wing. These
distributions are shown in figure 33. In both cases the spanwise distribu-
tion of 1ifting strips is identical. In the first case the distribution of
elements is identical at all spanwise locations {input point distribution
1dentical on all N-Tines) so that the elements are all rectang:ular and are
distributed "straight" across the wing, In the second case "slanted" elements
are used on four consecutive strips near midsemispan (point distribution
changed on three consecutive N-lines). In both cases all input points are
exactly on the wing surface. The freestream was taken at 6 degrees angle of
attack, Calculated spanwise variations of section 1ift coefficient are shown
in figure 34a. The sudden change in element shape causes a noticable "wiggle"
in the calculated spanwise 1ift distribution. In a more complicated applica-
tion, such an eftect mignt be taken as physically real. Accordingly, if

eloment distributions must change over a body, it is preferable that they
do so gradually.

Figure 34b compares calculated chordwise pressure distributions at the
midspan of one of the two central strips of the slanted-element region, It
appears that differences in 1ift are due almost entirely to differences in
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prassure in the neighborhood of the upper-surface pressure peak, Elsewhere
the two calculdted pressure distributions agree very well,

#.8 An Extreme Geometry

The numerical experiments of the previous sections provide guidelines
on the use of the method for ordinary design applications. To drlineate
1imits cf validity of the method, cdlculations were performed for a case
having a highly deflected flap (figure 35). As may be inferred from the
figure, the geometry shown is a partial-span flap on a complete wing-fuselage
confiquration (reference 13). This portton of the configuration contains the
essential difficulty, and it was selected for study rather than the complete
wing-fuselage to save computina time. This geometry was selectec as an
extreme example. Real flow about such a body is not even approximateiy a
pctential flow. In the tests of reference 12 the flow over the geometry of
figure 35 was separated even if area suction was used on the body surface.

When calculations were performed at zero angle of attack with the equal-
pressure Kutta condition, the iterative procedure of section 7.13.2 diverged
strongly, This 1s the only case to date where this failure occurred: The
wake-tangency Kutta condition of section 7,.13.1 was applied and gave a reason-
able spanwise distribution of bound vorticity. However, the pressures at the
two control points of each strip adjacent to the trailing edge were not
approximately equal. In a case such as this the proper location for the trail-
ing vortex wake cannot be approximated well by intuition., Calculations were
performed with different assumed wake locations, and significant differences
in the calculated flow were obtained.

Thus, it appears that the present method can calculate flow about "normal"
configurations in a routine fashion but that there are 1imifs beyond which
some care is required.

*However, see section 10.4
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9.0  COMPARISON OF CALCULATED RESULTS WITH EXPERIMENTAL DATA
9.1 General Remarks

In the following sections, fiow quantities calculated by the present
method are compared with experimental data. A1l computations follow the
recommendations of section 8.0. In particular, the step function option for
bound vorticity and the equal-pressure Kutta condition are used.

Two flow quantities are compared: the section 1ift coefficient as a
function of spanwise location and the chordwise pressure distribution at
fixed spanwise location. The former of these is much more sensitive than
the latter. As will be seen, the usual situation is one in whicn the calcu-
lated and experimenta! pressure distributions agree fairly well but the sec-
tion 1ift coefficients are noticeably different because the difference between

the two pressure distributions is of constant sign and its integrated effect is
significant.

It is well known that for unseparated flow the effect of viscosity is
small in nonlifting flow but is quite significant in flows with lift., While
the exact magnitude of the effect depends on the Reynolds number, the gereral
effect of viscosity is to reduce the 1ift about 10 percent from its inviscid
value. In two dimensions calculated inviscid and experimental pressure dis-
tributions on an airfoil are quite different if they correspond to equal
angles of attack but agree very well if they correspond to equal 1ift coef-
ficients, That 1s, the principal effect of viscosity is on the 1ift rather
than on the details of the pressure distribution. This last is probably
true in three dimensions also. However, a condition of equal 1ift is difficult
to arrange if there is a spanwise variation of the 1ift coefficient and of the
corresponding viscous effect. In any case it is desireable to calculate the
1ift, not to accept it as given. Thus, the proper aim is to calculate cor-
rect flow quantities at a given angle of attack. Accordingly, comparisans
of calculated and experimental results are given here at equal angles of
attack. It is believed that most, if not all, of the differences between the
calculated and experimental quantities are due to the effects of viscosity
(and compressibility in some of the tests). Some preliminary work on this
matter has been done and confirms this opinion (See the following section),
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3.2 An Isolated Wing

An untwisted swept wing with a symmetric airfoil section is described
in section 8,1, Low speed wind tunnel data are available for this wing in
reference 12, At a Reynolds number of 18 million the results indicate that
no separation occurs at an angle of attack of 8 degrees, and calculations
and experiment are compared for this flow condition. Results are shown in
figure 36. It can be seen that calculated and experimental pressures agree
rather well at all chordwise and spanwise locations, except possibly near the
trailing edge near the tip (figure 3€d). Calculated and experimental distri-
butions of section 1ift coefficient are quite similar in shape, but the cal-
culated inviscid values are too high by 10-15 percent.

