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ABSTRACT

——

din.ensional Haar-like functions. Series expansions of iwo-dimensional
functions in terms of this set have convergence properties that are
analogous to those of Haar series. Following a brief review of Haar
functions, the two-dimensional functions are defined ynd their prop-
erties discussed, Analog and digital transforms based on these func-
tions are then considered. Possible applications are image coding
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A TWO-DIMENSIONAL HAAR-LIKE TRANSFORM
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1. INTRODUCTION

In two-dimensional image processing, use of the two-dimensional Fourier {ransform is
being supplemented by the Walsh-Haramard transform (1). Haar functions (2-4) are closely
related to Walsh functions (5) and have properties that suggest they may be useful in ap-
plications such as multiplexing, data transmission, and pattern recognition (6). Receatly,

a set of two-dimensional functions with properties analogous to Haar functions has been

introduced (7). These two-dimensional functions may be well suited to image codinrg and
related applications,

SEaa i

3 ST

Haar Functions are briefly reviewed in Section 2. In Section 3 we describe the two-
dimensional functions. Analog and digita! transforms are discussed in Section 4, Compu-
tational and memory requirements are analyzed. Applications are discussed in Section 5.
Before continuing, we introduce some definitions that will be used throughout this report.

DEFINITION. Let the interval ((n - 1)/2%-1, n/28-1) be denoted by iT, where m = 1,
2, ., 271, Thus the interval [0, 1] is subdivided into 221 equal parts labeled il, iz, ceey
oY ne In
n .
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DEFINITION. Let the square defined by (£ - 1)/2#1 < x < /201 and q‘c -1)/2m1 <
y <k/2n1 e denoted by o, where_k, £ = 1,2, ..., 201, The square o5* is the inter-
section of i, along the x axis and of iﬁ along the y axis. The unit square will be denoted
bzgop When the boundaries of the square are to be included, one writee [oﬁ’l] instead of
“n *

DEFINITION. If x € [0, 1] for some k and M satisfies x = k/2M, where k = 0, 1,
2, ..., 2M, then is called a binary rational. If x does not satisfy x = k/2M for any M,
then it is called a binary irrational. A point (x,y) € 51 is called a binary rational if either
x or 'y is a binary rational, It is called g binary irrational if both x and y are binary irra-
tionals, A binary rational line segment is ¢ set of colinear, binary-rational points with seg-
ment endpoints that are binary raticai in both x and y.

§

DEFINITION. Let {(x, y) € L2[s,]; then

f(ok) = a2n-2 Lf(x. y) dxdy )
%
n

[ 3

is the mean value of £ over the square o, .
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2 JOHN E. SHORE

DEFINITION. If f, g € L2[0,1], then let
1
() = [ fiwrets) as. (@)
0
If £, g € L2[s,], then let

(rig) = f fx, y)8(x, ¥) dxdy. (3)
be !

2. BRIEF REVIEW OF HAAR FUNCTIONS

The Haar orthonormal sequence is defined on the closed interval [0, 1] and is com-
posed of functions labeled by two indices:

k-1
(6 = 000t 08, 035 i Ohrees BB 5 (4)
The functions are defined as follows:
Po(x) = 1, for 0<x<1
. J'l, for 0<x<1/2
Pi(x) = )
-1, for 12<x<K1
V2, for 0<x<1/4
pa(x) = < ~/%, for 1/4<x<1/2
L0, for 1/2<x<1
(0, for 0<x<1/2
Pax) = <% for 1/2<x<3/4

V2, for 3/4<x<1

r
-1 m-1 m-(1/2
oln )12’ for _zn-l <x< _#)

- -(1/2
Pl(x) = < =212 for 12-,;‘_%-)<x<§£-:_~3

Bl and S <x<1

0, for 0<x<

\

—— L
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At points of discontinuity, the Haar functions are defined to be the average of the limits
approached on the two sides of the discontinuity. The first few Haar functions are shown
in Fig. 1. We note that y]J'(x) is nonzero over the interval iy'. The Haar functions are a ’
complete orthonormal basis of L2[0,1]. z
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Fig. 1-The first eight Haar functions
Any function can be expressed as an infinite series in terms of Haar functions:

o 2 n-1

fe)=co+ ) ) edvve), ®

n=l mel

where ¢’ = (flw:'). For the purpnses of this report, convergence is best discussed by
means of the partial sums
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gn-1

N
Sn(x) = cg + Z Z M), ()

n=1 ms=l

which contain 2V terms. Also Sy, contains 2N more terms than Sy, namely all Haar
functions with the subscript N + 1. More general partial sums are discussed in (2) and
(4).

