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ABSTRACT

Recent interest in the application ci Walsh functions suggests
that Haar functions, close relatives to Walsh functions, may also be
useful. In this primarily tutorial report, Haar functions are reviewed
priefly, and the computational and memory requirements of the Haar
transform are analyzed; applications are then discussed. It is con-
cluded that whereas Haar functions are unlikely to be as useful in as
many applications as Walsh functions may be, they s<em especially
well suited to data coding, pattern recognition, :ad, perhaps,
multiplexing,
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ON THE APPLICATION OF HAAR FUMCTIONS

1. INTRODUCTION

Interest in the applications of Walsh functions (1) has been increasing (2-4), suggest-
ing *hat related functinns may also be useful. One such set of functions was introduced
in 1909 by the H ingarian mathematician Alfred Haar (5). Although some attention has
been given to the possible application of Haar functions (6,7), the principal focus of dis-
cussion has been on Walsh functions.

The purpose of this report is to describe those properties of Haar functions that seem
relevant, to discuss possible applications, and to draw conclusions as {o their potential
range of use. Basic properties of Haar series are given in Section 2. The material is ab-
stracted from Ref. 8, wherein complete mathematical details may be found. Several as-
pects of the Haa: transform, including computational and memory requirements, are dis-
cussed in Section 2. Applications of Haar functions are discussed in Section 4.

2. RELEVANT PROPERTIES OF HAAR SERIES
2.1 Haar Fiunctions

The Haar crthonormal sequence is defined on the closed interval {0,1] and is com-
posed of func .ions labeled by two indices:

yh=1
lom) = 0oi 0} whiosibh, il s (1)
‘The functions are defined as follows:
wolx) = 1, for 0<x<1
] 1, for 0<x <1/2
gy =
-1, for 1/2<x<1

r/ﬁ, for 0<x<1/4
o3} = 1—\/?2, for 1/4<.. <1/%

0, for 1/12<x<1 (2)
(cont*1)




gn-1

. . m-
on(x) = 2112 for o

<x<§—f

LO’ for 0<x< lland

on- <x<1

2n1

At peints of discentinuity, the Haar functions are defined to be the average of the limits
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0, for 0<x<1/2
e2x) = < V%, for 1/2 <x < 3/4
L-\V/Q', for 34<x <1
(102 g = -1 logcis 1/2 (2)

approached on the two sides of the discontinuity. The first few Haar functions are shown

tions f(x) that are defined over [0, 1] with f2(x) integrable in the Lebesgue sense. In

)
in Fig. 1
The Haar functiciis are a complete orthonormal basis of L2[0, 1], the space of func-
this report, all functions are assumed to be in L2[0, 1].

) =co + ) ) e, 3)

n=1l m=1

2.2 Haar Series Convergence

Any function ean be expressed as an infinite series in terms of Haar functions:

oo 2"-1
where

Syx) = cg + Z TS (5)

n=1 ms=1

1
ey = J f(x)gpp (x) dx. (4)
0
For the purposes of this report, convergence is best discussed by means of the partial sums
N gn-1




Tre—— %

s

,z,
g Bt
Sl

3

2%
et E

. I 4x
A

W

«
it
“

ropeRt o 2

AR

.