To test the hypothesis that viscous effects are primarily responsible
for the disagreement between calculation and experiment, a crude estimate
of the distribution of boundary-layer displacement thickness was added to
the wing. Flow about the altered body was calculated by the present method,
and the results are also shown in figure 36, A dramatic improvement in the
spanwise 1ift distribution is evident in figure 36a. Thus, the hypothesis
concerning viscous effects appears valid. Changes in the pressure distri-
butions are less spectactlar, but as mentioned above, these are relatively
insensitive,

9.3 Wing-Fuselages

Reference 14 presents experimental data for a simplified wing-fuselage
that consists of an uncambered wing of rectangular planform mounted as a
midwing on a round fuselage. Low-speed tests were conducted at the very low
Reynolds number of 0.31 million, Thus, viscous effects are rather large for
this erperiment. This {is not a very suitable case for comparison with a
potential flow method. It was selected because calculated and experimental
results for a very similar geometry are presented in reference 6, and it
seemed interesting to compare the predictions of the present method with that
of reference 6. The situation is complicated by the fact that the data of
reference 6 were taken at a higher Reynolds number of 0.66 million, so that
viscous effects are reduced,
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Figure 37 shows the geometry of the configuration, Figqure 38 conpares
calculated and experimental results on the wing for an angle of attack of
6 degrees. The two spanwise 1ift distributions are of similar shape with the
calculated values about 20 percent higher than the experimental. The pressure
distributions are in better agreement, but the differences in 1ift are so
great that the pressures aon the upper surface are affected. No conclusions
can be drawn regarding the relative effectiveness of the present method and
that of reference 6, The agreement of calculation and experiment presented
in reference 6 is much the same as that shown in figure 38,

A configuration of current interest i1s a wing with a so-called "super-
critical" airfoil section mounted as a high wing on a fuselage. The confiqu-
ration and the surface elements used in the calculation are shown in figure
39. The "supercritical" airfoil section, which is also shown in figure 39
is very thin ir the neinohborhood of the trailing edge and carries a relatively
large percentage of its 1ift in this region. As can be seen in figure 39,
the fuselage represents an attempt at realism with low element numbers. The
cockpit canopy and the wing=tunnel sting are both accounted for. Figure 40
compares calculated results on the wing at 7 degrees angle of attack with
experimental data from a low-speed wind-tunnel test conducted by Douglas
personnel. The comparison of the section 1ift coefficient distributions
exhibits the by-now-familiar behavior of similar-shaped curves with experi-
mental values lower than calculated ones due to viscous effects. The agree-
ment of the prassure distributions is quite good, especially at the leading-
edge peak, Also, the characteristic “"supercritical" type pressure distribu-
tion aft of midchord is predicted fairly well by the calculations. The
pressure distributions of figqure 40b at 15 percent semispan are at a location
quite near the wing-fuselage junction, which 1s at 13,3 percent semispan,
Thus, th-ee-dimensional interference effects are relatively large at this
location and are predicted fairly well,

A comparison configuration to the one of the previous paragraph consists
of a wing with 2 conventional airfoil section mounted as a low wing on a
fuselage. The body and the surface elements used to represent it are shown
in figure 41. Once again the cockpit canopy and the wind tunnel sting are
accounted for in the calculations. Wind tunnel tests of this configuration
at 6.9 degrees angle of attack were conducted by Douglas personnel at a
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freestream Mach number of 0,5, These test results are compared with the
incompressible calcuiations of the present method in figure 42, At first sight
the results appear quite gratifying., The agreement of calculation and experi-
ment is much better for this case than for the supercritical wing-fuselage,
whose results are shown in figure 40. Agreement is especially good for the
pressures at 25-percent semispan, figure 42c, but the span-ise distribution

of section 1ift coefficient (figure 42a) is also in fairly good agreement.
Unfortunately, part of the reason for this agreement is that the errors in the
calculation due to neqlect of viscosity and the errors due to neqiect of
compressibility are of opposite sign and tend to cancel each other. To
illustrate the magnitude of the compressibility effect, the calcuiated results
have beer divided by the quantity \/TT:TF?, where M denotes freestream

Mach number (figure 42). This type of correction has validity in two-dimensions
within the limits of small perturbation theory, but it has no justitication in
three-dimensions. The curves with this divisor in figure 42 are not attempts
to quantitatively predict compressibility effects 'ut are supposed to
illustrate their general magnitude. 1t appears that when compressibility is
accounted for the agreement of calculation and experiment for the configuration
of figure 41 is about the same as for the configuration of figure 39.