For continuous functions, the sequence of partial sums Sy is uniformly convergent to
the given function, For discontinuous functions, {SN} will still converge uniformly to
(1/2)[ f(x+) + f(x-)], provided all discontinuities are at binary-rational points. This con-
vergeunce property for discontinuous functions derives from the fact that all Haar-function
discontinuities are at binary-rational points. For functions with discontinuities at binary-
irrational points, Sy (x), though no longer uniformly convergent, is still pointwise conver-
gent everywhere except at the binary-irrational discontinuities.

Several aspects of the potential utility of Haar functions derive from an important
property of the partial sum. In the expansion of f(x), the Nth Haar partial sum Sy(x)
is a step function with 2N equal-length steps. The value of Sy (x) on each step is the
mean value of f(x) in the interval covered by the step. The value of Sy(x) at a discon-
tinuity between adjacent steps is halfway between the adjacent steps. Stated differently,
Sy(x) is the step function of 2N steps which is the best approximation to f(x) in the mean-
square-error sense., The effect of additional terms is simple and intuitive, unlike the effect
of additional terms when the function is expanded as a trigonometric Fourier series (or as
a series in tarms of other cortinuous bases or L2[0, 1]). We note that it follows from
this mean-value property that if f(x) is constant in the interval covered by any step, then
Sy (x) = f(x) exactly on this step.

The coetticients in the Haar Series also have a simple relationship with the mean
value of f(x) over subintervals of [0,1]. The coefficient c,'z" is proportiona! to the differ-
ence of two adjacent steps of Sp(x), namely the steps on either side of x = (2m - 1)j2%.
This property leads to the modest computational requirements of the Haar transform’(6).

3. TWO-DIMENSIONAL HAAR-LIKE FUNCTIONS

The attractive qualities of 11aar functions derive from two related properties. First,
in the expansion of f(x), Sy(x) is a step function of 2N equallength steps. The value of
Sy on each step is the mean value of f in the interval covered by the step. Second, the
expansion coefficients are proportional to the difference in the mean value of f(x) over
adjacent subintervals of [0,1]. As discussed in (6), these properties may be useful in ap-
plications such as data coding and pattern recognition. Whatever the application, Haar
functions require a one-dimensional data stream. If the data is intrinsically two dimen-
sional, it seems more appropriate to use a two-dimensional set of functions with analogous

properties,

We iherefore look for a set or orthonormal functions that have the following proper-
ties. When a function on the unit square f(x, y) is expanded in terme of these functions,

i
.
J R
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the Nth partial sum Py(x, y) is a step function of 22V square steps each of area 1/22V,
The value of Py(x, y) on any step is the mean value of f(x, y) over the area covered by
the step. The expansion coefficients are proportional to the difference in the mean value
of f(x, v) over adjacent subareas of the unit square,

In analogy with the double trigonometric Fourier Series, we might expect that such
a set is provided by all products of the form

' e, y) = )G ). )

The set {&™} is the basis of the two-dimensional Haar transform used in Ref. 8. In fact,
no subset of these products defines-an adequate two-dimensional sequence, in the sense
described above, Instead ‘we. ﬁnd that the desired sequence is obtained by defining three
sets of functions: S (x, y),V (x, y), and H‘ (%, ). The first is a subset of the products
defined in Eq. (7):

So(x, ¥) = vo(¥)¥o(x) (8)
8z, ¥) = Wb () ©)

where (2, y) € of{ and n > 0. The first few are shown in Fig. 2. The symbol S was
chosen because the functions have a saddle shape,

Introducing the block functions

2012 xeim
op (%) = (10)
0, elsewhere

we define
Hi@, y) = dy)alx) 1)
Viliz, y) = ol (y)el(x) 12)

where (x, y) € o/ and n > 0. The first few H'/ are shown in Fig. 3. The symbol H was
chosen because the rectangular nonzero areas are horizontally oriented. The first few
V]areahown in Fig. 4. The symbo! V was chosen because the rectangular areas are
vertically oriented. The form of the definitions was chosen so that the superscripts locate
the nonzero square o, according to the familisr row-column matrix notation.

