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ABSTRnACT

The steady scillatory irrotational motion of an inviscd

incompressible fluid is described by a boundary-value problem

of elliptic type. The co: ventionail variational form of this

problem has been made here the basis of a numerical method in

which an appropriate functional is minimized. The problem is

simplified at the otitset by replacing the nonlinear boundary

j jnditions by linearized ones based on the assumption that the

amplitudes of the generated waves ,re smail compared with their

wave lengths.

In order to optimize the nume rical proce',s, the decaying

behavior of the local disturbance has been invest igated and the

results have been used to find an appropriate posltj,,.. for imposing

the radiation boundary condition. Some sample problemsi ''ith

known solutions have been treated first in order to test this

rew method. All the results for tw,.-dimensional motion and tor

heaving motion of an axisymmetric body in infinite or finite

depths show very good agreement with existing results. In

addition, some diffraction problt.m, in two dimensions with

homogeneous fluid or stratified f*uids are solved, and also a

problem with non-uniform depth.

The main advantage of this method is that complex geo)mintry

of the boundary can be easily accomodated; for example, variable

depth is no more difficult than tconstant depth. In principle, this

method can solve any problem of elliptic partial differential equa-

tions with boundary conditions which are, partially or completely,

of Dirichlet, Neumann, ar mixed type.
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NOMENCLATURE

a Maximum half beam of cylinder.

A Submorged area of the cylinder in two

dimensions.

A=r Water plane area of the cylinder of

unit length.

(A)] Coefficient matrix and its components.

k, i; Value defined in (4-15).

S . Body boundaries.

C. Complex variables c=a + ib, and

= a - ib.

CACC Reflection and transmission coefficients,
respectively.

S €/ Decay factor.

Bottom boundaries.

General functional, cosine-

and sine-mode functionals, respectively.

() Functional defined in an element.

F,PF. Force vector, norn-dimensional force vector

and, hydrostatic force vector, respectively.

,1,,$ Free-surface boundaries.

Free-surface boundary on which an oscillatory
pressure distribution is specified.

9 Acceleration of Gravity.

Q<.,Ab) Green's function.

hDraft of a floating body or distance
from the free surface to the top of a

submerged body.

Defined in (4-14).

H," 9,2 Depth of water.
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J'AYn. 16 Bessel functions of the first kind, of the
second kind, modified Bessel fanctions of
the first kind and of the second kind, all

of order n, respectively.

k . Defined in (4-13).

n (, . genvalues.

14 Moment vector.

n Normal vecto:,

[W], aN@&... Interpolation functions.

Pressure, its cosine mode, its sine mode,

and the nodal values of the cosine and sine modes,
? - ?'.1 respectively.

Amplitude of the pressure.

6e,. Radiation boundaries.

Polar coordinates in three dimensions.

$ Arc length on the body profile.

t rime variables.

T Period (second).

U.v 4.V1) Velocity components in the x, y directions,
respect ively.

V(j.t IV&i.1. Velocity vector, its cosine mode and sinc mode,

respectively.

VC 5 Cosine- and sine-moue normal velocities and
V' ~ their nodal values, respectively.

-A, Inertial Cartesian coordinates.

"($), io) Cartesian coordinates fixed in the body.

Y. Amplitude of the generated waves.

y Wavu profile, its cosine- and sine-mode

wave profiles, respectively.

Y. Y€ 'P Non-dimensional wave profile, its cosine and

sine-mode profiles, respectively.
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Y 'o. Y,' Diffracted-wave profile, its cosine- and sine-
mode profiles, respectively.

yz. YV Incoming-wave profile, its cosine- and sine-mode

profiles, respectively.

Amplitudes of the incoming, reflected, and
transitted waves, respectively.

X. Complex variables z = x + iy, z = x - iy.

,u Added-mass and damping coefficients.

Amplitude of sway motion.

Amplitude of heave motion.

Amplitude of roll motion.

C90 U ) Phase angles, for the diffracted and total
waves, respectively.

e, e, c Densities of the fluids.

ex, e,) Velocity potential.

Velocity potentials for the incoming and
diffracted waves, respectively.

.j. ~Velocity potentials corresponding to the propagating
wave and the local disturbance, respectively.

".$) Cosine- and sine-mode velocity potentials,
respectively.

* .Local-disturbance potential due to a source in the
fluid and the image of the source in the upper
plane, respectively.

Cr Phase lag of the transmitted wave.

Tangential vector.

Circular frequency (radian/sec.).

6 Infinitesimal perturbation parameter.

Wave number: V for infinite depth,

and I-Y kH in water of finite depth 11.

Domain of definition.



Introduction

When we treat a steady oscillatory irrotational motion of

an inviscid incompressible fluid described by a boundary-value

problem, a method utilizing Green's function is used most often.

But sometimes there are difficulties in carrying through compu-

tations which are involved with Green's functions and in addition

the method has another drawback: it is not practical for a very

complicated boundary geometry, i.e., for example, for a variable-

depth problem , even though it could be done in principle.

In this paper another alternative method, a variational

method, will be examined. This method is also called a finite-

element meth(O and has becone a very useful method in the field

of structural analysis in the last decade. The method has not

been used much in other engineering fields.

There do exist some papers which treat problems of fluid

flow. Zienkiewicz (1964), Matsuura and Kawakami (1968),

Zienkiewicz and Newton (1969), Holand (1969) and Matsumoto (1970)

treat oscillatory motions of the fluid and solve for the pressure

as unknown variable in a finite tank since the pressure is t1;c

unknown variable in their formulations. Taylor, Patil and

Zienkiewicz (1969) treated a problem of undamped harbor oscilla-

tion based on the shallow-water theory. Argyris, Mareczek and

Scharpf (1969) and Doctors (1970) treated a potential-flow problem.

Hunt (1970, 1971) treated a problem of sloshing water in a

container based on a discri ie-element structural theory of fluids.

In this paper the behavior of a local disturbance is
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examined it, considernble detail and the radiation condition

is examined in the numerical calculations. The minimizing

functional is defined as a function of the velocity potential,

,ard the fLrst-order linearized problem is treated. Several two-

dimensional forced-motion problems and three-dimensional forced-

heaving-motion problems of an axi-symmetri body are solved.

Two-dimensional diffraction problems are also solved for quite

a few different shapes of the obstacles. All the above problems

ar treated in water of finite and infinite depth. A two

dimensional forced-motion problem is also treated in water of

variable depth. A two-dimensional diffraction problem in the

two fluids of different densities is treated.

Most results are compared with the results obtained by

the other methods whenever they are available. Agreement is

generally good.

A computer program has been written that can solve forced-

motion problems or diffraction problems in a homogeneous fluid

or in any number of stratified fluids for any complicated

boundary geometries in two dimensions. Forced heaving motion

of any axi-symmetric body in three dimensions can also be treated.

I I
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I. MATHEMATICAL FORMULATION

We assume that the fluid is inviscid, incompressible and

its motion irrotational; surface tension is neglected. Then

there exists a velocity potential which governs the kinematics

of the fluid. Furthermore, we assume that the motion is

sinusoidal in time, so that we can drop time dependency later.

There is no further assumption necessary for the geometry of

the boundaries.

The co-ordinate system is right-handed and rectangular.

The y-axis is taken directed oppositely to the force of gravity,

the x-axis coincides with the free surface when the fluid ib

at rest. The formulations given in this chapter are mainly for

the two-dimensional case, but one can find the formulations for

the three-dimensional case in the reference (Wehausen, 1960).

1. Governing Equation and Boundary Conditions

When we define a velocity potential P(x,yt) in the

fluid, this satisfios a Laplace equation throughout the xluid:

where

V (1-2)
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In order to complete the free-surface boundary conditio.s,

it is necessar' t , make use of one ,ther , -ndition beside. *he

kinematic condition on the free surface, since the pressure is

pr(,scribed but the form of the surface is not prescribed a priori.

Thus we use both kinematic and dynamic boundary conditions on

the free surface. From them we obtain on the free surface,

y = Y(x,t), the botundary conditior

3 to ±t- + Jt+2 2-, ,A (1 -3)

For a moving boundary the kinematic boundary condition is

=y l a V C .. (1-4)

where It is a normal vector to the surface and V(x,y,t) may e

taken as known. When the hounadary is fixed in space, the equation

(1-4) degenerates into the homogeneous boundary condition

C t 0 (1-5)

When the depth of the fluid is infinite, we have

)I = 0. (1-6)

-he radiation condition requires the waves to be progressing

outwards from the wave-generating source and imposes a uniquenes,;*

* A partial differential equation of elliptic type with boundary
conditions of I)irichlet, Neumann or mixed type reqiires the boundary
to be closed to ensure a unique and stable solution. See Morse and
Feshbach (1953), pp. 706.
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which would not otherwise be present.

Referring to Fig. 1, the cylinder is described parametrically

by Cartesian coordinates " = 2(s), V = (s) in a system fixed in

the cylinder surh that this coordinate system coincides with the

inertial coordinate system Oxy only when the body is al: rest.

The forced oscillation of the body is defined by giving the

coordinateF of the origin of the body coordinate system and the

angle betwee OX and 67:

0(t) = (*t) -EC &6S O fi dr,.f') (1-7)

where .. ?a #,. 0, are constants and Lt&J , ,

describe sway, heave, and roll motion, respectively. The

infinitesimal perturbation parameter 6 measures the relative

size of body motion and hence of the motion of the fluid

throughout the domain.

Fig. I Coordinate Systems



6

The mot ion of a point of the surface of the body described

in term, of' thc inertial coordinates is as follows:

X (5, t) 5(S) 6t) I (1-8)

v ',e (S) + F- [ 19(t j * ) '

•and the normal velocity of the body surface is given by

a4 UP" J4, (I9

on ( x(s,t), y(st)).

