AD-755 376

PROPELLANT IMPROVEMENT PROGRAM. VOLUME II. IRON CONTAMINATION EFFECT IN HDA (HIGH DENSITY ACID)

A. H. Blessing, et al

Bell Aerospace Company

Prepared for:

Air Force Rocket Propulsion Laboratory

January 1973

DISTRIBUTED BY:

National Technical Information Service U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151 1.

AFRPL-TR-73-7

PROPELLANT IMPROVEMENT PROGRAM

Volume II - Iron Contamination Effect in HDA

A.H. Blessing and H. J. Loftus

Bell Aerospace Company P.O. Box 1 Buffalo NY 14240

TECHNICAL REPORT AFRPL-TR-73-7 January 1973

Special Technical Report for Period 1 March 1972 - 31 October 1972

Approved for public release; distribution unlimited

AIR FORCE ROCKET PROPULSION LABORATORY Director of Science and Technology Air Force Systems Command United States Air Force Edwards, California

> Reproduced by NATIONAL TECHNICAL INFORMATION SERVICE U S Department of Commerce Springfield VA 22131

NOTICES

When U.S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

ONTROL DATA - R		overall report is classified.	
(Security classification of "tile, body of atomict and indexing annotation must be RIG'HATING ACTIVITY (Corporate author) Bell Aerospace Company		20. REPORT SECURITY CLASSFICATION	
	Unclassified		
PROGRAM		*	
n HDA	•		
		•	
74. TOTAL NO	OF PAGES	76. NO. OF REFS	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
AFRPI	L-TR-73-7		
SO. OTHER REP	ORT NOIS (Ast a	Ber numbers that they be analonal	
this report)	Bell Aeros	pace Company	
Report No	<b>b. 8643-928</b>	002	
n unlimited.			
	MILITARY ACT	4124	
1		ropulsion Laboratory,	
Edwards Air Force Base			
	18 93523		
stablish.the for	ced convect	tion heat transfer	
n as Fe ₂ O ₃ on 1	IDA heat tr	ansfer.	
r recistance he	ated circul	ar 6061T6 aluminum	
	-	•	
lted in generall	y higher wa	ll temperature to	
heat transfer o	oefficients	were unaffected by	
		were unaffected by ulk temperature.	
		were unaffected by ulk temperature.	
ed values with : Ldard HDA proc	increased b fuced about	ulk temperature. ⁷ 10% lower heat	
ed values with	increased b fuced about	ulk temperature. ⁷ 10% lower heat	
ed values with : Ldard HDA proc	increased b fuced about	ulk temperature. ⁷ 10% lower heat	
ed values with : Ldard HDA proc	increased b fuced about	ulk temperature. ⁷ 10% lower heat	
ed values with : Ldard HDA proc	increased b fuced about ube destruct	ulk temperature. ⁷ 10% lower heat tion.	
ed values with rdard HDA proc r heat flux at u	increased b fuced about ibe destruct	ulk temperature. ⁷ 10% lower heat tion.	
ed values with : Ldard HDA proc	increased b fuced about ibe destruct	ulk temperature. ⁷ 10% lower heat tion. IFIED	
ed values with rdard HDA proc r heat flux at u	increased b fuced about ibe destruct	ulk temperature. ⁷ 10% lower heat tion. IFIED	
ed values with rdard HDA proc r heat flux at u	increased b fuced about ibe destruct	ulk temperature. ⁷ 10% lower heat tion. IFIED	
	PROGRAM n HDA 2a. TOTAL NO 2a. TOTAL NO	PROGRAM PROGRAM A HDA 25 GROUP PROGRAM A HDA 26 TOTAL NO OF PAGES 28 ORIGINATOR'S REPORT NUM AFRPL-TR-73-7 28. OTMER REPORT NOISH (ABY O Mis report) Bell Aeros Report No. 8643-9280 A Unlimited. 12. SPONSORING MILITARY ACTI Air Force Rocket P	

;;;;

ł

UNCLASSIFIED

UNCLASSIFIED Security Classification			
14 KEY WORDS	LINK A	LINK B	LINK C
· · · · · · · · · · · · · · · · · · ·	RULE WY	AOLE NT	ROLE WT
Liquid Propellant Rocket Oxidizers			
High Density Acid			
Heat Transfer			
Rocket Engine			
2			
			II
; 1 b	UNCL	ASSIFIED	
11			

ļ

~

· Set a second the strategy of

~

S

AFRPL-TR-73-7

ŧ;

×ه گ≰یوت دیگ^ر فیستد. دارد. د

÷

1-

2

8

# PROPELLANT IMPROVEMENT

# PROGRAM

Volume II - Iron Contamination Effects in HDA

A. H. Blessing and H. J. Loftus

Approved for public release; distribution unlimited.

ic

# FOREWORD

This report covers the performance of Task II of the Propellant Improvement Program - Iron Contamination Effects in High Density Acid. The task was performed by Bell Aerospace during the period 1 March 1972 to 31 Cctober 1972 for the Air Force Rocket Propulsion Laboratory, Liquid Rocket Division, Edwards Air Force Base, California. The work, performed in satisfaction of Air Force Contract FO4611-72-C-0026 was under the direction of Air Force Project Engineer, Lt. J. J. Bon, LKDP.

The BAC Project Manager/Technical Director was Mr. H. Joseph Loftus. Other principal contributors in accomplishing the work were:

A. H. Blessing	R. Kubis
N. Engel	E. E. Seymour
H. Ph. Heubusch	J. C. Tynan
R. D. Kalp	T. F. Zack

This report was submitted and approved by H. Joseph Loftus. The contractor's secondary report number is 8643-928002.

This technical report has been reviewed and is approved.

1

J. J. Bon 1st Lt. USAF Project Engineer

#### ABSTRACT

The objectives of this task were to establish the forced convection heat transfer characteristics of standard and modified High Density Acid (HDA) and the effect of iron impurity level up to 100 parts per million as  $Fe_2O_3$  or HDA heat transfer.

Thirty tests were conducted utilizing resistance heated, circular, 6061T6 aluminum tubes. Results showed that normal nucleate boiling did not occur with either of the HDA compositions. As the tube wall temperature increased above 300°F it was generally observed that heat transfer was adversely affected. This effect was manifested by an increased thermal resistance which resulted in generally higher wall temperature to support a given heat flux.

The experimental forced convection heat transfer coefficients were unaffected by iron impurity level and exhibited increased values with increased bulk temperature.

Modified HDA when compared to Standard HDA, produced about 10 percent lower heat transfer coefficients and somewhat higher heat flux at tube destruction.

# CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS	
	2.1 Summary	1
	2.2 Conclusions	1
	2.3 Recommendations	2
3.0	TECHNICAL DISCUSSION.	3
	3.1 Test Plan	3
	3.2 Test Specimen	4
	3.3 Test Apparatus.	4
	3.4 Test Instrumentation	6
	3.5 Test Procedure	7
	3.6 Data Reduction	7
	3.7 Description of the Heat Transfer Process	9
	3.8 Test Results	10
	3.5.1 Effect Of Iron Impurity Level	11
	3.5.2 Effect Of Inlet Temperature.	13
	3.3.3 Effect Of Velocity	14
	3.3.4 Analysis Of Test Results	14
	3.9 Application To Agena Thrust Chamber	15
4.0	REFERENCES	16