On the four borders of o/, all S¥, HY, and V¥/ are defined as the average of the
limits approached on the two sides of the border, For example, if o,{ has no borders in
common with the unit square o, , then the functions take one of the values 0, +2%-2, On
a common border of 61{ and o they take one of the values 0, o™l

e e wawen e m e s nm -
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Fig. 2—The first few saddle functions Sg(x. ¥). The
shaded] arei: have the value zero. Other areas have values
of plus or niinus the constant written outside the square.
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o0 (A

Fig. 4—The first few vertical functions Vg(x, y)

As shown in Ref. 7, the sei {'Sf{(x, ), Hf,f. Vf,j(x, y) }~i: orthonormal and complete
in L2[<>1] . Series expansions in terms of this set have convergence properties analogous
to those of one-dimensional Haar series. The Nth partial sum is given by

qn-1 gn-1

N
Py@y) = wSo@n*) ) ) [9282(::. y)+ bl y)+ Vs, y)],
=1 i=1 el a3)

where
ag- = (f18,)
af,j = (flsf{)
o= ()
ol ={pvi)

Py(x, y) is a step function of 22N square steps each of area 1/22N, The value of
Py(x, ¥)-on any step is the mean value of f(x, y) over the area covered by the step. If
f(x, y) is continuous or has a finite number of discontinuities along binary-rational line
segments, then Py(x, y) converges uniformly, If f(x, y) has a finite number of discontinui-
ties along binary-irrational line segments, then Py (x, y) converges pointwise, except along the

s o Wi PN R RN S Y L 2
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discontinuities. The accuracy of the estimate Py (x, y) in the neighborhood of some point is
proportional to the gradient at that point. Also the accuracy of the estimate PN+1 is bounded
by a value which is haif that which bounds the estimate Py. The functions S/, Hij, and v/
are nonzero only over the square a,, Each of the coefficients a,{, b,{ ,and c if'e can be written
in terms of the mean value of f(x, y) over the four quadrants of o (Flg b):

1 d2my 7 P
a" = 55| [Pt amy - Fofigt om) _ o, 2mety 4 f(o,?:‘l"")] (14a)

1 . -
u" '§2+—1_f(°2 ”"'1)+f(6g+”'") f(om 1) - flod )] (14b)

1 - T - . e
1| ooyt ant) L7t . f(om’""*) - Flogn®™ )] (14¢)

ml gmet
20'l _"'2%"?‘3"3

R H K

.............

2 :
tn-| ztn-l 2n-l 20
44 4m
el |
zl‘l
2021»-! 2.m
440 el

Srenvessncsnesanes

2 ‘ L,m

Fig. 5—The square o'g"" and its four quarters

4. TRANSFORMS

4.1 Analog
A straightforward means of obtaining the coofficients ag™, by™, and c§™ is suggested
by Eqgs. (14a)-(14c), as well as by Figs. 2 - 4. In vhe transform of some function f(x, y), each
coefficient is expressed as sums and differences of the mean value of f over different areas.
If we let I(o” ) represent the integral of f(x, y) over the square o,,j , then Eq. (14a) may be
rewritten as
g™ = 2% [I(ogfi'l Ly - Iodirt 3) - Iogm ™™ 1) + K(ofn3m )]. (15)

Equations (14b) and (14c) may be rewritten similarly.

v - -
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Dropping for the moment the factor 29’1, each coefficient in the transform of a
photograph can be obtained as follows. A light beam is passed through the negative and
then split. Each of the two resulting beams is interrupted by a mask. Light not blocked
by the ma:k is collected at a suitable integrating detector, perhaps a photomultiplier. The
two detector outputs are subtracted, and the result, one coefficient of the transform, is
converted to digital form. If required, the factor 2’2'1 may be mserted by means of an
(2 - 1)-bit left shift. As an example, masks for obtaining az . b , and c%l are shown

in Fig. 6.

(o0 P o S P L S T O

bV

cl:

Fig. 6—Masks fot alol ﬁlcuhﬁon of az s
and €3

An alternative method uses only one beam and detector: the negative is sequentially
exposed to the two masks, the detector outputs are stored digitally, and the subtraction
is performed digitally. Although slower, this method wouid be cheaper and would avoid
balance problems.

