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ABSTRACT

This report concerns a transform based on a set of two-

dinmensional Haar-like functions. Series exparSions of two-mensional
functions in terms of this set have convergence properties that are
analogous to those of Haar series. Following a brief review of Haar
functions, the two-dimensional functions are defined Yn'd their prop-
erties discussed. Analog and digital transforms based on these func-
tions are then considered. Possible applications are image coding
and pattern recogition.
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A TWO-DIMENSIONAL HAAR-LIKE TRANSFORM

1. INTRODUCTION

In two-dimensional image processing, use of the two-dimensional Fourier transform is
being supplemented by the Walsh-Haramard transform (1). Haar functions (2.4) are closely
related to Walsh functions (5) and have properties that suggest they may be useful in ap-
plications such as multiplexing, data transmission, and pattern recognition (6). Recently,
a set of two-dimensional functions with properties analogous to Haar functions has been
introduced (7). These two-dimengional functions may be well suited to image coding and
related applications.

Haar Functions are briefly reviewed in Section 2. In Section 3 we describe the two-
dimensional functions. Analog and digital transforms are discussed in Section 4. Compu-tational and memory requirements are analyzed. Applications are discussed in Section 5.

Before continuing, we introduce some definitions that will be used throughout, this report.

DEFINITION. Let the interval ((n - 1)/2n-1, n/2n-li) be denoted by ir, where m = 1,1 .2
2n-1. Thus the interval [0, 11 is sbdivided into 2V-1 equal parts labeled in, in, ... ,

DEFINITION. Let the square defined by (k - 1)/2-1 < x < "21 and ( /- ) <
y < k/2n 1 be denoted by 4n, where k, R = 1, 2, ... , 2n-1. The square )k2 is the inter.
section of i along the x axis and of in along the y axis. The unit square will be denoted
bj ia1. When the boundaries of the square are to be included, one writes [6n ] instead of

DEFINITION. If x e [0, 1] for some k and M satisfies x = k/2M, where k - 0, 1,

2, ... , 2M, then is called a binary rational. If x does not satisfy x - k/2M for any M,
then it is called a binary irrational. A point (x, y) E 61 is called a binary rational If either
x or y is a binary rational. It is called a binary irrational if both x and y are binary irra-
tionals. A binary rational line segment Is c set of colinear, binary-rational points with seg.
ment endpoints that are binary ratkomai in both x and y.

DEFINITION. Let f(x, y) e L2 [61 ]; then

f(•n£) 2212 n f f(x, y) dxdy ()

i" the mean value of f over the square 4n 4
hQ/
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DEFINITION. 1ff, g E L2 [0, 1], then let

(f I J f(x)g(x) dx. (2)
L0

If f, g E L2 [ 1 , then let

(f Ifg) f f (x, y)g(x, y) dxdy. (3)

2. BRIEF REVIEW OF HAAR FUNCTIONS

The Haar orthonormal sequence is defined on the closed interval [0, 1] and is com-
posed of functions labeled by two indices:

S 1. 1 (4)

The functions are defined as follows:

ipo(x) 1, for 0'•x<1

(x), for O0x<1/2

-1, for 1/2<x'•1

for 0'x<1/4

p2l(x) - for 1/4 <x < 1/2

0O, for 1/2<x<1

0O, for 0•x < 1/2

p22(x) = for 1/2<x<8/4

for 3/4<x<1

"2(n-1)/2, for - <x < m,.(1/2

,pnm (x) f -20"1)/2, for m - (1/2) x m

2n-1 2n,•

m-1i
0, for O<x< and 2- <x<l

2nl1 2-
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At points of discontinuity, the Haar fuvctions are defined to be the average of the limits
approached on the two sides of the discontinuity. The first few Haar functions are shown
in Fig. 1. We note that O0m(x) is nonzero over the interval inm. The Haar functions are a
complete orthonormal basis of L2[0,11].

