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ON THE APPLICATION OF HAAR FUNCTIONS

1. INTRODUCTION

Interest in the applications of Walsh functions (1) has been increasing (2-4), suggest-
ing that related functions may also be useful. One such set of functions was introduced

in 1909 by the 1,ngarian mathematician Alfred Haar (5). Although some attention has
been given to the possible application of Haar functions (6,7), the principal focus of dis-
cussion has been on Walsh functions.

The purpose of this report is to describe those properties of Haar functions that seem
relevant, to discuss pcssible applications, and to draw conclusions as to their potential

range of use. Basic properties of Haar series are given in Section 2. The material is ab-
stracted from Ref. 8, wherein complete mathematical details may be found. Several as-
pects of the Haa, transform, including computational and memory requirements, are dis-

cussed in Section 2. Applications of Haar functions are discussed in Section 4.

2. RELEVANT PXOPERTIES OF HAAR SERIES

2.1 Haar Functions

The Haar orthonormal sequence is defined on the closed interval [0, 1] and is com-
posed of func ,ions labeled by two indices:

S=. 4 .. (

The functions are dpfined as follows:

'PW - 1, for 0 <Ox < I

1, for 0 <x<1/2

t-1, for 1/2<x <1

for 0 <x < 1/4

() =" for 1/4<., "1/2

0, for 1/2 <x < 1 (2)
(cont'4)

1
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0, for 0 <x < 1/2

for 3/4 < x < 1

(2)
2(n-i)/2' fm -1 <x<m-1I/2(2

f 2--1 2n-i

4on(x ) -2(n-1)/2 , for _ M /2 < M

n~~ J 2n- < 27

0, for 0<x< -M1 and <x < 1

At points of discontinuity, the Haar functions are defined to be the average of the limits
approached on the two sides of the discontinuity. The first few Haar functions are shown
in Fig. 1.

The Haar functionis are a complete orthonormal basis of L 2 [0, 1], the space of func-
tions f(x) that are defined over [0, 1] with f 2 (x) integrable in the Lebesgue sense. In
this report, all functions are assumed to be in L 2 [0, 1].

2.2 Haar Series Convergence

Any frmction "an be expressed as an infinite series in terms of Haar functions:

0 2n-I?~,no
f(x) = CO + Z n c'nI(x), (3)

n-1 in-1

where

M= J f(xhp(x) dx. (4)

0

For the purposes of this report, convergence is best discussed by means of the partial sums

N 2 n-1

SN(X) = CO + C2 n.PT (X), (5)

nl1 mal
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We note that when discontinuous waveforms are associated with base 2 digital processing,
an interval can usually be selected such that all discontinuities are at binary-rational points.

For functions with discontinuities at binary-irrational points, SN, though no longer
uniform!y convergent, is still pointwise convergent everywhere except at the binary-
irrational discontinuities. This means that given an approximation accuracy e that must be
satisfied at a particular point x1 , there is a value M such that for all N '> M we have
ISN(xl) - (X1 )1 < e. We cannot, however, guarantee that the required accuracy is ob-
tained simultaneously at all points in [0,1].

2.3 Mean-Value Properties of Partial Sums and Coefficients

Several aspects of the potential utility of Haar functions derive from an important
property of the partial sum. In the expansion of f(x), the Nth Haar partial sum SN(x) is
a step function with 2 N equal-length steps. The value of SN(x) on each step is simply
the mean value of f(x) in the interval covered by the step. The value of SN(x) at a dis-
concinuity between adjacent steps is halfway between the adjacent steps. Since the
equation

d 2 If(x) -C12 dx 0

da

has the solution

1 fXx2

a = f(x)dx,x2 -xIJ
X1

we see that SN is the step function of 2 N steps that is the best approximation to &(x) in
the mean-square-error sense. This mean-value property of SN is also true for the Walsh
series expansion of f(x) that has the same number of terms as SN.