I

一日 アモン新学を見たる

iv

スタイ ある 田田市内 いち 「「「「「「」」」の

ż

# **ILLUSTRATIONS**

Fage

4

N. . . .

# Figure

a sange

¢

1	Tube Test Specimen Assembly.	17
2	Heat Transfer Tube Specimen Prior To Final Flame Spray	12
3	Completed Heat Transfer Tube Specimen	19
4	Shutdown Simulation Test Sequence	50
5	Heat Transfer Test Apparatus Characteristics	21
6	Forced Convection Heat Transfer Test Cell No. X-1 Schematic	22
7	Test Apparatus - Left Side View.	23
8	Test Apparatus - Right Side View	2A
9	Forced Convection Heat Transfer Process	25
10	Heat Flux Versus Wall Temperature - Test 1199	25
11	Effect Of Shutdown On Heat Transfer With Standard HDA	
	Containing 30 PPM Iron Contaminant	27
12	Effect Of Shutdown On Heat Transfer With Standard HDA	
	Containing 55 PPM Iron Contaminant	28
13	Effect Of Shutdown On Heat Transfer With Standard HDA	
	Containing 72 PPM from Contaminant	29
14	Effect Of Shutdown On Heat Transfer With Standard HDA	
	Containing 96 PPM Iron Contaminant	30
15	Effect Of Shutdown On Heat Transfer With Modified HDA	
	(0.55% PF ₂ ) Containing 10 PPM Iron Contaminant	31
16	Effect Of Shutdown On Heat Transfer With Modified HDA	
	(0.55% PF5) Containing 50 PPN Iron Contaminant	32
17	Effect Of Shutdown On Heat Transfer With Modified HDA	
	(0.55% PF ₅ ) Containing 97 PPM Iron Contaminant	33
18	Effect Of Temperature On Heat Transfer Coefficient.	34
19	Effect Of Statdown On Heat Transfer With Modified HDA	
	(0.55% PF ₅ ) Containing 92 PPM Iron Contaminant	33
20	HDA Composite Coolant Characteristic	36
21	Agena Throst Chamber Wall Element At Throat Station	37

# TABLES

Number		Page
I	HDA Composition (Weight 5).	38
П	Test Matrix	39
ш	Measured And Derived Data	40
ĩV	Summary Of HDA Heat Transfer Tests	<b>4</b> 9

# LIST OF ABBREVIATIONS AND SYMBOLS

Symbol	
or Abbreviation	Description Or Meaning And Units
BTU	British Thermal Unit
B.O.	Burbout
ъ с	Specific Heat Of Propellant Across Test Specimen (BTU/Lb°F)
fps	Feet Per Second
ît	Foot or Feet
°F	Degrees Fahrenheit
h	Heat Transfer Coefficient (BTU/In. ² Sec°F)
HDA	High Density Acid (consisting of 56 percent, by weight, of HNO $_3$ and 44 percent $N_2O_4$ )
h g	Combustion Gas Film Conductance
I	Current Flow Through Test Specimen (Amperes)
I.D.	Inside Diameter Of Test Specimen (Inches)
in.	Inch or Inches
	Square Inches
к _L	Thermal Conductivity Of A Liquid (BTU/In. ² Sec [°] F)
K metal	Thermal Conductivity Of A Metal (BTU/In. ² Sec°F)
£w.	Kilowatt
L	Length Of Test Specimen (Inches)
1b	Pound or Pounds
mv	Millivolt
N204	Nitrogen Tetroxide

1

. . .

ŝ

-

vi

# LIST OF ABBREVIATIONS AND SYMBOLS (cont)

Symbol	
or Abbreviation	Description Or Meaning Aid Units
O.D.	Outside Diameter (Inches)
ppm	Parts Per Million
р _і	Test Specimen Inlet Pressure (Psia)
р о	Test Specimen Outlet Pressure (Psia)
psia	Pounds Per Square Inch Absolute
psid	Pounds Per Square Inch Differential
P _X	Pressure At Station X Of Test Specimen (Psia)
q	Volumetric Flow Rate (Cubic Feet/Second)
Q/A	Heat Flux (BTU/In. ² Sec)
Q _{in}	Energy Transfer Into System (BTU/Sec)
Q _{out}	Energy Transfer Out Of System (BTU/Sec)
r	Inside Radius Of Test Specimen
sec	Second or Seconds
т _в	Bulk Temperature (°F)
T _i	Test Specimen Inlet Temperature (°F)
т _о	Test Specimen Outlet Temperature (°F)
T s	Tube Surface Temperature (°F)
T sat	Saturation Temperature (°F)
т _w	Tube Inside Wall Temperature (°F)
v	Flow Velocity (Fps)

Jest and the state and the beauties and the second second the second second second second second second second

vii

s

# LIST OF ABBREVIATIONS AND SYMBOLS (cont)

Symbol or Abbreviation	Description Or Meaning And Units	
ŵ	Mass Flow Rate (I.b/Sec)	
х	Thermocouple Station (Inches)	
Δ	Differential Operator	
$\Delta E$	Voltage Drop Across T. : ecimen (Volts)	
$\Delta T$	Temperature Differential	
ρ	Density Of Propellant (Lb/Cu. Ft)	
μ	Viscosity Of Propellant (Lb/Ft Sec)	

1

viii

ł

è

#### 1.0 INTRODUCTION

Previous HDA work was conducted by BAC under Lockheed Mirsiles and Space Company Subcontract to Air Force Contract FO4701-68-C-0235 in 1970 (Reference 1). This program involved Agena Engine fire test investigations with HDA/UDMH and HDA/UDMH + Si propellants. Although satisfactory engine operation was demonstrated the thrust chamber thermal margin could not be defined since the HDA coolant properties were unknown. Further, since a Modified HDA containing PF₅ inhibitor was developed under Task I a need for experimental determination of its coolant properties was required.

Iron contamination of HDA occurs during manufacture and storage and the present procurement specification requires maximum limits of 20 ppm as iron oxide (Fe₂O₃) for procurement and 30 ppm for use. These limits resulted from early Agena engine development fire tests during which thrust chamber overheating occurred. This cverheating was attributed to iron contamination of the IRFNA coolant (Reference 2).

The overall objective of this program is to improve the propellants used in the Agena and other propulsion systems. As a result of conducting this task the following specific objectives were achieved:

(1) The heat transfer properties of Standard and Modified HDA were established; and (2) the effect of iron impurity level up to 100 ppm as  $Fe_2O_3$  on heat transfer of Standard and Modified HDA was determined.

#### 2.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

## 2.1 Summary

Heat transfer tests were conducted with resistance heated 6061T6 aluminum, 1/8-inch diameter tubes to determine the coolant characteristics of Standard and Modified HDA. The effects of iron impurity level, propellant inlet temperature and simulated engine shutdown were established. Thirty tests were conducted, 15 with each type HDA. Coolant conditions, velocity and pressure, were those characteristic of the Agena thrust chamber which is regeneratively cooled with HDA.

2.2 Conclusions

en van de service de service versen versen de service services de services de services de services de services en services de services d

As a result of performing this work the following conclusions were obtained:

Normal nucleate boiling did not occur with either of the HDA compositions. As the heat flux was increased the tube wall temperature increased much

1

above the saturation temperature of  $280^{\circ}$ F. Film boiling cooling was apparent up to wall temperatures of about  $900^{\circ}$ F when tube failure occurred. As the wall temperature increased above  $300^{\circ}$ F, heat transfer was adversely affected with both HDA compositions at all levels of iron impurity.

Tubes which had previously been operated at wall temperatures above 300°F with shutdown, generally exhibited increased thermal resistance during the subsequent test. For Standard HDA, this effect was observed to vary with iron impurity level, i.e., slight at 30 ppm, nil at 55 and 72 ppm and pronounced at 96 ppm. This effect was observed as an increased thermal resistance which caused generally higher wall temperatures to support a given heat flux. This increased thermal resistance was attributed to scale formed on the inner surface of the tube. Qualitative analysis of the scale from a sectioned tube showed its composition to be inorganic sulfates and nitrates, with aluminum as the major metallic component.

ţ

Tes _ with Modified HDA showed that increased thermal resistance was exhibited at each of the iron impurity levels of 10, 50 and 97 ppm. Tests with tubes which had previously been operated up to near engine conditions and shutdown by venting to simulated altitude conditions generally indicated presence of the increased thermal resistance. Slight scale formation was observed on the sectioned tubes, which chemical analyses showed to be inorganic nitrates, with aluminum as the major metallic component.