+1, p. +1:
I I
I i

0.5 1.0 *:

I I

+r4 +~

4 I I-1 -I I 4I I

+2+2

-I

44 o 4.0 0.5 "r 0

g 05 Lb

,I4o~ , C. '~

-2 L...J-2

I II I

0.5 . Q

I II I

-2 2!-- -2

Fig. 1-Mh first eight Haar functios

Any function can be expressed as an Infinite series in terms of Hair functions:

002"-

fX) Co (5)

where cnm (f Jp,,). For the purposes of this report, convergence isbetdsuedy
means of the besta disu

i I I4
j. , ..
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N 2 n-1

SN(X) = Co + 2] cpM(x), (6)
n-i m-i

which zontain 2 N terms. Also 8N+i contains 2 N more terms than SN, namely all Haar
functions with the subscript N + 1. More general partial sums are discussed in (2) and
(4).

For continuous functions, the sequence of partial sums SN is uniformly convergent to
the given function. For discontinuous functions, {SN} will still converge uniformly to
(1/2)[f&x+) + f(x-)), provided all discontinuities are at binary-rational points. This con-
vergence property for discontinuous functions derives from the fact that all Haar-function
discontinuities are at binary-rational points. For functions with discontinuities at binary-
irrational points, SN(x), though no longer uniformly convergent, is still pointwise conver-
gent everywhere except at the binary-irrational discontinuities.

Several aspects of the potential utility of Haar functions derive from an important
property of the partial sum. In the expansion of f(x), the Nth Haar partial sum SN(x)
is a step function with 2 N equal-length steps. The value of SN(x) on each step is the
mean value of f(x) in the interval covered by the step. The value of SN(x) at a discon-
tinuity between adjacent steps is halfway between the adjacent steps. Stated differently,
SN(X) is the step function of 2N steps which is the best approximation to f(x) in the mean.
square-error sense. The effect of additional terms is simple and intuitive, unlike the effect

of additional terms when the function is expanded as a trigonometric Fourier series (or as
a series in tarms of other continuous bases of L 2 [0, 1]). We note that it follows from
this mean-value property that if f(x) is constant in the interval covered by any step, then

SN(X) - f(x) exactly on this step.

The coetricients in the Haar Series also have a simple relationship with the mean
value of f(x) over subintervals of [0,11. The coefficient cg is proportional to the differ-
ence of two adjacent steps of S&(x), namely the steps on either side of x - (2m - 1)/2g.
This property leads to the modest computational requirement. of the Haar transform (6).

3. TWO-DIMENSIONAL HAAR-LIKE FUNCTIONS

The attractive qualities of Haar functions derive from two related properties. First,
in the expansion of f(x), SN(x) is a step function of 2N equal-length steps. The value of
SN on each step is the mean value of f in the intterval covered by the step. Second, the
expansion coefficients are proportional to the difference in the mean value of f(x) over
adjacent subintervals of [0, 11. As discussed in (6), these properties may be useful in ap-
plications such as data coding and pattern recognition. Whatever the application, Haar
functions require a one-dimensional data stream. If the data is intrinsically two dimen-
sional, it seems more appropriate to use a twodmensional set of functions with analogous
properties.

We therefore look for a set or orthonormal functions that have the following proper-
ties. When a function on the unit square f(x, y) is expanded in ternm of these functions,
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the Nth partial sum PN(X, y) is a step function of 22N square steps each of area 1/22N.
The value of PN(x, y) on any step is the mean value of f(x, y) over the area covered by
the step. The expansion coefficients are proportional to the difference in the mean value
of f(&, y) over adjacent subareas of the unit square.

In analogy with the double trigonometric Fourier Series, we might expect that such
a set is provided by all products of the form

nk (X, A) = 0n(X)4(Y). (7)

The set {O' } is the basis of the two-dimensional Haar transform used in Ref. 8. In fact,
no subset of these products defines an adequate two-dimensional sequence, in the sense
described above. Instead, we find that the desired sequence is obtained by defining three
sets of functions: SJ(k, y), V'I(x, y), and MH (x, y). The firs is a subset of the products
defined in Eq. (7):

SO(x,y) A- 0 (y)oP0() (8)

in(x, y) - 0n(Y)V(X) (9)

where (x, y) G t and n > 0. The first few are shown in Fig. 2. The symbol S was
chosen because the functions have a saddle shape.