As an example, Fig. 2 shows six successive Haar approximations to the function

f(x) = lOOx2 e-lOx,

each superimposed on the function itself. The effect of additional terms is simple, unlike
the effect of additional terms when the function is exparided as a trigonometric Fourier
series (or as a series in terms of other continuous bases of L2 [0, 1]). We note that it
follows from this mean-value property that if f(x) is constant in the interval covered by
any step, then SN(x) = f(x) exactly on this step.

Now the coefficients in the Haar Series also have a simple relationship with the mean

value of f(x) over the subintervals of [0, 1]. This is easily seen as follows:
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1M m= dx,f
[-(2m1)I2 .2m/21

= (-)2f(x) dx 2- 1 ( 2 ftx) dx (6a)

SL.2m-2)122  I2m-1), J

= -,+1/21m -2 2m -I T-12m -1 2m (6b

where T(a, b) is the mean value of f(x) in the interval (a, b). Thus cq is proportional to
the difference in ih,. mean value of f(x) over acacent subintervais of length 1/29. Stated
differently, c"' is proportional to the difference of two adjacent steps of S2(x), namely the
steps on either side cf x = (2m - 1)/2Q.

2.4 Approximation Accuracy

For continuous functions with a bounded first derivative that exists everywhere, there
is a simple estimate of the accuracy of any Haar partial sum. For any x in the interval
[0,1],

max[ f'(x)](7
ISN(X) - f(x)I < 2N (7)

where max[f'(x)] is the maximum absolute value of the first derivative of f(x) in [0, 11.
If x is restricted to any specific step of SN, then Eq. (7) still holds, with x restricted to
the subinterval of the step. For large values of N, the following approximate estimate
holds:

ISN(X) - f(x)l < IW'(x)I
2 N+1 , (8)

3. CALCULATION OF THE HAAR TRANSFORM

3.1 Modified Ilaar Transform

Consider a waveform f(t) in the interval [0, TI. We divide the interval into n = 2-4
equal parts and denote the average value of f(t) in these subintervals by x1, x2, ... , xn.
The step function that has the value Xk in the inter~aI ((k - 1)T/2N, kT/2N) is the Nth
Haar partial-sum approximation to f(t). It is the best step-function approximation of
f(t) in the mean-square-error sense.
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This step function can be obtained as follows. The waveform f(t) is passed through
an integrator that resets to zero every T/2N. The electrical parameters of the integrator
are chosen so that the integral after a period T/2N is the mean value of f(t) during that
period. The output from the integrator is sampled and held for a period of T/2N. The
output of the sample and hold during every period T is therefore the Haar-series partial
sum SN delayed by T/2N. The valuea xl, x2 .... xn are then obtained for use in digital

computations by means of an analog-to-digital converter.

The combination of integrator and sample and hold may be recognized as the low-
pass sequency filter described by Harmuth in discussing applications of Walsh functions
(9,10). Thus the output in one unit of time of a low-pass sequency filter with cutoff
sequency n = 2N is the Haar-series partial sum SN. This is an indication of the close rela-
tionship between Walsh functions and Haar functions. (Walsh functions may be written
as simple linear combinations of Haar functions.)

Since our digital sampler xi are average values of f(t) in intervals of To.' •, we see from
Eqs. (6a) and (6b) that the 2N-point Haar transform is easily obtained from them. We
note that the calculation of c•" would be simplified if it did not involve multiplications by
the variable factor 2 (Q-1)/2 or 2-(4*1)/2. Many applications can use a modified transform in
which these factors are dropped or replaced by a constant. We therefore define the modi-
fied Haar transform as follows:

k~ (2N-k+1)/2Cmn

For 2 = N, this corresponds to dropping the leading factor in Eq. (6b). For Q < N, it cor-
responds to replacing the leading factor in Eq. (6a) with the constant 2N, which is needed
to compensate for the fact that the initial samples are averages over intervals of length
1 12 N (where T = 1).