The boundary condition (1-9) is not yet a tractable boundary

condition , unless one solves this problem at the instantaneous

position or as an initial-value problem because the boundary

geometry is not fixed in space but moving as a function of time

t. Hence the domain of definition in which a Laplace equation

is to be satisfied is not fixed but is also moving as a function

of time. To solve this as an initial-value problem is out of this

paper's scope, therefore one should try to obtain a tractable

boundary condition for a boundary fixed in space for all time.

In order to express a normal velocity distribution on a boundary

fixed in space, we shall make use of the analytic continuation of

the velocity potential I(x,y,t), so that the potential evaluated

on the body can be expanded in Taylor series in & at a reference

* It is of interest to note that the differential operator for a

Laplace equation does not have an operation with respect to time
whereas a moving boundary is a fanction of time. A boundary con-

dition on a moving 'material' boundary is always described in a

Lagrangean representation rather than an Eulerian representation.

However, in a diffraction problem with a fixed body in incoming
waves, the boundary condition on the body is Eulerian. (See

Eq. (1-25).
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boundary (usually the average posion is taken) fixed in space

for all time and then in a perturbation series in & in terms of

the field variables:

i(X, s,td = ix, ,) +* 0()% (1-10)

We obtain (1-12) for the normal derivative of the potential

evaluated on the surface S , i.e., ( xfx(s), y=y(s) )

11r. 9.to + ae, (1-12)

EquatIons (1-9) and (1-12) yield the required boundary

condition on the body (1-4) for a forced motion.

Next we express the free surface Y(x,t) in a power

series of &:

SYC. - & Y&,X., + Y' ., (1-13)

Following the same procedure used to transfer the boundary condition

for a moving body to a fixed boundary, we shall expand (xYt)

in a Taylor series about the neutral free surface y = 0 and

substitute (1-13) in (1-3). Then we will obtain the following

first-order free-surface boundary condition:

0) f. 0 (1-14)

When we drop the superscript in the potential IV for convenience

and rewrite as a first-order problem, we have

1 AFC'X, 'J , ) =0 (in the fluid)

0 (on y=O) (1-15)

(onS)0
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Further, we asqume that the potential I(xy,4) can be

decomposed into a cosin.o-mode potenti L and a sine-mode

potential as follows:

r(

From (1-7) and (1-9), we obtain

(1-17)

where

V -- (VI , V)

From (1-15), (1-16) and (1-17) we obtain

2=O 9 z, ) 0 (-18)

( 5.0) (1-19)

V .q 
-0

whe re

V . s vt + v'z( s €-2

V (,Z,; ( C'0 Irt, + , ,- 1) rY r

V =  €( ,' ),- ('" ze)).(1-23)

As the radiation condition (Wehausen, p. 480; Stoker, p. 174)

we can assume the asymptotic behavior:
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where ) is the wave number, i.e., V-1 for infinite depth and

F7$ -, )7 v. H for finite depth H.

When we want to solve a diffraction problem due to a fixed

body in the fluid with a homogeneous incoming wave, we assume

that the total potential can be decomposed into a known potential

of an incoming wave C(x,y,t) and a potential of a diffracted

wave j§(x,y,t). Then the boundary condition on the body for the

diffracted-wave potential is

S -I- f -j(1-25)

Let us next suppose that we have two fluids of densities

e, , one beneath the other, the common surface (when

undisturbed) being plane and horizontal, as shown in Fig. Z.

Fig. 2. Stratified Fluids

When we define the velocity potentials in , in the upper

and lower fluids, respectively, and 'then we use both kinematic

and dynamic boundary conditions at the interface, we can write

the first-order linearized boundary condition at the interface
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of th, two tlut,-s, i.e.) y = -h, as follows:

et jj't-e ,,< +Me-f. s 01, =0o
1~ (1-26)

When we define.

Cc*E3r +'st-.r , , (1-7)

(1-26) becomes

E'6 c

I 26 ~C j 

(1 -2 8 )
,-___q, , -.- ,

ile -I!$)e €

It should be noted that (1-28) and (1-29) are mixed-type

boundary conditions in the upper fluid and the lower fluid,

respectively, and that thty are coupled to each other.
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When a pressurc distribution is confined to a segment

of the free surface, i.e.,

SxiSAL
ctt) = Vi-o (1-30)

with $ a constant, we obtain the following boundary condition

on the free surface from (1-16) and (1-30):

0 • (1-31)

s e

where

Three dimensions will be considered very briefly here.

When we consider the three-dimensional problem analogous to

(1-18) - (1-31) for two dimensions, we can still use most of

the two-dimensional formulations. We take the velocity potential

4c %. j. x,t) in rectangular coordinates or j (. , tr) in

cylindrical coordinates. The Laplace operator becomes

or .2

where

In (2-22) we now have V-c =VCxf1, VsmcVc.,jt) , and (1-23) will

take a different form because the given motion has now six degrees

of freedom.
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As the radiation condition in three dimensions, we assume

the following asymptotic behavior:

40~ (--A 1 4 )~O(1-32)

where

f (1-33)

+ '~-x + -

or equivalently

I- (- - = . (1-34)

JrAR
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2. Pressure, Force, Moment, and Wave Profile

The velocity potential (x,yt) defined earlier does

not give any dynamic properties of the flow unless Euler's

integral is utilized. The pressure p is determined by uler's

integral,

- -e ep*(1-35)

with the term -e[7112 suppressed as being of higher order.

The first term in (1-35) is a hydrodynamic pressure and the

second a hydrostatic pressure. Then the force on a body submerged

in the fluid is given by

F pu4S (1-36)

and the moment with respect to the origin by

l " Js (1-37)

where S,. describes the interface of the body and the fluid and

1 is the normal vector into the body.

If the free surface is described by y = Y(xt), then

y - - tx,o.t) (1-38)

When we decompose Y into a cosine and sine mode in time,

Yu) = cL .) - + Y() $1- (1-39)
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then we obtain, from (1-16), (-36) and (1-39)

Yx) .. t') Y'x T (1-40)

When a body is undergoing a forced oscillation, it is more

convenient to use non-dimensional quantities for (1-35) -

(1-40). If we assume the forced motion has only heave motion

with amplitude 7 , then we can define

j-- 1./cs3

F ~ 
(1-41)

where A is water plane area and Po, Fo, Y are the amplitudes
w 0

of the pressure P ,of the force F and of the generated waves Y,

respectively, these being sinusoidal in time t . The added mass

and damping coefficient _, can be defined as follows

(1-42)

-. MjS~~) 12047G-,

fl =(n, ,n.)

* The notation U, and t22 has been introduced here in order to

conform with the more general notation #.. )Lj used when all

degrees of freedom are present. Such problems can also be handled

by the method to be described.
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where A is the subjerged area of the body in two dimensions.

One can define all these non-dimensional quantities and hydro-

dynamic coefficients for other modes of motion in two dimensions

or in three dimensions, but these will not be given here.
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II. LOCAL DISTURBANCE, PROPAGATING WAVE AND RADIATION CONDITION

In this chapter an attempt is made to obtain a more tractable

form for the radiation condition in order to facilitate applying

a numerical method. One main difficulty in the radiation condi-

tion is that it should be applied as x-'- ( or R-.O ). But one
1.

cannot, of course, go to infinity and an infinite boundary has

always to be truncated at some ' sufficiently large' distance in

a numerical method. In this chapter some criteria are developed

to determine how near to the moving body (or a fixed body in a

diffraction problem) one can construct an imaginary boundary on

which one can apply a more tractable version of the radiation

condition. The two-dimensional case will be treated first.

In order to examine the behavior of a local disturbance, we

make use of two fundamental tools in potential theory. The first

is the eigenfunction expansion, and the second is the potential

of a pulsating source, since the source is the slowest-decaying

singularity among all orders of singularities. It seems to be

easier to use a pulsating source in the case of infinite depth,

whereas both can be used in the finite-depth problem and give

the same result.

In two- and three-dimensional cases much is very similar.

Therefore in section two of this chapter, treating the three-

dimensional case, details will be mostly omitted.
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1. Two-dimensional Problem

a) A Local Disturbance

In order to make use of the eigenfunction expansion in the

finite-depth problem, we construct two izaginary vertical

boundaries 1' 2 which e ,tend from the bottom to the free
1 2

surface, including any moving body in between. First we assume

the depth is constant at y = -H. One can subdivide the region

bounded by y=O, y=-H, 9, and ;?z into three subregions

~ft- , a,-2 3  as shown in Fig. 3 so that

JZ A (2-1)

Once we have solved the original problem with given motion

on the moving body, we know the solution *(x,yt) everywhere in

the fluid. Suppose the function a (x,yt)/2n on 8 2 is computed

from this solution §(x,y,t). With this we may now solve a new

boundary-value probLem in the subregion & 2 with the boundary

condition on82 derived from the original formulation. We should

obtain a solution identical with the original solution in the

* One can also construct only one vertical imaginary boundary
which pierces the body and extends the original domain of
definition to include the immersed part of the body. Then we
separate the original problew into two problems for which the
domains extend to infinity on the left-hand side and right-hand
side, respectively. One assumes that there exist normal-
velocity distribuitions for each sub-region which represent the
body motion with i appropriate restriction on the body geometry.
In the three-dimensional case one can construct an imaginary
vertical circular cylinder which contains the body and extends
to the bottom.
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v

Fig. 3. Imaginary Boundaries, i and 432z

sub-region A 2 due to the uniqueness theorem. A similar

procedure can be applied for the sub-region Al,

Let us consider solving the problem in the sub-region

where the boundaries consist of a free surface the ficti-
02

tious moving boundary ' 2, the bottomS2, and the boundary

!K (x = oo ). We may shift the y-axis without loss of

generality, as shown in Fig. 4.

I-

Fig. 4. Normal Velocity Distributions
on an Imaginary Boundary

Nnw this new problem can ne interpreted as a flexible-wall

wave-maker. In order to solve this problem one can use a

classical method, i.e. the separation of variables. By this
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method one can easily obtain the elgenfunctions (Wehausen,

pp. 472-475). The eigenfunctions are

k(2-2)

where

q4 
((2-3)

Fig. 5 shows the relations (2-3) for the eigenvalues, and the

functions (2-2) may be shown easily by direct computation to be

orthogonal on the interval -H 6 1 S 0 . Both orthogonality and

completeness are consequences of the Sturm-Liouville theory.