<
s

5
s

NRL REPORT 7467
+® L ] HeP——
I 1
] |
* ' '
! 015 1.0
$ O : J $ 0 = '
° 0.5 10 ! . !
y ] 1
i 1
| 1
- | ,_' L l
] +/3 +/2 —
,' ] '
1 Py !
) : 1 :
1
% 0 O ¢ ! 10
‘ ? ' 10 2 0 05 + H
! ® 1 !
1 | 1 :
| 1 !
L — -3 —
[ +29 : +2 r—‘
| : ‘!
| : ' 1 05 10
43 0 [—e— : ! 20 . )
) i v 1 05 o f ;
K K
1 ' 1
-2 — -2 (S
t2 — +2 —
1 : d |
¢ ¢ |
. o o
3 1 4 4 ]
%3 0 ol.s—?_l o %O 05 ﬁ
1 é Lo
v !
b
-2 | — -2 :_.‘
Fig. 1—The first eight Haar functions
which contain 2N terms. The sum Sy,; contains 2V more terms than Sy, namely all
Haar functions with the subscript N + 1. More general partial sums are discussed in Refs.
5 ard 8,
For continuous functions, the sequence of partial sums {Sy} is uniformly convergent
to the given function. This means that, given a required accuracy of approximation e,
there is a value M such that for all N 2> M, we have |Sy(x) - f(x)l <€ for all x in [0, 1].
For discantinuous functions, {SN} will still converge uniformly, provided all discontinui-
ties are at so-called binary-rational points. A point x is binary rational if integers k and
P can be found that satisfy x = &/2F, where k = 0, 1, 2, ..., 2P. This convergencr prop-
erty for discontinuous functions derives from the fact that all Haar-function discontinuities

are al binary-rational points.
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4 JOHN E. SHORE

We note that when discontinuous waveforms are associcted with base 2 digital processing,

an interval can usually be selected such that all discontinuities are at binary-rational points,

For functions with discontinuities at binary-irrational points, Sy, though no Jonger
uniform!y convergent, is still pointwise convergent everywhere except at the binary-
irrational discontinuities. This means that given an approximation accuracy € that must be
satisfied at a particular point x, there ic a value M such that for all N 2 M we have
ISy(xq) - flx1)l < €. We cannot, however, guarantee that the required accuracy is ob-
tained simultaneously at all points in [0,1].

2.3 Mean-Value Properties of Partial Sums and Coefficients

Several aspects of the potential utility of Haar functions derive from an important
property of the partial sum. In the expansion of f(x), the Nth Haar partial sum Sy (x) is
a step function with 2NV equal-length steps. The value of Sn(x) on each step is simply
the mean value of f(x) in the interval covered by the step. The value of Sy(x) at a dis-
continuity between adjacent steps is halfway between the adjacent steps. Since the
equation

da [ 2 gx | =
I L{l [f(x) -l dx] 0

has the solution

1 *2
a= - J f(x) dx,

Xg~-Xy ey

we see that Sy is the step function of 2N steps that is the best approximation to f(x) in
the mean-square-error sense. This mean-vaiue property of Sy is also true for the Walsh
series expansion of f(x) that has the same number of terms as Sy.

As an exampln, Fig, 2 shows six successive Haar approximations to the function
f(x) = 100x2¢-10x,

each superimposed on the function itself. The effect of additional terms is simple, unlike
the effect of additional terms when the function is exparded as a trigonometric Fourier
series (or as a series in terms of other continuous bases of L2[0,1]). We note that it
follows from this mean-value property that if f(x) is constant in the interval covered by
any step, then Sy(x) = f(x) exactly on this step.

Now the coefficients in the Haar Series also have a simple relationship with the mean
value of f(x) over the subintervals of {0, 1j. This is easily seen as follows:
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1
o = f )l ) d
Yo
(2m-1)/2% .2m /2%
= g(&-1)2 f fx)dx ~ f flx)dx (6a)
(2m-2)/2% (em-1)/2%
_ oyl F2m-2 2m-1) Zfom-1 2m

where f(a, b) is the mean value of f(x) in the interval (a, b). Thus c,'z" is proportional to
the difference in 1h2 mean value of f(x) over ac*acent subintervais of length 1 /2%, Stated
differently, ¢’ is proportional to the difference of two adjacent steps of Sp(x), namely the
steps on either side ¢f x = (2m - 1)/2‘Z .