To illustrate the modified Haar transform, we discuss the case of 23 8 points. The
brute-force calculation then proceeds as follows:

k0= x1 + X2 + X3 + x4 + X6 + x6 + X7 + x8

k1 =x 1 + x 2 + x 3 + x 4 -x 5 -x 6 -x 7 -x8

= x1 + X2 -X3 - X4

2 =x5 + x6 .- X7 - X8

k3 =X - X2

k2=32.- X3 - X4

k3=k 3 =x5 - X6

k4 =
3 X7 - X
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This requres 24 additions. In general, n log 2 n additions are required for an n 2N-point
transform. By comparison, the brute-force Walsh transform requires n(n - 1) additions,
where we have counted subtractions as additions.

As in the Fourier and Walsh transforms, a fast transform results from the proper
grouping of terms. In the case of the modified Haar transform, sums and differences are
calculated at each stage:

3 = Xl- X2  a = X +x 2

3k2 = x 3 - x 4  a 2 = x 3 + x 4

3

k 3 =X5 - X 6  a 3 = x 5 + x 6

k4 =x 7 - x 8  a 4 = x 7 + x 8

2k a1 - a 2  b1 =a 1 + a 2

k2b
k a3 - u 4  b2  a3 + a 4

' kI b, - b2
S,

k 0 = b, + b2

This requires only 14 additions. The general requirement is 2(n - 1) additions. Use of an
arithmetic element that produces both sum and difference reduces this to n - 1 operations.
By comparison, the fast Walsh transform takes n log 2 n additions.

The modified Haar transform is sufficient for an application such as pattern recogni-
tion. No information is lost by modifying the leading factors in Eqs. (6a) and (6b), since
the correct factor, which is given by the identity of the coefficient, can always be rein-
serted. Use of the modified transform in applications that involve operations on the coeffi-
cients themselves may lead to difficulties. However, in many cases we should be able to

analyze the problem in terms of the unnormalized set of functions

fo =ý0' 'tM = 2(2N-k+1 )/2rm

for which the modified Haar transform ib correct.

We should be careful when using the modified Haar transform in applications that re-
quire its transmission over a noisy channel. Depending on the coding technique and on
the nature of the channel, use of the modified transform can result in unequal errors for
different coefficients. This is because unequal energy may be used to transmit different
coefficients.
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3.2 Complete Haar Transform

When required, the complete Haar transform can be obtained by multiplying the co-
efficients of the modified transform by the correct factor cv = 2-(2-'u 1 2 k" We note

u 
U.

that if u is odd, then p = (2N - u + 1)/2 is an integer. The multiplication by 1/2p can I
therefore be accomplished by a p-bit right shift of k v, assuming a binary representation. J
If u is even, then (2N - u + 1)/2 = q - (1/2), where q = N - (u/2) + 1 is an integer. In
this case, multiplication by V/-/2q can be accomplished with a q-bit right shift following
a multiplication by N/./

A multibit shift is therefore required for every coefficient but c 0 . Thus for a trans-
form of n = 2 N points, n - 1 multibit shifts are required. Multiplication by V/ is neces-
sary only if N > 2. The number required depends on the parity of N. If N is odd,
(n - 2)/3 shifts are required. If N is even, Z(n - 1)/3 shifts are required.

We can take advantage of the fact that all multiplications involved in the transform
are by a constant factor, namely V1 We note that

1+ +1 + = 1.4375, (9)1 8 16 -,

which is within about 2% of V"i. Thus, kVT' can be approximated by k + (k/4) + (k/8) •
+ (k/16), which can be obtained with three additions and three shifts. The 2(n - 1)/3

multiplications required for the even transform can therefore be accomplished with
2(n - 1) adds and 2(n - 1) shifts. The (n - 2)/3 multiplications required for the odd trans-
form take n - 2 adds and shifts. The total computational requirements for the Walsh and
Haar transforms are summarized in Table 1.