By making use of these elgenfunctions, one can obtain the

solution of this problem as follows:

f '

- , (x . (2-4)

where

J. fVk /2

• • • •f• )) (2-5)

JA 2)j?+ M
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-E&A

CIL

Fig. 5. Eigenvalues

Further, the potential A. can be decomposed into two parts:1

one represents a propagating wave system, the other a pure local

(Iistu rbance i e.

where

a (A~ h m JtH S T ~ ~ iX 4),(2-7)

le- M) t C.S m1( jiI9 C0 (2-8)

Let us consider the behavior of the local disturbance expressed

in the equation (2-8). Hlow far should one go along Viae x-axis

in order to have the local disturbance reduced to, say, 0.5% of

the maximum (x=0)? To determine this we have to examine the

*One can also obtain the solution for the local disturbance
E. (x,y,t) by imposing R(xvyvt) -' 0 as x-%o . In this
case one will obtain CI "t i =1,2,"' , as
eigenf unctions.
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values of L (i=,2, ). The value m H is the smallest

aiqong m iH (i=1,2,.") since m1 is the smallest eigenvalue. 4

From Fig. 5 the following inequalities hold:

3~ <n 14 -

(2-9)

Let us define the decay factor from (2-8) by

S I . (2-10)

When we non-dimensionalize the variable x by taking H as a

non-dimensionalizing length scale, we have

e-- "Ot (2-11)

where

t /H (2-12)

From (2-9) and (2-11) one obtains

e - x d< (2-13)

Now one can see that for finite depth the decay factor is j
independent of the frequency of the motion, i.e. of 6 oi

For example, when one wants to assure < , then one 4

must have 3 7 , that is, x should be at least four

times the depth. When one considers a particular frequency such
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that the.w.ave length is four times the depth H, then the local

distm-bance decreases to e -- C times its original size in

a half wive length away from the wave maker. Another extreme

example is the cpse in which the frequency of the motion is so

high that the wave length is a tenth of the depth H. Then the

local disturbance decreases to e2X% times its original

size in forty wave lengths away from the wave maker. Fig. 6

shows qualitatively these two extreme cases.

Subscript I is the first example

Subscript 2 is the second example.1 with the same

Fig. 6

It was mentioned at the beginning of this chapter that an

estimate of the extent of the local disturbance could also be

obtained from a source of pulsating strength. For the case of

• -infinite depth we shall use this alternative. A source with pul-

sating strength cos Gt at (a.b) is given (Wehausen, p. 481)

as follows:

-- e (2-14)



w{

23

whe re

It 'X

-A:4
g -- .- £ L

After making use of a contour integral in the complex plane

and some nanipulations, one can reduce (2-14) to (2-15) and

obtain (2-16) from (2-6). The procedure for deriving (2-15)

from (2-14) is given in Appendix A.

e c,. .l,,3-- 5r- £ucxO € )(2-15)

where

- , e e LO, ;

Now one can examine a local disturbance defined in the first

equation of (2-15) and one can utilize the Gauss-Laguerre formulas

[Abramowitz and Stegun, 1967] for the numerical integrations.

One can further decompose

L X' + + (2-16) 4
where

- e ,
r . 1 (2-17)

+ e (2-18)
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is the potential due to the source and is due to the

image of the source, i.e. a sink in upper half-plai e. In the case'

of infinite depth, one can obviously define the decay factor, but

Figures 7 to 10 show the values of the potential for a local

disturbance directly; this gives enough information about its

behavior.

I.f
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b) Propagating Waves and Radiation Condition

From the previous sub-section, one sees that the velocity

potential can be represented as a sum of a potential of a local

disturbance and a potential of propagating waves. This decomposi-

tion is unique. Now we can examine a pure propagating wave which

is the solution for a homogeneous boundary condition with no

body in the fluid and with uniform constant depth or infinite

depth. The solutions are given in many books on hydrodynamics

(e.g., Lamb p. 369). They are as follows:

for finite depth,

cr cx,* =A)--A A v(s.,) s(vx- G) (2-19)

where

A - -#'L/6Gr'J.Y" , V ta n,.V, a= wave amplitude

for infinite depth

e coS (VX-6t) , (2-20)

where

J3 -VV )) = , Q& wave amplitude

In the fotulation in Chapter One, the radiation condition

simply states the asymptotic behavior of the generated waves at

a large distance from the moving body, but for a numerical method,

we need a more tractable boundary condition than (1-24) or (1-34),

which simply state an asymptotic behavior at infinity. Therefore

in this subsection we will try to obtain a more tractable radiation

condition from the examination of pure-propagating waves in order

to apply it to the numerical scheme.
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Let us try ro derive a boundary condition from (2-19) or

(2-20). FirhL (2-19) and (2-20) are slightly changed in (2-21)

by defining , which correspond to the cosine and sine

modes, respect ively:

- ~ +~ Tf (2-21)

where

for finite depth,

(2-22)

=A c.hP(10) sr-v7

for infinite depth,

(2-23)
C. e

;? Since the formulation in Chapter One is given for the

potentials T(x.d)and TtZ0) after the time has been precipitated

out, one obviously may try to make a condition (a coupled relation

between )0c and ) from (2-22) or (2-23). One readily sees

that a coupled relation cannot be made from them unless the

derivative terms are taken into consideratio:i. The first derivatives

with respect to x and y are as follows:



for finite depth, 3

c -Avcs v('+R) YrL2 x 2-4

- , Av 3 l

for infinite depth,

__ -13V e w4i*

v_7k e cos vx (2-25)
2. -(Y$) = ey C3.,5 V

Frst(-d ) anr dfent ) t o3 an b2 tae forofinited

first-order differential equations can be obtained for finite or

infinite depths:

3

4 ~ P (2-26)

C$

Our main concern in this section is to derive a more tractable

radiation condition, as mentioned before, which would be a boundary

condition of Dirichlet, Neumann or mixed type. If one takes the

boundary to be normal to the x-axis, then (2-26) becomes a mixed

type boundary condition, since in this case we can replace J- by

-. 3
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The equation (2-26) can be written as

C S(2-26')

It is of interest to note that, for the infinite-depth

case, one can obtain the coupled relation (2-27) below for a

more general boundary than (2-26) or (2-26'). And this

boundary could be any simply connected line from the free surface

to a sufficient depth that could represent the infinite-depth

problem for numerical computation:

(2-27)

or

shold(228)

where Al = (n ,n ) is the outward normal vector from the fluid

on the boundary.

It should be noted tbtt (2-27) or (2- 28 ) is reduced to (2-26)

or (2-26') if the boundary is chosen to be vertical, i.e.,

111= (1,0).

:I
4
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2. Three-dimensional Problem

As mentioned before, most of th,. procedures in this section

are similar to the previous section In this chapter. Thus a

brief treatment will be given. However, a derivation of a new

radiation condition will be given in some detail.

Cylindrical coordinates will be used throughout this section.

a) Local Disturbance

The finite-depth problem will be treated first. It is

assumed that the motion (normal-velocity distribution) is given

on R=R (refer to Fig. 11).o

,i

Fig. 11

In order to solve this problem with a simple geometry, one can

use the method of separation of the variables as in the previous

section. Then one obtains the elementary solutions (Wehausen,

p. 475) as follows:

* See the footnote on page |?.
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(i = 1,2,''')

where A, B, 8, ? are constants, where the eigenvalues

m m. (i = 1,2,''') are defined in (2-3) and where n is an

integer because of the juncture condition (continuity condition)

along the AS-direction unless there is a radial-plane cut pivoted

on the y-axis.

Without actually constructing a solution for a gLven normal

velocity distribution on the body by using the above eigenfunctions,

one can examine the behavior of a local disturbance in general.

In the first equation of (2-29), jrt. is the only bounded function

and represents a standing wave with a fixed phase at infinity,

whereas one can find bounded standing waves of arbitrary phase

in two dimensions. Whenever one wants to construct a wave of

arbitrary phase at infinity, one must also admit the singular

Bessel function i4.; in other words, one should permit a log-

arithmic singularity, at the axis R=O. Therefore, the first

equation in (2-29) can be used to construct a propagating wave.

In the second equation in (2-29), I is bounded at R=O butn

increases exponentially as R4m whereas K is singular at R=O
n

but bounded for other values of R and decreases exponentially as

* Only when there is a standing wave of arbitrary phase can one

construct an outgoing wave which can be expressed in the form

#f( -Ct) for one spatial dimension and in the form

(- for two spatial dimensions.
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R --. o There is no function which is bounded everywhere and

represents a 1,,cal disturbance in three dimensions. In general,

one may expect that the solution of a boundary-value problem will

require the fLnctions K and hence a singularity at R=O. Then

function Kn will represent the local disturbance.

In order to investirte the behavior of a local disturbance

one may then simply examiiie the function K (i R). The functions
n,'

.i (X), Y (r), and K (x) have well known asymptetic representations
n n n

as 7-1o . These asymptotic representations are

-t ,

(2-30)

where
( ltl t

When n is quite small, say, n=0,1,2,3, these asymptotrc

formulas give very good approximations for these real functions,

even when the variable X is not so large. For example, when

n = 0 the asymtotic formulas for 7.() and )Y4 give such good

approximate ones after about one wave length.

When an axisymmetric body is heaving vertically, n = 0,

and when the body is surging, n = 1, and so on. The more com-

plicated one makes the motion, the higher the order of the Bessel

functions contained in the solution. We restrict ourselves

to the case n = 0 for simplicity, but in principle a general r,

type of motion can be treated in the same way and there will be
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only a change in the region in which the asymptotic formulas

will be useful for the approximation.

From the above considerations one can readily adopt the

two-dimensional results (2- 1)-(2 -13) for a local disturbance

expressed in IC M4 by replacing x by R.