The discussion of the previous paragraph also peints out the need for
a compressibility correction to be added to the present method. Based on
previous two-dimensional experience, this should prove to be much easier than
accounting for viscous effects. The classical procedure is based on the
Gdethert transformation. However, this is not very satisfactory. Its accuracy
is poor in regions such as wing leading edges where the surface slcpe is not
approximately parallei to freestream velocity. Moreover, a complete calcula-
tion must be performed from the beginning for each Mach number. What is
needed is a procedure that obtains compressible results directly from an
incompressible solution, so that only one iengthy flow calculation need be
performed by the present method. An example of such a method is presented
in reference 6, but the results are not entirely satisfactory. Evidently
further investigation is required.

The wings of the configurations of figures 39 and 41 were input with the
upper surface first, The calculated distributions of section 1ift coefficient
that are given in figures 40 and 42 do not show unusual behavior near the wing
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tip,as was exhibited in figure 30. These are the cases referred to in i
section 8.4,

9.4 A Wing-Fuselage in a Wind Tunnel |

A rather extensive study was performed for the somewhat unusual configura-
tion shown in figure 43, Agreement of calculation and experiment was never
obtained, but the results are a good illustration of the versatility of the
method and the uncertainty connected with much wind tunnel data, The basic
configuration is a W-wing mounted on a round fuselage. In the wind tunnel
the model was mounted on a support strut, as shown in figures 43a and 43b.
Tne data .iere supposadly corrected for ail tunnel interference effects (refer-
ence 15). Thus the initial calculation was for the isolated wing-body (no
strut or tunnel walls) at a corrected free-air angle of attack of 4.4°, which
supposedly corresponds to a tunnel angle of attack of 4°. A comparison of
calculated and experimental section 1ift coefficients across the span are !
shown 1n figure 44a. Agreement is good except at the kink and near the tip,
where viscous effects are important. The lack of response of the calculations
to the kink was surprising. However, an approximate potential flow calculation
gives results that agree in general character, but not in precise value, with
the calculations of the present method, This also indicates that viscosity \
is responsible for the dip at the kink in the experimental curve of 1ift coef-
ficient. However, the agreement of calculated and experimental pressure
distributions is not goed, as is shown in fiqures 44b and 44c for two spanwise
locations, A check on the hlockage and upwash corrections that were applied
to the data raised some questions. Accordingly, calculations were performed
for the strut-mounted hody in the tunnel, which is shown in figure 43. The
actual wind tunnel angle of attack of 4° was used. The results of this 1
calculation are included in fiyure 44, Figures 44b and 44c show a rather large
effect of the strut on the lower surface pressures, particularly at the
inboard location, The strut effect is mainly to increase blockage below the
wing but not above., Thus, lower-surface pressures are lowered (higher
velocity) and the result is the loss of 1ift shown in figure 34a. The effect
shown is much larger than the nominal upwash and bhlockage corrections, and
thus some doubt exists as to the validity of the data. This is an interesting
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application of the prog~am. HNo conventional correction could account for the
strut effect, but the program ohbtains it rather easily, However, the exsperi-
mental pressures are still more negative than the calculated in a way that
cannot ve explained on physical grounds. A difference in reference static
pressure possibly could cause this discrepancy.



0.0 INTERFERENCE STUQIES

- Fresented beinw are tiree axaxples of the use of the present method to
pradict the three-dimensionc! intereference effects on (1fting wings of other
rogles in ciose prorimit, - hoth Mifting and non'ifiing, The cases discussed
'poggction 0.7 are geserates ceomptriec that bave 2l the essential jroperties
nf estual destons. UHawever  icey are not themeselves designs cf interest, but
sevys to Nustrite the capadtiiry of Lne nreseat metned. 0On the other hand,
the cazes of saciiegn; 10,2, 19,2, and (0.2 wore genorater by cutifde users and
tae recults theascives were of interest. Thess coses titus represent the first
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ot tae mathcd ac un eralysis teol,
10,1 Wing-¥yseicgs with External ‘tores

oo this exemole of an interforence study, the basic genmetry g a
regtengular »ing Tounted 3s 2 midwing on a mound fuselnge, This gecmetry is
shown in figure 27 ond s dfscussed 1a section 3.2 am! reference 14, Two
exvpcna’-store configurations are oons'dered. The first cansists of a tip
tank. Thd geometiy an¢ elemest dictributine for this case are shown in
tioure %5a. The s2cotd con“ijuration sonsisis of the same external store

moyntes beneath the wing on a <hort pyicr zenterad at 6C-nercent senispan.
The zecretry and etoment distelbution Tar thfc case are shown in figure 45b,