Table 1

Computational Requirements for n 2N-point
Walsh and Haar Transforms

Multibit
Transform Adda Shifts

Walsh n(n - 1) 0

Fast Walsh n log 2 n 0

MoJified Haar n log2 n 0

Modified Fast Haar 2(n - 1) 0

Complete Fast Haar (N even) 4(n - 1) 3(n - 1)

Complete Fast Haar (N odd) 3n - 4 2n - 3

It is important to note that in the fast Haar transforras, the average number of opera-
tions per point is independent of the transform size. For example, only two additions per
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point are required in the modified fast transform. In both the fast Fourier and fast Walsh
transforms, the average number of operations per point increases as log 2 n. For these
transforms, the speed required of the arithmetic unit is a function both of the data rate
and of the transform size. For the fast Haar transform, on the other hand, the speed
required of the arithmetic unit is determined by the data rate alone. The only limitation
on transform size is that imposed by the amount of available storage. If the application
is such that the n = 2 N sample points are located in memory prior to the transform, then
these n locations are sufficient to complete the transform. If the samples are accepted one
at a time from an external source and if the transformed coefficients can be put out im-
mediately after calculation, then the memory requirement is reduced to log2 n = N. This
is done by storing partial sums only as long as they are needed and by calculating each
coefficient whenever sufficient data are present. For example, the order of calculation in
the 23 = 8-point example discussed earlier is as follows:

4,4, a3  , 2' a2  a1, a1,
k3 a4, k . b k k3, k2 b1, k 0 ko

Here three storage locations are required, since at one stage of the calculation b2 , a 2, and
a, must be retained. In general, a few locations in addition to log 2 n may be required,
depending on the computer architecture.

4. IMPLICATIONS FOR APPLICATIONS

4.1 General Remarks

To a large extent, the utility of Walsh functions is based on the ease by which they
can be generated digitally and on the ease of digitally performing operations that involve
them. Mathematically, this comes from the fact that Walsh functions have a constant value
of plus or minus one on each of 2 N equal subintervals and that the sequence of values may
be d2erived froai the character group of the dyadic grollp. Haar functions are also constant
on each of 2 N equal subintervals. However, ignoring normalization constants, on each
interval they may have one of three values, plus one, minus one, or zero. Thus binary
representation of, generation of, and operations involving Haar functions are not likely to
be as coavenient as the same aspects of Walsh functions.

This indicates that Haar functions do not have as much potential for practical applica-
tions as do Walsh functions. Specifically, they are not likely to be convenient in applica-
tions requiring manipulation of the functions. Multiplexing may be an exception. Other
possibilities are those applications that do not require direct manipulation but which allow
us to exploit the simple properties of Haar partial sums and coefficients. This brings to
mind data transmission, image processing, pattern recognition, and related fieloz

4.2 Data Coding

One way of transmitting information contained in a time-domain waveform segment
is to encode the coefficients of an expansion in terms )f some set of basis functions. If
convergence is rapid, many coefficients are small. and it may be possible to reduce the
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transmission bandwidth from that required to send the time -domain signal ith-If. In addi-
tion, if each coefficient contains information on all points, as in the trigonometric Fourier
series, then a certain immunity to channel errors results. This was pointed out by Pratt,
et al. (11).

given Haar-series coefficient cm contains information from the interval ((2m - 2)/2n,
2m/2n) . With respect to the partial sum SN(x), the full set of 2N coefficients may be said
to contain a mixture of local and global information. All points contribute to co and c1,
half of the points contribute to c2 , etc. In general, each point in [0, 11 contributes to
between N and 2N of the 2N coefficients, depending on the point. As n gets larger, cn
depends on a smaller region of f(x).

To see how bandwidth reduction can result, consider the example shown in Fig. 3.
The function in Fig. 3a is constant everywhere except in the interval ((2m - 2)/2n, 2m/2n).
The nth partial Haar sum is shown in Fig. 3b. Of the 2n coefficients in Sn,, only two, co
and cm, are nonzero. In general, assuming a 2n-point transform, if a function is constant
throughout the interval ((k - 1)/29, k/2k), where 2 < n - 1, then

n-14- ,

2i = 2n' - 1
i-0

coefficients are identically zero.

The potential of Haar functions for bandwidth reduction is summarized in a general
way by Eqs. (6a) and (6b). The coefficients in SN are proportional to the difference in
the mean value of f(x) over adjacent subintervals of width 1 / 2 k, k = 0, 1, 2, ... , N. Data
transmission via the Haar transform may be particularly appropriate for pictorial images,
which often have relatively large areas of constant or slowly changing tone. Another pos-
sibility is the transmission of radar data for remote processing.