Introducing the block functions
2(n'1)Y2, X G im

nam (X) = (10)
w f0, elsewhere

we define

Hn'(X, A - 01(Y)aoJ(X) (11)

V.' 1(X, y) - an (Y) A(xW (12)

where (x, y) E 4J and n > 0. The first few l are shown in Fig. 3. The symbol H was
chosen because the rectangular nonzero areas are horizontally oriented. The first few

are shown in Fig. 4. The symbol V was chosen because the rectangular areas are
vertically oriented. The form of the definitions was chosen so that the superscripts locate
the nonzero square t0 according to the familiar row-column matrix notation.

On the four borders of tif, all Sint, HI, and V~nl are defined as the average of the
limits approached on the two sides of the border. For example, if -1 has no borders in
common with the unit square 01, then the functions take one of the values 0, W2 f-2. On
a common border of t, and ol they take one of the values 0, +2 n-.
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(0,0) X-,W (1,0)

+

SoI- + s11-,

(001 11

++jS~2"2. r

Fig. 2-T.e first few saddle functions 8W!(x, y). The

shaded ares• tave the value zero. Other areas have values
of plus or niuns the constant written outside the square.

(00) x--q (I

Y +

(0,1) (I,1)

ai . j r H 122 1 6 r

Fig. 3-Thbe first few horizontal functions HVx, yA
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(0,0) X-0 (I40)

V, X2.

Jt .. L.

Fig. 4-The first few vertical functions V(x, A)

As shown in Ref. 7, the set {82jx. y), H' , V,"(x, y) },is orthonormal and complete
in L2 [4 I. Series expansions in terms of this set have convergence properties analogous
to those of one-dimensional Haar series. The-Nth partial sum is given by

N 2n-1 2n-l'

PN(X, Y) 1oSo(X, Y) +2 Ti E [!.iS.J(x, y)'+ bofH.kx, y)+ iV,'/(X, A],

n-l. i,, jji (13)

where

a0 . -(,Iso)

4 - rv"
4 1- (f I H M'

PN(x, y)lis a step function of 22N square steps each of area 1/22N. The value of
PN(x, y)} on any step is the mean- value of &(x, y); over the area covered by the step. If
&(x, y) is continuous or has a finite number of discontinuities along binary-rational line
segments, then PN(x, y) converges uniformly. If f(x, y) has a finite number of discontinul-
ties along binary-irrational line segments, then PN(x, y) converges pointwise, except along the
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discontinuities. The accuracy of the estimate PN(x, y) in the neighborhood of some point is
proportional to the gradient at that point. Also the accuracy of the estimate PN+I is bounded
by a value which is half that which bounds the estimate PN. The functions.'SO, HIJ, and V'J

are nonzero only over the square 'J Each of the coefficients .a, 0 and a(',an'le written
in terms of the mean value of &(, y) over the four quadrants of 60 (Fig. 5):

1m . (+11 2m-1) . 2-+9I1 2m). 2n +2m-1) 2n 2(+m)] (1l

FR y 'Gij 2m4) 6i1~12) + f621(14a)

b -M . . [(+2n11 2m-1.).. 2( 1 2m 2n.2m-1 -_ 2+2m] (14b)

nm22-~t1 n- 2m) -f i -I 2n 214c

m-I 2m-I m

I P 2

n-I

fl -I ,I II •III

fl1 2si m-I ta l

n
2S-1

Fig. 5--nhe square 4n and ita four quares

4L TRANSFORMS

,Lm- Arudo

A straightforward m~eans of obtaining the coafficientsal e•, be", and ct" is suggested
by Eqi. (14a)J14c), as well as by Figs. 2 - 4. In The trandorm of some function &~, y), each
coefficient is explresed as sums and differences o! the mean value of f over different areas.
If we let I(tU) represent the integral of &(, y) over the equeze, 4,, then Eq. (14a) may be

rewritten as

2nI 2m-1

Equations (14b) and (14c) may be rewritten similarly.

A/
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Dropping for the moment the factor 2 2-1, each coefficient in the transform of a
photograph can be obtained as follows. A light beam is passed through the negative and
then split. Each of the two resulting beams is interrupted by a mask. Light not blocked
by the mank is collected at a suitable integrating detector, perhaps a photomultiplier. The
two detector outputs are sulbtracted, and the result,_ one coefficient of the transform, is

converted to digital form. If required, the factor 22-1 may be inserted by means of an
(2 - 1)-bit left shift. As an example, masks for obtaining a1, b"1, and 1are shown
in Fig. 6.