For infinite depth, we shall examine a source with

pulsating strength cos ft at y=b on the y-axis

(Wehausen, p. 477). The potential is

!' (2-31)

+ v (4)

where

For convenience we define

where

i + +

e(f (2-34)
I

For the computation of the integral In (2-34) the Gauss-

Laguerre quadrature formula has been used as was done for the

two-dimensional computations (see Appendix A). ,

• If we take a higher-order singularity, then we get higher-order

Bessel functions.

4
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b) Propagating Waves and Radiation Condition

We have already remarked i1i the previous sub-section

that one must have a pair of 0', and 'jn in order to construct

a pipagating wave and that the asymptotic formulas for 3X

Y' I and KM have a very wide range of validity as approxi-

mations. Thus we shall construct a new relation between the

approximate expressions for 7n and ' , which will be used

as a radiation condition later. Since the radiation condition

is nothing but a condition for the departing phase in space,

one may suppress the factor R in the asymptotic representations

in considering the oscillatory parts. Now let us define the first

term of thr asymptotic expansions as functions to be used in the

derivation of a new form of the radiation condition more suitable

for numerical calculations:

(2-35)

where

- as o

Define C and as follows:

,web (2-36)

where

constant.
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From the condition of departing phase and (2-36), in a manner

similar to the derivation of the two-dimensional case we obtain

S AC (2-37)

From (2-36),

Cy +
)=-L (2-38)

From (2-37) and (2-38), we obtain the following:

(2-39)

We finally propose as a new radiation condition for numerical

computation

(2-40)
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where

vc LAS

At this stage one may start to hate doubts about the new radiation

coneition (2-41) because the second terms (in the bracket) in

(2-41) are 0(t - A ) whereas only the first term in the asymp-

totic expansions for J(t,g and Y r1 was taken in the derivation

of (2-41). If the neglected terms are of order less than or equal

to 1(94) in the asymptotic expansions, those terms should

have been taken into account in the derivation of (2-41). In

order to examine this, we write down the complete asymptotic

expansions for Ti and 'o ) (Watson, p. 199; Whittaker and Watson,

pp. 368-371):

¥ y . iv6,i(~c- ',)+Vo) csS(*,-F)) (2-42)

where , is defined in (2-30) and

wher, 1Y() ={ + -

(2-43)

From (2-42) if we take two terms in the expansions, we will

have

-, ' A. x- C.0 - (-', - ,X -)  r, -,)+(

)( ) ( (2-44)Y A. f-, C X- 91) +, 151 X C -'% + O(X-U '

where A and B are constants defined in (2-43). From
0 1

(2-44) it can be seen readily that the second term is O(r')
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and should have been taken into account in the derivation of

(2-41) if all terms through this order are retained. Fortunately

these worries turn out to be unnecessary, for, if one substitutes

a 4
these two-term expansions (2-44) into (2-41), the t.erms of OWN-)
introduced by retaining the second term of O(r"5cancel each

other, and the lowest order left is 0 W Thus we have

the following:

,XI + ! -n+V
s(_- (2-45)

As mentioned earlier, the first term in the expansions,

i.e., the equations (2-35), are very good approximations for

and Y, , but if we take the two terms as defined in (2-44)

the approximations will be far better. Even most mathematical

tables do not give the Bessel functions J and Y for K'i,

for example, but give the formula (2-44) instead (e.g., McLachlan,

• .pp. 215-217). This is even less than three wave lengths in our

problem (x = VR). Therefore the relations (2-41) are valid to

the same extent that (2-44), neglecting the terms of 0(0-r

is valid. This is then the new radiation condition that we shall

use.

If we take the limit - (a-4I) reduces to the conventional

radiation condition (1-34.). Therefore one can interpret this new

radiation condition as a boundary condition which gives a better

approximation than the conventional ra4rab,' condition and does

not require R to be so large for its application.
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If one takes a boundary R = constant, the derivative with

respect to R in (2-41) becomes a Neumann-type boundary condition,

which we were hoping to obtain for later application of a

variational principle.

It is also of interest to note that the new radiation

condition (2-41) can be obtained without using the elementary

',dlutions, i.(-., the Bessel functions J. and Y,. , but

through physical observations and much simpler mathematics.

When we observe steady-state outgoing ring waves in a pond

which are generated at a point or in a small region in the

center of the pond, at some distance away from the wave-making

region (or point) we can assume

- c..s 4_-) (2-46)

where Y is the elevation of the free surface and the amplitude

A is a function of R. Since we have assumed that the motion of

the fluid is a steady oscillatory one, then the energy flux

across an arbitrary concentric circular cylinder in one period

must remain a constant. From this consideration we obtain

t2 (CR)= "A2-47)

where c is a constant.
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If we had started with the above equation (2-47) in the

derivation of the new radiation condition, we could have

obtained the same equation (2-41) without having considered

the asymtotic behavior of the Bessel functions. This method

does not seem to be mathematically rigorous, but is still

based on observation of the real phenomena, and hence it

shouldn't be disparaged.

- - - - - -
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III. VARIATIONAL METHOD

Most problems of applied physics encountered in engineering

are formulated in the form of a differential equation which

governs the behavior of a typical, infinitesimal region in

the domain of definition, and which can be solved analytically

or numerically. To solve such problems analytically one may

use the method of separation of variables for a very simple

geometry or the method of integral representations by using

Green functions. In slip-hydrodynamics problems, the latter

is used most often. Sometimes, however, there are difficulties

in carrying through computations which are involved with Green

functions. Furthermore, the method has another drawback, in

that it Ls not practical for a very complicated boundary geometry,

i.e., for example, for a variable-depth problem, even thouigh

it could be done in priticiple.

In this chapter we shall discuss an alternative method,

a so-called variational method. A formulation in a variational

form can be obtained directly from the fundamental physics of

the problem, e.g., the energy method in a structural problem.

In a slightly different way, it can also be obtained mathema-

tically from the fundamental differential equations. It is not

always possible to find a variational form for a given problem.

When a variational form is not knowu for a differential equation

that we wish to solve, we can still use a numerical technique to

minimize a 'pseudo-variational form' or any approximate foinctional
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constructed for the differential equation (Zienkiewicz, pp. 38-40,

1971).

There exist variational principles for the motion of a

fluid either in an Eulerian representation or in a Lagrangean

representation (Eckart, 1960; Luke, 1966). Since our formulation,

Equations (1-18) - (1-23) and the radiation conditions (2-26')

and (2-41), consists of Laplace's equation with boundary conditions,

partly, of Neumann type and, partly of mixed type, we shall

simply adopt a well-known variational form for this problem

(Mikhlin, pp. 138-151, 1964).

Let us consider Laplace's equation

XTz oZ. = o Q. (3-1)

with a boundary condition, of the form

where A(x, ,) and are known functions. The variational

form for this problem requires introduction of the following

functional:

A function + that minimizes the functional F is a solution

of (3-1), and vice versa. The proof that the function + which

minimizes the functional T:(+) is the solution of (3-1), is

also in Mikhlin (pp. 115-116, 1964).

In three dimensions one has a similar form. Let satisfy
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,qad -X,. B) -0 (inn),
(3-3)

+n(%,(on ),

where a4(L1 and PCL3) are known functions. Then the corresponding

functionAl FO) is

It is of interest to note a special case in which the

general form of the functional j in (3-2) or (3-4) can

degenerate to the boundary integral only when we distribute

Green functions along the boundary (Bessho, 1970). The

application of this degenerate case in given in Sao, Maeda and

Hweng (1971). In this case the computation will be similar to

the scheme used by Frank (1967).

In our problem, from (1-18) - (1-23) we can readily see that

we will have two functionals, one for a cosine-mode and the

other for a sine-mode, and that these two functionals to be

minimized are coupled on the boundary on which the radiation

condition, (2-26') or (2-41), is imposed, i.e., the integral

along the boundary in (3-2). Due to this coupling on a boundary,

the final matrix, which is the coefficient matrix in a set of

algebraic equations obtained from the finite-element discreti-

zation to be discussed in the next chapter, is not symmetric,

when we combine two sets of the algebraic equations, for the

cosine-mrle and the sine-mode, respectively, whereas in most

strixctural problems they are symmetric. However, we can obtain

• • .4
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the two functionals 4(r€) for the functions

1 and s respectively, from (3-2), (1-8) -

(1-23), and (2-26') and Fig. 12 as follows:

(3-5)

F(T C ?I JA I '

(3-6)

I

I'I

where the integrals along the bottom D vanish in both cases

unless the bottom is moving. As mentioned before, the last

integrals along the 'radiation boundary' in (3-5) and (3-6)

show the coupling relation between and J= 5; therefore

the minimizing functions T and must be found at the same

time, not one after another, unless we can decouple them.

When - pressure distribution p cos 6't + pSsin G't

is specified in a segment on the free surface, then we obtain

the new functionals after we add

( SCC 3 CAX 3-7
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to (3-5) and add

W-cls Ax(3-8)

to (3-6). When we have stratified fluids, the boundary integrals

along the interface, for the upper fluid and for lower fluid

(see (1-28) and (1-29), will show the coupling relation between

the upper fluid and the lower fluid in each cosine-mode and sine-

mode functionals, Fc and Fs , respectively.

- j'I 'I

I I

_ _ _ _ _ _ _ _ _I

Fig. 12.

Fig. 13.
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In three dimensions heaving motion of an axi-symmetric

body, which can be formally reduced to the two-dimensional

problem, will be treated here for simplicity. But a general

three-dimensional problem can be described in a straightforward

way. From the formulations in the first chapter and the new

radiation condition (2-41), we obtain two coupled functionals

1-(Y') and F(1) (refer to Fig. 1.3) as follows:

or, by dividing (3-9), (3-10) by 1 and redefining Fc and Fs,

(3-Il)

Im~ (-a~)+ -V ~ j + If(93~ (3-10)

F (hA/) X~S (T K (3-12)
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IV. NUMERICAL PROCEDURES

In this chapter a brief description of the method of

finite-element discretization will be given in the first

section. How an infinite boundary can be truncated in the

numerical procedure will be discussed in the second section.