2.4 Approximation Accuracy

For continuous functions with a bounded first derivative that exists everywhere, there
is a simple estimate of the accuracy of any Haar partial sum. For any x in the interval
[0,1],

ISy(z) - fi) < TN 1)

where max{f'(x)] is the maximum absolute value of the first derivative of f(x) in [0, 1].
If x is restricted to any specific step of Sy, then Eq. (7) still holds, with x restricted to
the subinterval of the step. For large values of N, the following approximate estimate
holds:

ISy (x) - flx)l < %‘—"%‘ ; (8)

3. CALCULAT'ON OF THE HAAR TRANSFORM
3.1 Modified Haar Transform

Consider a waveform f(t) in the interval [0, T}. We divide the interval into n = 2V
equal parts and denote the average value of f(f) in these subintervals by x4, x5, ..., x,,.
The step function that has the value x;, in the intersal ((k - 1)T/2N, kT/2N) is the Nth
Haar partial-sum approximation to f(t). It is the best step-function approximation of
f(t) in the mean-square-error sense.
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This step function can be obtained as follows. The waveform f(t) is passed through
an integrator that resets to zero every T/2N. The electrical parameters of the integrator
are chosen so that the integral after a period T/2N is the mean value of f(t) during that
period. The output from the integrator is sampled and held for a period of T/2N. The
output of the sample and hold during every period T is therefore the Haar-series partial
sum Sy delayed by T/2N, The values Xy, Xg, ..., X, are then obtained for use in digital
computations by means of an analog-to-digitzl converter,

The combination of integrator and sample and hold may be recognized as the low-
pass sequency filter described by Harmuth in discussing applications of Walsh functions
{9,10). Thus the output in one unit of time of a low-pass sequency filter with cutoff
sequency n = 2N is the Haar-series partial sum Sy. This is an indication of the close rela-
tionship between Walsh functions and Haar functions. (Walsh functions may be written
as simple linear combinations of Haar functions.)

Since our digital samples x; are average values of f(t) in intervals of 7", we see from
Egs. (6a) and (6b) that the 2N -point Haar transform is easily obtained fronmi them. We
note that the calculation of cE‘ would be simplified if it did not involve multiplications by
the variable factor 2(8-1)/2 or 2(%*1)/2, Many applications can use a modified transform in
which these factors are dropped or replaced by a constant. We therefove define the modi-
fied Haar transform as follows:

m _ o(2N-4+1)/2 m
kg = 2l cf.

For £ = N, this corresponds to dropping the leading factor in Eq. (6b). For & <N, it cor-
responds to replacing the leading factor in Eq. (6a) with the constant 2V, which is needed
to compensate for the fact that the initial samples are averages over intervals of length
1/2N (where T = 1).

To illustrate the modified Haar transform, we discuss the case of 23 = 8 points. The
brute-force calculation then proceeds as follows:

ko = xy + X9 + x5 + x4 *+ x5 + x5 7 X7+ Xg
1 _

Ry =x) +xg + X3 +2x4 ~ x5 - xg -~ X7 = Xg
kY = x; +

2 T X1 T X X3 =Xy

kZ = +

2 7 X5 T Xg - X7 = Xg

ké=x1-x2

k§=x3-x4

3 =
k3—x5-x6

b
(S
]

3 T X7 - Xg

-
. .- e
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This requres 24 additions. In general, n logy n additions are required for an n = 2N-point
transform. By comparison, the brute-force Walsh transform requires n(n - 1) additions,
where we have counted subtractions as additions.

As in the Fourier and Walsh transforms, a fast transform results from the proper
grouping of terms. In the case of the modified Haar transform, sums and differences are
calculated at each stage:

1 _ =
k3-—x1— x2 al —x1 +x2
2 _ =
ka—x3 - X4 ag = x3+ x4
3 _ =
kd—x5-x6 a3 = Xg +x6
kg=x7-x8 a4y = Xq * Xy
k§=a1-—a2 bl =L'»1 +02
k2 = q - u by = aq +a
2 3 4 2 3 4
k} =5, - b

1~ Y17 Y2

ko = by + by

This requires only 14 additions. The general requirement is 2(n ~ 1) additions. Use of an
arithmetic element that produces both sum and difference reduces this to n - 1 operations.
By comparison, the fast Waish transform takes n logy n additions.