Iron impurity level had no effect on the forced convection heat transfer coefficients which were derived from initial tube tests.

Comparison of results showed that the Modified HDA exhibited about 10% lower forced convection heat transfer coefficients but somewhat higher heat flux at tube destruction than Standard HDA.

The effect of propellant temperature followed the expected trend of increasing heat transfer coefficient with increased bulk temperature.

Thermal analysis of the Agena thrust chamber using the results from the investigation indicate that adequate thermal margin exists for the most severe coolant side conditions.

#### 2.3 Recommendations

and all the second and a static second a second second and a

and the second second and the second second

Based on results from this investigation, it is recommended that the present HDA specification limits for iror impurity be relaxed. Agena thrust chamber fire tests are recommended to demonstrate operation with higher iron impurity level, prior to HDA procurement and use limits specification changes.

## 3.0 TECHNICAL DISCUSSION

### 3.1 Test Plan

and a share a she and the second straight the statistic branch in the second of the second of the second of the

Thirty tests were planned to establish the effects of soluble iron impurity on the heat transfer characteristics of HDA. Effects of the impurity level were determined with both Standard and Modified HDA at two levels of bulk inlet temperature. Composition of Standard and Modified HDA is included in Table I. In addition, simulated shutdown under altitude conditions was evaluated. The following test variables and associated levels were investigated:

Percent Iron Impurity	3 levels	20 ppm
		60 ppm
		100 ppm
Type HDA	2 levels	Standard
- Jpo		Modified
Type Test	2 levels	W/O Shutdown W/Shutdown
Bulk Inlet Temperature	2 levels	32°F
	•	90°F

The minimum number of tests necessary to conduct a statistically complete test program is  $2^3 \times 3 = 24$ . Furthermore, simulated shutdowns require two tests which increases the total number of tests to thirty-six.

These thirty-six tests can, inder certain assumptions, be reduced by conducting a partial factorial test program. Therefore, assuming that the second order interaction among the variables with two levels are negligible, and noting that the effects of percent impurity are of primary importance, it was decided to fractionalize with respect to only the variables with two levels. The resultant test plan was one half replicate of the complete  $2^3$  experiment, with the following test series conducted at each impurity level.

Bulk	HDA	
Temperature	Type	Test Type
32°	STD	W/O Shutdown
90°	STD	W/Shutdown
90°	STD	W/O Shutdown
32°	MOD	W/Shutdown
32°	MOD	W/O Shutdown
90°	MOD	W/O Shutdown

3

A matrix consisting of 18 tests as shown in Table II was planned for initial evaluation. This left 12 tests available to further define the relationship between the response variables and the impurity level.

#### 3.2 Test Specimen

Each test specimen (Figure 1) was constructed from a 10.7 inch seamed tubing section of 6061T6 aluminum of 1/8-inch nominal tube diameter. The actual outside diameter of the tube varied between 0.1258 and 0.1265 inches with a wall thickness of  $0.020 \pm 0.002$  inch. The 10.7 inch section allowed six inches for the heated section, four inches for the two electrodes, and 0.7 inches for attachment to the upstream and downstream adapter fittings.

The heated length of 6 inches was selected for two reasons:

- (1) It provided sufficient electrical resistance to generate a heat flux well beyond the expected maximum burnout heat flux for the test program.
- (2) It provided a convenient length with enough room to attach five surface temperature thermocouples.

Aluminum sleeves were joined to the 6061T6 aluminum test sections by an interference fit. This allowed for the attachment of large copper bus bar clamps for electrical power input. Because of the very small resistance associated with this bus bar clamp technique, almost all the resistance and thus the temperature rise, occurred in the six inch test section.

Surface temperature thermic couples were mail by tightly twisting No. 28 gauge chromel-alumel wire together and forming a junction bead by arc welding, using an inert gas and a non-consumable tungsten electrode. The thermocouple junction bead was made as small and as smooth as possible and then turned to the inside to contact the tube surface. The thermocouples were electrically insulated from the tube surface by an initial uniform ceramic coating of aluminum oxide which was  $0.005 \pm 0.001$  inch thick. A support was installed across the pressure fittings approximately one inch from the top as shown in Figure 2, and the individual leads were formed around the tube, pulled taut and secured to the support. The outer insulation was pulled down and a recheck made of each thermocouple bead to assure contact to the initial coating. A second coating of aluminum oxide approximately 0.030 inches thick, was then applied over the entire length of the test section of the tube to securely fasten the surface thermocouples as shown in Figure 3.

#### 3.3 Test Apparatus

Power was provided by four 28 volt dc - 750 ampere, compound-wound Hobart motor generators. These units were connected in an equalizer bus connection in the positive leg, which tied their series fields in parallel. A contactor rated at

1000 amps dc, complete with arc chute and blowout coil was installed in the negative leg of each machine, so that it could be switched on-line individually. The field of each generator was separately excited by a 0-72 vdc supply, resulting in a saturation no-load terminal voltage of 50 vdc. Generator bus bars and cable were sized for 1000 amps per machine. The entire system was wired for a capacity of 4000 amps.

When the tube failed the generators were shut down, the upstream and downstream propellant values were closed and a  $CO_2$  fire extinguishing system was automatically turned on. In all cases the termination of the test was well controlled with no test stand damage.

Shutdown simulation tests at 70% of burnout were terminated by automatically switching the generator contactors off, closing the upstream propellant valve and energizing a three-way valve. This ducted the downstream section of the test specimen to a vacuum tank, all in a timed sequence (see Figure 4).

The power source characteristics map shown in Figure 5 was constructed to depict the voltage and current values expected. Only aluminum tubes with 0.020 inch wall thickness were available, although 0.015 inch wall thickness tubes were sought. Superimposed on the map are lines of constant heat flux covering the expected range for the HDA.

The propellant supply system is shown schematically in Figure 6. The supply tank and receiver tank each have a capacity of 100 gallons and can be pressurized to 1200 psia. For this program the supply tank contained 90 gallons of propellant which allowed test durations of up to 60 minutes for an 1/8 inch tube at a flow velocity of 75 feet per second. Both the supply and receiver tanks were pressurized with a regulated gaseous nitrogen source to obtain the required 750 psia operating pressure at the test specimen.

1 3

;

ารการสมบัตรณ์สินสินสินสินสาร์การสมบัตรไม่สารสรรษณี สาราชสรรมสารีสินสมบัตรสมบัตรสมบัตรสมบัตร (สารารการการการการ

Propellant was conditioned to the required inlet temperatules by a system consisting primarily of a circulation pump, and a steam heat exchange r for hot conditioning or a CO₂ cooled brine exchange for cold conditioning. It is a closed loop system, circulating the propellant from the supply tank only, and can provide uniform propellant temperatures over the entire range of 30° to 200°F. Duting the test the propellant conditioning system was isolated from the supply tank.

A 1/2 inch diameter line carried propellant to the test section. Flow was controlled by two parallel valves (one for coarse adjustments and one for fine adjustments) which were located downstream of the test section. The test section could be isolated from the supply and receiver system by upstream and downstream pneumatic operated valves. Under normal operating conditions, flow through the test specimen was remotely controlled by these valves. Whenever a rapid drop in pressure occurred (as is the case at tube destruction) a pressure switch automatically closed these valves, isolating the test section. The receiver tank was vented to sea level atmospheric conditions during all tests except those designed to determine the effect of

5

and the properties of the test of the destination of the second

simulated altitude shutdowns. Altitude simulation capability of approximately 100,000 feet was provided by an aspirator vacuum tank and cold trap connected to the threeway type propellant valve located immediately downstream of the test section.

# 3.4 Test Instrumentation

i.