1. Finite-element Discretization

A reader can find a very extensive and detailed exposition

in Zionkiewicz (1971). Therefore we will give only a very

brief description here. The convergence of the numerical

solution of Laplace's equation is discussed by Reid (1972).
To begin with, the functional F(+) of a singlefunction

00 defined in (3-2) will be treated first with the goal

of developing a numerical procedure for finding the function

that minimizes the functionl F . The coupled case,

which we have in (3-5) and (3-6) or (3-Il) and (3-12), will

be discussed later.

Let the region occupied by fluid, up to the place at which

the radiation condition is to be imposed, be subdivided by lines

or surfaces into a (not necessarily rectangular) grid. Each

connected piece within the subdivision will be called an 'element'.

We suppose + to be a function that is continuous and bounded

(but see the discussion in chapter VII) in the subdivided region.

* The function + defined in (3-1) and (3-2) can be any
integrable function and it should not be understood as the
velocity potential defined in (1-33).
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One of the important steps in the procedure is the introduction

of a set of interpolation functions N (x,y), i -,..., N,

associated with each element and of such a character that can

be approximated as a sum of these functions, each multiplied

by the value of 4 at, say, a node of the grid associated with

the element ( 9  ; at the i-th node). However, these values of

need not be r.odal values of + but may be other

values (parameters) characterizing + in the element, for

our numerical scheme requires minimizing a functional which

is represented in integral form rather than directly with the

values of function itself. Let us write the set of interpolation

functions as a row vector

N2 , , 4,. 3(4-1)
and the set of 'nodal' values as a column vector

T (4-2)

in an N-node elemert. The superscript e on or on

means that these values are considered in an

individual element. We may then approximate in each

element by the sum

te

(4-3)

We shall give below an example for a rectangular element,

a very simple element shape, for the purpose of illustration.

However, in our actual computations we used more elaborate ele-

ments, a four-node quadrilateral and eight-node quadrilateral

(see Appendix B).
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We can write as in (4-3)

where

: ~ ~ U X 7z9 --

(4-5)

: In order to minimize the functional F( , in (3-2) with

respect to the total number of parameters (or nodal values)

CIF

W an rite wit the inol (4-n3w) cnwr asstmo

- IN (4-6)

2-Eo

whr



52

Let an element in ,Q be denoted by £t . Then we may

decompose f as follows;

(4-7)

e ,

We now approximate e within each element:

F@( })(4-8)

Henceforth we shall simply write Fe for the approximate value.

It now becomes evident that the interpolation functions Ni

must be chosen in conformity with the nature of the functional

F . In particular, they should be chosen so that at the

interfaces the approximation to + is such that it and its

derivatives of one order less than those occurring in the inte-

grands of are continuous. This assures that there is no

contribution to the integral from the interfaces.

Then from (4-6) and (4-7) we obtain (4-9)

-(4 9)

For any node we can write, by differentiating (3-2) with respect

to (i = 1, 2, *..),

(4-10)
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where the second integral is present only if the element has

a boundary on which the boundary condition in (3-1) is

specified.

Noting that is no longer a function of x and y

but that [N] is now a function of x and y,

_ aa,

3 (J.) _~KJ.(4-11)

! •2
etc.

finally we obtain in the whole region

., =[A. (4-12)

or

CA] (4-12')

where

s = 4'j ,(4-13)
2-3 ~x aw Il

JNX~ ax
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. o .. is (4-14)

b~ (4-15)

The formulated problem has now been reduced to the equation

(4-12') a set of linear simultaneous algebraic equations.

The coefficient matrix [A] has the nice properties of being

symmetric, as one can see readily from the equations (4-13)

and (4-14) and of being banded if nodes are properly numbered.

The numerical computations of the integrals (4-13), (4-14)

and (4-15) for four- and eight-node quadrilateral elements are

briefly discussed in Appendix B.

Now let us consider the finite-element discretization

for the coupled functionals cfc) and f$(95 ) in (3-5)

and (3-6) or (3-11) and (3-12). Since we can use (4-8) in

two dimensions without change and also since we can write with

a slight change in three dimensions

9~ ,4j ~4~)(4-16)

where Ni  N i(R,y), let us consider next the boundary integral

involving o(Mvx,), defined in (3-1) and reduced to (4-14) in

the final matrix equation (4-12'). In two dimensions 0 occurs

only on the free surface, where o(-$- , a constant . Then,

* When we have two fluids, we also have at the interface of the

two fluids, o0 and (see (1-28) and (1-29).
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refPrring to Fig. 12, we obtain from (4-14)

h~i (4-17)

both for ri(j, and n'(j'

In three dimensions there are two boundaries on which eC

occurs, on the free surface and on the 'radiation boundary'.

Thus we obtain an analogous form to (4-14) for both Fc and

Fs  (see Fig. 13):

(4-18)

Next let us consider the boundary integrals involving

( y). The value of o( considered above was constant in our

problem, but B may be a function, We can express analogously

to (4-3) as

where [N] are the interpolation functions as before and

are the nodal values of the function * From (4-15) and

(4-19) we obtain

The equition (4-20) becomes in two dimensions

(4-21)
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In two dimensions we obtain I,

from rc(,c)

"= s ( ,x1 ,f,.. (4-22)

and from FS(fS):

6L +, (V] Wl ; (4-23)
URI

In three dimensions we obtain

from F (Tc):

(W M,, RAS) ~I~ '(I~l. )~(4-24)

and from 
F S

where

..v'= [. " W.Vl= (N ] nl

r 31

4
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The values of that is, the normal-velocity distributions

are known and the computation of the integrals along the

body boundary in (4-20) and (4-21) is straightforward. These

become the components of [B] in (4-12'). For convenience let

the matrix equation be understood such that the right-hand

side, [B], is known, whereas the unknown values are on the

left-hand side, as is conventional. Now let us consider the

integrals along the boundary A1 +R2 orR in the expressions

(4-22) to (4-25) for both cases, i.e., the cosine mode and sine

mode, the boundary integral contains the values of the sine-mode

potentials. First we compute all b and next we move those

terms which contain the opposite-mode potentials to the left-side

hand. In order to combine the cosine-mode potentials and

the sine-mode potentials we rearrange both potentials into

one array as follows:

(,J-s

(4-26)

This arrangement minimizes the bandwidth of the coefficient

matrix after combination. The coefficient matrix will now be no

longer symmetric.

Further if we denote the integrals alongOandle in (4-22)
p

C 5
and (4-25) as b , and those in (4-23) and (4-25) as bis, the

final form of the matrix equation becomes:
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[A 1 ' '
" iJ* (4-27)

When an oscillatory-pressure distribution is spr#cified

on a segment of the free surface or when there are two fluids

of densities , , all the procedures for obtaining (4-27)

will be very similar to those explained earlier. It is of interest

to note that the interface condition in the two fluids (see (1-28)

and (1-29)) makes the coefficient matrix (A] in (4-27) asymmetric

dqe to the coupled interface boundary condition between the

upper fluid and the lower fluid.

2. Truncation of the Infinite Boundaries

In Chapter II. the decaying behavior of the local disturbance

has been considered and a new radiation condi:Lonwas derived

which can be applied where the local disturbance is negligibly

small compared with the propagating waves. We can state a few

criteria for the subdivision of the domain occupied by the fluid

(or fluids) and for the truncation of the infinite boundaries.
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Criterion 1. One should subdivide each wave length by at

least ten approximately equidistant points along

the horizontal direction.

Criterion 2. The truncation of the infinite boundaries should

be made after examination of the behavior of the

local disturbance discussed in Chapter II.

It is difficult to state definite and detailed criteria

for the general problems, but one can sensibly determine the

truncation of the infinite boundaries and the proper subdivisions

in the domain case by case after understanding the specific

problem which is dealt with. For example, if the bottom is not

uniform as shown in Fig. 14, then the subdivisions and the

truncation of the infinite boundaries should be different along

the left-hand side and the right-hand side as shown in Fig. 14,

since we know the asymptotic form of the propagating waves on

each side.

Gvn

FIG. 14. Subdividing Meiohea in the Fluid
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In this case ). in the radiation condition is, of course,

different on the left-hand side and on the right-hand side,

i.e. VuV,, on the left-hand side and ))21i on the right-

hand side, where

~ H (4-28)
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V. TESTING OF THE METHOD

1. Pure Propagating Waves

In this section simple tests are made to examine the

radiation condition. Let us consider a fictitious wall on

which a normal velocity is defined as

-n (-rV (5-1)

where t, is defined in (2-19) in two dimensions.

The numerical results for the boundary condition (5-1) on

a fictitious wall have been compared with the exact solution

(2-19) for many cases. For example, in one case the radiation

condition is applied right next to the wall; in other words,

one discretized element has both boundaries, a fictitious-

I motion boundary on one side and the radiation boundary

condition on the opposite side. All' the numerical results

give very good agreement with the exact solutions whenever we

subdivide the domain of the fluid properly into finite ele-

ments. Consider a thin strip one hundredth of a wave length

wide subdivided into one hundred elements in the vertical

direction. If the fictitious motion is applied at the left-

hand side of the strip and the radiation condition at the

right-hand side, then the numerical results agree with the

exact values to six or seven decimal places if eight-node

quadrilateral elements are used.

In three dimensions, propagating ring waves are tested

with the local disturbance artificially suppressed,
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i.e. the boundary condition on a fictitious vertical

cylinder R R is taken as follows:

04

C ~

(5-2)

Stcos' y(i)~Yca - csk ),14

where H is the depth.

The exact solution for the boundary condition (5-2)

is simply

- c-o( 0(.I) (. Y 3 ) (5-3)
Cask lH

where ZR*, -H - o. In this three-dimensional

case the numerical results are compared with the exact solu-

tions (Bessel's functions) given by Abramowitz and Stegun (1967)

and shown in Fig. 20 for y=O. The radiation condition is

applied at R=R1, which was taken as less than one and a half

wave lengths for the two cases considered. The numerical

results are identical up to three significant digits with the

Bessel functions.