Tigure 45z 2lss shows the “extira strip® «f elements inside the tip tank.
Faoremusses in saction 3.8, thera will he a "hub vortex™ treiling downstream
trom the Lin Link., Nowerer, thls dees nct 2ppear to cause 2ny numerical
probles, ane c-icuiated sdarface voiocities near the downstvream end of the
tin cank seew ent?rely reasonsble, Figure 4LL snows that the trailing edge
o¥ the w113 is continmus across the sven, Accordingly, the “ignored element”
oranedure 3f sectivn ¢.8 s used For she elements cn the lower surface of the

wing that are caveredd o~ partfaliy covered by the pylow, as ‘tlustrated by
the dotted planform of tne pylon in fiqure 45h,

Calcuiations werge performed at € degrecs angie of attack for the thiee

configuraticns: the clean wing, the wing with tio tark, and the wing with
avlnn-tounted external st~ . The round tuselage was pieasent in 311 cases.
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Calculated results on the wing are compared in figure 46. Figure 46a compares
spanwise distributions of section 11ft coefficient. The addition of the tip
tank to the wing prevents the 1ift from falling to zero at the tip, so there
is a large increase in 1ift coefficient in this region. Moreover, as pre-
dicted by various theories, the addition of a tip tank increases the effective
aspect ratio of the wing and thus increases the section 1ift coefficient all
the way to the fuselage. The effect of the pylon-mounted exterral store falis
to zero at the wing tip, but at the fuselage this effect is abouv the same
size as that of the tip tank but in the opposite direction. The major effect
of the pylon is toc reduce 1ift in its vicinity by increasing lower-surface
velocities and thus reducing lower-surface pressures (figure 46¢c). HNotice
that 1ift on the wing cannot be meaningfully computed at the spanwise loca-
tiorn of the pylon because the lower surface is not exposed to the flow, Of
course, there is a force on the external store, but it cannot be meaningfully
associated with a particular location on the wirng. The bound vorticity
distribution is continuous across the span., The general form of this function
is quite similar to that of the section 1ift coefficient, Indeed, it looks as
if a human had faired a plausible joining curve between the disjoint poitions
of the curve of figure 46a.

Chordwise pressure distributions for the clean wing and for che wing with
the tank are compared in figure 46b for a spanwise location close to the tip
tank. The increase in 1ift due to the tip tank is seen to be primarily due to
increased velocity on the upper curface of the wing. Figures 46¢c anu 46d
compare chordwise pressure distributions for the clean wirg and for the wing
with pylon-mounted external store. The spanwise location of figure 46¢
represents the strip of elements immediately adjacent to the pylon location,
The considerable reduction in lower surface prossures due to the presence of
the pylon and store is evident. Upper surface pressures ar2 scarcely affected.
Figure 46d compares precsure distributions on the upper surface of the wing
corresponding to a strip of elements that lies directly abeve the location
of the pylen. The pressure distributison computed for the wing with pylon-
mounted ex*ernal store is quite reasonable except for a "hump” between
65-percent chord and 90-percent chord. Examination of the side view of
figure 45b shows that in this region the surface elements on the pylon and wing
have dimensions that are considerably larger than the local thickness of the
wing. Thus, the presence of pylon 1s sensed "through" the viing on the upper
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surface. An increase in element number could remuve this pressure "hump" but
this seems unnecessary. The proper way to fair the upper surface pressure
distribution is quite obvious. It is felt that the computed results of
figure 46 represent a very successful application of the present methond.