Oil

C11.

Fllg 6-MAsh foffpalog latIoio of a2,
2 ,~ 2

An alternative method uses only one beam and detector: the negative is sequentially
exposed to the two masks, the detector outputs are stored digitally, and the subtraction
is performed digitally. Although slower, this method would be cheaper and would avoid
balance problems.

4.2 Digtal

We now coutsider the case where the photograph has been encoded as n - 22M - 4N
saraples and the transform is to be obtained digitally. This data might be obtained by
digitizing the output of a flying-spot scanner. Bearing in mind that each sample is usually
the average value over the smallest resolution cell, and in analogy with the modified Haar
trnmsform discussed in Ref. 6, we define a modified transform as follows:
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-flfl - 2N-+lanmaR = (16a)

bgmn = 22-R+lbnm (16b)

'R = 2 •-•+1c (16c)

When 2 = N, Eq. (16a) corresponds to dropping the leading factor in Eq. (14a). When
9 < N, it corresponds to replacing the leading factor in Eq. (15) with the constant 22N,

which is needed to compensate for the fact that the initial samples are averages over the
smallest area of resolution 1/2-N.

Fa 2. We take the n 24 = 16-point transform

of data given by a for-byu-vo4ur 'x. Tihef :te-force calculation then proceeds as
follows:

a0  = Xl + X1 2 + Xe1 3 + X14 + X21 + X22 + X23 + X24

+ X ~ +'A 'Xb 3 +,4i + X1+ X2+ X43 +X4

all = ~ + x12i* - xis. - X1 '4:+ Xg1 " + X22 - 23 -X 24

- x4i - x 3S + JC34, -. X4 1 ' - X42 + X43 + X44

bil = Xll + X12 + XIS + X14 + X21 + X22 + X23 + X24

-ai- X 3  S2 -i3  - i8 3 - X4i - X42 - X 43 -X 44

etc. This calculation requlrii 112 adaitions. Iii genr"d, 3n log4 n (1 + 3 log4 ) additions
are required for an n M 4Np jj-i jt&rm.

As with the Fourier, Walsh, and•Haar transforms, a'fast transform results from the
proper grouping of terms. As'in the fast modified Haar transform, sums and differences
are calculated at each stage:

Ul XlI + X12  6 1 X1'X 1 2  U2  X1 3 + X 1 4  v2 mXI -X 1 4

US -Xfl + X22 US X2 1 - U 4X2 U4 mX 2 3 + X 2 4  V4 X 23 - X2 4

u 5 -x 3 l +x v 5 = X31 - x3 2  u 6  x 8 3 + x 3 4  u6 nX3  - x 3 4

U7 X51 + X42 V7 X=:41 - X42 US X43 + X44 U8 X43 - X44

a1 2 -2  -v &112
2I - U2 - 4 b2 " u2 - U4  2 U2 + U4 W2 w U2 + U4

a~a 2 _ V t~a 2 " ,5  - U7 2 a ,, - "7 6 ,, + -3 ,a + U,,

US-v6-v8 -48US 2 W4m8 8 /
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Yl Wl + W2 ZI • WI - W2

Y2 = W + W4  Z2  W3 - W 4

all Z Z2 1 = Y Y2  611 Z1 + X2 a0 Yl + Y2

This fast transform requires only 40 additions. The general requirement is (8/3)(n - 1).

Since it is similar to the modified Haar transform, the modified transform just presented
is appropriate for applications such as pattern recognition. No information is lost by
modifying the leading factors in Eqs. (14a)-(14c) and (15), since the correct factor, which
is given by the identity of the coefficient, can always be reinserted. We should be careful,
however, in usin g the mo Zfied transform in applications that involve transmitting it over
a noisy channel. Depending on the coding technique and on the nature of the channel,
use of the modified transform can result in unequal expected error rates for different co-
efficients. This is because unequal energies may be used to transmit different coefficients.

The complete two-dimensional transform is obtained by multiplying the results of the
modified transform by the correct factor 2 k-2N-I (see Eqs. (16a)-(16c). Assuming a
binary representation, this can be done by a (2N - R + 1).bit right shift. One multibit
shift is needed for each coefficient, so that n multibit shifts are needed in the n - 4 N-
point transform. The computational requirements for the modified, modified fast, and
complete fast two-dimensional transforms are summarized in Table 1.

