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ABSTRACT

The steady »oscillatory irrotational motion of an invisc:id
incompressible fluid i; described by a boundary-value problem
of elliptic type. The conventional variational form of this
problem has been made here the basis of a numerical method in
which an appropriate functional iy minimized, The problem 1s
simplified at the outset by replacing the nonlinear boundary
cunditions by linearized ones based on the assumption that the
amplitudes of the generated waves arce smail compared with their
wave lengths,

In order to optimize the numerical proce<s, the decaying
behavior of the local disturbance hus.Lecn investigated and the
results have been used to find an appropriate position for imposing
the radiation boundary condition, Some sampie problems with
known solutions huve been treuted first in order to test tthis
rew method, All the results for two-dimensional motion and tor
heaving motion of an axisymmetric body in infinite or finite
depths show very good agreement with existing results, In
addition, some diffruction problems in two dimensinns with
homogeneous fluid or stratified fluids are solved, and also a
problem with non-uunifora depth,

The main advantage of this method is that complex geometry
of the boundary can be easily accomodated; tor example, variable
depth is no more ditficult than constant depth, In principle, this
method can solve any problem of elliptic partial differential cqua-
tions with boundary conditions which are, partially or completely,

of Dirichlet, Neumann, or mixed type,
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NOMENCLATURE

Maximum half beam of cylinder,

Submerged area of the cylinder in two
dimensions,

Water plane area of the cylinder of
unit length,

Coefficient matrix and its components,
Value defined in (4-15).
Body boundaries.,

Complex variables c¢=a + ib, and
T=a - ib,

Reflection and transmission coefficients,

, respectively,
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‘\
.

Decay factor.
Bottom boundaries,

General functional, cosine-
and sine-mode functionals, respectively,

Functional defined in an element.

iv

FFEE Force vector, non~-dimensional force vector
and hydrostatic force vector, respectively.

g&,Gh‘ék Free-surface boundaries,

3; Free-surface boundary on which an oscillatory
’ pressure distribution is specitied,

9 Acceleration of Gravity,

G@iah Green's function,

gt e e o N

) Draft of a floating body or distance
from the free surface to the top of a
submerged body,

hig Defined in (4-14),

H, e, Hy Depth of water,
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Y.
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Bessel functions of the first kind, of the
second kind, modified Bessel Suanctions of
the first kind and of the second kind, all
of order n, respectively.

Defined in (4-13).

Eigenvalues,

Moment vector,

Normal vector,

Interpolation functions,

Pressure, its cosine mode, its sine mode,
and the nodal values of the cosine and sine modes,
respectively,

Amplitude of the pressure.

Radiation boundaries,

Polar coordinates in three dimensions,

Arc length on the body profile.

Time variables,

Period (second),

Velocity components in the x, y directions,
respectively,

Velocity vector, its cousine mode and siuc mode,
respectively,

Cosine- and sine-moue normal velocities and
their nodal values, respectively.

Inertial Cartesian coordinates.
Cartesian coordinates fixed in the body,
Amplitude of the generated waves.

Wave profile, its cosine- and sine-mode
wave profiles, respectively,

Non-dimensional wave profile, its cosine and
sine-mode profiles, respectively,
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Diffracted-wave profile, its cosing~ and sine-
mode profiles, respectively,

Incoming-wave profile, its cosine- and sine-mode
profiles, respectively,

Amplitudes of the incoming, reflected, and
transmitted waves, respectively,

Complex variables z = x + iy, zZ=x - iy.
Added-mass and damping coefficients,
Amplitude of sway motion,

Amplitude of heave motion,

Amplitude of roll motion,

Phase angles, for the diffracted and total
waves, respectively,

Densities of the fluids,
Velocity potential,

Velocity potentials for the incoming and
diffracted waves, respectively,

Velocity potentials corresponding to the propagating
wave and the local disturbanrce, respectively,

Cosine~ and sine-mode velocity potentials,
respectively,

Local-disturbance potential due to a source in the
fluid and the image of the source in the upper
plane, respectively,

Phase lag of the transmitted wave,

Tangential vector,

Circular frequency (radian/sec.),

Infinitesimal perturbation parameter,

2
Wave number: V=074  for infinite depth,
and 6/g=ytamhUH in water of finite depth H,

Domain of definition,
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Introduction

When we treat a steady oscillatory irrotational motion of
an inviscid incompressible fluid described by a boundary-value
problem, a method utilizing Green's function is used most often,
But sometimes there are difficulties in carrying through compu-
tations which are involved with Green's functions and in addition
the method has another drawback: it is not practical for a very
complicated boundary geometry, i.e,, for example, for a variable-
depth problem , even though it could be done in principle,

In this paper another alternative method, a variational
method, will be examined, This method is also called a finite-
element methaod and hu; become a very useful method in the field
of structural analysis in the lust dccade, The method has not
been used much in other engineering fields,

There do exist some papers which treat problems or fluid
flow, Zienkiewicz (1964), Matsuura and Kawakumi (1968),
Zienkiewicz and Newton (1969), Holand (1969) and Matsumoto (1970)
treat oscillatory motions of the fluid and solve for the pressure
as unknown variable in a finite tank since the pressure is tlic
unknown variable in their formulations, Taylor, Patil and
Zienkiewicz (1969) treated a problem of undumped harbor oscilla-

tion based on the shallow-water theory, Argyris, Mareczek and

Scharpf (19692) and Doctors (1970) trecated a potential-flow problem,

Hunt (1970, 1971) treated a problem of sloshing water in a
container based on a discr te-element structural theory of fluids.

In this paper the behavior of a local disturbance is




examined 1n considerable detail and the radiation condition

1$ examined in the numerical calculations, The minimizing
functional is defined as a function of the velocity potential,
and the {i1rst-order lincarized problem is treated, Seve+ral two-
dimensional forced-motion problems and three-dimensional forced-
heaving-motion problems of an axi-symmetric body are solved,

Two-dimensional diffraction problems are also solved for quite

a few different shapes of the obstacles, All the above problems
are treated in water of finite and infinite depth, A two
dimensional forced-motion problem is also treated in water of
variable depth, A two-dimensional diffraction problem in the
two fluids of different densities is treated,

Most results are compared with the results obtained by
the other methods whenever they are avallable, Agreement is
generally good,

A computer program has been written that can solve forced-
motion problems or diffraction problems in a homogeneous fluid
or in any number of stratified fluids for any complicated

boundary geometries in two dimensions, Forced heaving motion

of any axi-symmetric body in three dimensions can also be treated,
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I, MATHEMATICAL FORMULATION

We assume that the fluid is inviscid, incompressible apd
its motion irrotational; surface tension is neglected. Then
there exists a velocity potential which governs the kinematics
of the fluid, Furthermore, we assume that the motion is
sinusoidal in time, so that we can drop time dependency later,
There is no further assumption necessary for the geometry of
! the boundaries,

The co-ordinate system is right-handed and rectangular,
The y-axis 18 taken directed oppositely to the force of gravity,

the x-axis coincides with the free surface when the fluid is

at rest, The formulations given in thLis chapter are mainly for

. the two-dimensional case, but one can find the formulations for

the three-dimensional case in the reference (Wehausen, 1960),

1, Governing Equation and Boundary Conditions

When we define a velocity potential @ (x,y,t) in the

fluid, this satisfics a Laplace equation throughout the xluid:

vidczytr=0, 1-1)

where

1
V":-g;\ '0’-32;-1 >

w(xy.6) = —%% , (1-2)

<

-

vix, y.t) =’%§§ .
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In order to complete the free-surface boundary conditions,
it is necessary t : make use of one ,ther :ondition besides *he
kinematic comdition on the free surface, since the pressucre is
prescribed but the form of the surface is not prescribed a priori,
Thus we use both kinematic and dynamic boundary conditions on
the free surface., From them we obtain on the free surface,

v = Y(x,t), the boundary conditior
B (X3 Eg+ 2330 + 23 % +25.%, 3y +3 B, +5,%,y=0.(1-3)

For a moving boundary the kinematic boundary condition is

28 _ .
55 =N-Vxyyd | (1-4)

wherec M is a normal vector to the surface and W(x,y,t) may be
taken as known, When the houadary is fixed in space, the equation

(1-4) degenerates into the homogeneous boundary condition

2% . (1-5)
—=.(%,Y,¢t -
oM y.£) o.

When the depth of the fluid is infinite, we have
; 2L _
M -—ii; ——O. (1'6)

"he radiation condition requires the waves to be progressing

outwards from the wave-generating source and imposes a unigqueness*

* A partial differential equation of elliptic type with boundary
conditions of Dirichlet, Neumann or mixed type requires the boundary
to be closed to ensure a unique and stable solution., See Morse and
Feshbach (1953), pp. 706,
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which would not otherwise be present,

Referring to Fig. 1, the cylinder is described parametrically
by Cartesian coordinates X = X(s), ¥ = ¥{s8) in a system fixed in
the cylinder such that this coordinate systen;.coi’ncides with the
inertial coordinate system Oxy only when the body is af rest,

The forced oscillation of the body is defined by giviag the

coordinates of the origin of the body coordinate system and the

angle between Ox and OF:

Ew) = £ 8,6) =€ (% cos 6F + 8§, s €F)
NE) mERR) = E£(Y s + P Anet) (1-7)

6ik) = EBL) =mECH w6t + 6 Sm€b),

where &, % 7, 7:.8,.6: are constants and && , 7¢) , O8)
describe sway, heave, and roll motion, respectively. The
infinitesimal perturbation parameter £ measures the relative
size of budy motion and hence of the motion of the fluid

throughout the domain,

Fig. 1 Coordinate Systems

o Bl e




The motion of a point of the surface of the body described

in terms of the inertial coordinates is as follows:

x (5,6 = xs) + £ [ E,0 —?me.t)l + OkY , (1-8)

Y s t) = G+ 0+ T G)) + OCY

and the normal velocity of the body surface is given by
deft) diw  dy, dX , 4R - JX o4
ny=t[-SE 42 T REE S 00 (g

on ( x(s,t), y(s,1)),

The boundary condition (1-9) is not yet a tractable boundary
condition*, unless one solves this problem at the instantaneous
position or as an initial-value problem because the boundary
geometry is not fixed in space but moving as a function of time
t, Hence the domain of definition in which a Laplace equation
is to be satisfied 1is not fixed but is also moving as a function
of time, To solve this as an initial-value problem is out of this
paper's scope, therefore one should try to obtain a tractable
boundary condition for a boundary fixed in space for all time,