10.2 Wing with Endplates

A case in which the calculated results were of inierest to a user
concerned the effect of endplates on a wing, The wing in cuestion has a
rectangular planform of aspect ratio 1.4 and an NACA 4415 airfoil section,
The endplate has a planform consisting of a semicircular forward section and
a2 rectangular rear section. The entire configuration is shown in figure 47,
Three-dimensional calculations were performed at 10 degrees angle of attack
with and without the endplates. A two-dimensional calculation was also

obtained for compariscn. This last corresponds to a case of endplates of
infinite extent,

Calculated results cre comguiad in Figure 48, It can be seen trom
figure 48a that the addition of the endplates produces a 1ift distribution
that 15 virtually independent of spanwise location. (The slight drop at the
last spanwise locaticn is probably a numerical error and should be faired out.)
However, the level of the 11ft is much closer to that of the isolated three-
dimensicnal wing than it is to the two-dimensfonal value. The chordwise

nressure distributions in the synmetry plane (figure 48b) also exhibit this
behavior,

In performing the above calculations the endplates were taken as simple
symmetric afrfoils 4-percent thick and, of course, had sharp trailing edqes.
If an endplate were present without the wing, t would he nonlifting. In the
presence of the wing the endplate has an inward lift above the wing and an
outward iift below it. The level of 1ift on thre endplate above the wing is
considerably larger than that on the endplate below the wing (about three
times) and is about one-fourth the level of 11ft on the wing,
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This case difters from previous cases in that it represents an inter-
section of two 1ifting portions of a configuration. The "{gnore" option of
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section 6,8 was used on certain strips of the endplate to accommodate the
wing intersection,

10,3 Wing 1n a Wind Tunnel

The wing of aspect ratio 1.4 described in section 10.2 was considered
to be in a wind tunnel at 10 degrees angle of attack, as shown in figure 49,
[f the wing completely spans the tunnel, the theoretical inviscid result is
the two-dimensional flow about the airfoil section in the presence of the
upper and lower walls, i.e., about the sideview of figure 49 considered as
a two-dimensional flow. However, the presence of the gaps between the wing
tips and the tunnel sidewalls allows the bound vorticity on the wing to fall
to zero at the tips and introduces significant three-dimensional effects.
The purpose of the calcuiation was to evaluate these three-dimensional effects.

Figure 50 compares calculated results for the above-described two-
dimensional case with those for the three-dimensional wing with and without
the wind tunnel sidewalls. Al1 cases include the effects of the top and
bottom walls of the wind tunnel, In the three-dimensional case without side-
walls, the top and bottom walls have been extended horizontally a distance of
several wing spans, The importance of the gaps is quite evident in figure 50,
Results for the case of the small but finite gaps are much closer to those
for infinite gaps (sidewalls removed) than to those for zero gaps (two-
dimensional case).

10,4 Wing With Endplates in a Wind Tunnel

As a final example, the wing with endplates (figure 47) was inserted
in the wind tunnel shown in figure 49 to obtain the configuration shown in
figure 51. When calculations were performed for this case with the
equal-pressure Kutta condition, the iterative procedure of section 7.i3.2
appeared to be neutrally convergent and the iterations never fully "settled
down". This may have been caused by the close proximity of the elements on
the wind tunnel wail to the trailing edges of the endplates. 1In all cases
except this one and the strongly divergent case of section 8.8 the iterative
procedure of sectien 7.13.2 converged very rapidly.
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: Because of the above situation, calculations were performed for the

configuration of figure 51 using the wake-tangency Kutta condition. Figure ‘

52 compares the results obtained with those for the isolated wing in free ‘

air. To evaluate the effect on the results of the form of the Kutta condition,

calculations were performed for the wing in free air using both forms of the

Kutta condition. As can be seen in figure 52, the effect of the form of the

’ Kutta condition is not large, and most of the differences between the calcula~
tions for the wing with endplates in the tunnel and the various other results
shown in figures 48, 50, and 52 are due to differences between the geometries,
It is evident from figure 52a that the effects of endplates and wind tunnel

, walls together give a 1ift distribution independent of spanwise location.

‘ ! (Again, the drop in 1ift at the spanwise location adjacent to the endplate

’ is probably a numerical inaccuracy and should be faired out). Moreover, the

level of the 1ift is much closer to the two~-dimensional value than were tnose

obtained using endplates or tunnel walls separately (figures 48a and 50a).

[ The chordwise pressure distributions of figure 52b alsc show the inter- 1
ference effects described above, Also shown are the small but noticeable !