Table 1
Computakibnal Requirements for n - 4V-point,

Two-Dimensional Transforms

I: Multibit
Transform Additions Shit

Shifts

Modified Sn 1094 n-

ModifiedPast 8(n-1)

Complete Fast 98( - 1) n

I3

In the fast Fourier and Walsh transforms, the average number of operations per point
inmeases as log2 n, so that the arithmetic speed requirement is a function of both the data
rate and the transform size. In the fast Haar transform, the average number of operations
per point is independ-nt of the transform size. The same is true of the two-dimensional
Hair-like transform just introduced. The arithmetic speed requirement is a function of the
data rate alone. The only limitation on transform size is that imposed by the amount of
available storage.
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If the n - 4 N samples are located in memory prior to the transform, this is sufficient
space in which to complete the transform. If the samples are accepted one at a time from
an external source and if transformed coefficients can be put out immediately after cal-
culation. then the memory requirement is reduced. The extent of this reduction depende
on the order in which the samples are made available for cow-'itation. If the samples
derive from a raster scan pattern in which a full row of data i. supplied before flyback,
then 2Vn'- 2 memory locations are required for the transform. If an optimum scan pat-
tern is used, the memory requirement drops to 3 log4 n locations. Optimum scan pat-
terns encode successively larger squares, starting at one corner of the image. For example,
the following is an optimum scan pattern for the 16-point transform discussed previously:

X11 , X1 2, X2 1' X2 2 ' X1 3' X1 4 1 X2 3 ' X2 4, X31V X3 2, X4 1 , X42 , X3 3 , X34 , X4 3, X4 4 ,

The calculation then takes place in the following order:

ý1, all,
U1 , U1, Us, b2, wj, us, a2

b21 -21 -21
Ur, V5, U7 , ,W3 V7 . a2 , C2

Us, U'61 Us, 241, W4, US, a222, 2 ,

Here six storage locations are needed, since at one stage of the calculation wl, w2, w3,
u6, ve, and us must be retained.

5. APPLICATIONS

The application of the twodlimensional Haar-like functions to two-dimensional data
is analogous to the application of Haar functions to one-dimensional data.

One example is image coding. Information contained in an image is often transmitted
by means of the coefficients of an expansion in terms of some set of basis functions. If
convergence is rapid or if many coefficients are zero, we can often reduce the transmission
bandwidth from that required to send the image itself (1).

In the two-dimensional Haar-like transform, a given coefficient a'J, bJ, or Am contains
information only from the square '. The full set of 4N coefficients may be said to con-
tain a mixture of local and global information. All points contribute to a0, al , b11, and¢11; one quarter of the points contribute to a11 etc

1 ~2' ;t. In general, each point contributes
to 3N of the 4N coefficients. One result of this is that there is less immunity to channel
errors than in the case of a transform In which all points contribute to every coefficient,
such as the Fourier transform. On the other hand, greater bandwidth reduction may be
possible if only the significantly nonzero coefficients are transmitted. For example, assum.
ing a 4 N point transform, if a function is constant over the square ', where M < N, then

m • • • • • • • • • • • •
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NMN-MS~3T- 4h = 4N'M+l 1

k-0

coefficients are identically zero.

The potential for bandwidth reduction is summarized by the statement that coeffi-

cients of the transform are proportional to the differences in the mean value of f(x, y)

over adjacent squares of area 1/4k, where k = 0, 1, 2, ... , N (see Eqs. (14a)-(14c)). The

two-dimensional Haar-like transform should be particularly appropriate for the transmission

of images that have relatively large areas of constant or slowly changing tone.

Equations (14a).(14c) also suggest that the transform may be useful for edge detec-

tion in two-dimensional images. The coefficients bJ are sensitive to horizontal edges; the

coefficients cm are sensitive to vertical edges; and the coefficients am are sensitive to saddle

point.Stated differently, is a set of horizontal edge detectors; {Vm} is a set of

vertical edge detectors; aind- {S, is a set of saddle detectors. Because edge detection by

differencing is sensitive to noise, if the {S!,m, Hm, V•} set is useful, it is likely to be so
only as one part of an edge-detection process (9, 10).
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