4.2 Digital

We now cousider the case where the photograph has been encoded as n = 22V = 4N
saraples and the transform is to be obtained digitally. This data might be obtained by
3 digitizing the output of a flying-spot scanner, Bearing in mind that each sample is usually
the average value over the smallest resolution cell, and in analogy with the modified Haar
transform discussed in Ref. 6, we define a modified transform as follows:

L e S v — . e ——
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apm = 2W-&1gam (16a)
bpm = g2N-R1pam (16b)
gm = g am (16¢c)

When ¢ = N, Eq. (16a) corresponds to dropping the leading factor in Eq. (142). When
2 <N, it corresponds to replacing the leading factor in Eq. (15) with the constant 22V
which is needed to compensate for the fact that the initial samples are averages over the
smallest area of resolutlon 1/2 -

For illustration we diacuu thecase N = 2 ‘We take‘the n=42= 16-point transform
of data given by a four-by-four matrix x, jo The brute-force calculation then proceeds as
follows: . . .

Bg = Xy3 + Xyg + X1z + Xyy + Xy + Xgg + Xyg + Xy
+ Xgy +tXge +tXgg +Xgg t Xy * X *Xyg t+ Xy
511 = + X 3 ;;'..."‘ it
ST X11 T X997~ X33 - Xy + Xg1' + X9 ~ X3 ~ Xgq
- Xgj = Xgg + Xgg + Xgq -~ Xy - Xy * Xyg * Xy
B = g 4 xgp + Xyg + Xyg + KXoy + Koo + Xog + X
1 11 ¥ X1 + Xyg + Xy +xgy + Xgg + KXgg + Xgy
- Xgy - Xgg - Xgz - Xgy ~ X4 - Xy ~ X483 - Xygq

etc. This calculation requires: 112 addxtions. Iii geniétal, 3n logy n (1 + 3 log,) additions
are required fof an n = 4N.point transform.

As with the Fourier, Walsh, and’Haar transforms, a fast transform results from the
proper grouping of terms. As'in the fast modified Haar transform, sums and differences
are calculated at each stage:

Up = Xqy t X Uy %Xy - Xy Ug = %13 + xy4 Ug = X13 = X4
Ug = Xgy + xgg vg ® Xg1 - Xgg Uy = Xgg + X9y Vg = Xg3 =~ %94
ug = x3 + %39 Us = X31 - ¥32 Ug ™ X33 + X34 Ug ™ X33 - X34
Uy = xg1 + x4 Ug = Xq1 = %42 Ug = X43 + X4y Ug ™ %43 = %44

gl = vy - vg b3 = u; - ug & vy +ug wy = uy + ug
652'02-04 5%’-:«'2-&4 éizi-uz-f‘v‘ wz-u2+u4
&gl-v5~v7 bgl-ue-u-, égl-v5+v7 ws-u5+u7
432 = vg- vy 532 = ug - ug 332 = vy + vg wy = ug + ug

PR —
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Y1 = wy + wy 2 T W - Wy

Yo = wg + wy %3 = W3 - Wy

a11 1 11 .

85" =2 -2 b =31 - ¥z '»‘% =2t 2 G =¥y1 + Y2

This fast transform requires only 40 additions. The general requirement is (8/3)(n - 1).

Since it is similar to the modified Haar transform, the modified transform just presented
is appropriate for applications such as pattern recogmtxon No information is lost by
modifying the leading factors in Eqs. (14a)-(14c) and (15), since the correct factor, which
is given by the identity of the coefficient, can always be reinserted. We should be careful,
however, in using the mo- ified transform in applications that involve transmitting it over
a noisy channel. Depending on the coding technique and on the nature of the channel,
use of the modified transform can result in unequal expected error rates for different co-
efficients. This is because unequal energies may be used to transmit different coefficients,

The complete two-dimensional transform is obtained by multiplying the results of the
modified transform by the correct factor 2-2N-1 (see Eqs. (16a)-(16¢). Assuming a
binary representation, this can be done by a (2N - £ + 1)-bit right shift. One multibit
shift is needed for each coefficient, so that n multibit shifts are needed in the n = 4N.
point transform. The compuiational requirements for the modified, modified fast, and
complete fast two-dimensional transforms are summarized in Table 1.