4.3 Multiplexing

As mentioned in Section 4.1, multiplexing is an application in which the disadvantages
of manipulating Haar functions may be outweighed. Irrespective of this, the study of
Haar-function multiplexing gives insight into multiplexing in general and into the relation-
ship between Haar functions and other orthonormal systems.

b

o o~

Fig. 3a-A function f(x) that is constant Fig. 3b-A Haar-function approximation
everywhere except in one subinterval to f(x)
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A method for generating the first 2 N Haar functions is shown in Fig. 4. Each subsequence

1 2 2k
:;.•nerated in an individual stage. The clock rate, initially 2N/T, is divided by two between

st.,ges. At each stage the clock drives a modulus-2k counter at the rate 2k/T. The output of
the counter is fully decoded into 2 k lines, each of which is connected to a conversion gate (CG).
Each CG has a second input, a square wave of frequency 2k/T which is obtaixked by toggling a
flip-flop at a clock rate 2k+l/T; this clock rate is available in the previous stage. The CG acts as
a logical AND gate, so that the combination of counter and decoder commutates one period
of the square wave around 2k output lines.

Conversion from a two-level to a three-level signal takes place in the CG. We assume that

the two-level logic is at voltages 0 and V. When the input from the decoder is a logical zero,
the CG output is clamped to zero volts. When the input from the decoder is a logical one,
the CG output follows the other, square-wave input but shifts the voltage levels from (0, V)
to (-V', V'). Desired normclization is obtained by adjusti.:g the CG gain. A possible CG

circuit is shown in Fig. 5.

CLOCK', ~ ~(RATE _

co • DECODER •

FF

FF CO

Fig. 4--A method of generating Haar fune- Fig. 5--A possible conversion-gate circuit. Here
tion. Bock maked"D"hale te cockR2 = 2R 1 and V/R 2 a -Vb/Rb. The resistok kgI ti ns. lock m ar ed D " h lve he c ockis adjusted to provide the desired gai.n. T he use of

rate. Blocks marked "FF" are flip-flop6a this circuit requires that the decoder lines be
I whose outputs invert on receipt of a clock

pulse. Blocks marked "DECODER" decode inverted.
the k outputs of a modulus-2k counter into

2houtput lines. Blocks marked "CO" are
conversion gates (see text). An inverter

t prceds th •.conversion gate.
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Multiplexing with Haar functions is conveniently discussed in terms of the technique
shown in Fig. 6. Each of the 2N input channels goes through a low-pass sequency filter
of the type described in Section 3.1. The output of each filter is a piecewise-constant
function with steps of width T'. This is multiplied by one of the 2 N functions fi. The
output from the multipliers are added to form the multiplexed siglial. An alternative to
using the low-pass sequency filters on each channel is to sample the input waveform di-

rectly. However, the uutput of each sequency filter is the best step-function approximation
to the input waveform in the mean-square-error sense, whereas the step functions produced
by direct sampling is not. Since the approximation will be corrupted by noise in the multi-
plex channel, it is better to start with the sequency-filter outputs. Furthermore, if the i:1-
put to each channel is itself a signal plus zero mean noise, then the low-pass sequency
filters will integrate the noise over intervals of length T'.

Fig. 6-A generic multiplexing and demultiplexing
system with 2N channels. Each channel goes through
a low-pass sequency filter of the type described in
Section 3. The output of each filter, a piecewise-
constant function with steps of width T', is multi-
plied by one of 2N functions ti which are ortho-
normal and have period T'. The outputs of the
multipliers are added to form the multiplexed signal.
Demultiplexing is performed by reversing this multi-
plexing procedure. Clocking, not shown, is syn-
chronous for all filters and multipliers.

The multiplexing functions fi are periodic in T' are are orthonormal in a single frame

T'

fi(t)fj(t)dt = 5ij. (10)

Orthogonality is required if the multiplexed signal it to be demultiplexed. Normalization
results in the transmission of equal energy in all channels. given equal input signals. De-
fining a frame as any segment of time during which the filter outputs remain constant, the
multiplexed signal is given in any frame by
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2N

g(t) = 2jlcifi(t), (11)
i=1

where t goes from 0 to T' and is relative to the start of the frame. The coefficients ci
are output values of the 21N filters.