The modified Haar transform is sufficient for an application such as pattern recogni-
tion. No information is lost by modifying the leading factors in Egs. (6a) and (6b), since
the correct factor, which is given by the identity of the coefficient, can always be rein-
serted. Use of the modified transform in applications that involve operations on the coeffi-
cients themselves may lead to difficulties. However, in many cases we should be able to
analyze the problem in terms of the unnormalized set of functions

fo = vo. ff = @2,
for which the modified Haar transform is correct,

We should be careful when using the modified Haar transform in applications that re-
quire its transmission over a noisy channei. Depending on the coding technique and on
the nature of the channel, use of the modified transform can result in unequal errors for
different coefficients. This is because unequal energy may be used to transmit different
coefficients.
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3.2 Complete Haar Transform

When required, the complete Haar transform can be obtained by multiplying the co-
efficients of the modified transform by the correct factor ¢ = 2 (2N-4*1)2pY e note
that if u is odd, then p = (2N - u + 1)/2 is an integer. The multiplication by 1/2° can
therefore be accomplished by a p-bit right shift of k,‘j , assuming a binary representation.
If u is even, then (2N - u + 1)/2 = q - (1/2), where ¢ =N ~ (u/2) + 1 is an integer. In
this case, multiplication by 1/2/29 can be accomplished with a g-bit right shift following
a multiplication by /2.

A multibit shift is therefore required for every coefficient but ¢. Thus for a trans-
form of n = 2N points, n ~ 1 multibit shifts are required. Multiplication by /2 is neces-
sary only if N 2 2. The number required depends on the parity of N. If N is odd,

(n - 2)/8 shifts are required. If N is even, Z(n - 1)/3 shifts are required.

We can take advantage of the fact that all multiplications involved in the transform
are by a constant factor, namely /2. We note that

1

* 16

1+ = 1.4375, (9)

NS
+
ool

which is within about 2% of \/2. Thus, k+/Z can be approximated by k + (k/4) + (k/8)
+ (k/16), which can be obtained with three additions and three shifts. The 2(n -1)/3
multiplications required for the even transform can therefore be eccomplished with

2(n - 1) adds and 2(n - 1) shifts. The (n - 2)/3 multiplications required for the odd trans-
form take n - 2 adds and shifts. The total computational requirements for the Walsh and
Haar transforms are summarized in Table 1,

Table 1
Computational Requirements for n = 2¥-point
Walsh and Haar Transforms

Transform Adds hg::?; it
Walsh n(n-1j 0
Fast Walsh nlogs n 0
Mo dified Haar nlogg n 0
Modified Fast Haar 2(n-1) 0
Comnlete Fast Haar (N even) 4(n-1) 3(n-1)
Complete Fast Haar (N odd) 3n-4 2n-3

It is important to no‘e that in the fast Haar transforrs, the average number of opera-
tions per point is independent of the transform size. For example, only two additions per

oy g e
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point are required in the modified fast transform. In both the fast Fourier and fast Walsh
transforms, the average number of operations per point increases as logy n. For these
transforms, the speed required of the arithmetic unit is a function both of the data rate
and of the transform size. For the fast Haar transform, on the other hand, the speed
required of the arithmetic unit is determined by the data rate alone. The only limitaticn
on transform size is that imposed by the amount of available storage. If the application
is such that the n = 2N sample points are located in memory prior to the transform, then
these n locations are sufficient to complete the transform. If the samples are accepted one
at a time from an external source and if the transformed coefficients can be put out im-
mediately after calculation, then the memory requirement is reduced to logs n = N. This
is done by storing partial sums only as long as they are needed and by calculating each
coefficient whenever sufficient data are present. For example, the order of calculation in
the 23 = 8-point example discussed earlier is as follows:

Y IR T S L (|
kg a4 k3, G Ry by, k3, 05, kg, 0, Ry, by, Ry kg

Here three storage locations are required, since at one stage of the calculation b4, a5, and
g, must be retained. In general, a few locations in addition to logs » may be required,
depending on the computer architecture.