2. Pure Local Disturbance

As we have seen in Chapter two, if we apply the radiation

condition on a boundary which is so close to the moving

body that the local-disturbance potential §. has not
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decayed sufficiently, then we will obtain a numerical

solution not for the original problem but for a completely

differenf problem. For, when we take the conventional .

radiation condition, which states the asymptotic behavior

at infinity, then the local disturbance potential

ILt trivially satisfies the radiation condition.

Therefore no special difficulties in connection with the local

disturbance arise in an analytic method. On the other hand,

in numerical scheme, the treatment of the local disturbance

is the most cumbersome.

In this section the radiation condition is applied

at various distancegat which the local 'isturbance remains

of considerable magnitude, in order to obtain some idea as to

how close the truncation of the infinite boundary may be applied.

Let us consider an example in two dimensions with the

exact solution

- -.s mg(H C(5-4)

where M, is given in (2-3) and A is a constant.

The two ccmponents of j are

(5-5)

where -HlyiO and O'xceo. Then on a fictitious wall at

x=O the boundary condition will be:
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0 . (5-6)

We apply the radiation condition at x-x

Fig. 21 shows the potentials If and with the

radiation condition imposed at various distances from the

plane x-O and shows that the numerical solution agrees

very well in this case when the radiation boundary is

taken such that x/H?3. However when we impose the radiation

condition too close to the moving body, then the numerical

solution gives a non-zero sine-mode potential T9CCJ),

although this is identically zero in the exact solution.

3. Oscillatory Pressure Given on the Free Surface

Let an oscillatory pressure be given on a segment ZI

of the free surface; the boundary condition on the free

surface is then given in (1-31). Stoker (pp. 58-66) has

applied complex-variable theory to give the solution for the

propagating waves, i.e. for fe , as an asymptotic solution

at a large distance. If we adopt the Green function for this

problem and make use of Green's theorem, the solution can

be given as

- ,,t(5-7)
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where G is defined in (2-14) and C is defined in (1-31).

For finite depth G is given in Wehausen (1960); it would

not be difficult to extend (5-7) to three dimensions.

In this section, two cases in water of infinite depth

are compared with the solution computed from (5-7) and given

in Fig. 22. Fig. 23 shows the same two cases for finite

depth.

It in of interest to remark that a problem with the

non-homogeneous free-surface boundary condition must be

solved whenever we treat higher-order problems.

4. Forced Motion of Two-dimensional Cylinders in Water of

Infinite and Finite Depths

A circular cylinder of radius a oscillating in a free

surface has been tested for infinite depth for five non-dimensional

wave numbers Va = 0.5, 1.0, 1.3, 2.0, 3.0, and compared with

Porter's results (Porter, 1960). They give very good agreement

in all cases. Table 1 shows the comparisons bet.en Porter's

results and the results by this numerical method for the case

ail.

For finite depth, If = 2a a half-immersed circular cylinder

has been tested for two non-dimensional wave numbers

vi%.= 0.1, 0.5 and compared with the results obtained by another

method (C. H. Kim, 1969). The added-mass coefficients and wave-

ampl'tude ratio for heave do not give good agreement for either

case.
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5. Two-dimensional Diffraction Problems in Water of Infinite A

and Finite Depth (Circular Rectangular Sectitvii)

The incoming wave is assumed te be

Yr4

= n )CO. C. -- CAs Vx SNCSt (5-8)

with the amplitude being unity. Following the definition

(1-39), for the incoming wave, we write

where

From (1-40) we define the free-surface wave profile due to

a fictitious forced notion given in (1-25):

where

(5-10)

and

then the total velocity potential k is given as

Ir (5-11)

and the wave profile on the free surface is

and (5-12)

In order to describe the phase relation between D and
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we define the phase angle

op z~~C t" Y ' (5-13)

similarly

-q -LJ CT Y4) (5-14)

where the arc tangent is understood to take ita principal

value, i.e., -0 O_ Qr S-

if M 'T J '4 are the amplitudes at infinity of the

incoming, transmitted, and reflected waves, respectively,

then we define the reflection and transmission coefficients by

dR- y /yIC -Y /1Y 1 (5-15)

and obtain as a consequence of conservation of energy,

S.(5-16)

we can also express the transmitted wave at infinity similarly

t0(5-8), ll m (~-4~-

where ST is the phase lag of the transmitted wave to the

incoming wave at infinity.

Diffraction of homogeneous incoming waves on a submerged circ-

ular cylinder was taken as a test computation since this

problem has been treated analytically by various people

(Dean, 1948; U'sell, 1950; Ogilvie, 1963). It is well-known

that the reflection coefficient of a submerged circular

cylinder in water of infinite depth is zero in the first-order



60

theory. Thus the model is taken for the numerical calculation

to be identical with the one Dean and Ursell computed, as shown

in Fig. 15.

The results for Va.=fare shown in Fig. 24. The

transmitted wave lags behind the incoming wave by about 82

degrees; Ursell found about 90 degrees.

A diffraction problem with a rectangular cylinder (refer to

Fig. 16) in water of finite depth hae been tested for some

frequencies and compared with the results obtained by another

method (Mei and Black, 1969). The results show very good agree-

ments for both submerged and surface obstacles. Fig. 25 - Fig. 28

show the results for these obstructions.

Each figure giving the results of the diffraction problems

consists mostly of four sheets of figures; for example, Fig. 25

consists of Fig. 25a, Fig. 25b, Fig. 25c, and Fig. 25d. The

first figure shows the diffracted waves .ow. The upper part

of tsie second one shows the phase angle 806) between the

cosine-mode wave')Vand the sine-mode wave , . This figure

shows the transmitted waves on the right-hand side and the sum

of the incoming wave and the reflected wave on the left-hand side.

The fourth figure is arranged in a similar fashion to the second

figure except for the total waves. The phase angle or shows

the phase lag of the transmitted vaves with respect to the .

incoming waves at the far right-hand side; it is hard to give a A

physical interpretation to OT on the left-hand side when the

reflection coefficient eK is large, as, e.g., in Fig. 32d. The

lower part of the fourth figure shows the reflection and
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transmission coefficients at the far left-hand and far right-hand.

sides, respectively. It is easy to prove analytically that

max on the left-hand side has a sharp trough and a smoothN41
crest and that the average of two values of ax at the crest

and trough is one. But sometimes, for example, Fig. 26d does not

show a very sharp trough, but is chopped off in the plotting

by the computer due to the lack of a sufficient number of data

points near the trough.

I.

i.4
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6. Heaving Motion of Axi-Symmetric Bodies (Sphere and

V rtical Cylinder)

A humisphere in heave motion in water of infinite

depth has been tested for two frequencies, Y;d= 0.5, 1.0,

and compared with the results obtained by other methods

(Cumming, 1963). The results show very good agreement.

The waves and wave forces generated by vertical circular

cylirler of Iraft/radius = 0.5 in heave motion in water of

infinite depth have been computed for few frequencies, A.= 0.5,

1.0 , The resu'ts have been compared w'th those of Sao, Maeda

and Hwang (Wl 1), but they are not in good agreement. In view

of the good agreement between our results and those computed

by many others Lor other configurations, we are inclined to

favo x, our results in case of disagreement.
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VT. NEW PROBLEMS

Once this method has been proved to be a useful numerical

method, one can utilize it for solving any problem within the

scope of its applicability, however complicated its boundary

may be. In this chapter only a few sample problems will be

treated since any one can make use of the method for cases of

interest to him.

1. Forced Motion of Twor-dimensional Cylindero in Water of

Variable Depth

Forced motion of a rectangular cylinder in the free

surface with a vertical cliff submerged under the heaving

cylinder is treated. As shown in Fig. 17, we have an

infinite depth on the left-hand side and a finite depth on

the right-hand side. Hence we have two different lengths of

the waves which propagate to each direction. Due to the

asymmetry of the bottom with respect to the y-axis, we may

expect a non-zero force component in the x-direction, even

though the cylinder and the motion are symmetric with respect

to the y-axis. The numerical computation for 0.1

shows that the amplitude of the x-component of the hydrodyi.amic

force is about one fifth of that of the y-component. Fig. 29

shows the wave profiles for this case.
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2. Diffraction Problems in Water of Finite Depth (Triangular,
and Sinusoidal Section and Vertical Multi-barrier along
the Free Surface)

The geometries of the triangular- and sinusoidal-shaped

obstructions on the bottom are shown in Fig. 18. The results

for the triangular-shaped obstacle on the bottom are given

for y- 1.0 in Fig. 30. The results for the sinusoidal hump

on the bottom are given in Fig. 31 for h= 0.5.

A diffraction problem for two vertical flat plates

piercing the free surface was treated in some detail and

this problem was extended to the case of two fluids of

different densities, el and e2  (corresponding to oil

contained between two vertical flat plates (see Fig. 19).

Experimental results (Raissi, 1972) are available for these

problems. The results are obtained for four different

frequencies for ;a homogeneous fluid and are compared with

the experiments. Agreement is good. The results for two

fluids are obtained for a frequency which is near one of

the resonant frequencies of the internal waves. The maximum

amplitude of the internal waves is about six times higher

than that of the surface waves on the oil. Fig. 32 shows

the results for a homogeneous fluid for period T = 1 sec.

( P = 0.6404) and a/h = 2.34. Fig. 33 - Fig, 35 show the

results for the two fluids for T = 1.84 see. ( h0.2704) and

a/h = 2.34.
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VII. DISCUSSION

The main purpose of this paper is rather the testing

of a numerical method than anything else. Therefore the

testing of this method has been carried out for a variety

of different problems, varying from homogeneous wave-

propagation to a diffraction problem due to two vertical

flat plates piercing the free surface when oil is contained

between two vertical plates.