たいふいい

Standard instrumentation provided the capability of recording propellant flow rate, supply and receiver tank pressures, inlet and outlet pressure and temperature, surface temperatures, and the current flow and voltage drop.

Pressure measurements were made with Taber Teledyne (PSIA) transducers and Statham (PSID) transducers. Transducers used to measure the inlet and outlet pressures were electrically isolated from the heated test section by special insulation blocks. The demonstrated measurement uncertainty for this type of transducer is  $\pm 0.7\%$  (three sigma) of nominal output.

Propellant temperatures were measured using probe type chrcmel-alumel ungrounded thermocouples, which are imbedded in a mineral insulation and protected from the propellants by a stainless steel sheath. The demonstrated measurement uncertainty for these thermocouple probes is  $\pm 2.0^{\circ}$ F of nominal temperature.

Surface temperatures of the test tubes were measured with thermocouples made from No. 28 gauge chromel-alumel wire with an asbestos/glass fiber insulation. Accuracy of these thermocouples is rated at  $\pm 4.0^{\circ}$ F up to  $530^{\circ}$ F and  $\pm 0.75\%$  from  $530^{\circ}$ F to  $1400^{\circ}$ F. All of the thermocouples, four propellant and five surface temperatures, were referenced to  $150^{\circ}$ F using a Pace Reference Junction Box.

The power delivered to the test section was determined by measuring the current flowing in the circuit and the total voltage drop across the heated section of the tube. Current was measured with a shunt calibrated to generate 50 mv at 2000 amps. Voltage was measured directly across the test section by wires attached to the bus-bars. To obtain a millivolt output, the measured voltage was divided by a calibrated circuit.

Redundant Fischer-Porter turbine-type flowmeters were used to measure propellant flow rates. Prior to the initiation of the test program the flowmeters and their installation line sets were calibrated as a unit in water. At least two calibrations, over the expected region of operation, were conducted on each flowmeter set and an average sensitivity derived for test data reduction. Measurement uncertainty associated with this type of flowmeter has been demonstrated to be approximately  $\pm 1.0\%$ .

Millivolt outputs of the transducers, the current level and voltage drop across the test specimen were patched to signal conditioners and recorded on a Brush Recorder, with an accuracy of  $\pm 3\%$  of full scale; A CEC Oscillograph, with an accuracy of less than  $\pm 5\%$  over the range of the galvanometer used: and on a Beckman Model 210 Data Acquisition System, with an accuracy of  $\pm 0.1\%$  for 20 millivolt full scale

input. The Beckman 210 data acquisition system converts the conditioned millivolt outputs of the various transducers and measured devices to a digital data bit and records the data on magnetic tape in a format suitable for data reduction on an IBM 360 Model 44 computer.

#### 3.5 Test Procedure

General procedure for conducting a test was to first condition the propellant to the desired inlet temperature by circulating from the supply tank with an appropriate heat exchanger. The test specimen was installed in the test stand, see Figures 7 and 8, pressure tested and an instrumentation check made. The next step was to pressurize the propellant system to the flow control valves by means of the gaseous nitrogen regulator. Flow control valves were then adjusted to obtain the proper inlet velocity and operating pressure at the test specimen. Once the desired propellant system conditions were obtained, a 10 second data file of the test parameters, such as supply pressure, flow rate, inlet and outlet temperature and pressure, and receiver tank pressure was recorded on magnetic tape.

Power was then applied to the test specimen in predetermined increments. Once steady-state was attained at each increment, as evidenced by a visual recording of the test specimen outside wall thermocouples, a 10 second data file of all pertinent parameters was recorded on magnetic tape. This procedure was followed until either 70% of the anticipated burnout point or the anticipated simulated shutdown point was achieved, depending on the nature of the test being conducted. The data recorders were then turned on and continuous recording of data was made as power was incrementally applied until automatic shutdown occurred (in the case of burnout). In the case of simulating an altitude shutdown the test engineer manually terminated the test from the control panel.

# 3.6 Data Reduction

Test data were obtained from the electrical output of the various pressure transducers, flowmeters and thermocouples. The outputs were converted to and recorded as digital data on a magnetic tape. These data were then used as inputs to a series of assembler and Fortran language programs which performed the calculations necessary to produce engineering units and data. The physical properties of the tube materials and propellants were inputs to these programs. These data were obtained from References 3 and 4.

The following describes the engineering rationale and resultant equations which were programmed for the computer.

The heat flux into the liquid at any point is given by the following equation:

a a gan tara "

144

$$Q/A = \frac{(0.000948) (\Delta E)}{(\pi) (I.D.) (L)} (I) \frac{BTU}{Sec-in.2}$$

Heat flux was treated as a constant along the length of the tube.

Bulk temperature at any station is given by the following equation:

$$T_{B} = T_{i} \div (T_{o} - T_{i}) \frac{X}{L} \quad ^{\circ}F$$

This assumes that no significant change in temperature occurs outside the heated section, and that the temperature variation along the length of the tube is linear.

The equation for local static pressure is similar to the equation for bulk temperature. However, it is assumed that pressure drops linearly between the two pressure taps which are placed at either end of the 11-inch test section and a single phase flow exists. The pressure is therefore given by the following equation:

$$P = P_i - (P_i - P_o) \frac{2.5 + X}{11}$$

Inside wall temperature at each thermocouple station along the heated section of the tube was calculated from the thermal conductivity of the tube material and the measured power input, surface temperature, and tube dimensions, i.e.



Where A and B are the coefficients of the appropriate thermal conductivity relationship.

Energy transfer into and out of the system is giv  $\cdot$ n by the following equations:

$$Q_{in} = 0.000948 (\Delta E) (I) \frac{BTU}{sec}$$

$$Q_{out} = W \overline{C}_{p} \left( T_{o} T_{i} - (T_{o} T_{i}) Q/A = 0 \right)$$

Ŷ

Ad of the electrical energy released into the system is assumed to be converted to enthalpy increase of the fuel. Heat losses due to convection and radiation have been calculated and found to be negligible. Change in the kinetic energy of the fluid as it passes through the system is negligible. The  $(T_0 - T_i)$  term is included to account for frictional effects and thermocouple errors which are oresent before power is applied. and the state and the set of a set of

Flow rate used in "e equation above was derived from the measured volumetric flow rates:

$$\dot{W} = \rho \cdot q$$

Where q is the measured volumetric flow rate, and p, is the propellant density.

The heat transfer coefficient can be calculated at any station by applying the equation shown below.

$$h = Q/A (T_w - T_B)$$

Flow velocity is calculated by applying the simple one-dimensional continuity equation:

$$V = W (\rho) \frac{(I.D.^2)}{(4x144)} (\pi)$$

where I.D. is the inside diameter of the appropriate test specimen.

The computer was also programmed to calculate the following dimensionless correlation parameters with fluid properties evaluated at local bulk temperatures and estimated mean film temperatures.

Nusselt NumberNu=
$$(h)$$
  $(I.D.)$ Nu= $\frac{(I.D.)}{K_L}$ Reynolds NumberRe=Reynolds NumberPr= $\frac{(I.D.)}{\mu}$  $\frac{(V)}{\mu}$ Frandtl NumberPr= $\frac{(I.D.)}{K_I}$  $\frac{(I.D.)}{K_I}$ 

These parameters were utilized to monitor test results.

3.7 Description of the Heat Transfer Process

A graphic illustration of the heat transfer process for forced convection turbulent flow of normal fluids is shown in Figure 9. With reference to this figure, the heat transfer process may be explained as follows:

a. The boundary layer characteristics for the nonboiling condition are shown. The heat is transferred through three layers.