In order to exprees a normal velocity distribution on a bhoundary
fixed in space, we shall make use of the anslytic continuation of
the velocity potential é(x,y,t), so that the potential evaluated

on the body can be expanded in Taylor series in € at a reference

* It is of interest to note that the differential operator for a
Laplace equation does not have an operation with respect to time
whereas a mnoving boundary is a fanction of time, A boundary con-
dition on a moving 'material' boundary is always described in a
Lagrangean representation rather than an Eulerian representation,
However, in a diffraction problem with a fixed body in incoming
waves, the boundary condition on the body is Eulerian, (See

Eq. (1-25),




boundary (usually the average posjition i= taken) fixed in space
for all time and then in a perturbation series in § in terms of

the field variables:

F(xo),406.6),4) = B G.6) + 0@) (1-10)

B(94) = £33 v+ % u )+ - - - ) (1-11)

We obtain (1-12) for the normal derivative of the potential

evaluated on the surface § , i.e., ( x=x(s), y=y(s) ) :

EAIL = ¢ & S''I + o) (1-12)

Fquations (1-9) and (1-12) yield the required boundary
condition on the body (1-4) for a forced motion,

Next we express the free surface Y(x,t) in a power

series of

Yoot = g Yok + 6 ¥t s - (1-13)

Following the same procedure used to transfer the boundary condition
for a moving body to a fixed boundary, we shall expand @ (x,Y,t)

in a Taylor series about the neutral free surface y = 0 and
substitute (1-13) in (1-3), Then we will obtain the following

first-order free-surface boundary condition:

a) o -
B ok + 98y =0 (-t

When we drop the superscript in the potential &o) for convenience
and rewrite as a first-order problem, we have
vt T ut) =0 (in the fluid)

S %E‘ =0 (on y=0) (1-15)
by d ° m Ji "" -—
Py = ’3;"#'*3’77 +§%<l}3"”§) (on So)

-

[PYOW-S v s

.-
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Further, we assume that the potential é(x,y,t) can be
decomposed into a cosine-mode potenti { and a sine-mode

potential as follows:

T g6) = Pwy) cos 68+ sim 6t
From (1-7) and (1-9), we obtain

Ve (. 9,4) = 6[(%e-56) cos 6t + (=%, + Y6) sinet],
Vy (2,9.6) = 6[(], +26) coset -(y +16) snei],

where

V = (Vy, Vg)

From (1-15), (1-16) and (1-17) we obtain

v ¥ap=0 , ¢*¢ap=0,

?y ~&920, ¥ -5¢ =0. (on y=o),

?; ::9’3‘_-:-0 (en & fixed bedy) |
c
ff; =5’; =0 (on Y=-H for Finitedepth H)

-

Toms G20 fom §5 20 (for Fafrmitedepth)

3—»"” -
¢ 9 s
M ne B

where

Vs ty = Vixy cos 6t + Viwy) sm 6t
Vi=( 6t 56, 6(h+28)) ,
Via ( 6(-5198),-6(7+26))

(1-16)

(1-17)

(1-18)

(1-19)

(1-20)

(1-21)

(1-22)

(1-23)

As the radiation condition (Wehausen, p. 480; Stoker, p, 174)

we can assume the asymptotic behavior:




(?; I:]I?"s — O

ae. 2 — 1t o0 (1-24)
c
¥; + v —o >

whece Y is the wave number,i.e., v-s‘/, for infinite depth and
67y = vtamh Vi for finite depth H,

When we want to solve a diffraction problem due to a fixed
body in the fluid with a homogeneous incoming wave, we assume
that the total potential can be decomposed into a known potential
of an incoming wave §1(x,y,t) and a potential of a diffracted

wave §o(x,y,t). Then the boundary condition on the body for the

diffracted-wave potential is
? 1. (1-25)
5 By = — 35 Brlxv®)

Let us next suppose that we have two fluids of densities
f’, , 6 , one beneath the other, the common surface (when

undisturbed) heing plane and horizontal, as shown in Fig, 2,

Ty
-» X
e’ v‘f,(l.y.f)to
y=-h
€ 9 & (Y4 =0
y=-h

Fig., ¢, Stratified Fluids

When we define the velocity potentials @, , $ in the upper
and lower fluids, respectively, and ~hen we use both kinematic
and dynamic boundary conditions at the interface, we can write

the first-order linearized boundary condition at the interface

s D

T
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of the two tluids, i,e,, y = -h, as follows:
ez §l¢€' -(’, §,¢+ +(G‘G) $ é,, =0 ,

eg §zﬁ,— "'e: “é,& "'(ex{) ’ §l~) = 0 4

When we define

, L=, 2,

Eﬁi - ff s € +’§i Sin Gt

(1-26) becomes

¢ 6 cI 6'16
iy * @z my' (e.-c)sf

H (2 CL_'_ (] Gxe\ S
$y *gerst ca—e,ﬂf*

YC *6& r-‘—ce (!c

s T T T@te) e
g, + b g 60 g

«s 'G) $ > (N ”61)9‘

(1-26)

(1-27)

(1-28)

(1-29)

It should be noted that (1-28) and (1-29) are m.xed-type

boundary conditions in the upper fluid and the lower fluid,

respectively, and that they are coupled to each other,

R’* A e
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When a pressurc distribution is confined to a segment
of the free surface, i,e,,
S
P’ sin et | kil sk,
r ,t) = ,“0 (1-30)
’
0 ) lxl >4,
with r‘ a constant, we obtain the following boundary condition
on the free surface from (1-16) and (1-30):
. ¢, ki <L,
c €t ¢
? g ? -t "}0'
) 4 o, xl 74, (1-31)
$ 6
50‘3-‘;-? = 0‘ -oo<z<+oo‘y=01

where
c = —p's/es
Three dimensions will be considered very briefly here,
When we consider the three-dimensional problem analogous to
(1-18) - (1-31) for two dimensions, we can still use most of
the two-dimensional formulations, We take the velocity potential
P cx. Yy %,¢) in rectangular coordinates or F (R, 4, Y t) in

cylindrical coordinates, The Laplace operator becomes

k3
2 a? Pl 2
Ve = o "ay‘ * aw
or
2 " '
), @ 2 .-
=g R T E T
where

= R cos & P EZ= R stnd

| [ [4 ] S -
In (2-22) we now have VY =V (1,3,1)) V=Vayz and (1-23) will
take a different form because the given motion has now six degrees

of freedom,

[OST TN,

g

[ECURPEN.2Y

Yre T
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L%

PR N




12

As the radiation condition in three dimensions, we assume

the following asymptotic behavior:

fim T <§% —ive) =0,

R=>00

where . ot
-t
B ay.2b) = Re (0.9 )
= ¢° cos 6t + P° snet,

$ cryt) = Py +ifiecys
or equivalently

Lim JE(%%— 'H’?s) =0,

R-ve0

S
tim 4R (S —v¥9 =0,
R-e0

(1-32)

(1-33)

(1-34)
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2, Pressure, Force, Moment, and Wave Profile
The velocity potential &$(x,y,t) defined earlier does
not give any dvnamic properties of the flow unless Euler's
integral is utilized, The pressure P is determined by Euler's
integral,
P(x,y, ) = -e&,. -e3% (1-35)

2
with the term '5\_"9[75' suppressed as being of higher order,
The first term in (1-35) is a hydrodynamic pressure and the

second a hydrostatic pressure, Then the force on a body submerged

in the fluid is given by

B = 5 Pnds (1-36)

(4

and the moment with respect to the origin by
M=iprxn ds | (1-37)
0

where S, describes the interface of the body and the fluid and

n is the normal vector into the body,

If the free surface is described by y = Y(x,t), then

Y = -3 & xob) (1-38)

When we decompose Y into a cosine and sine mode in time,

Y(I.‘t—‘) = Y(cx) ces @+ Y% s 6t , (1-39)

SN
-
ey

e

Sl TS Resina

P,

v saj il sk A e
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then we obtain, from (1-16), (~38) and (1-39)

¢
Y%x): —--i;: Cfs(x.o) , Ys(x) = ‘g" ¢ (x.0), (1-40)

When a body is undergoing a forced oscillation, it is more
convenient to use non-dimensional quantities for (1-35) -
(1-40)., If we assume the forced motion has only heave motion

with amplitude 7 , then we can define

o
]

R/C97

F=E/e37hs (1-41)

Y/q Y=Yy, Y=Y,

<
!

where Aw is water plane area and Po, Fo’ Yo are the amplitudes
of the pressure P , of the force F and of the generated waves Y,
respectively, these being sinusoidal in time ¢ . The added mass

*
}1‘, and damping coefficient Ln can be defined as follows :

M, = -,Ss ‘f‘u.gmzésﬂize' ,

(1-42)

i

Ay = . Ys"‘ﬂ) n‘VA?V ‘

n =(nl ’ nx)

* The notation M, and 'ku has been introduced here in order to
conform with the more general notation /a‘;- SR used when all
degrees of freedom are present, Such probiems can also be handled
by the method to be described,
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where A is the subjerged area of the body in two dimensions,

One can define all these non-dimensional quantities and hydro-
dynamic coefficients for other modes of motion in two dimensions

or in three dimensions, but these will not be given here,

we ¥
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II. LOCAL DISTURBANCE, PROPAGATING WAVE AND RADIATION CONDITION

In this chapter an attempt is made to obtain a more tractable
form for the radiation condition in order to facilitate applying
a numerical method, One main difficulty in the radiation condi-
tion is that it should be applied as x-+e0 ( Or R-s60 ), But one
cannot, of course, go to infinity and an infinite boundary has
always to be truncated at some ' sufficiently large' distance in
a numerical method, In this chapter some criteria are developed
to determine how near to the moving body (or a fixed body in a
diffraction problem) one can construct an imaginary boundary on
which one can apply a more tractable version of the radiation
condition, The two-dimensional case will be treated first,

In order to cxamine thne behavior of a local disturbance, we
make use of two fundamental tools in potential theory, The first
is the eigenfunction expansion, and the second is the potential
of a pulsating source, since the source is the slowest-decaying
singularity among all orders of singularities, It seems to be
casier to use a pulsating source in the case of infinite depth,
whereas both can be used in the finite-depth problem and give
the same result,