’ differences between upper and lower-surface trailing-edge pressures in the

cases that used the wake-tangency Kutta condition. For the wing in free

air the pressure distributions cilculated using the two forms of the Kutta

condition differ from each other only in the vicinity of the trailing edge )

and are essentially identical over most of the surface. ' ]
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APPENDIX A
RELATION BETWEEN DIPOLE AND VORTEX SHEETS OF VARIABLE STRENGTH

(x,y,z) -

Figure Al. Notation for a general surface,

Consider a surface S in space bounded by a closed curve c. (If S
is a closed surface, c vanishes.) At any point (&, n, ¢) on S the
unit normal vector is F} and at any point on ¢ the unit tangent vector
is ?1 The vector between the point (g, n, ¢) 2and a general point
(x, ¥y, 2) 1in space 1s denoted R, and the length of this vector is
denoted R. Specifically,

R=(x—)T+(y-n)T+ (z2-2)k
(A-1)
R=Yx—)2+ (y ~m)? + (2 — )2

The gradient operator gradx is used to denote that derivatives are taken

with respect to x, y, z., Similarly, grad€ is the gradient operator that
differentiates with respect to £, n, .

THEOREM: Let the surface S be covered with a variable dipole distri-
bution of intensity u. (The dipole axes are along ) The velocity at

(x,¥,z) due to the dipole sheet is equal to the sum of the velocities due to
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a certain vortex sheet of strength w on S and due to a vortex filament
of strength © along c. The strength of the vortex filament is just the
local (edge) value of the doublet strength, i.e.,

@a=u f{on c) (A-2)

The vorticity in the sheet is a vector everywhere tangent to the curves of
constant 3 and has an intensity equal to the magnitude of gradu. Specifi-
cally, if ?: is the vector vortex strength on S, then

©=-nx glr'adg u (A-3)

Since . 1s defined only on S, only the tangential component of its
gradient is defined. However, it is clear from the form of (A-3) that
the normal component of the gradient does not affect the result,

DISCUSSION: The Biot-Savart law gives the velocitya (x, y, z) due tc
a vortex filament of variable strength o 1lying along any curve ¢ as

7 = /__3_1: R ads (A-4)
R
C

where s denotes arc length along c¢. Thus, the velocity due to the vortex
filament whose strength is given by (A-2) and which lies along a closed curve
¢ is

T?F = %33 Lds (A-5)
C

The expression for the velocity due to a vortex sheet is obtained from (A-4)
by writing the vector vortex strength f: = n?, so that (A-4) becomes

- w X u
= d (A-6
\' [——TR S )

Y
Now simply redefine w as a surface density instead of a linear density and
change (A-6) to a surface integral over S. This gives the velocity at
(x, ¥y, 2) due to a vortex distribution of strength W on S as

it e
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-
Vo= Js', 9’—:35: ds (A-7)

where dS dis an elemental surface area on S. For the particular vortex
strength given by (A-3) this becomes

N (n x grad_u) x R
vV o= — o ds (A-8)
w R
S
or
(n - R)grad p — (R + grad uin
> =_ff b 5 dS (A-9)
w R
S

To obtain the velocity due to the dipole sheet, start with the point
source potential

= -1
and generate the dipole potential
-
bp =M - gradg o (A-11)
R.R
R3

where n is the unit vector along the axis of the dipole, and in this
application the axis is along the normal vector to S, The velocity due to
the dipole is

> . n.R
Vo (point) = -grad_o, = -grad (—-3—)

- ;-ggradx n.B-m.7% gradx(b—)

The first term above may be evaluated with the help of a standard vector
differentiation formula taking advantage of the fact that n s independent
of x, y, z and the fact that cur])(ﬁ: 0. The resuit is

¥ it A APl



Vo (point) (- gradx)ﬁ'— ('r? - R) gradx(-;j;-)
(A-13)
Iy . R;.
+ 3 n——R-s—p\‘

1

1

RS
o
R°

The simple form of the second form of (A-3) is due to the simple form of R
Thus, the velocity at (x, y, 2) due to a normal dipole distribution of

strength u on S s
+ 3 . ds (A-14)
[ R R0 ]”

The proof of the theorem consists of showing that 7

from (A-14) equals the
sum of V. from (A=5) and -V; from (A-9).

This is done by starting with
(a) writing out the line integral explicitly in terms of components
(b) applying Stoke's theorem to each component separately to obtain surface

integrals over S, and (c) manipulating the result to obtain the desired

equality. The details are somewhat lengthy. A more concise proof should be
possible,

r
(A-5) and:

DETAILS OF THE PROOF: For a point on the curve ¢

£y n, & are funce
tions of the arc iength s along the curve. The unit tangent vector to c
is

(A-15)

Taking the cross product with R from (A-1) and putting the result in (A-5)
gives
—
v =

" -
r ?¢ 0 dg+-‘i3-(z-—;)dn—”-3—(y—n)dc
c L R R J
> [ . ]
3 -§5(2~c)d£+ 0 dn+;—3-(x—£)dc