It is important to realize that time-division multiplexing (TDM) and sequency-division
multiplexing (SDM) are the results of specific choices of the multiplexing functions fi. In
fact, we can choose functions that result in a combination of TDM and SDM. To see this,
we consider the three sets of functions shown in Figs. 7-9. The block functions in Fig. 7
will result in pure TDM. The Walsh functions in Fig. 8 will result in pure SDM. The Haar
functions in Fig. 9 will result in something between TDM and SDM. Most channels will
be separated from some others in time and from still others in sequency. This is an
example of the lesson, first learned in connection with pulse-compression radar, that the
coding of information in the time or sequency (frequency) domain is not an either-or
situation.

4

4

o 8

4.

83~

o1

4-

184

o 1

Fig. 7-Four block functions whose use as
multiplexing function ro..lts in pure TDM
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Fig. 8-The first four Walsh functions. Fig. 9-The first four Haar functions.
Their use ar multiplexing Iunctions re- Their use as multiplexing functions
suits in pure SDN. results in a combination of TDM andt SDM.

Many properties of Haar-function multiplexing lie between those of SDM and TDM.
Whether we view this as combining the advantages of both or just their disadvantages de-
pends on our Aew of nature. In any case, as an example we shall calculate the peak- to
rms-voltage ratio and peak- to avwrage-power ratio for SDM, TDM, and Haar multiplexing.

Beginning with Eq. (11), the instanttLneous power is given by

g2 (t) = c, cfi(t)f (t). (12)

ii

If we restrict the choice of multiplexing functions to those which are piecewise constant
in equal intervals, or slots, of width T'/2N, the energy transmitted in one frame is

2 N

E = 21 g2(tq), (13)

k-1

where we have defined tk = (k - (112))T'/2N. Thus
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E CiCifi(tk)fi(tk)

k ii

= 2 CiCy - fi(k)fj (tk). (14)

ii k

Now for piecewise-constant functions, the orthonormality re!ation, Eq. (10), becomes

2N

% •' Zfi(tk)j(tk) = ij. (15)

k-1

Thus

E = c 6i

= k t16)

The average power in the frame is

• 2N

T' 
(T1...(7)

• i=I

The power averaged over many frames depends on the statistics of the input channels ci.
However, whatever this average is, Eq. (17) shows that it is the same for all systems of
orthonormal multiplexing functions. The rms voltage is also the same and is given by

Vrms= I•- Z F1c/j (18)

To compare the peak voltage and power, we must determine for each set of functions fi
which of the 2N values of

9ftt) = 2,cifi(tk) (19)
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and

g2(t ) = Lcicjfi(tk)fj (tk) (20)

ij

are the highest. For convenience, we set T' = 1.

The TDM orthonormal block functions satisfy

fi(tk) 2N/2 ik. (21)

Thus

g(tk) = 2 N/2 ck

= 2N/2 ck, (22)

and

g2 (tk) = 2 N 7 CiCcik~jk

= 2Nci. (23)

The peak vcltage in any frame is proportional to the highest signal level of all the channels;
the peak power is proportional to the square. If we assume that the input channels have
signal values ranging between 0 and 1 V, then the absolute peek voltage is

V(TDM) = 2 N/2, (24)max

and the absolute peak power is
p(TDM) 2N. (25)

Turning to SDM, we note that if the fi are the first 2 N Walsh functions, then for
n= 2 N-1 + 1, fi(tn) 1, where i = 1, 2, 3,... , 2 N. The peak voltage and power in each

frame occur in this slot and are given by

g(tn) = Lci (26)

i ,A

-S
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and

g 2 (t') 2cic ( c) (27)

The absolute peaks are reached when all channels are at their maximum signal level 1, so
that

V(SDM) 2 N (28)max

and

p(SDM) = 2 2N. (29)