In two- and three-dimensional cases much is very similar,
Therefore in scction two of this chapter, treating the three-

dimensional case, details will be mostly omitted,
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1, Two-dimensional Problem

a) A Local Disturbance

In order to make use of the eigenfunction expansion in the
finite-depth problem, we construct two inaginary vertical
boundaries’ Bl’ 32 which extend from the bottom to the free
surface, including any moving body in between, First we assume
the depth is constant at y = -H, ©Cne can subdivide the region
2 bounded by y=0, y=-H, z,and 2; into three subregions

£, ,..Q;,.Q:, as shown in Fig, 3 so that
=0, +2.+s . (2-1)

Once we have solved the original problem with given motion
on the moving body, we know the solution @(x,y,t) everywhere in
the fluid, Suppose the function 3 € (x,y,t)/ana on 52 is computed
from this solution i(x,y,t). With this we may now solve a new
bwnd;ry-value probiem in the subregion Qz with the boundary

condition on \82 derived from the original tormulation. We should

obtain a solution identical with the original solution in the

* One can also construct only one vertical imaginary boundary
which pierces the body and extends the original domain of
definition to include the immersed part of the body, Then we
separate the original probler into two problems for which the
domains extend to infinity on the left-hand side and right-hand
side, respectively, One assumes that there exist normal-
velocity distributions for each sub-region which represent the
body motion with .1 appropriate restriction on the body geometry,
In the three-dimensional case one can construct an imaginary

vertical circular cylinder which contains the body and extends
to the bottom,

A x

Y~

ey At

o ,k:ﬂ“"‘\&

2 At AL
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v ! !&4‘/! ! >,
! ! | |
' 8| 2, '
32/i 52, i g% i 522 Fez
i ' ' !
1 X l ! 1
9, o8 4=t

Fig, 3. Imaginary Boundaries, fL and B2

sub-region 522 due to the uniqueness theorem, A similar
procedure can be applied for the sub-~region 52; .

Let us consider solving the problem in the sub-region
where the boundaries consist of a free surfuce O the ficti-
tious moving boundary 62, the bottom 92, and the boundary

ﬁlz (x = 00 ), We may shift the y-axis without loss of
generality, as shown in Fig. 4.

;

s

v
N

Vi 2N
_.__&__

A
Fig. 4. Normal Velocity Distributions
on an Imaginary Boundary
Now this new problem can ne interpreted as a flexible-wall

wave-maker. In order to solve this problem one can use a

classical method, i,e, the separation of variables, By this
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method one can easily obtain the eigenfunctions (Wehausen,

pp. 472-475). The eigenfunctions are
{ cesh Moly+h), cos m; (’-nh} , (2-2)

where

1§ (2"3)
G'/; = -m; tam M H (Cwh,2,.5+),

Bn s an@y e AN ot . -

Fig, 5 shows the relations (2-3) for the eigenvalues, and the
functions (2-2) may be shown easily by direct computation to be

orthogonal on the interval —~H $ 4 S0, Both orthogonality and

completeness are consequences of the Sturm-Liouville theory,

By making use of these eigenfunctions, one can obtain the

solution of this problem as follows:
C
ey t) =F cos 6t + P orm 6t

- .ﬁs..m cosh MOY+H) Sim (mox ~€8)  (2-4)
N -MLX
-3 -‘:’,\-“— cos M ($+H) s 6
i

wvhere

2., (z.y.-l:)é = }(y) cos 6t

4 m, °

4 m;

o
. = ' J )
& Sin 2 mH +amg Y [H }(73 ws g (rh) 7 (2-5)
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7
g
3
=

|

|

=~ 3 R,
o

Fig. 5. Eigenvalues

Further, the potential ¢ can be decomposed into two parts:
one represents a propagating wave system, the other a pure local

*
disturbance | i,e,,

E .y v = EP .yt + B X y.t) , (2-6)
where
Qa, -
By (2.8 = we <sh MYt s@ (mx-6y) (2-7)
” o . _M‘!_
F (LY. ""li",%‘f T ees micy ) e, (2-8)

Let us consider the behavior of the local disturbance expressed
in the equation (2-8)., How far should one go along the x-axis
in order to have the local disturbance reduced to, say, 0,5% of

the maximum (x=0)? To determine this we have to examine the

* One can also obtain the solution for the local disturbance
$. (x,y,t) by imposing &(x,y,t)—> 0 as x-»e ., In this
case one will obtain {c..; m{ (,ﬂ,)} ’ i=1,2,""" , as
eigenfunctions,
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values of M (i=1,2, ***). The value mlﬂ is the smallest
among miﬂ (i=1,2,+++) since m is the smallest eigenvalue,
From Fig, 5 the following inequalities hold:
T% £ m| “ < t,
5% <myH <%,
: (2-9)
QK- <mH < kTE,
Let us define the decay factor from (2-8) by
- My X
= e ' (2-10)
When we non-dimensionalize the variable x by taking H as a
non-dimensionalizing length scale, we have
- HX -
d — e ] (2 11)
where
X = x/H (2-12)
From (2-9) and (2-11) one obtains
e *t ¢dce (2-13)

Now one can see that for finite depth the decay factor is
independent of the frequency of the motion, i,e, of & or m%".
For example, when one wants to assure d< e"x , theu one
must have x 74 , that is, x should be at least four

times the depth, When one considers a particular frequency such

W BABRN % TtV B R M N

< wrfoak f o
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that the wave length is four times the depth H, then the local

disturbance decreases to e"'i‘

times its original size in
a half wave length away from the wave maker. Another extreme
example is the case in which the frequency of the motion is so
high that the wave length is a tenth of the depth H, Then the
local disturbance decreases to e times its original

size in forty wave lengths away from the wave maker, Fig, 6

shows qualitatively these two extreme cases,

Subscript 1 i3 the first example

Subscript 2 is the second example
($pt9), with the same

Fig. 6

It was mentioned at the beginning of this chapter that an
estimate of the extent of the local disturbance could also be
obtained from a source of pulsating strength, For the case of
infinite depth we shall use this alternative, A source with pul-
sating strength cos 6t at (a,b) is given (Wehausen, p, 481)

as follows:

dk] s 6t

{“’ st ®
t-y

§<1.y.a,b,6)=£{ [‘b};-? + 2

- (Eg-T)
- e si'-n,G'{‘} (2-14)
J
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where
2= x+0y
c= a+¢b ,
c = a-4Lb

v = 2,

After making use of a contour integral in the complex plane
and some manipulations, one can reduce (2-14) to (2-15) and
obtain (2-16) from (2-6), The procedure for deriving (2-15)

from (2-14) is given in Appendix A,

"
r J -vasinh) e df
B x4ebt) = [ty Ff T G-ve 8"*6})‘+(ve.m6,7‘] cos ¥,

b
§P (x,%,a.bt)= ev(w‘ )sr-n.[ v(x-a) —6¢) (2-15)

where

.0‘

6 - -
' Z-c=0€ .

N

z - = e' e )

Now one can examine a local disturbance defined in the first

equation of (2-15) and one can utilize the Gauss-Laguerre formulas
[Abramowitz and Stegun, 19677] for the numerical integrations,

One can further decompose
B, 0y+)= = (f +$1) cos 6t (2-16)
where

=L &
Fos Eut B N _pve (2-17)

oo(&_sr-’\.ﬂl) e ‘3/
» (&—Gfmg.fi 0519; o (2-18)
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ﬁ: is the potential due to the source and fz is due to the

image of the source, i.e, a sink in upper half-plate, In the case’

of infinite depth, one can obviously define the decay Ilactor, but
Figures 7 to 10 show the values of the potential for a local
disturbance directly; this gives enough information about its

behavior,

e K b DO Dbt 3n

e
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b) Propagating Waves and Radiation Condition

From the previous sub-section, one sees that the velocity
potential can be represented as a sum of a potential of a local
disturbance and a potential of propagating waves., This decomposi-
tion is unique, Now we can examine a pure propagating wave which
is the solution for a homogeneous boundary condition with no
body in the fluid and with uniform constant depth or infinite
depth, The solutions are given in many books on hydrodynamics

(e.g., Lamb p, 369), They are as follows:
for finite depth,

il’ (%, 4,%) = A cosh v(y+H) cosx-GT) , (2-19)

where

A= —S"v/s‘ wk-y){} %:vtamkv“, a= wave amplitude

for infinite depth

g, =b e cos wx-st) (2-20)

where
p=- ‘/G’, Y= 373 , @ = wuve amplitude

In the forrmulation in Chapter One, the radiation condition
simply states the asymptotic behavior of the generated waves at
a large distance from the moving body, but for a numerical method,
we need a more tractable boundary condition than (1-24) or (1-34),
which simply state an asymptotic behavior at infinity, Therefore
in this subsection we will try to obtain a more tractable radiation
condition from the examination of pure propagating waves in order

to apply it to the numerical scheme,

P N SV

O

- e - o




o

mem e - e v r—

Let us try tu derive a boundary condition from (2-19) or
(2-20), Firsi (2-19) aad (2-20) are slightly changed in (2-21)
& gps
by defining ?P 13; which correspond to the cosine and sine

modes, respectively:

3, = ¢ csst + ¢ sEnet (2-21)

where

for finite depth,
¢ = A cosh V(grH) cesyx

9' -
3” = A cesh V(YtH) sFmyT | (2-22)
’
for infinite depth,
v
¢F =5 e ¥ svx | |
i (2-23)

3 =B e semoux .