4. IMPLICATIONS FOR APPLICATIONS
4.1 General Remarks

To a large extent, the utility of Walsh functions is based on the ease by which they
can be generated digitally and on the ease of digitally performing operations that involve
them. Mathematically, this comes from the fact that Walsh functions have a constant value
of plus or minus one on each of 2N equal subintervals and that the sequence of values may
be derived from the character group of the dyadic gronz. Haar functions are also constant
on each of 2V equal subintervals, However, ignoring normalization constants, on each
interval they may have one of three values, plus one, minus one, or zero. Thus binary
representation of, generation of, and operations involving Haar functions are not likely to
be as coavenient as the same aspects of Walsh functions.

This indicates that Haar functions do not have as much potential for practical applica-
tions as do Walsh functions. Specifically, they are not likely to be convenient in applica-
tions requiring manipulation of the functions. Multiplexing may be an exception. Other
possibilities are those applications that do not require direct manipulation but which allow
us to exploit the simple properties of Haar partial sums and coefficients. This brings to
mind data transmission, image processing, pattern recognition, and related fiela:

4.2 Data Coding

One way of transmitting information contained in a time-domain waveform segment
is to encode the coefficients of an expansion in terms »f some set of basis functions. If
convergence is rapid, many coefficients are small. and it may be possible to reduce the
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transmission bandwidth from that required to send the time-domain signal itself. In addi-
tion, if each coefficient contains information on all points, as in the trigonometric Fourier
series, then a certain immunity to channel errors results. This was pointed out by Pratt,

et al. (11).

A given Haar-series coefficient ¢;' contains information from the interval ((2m - 2)/2"
2m/2") . With respect to the partial sum Sy(x), the full set of 2N coefficients may be sald

to contain a mixture of local and global information. All points contribuie to ¢y and c1,
helf of the points contribute to c2, etc. In general, each point in [0, 1] contributes to
between N and 2N of the 2N coefficients, depending on the point. As n gets larger, ey

depends on a smaller region of f(x).

To see how bandwidth reduction can result, consider the example shown in Fig. 3.

The function in Fig. 3a is constant everywhere except in the interval ( (2m - 2)/27, 2m/2").

The nth partial Haar sum is shown in Fig. 3b. Of the 2" coefficients in §,,, only two, ¢,
and cn , are nonzero. In general, assuming a 2"-point transform, if a function is constant
throughout the interval ((k -1)/2%, k/2%), where  <n - 1, then

n-1-4

Zzi=2"-‘2-1

i=0

coefficients are identically zero.

The potential of Haar functions for bandwidth reduction is summarized in a general
way by Eqgs. (6a) and (6b). The coefficients in Sy are proportional to the difference in
the mean value of f(x) over adjacent subintervals of width 1/2%, k = 0,1, 2, ..., N. Data
transmission via the Haar transform may be particularly appropriate for pictorial images,
which often have relatively large areas of constant or slowly changing tone. Another pos-
sibility is the transmission of radar data for remote processing.

4.3 Multiplexing

’

As mentioned in Section 4.1, multiplexing is an application in which the disadvantages
of manipulating Haar functions may be outweighed. Irrespective of this, the study of

Haar-function multiplexing gives insight into multiplexing in general and into the relation-

ship between Haar functions and other orthonormal systems.

™ @ s

& @ z%\a ZZ'B @ ]
Fig. 3a—A function f(x) that is constant
everywhere except in one subinterval

Splx) — @
o @ i @
oRa ’
Fig. 3b—A Haar-function approximation
to f{x)
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A method for generating the first 2V Haar functions is shown in Fig. 4. Each subsequence

{¢}§+1 ) «Pfq yoees W:fq}
v generated in an individual stage. The clock rate, initially 2V/T, is divided by two between
stages. At ezch stage the clock drives a modulus-2% counter at the rate 2k/T. The output of
the cowater is fully decoded into 2* lines, each of which is connected to a conversion gate (CG).
Each CG has a second input, a square wave of frequency 2%/T which is obtained by togglinga
flip-flop at a clock rate 2%*1/T; this clock rate is available in the previous stage. The CG acts as
a logical AND gate, so that the combination of counter and decoder commutates one period
of the square wave around 2# output lines.