Most results obtained by this method agree with those

obtained by other methods, either analytic, numerical or

experimental. But there were two types of problems which

did not agree very well: one is the forced motion of a

two-dimensional circular cylinder in water of finite depth

and the other is the heaving vertical circular cylinder in

water of infinite depth. It seems to be worthwhile to compute

the complete results since we checked only a few frequencies.

One can also easily compute the forced motion of the axi-

symmetric vertical dylinder in water of finfte depth.

In addition to the fact that any degree of complicated

boundary geometry can be handled easily by this method, there

is still a further degree of freedom in that one can express

the velocity potentials on a mathematically singular plate

(in which the potentials are discontinuous across the boundary)

through numbering of the nodes for each element. One can

easily coustruct a 'numerical Riemann-surface branch cut' by

making two adjacent elements which have the singular boundary
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in common have different nodal numbers at that boundary, even

though the coordinates of the nodes on the boundary are identical.

At this stage we may ask ourselves, what happens at the

ends of the flat plate which are submerged. Does this

method give the correct behavior at the singularity? The

solution of the velocity potential at the singular point

breaks down unless we introduce a proper interpolation function

to represent the near field including the singularity. If we

use a linear- or quadratic-interpolation function in the near

field, then we always obtain a finite value at the singularity,

because the singularity, which is O(rt in the near field, is

integrable and our numerical method minimizes a functional

whi.oi is represented in integral form rather than dealing with

the function itself.

It would seem to be worthwhile to develop a proper inter-

polation function to represent the near field, including the

singularity, in order to obtain a correc' solution at the

singularity.

It would be very interesting to extend this method to

the ship-resistance problem. In this case it may be difficult

to express the radiation condition in moving coordinates in

a tractable form.

A computer program can probably never be made as

efficient or as general as possible. However, we have made

I " ' ! I a - ! ' I ' P'It
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considerable effort to attain such a goal. As mentioned

in Chapter IV, our computer program solves the coupled

equations of cosine-mode potential and sine-mode potential

simultaneously. Accordingly, the band width of the final

coefficient matrix is double the band width of the either

potential of either mode. It would be worthwhile to try

to decouple them and to solve them separately. This might

result in a saving of computir time.

It is posaible to extend this method to a general three-

dimensional boundary geometry without much difficulty.

However, the bar.d -vidth of the coefficient matrix will then

be very large. Hence the computing time will also be very

large. If we modify the present computer program slightly,

we can solve diffractioai problems with an axi-symmetric body

In three dimensions and a plane incoming wave. Other modes

of motion than heave can also be treated for the axi-symmetrtic

body.



APPENDIX A

The potential E (x, y, a, b, t) due to a source with

pulsating strength cos'rt at (a,b) is given in (2-14), i.e.,

-- " N G" (A-l)

where c= a + ib, =a -ib, z = x + y.

Let us consider a contour integral 0 - - in

the complex k- plane (as shown below)

where (A-2)

From the cauchy integral theorem, we have

-J =0.
K-P (A-3)

Let -,s define,

V- =(A-4)
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From (A-2) and (A-3) we obtain:

In order to make the computation of 12 and 13 easy, we

shall try to make 12 0 a s t.-40 and shall choose the path

of integration in 13 along Ok= from r= 0 to r =0o so that

the integrand becomes non-oscillatory in r. From this we obtain
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where

_:13 f _o e,.., fIe di

It is of interest to note two simple cases, i.e. 90 and --

-02 = 0; along x-axis x >0) (A-12)

Se / 2 along y axis y<O) (A-13)
-Lf

From (A-12), (A-13) we can see the integral decrease as

along the x-axis and (i')) along the y-axis for large

In order to compute (A-11), one may use the Gauss-Laguerre

formula whenever the error bound for the numerical integration

is permissible. For completeness this well-known formula

(Abramowitz and Stegun, 1967) is stated here:

e x rj (A-14)

where xz is the i-th zero of the Laguerre Polynomial 1,(X)

(. 'N .)'
(20 0 <)0x1~hLLj~W~
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APPENDIX B

We shall give a very brief description of general quad-

rilateral elements. A reader can find much more detail in

Zienkiewicz (1971, pp. 103-170) and Ergatoudis, irons and

Zienkiewicz (1968). The procedure for the numerical inte-

grations in (4-12), (4-13) and (4-14) will also be described

briefly.

Let us consider a four-node quadrilateral element in the

physical plane. We introduce a new coordinate system in such a

way that the element in the xy plane maps, one-to-one, into a

square in the new coordinates ( - plane) shown in Fig. A-i.

Then we can express a function in terms of a set of the

interpolation functions [N) , which are functions of and

40

(4) (-1-)

Fig. A-i

Similarly we can write
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where

i = 0I 0 ,+V/

(B-3)

[N.] contains the interpolation functions in the new coordinates.

Hence this may be different from [N] in the physical plane.

When we have a general quadrilateral element, it is more

convenient to perform the integrals in (4-12), (4-13) and (4-14)

in the new coordinate system. From the coordinate transformation,

we have J

or in matrix notation

in which [J] is the Jacobian matrix,

(Ik)(t 3 j %[ J3
The integration with respect to x and y in (4-12) can simply

be changed to integration with respect to ,and y , with a

simplification of the limits of integration, which now are simply

from -1 to I in both variables, and with the change

- ,71
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where IJI is the detc-rminant of fJ]. Similarly the boiindary

integrals defined in (4-13) and (4-14) can also be carried

out in the new coordinates with a change of variables,

or

with limits from -1 to 1.

All the integrations are performed numerically using the

well-known Gaussian quadrature formula (Abramowitz and Stegun,

pp. 916-917).

In our computer program, the element shapes that we used

were four-node and eight-node quadrilateral elements. The

procedure for computing Kij, hij and b1 in (4-12), (4-13 and

(4-14) for the case of an eight-node quadrilateral element is

very similar to that for a four-node element. Therefore this

will not be given here.

In writing the computer program, a computer program made

for structural problems (Wilson, 1970) has been helpful.

?4



87

ACKNOWLEDGEMENT

I am greatly indebted ti Professor John V. Wehausen

not only for his patient guidance throughout this work but

also for his continuous encouragement throughout my graduate

studies.

I am grateful to Professor J. R. Paulling for his guidance

and encouragement in my experimental research during my graduate

work. I would like to thank Professor R. L. Wiegel for

reviewing the manuscript.

Finally, I am indeed grateful for the moral and partly

financial support of my brother and my family and for the

unlimited understanding of my wife throughout my years of

schooling at Berkeley.



88

BIBLIOGRAPHY

Abramowitz, M.; Stegun, I. A.

Handbook of mathematical functions. Dover Publications,
New York, 1967, xiv + 1046 pp.

Argyris, J. H.; Mareczek, C.; Scharpf, D. W.

Two and three dimensional flow using finite elements.
J. Roy. Aero. Soc. 12(1969), 961-964.

Besuho, Masatoshi

Variational approach to steady ship wave problem.
8th Sym. Naval Hydrodynamics, Pasadena, Calif.,
1970, 36 pp.

Cumming, Richard A.

The experimental determination of forces and pressures
acting on a hemisphere oscillating on a free surface.
Univ. of Calif., Berkeley, Coll. of Engrg. Rep. No.

NA-63-1 (March 1963), iii + 42 pp.

Dean, W. R.

On the reflection of surface waves by a submerged
circular cylinder. Proc. Cambridge Phil. Soc.

44 (1948), 483-491.

Doctors, L. J.

An application o' the finite element technique to
boundary value pi'oblems of potential flows.
Int. J. Num. Meth. Eng. 2(1970), 243-252.

Eckart, Carl.

Variation principles of hydrodynamics. Physics of

fluids 3, No. 3(1960), 421-427.

Ergatoudis, I.; Irons, B. U.; Zienkiewicz, 0. C.

Curved isoparametric 'quadrilateral' elements for

finite element n,-nlysis. Int. J. Solids & Struct.
4(1968), 31-42.

Frank, W.

Oscillation of cylinders in or below the free surface

of deep fluids. N. S. R. D. C., Rep. 2375 (1967),
vi + 42 pp.



89

Holand, Ivar.

Finite elements for the computation of hydrodynamic
mass. Proc. of Symp. on finite element Techniques
held at the University of Stuttgart, Germany, June 10-12,
1969. (4th International Ship Structures Congress).

Hunt, 0. A.

Discrete element idealization of an incompressible
liquid for vibration analysis. AIAA J. 8, no. 6
(June 1970), 1001-1004.

Discrete element structural theory of fluids.
AIAA J. 9, no. 3 (March 1971), 451-461.

Kim, Cheung, H.

Hydrodynamic forces and moments for heaving swaying,
and rolling cylinders on water of finite depth.
J. Ship Res. 13(1969), 137-154.

Lamb, H.

Hydrodynamics. 6th ed. Cambridge Univ. Press, 1932,
xv + 738 pp.

Luke, J. C.

A variational principle for a fluid with a free surface.
J. Fluid Mech. 27(1967), 395-397.

Matsumoto, Kouhei.

Application of finite element method to added
virtua l mass of ship hull vibration. J. Soe. Naval
Arca. Japan 127(1970), 83-90.

Matsuura, 'oshikazu; Kawakami, Hajime

Calculation of added virtual mass and added virtual
mass moment of inertia of ship hull vibration by the
finite element method. J. Soc. Naval Arch. Japan 38
(1968), 281-291.

McLachlan, N. W.

Bessel functions for engineers. 2nd ed. Oxford Univ.

Press, Lc.idon, 1954, xii + 239 pp.



90

Mei, Chiang C.; Black, Jared L.

Scattering of surface waves by rectangular obstacles
in waters of finite depth. J. Fluid Nech. 38(1969),
499-511.

Mikhlin, S. G.

Variational Methods ith mathematical physics.
(Translated by Boddington, T.) Macmillan Company,
New York, 1964, xxxii + 582 pp.

Worse, P. U.; Feshbach, H.

Methods of theoretical physics. Part 1.
McGraw-Hill, New York, 1953, xxii + 997 + xl.

Ogilvie, T. FranciL.