Since the formulation in Chapter One is given for the
potentials ff’{'x.y)and ff’fz.”) after the time has been precipitated
out, oua obviously may try to make a condition (a coupled relation
between f; and f? ) from (2-22) or (2-23), One readily sees
that a coupled relation cannot be made from them unless the
derivative terms are taken into consideratio:a, The first derivatives

with respect to x and y are as follows:
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for finite depth,
3272(?:) = ~Ap cosh V(Yt+H) sFn VX
(50 = Ay sk vyt esVx (2-20)
- 4
g = Ay sk v csvX,
-},-( ‘f:) = AV sinh V(ytH) sPawX
for infinite depth,
v
%z“f:) = —PYV € sFPT
9. €y Ve .
a-;(‘fr) = Bv e osyx (2-25)
Y9
= e )V 4
L) = By et v,

2 Sy = ve
—{,“(‘J’,J = Dy e STRVX

From (2-22) and (2-24) or (2-23) and (2-25) the following coupled
first-order differential equations can be obtained for Zinite or

infinite depths:

¢ ]
K =%, (2-26)

295y = ¢
sl = YV

Cur main concern in this section is to derive a more tractable
radiation condition, as mentioned before, which would be a boundary
condition of Dirichlet, Neumann or mixed type, If one takes the
boundary to be normal to the x-axis, then (2-26) becomes a mixed
type boundary conditlon, since in this case we can replace {h; by

)
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The equation (2-26) can be written as

3 S

2 Sy —~ on xw censt,
‘3’,{(-‘)0')— v(f: J

(2-26")

It is of interest to note that, for the infinite-depth
case, one can obtain the coupled relation (2-27) below for a
more general boundary than (2-26) or (2-26'), And this
boundary could be any simply connected line from the free surface
to a sufficient depth that could represent the infinite-depth

problem for numerical computation:

$
%(‘f:):)?("‘n:?;‘*‘na(?’) p)

(2-27)
'3 s
‘52;‘_(.‘)0")) =p (1 S’p + 'n:.?p) R
or
9 < ¢
Ty‘,’;((fp) -V ?’ =-JYN (f: R
(228 )

2 $ $ €
R -ymSy = v f

where %\ = (n] .nz) is the outward normal vector from the fluid

on the boundary,

It should be noted that (2-27) or (2-28) is reduced to (2-26)
or (2-26') if the boundary is chosen to be vertical, i.e,,

n-= (1,0),
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2, Three~dimensional Problem

As mentioned before, most of th. procedures in this section
are similar to the previcus section in this chapter, Thus a
brief treatment will be given, However, a derivation of a new

radintion condition will be given in some detail,

Cylindrical ccordinates will be used throughout this section,

a) Local Disturbance

The finite~depth problem will be treated first, It is
assumed that the motion (normal-velocity distribution) is given
*
on R:R0 (refer to Fig. 11),

r4 -

) ;;7 »R

d -

‘ L4 l'l"'Tf'l'*-—H

Fig. 11

In order to solve this problem with a simple geometry, one can
use the method of separation of the variables as in the previous
section, Then one obtains the elementary solutions (Wehausen,

p. 475) as follows:

* See the footnote on page |7,
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cosh mo4+H) [A TRy +B Ya(mR)] cos (nd +5) coset +?))

cos 7t G+ [ A In(met) +B Kn(M)] “cos grasf) (cosptyy) (2-29)

(i =1,2,°*%)
where A, B, &, € are constants, where the eigenvalues
m s m (i =1,2,°°°) are defined in (2-3) and where n is an
integer because of the juncture condition (continuity condition)
along the A-direction unless there is a radial-plane cut pivoted

on the y-axis,

Without actually constructing a solution for a given normal

velocity distribution on the body by using the above eigenfunctionms,

one can examine the behavior of a local disturbance in general,
In the first equation of (2-29), Jon is the only bounded function
and represents a standing wave with a fixed phase at infinity,
whereas one can find bounded standing waves of arbitrary phase
in two dimensions, Whenever one wants to construct a wave of
arbitrary phase* at infinity, one must also admit the singular
Bessel function Y*; in other words, one should permit a log-
arithmic singularity, K at the axis R=0, Therefore, the first
equation in (2-29) can be used to construct a propagating wave,
In the second equation in (2-29), I is bounded at R=0 but
increases exnonentially as R -» whereas l(n is singular at R=0

but bounded for other values of R and decreases exponentially as

* Only when there is a standing wave of arbitrary phase can one
construct an outgoing wave which can be expressed in the form
¢ = fex-ct) for one spatial dimension and in the form
#’-ﬁ(z)fx(l“t) for two spatial dimensions,
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R -0 ., There is no function which is bounded everywhere and
represents a local disturbance in three dimensions, 1In general,
one may expect that the solution of a boundary-value problem will
require the functions Kn and hence a singularity at R=0, The
function Kn will represent the local disturbance,

In order to investirate the behavior of a local disturbance
one may then simply examine the function Kn(mia)' The functions
Jn(x), Yn(t). and Kn(z) have well known asymptctic representations

as %A ~voo . These asymptotic representations are

T () NE co0s (76—&) ’
Yo t) ~JE  sim(x-fw

X (2-30)
Kni) ~ JE e

where

When n is quite small, say, n=0,1,2,3, these asympeotic
formulas give very good approximations for these real functions,
even when the variable % is not so large, For example, when
n = O the asymtotic formulas for J @ and )fw give such good
approximate ones after about one wave length,

When an axisymmetric body is heaving vertically, n = O,
and when the body is surging, n = 1, and so on, The more com-
plicated one makes the motion, the higher the order of the Bessel
functions contained in the soiution, We restrict ourselves
to the case n = 0 for simplicity, but in principle a general

type of motion can be treated in the same way and there will be
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only a change in the region in which the asymptotic formulas
will be useful for the approximation,

From the above considerations one can readily adopt the
two-dimensional results (2— 9)-(2 <13) for a local disturbance
expressed in |Gy (m; R) by replacing x by R,

For infinite depth, we shall examine a source with
pulsating strength cos €t at y=b on the y-axis

*
(Wehausen, p, 477), The potential is

9 -V
\ VY e
§(e‘ 4,b) = [—l-b-a.n +ap e 5‘ ——-—J’n ] cos 6t

(2-31)
vV (y+b
+ 2 € YL 1 op) simet ~XOW) e ]
where
F=t+ g0, n= ey’
For convenience we define
E(Rub) =F + % (2-32)
FLURY.bD =<f“ 0‘(::) s 6t , (2-33)
where
Ps = F T
P R
e (2-34)
o =27t [ Sy

For the computation of the integral In (2-34) the Gauss-
Laguerre quadrature formula has been used as was done for the

two-dimensional computations (see Appendix A),

* If we take a higher-order singularity, then we get higher-order
Bessel functions,
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b) Propagating Waves and Radiation Condition

We have already remarked in the previous sub-section
that one must have a pair of J, and Yy in order to construct
a propagating wave and that the asymptotic formulas for Jp,
Yrn » and Kn  have a very wide range of validity as approxi-
mations, Thus we shall construct a new relation between the
approximate expressions for Jp and Yy , which will be used
as a radiation condition later, Since the radistion condition
is nothiag but a condition for the departing phase in space,

4

one may suppress the factor R ° in the asymptotic representations

in considering the nscillatory parts, Now let us define the first
term nf the asymptotic expansions as functions to be used in the
derivation of a new form of the radiation condition more sujitable
for numerical calculations:

A ———

T W) = 2 coscva-&‘..),

TR (2-35)

”~N
‘ Yo (R) = E% sin OR =) ,
where A
In(VR) ~ Tn(VR) —0
WOR — Gom) o [ 3 RN,

o = %; +%

A
Define ‘f‘ and ?5 as follows:

[2)

(

)

A
={r - In = A cos PR=20) P
- (2-36)
=J8 5

= A s (OR-5n)

Q>

where

A - !££~ == constant,
Ty
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From the condition of departing phase and (2-36), in a manner

similar to the derivation of the two-dimensional case we obtain

”~ N
(P = 0¥

(&5, = »&° (2-37)
From (2-36),
(§9g = FR-50 = +15, +t B,
(?’ =§— .]" *Y +g*(\4) (2-38)
From (2-37) and (2-38), we obtain the following:
i:R )‘ A +_R/£CJ%) '_—)7RJ;\ﬁ, ,
(2-39)
._ A A
L)% G R = YRS,
or
WK G+ +» V¥l =0,
T LB +& % <» 3] =o0. (2-40)

We finally propose as a new radiation condition for numerical

computation

\}_E[((Frc)k *5\&’?: +Y ??s] =0,
\ngﬁs)z Mg ?? R ] =0,

(2-41)
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where

B, (RAy®) = F;RALY) cos B +F) (Ray) st 6,
At this stage one may start to ha-.e doubts about the new radiation
confitinn (2-41) because the second terms (in the bracket) in
(2-41) are O(ﬁ"a‘) whereas only the first term in the asymp-
totic expansions for J,0R) and YnO®) was taken in the derivation
of (2-41), If the neglected terms are of order less than or equal
to D(n“gf) in the asymptotic expansions, those terms should

have been taken into account in the derivation of (2-41), In

5
A}

order to examine this, we write down the complete asymptotic

expansions for Jn¢ and Yal) (Watson, p, 199; Whittaker and Watson,

pp, 368-371):
Tn ) ~JZ [ Ut o5 (x50 = Vo) simx-5n)) .
Yo 00 ~FE [Tk sile-E)+ Voo eos(x-5n)] ) (2-42)

whe re S‘,, is defined in (2-30) and

where » (.)"'{ 4.1\‘-1‘}‘{ -3} .- Jant- @wf }]_
v ={1+Z am T I T T

(2-43)

Vb = i‘ " {4t 4nt2} . e —en-2'}
™ (am=)!  26m) yeamel *

From (2-42) if we take twn terms in the expansions, we will

have
Tntd ~ A, X % cos =-50) =, X2 570 Ocbi) + 0™
- (2-44)
Yot ~ A, x ’I‘F“ (x-8a) *By x % cas (x-§,) +0(x‘“‘)’
where AO and Bl are constants defined in (2-43), From

-3,
(2-44) it can be seen readily that the second term is ()(R /")
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and should have teen taken into account in the derivation of

(2-41) if all terms through this order are retained, Fortunately

these worries turn out to be unnecessary, for; if one substitutes
%

these two-term expansions (2-44) into (2-41), the ‘erms of O(K )

introduced by retaining the second term of O(g""cancel each

=5
other, and the lowest order left is (Q (R A) . Thus we have

the following:

(Tn)e .,...2_1(3-“ + VY = 0% ,
(Y“)g N ;}[‘% - YT = O(R.x) ... (2-45)
As mentioned earlier, the first term in the expansions,
i.e., the equations (2-35), are very good approximations for
Jn and Y, , but if we take the two terms as defined in (2-44)
the approximations will be far better. Even most mathematical
tables do not give the Bessel functions Jo and Yo for x>5.9,
for example, but give the formula (2-44) instead (e.g., McLachlan,
PP, 215-217). This is even less than three wave lengths in our
problem (x = )»R), Therefore the relations (2-41) are valid to
the same extent that (2-44), neglecting the terms of O(R"'Z‘),
is valid, This is then the new radiation condition that we shall
use,