9

and the second second

Mode of Heat Transfer
Conduction
Conduction and Eddy Currents
Eddy Currents

25

and the second secon

In this region the thermal resistance to heat transfer remains constant for a given flow rate, geometric configuration and type of fluid. The driving force is the temperature difference between the heated surface and coolant temperature.

b. If the heat transfer rate is sufficiently high, the heated surface temperature may exceed the saturation temperature of the coolant, and nucleate boiling will occur at the heated surface. The agitation of the boundary layer caused by these fast moving bubbles, decrease the thermal resistance to heat transfer to such an extent that it is possible to obtain increased heat transfer rates with no change in heated surface temperature. As the rate of heat transfer increases, the bubble population increases to such a point that a vapor layer covers the heated surface. From this point the heat transfer process may proceed by two means.

c. If the thermal resistance offered by the gas film is low enough, stabilized film boiling will occur. The heat will by transferred across this vapor film into the liquid. Stabilized film boiling will usually occur at high coolant velocities and at pressures above the coolant's critical pressure. Failure of the heated surface occurs when the temperature exceeds the melting point or the working pressure exceeds the stress limit of the material at this higher temperature.

d. If the thermal resistance of the vapor film is great enough, the temperature of the heated surface will rise to the melting point of the material and burbout will occur.

## 3.8 Test Results

i

ÿ

Shown in Figure 10 is the heat flux versus wall temperature for Test 1199 which typifies the general trend of results obtained with the HDA. It can be seen that wall temperature increases with heat flux to values much in excess of saturation. Normal nucleate boiling did not occur when the wall temperature increased above the saturation temperature of  $280^{\circ}$ F. An audible oscillation was observed at wall temperatures in excess of about  $400^{\circ}$ F. The tube was apparently cooled by film boiling and the oscillation was attributed to two phase flow. Also, surface temperatures were non-uniform with abnormal temperature gradients indicated along the tube length in this film boiling mode. These temperature gradients increased with heat flux until tube burnout occurred. Measured and derived data for Test 1139 are included in Table III which shows tube wall inner wall temperatures of 908°F near the inlet (Station 1) and 445°F near the outlet (Station 5) at a heat flux (Q/A of 1.58 BTU/in.² sec. The average inside wall temperature of this data point was  $637^{\circ}$ F.

This test was a repeat of the initial test conducted with a coolant inlet temperature of  $32^{\circ}F$ . This test condition always resulted in tube wall temperature maximums and tube destruction near the inlet end. Tests at  $50^{\circ}F$  inlet resulted in tube wall temperature maximums and tube destruction near the outlet end. Because of the abnormal results obtained from the initial test some additional verification tests were conducted including one with CRES 347 tube material.

Results from the CRES (47 tube testing were consistent with the 6061 aluminum material testing except that the former exhibited much higher heat flux at tube destruction. This was attributed to the higher temperature capability of the CRES 347. Wall temperatures in the range of 1860°F were indicated and the tube was observed to glow during this test. A summary of heat transfer test results is presented in Table IV.

# 3.8.1 Effect of Iron Impurity Level

In accordance with the test matrix the first test series was conducted with Standard HDA containing 30 ppm iron impurity as  $Fe_2O_3$ . This impurity level was somewhat higher than the 20 ppm level originally planned, however, it was considered satisfactory for use since it conformed to the maximum iron concentration use limits allowed in MIL-P-7254F. Tests with Standard HDA were then conducted at 96, 55 and 72 ppm. Impurity concentration was controlled by iron nitrate addition or dilution techniques. Results from these tests are presented in Figures 11, 12, 13, and 14 which show the heat flux versus wall temperature characteristics obtained. Each of these figures include the shutdown test during which the tube was operated up to the heat flux condition corresponding to that of the Agena thrust chamber throat station and then sub ected to a simulated altitude shutdown after which the same tube was then operated to burnout. As the wall temperature increased above 300°F heat transfer was adversely affected with both HDA compositions at all levels of iron impurity.

Tubes which had previously been operated at wall temperatures above 300°F with shutdown, generally exhibited increased thermal resistance during the subsequent test. For Standard HDA this effect was observed to vary with iron impurity level, i. e., slight at 30 ppm, nil at 55 and 72 ppm and pronounced at 96 ppm.

This effect was observed as a reduced heat transfer coefficient or an increase in thermal resistance which is indicated by the generally higher wall temperatures required to support a given heat flux. This increased thermal resistance is apparently caused by scale formed on tube inner surface. Inspection of Figures 11-14 indicates that the scale appears to form, as reflected by the change in slope, at heat flux values above 3.0 BTU/in.² sec with corresponding wall temperatures above 300°F. The tube from Test 1207 which was sectioned for observation and analysis, showed a tan gel over a brown stain. Qualitative analyses by emission spectroscopy and infrared, revealed that the scale was composed of inorganic sulfates and nitrates with aluminum as the major metallic component.

Similar tests were then conducted with Modified HDA (0.55% PF₅) containing iron contaminant levels of 10, 50 and 97 ppm.

The 10 ppm level for the initial series was the iron measured upon chemical analysis after blending the Modified HDA in the test cell tank. Subsequently, the impurity level was adjusted by adding iron nitrate.

Shutdown tests were conducted with a propeliant inlet temperature of  $32^{\circ}$ F, and the 10 ppm tests were repeated at a  $90^{\circ}$ F inlet temperature. Results presented in Figures 15, 16, and 17 show that the increased thermal resistance was indicated at each of the contaminant levels investigated. However, the variation between the initial and burnout test was somewhat different than that observed with Standard HDA. It was observed from these tests that the effect was greatest at 50 ppm with less degradation at 97 ppm. No cause for this could be established, however, it should be noted that chemical analyses indicated the total solids of the Modified HDA increased from 0.026% initially to 0.120% following Test 1223, and finally to 0.140% at the conclusion of the program. It is possible the higher solids which indicates nigher concentration of aluminum nitrate altered the scale composition formed during tests subsequent to Test 1223.

i

Tubes from Tests 1223 and 1226 were sectioned for observation and analysis. It should be noted that each of these tubes was inerted prior to sectioning with methylene chloride while the tube from test 1207 was inerted with water. This inerting fluid was selected because it has little or no dissolving effect on the scale deposit. Results of the chemical analyses which showed there was less deposit when PF₅ was used as inhibitor are included below. The major metallic component was aluminum. Infrared showed mostly anhydrous inorganic nitrates. Hydrates and sulfates were also discernible in the deposit formed from Standard HDA.  $Aa^{ch}$  er than attributing the variance in the analysis results to a different reaction or material, it was concluded that the water inerting used on Test 1207 formed the hydrates and removed most of the nitrates.

## TUBE ANALYSIS RESULTS

Test	Appearance Of Tube	Inhibitor	Spectroscopic	Infrared
X1-1207	Moderate coat, tan gel over brown film	HF	A1 > Fe, Cu	Hydrated Sulfates Hydrated Nitrates
X1 -1223	Trace of white salt	PF ₅	Al > Fe, Cu	Anhydrous Inorganic Nitrates
X1-1226	Small amount of white salt over brown stain	₽₽ ₅	1' > Fe, Ni, Cu	Anhydrous Inorganic Nitrates

and the set of the set

#### 3.8.2 Effect Of Inlet Temperature

Temperature effects were included by conducting the heat transfer tests at 32 and 90°F. It was previously mentioned that all of the burnout tests at 32°Finlet temperature exhibited maximum tube wall temperatures at Station 1, near the inlet. Tests at 90°F inlet temperature indicated a maximum tube wall temperature at Station 5, near the tube outlet. These effects were as predicted by calculation of the forced convection heat transfer coefficient  $h_L$  according to the classical corre-

lation - h_L = 0.0265  $\left(\frac{DV\rho}{\mu}\right)^{0.8} \left(\frac{c_p \mu}{k}\right)^{0.4} \frac{k}{D}$ .