Conversion from a two-level to a three-level signal takes place in the CG. We assume that
the two-level logic is at voltages O and V. When the input from the decoder is a logical zero,
the CG output is clamped to zero volts. When the input from the decoder is a logical one,
the CG output follows the other, square-wave input but shifts the voltage levels from (0, V)
to (-V', V). Desired normelization is obtained by adjusti:g the CG gain. A possible CG
circuit is shown in Fig. 5.

CLOCK

(RaTE= ")

_ o G} 4.,
,ggudnu 3 [o¢] 2
c ‘H
of|! s
2 L oMt
i - [55 lo
: e,
- YV Y\ P
N R:
FROM 2 \)—l
DECODER
‘I
::R
$o
<
IS b

Fig. 6—A possible conversion-gate circuit. Here
Ra = 2R} and V/Rg = -Vp/Rp. The resistor ky
is adjusted to provide the desired gain. The use of
this circuit requires that the decoder lines be
inverted.

Fig. 4—A method of generating Haar func
tions. Blocks marked “D" halve the clock
rate. Blocks marked “FF" are flip-flops
whose outputs invert on receipt of a clock
pulse. Blocks marked “DECODER" decode
the k outputs of a modulus-2® counter into
ok output lines. Blocks marked “CG” are
conversion gates (see text). An inverter
precedes the tpg conversion gate.
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Multiplexing with Haar functions is conveniently discussed in terms of the technique
shown in Fig. 6. Each of the 2V input channels goes through a low-pass sequency filter
of the type described in Section 3.1. The cutput of each filter is a piecewise-constant
function with steps of width 7'. This is multiplied by one of the 2V functions f;. The
output from the multipliers are added to form the multiplexed sigiial. An alternative to
using the low-pass sequency filters on each channel is to sample the input waveform di-
rectly. However, the cutput of each sequency filter is the best step-function approximation
to the input waveform in the mean-square-error sense, whereas the step functions produced
by direct sampling is not. Since the approximation will be corrupted by noise in the multi-
plex channel, it is better to start with the sequency-filter outputs. Furthermore, if the iu-
put to each channel is itseif a signal plus zero mean noise, then the low-pass sequency
filters will integrate the noise over intervals of length T".

s w0 <o XLl L X

P g

RS X1 TN A

_
—
-
a2 «

. »

)

K=l (M ] |
fn ‘

Fig. 6—A generic nultiplexing and demuitiplexing
system with 2N channels. Each channel goes through
a low-pass sequency filter of the type described in
Section 3. The output of each filter, a piecewise- :
constant function with steps of width 7', is multi-

plied by one of 2N functions f; which are ortho-

normal and have period T'. The outputs of the y
multipliers are added to form the multiplexed signal. )
Demultiplexing is performed by reversing this multi-
plexing procedure. Clocking, not shown, is syn-
chronous for all filters and multipliers.
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The multiplexing functions f; are periodic in T' are are orthonormal in a single frame

P

TI
0

Orthogonality is required if the multiplexed signal i to be demultiplexed. Normalization
results in the transmission of equal energy in all channels. given equal input signals. De-
fining a frame as any segment of time during which the filter outputs remain constant, the
multiplexed signal is given in any frame by
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2N
g(t) = Z eifi0), (11)
i=1

where ¢ goes from 0 to T’ and is relative to the start of the frame. The coefficients c;
are output values of the 2V filters.