If we take the limit Rree, (2-41) reduces to the conventional
radiation condition (1-34), Therefore one can interpret this new
radiation condition as a boundary condition which gives a better

approximation than the conventional radiatiemn condition and does

not require R to be so large for its application,
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If one takes a boundary R = constant, the derivative with
respect to R in (2-41) becomes a Neumann-type boundary condition,
which we were hoping to obtain for later application of a
variational principle,

It is also of interest to note that the new radiation
condition (2-41) can be obhtained without using the elementary
*olutions, i,r,, the Bessel functions J, and Y , but
through physical observations and much simpler mathematics,
When we observe steady-state outgoing ring waves in a pond
which are generated at a point or in a small region in the
center of the pond, at some distance away from the wave-making

region (or point) we can assume

Y&t) = AR cos (R-G%) (2-46)

where Y is the elevation of the free surface and the amplitude
A is a function of R, Since we have assumed that the motion of
the fluid is a steady oscillatory one, then the energy flux
across an arbitrary concentric circular cylinder in one period

must remain a constant, From this consideration we obtain

AR)= AT , (2-47)

where c is a constant,
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If we had started with the above equation (2-47) in the
derivation of the new radiation condition, we could have
obtained the same equation (2-41) without having considered
the asymtotic behavior of the Bessel functions, This method
does not seem to be mathematically rigorous, but is still
based on observation of the real phenomena, and hence it

shouldn't be disparaged,
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III, VARIATIONAL METHOD

Most problems of applied physics encountered in engineering
are formulated in the form of a differential equation which
governs the behavior of a typical, infinitesimal region in
the domain of definition, and which can be solved analytically
or numerically, To solve such problems analytically one may
use the method of separation of variables for a very simple
geometry or the method of integral representations by using
Green functions, In s“ip-hydrodynamics problems, the latter
is used most often, Sometimes, however, there are difficulties
in carrying through computations which are involved with Green
functions, Furthermore, the method has another drawback, in
that it s not practical for a very complicated boundary geometry,
i,e,, for example, for a variable-depth problem, even though
it could be done in priuciple,

In this chapter we shall discuss an slternative method,

a so-called variational method, A formulation in a variational
form can be obtained directly from the fundamental physics of
the problem, e.g,, the energy method in a structural problem,

In a slightly different way, it can also be obtained mathema-
tically from the fundamental differential equations, It is not
always possible to find a variational form for a given problem,
When a variational form is not known for a differential equation
that we wish to solve, we can still use a numerical technique to

minimize a 'pseudo-variational form' or any approximate fanctional
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F

constructed for the differential equation (Zienkiewicz, pp. 38-40,

1971),
There exist variational principles for the motion of a

fluid either in an Eulerian representation or in a Lagrangean

representation (Eckart, 1960; Luke, 1966), Since our formulation,

Equations (1-18) - (1-23) and the radiation conditions (2-26')
and (2-41), consists of Laplace's equation with boundary conditions,
partly, of Neumann type and, partly of mixed type, we shall

simply adopt a well-known variational form for this problem

(Mikhlin, pp. 138-151, 1964),

Let us consider Laplace's equation

(m 2, (3-1)

vid(x.y)=0

with a boundary condition, of the form

4{n + oh 4) ==F (on L ),

where d.(l,}) and f(x,,) are known functions, The variational
form for this problem requires introduction of the following
functional:

(3-2)

a2
F@) = [ T{0d] dedy +] gt -pgds
9.
A function c# that minimizes the functional F is a solution

of (3-1), and vice versa, The proof that the function é which

minimizes the functional 'F(Q) is the solution of (3-1), is

also in Mikhlin (pp. 115-116, 1964),
In three dimensions one has a similar form, Let ¢ satisfy
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vid (2,42 =0 (in &),
P (292 (3-3)

&, (%, 9, B+l =? (on 2R,

where o{(xys) and Fa.y) are known functions, Then the corresponding

functional F@) tis

Fd) =5 + |Vl dudyde +f (Fdd'~g4)dh (3-4)
p]

It is of interest to note a special case in which the
general form of the functional T#) in (3-2) or (3-4) can
degenerate to the boundary integral only when we distribute
Green functions along the boundary (Bessho, 1970), The
application of this degenerate case is given in Sao, Maeda and
Hweng (1971), In this case the computation will be similar to
the scheme used by Frank (1967),

In our problem, from (1-18) - (1-23) we can readily see that
we will have two functionals, one for a cosine-mode and the
other for a sine-mode, and that these two functionals to be
minimized are coupled on the boundary on which the radiation
condition, (2-26') or (2-41), is imposed, i.e., the integral
along the boundary in (3-2), Due to this coupling on a boundary,
the final matrix, which is the coefficient matrix in a set of

algebraic equations obtained from the finite-element discreti-
zation to be discussed in the next chapter, is not symmetric,
when we combine two sets of the algebraic equations, for the
cosine-mcle and the sine-mode, respectively, whereas in most

structural problems they are symmetric, However, we can obtain
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the two functionals Fc(?.,-) , Fs('f‘) , for the functions

?‘ and f’s , respectively, from (3-2), (1-8) -

(1-23), and (2-26') and Fig. 12 as follows:

Sty = 31_ cla _E: (:a
£ =[] +lrsay ,&Su&‘rux

(3-5)
_é (“.vc‘) ?CJS _vS 93(“ ‘L’/ 3-5
&t ?
peees <[ Hogl uy - 2 § @
-+ Gk (3-6)
v €8s +»| gty
;3 ) +ff§xﬂ,(y ¥

where the integrals along the bottom 09 vanigh in both cases
unless the bottom is moving, As mentioned before, the last
integrals along the 'radiation boundary' in (3~5) and (3-6)
show the coupling relation bntween -F° and FS; therefore
the minimizing functions ‘f" and ‘fs must be found at the same
time, not one after another, unless we can decouple them,
When ' pressure distribution pc cos 6t + pssin gt
is specified in a segment on the free surface, then we obtain

the new functionals after we add

59, (#°€/e3) §°dx | (3-7)
f
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to (3-5) and add

___S (r%/e: ) ?S dx (3-8)
G

|4
to (3-6), When we have stratified fluids, the boundary integrals

along the interface, for the upper fluid and for lower fluid
(see (1-28) and (1-29), will show the coupling relation between
the upper fluid and the lower fluid in each cosine-mode and sine-

mode functionals, Fo and Fs, respectively,
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In three dimensions heaving motion of an axi-symmetric
body, which can be formally reduced to the two-dimensional
problem, will be treated here for simplicity. But a general
three-dimensional problem can be described in a straightforward
way, From the formulations in the first chapter and the new
radiation condition (2-41), we obtain two coupled functionals

FY9°) ana F%®) (refer to Fig. 13) as follows:

Fist = rufl 460 - %f;k(?‘fk

-m; ROV ds - i(‘f‘)‘ﬁ -wgft ‘f‘.l, ,

(3-9)

g% = zu:igﬁ"; (53745 Pyl ~ 228° L REP*S
- RmvS $hs-n @y wl;‘ew, oo
or, hy dividing (3-9), (3-10) by T and redefining F® and Fs,
C oty 2 6 oe\2 _ag o\t )
Fe )—_g 30 +6°,)Jh,<lf< *a 5\,&(‘5’)4& (3-11)

__2&& 0.V §%ds _2((5,:)24& _zvﬂk 5’59“7;

Figs) = _g R[gD +(§ TR - E;ngg(?‘ﬂ& (3-12)

-2é R -V €°4s - je €%y r zvltk?c‘f’ig.
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IV, NUMERICAL PROCEDURES

In this chapter a brief description of the method of
finite-element discretization will be given in the first
section, How an infinite boundary can be truncated in the

numerical procedure will be discussed in the second section,

1, Finite-element Discretization

A reader can find a very extensive and detailed exposition
in Zienkiewicz (1971)., Therefore we will give only a very
brief description here, The convergence of the numerical
solution of Laplace's equation is discussed by Reid (1972),

To begin with, the functional F(?) of a single function
4>(7“l7' defined in (3-2) will be treated first with the goal
of developing a numerical procedure for finding the function

4) that minimizes the functioml F , The coupled case,
which we have in (3-5) and (3-6) or (3-11) and (3-12), will

be discussed later,

Let the region occupied by fluid, up to the place at which
the radiation condition is to be imposed, be subdivided by lines
or surfaces into a (not necessarily rectangular) grid, Each
connected piece within the subdivision will be called an 'element',
We suppose 45 to be a function that is continuous and bounded

(but sece the discussion in chapter VII) in the subdivided region,

* The function ¢ defined in (3-1) and (3-2) can be any
integrable function and it should not be understood as the
velocity potential defined in (1-33),
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One of the important steps in the procedure is the introduction

- 1’000' N)

:Rgir.‘:t'-

B

of a set of interpolation functions Ni(x,y), i
associated with each element and of such a character that 47 can
be approximated as a sum of these functions, each multiplied

by the value of ¢ at, say, a node of the grid associated with

the element ( 6.‘, ; at the i-th node), However, these values of

4’& need not be rodal values of ¢ but may be other
values (parameters) characterizing (’} in the element, for

our numerical scheme requires minimizing a functional which

S AR,

LN SN

——

is represented in integral form rather than directly with the

values of function itself, Let us write the set of interpolation

functions as a row vector

INY =[N Na, -] (4-1)
and the set of 'nodal' values as a column vector
e
{q} =(3,4&, - &) (4-2)
in an N-node element, The superscript e on Y&} or on
$. -3, means that these values are considered in an
4
We may then approximate ¢ in each

individual element,

element by the sum

¢ [N]{&}e s

We shall give below an example for a rectangular element,

a very simple element shape, for the purpose of illustration,

However, in our sctual computations we used more elaborate ele-

ments, a four-node quadrilateral and eight-node quadrilateral

(see Appendix B),
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(-6 @b)

==
~a,-%) a,~b)

We can write c# as in (4-3)
b= N E G eng g (4-0)

where

Ny @Yy =i @-0(bry)

Mo () =

4‘,“ (a-%) (b-y) ,
(4-5)

Ns G‘j) = :#zz‘éﬂdﬂj(b-,) ,
Ng 089 = 2k @no Grp .