(A-16)
c

o A i

o

- [ 1
Kk ¢+§-§(Y-n)d€—?}-(x—g)dn+ 0 dg
¢ L

i




Differentiation gives

3 fu V.1 3 X =5 .
and similar formulas for the n and ¢ derivatives. These are used below,

Stokes theorem in component form is

R aa), (e _ary, Lo _2p), |
¢[Pdg + Qdr, + Rdz] -—/][(an ac)n] +(ar, ag) n, +(3€ —3-5) n3JdS (A-18)
c S

where

sl

@ -+
=T+ 0+ n3? (A-19)

This theorem must be applied to the components of (A-16) separately, The

result is
-
> - 1 &y - n
v=1[l —(y"n)( r+3*¥--15- )—-
T g {[ ?an R - Rj
+(Z—C)] i)—*|-3Z—:g-£u.--- n
_ E?a; R2 3 1M

]n3 }ds (A-20)
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+1?f +(x-e;)(] Wy il ) n (A-20))
sj{ AN g I J
+<y-n)lgﬂ'-+3z-‘u) "
R3 3% R ] 2
] 2 x-—z u
-+(x-5)( Bealsgy)-
PR N
+ (.\(-n)(%;%%+ 3 Li-’;"—u)—ig-}n:, }ds

Certain terms can be collected at once. The u/l!3 terms add tc give

2 j]lgi‘ds (8-21)
7R

The coefficient of n]'f includes the tem

<2
By -n?+ (2 -0 = - b 3 i’i;‘é'— (A-22)

Similar terms occur in the coefficients of "23‘ and n3f. Separating these
terms and collecting gives

= 2/]%6‘&-3]]-‘13-#:15
R < R

]]":g{ [(x ~e)2ny + (x = &)y —ndry + (x = £)iz = On }
S
+T|ly = ndx = g)ny ¢ Oy -~ o) n, + (y —n)(z - r.m:,j
+ X [(z —g)x = g)ng * (2 = gHy ~n)ny + (2 ~-¢)* n3]}d5
-ﬂ#‘{f[i(x-') “l“‘n]‘ + (y~n) ‘)'h n ¢+ iz ~¢) _,H_ N
S

--f(x -c) Emi—{y-n -9-112 ~{z =z —”-ng] (A-23)
!

\
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+ X e } S + 1 -y ] e M - ———
Ije iy zty n) 53 "yt (z -~ ¢) 57 M2
~— - Ef?- a—.' — ﬂi | . — a
(e 10y xﬁy Yo ral— (2 —12) 55 ng
r Y
B 3 2 1 du P
(¢ —§) == + -n) == + Hz - =n,}
+ % ]ix - 0y {y = =) Pl {(z ~t) 3e n3l,

In the fourih (last) int~7ral the terms in dotted brackets :‘;- have been added
and subtracied. [ie the third ntegrel, if {x — i) 1is factorad from the
first line, (y - =) fron the second lirg, and (2 — 1 from the third line,
the remaining tarms are “dentical in ail! three cases, namely (?1' . R') In
the faurth integrai, the 2dd nunbered Tines are identical except for the
companent of ?:, and these three lines add together to give (R - gradgu)'rT.
In the Tourth inteyral vhe ecven rambor=e lires are identical axcept for the
Jifterentiation variabie, 37¢ these throe lines 2dd together to give

(7« ) grad.i. Using all these results £n-23) hecumes

g ﬂ LR J{[ -(-'3»-'1,&% ds

- j] Lo (R - gradu}d - (3 - Syrada] 35 (A-24)
S R
Thus us1aa ‘A-3) and (A-14)
P - -
T . (A-25)

as roquired,
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APPENDIX B
LITERATURE REVIEW OF SHAPES OF TRAILING VORTEX WAKES

As part of the present work a literature search has been conductec into
the problem of locating the trailing vortex sheet.

The idea is that the more
information that can be collected on this matter the more accurate will be the

specitication of the wake to the progrom and thus the more accurate will be
the calculated pressures.

In view of the results of section 8.5, it appears
that the locatior of the wake ¢~ a lifting body is not very important as far
as the surface pressures on thai body are concerned. Wake position mey be of

greater interest in the case where one body is generaily downstream of anather
iifting body.

It is fortunate that the position of the wake does not appear to be

critical, because the literature has proved very disappointing in this regard.
First, there are very few articles on this subject.

Second, most of those
few deal with the asymptotic wake lccation many chord lengths behind the wing,

This is the important region for determining the effects of a wake on ancther

aircraft, but the wake position at such remote Tocatinns seems unlikely to
affect the surface pressures.