Table 1
Computational Requirements for n = 4N .point,
Two-Dimensional Transforms
- Multibit

Transform Additions Shifts
Modified - Snlogy n .
Modified Fast $n-1) )
Complete Fast %(n -1) n

In the fast Fourier and Walsh transforms, the average number of operations per point
increases as logy n, so that the arithmetic speed requirement is a function of both the data
rate and the transform size. In the fast Haar transform, the average number of operations
per point is independnt of the transform size. The same is true of the two-dimensional
Haar-like transform just introduced. The arithmetic speed requirement is a function of the

data rate alone. The only limitation on transform size is that imposed by the amount of
available storage.

e ———— -

e
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If the n = 4N samples are located in memory prior to the transform, this is sufficient
space in which to complete the transform. If the samples are accepted one at a time from
an external source and if transformed coefficients can be put out immediately after cal-
culation. then the memory requirement is reduced. The extent of this reduction depend:
on the order in which the samples are made available for comr—"1tation. If the samples
derive from a raster scan pattern in which a full row of data 1, supplied before flyback,
then 24/n - 2 memory locations are required for the transform. If an optimum scan pat-
tern is used, the memory requirement drops to 3 log, n locations. Optimum scan pat-
terns encode successively larger squares, starting at one corner of the image. For example,
the following is an optimum scan pattern for the 16-point transform discussed previously:

X115 X12s X215 ¥22) X131 X14» X235 X24» X31s X32» X41s X425 X330 X34 X43» Xy4-

The calculation then takes place in the following order:

11 K 1
uy, vy, ug, b3, wy, vg, 43, 83,

Ug, Vg, Uy, B3>, wy, Ve a2, 832,

ug, vg, Uy, b3, wg, vy, 83T, 83T,

Ug, Vg, Ug, DIY, wy, vg, 337, 32,
yl» yzo 5%19 aO’ zl) 22, a%l’ ailo

Here six storage locations are needed, since at one stage of the calculation wy, w,, wg,
ug, V¢, and ug must be retained.

6. APPLICATIONS

The application of the two-dimensional Haar-like functions to two-dimensional data
is analogous to the application of Haar functions to one-dimensional data.

One example is image coding. Information contained in an image is often transmitted
by means of the coefficients of an expansion in terms of some set of basis functions. If
convergence is rapid or if many coefficients are zero, we can often reduce the transmission
bandwidth from that required to send the image itself (1).

In the two-dimensional Haar-hke transform, a given coelficient aiJ b‘j , OF cf,’, contains
information only from the square °m- The full set of 4N ooefhcients may be saxd to con-
tain a mixture of local and global information, All points contribute to ag, all, bl , and
c}l, one quarter of the points contribute to ¢ 1, etc. In general, each point contributes
to 3N of the 4N coefficients. One result of this is that there is less immunity to channel
errors than in the case of a transform in which all points contribute to every coefficient,
such as the Fourier transform. On the other hand, greater bandwidth reduction may be
possible if only the significantly nonzero coeflicients are transmitted. For example, assum-
ing a 4N point transform, if a function is constant over the square af{, , where M < N, then
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N-M
3Z gk = gN-MY1 _

k=0
coefficients are identically zero.

The potential for bandwidth reduction is summarized by the statement that coeffi-
cients of the transform are proportional to the differences in the mean value of f(x, ¥)
over adjacent squares of arca 1/4%, where k = 0, 1, 2, ..., N (see Egs. (14a)-(14c)). The
two-dimensional Haar-like transform should be particularly appropriate for the transmission
of images that have relatively large areas of constant or slowly changing tone.

Equations (14a)-(14c) also suggest that the transform may be useful for edge detec-
tion in two-dimensional images. The coefficients bj,, are sensitive to horizontal edges; the
coefficients cf;i, are sensitive to vertical edges; and the coefficients a;;, are sensitive to saddle ]
points. Stated differently, {H'/} is a set of horizontal edge detectors; {V;1} is a set of
vertical edge detectors; und {S:'?‘ is a set of saddle detectors. Because edge detection by $
differencing is sensitive to noise, if the {8, H'J, Vil} set is useful, it is likely to be so 3
only as one part of an edge-detection process (9, 10).
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