In order to minimize the functional F(#) in (3-2) with
respect to the total number of parameters (or nodal values)
associated with the whole domain, we can write a system of
equations

3E

SF_ _133
a§$} ;: =0, (4-6)
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Let an element in (2 be denoted by 2¢ . Then we may

decompose J=  as follows:
rof o, =5l o]
=§ F®

We now approximate Fe within each element:

(4-7)

Fe = 22 01{E) (a-8)

Henceforth we shall simply write Fe for the approximate value,
It now becomes evident that the interpolation functions Ni
must be chosen in conformity with the nature of the functional
F . In particular, they should be chosen so that at the
interfaces the approximation to ¢ is such that it and its
derivatives of one order less than those occurring in the inte-
grands of F are continuous, This assures that there is no
contribution to the integral from the interfaces,

Then from (4-6) and (4-7) we obtain (4-9)
Bf _ 53E
24n = ?:ﬁ =0, ' (4-9)
For any node we can write, by differentiating (3-2) with respect

to *L‘ (i:‘:l’ 2’ coo),
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where the second integral is present only if the element has
a boundary on which the boundary condition in (3-1) is
specified,
Noting that {4:’} is no longer a function of x and y
but that [N] is now a function of x and y,
84 _ 2 avg 143}
* 9x , "7 ?
a¢ M 3N, {-}
ay‘ta't'?\i ']+)
3 (24, o B\ (4-11)
S ax .’

finally we obtain in the whole region

i“% =(4] {$} -] = 0, (4-12)

—" _-
(411} = I8} a12")
where
Ri; =Ky +hy
kv‘ =4§LJ 9;:‘.6. ) *a\"’% 3_“};) dedy (4-13)

— s \| (3N
-';;!Q;(ax E;f' 31 a3~)4‘43 5
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by = ‘QMC & (4-15)
>

The formulated problem has now been reduced to the equation
(4~12') a set of linear simultaneous algebraic equations,
The coefficient matrix [A] has the nice properties of being
symmetric, as one can see readily from the equations (4-13)
and (4-14) and of being banded if nodes are properly numbered,
The numerical computations of the integrals (4-13), (4-14)
and (4-15) for four- and eight-node quadrilateral elements are
briefly discussed in Appendix B,
Now let us consider the finite-element discretization
for the coupled functionals .F.c(‘f‘) and Fs(?‘) in (3-5)
and (3-6) or (3-11) and (3-12), Since we can use (4-8) in
two dimensions without change and also since we can write with

a slight change in three dimensions
oN¢ N QM‘
j}ﬁ( 32 °R Evy ,.‘_)JEdg 5 T (4-16)

where Ni = Ni(R,y), let us consider next the boundary integral
involving d"“?" defined in (3-1) and reduced to (4-14) in
the final matrix equation (4-12'), In two dimensions | occurs

*
only on the free surface, where d=-e)§ , a constant , Then,

* When we have two fluids, we also have at the interface of the
two fluids, o and P {see (1-28) and (1-29),
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referring to Fig, 12, we obtain from (4-14)

SRS G
h,,, g L W N dx (4-17)
both for ch‘,‘) and F’Q”) .

In three dimensions there are two boundaries on which o
occurs, on the free surface and on the 'radiation boundary'.

Thus we obtain an analogous form to (4-14) for both r® and

F (see Fig. 13):

h;"

I

%}- RN N de + T) N N dy , (4-18)

Next let us consider the boundary integrals involving

P (xy). The value of o considered above was constant in our

problem, but F may be a function, We can express analogously

to (4-3) as

A

vhere [N] are the interpolation functions as before and ﬁ'}v

are the nodal values of the function ? . From {(4-15) and

(4-19) we obtain

Il

b j[N] m Neds = (ilm} M,;Js){?} . (4-20)

3

The equation (4-20) becomes in two dimensions

by = (L(N] ”LJ“)W}"‘()(% NLJS){F} . (4-21)
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In two dimensions we obtain

from ¥ (¥%):
bi -=(LLNJ m&s Lg\ﬂ Widy ‘”’(}N]"v‘a)l }

and from F (¥°):

wecfpomal sl el

In three dimensions we obtain

from F°(§°):
b; =(£[N) Ni Rids) Wf} “VK(&[N] N:dy) g -‘5;'}
and from FS(?S):

'gfm Ne Ns)g }+ }'R(l._kﬂ N: Jg){‘g }

nvi= [M{V} vt =1 ,
ORI B %7 ’
-wi{F . p=tafry .

(4-22)

(4-23)

(4-24)

(4-25)
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The values of SF} , that is, the normal-velocity distributions
are known and the computation of the integrals along the
body boundary in (4-20) and (4-21) is straightforward., These
become the components of [B] in (4-12'), For convenience let
the matrix equation be understood such that the right-hand
side, [B], is known, whereas the unknown values are on the
left-hand side, as is conventional, Now let us consider the
integrals along the boundary Ael +¢E2 orR in the expressions
(4-22) to (4-25) for both cases, i,e,, the cosine mode and sine
mode, the boundary integral contains the values of the sine-mode
poientials, First we compute all bi and next we move those
terms which contain the opposite-mode potentials to the left-side
hand, In order to combine the cosine-mode potentials i;c and

the sine-mode potentials f“ we rearrange both potentials into

one array as follows:

A (4-26)

This arrangement minimizes the bandwidth of the coefficient
matrix after combination, The coefficient matrix will now be no
longer symmetric,

Further, if we denote the integrals along@andgb in (4-22)

and (4-25) as bic , and those in (4-23) and (4-25) as b1 ,

the

final form of the matrix equation becomes:
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T (M
AR .
4

s\
[A] T ’ (4-27)

When an oscillatory-pressure distribution is sperrified
on a segment of the free surface or when there are two fluids
of densities € , € , all the procedures for obtaining (4-27)
will be very similar to those explained earlier, It is of interest
to note that the interface condition in the two fluids (see (1-28)
and (1-29)) makes the coefficient matrix [A] in (4-27) asymmetric
dye to the coupled interface boundary condition between the

upper fluid and the lower fluid,

2. Truncation of the Infinite Boundaries

In Chanter II, the decuying behavior of the local disturbance
has been considered and a new radiation condi:iion'was derived
which can be applied where the local disturbance is negligibly
small compared with the propagating waves. We can state a few
criteria for the subdivision of the domain occupied by the fluid

(or fluids) and for the truncation of the infinite boundaries.
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Criterion 1, One should subdivide each wave length by at

least ten approximately equidistant points along
the horizontal direction,

Criterion 2, The truncation of the infinite boundaries should

be made after examination of the behavior of the

local disturbance discussed in Thapter II,

It is difficult to state definite and detailed criteria

for the general problems, bhut one can sensibly determine the
truncation of the infinite boundaries and the proper subdivisions

in the domain case by case after understanding the specific

problem which is dealt with, For example, if the bottom is not

uniform as shown in Fig, 14, then the subdivisions and the

truncation of the infinite boundaries should be different along
the ieft-hand side and the right-hand side as shown in Fig,. 14,

since we know the asymptotic form of the propagating waves on

each side, ,\%

o

“11//////,/

FIG. 14. subdividing Meches in the Fluid
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In this case )’ in the radiation condition is, of course,
different on the left-hand side and on the right-hand side,
i.e, y=Y,, on the left-hand side and P=2, on the right-

hand side, where

G%} =), terh VK, )

(4-28)
6‘1/3' =))1 h'ﬂh v;Hg R
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V. TESTING OF THE METHOD

1, Pure Propagating Waves

In this section simple tests are made to examine the
radiation condition, Let us consider a fictitious wall on
which a normal velocity is defined as

ny = (§r)n (5-1)
where §P is defined in (2-19) in two dimensions,
The numerical results for the boundary condition (5-1) on
a fictitious wall have been compared with the exact solution
(2-19) for many cases, For example, in one case the radiation
condition is applied right next to the wall; in other words,
one éiscretized element has both boundaries, a fictitious-
motion boundary on one side and the radiation boundary
condition on the opposite side, All the numerical results
give very good agreement with the exact solutions whenever we
sulxiivide the domain of the fluid properly into finite ele-
ments, Consider a thin strip one hundredth of a wave length
wide subdivided into one hundred elements in the vertical
direction, If the fictitious motion is applied at the left-
hand side of the strip and the radiation condition at the
right-hand side, then the numerical results agree with the
exact values to six or seven decimal places if eight-node
quadrilateral elements are used,

In three dimensions, propagating ring waves are tested

with the local disturbance artificially suppressed,
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i.e. the boundary condition on a fictitious vertical

cylinder R = Ro is taken as follows:

é‘i‘fl _ cosh V(§+H)
3R lop ==V T ah oM Ji(vr) y)
(5-2)
2%° _ cosh VAN \( 6,0,
R g-Ro—‘“ cosh YH \ﬁ {‘ /

where H 1s the depth,

The exact solution for the boundary condition ( 5-2)

is simply
Y CRYL) = ‘fc s G + %> sen €t
M (3; cosGt +Y, .SFnG‘!r) (5-3)
cosh VH
where R 2R, -H=<4<o, In this three-dimensional

case the numerical results are compared with the exact solu-
tions (Bessel's functions) given by Abramowitz and Stegun 1967)
and shown in Fig, 20 for y=0. The radiation condition is

applied at R=R,, which was taken as less than one and a half

1)
wave lengths for the two cases considered, The numerical

results are identical up to three significant digits with the

Bessel functions,

2., Pure Local Disturbance

As we have seen in Chapter two, if we apply the radiation
condition on & boundary which is so close to the moving

body that the local-disturbance potential §L has not
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decayed sufficiently, then we will obtain a numerical

solution not for the original problem but for a completely
different problem. For, when we take the conventional
radiation condition, which states the asymptotic behavior
at infinity, then the local disturbance potential
EEL trivially satisfies the radiation condition,
Therefore no special difficulties in connection with the local
disturbance arise in an analytic method, On the other hand,
in numerical scheme, the treatment of the local disturbance
is the most cumbersome,
In this section the radiation condition is applied
at various distancesat which the local -“isturbance remains
of considerable magnitude, in order to obtain some idea as to
how close the truncation of the infinite bourdary may be applied,
Let us consider an example in two dimensions with the

exact solution

é(t.*j;&;) = A, e—m.x“s m, (Y+H) cos 6"!:') (5-4)

where M, is given in (2-3) and Ao is a constant,
The two ccmponents of § are

Py =A™ cos my(y+H)

(5-5)
3y =0 Y

where ~Hays<0 and 0Sx<e, Then on a fictitious wall at

x=0 the boundary condition will be:
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c
‘fx lx‘o = -m A. s my (”*H) ,

Sl emo

1

We apply the radiation condition at x=x1.