It is important to realize that time-division multiplexing (TDM) and sequency-division
multiplexing (SDM) are the results of specific choices of the multiplexing functions f;. In
fact, we can choose functions that result in a combination of TDM and SDM. To see this,
we consider the three sets of functions shown in Figs. 7-9. The block functions in fig. 7
will result in pure TDM. The Walsh functions in Fig. 8 will result in pure SDM. The Haar
functions in Fig. 9 will result in something between TDM and SDM. Most channels will
be separated from some others in time and from still others in sequency. This is an
example of the lesson, first learned in connection with pulse-compression radar, that the
coding of information in the time nr sequency (frequency) domain is not an either-or
situation.

4
By
0 1
4+
B,
o) 1
4 -
Bs
o] 1
4
B
0 1

Fig. 7—Four block functions whose use as
multiplexing function reoults in pure TDM
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Fig. 8—The first four Walsh functions. Fig. 9—The first four Haar functions.
Their use a: multiplexing lunctions re- Their use as multiplexing functions
sults in pure SDM. results in a combination of TDM and
SDM.

Many properties f Haar-function multiplexing lie between those of SDM and TDM.
Whether we view this as cormbining the advantages of both or just their disadvantages de-
pends on cur view of nature. In any case, as an example we shall calculate the peak- to
rms-voltage ratio and peak- to av~rage-power ratio for SDM, TDM, and Haar multiplexing.

Beginning with Eq. (11), the instanteneous power is given by

80 = ) e ). (12)
ij

If we restrict the choice of multiplexing functions to those which are piecewise constant
in equal intervals, or slots, of width T'/2N, the energy transmitted in one frame is

ZN
E=) ey, (13)
k=1

where we have defined ¢, = (k - (1/2))T'/2N. Thus
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&
]

T'
N Zcicjfi(fk)f;(tk)

kij

- Z i< 3N Zf‘(k)f,(tk). (14)

Now for piecewise-constant functions, the orthonormality relation, Eq. (10), becomes

) ) = b, (15)
k=1

Thus

= Zc,?. \16)

The average power in the frame is

oN

- 1

SR
i=]

The power averaged over many frames depends on the statistics of the input channels c;.
However, whatever this average is, Eq. (17) shows that it is the same for all systems of
orthonormal multiplexing functions. The rms voltage is also the same and is given by

2N
1 1/2
|2 5] o

To compare the peak voltage and power, we must determine for each set of functions f;

which of the 2N values of
slty) = Zcifi(fk) (19)

i
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and
) = ) cigfite)fj(ty) (20)
ij

are the highest. For convenience, we set T' = 1.

The TDM orthonormal block functions satisfy

fity) = 2N/28,, . (21)
Thus
"1
g(t,) = 2V2 Lcisik
i
= N2, (22)
and
.
git,) = 2N Z_Jcicjaikajk
ij
= oN2 23)
ke {

The peak vcltage in any frame is proportional to the highest signal level of all the channels;
the peak power is proportional to the square, If we assume that the input channels have
signal values ranging between 0 and 1 V, then the absolute peck voltage is

V,‘,,TJQM) = gN/2, (24)
and the absolute peak power is
p&l‘lgM) = 9N, (25)

Turning to SDM, we note that if the f; are the first 2N Walsh functions, then for
n=2N-14+1, fi(ty) =1, wherei=1,2,3,..., 2N, The peak voltage and power in each
frame occur in this slot and are given by

g(t,) = Zc,- (26)
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and
2
g(t,) = E cicj = E ¢l . (27)
ij i

The absolute peaks are reached when all channels are at their maximum signal level 1, so
that

VISDM) - 9N (28)
and
p{SDM) - 92N, (29)

To consider the voltage and power peaks for Haar multiplexing, we rewrite Eq. (19)
in the more natural form

N 2)1-1

1
g(ty) = co + ZZ Cn ¥n (tg ). (30)

n=1 m=1

In any frame the peak is reached in the first slot where all functions that contribute to the
sum have a positive sign. The peak voltage in any frame is therefore