To consider the voltage and power peaks for Haar multiplexing, we rewrite Eq. (19)
in the more natural form

N 2n-I1i

g(tc) = co + c con(tk). (30)

n=1 m=1

In any frame the peak is reached in the first slot where all functions that contribute to the
sum have a positive sign. The peak voltage in any frame is therefore

N

g(ti) = Co + cnon(ti

nal

N
co + 2(n-1)12C1.(1n-1~2c (31)

n-1

The peak power is

g2(h) = 0 + 2(n-l)/2c ' (32)

The absolute peaks will be reached when the N + 1 channels co, c 1, C 1, CN are at
their peak signal. In this case
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N

V(H) = 1+ ) 2(n-l)/2
max

n=1

2N/2 - 1
1 + , (33)

and
!/

p(H) ((34

Summarizing Eqs. (17), (18), (24), (25), (28), (29), (33), and (34), SDM has the high-
est peak- to rms-voltage ratio and peak- to average-power rati3; TDM has the lowest, and
those for Haar multiplexing are in between. For large N

n 2.5= V((TDM)(Hmax -. max •(35)

This ordering is intuitively correct. For the TDM system to reach its peak, only one of the

2 N channels need be at its maximum. For the SDM, all 2 N chanrels must be at their
maxima, which is not nearly as likely. As a result, in SDM the average value is further
below its peak than in TDM. The Haar-function multiplexer will reach its peak if N + 1
particular channels are at their maxima. This is less likely than one channel reaching its
maximum but more likely than all 2 N channels doing so.

One consequence cf the preceding results is that for a given signal-to-noise ratio, mul-
tiplexing with Haar functions requires less dynamic range than with Walsh functions. In
addition, crosstalk problems may be less severe.

As a final point, we note that demultiplexing is equivalent to recovering the coeffi-
cients in Eq. (19). Instead of using the analog technique shown in Fig. 6, this can be ac-
complished by taking the digital transform of the multiplexed signal in terms of the func-
tions fi. This is particularly easy with Haar functions, as discussed in Section 3. The
result is more accurate and may even be cheaper. It is especially appropriate to take the
digital transform if a computer is already available at the demultiplexing side; in modem
communication systems this is often the case.

4.4 Pattern Recognition; Edge Detection

The property described by Eq. (6) also suggests that the Haar transform should be
useful in edge detection, an important operation in certain pattern-recognition techniques.
As a simple example, consider the function shown in Fig. 10, which has a single step at
the point x1 . If x1 is a binary-irrational point, then for any n, only one of the 2n-1
coefficients cm is nonzero. The identity of the coefficient m locates the edge to within
1/2n-1. Taking the sign of the coefficient into account improves the resolution to 1/2n.
If x1 is the binary-rational point x1 = k/2N, then SN(X) = f(x), and all cn = 0 for
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f(X1

Fig. 10-A function with a single edge

n > N. For n < N, the previous remarks apply. When n = N, the identity of the nonzero
coefficient cm locates the edge exactly.

4.5 Information Theory

The possibility that the Haar transform might be useful in information theory is sug-
gested by the simplicity of the sampling theorem. We recall from Section 2.3 that SN

contains 2 N terms and is a step function of 2 N equal-length steps. It follows that a func-
tion with a Haar "bandwidth" of 2 N must be sampled in intervals of 1 12 N if all informa-
tion is to be recovered.

Again referring to Eq. (6), we note that the Haar transform may be of particular in-
terest when the information content of a waveform is related to changes in the amplitude
of the waveform rather than to the amplitude itself. In this connection, we rewrite Eq.

(6) as follows:

cma fb x) d' - I.ff(x) dx, (36)b bf

whereb-a c-b=L=1/2N anda, b, and c are functions of m. This in turn can be
rewritten as

, [f(x) - f(x + L)I dx, (37)

so that cnm gives the average change in a function between adjacent intervals of width
L = 1/2n.

5. CONCLUSION

It is unlikely that Haar functions can be as useful in any many applications as Walsh
functions appear to be. However, they seem particularly well-suited for applications such
as data coding, pattern recognition, and perhaps, multiplexing.
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