Fig. 21 shows the potentials ‘fc and 'fs with the
radiation condition imposed at various distances from the
plane x-0 and shows that the numerical solution agrees
very well in this case when the radiation houndary is
taken such that x/H23, However when we impose the radiation
condition too close to the moving body, then the numerical
solution gives a non-zero sine-mode potential ‘f’(z,g),

although this is identically zero in the exact solution,

3, Oscillatory Pressure Given on the Free Surface

Let an oscillatory pressure be given on a segment 2f
of the free surface; the boundary condition on the free
surface is then given in (1-31). Stoker (pp. 58-66) has
applied complex-variable theory to give the solution for the
propagating waves, i.e, for §§P , a8 an asymptotic solution
at a large distance, If we adopt the Green function for this
problem and make use of Green's theorem, the solution can

be given as

|
E {I}”.t) = - CS ecxlon"i O"t’) JO.

) (5-7)

0. (5-6)
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where G is defined in (2-14) and C is defined in (1-31),

For finite depth G is given in Wehausen (1960); it would
not be difficult to extend (5-7) to three dimensions,

In this section, two cases in water of infinite depth
are compared with the solution computed from (5-7) and given
in Fig, 22, Fig. 23 shows the same two cases for finite
depth,

1t is of interest to remark that a problem with the
non-homogeneous free-surface boundary condition must be

solved whenever we treat higher-order problems,

4, Forced Motion of Two-dimensional Cylinders in Water of

Infinite and Finite Depths

A circular cylinder of radius a oscillating in a free
surface has been tested for infinite depth for five non-dimensional
wave numbers ya = 0,5, 1,0, 1.5, 2,0, 3.0, and compared with
Porter's results (Porter, 1960)., They give very good agreement
in all cases, Table 1 shows the comparisons betw:.en Porter's

results and the results by this numerical method for the case

For finite depth, H = 2a a half-immersed circular cylinder
has been tested for two non-dimensicnal wave numbers
Ya= 0,1, 0,5 and compared with the results obtained by another
method (C, H, Kim, 1969), The added-mass coefficients and wave-
ampl !tude ratic for heave do not give good agreement for either

case,

. o AL ¢ o mak W A A saA Ao

e

- e e are o S —— —




-

A St TR

‘t 81qEL

*gixe. £ oAy3e30u 8y3 WoaIJ paansesw ST ayBue BYL %

100921 222291 99c15t vz9z¥] se2sc] 9601¢c° | ¥8PLZ ] S12SZT°| vL8EZ | 96¥EC” POYIMW STUL
GL° 29° 1s° 4 2 ce”’ 1€’ 2’ sz* A €zZ° I93304
«06 «08 0L «09 «0S o OF o0€ o0C 01 o0 213uy

£312°019A 243 Yila aseyq Uy ainssaid [BUOISUIWTP-UON
£1291% 0£280°F 09€G]cisLT” LYPIE] €90%b°] 6b6bS] €2229°] 9¥6L9] S0P69° poy3lan siulL
81°4 L60°-}0E0° ° 4 > 43 2 gs* €9° 89° oL’ 193104
o016 208 | .0L 09 |.08 oOF o0€ °C2 Ni}s o0 ko%n«
UOTJEISTIOOV 93 YITA ISEYJ UY IINSS3Id [EBUOTISUSWIP-UON
€90V ° ot6L’ 1951} & 88965 ° POU3IdN STUL
(44 6L° ov° 09° Iajxod
(2) @dx04 apvv ‘duy aaepm °ydmaAsy ~7K.wumoo Butduweq n~3\mma2 pPaprPY




§

5, Two-dimensional Diffraction Problems in Water of Infinite

and Finite Depth (Circular, Rectangular Sectisos)

The incoming wave is assumed tc be

Ye %) = 5th Ox-6%)
= St YX Cos L —CosWX stet (5-8)

with the amplitude being unity, Following the definition

(1-39), for the incoming wave, we write

Y cxk) m Y o 6t + Y3 smet

(3-9)
where
YE = smux , e -en,
From (1-40) we define the free-surface wave profile due to
a fictitious forced motion given in (1-25):
=\ eos 6t + 35 st
Yo(xt) =Y eos b SEet
where
YA 4
h =-—3 ¢ o) (5-10)
6~ [4
YDS =T ?b (zlo) ’
and
[ o -~
T (x4 =5 wsot +5, smet,
then the total velocity potential 3%_ is given as
. =3
r = &G (5-11)
and the wave profile on the free surface is
Frexw) = pa® + §ap
and (5-12)

: 3
Yo at) = Y cosot + Yo sk,

d
In order to describe the phase relation between WB and \:: ’
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we define the phase angle
(4
60 =tz /) (5-13)

similarly

- ¢ s
6,60 = tam (=Yr/¥7) 5-14)

where the arc tangent is understood to take its principal
value, i,e,, =~ < 0p.6r = 4
R
12 t{ﬂihﬂL h’ I are the amplitudes at infinity of the
incoming, transmitted, and reflected waves, respectively,

then we define the reflection and transmission coefficients by
3¢ 4
6 VANG =YY (5-15)

and obtain as a consequence of conservation of energy,

CRL - q& =1 . (5-16)

we can also express the transmitted wave at infinity similarly
to (5-8)
"Y'= |Y" sin x-6t=6r)

where ST is the phase lag of the transmitted wave to the
incoming wave at infinity,
Diffraction of homogeneous incoming waves on a submerged circ-
ular cylinder was taken as a test computation since this
problem has been treated analytically by various people
(Dean, 1948; U-'sell, 1950; Ogilvie, 1963), It is well-known
that the reflection coefficient of a submerged circular

cylinder in water of infinite depthk is zero in the first-order




(1]

theory, Thus the model is taken for the numerical calculation
to be identical with the one Dean and Ursell computed, as shown
in Fig. 15,
The results for m,sfare shown in Fig, 24. The
transmitted wave lags behind the incoming wave by about 82
degrees; Ursell found about 90 degrees,
A diffraction problem with a rectangular cylinder (refer to
Fig, 16) in water of finite depth has been tested for some
frequencies and compared with the results obtained by another
method (Mei and Black, 1969), The results show very good agree-
ments for both submerged and surface obstacles, Fig, 25 - Fig, 28
show the results for these obstructions,
Each fiéure giving the results of the diffraction problems
consists mostly of four sheets of figures; for example, Fig., 25
consists of Fig, 25a, Fig., 25b, Fig, 25c, and Fig., 25d, The
first figure shows the diffracted vaves'xsh& The upper part
of tue second one shows the phase angle 6560 between the
cosine~-mode wave\ﬁfand the sine-mode wave 'W;S . This figure
shows the transmitted waves on the right-hand side and the sum
of the incoming wave and the reflected wave on the left-hand side,
The fourth figure is arranged in a similar fashion to the second
figure except for the total waves, The phase angle Eﬁ. shows
the phase lag of the transmitted waves with respect to the
incoming waves at the far right-hand side; it is hard to give a
physical interpretation to GH- on the left-hand side when the
reflection coefficient Cg is large, as, e,g.,, in Fig. 32d, The

lower part of the fourth figure shows the reflection and
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transmission coefficients at the far left-hand and far right-hand.
sides, respectively., It is easy to prove analytically that
rf}‘max on the left-hand side has a sitarp trough and a smooth
crest and that the average of two values of r*qnax at the crest
and trough is one, But sometimes, for example, Fig. 26d does not
show a very sharp trough, but is chopped off in the plotting

by the computer due to the lack of a sufficient number of data

points near the trough,
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6, Heaving Motion of Axi-Symmetric Bodies (Sphere and

V rtical Cylinder)

A humisphere in heave motion in water of infinite
depth has been tested for two frequencies, Y& = 0.5, 1,0,
and compared with the results obtained by other methods
(Cumming, 1963), The results show very good agreement,

The waves and wave forces generated by vertical circular
cylinder of Araft/radius = 0,5 in heave motion in water of
infinite depth have been computed for few frequencies,yd~ 0.5,
1,0 . The resu’ts have been compared w:th those of Sao, Maeda
and #Hwang (1%71), but they are not in good agreement, In view
of the good agreement between our results and those computed
bv many others ior other configurations, we are inclined to

favo. our results in case of disagreement,

P T N R e )




B

73

VI, NEW PROBLEMS

Once this method has been proved to be a useful numerical
method, one can utilize it for solving any problem within the
scope of its avplicability, however complicated its boundary
may be, In this chapter only a few sample problems will be
treated since any one can make use of the method for cases of
interest to uim,

1, Forced Motion of Two-dimensional Cylinders in Water of

Variable Depth

Forced motion of a rectangular cylinder in the free
surface with a vertical cliff submerged under the heaving
cylinder is treated, As shown in Fig, 17, we have an
infinite depth on the left-hand side and a finite depth on
the right-hand slde, Hence we have two different lengths of
the waves which propagate to each direction, Due to the
asymmetry of the bottom with respect to the y-axis, we may
expect a non-zero force component in the x-direction, even
though the cylinder and the motion are symmetric with respect
to the y-axis, The numerical computation for Gﬁ?@: 0.1
shows that the amplitude of the x-component of the hydrody...mic
force is about one fifth of that of the y-component, Fig, 29

shows the wave profiles for this case,
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2, Diffraction Problems in Water of Finite Depth (Triangular,

and Sinusoidal Section and Vertical Multi-barrier along
the Free Surface)

The geometries of the triangular- and sinusoidal-shaped
obstructions on the bottom are shown in Fig, 18, The results
for the triangular-shaped obstacle on the bottom are given
for yL|= 1,0 in Fig. 30. The results for the sinusoidal hump
on the bottom are given in Fig, 31 for »h: 0.5,