The  $h_L$  is a function of temperature since the coolant properties vary with temperature. This temperature effect was calculated to show the variation of  $h_L$  over the inlet temperature range evaluated using the properties of Reference 5 as shown below:

	HDA Properties			
		<u>32°F</u>	90°F	
Density	g/cc	1.677	1.612	
Viscosity,	Centipoise	4.95	1.88	
Specific Heat, c _p	BTU/I.b °F	0.446	0.446	
Thermal Conductivity, K	BTU/Hr Ft °F	0.189	0.184	

Substituting in the  $h_L$  equation:

$$\frac{h_{L} 90}{h_{L} 32} = \left(\frac{DV \frac{1.612}{1.88}}{DV \frac{1.677}{4.95}}\right)^{0.8} \left(\frac{c}{p} \frac{1.88}{0.184}}{c}{p} \frac{1.88}{0.189}\right)^{0.4} \frac{\frac{.189}{D}}{\frac{.184}{D}}$$
$$= (2.535)^{0.8} (0.391)^{0.4} 1.03$$

 $\frac{h_L 90}{h_L 32} = 1.495$ 

1 2 B.

And a star with

A. . . . .

-11:11

بمعرضهمان رري

Therefore, the  $h_L$  at 90°F is shown to be 50 percent greater than the value obtained at 32°F. The lower  $h_L$  at 32°F results in higher wall tenperature to support a given heat flux.

ţ

Actual forced convection heat transfer coefficients derived from tests of this investigation are presented in Table IV and graphically in Figure 18. Data shown in this figure were normalized to 75 ft/sec inlet velocity. The data follows the predic'.d trend but the values were generally greater.

#### 3.8.3 Effect Of Velocity

The final three tests were conducted at 30 ft/sec inlet velocity corresponding to Agena thrust chamber section conditions. Results shown in Figure 19 and Table IV show both lower forced convection heat transfer coefficient and heat flux at tube destruction than obtained at 75 ft/sec inlet velocity.

#### 3.8.4 Analysis Of Test Results

A regression analysis of available data from the heated tube test program was conducted to determine the sensitivity of the heat transfer coefficient to various test variables. The variables considered in the analysis were: on Sation have a sufficient and the share states to strack and a stract set of the states of the sufficient of the states of the

and the second second state of the second second

Propellant (Standard or Modified HDA) Iron Impurity Level Bulk Temperature

Non-linear influences of bulk temperature were also considered. Of the data available three tests were rejected as outliers, runs 1201X-1 (Station 5), 1212X-1 (Station 1) and 1222X-1 (Station 1). However, with the exception of the form of the regression equation obtained, the results concerning the statistical significance of each variable would have been essentially the same even if all the data had been used.

The following results were obtained:

a. The type of propellant used does seem to influence the value of the heat transfer coefficient. Use of Modified HDA results in a decrease in the heat transfer coefficient of about 10%, 0.001 BTU/in.²-sec °F.

b. Over the range tested the iron impurity level has no effect upon the heat transfer coefficient.

c. Bulk temperature has a strong non-linear influence upon the heat transfer coefficient.

On the assumption that the required function should be monotonic a fit of the form  $h = T^B$  was established. The resultant expression plotted was given by:

$$h_{\rm L} = 0.00425 \ {\rm T}^{0.3178}$$

# Application To Agena Thrust Chamber

Peak heat flux of the Agena nozzle at the geometric throat was established based on previous water cooled fire tests with HDA/UDMH + SO. This is the gas side heating rate imposed across a unit nozzle surface area which differs from the heat flux of the heated tubes used in this program and the coolant passages of the thrust chamber. Since the coolant passage is non-uniformly heated with most of the heat flux imposed on that part of the circumference exposed to the gas side, a two dimensional analysis is required to establish heat flux rates and temperature distribution. An analysis was conducted to assess the effect of the experimental results from this program on the Agena thrust chamber thermal conditions. Allowance was made for coolant side scale formation which occurred on most tests at wall temperatures above  $300^{\circ}$ F by utilizing two values of coolant characteristic as shown in Figure 20.

The chamber throat station wall element is presented in Figure 21 which also includes coolant bulk and gas side conditions, and resulting temperature distributions. A maximum gas side wall temperature of  $501^{\circ}$ F, which is safely below the maximum design allowable value of  $750^{\circ}$ F results. Assessment of margin based on peak nucleate boiling heat flux was precluded since HDA exhibited no nucleate boiling character.

15

3.9

### 4.0 REFERENCES

しいたまん、

WAXA "?"

and the structure

Lines and

The state of the second states and the secon

さんていた

SU LULU

- Bell Aerospace Company, Model 8096 Maximum Density Acid Definition Program, Volume I, Bell Aerospace Report No. 8096-910082, September 1970.
- 2. J. H. Wolf and J. R. Flanagan, Iron Solids Content in Nitric Acid, Bell Aerospace Memo 943:61:0511-1-JHW/JRF, May 1961.
- 3. Private Communication R. C. Simon to D. J. Alverson, Battelle Memorial Institute, Defense Metals Information Center, Properties of 6061T6 Aluminum, September 1967.
- 4. R. D. Kalp, Physical Properties of Maximum Density Fuming Nitric Acid (HDA), Bell Aerospace Memo 949:72:0918-1:RDK, September 1972.
- C. J. Hoffman, High Density Acid (HDA) Physical Properties Handbook, Lockheed Missiles and Space Company, LMSC/D153518, May 1972.

the state of the second of the second second second



Figure 1. Tube Test Specimen Assembly

.







Figure 4. Shutdown Simulation Test Sequence



Figure 5. Heat Transfer Test Apparatus Characteristics







Figure 7. Test Apparatus - Left Side View


Figure 8. Test Apparatus - Right Side View



and the second secon





ł

÷

Figure 10. Heat Flux Versus Wall Temperature - Test 1199



Figure 11. Effect Of Shutdown On Heat Transfer With Standard HDA Containing 30 PPM Iron Contaminant

**5** 



Figure 12. Effect Of Shutdown On Heat Transfer With Standard HDA Containing 55 PPM Iron Contaminant

!





and the second secon

29

i,

□ INITIAL TEST X-1 1206 SHUTDOWN

O FINAL TEST X-1 1207 BUR. OUT



1

Figure 14. Effect Of Shutdown On Heat Transfer With Standard HDA Containing 96 PPM Iron Contaminant

\$



+ INTERMEDIATE TEST X-1 1217 SHUTDOWN





Figure 15. Effect Of Shutdown On Heat Transfer With Modified HDA (0.55% PF₅) Containing 10 PPM Iron Contaminant

the second and and the second second the second the second s

31

÷



Figure 16. Effect Of Shutdown On Heat Transfer With Modified HDA (0.55% PF₅) Containing 57 PPM Iron Contaminant



Figure 17. Effect Of Shutdown On Heat Transfer With Modified HDA (0.55% PF₅) Containing 97 PPM Iron Contaminant

1

Supplified is all and a factor when a provide the second time -

130 8 120  $\overline{O}$ 기노 110 0.4 c^bμ PROPERTIES - REFERENCE 5 ~ 0 10  $\odot$ 100 <u>rz</u>l L  $= 0.0265 \left( \frac{DVP}{\mu} \right) 0.8$ Ð BULK TEMPERATURE - °F 75 FP.3 থ 06 ١ 0 > 80 ہے۔ ا 70 0¢ Φ 0 LEGEND - SEE TABLE IV  $\odot$ 60 0 50 17 Þ +b 40  $\odot$ FORCED CONVECTION HEAT TRANSFER COEFF. h_L - BTU/IN.²SEC °F

Figure 18. Effect Of Temperature On Heat Transfor Coefficient

1.1

Automation .