First- and second-order forces on a cylinder submerged
under a free surface. J. Fluid Nech. LS.0963), 451-472.

Porter, W. R.

Pressure distributions, adled mass and damping
coefficients for cylinders oscillating in a free
s':rface. Inst. Engrg. Res., Univ. Calif.,, Berkeley,
Series 82, Issue 163(1960), x + 181 pp.

Raissi, H.

Use of two- and three-dimensional bottomless cylinders
for harbor and oil storage tanks (tentative name).
Dissertation, Univ. Calif., Berkeley, Dept. of Civil
Engineering (Hydraulic Lab.), To be published in Dec.
1972.

Reid, J. K.

On the construction and convergence of a finite-
element solution of Laplace's equation. J. Inst. Maths
Applics 9(1972), 1-13.

Sao# Kunihisa; Maeda, Hisaaki; Hwang, J. R.

On the heaving oscillation of a circular dock.
J. Soc. Naval Arch. Japan 130(1971), 127-130.

Stoker, J7 J.

Surface waves. Interscience Publishers, New York, 1957,
xxviii + 567 pp.



91,

Taylor, C.; Pattil, B. S., Zienkiewicz, 0. C.

Harbour oscillation: h numerical treatment for und mped

natural %odes. Proc. Inst. Civil Eng. 43(1969), 141-156.

Ursell, F.

Surface waves on deep water in the presence of a
submerged circular cylinder. I. Proc. Cambridge
Phil. Soc. 46(1950), 141-152.

Watson, G.N.

Theory of Bessel functiona. 2nd ed. Cambridge Univ.
Press, 1966, vi + 804 pp.

Wehausen, J. V.; Laitone E. V.

Su:face waves. Encyclopedia of Physics, vol. IX, 1960,
Springer-Verlag, Berlin. 446-77h,

Whittaker, E. T.; Watson, G, N.

Modern Analysis. 4th ed., Cambridge Univ. Press, 1963, 508 pp.

Wilson, E. L.; Pretorius, P. C

A computer program for the analysis of prismatic
solids, Univ. of Calif.,, Berkeley, Dept. of Civil
Engineering, Sept. 1970, i + 50 pp.

Zienkiewicz, 0. Z.

Hydrodynamic pressures due to earthquakes. Water Power,
Sept. 1964, 382-388.

Zienkiewicz, 0. Z.; Newton, R. E.

Coupled vibrations of a structure subw g*led in a
conpressible fluid. Proc. Int. Syap. on Finit9 Elemnt
Techniques, Stuttgart, 1969, 359-379.

Zienkiewicz, 0. Z.

The finite element method in engineering science.
McGraw-Hill, London, 1971, xiv + 521 pp.

I.



92

A; J0(vR) 1?From the
1.5 0; Yo(vR) JTable.

1,0

.5-

vR 0-0.1 vR 1-10.1

A~~ 2! .. . !0 A A

4.00 6.0 1.0 a0.
yR

.. 5

.4-

***2.0* * 40 Rul.0 vR1 1l.

0 6.0 .0 10.

L Fig. 20 - Puro Ring Waves



93

I- 0 .44

LAA

4.2 -1

SV

-4, ,

t 4 4

-. 4 0

0 1 .

"'#-fI. "

I- 0

-II

4 o
0 0 00 0S

'I "U-



F-.94
v9Err/ 2 Oi Coptdfo

4.0 -~ OS* Equation(5-7)

3.0 O

2.0-

.0

-2.0

-3.0

-4. 0A
o 2.0 4. 0 6.0 0.0 10.0 12.0 14.0 16.0

vx

2.0-

0

o . .0 60 6. 00 20 140 1.

vx

Fig. 22 -Orcillatory Pressure on the Free Surface in
water Lf infinite depth.



95

vt=Tr/2 A ~ :c' (computed from
4.0*5 Equation(S-?)

4. 0

2.0

a'

2.0-

/# C

0

-1.0-

-2.0 - sk7

-5.00

-2.0

0 2.0 4.0 8.0 1.0 10.0 12.0 14.0 16.0
vxA

2i. 2 siltr rsur nteFe ufc

inwtroSiiedph -w5



w

96

*

S
* 1-

o
C

F-
0

* L)
S

S.
EU

F-
*
* U

* II.

U

o
* 61

S.
61
E

* .0

C4

EU

_______________ 2
61

C
S

GD

aU

* 61
4J

* U

I-
* 4-

* '4-
S

a

0
(Y~ * EU 4

S
I,

* N
EU

0
* .w-

* U.. ft

4
a

9 * * 9 9 *
ri *. - * I - ft

I



97

0 in

.4 .

a a L
* E

0 cm

4

II

vii

xvw aA



NW

98

ax1

4J.

0

0

U.



N. "' o

O 
44

0 . '0

N 0 0 4

E

9 0 C

Ni

'N 
'A



100

If.

If

VI

* u

aAa



fa a m

*l A

,cc

41

0 0

0 

c

0 G

_ _ _ _ _ ~( .

r;

00

0 .

in 0 or:

a aw



102

I'

LL.

or,



Wp Ra

103

Cdd

C LL

0 40

0 01

EU

0

a 0 0 I

A C, GD



NW

104

u 0

0 C3

o*L



V

105

I
o m a a

0 S gO

o 0

.4 .4 ii'
o 0

* .

* 0

GD
o a -a

* .
* S 41

U
0 0. '1

* 51
q. S

4.
3

'I 0 0

ft -P.4 * *U4.K
-a

, ~ a

El

a'
a 0

* *

ft ft 41
* I En

0

0.
0 a

* I
C

* .0
10
N

o 0
* * a'

* I U..

* S *P.
01

o In a
S S *

* 0
* N I

1.)

o a -

* S

a 5 5 S £ ....A...~L.... a
o a 0 0

N - -5 ft E*4 .4 SI * * * S g -4
a0 x~wIaAI



106

#A 1 S

4AS

>-S

LA



107

aj0 0

0- ;

EE

0oi 0

ar



108J

NN
uo,

0 N

0

.0 V

In

4-



109

i nI 0 n 0

VI p. I " v , • •V:

oto

< N
j

V

o 0

> x

-l .4 I-)

VI VI

InI
VI H

0 00

In in I

.,•, •I • .EUL A-

c0xwi Al



Pw-

110

LA.

u'

ao



|r

04 4A

In 0 Intm

0 W4

31

* . . .,
co

41.

. -. 0 1

40

2

0 xP E

x

o / l 0 ,p.

' 'I

Vt to

PAA

Vt V V

* p p * . p * p p p p p p p pm

o 0 0 0 0~ Vt 0 Vt .

* . .1p p ON

04 -4 4 04 0 -4 -



112

I

0 "I

* C

* 6

4.)
4-,

e,3.

0

4J

4%.

4J

u!

4-

I4-

, to

00

qo.

. . .. ., ; , ; .

a



113

a a a

'Ci

coi

xew aA



114

I
a

a

a

a.

.1
a

o
* a,

ft
Eu
2

U-

4-)

0

U

C"

.5-.

U..

'4

St

C
a 4

7
V

4

* . * S 5 4 .1
ft -. .4 -4 .4 ft

a a



115

* 0OD

too

aL

a U,

.9- . a

0 0*

4.w 4. 0



116

fa

/ fa
4.)

o 45

0

_ _ _ 0

C

>

a(

* 0

.4LL

0 IA
141.



117

E~. 0

o 0

Im

7 0 0a

faa

*10~

0 0 of -2 v

a l A

4

A II 0 a



118

"p4o

oI

co

o 0

00

.44

4-

00

Ia

14
i., / ,.

N EU
,, _- __,0

( " -

". o

. .. . , Eu;



119

w w I 0 I I 0 9 t

* 4 1

.4 4J

o- 1

o 0

0 0

* CL

*1 @

2 0

xpwak



120

a

Im,
LL



121

oa VI

> w f w

N aN

o - c
C 'W

-'N .-. E

K--.-- f4(~
* bi In o

* U a,



122 k .

u im

0

A ... 1"..
q, .9-



123

U. 0

0 4J

CL
E

EU

a 0 0 .1 q. in

xvw.



124

0

4D

00



125'
a Ini a

#44

- -4 1

lo

L.

ax a



126

414

n 0 a
ooo

CA 0

u 0 4J

-- i -

0 31C

00

#44

0 0

4.

0 4J

LA.



'4 4 1

'4uS

o co

XVW0.

71~a



128

00

ft-

U. I.

010

a 'N

A+ A)-'



2 2,: "'129

-c 0f.

1% -

4- A

414

CL

0 x

o 0

0 0

a C0)
cz1

cik

ox ex

2t



130

4n q

4-)

CL

L-

E

a4

C ...-
i < , p

I. . 0

,i _______________ ,______________

I.Y



131

0

L.

w 0 CA

u~ 0m

00

0 IA

0 Of



132

00,0,0

40.

0 0 C16

a IL

0 x

0 0

lo 0 a

- -.

lo

0 0 'I

a a C



133

0

iN

0

0

ot

*>

4U

o 1-

,. a,

0

4-

0 0I-4.)

. , 0

"IA I



134

o 0 a 0 0 a

0 *, a w

* 0

.0 0

0 0 o

a LO

o 32

H 41

1. 0

o .0
a 0

of
a a .

.0

V V

#41

00 C
aE

0' 00a
az

9I

0 0 0 0 0g0 U f

10~ X 0~A

xvj.



135

7 I I
I

a II
p 3c

4.)

0 a

0~ 0 0

aI

/. -

L,..

UA I

l"I



*. . . - . . -. , ,f.-. - ..- r, ' -: 
. ' * -  * ' s  

" *J ''

136

0

t
a

9-

y/9-

0 0 0 0) 0 0 0 0 0 0 O*

oIC ... ....... . . . . "S



137

0 0a a 0 a 0 a 0 0
0~ w # 0 ft a
14 . * a

T~f 1 0 v.I

Gun uwI

U.,

010

LA.

a 0' 00

x e w
LUw 'A'