A diffraction problem for two vertical flat platés
piercing the free surface was treated in some detail and
this problem was extended to the case of two fluids of
different densities, 61 and ¢, (corresponding to oil
contained between two vertical flat plates (see Fig. 19).
Experimental results (Raissi, 1972) are avallable for these
problems, The results are obtained for four different
frequencies for a homogeneous fluid and are compared with
the experiments, Agreement is good, The results for two
fluids are obtained for a frequency which is near one of
the resonant frequencies of the internal waves, The maximum
amplitude of the internal waves is about six times higher
than that of the surface waves on the vil. Fig. 32 shows
the results for a homcgeneous fluid for period T = 1 sec,
())h = 0,6404) and a/h = 2,34, Fig., 33 - Fig, 35 show the
results for the two fluids for T = 1.84 sec, ( h=0,2704) and

a/h = 2,34,
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VII, DISCUSSION

The main purpose of this paper is rather the testing
of 2 numerical method than anything else, Therefore the N
testing of this method has been carried out for a variety )
of different problems, varying from homogeneous wave’
propagation to a diffraction problem due to two vertical
flat plates piercing the free surface when oil is contained
between two vertical plates,

Most restlts obtained by this method agree with those
obtained by other methods, either analytic, numerical or
experimental, But there were two types of problems which
did not agree very well: one is the forced motion of a
two-dimensional circular cylinder in water of finite depth
and the other is the heaving vertical circular cylinder in
water of infinite depthk, It seems tc be worthwhile to compute
the complete results since we checked only a few frequencies,
One can also easily compute the forced motion of the axi-
symmetric vertical dylinder in water of finite depth,

In addition to the fact that any degree of complicated
boundary geometry can be handled easily by this method, there
is still a further degree of freedom in that one can express
the velocity potentials on a mathematically singular plate
(in which the potentials are discontinuous across the boundary)
through numbering of the nodes for each element, One can
easily construct a 'numerical Riemann-$urface branch cut' by

making two adjacent elements which have the singular boundary
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in common have different nodal numbers at that boundary, even
though the coordinates of the nodes on the boundary are identical.

At this stage we may ask ourselves, what happens at the
ends of the flat plate which are submerged, Does this
method give the correct behavior at the singularity? The
solution of the velocity potential at the singular point
breaks dowp unless we introduce a proper interpolation function
to represent the near field including the singularity. 1If we
use a linear- or quadratic-interpolation function in the near
field, then we always obtain a finite value at the singularity,
because the singularity, which is C?Czﬂbin the near field, is
integrable and our numerical method minimizes a functional
whi.h is represented in integral form rather than dealing with
the function itself,

It would seem to be worthwhile to develop a proper inter-
polation function to represent the near field, including the
singularity, in order to obtain a correc* solution at the
singularity.

It would he very interesting to extend this method to
the ship-resistance problem, In this case it may be difficult
to express the radiation condition in moving coordinates in
a tractable form,

A computer program can probably never be made as

efficient or as general as possible, However, we have made
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considerable effort to attain such a goal. As mentioned
in Chapter 1V, our computer program solves the coupled
equations of cosine-mode potential and sine-mode potential
simultaneously, Accordingly, the band width of the final
coeffiCi?thﬂfffifﬂii double the band width of the either
potential of either mode. It would be worthwhile to try
to decouple them and to solve them separately, This might
result in a ssving of comput:r time,

It is pos:ible to extend this method to a general three-
dimensional boundary geometry without much difficulty,
However, the banZ -vidth of the coefficient matrix will then
be very large. Hence the computing time will also be very
large, If we modify the present computer program slightly,
we can solve diffraction problems with an axi-symmetric body
in three dimensions and a plane incoming wave, Other modes
of motion than heave can also be treated for the axi-symmetric

body,

79




APPENDIX A

The potential §(x, y, a, b, t) due to a source with

pulsating strength coesft at (a,b) is given in (2-14), i.e,,

‘ - k(#-<)
4 - e
& x4.abt) =ﬁ.¥ (%255 %8 —vv— de] e et
~V(z-2)
- s G‘E}' “-1
where c=a + 1b, E:a-ib,z=x+1y.
e-z.m-a)
Let us consider a contour integral k-\’—‘k in
the complex K- plane (as shown below)
G
reh
» ek

v
- R
where § ,_.,S +! + . (A-2)
(4 (@ Ca Gy

From the cauchy integral theorem, we have

-ik( 2-8)
< dk =0 .
Let us define,
2 = e‘G‘ !

2-C =0 e“e‘ , (A-4)




k=re*"
r -ix(8-0)
4123 K- dx
G
p A
-4 r e
=S‘ expl "‘c & )¢ & clrw-»"‘*g )
| et~y
( sxplread s» <«+eo ~i s )] (i +irdd)
- r-yve-
(vl .o~
na
-y W
. CXPL \"C\{ Stm (LB =L u;(&o@ \J }wv J
= > L P
I, Fg (dr+ irds)
2 g
(A-5)
7~ .
- exe[ ref smaspy-Leos@eb}]
I,= = (dr+irda)
Cg r-Ve!
From (A-2) and (A-3) we obtain:
=~-(T, +Ty) (A-6)
In order to make the cocmputation of 12 and 13 easy, we

shall try to make 12 ~» 0 as r,—0 and shall choose the path
of integration in I, along d\-:P from r =0 to r =00 so that

the integrand becomes non-oscillatory in r, From this we obtain
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=7, Py ol =i ¥ asshh
-
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. (r-» Py Wk ¥l g {A-8)

and
I, — 0.

Nos let us g0 Back to the equation (A-1), and use 1Bhe aduove
results. The Cawuchy primcipsl-valse tategral in (A-1) Dogomes

— ik AT
e’ ) et @ 2:3* e oV
€ -V dx = o~ 'S 4 (A-9)

=
-

and {(A-1) becomes

(194,05 ﬂf;“ﬁ‘( L-g— +z(e.-m‘l + X Iz] cos O

- V(8-T) eV G-

+t.@ Cog €& =~ € ¢§n¢*’}

(A-10)

= (s h g ~efi-nf) o

+ ey(rh s [ V) - 0],
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where

-re,
CCr-ysimd,) e

Ke (" L) = L (P~ sing )* + V* cos? 6,
-

7’—-::‘-'»9; e J{
=), s+ w6,

® J-vgsinb e‘fJf
Jo (V6 1Pn8)*+ (6 ca8) (A-11)

dr

It is of interest to note two simple cases, 1i.e, 0,_-.0 and 8,—.--%

e 1) r__—)re—?'u (8, = 0; along x-axis x »0) (A-12)
-1,) = " T o = 0; along x-axis x -
o Y*+(v)
o o1y
«"(—*I,) = i 56 4 (92 =-'!‘£, along y axis y<0) (A-13)
S |

From (A-12), (A-13) we can see the integral decrease as (Vf,)‘l
along the x-axis and (Vf,_)" along the y-axis for large
6}61) *

In order to compute (A-11), one may use the Gauss-Laguerre
formula whenever the error bound for the numerical integration
is permissible, For completeness this well-known formula

(Abramowitz and Stegun, 1967) is stated here:

j“ f(x) e dx = f: LJZ:)C(‘K&) + Kn
b

b ’ (A-14)

where
x; is the i-th zero of the Laguerre Polynomial ;&,‘(x)

bty
Tt (L, 60T 2
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AFPENDIX B

We shall give a very brief description of general quad-
rilateral elements, A reader can find much more detall in
Zienkiewicz (1971, pp. 103~170) and Ergatoudis, irons and
Zienkiewicz (1968), The procedure for the numerical inte-
grations in (4-12), (4-13) and (4-14) will also be described
briefly,

Let us consider a four-node quadrilateral element in the
physical plane, We introduce a new coordinate system in such a
way that the element in the xy plane maps, one-to-one, into a
square in the new coordinates ( g 1& -~ plane) shown in Fig, A-1,
Then we can express a function 4 in terms of a set of the

interpolation functions [ﬁ] , Which are functions of g and 7 .

b =l +%f +0 &L 1)

"
ks (%00%)) é.hp 4 1_"1”
i ’(x,,”,)
: 5
(@ K@
Fig. A-1

Similarly we can write

=Nz +0ta + N1y +0,%, (B-2)

s =N %ot Y *Eﬂ} + 0% g




where
Ni=0=-8)(0+)/4 ,
N2 =U-o0-] /4 ,
Ny =(t5) (- /2
Ne =(+D (/4 .

[N] contains the interpolation functions in the new coordinates,

Hence this may be different from [N] in the physical plane,

When we have a general quadrilateral element, it is more

convenient to perform the integrals in (4-12), (4-13) and (4-14)

(B-3)

85

in the new coordinate system, From the coordinate transformation,

we have d

7 SN R
'3_’; T oy X 2% 9y )
'3?(" = %% i %%-'35 ,
or in matrix notation
3
= Py 3
-3 2
f,ag N -1 12
4 g % 7

in which [J] is the Jacobian matrix,

X | I X

! S =G b e )

@ =g 2 |~ .
Y (=%)  =0~F) (it} (+3) xi 3:

The integration with respect to x and y in (4-12) can simply

be changed to integration with respect to gandY , with a

simplification of the limits of integration, which now are simply

from -1 to 1 in both variables, and with the change

dx&j = |7 A;l? )
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where ‘J‘ is the determinant of [J]. Similarly the boundary
integrals defined in (4-13) and (4-14) can also be carried

out in the new coordinates with a change of variables,

ds = \]Jxl(';) + dj’“g) = \)@‘;:) ‘+(§3'1f '13
ds = JI;&) +43’(7) = \k%"?) e é%)" 1?

with limits from -1 to 1,

or

All the integrations are performed numerically using the
well-known Gaussian quadrature formula (Abramowitz and Stegun,
pp. 916-917),

In our computer program, the'element shapes that we used
were four-node and eight-node quadrilateral elements, The
procedure for computing KIJ, hiJ and bl in (4-12), (4-13 and
(4-14) for the case of an eight-node quadrilateral element is
very similar to that for a four-node element, Therefore thie
will not be given here,

In writing the computer program, a cormputer program made

for structural problems (Wilson, 1979) has been helpful,
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Fig. 20 - Pure Ring Waves
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ve=n/2 A ¢t

Computed from
¢ : oS Equation(5-7)
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Fig. 22 - O<cillatory Pressure on the Free Surface in
water ¢f infinite depth.
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