Third, the handful of articies that discuss
the wake in the first few chord jengths behind the wing are to some extent

contradictory, Some of the applicable articles are discussed below.

Reference 17, an experimental study of straight wings of fairlv high
aspect ratfo on a fuselage, reports that the wake vorticity 1s essentially

all concentrated into the tip vortices right from the beginning. The tip
vortices separate from the wing tip at about the quarter-chord (not the
trailing edge) and qo straight downstream parallel to the freestream direction,

i.e., they do not follow what are normally thought of as the streamlines cf
the flow,

Reference 18 proved very encouraging.

The configuration was a swept wing
on a fuselage, and the study was both theoretical and experimental. The wake

benind the wing was examined from the trailing edye downstream to a distance
equal to one span. Varfous theoretical rodels were considered, One model
consisted of exactly the model used in many of the cases of this report.

g s o S
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Specifically, the wake was taken to 1ie straight back in the wing midplane

and the spanwise vorticity distribution was the same as at the wing trailing
edge. Downwash computed by this model gave excellcnt agreement with experiment -
much better than a model that considered the wake to be rolled up into tip
vortices.

Reference 19 presented the results of numerical computations for wake
locations behind isolated wings, both straight and swept. The rolled up
portions of the wake near the tips lay essentially straight back in the
freestream direction. The wake center line lay much lower, but the vorticity
was quite weak in the whole reaion nea:r the centerline, i

However, reference 20 contradicted this last result., Based on experi-
mental studies of swept wings, the authors showed that the wake centerline
lay essentfally straight back. This report contains a large amount of down-

' wash data that is difficult to apply to wake-shape estimation., This occurs
‘ in many reports.
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Figure 27. Spanwise distributions of bound vorticity on a swept tapered

wing at 8 degrees angle of attack computed by the two bound
vorticity options.
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Figure 28. Spanwise distributions of section 1lift coefficient on a swept

tapered wing at 8 degrees angle of attack computed by the two .
bound vorticity options.
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for the input points.
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Spanwise distributions of section 1ift coefficient on a swept
tapered wing at 8 degrees angle of attack computed with two
orders for the input points.
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A supercritical wing mounted as a high wing on a fuselage.
(a) The complete cor “iguration.

(b) Airfoil section of
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(b)

Figure 41. A conventional wing mounted as a low wing on a fuselage.

(a) The complete configuration. (b) Airfoil section of
the wing.

o ‘MWJ-‘WMWAWﬂﬂmw»wm, r

148

- “WMI el i




e e

*uedsiwas juaddsd Gz (d) ‘uedsiwds juaduad G| {q) :3e

SUOLINQLATSLP d4NSSAAd ISLMPAOY) "JUSLILSJI0D 3FL| UOLIDIIS JO SUOLINGLUISLIP asimueds (e)

*G'D 40 4IQUNU YOR WEIAISIAJS B pue jydejje jo 3|bue s3aubap g9 3o afe|asny e uo Buim
MO[ © S® pajunow BuiM |PUOLIUSAUOD B UO SI{NSBJ |PIuUdWLLIIXD pue pajeindied o uosiaedwo)y "2y anbL4

(a)
(2)
5 90 m 30
Y{ O 1 ¥0
zo (4]
QHOWD  LN3JY3d
0N\ o O=0 09 o5 Ov ¢ 0 0
NG —~
. 20-
fo-
9
) 90-
S0 W 'WUV0 TANINI3IXI oo °
SO-W VIV TVINIWY3IIX3 »Buv\nu TIOISSIVMNOIM) -~ — ~\ 2,190 o
J-18/00 TWISSIBINGOM) 3 3MISSIHINOINI L o —
93 MPISSIUINGINL — : L mnu,n.wﬂ
QOWLIN ._/g ,—, 21
IN3I$38d Y z- )
(®)
NYdSIW2AS  LN3IOH3d
ool 08 09 ot c2 o]
[ T T v T Y r 4 Y T Q
1
[}
]
201 1529:94 'S0=W ! 1'°
‘VAVO TYANINIYIdX3I o &
< i2¢C
-1 M \H 5 379ISSIYMNOINY  -----o- &
I
H  378iSS3HANOINI —— 2! lco
QOHL3IN t (A
IN3S38d ! ;
ol 0
o] U
°
P 150
- '
llllllllllllllll 1
]
. l90




= = il
= VV M. | m
|
,J
L il __
/,
A
\# f\ﬁ
/
- _,
[ {
7 1
7 i
7 I

- dhan Vo

~—

I T

A W-wing on a fuselage mounted on a strut in a rectangular

wind tunnel,

Figure 43.
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