י איילישאל לנה לשעעינט לישייא

34

s



Figure 19. Effect Of Shutdown On Heat Transfer With Modified HDA (0.55% PF₅) Containing 92 PPM Iron Contaminant

جه

كولا المحافظ المح





Figure 20. HDA Composite Coolant Characteristic



NODE	TEMPERATURE - °F	NODE	TEMPERATURE [°] F
1	180	4	229
2	373	5	169
3	501	6	238
COOLANT BULK	114	7	488

Figure 21. Agena Thrust Chamber Wall Element At Throat Station

#### TABLE I HDA COMPOSITION (WEIGHT %)

	Standard	Modified
hno ₃	BAI	BAL
NO2	42-45	42-46
H ₂ O	0.5 max.	0.5 max.
HF	0.6-0.8	
PF ₅		0.4-0.7
Total Nitrates	0.05 max.	0.05 max.
Fe ₂ O ₃	0.003 max.	0.003 max.

#### TABLE II

#### Impurity Test Bulk HDA Number PPM Temperature - °F Туре Test Type 1 20 32 STD W/O Shutdown 2 20 90 W/Shutdown 3 20 90 W/O Shutdown 4 60 32 W/O Shutdown 5 60 99 W/Shutdown 6 60 99 W/O Shutdown 7 100 32 W/O Shutdown 8 100 90 W/Shutdown 9 100 90 STD W/O Shutdown 10 20 32 MOD W/Shutdown 11 20 32 W/O Shutdown 12 20 Э0 W/O Shutdown 13 60 32 W/Shutdown 14 60 32 W/O Shutdown 15 60 90 W/O Shutdown 16 100 32 W/Shutdown 17 100 32 W/O Shutdown 18 190 90 MOD W/O Shutdown

#### TEST MATRIX

19 through 30 (1)

₹-

i

Į

The following conditions are fixed for all test .:

Velocity = 75 Fps Bulk Pressure = 750 Psia Tube Material - 6151 Aluminum

Note (1): To be determined

39

of filmed when the contraction of a monoto

TABLE III (1 of 9)

## **MEASURED AND DERIVED DATA - TEST 1199**

	PARANETER	UNI TS									
TINE		SEC	0.4	5.0	6.0	0.4	5.0	0.0	4.0	5.0	6.0
1. VI	INLET FLOW VELOCITY	FPS	75.6	7.51	75.8	76.1	76.1	79.2	80.6	80.2	80.2
2. MPI	FLUM NO.1	LUS/SEC	0.320	<b>0.32</b> 3	0.320	0.336	v. 330	C.331	0.342	0.339	66.6.0
3. 4P2	FLOW NO.2	LBS/SEC	0.317	116.0	0.318	ú. 328	C. 328	0.328	0.336	č.336	966.0
4. WPA		LBS/SEC	3.318	0.319	C.319	C.329	0.329	0.329	0.339	0.337	0.337
		DEG F	34.8	34.8	34.8	34.6	34.6	34.6	34.5	34.5	34.5
	REAR NP	DEG F	35.2	35.2	35.2	34.8	34.8	34.3	34.7	34.8	34.7
7. TLA	NEAP NP	OEG F	35.0	35.0	35.0	34.7	34.7	34.7	34.6	34.6	34.6
8. SGC	SPECIFIC GRAVITY CORR TO TL RTEM 7		1.671	1.671	1.671	1.671	1.671	1.671	1.071	1.671	1.671
9. PI	FUEL PRESSURE AT TEST SECTION INLET	PSIA	864.4	864.2	864.1	859.7	859.7	959.6	354.5	854.5	4.458
10. PD	FUEL PRESSURE AT TEST SECTION OUTLET	PSIA	663.2	664.3	664.6	662.1	602.4	662.5	662.0	051.9	661.6
11. DELTA		P510	201.2	199.9	199.5	197.6	197.3	197.1	192.5	192.7	192.8
12. :JELTA	MEASURED GELTA	PS10	202.9	201.6	201.3	199.3	199.0	143.4	194.3	194.4	154.5
13. PT	TUTAL PRESSURE IN SUPPLY TANK	PSIA	951.2	751.3	451.3	952.2	452.2	952.3	951.7	951.7	951.7
14. PR	TOTAL PRESSURE IN RECEIVER TANK	PSIA	23.2	23.2	23.2	23.1	23.1	23.0	23.0	23.0	23.0
11 51	AMPS PICKUP NO. I LAMPS FLOW AFTWEEN FLEC.	AVPS	0.0	0.0	ů, ů	1.405	294.0	294.5	518.1	519.5	519.8
	PICKUP NJ. 21ANPS FI ON BETWEEN	APA	7.5.27	1-1-1-1	304-1	762.8	771.1	777.	731.6	779.0	776.6
11 •	AMPS PICKUP TUT (AMPS FLOW BETWEEN ELEC.	AMPS	143.7	193.1	8:14.1	1-1491	1065.1	1671.5	1299.7	1298.5	1296.4
		VOLTS	6.1	2.1	2.1	2.6	2.0	2.7	3.3	3.2	3.2
	TEST	DEG F	35.8	35.8	35.8	35.4	35.4	35.4	35.1	35.2	35.2
ព ភ	IP.AT TEST SECTION OU	DEGF	43.7	0.44	44.8	50.9	51.1	51.3	59.0	59.0	59.0
	TEST SECTIONS OUTER WALL	0EG F	92.5	4.46	98.2	157.9	154.4	166.1	233.9	233.4	233.0
	TEST SECTIONS INNER WALL	0EG F	89.6	4.09	94.2	151.3	152.1	153.3	224.0	223.5	1.622
	SECTIONS OUTER WALL	066 F	92.0	93.7	97.1	154.5	155.5	lja.h	226.1	225.9	225.5
26. TH2	TEST SECTIONS INNER WALL	DEG F	88.6	84.7	93.0	149.0	140.2	1-9.4	216.1	216.0	215.7
	TEST SECTIONS OUTER WALL	DEG F	92.7	94.5	98.0	157.1	158.0	159.2	229.0	229.1	228.6
	TEST SECTIONS INNER WALL	DEG F	89.3	90.5	93.9	150.5	151.4	152.4	<i>2</i> 19.1	219.2	218.8
	TEST SECTIONS OUTER WALL	DEG F	5116	93.5	97.6	154.9	155.8	157.1	224.9	225.2	224.9
	TEST SECTIONS INNER WALL	DEG F	88.2	89.5	93.0	148.3	149.1	150.3	215.ů	215.3	215.0
31. 755	SECTIONS OUTER WALL	DEG F	94.8	40.9	100.5	158.9	159.9	lol.l	229.9	225,9	2.29.8
32. TNS		DEG F	6.19	92.9	96.4	152.4	153.2	154.3	219.9	:20.0	219.9
	AVERAGE OF 5 STATIOMS-OUTER WALL	DEG.F	92.7	94.5	98.2	156.7	157.6	153.6	224.5	228.7	228.4
	STAT LONS- LINNER	JEG.F	39 <b>. 3</b>	90.6	1.96	1.021	150.9	1.52.1	213.8	213.8	218.5
33. OIN	FNFRCY TRANCEED INTO CVCTEM	ATUZEE		4.	-0	2.6	7.0		0-4	0.4	0.4
	TRANSFER	BTIL/CEC	/	;		~~~	~~~	~~~		4 ° M	3.4
	BALANCE	PERCENT	22.23	29.24	24.70	17.09	17.30	17.21	13.62	14.01	13.58

٠.

•••

•

TABLE III (2 of 9)

.