N
8(t;) = ¢co + Z cavn(ti)

n=1

N
—
co + L2(""1)/2c,1,. (31)

n=1

The peak power is . N
g2(ty) = |eo * Z o(-1i2e14 (32)
n=1

The absolute peaks will be reached when the N + 1 channels cg, c}, cé, ceey c,{, are at

their peak signal. In this case
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N
v - Zz(n-l)/z
n=1
9N/2 _1
=1+—, 33
T (33)
and
oN/2 _1\2
P =g+ = :
mex (1 V§_1> (34)

Summarizing Egs. (17), (18), (24), (25), (28), (29), (33), and (34), SDM has the high-
est peak- to rms-voltage ratio and peak- to average-power ratio; TDM has the lowest, and
those for Haar multiplexing are in between. For large N

Vi) ~ 25v(TDM), (35)

This ordering is intuitively correct. For the TDM system to reach its peak, only one of the
2N channels need be at its maximum. For the SDM, all 2N chanrels must be at their
maxima, which is not nearly as likely. As a result, in SDM the average value is further
below its peak than in TDM. The Haar-function multiplexer will reach its peak if N + 1
particular channels are at their maxima. This is less likely than one channel reaching its
maximum but more likely than all 2¥ channels doing so.

One consequence cf the preceding results is that for a given signal-to-noise ratio, mul-
tiplexing with Haar functions requires less dynamic range than with Walsh functions. In
addition, crosstalk problems may be less severe.

As a final point, we note that demultiplexing is equivalent to recovering the coeffi-
cients in Eq. (19). Instead of using the analog technique shown in Fig. 6, this can be ac-
complished by taking the digital transform of the multiplexed signal in terms of the func-
tions f;. This is particularly easy with Haar functions, as discussed in Section 3. The
result is more accurate and may even be cheaper. It is especially appropriate to take the
digital transform if a computer is already available at the demultiplexing side; in modemn
communication systems this is often the case.

4.4 Pattern Recognition; Edge Detection

The property described by Eq. (6) also suggests that the Haar transform should be
useful in edge detection, an important operation in certain pattern-recognition techniques.
As a simple example, consider the function shown in Fig. 10, which has a single step at
the point x;. If x; is a binary-irrational point, then for any n, only one of the 2n-1
coefficients ¢y is nonzero. The identity of the coefficient m locates the edge to within
1/27-1, Taking the sign of the coefficient into account improves the resolution to 1/27,
If x, is the binary-rational point x; = k/2N, then Sy(x) = f(x), and all ¢}’ = 0 for
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fix)

b

0 % 1

Fig. 10—A function with a single edge

n > N. For n <N, the previous remarks apply. When n = N, the identity of the nonzero
coefficient ¢’ locates the edge exactly.

4.5 Information Theory

The possibility that the Haar transform might be useful in inforination theory is sug-
gested by the simplicity of the sampling theorem. We recall from Section 2.3 that Sy
contains 2N terms and is a step function of 2V equal-length steps. It follows that a func-
tion with a Haar “bandwidth” of 2V must be sumpled in intervals of 1/2V if all informa-
tion is to be recovered.

Again referring to Eq. (6), we note that the Haar transform may be of particular in-
terest when the information content of a waveform is related to changes in the amplitude
of the waveform rather than to the amplitude itself. In this connection, we rewrite Eq.
(6) as follows:

1 (° 1 (€
cp fj fix)dx - ff f(x) dx, (36)
a b

where b ~a=c-b=L =1/2N and a, b, and c are functions of m. This in turn can be
rewritten as

b
op o« 7 f [f(x) - fx + L)) dx, 37

so that ¢’ gives the average change in a function between adjacent intervals of widih
L =1/27,

5. CONCLUSION
It is unlikely that Haar functions can be as useful in any many applications as Walsh

functions appear to be. However, they seem particularly weil-suited for applications such
as data coding, pattern recognition, and perhaps, multiplexing.
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