## **MEASURED AND DERIVED DATA ~ TEST 1199**

	PARANETER		T INU	~								
TIME			SEC		5.0	9 • C	C•4	5°C	0°0	0 • •	5.0	<b>د.</b> ن
45. Ta-l	BULK	P. AT	STA-L 056	F 37.8	37.3	34.	59.3	39.3	39.4	41.1	41.1	1-1+
46. TB-2	LIQUID BULK TEMP.				39.3	パーンチ	43.1	٤.6.	43.4	47.1	47.1	1-14
47. TB-3	BULK				40.4	41.4	45.1	43.2	45.4	50.1	50.1	<b>2.</b> .2
					42.0	÷2+	47.C	47.2	47.3	53.1	53.1	53.1
	ALL K		DEG		43.0	43.0	1.04	49.2	19.3	50.0	50.1	56.0
•												
											, ,	
	SATURAT ION		STA-I DEG	F 249.0	C*6*2	244.3	247.3	247.2	2-1-2	245.1	2+5+1	245.1
	SATURATION		STA-2 DEG		244.6	244.2	1.145	5-0-2	240.8	236.9		236.8
52. 53-TB3	SATURATION		STA-3 DEG		242.3	241.9	237.9	237.8	1.167	232.7	232.7	232.7
	SATURATION		STA-4 DEG		240.1	239.6	234.6	234.6	234.5	223.5	*	228.5
54. S5-T85	SATURATION	TEMPBULK TEMP.			237.3	237.2	231.6	231.4	231.2	224.3	2	224.3
THU SS	HEAT FILIT-ALL STATIONS	TAT LONG	ATU/SFC-TK?	2 0.846	0.975	1-200	1.620	1.649	1.679	2.73	2.467	2.455
•					)		•	• • •		,	•	,
562 H-1	HEAT TRANSFER CO	COEFFICIENT	STA-1 BTU/SEC-IN2-	ç	0.0185	J.0178	5	ú.0146	0.0147	0.0135	0.0135	0.0135
	TRANSFER	COEFFICIENT	IP		5	0410-0	5	0.0156	0.6157	0146	C.C146	C. 0146
	THANSFER	CCEFFICIENT		9.0	5	0.0190	5	0155	C.0156	7. 3146	6.0146	0.0146
	TRANSFER	COFFEICIENT	I	0.0	20	0.194	10	0.0162	0.0142	u-0153	C.0152	0.0152
	TRANSFER	COEFFICIENT		0.017	0.0195	0.0189	0.0157	C.C158	6.0159	0.0151	C.015C	6.0153
611	LIQUID STATIC PR	RESSURE	5TA-1 PS1	A 791.4	191.6	1.161	137.9	789.1	789.C	-	784.6	734 .5
	STATIC	<b>LESSURE</b>			704.2	764.4	750.9	761.0	761.0		758.2	758.J
	STATIC	RESSURE	STA-3 PSI		750.5	750.7	747.3	147.5	247.5	745.1	745.C	744.8
	STATIC	LESSURE			736.3	737.0	733.8	734 • Ü	734.0		731.8	731.6
	STATIC	PRESSURE	STA-5 PSIA		123.1	123.4	120.3	720.5	123.5		719.6	718.4
56. RE8	REYNOLDS NUMBER	BULK		20ú7ì.	20120-	20194.	21274.	21301.	21339.	22512.	22495.	22-07.
57. BFF-1	BEANN ON INWASE	FIN		239462	241045	24470-	30976.	31079.	31235.	40795.	40521.	+0+17.
				24078.	24218.	24566.	J1039.	51140.	3:299.	40553.		46289.
		FILN	STA 3	24225.	4,336	24746.	J1510.	31625.	31798.	<b>41</b> 31d.	+1117.	41066.
	REYNOLDS NUMBER			24215.	24387.	24142.	31479.	31597.	31773.	119	*97574	+3966+
71. REF-5	REYNOLDS NUMBER			24579.	-	25176.	32123.	32248.	32425.	42205.	•1999.	<b>*1</b> 390.
72. PRB	PRANDTL NUMBER	BULK		24.457	24.371	24.809	24.333	24.315	165.45	23.701	23.698	23.693
13. PRF-1	PRANOTL NUMBER	FILM		21.315	21.215	23.954	17.559	.51	17.455	14.327	14.344	14.353
		FILM	STA 2	21.212	21.128	20.483	17.534	• • 8	17.420	14.397	14.402	14-412
		FILM		21.100	21.005	24.75U	17.307	5	17.199	14.179	14.174	1.19
		FILM	STA 4	21.109	21.965	23.739	17.321	17.272	17.250	14.213		14.219
77. PRF-5	PRANDIL NUMBER	FILM		20.436	20-711	2443	17.027	10.576	-15°91	054.61	13.532	15.430

TABLE III (3 of 8)

	PARAMETES	<b>~</b>	,		UNITS							•		•
TINE			•		SEC	4.0	5.0	· 0 • 9	4.C	5.C	6-6	4	U V	2
78. NUB-1	•	NUMBER	BULK	STA L		353.1	396.4	381.1	310.0	113.3	214.4	7 0.0		
79. NUB-2	-	NUMBER	BULK	STA 2		370.5	413.9	405-7	331.5	335.0	236.7	1017 216		
80. NUB-3	•	NUKBER	BULK	STA 3		372.8	420.7	407.5	329.5	1332.1	110-025			
81. NUB-4	•	NUMBER	BULK	STA 4		389.5	438.2	424.1	343.0	345.8	347.8		0.510	
82. NU8-5	NUSSELT	NUMBER	BULK	STA 5		372.3	417.0	405.2	336.1	339.0	341.1	324.4	323.4	372.5
83. NUF-1	NUSSELT	NUMBER	FILM	STA 1		358.2	402.3	387.2	320.0	324.1	: . 575	1.800		101
94. NUF-2	-	NUMBER	FILM	STA 2		376.1	425.3	412.3	942.9	346.6	162.	1.1.1		
85. NUF-3		NUMBER	FILM	STA 3		378.5	4.7.4	414.3	341.4	345.2	346.7	5.455	0	
	•	NUMBER	FILM	STA 4		395.5	445.2	431.3	355.4	359.4	1 - C - C - C - C - C - C - C - C - C -	a 477	3 4 3 5	
87. NUF-5	•	NUNBER	FILM	STA 5		379.5	424.8	412.7	349.9	352.9	114.4		344.7	

TABLE III (4 of 9)

## MEASURED AND DERIVED DATA - TEST 1199

1990 J.C.

	PARANETER	UNI TS	•								
TIME		SEC		0	<b>6.</b> D	5 • •	5.0	6.0	16.0	29°C	30.0
1. VI		FPS	82.3	82.2	82.0	84.3	84.3	83.5	83.6	83.8	83.9
2. WPL	FLOW NO.1	LBS/SEC	0.348	0.346	0.346	0.356	0.356	~	.35	0.354	~
3. HP2	FLOW NO.2	L BS/SEC	0.345	0.346	0.344	0.354	0.354	0.351	0.350	0.352	6.352
44 WPA .		L BS/SEC	0.347	0.346	0.345	0.355	0.355	~	• 35	C.353	1
5. TLI	NEAR	DEG F	34.4	34.4	34.4	34.3	34.3	34.3	34.4	34.4	34.4
6. 1L2	NEAR	06G F	34.7	34.7	34.7	34.5	34.5	34.5	34.6	34.6	34.6
7. TLA	ÿ	0EG F	34.6	34.5	34.5	34.4	34.4	34.4	34.5	34.5	34.5
8. SGC	SPECIFIC GRAVITY CORR TO TL ITEM 7		1.671	1.671	1.671	1.672	1.672	1.672	1.672	1.671	1.671
9. 91	FUEL PRESSURE AT TEST SECTION INLET	PSIA	849.6	850.6	450.7	846.4	846.4	843.3	349.2	849.6	849.6
10. 00	FUEL PRESSURE AT TEST SECTION OUTLET	PSIA	361.0	663.7	663.5	655.4	655.4	665.7	660.7		640.2
11. DELTA	CALGULATED PI-PD	PSID	188.6	187.0	187.2	191.0	191.0	187.0	1.98.5	189.0	189.3
	MEASURED DELTA	PS10	190.1	188.4	188.6	192.4	192.4	189.4	184.9		196.7
	TOTAL PRESSURE IN SUPPLY TANK	PSIA	951.7	951.7	951.7	952.9	952.9	952.9	953.8		954.4
14. PR	TOTAL PRESSURE IN RECEIVER TANK	PSIA	23.0	23.0	23•C	23.0	23.0	23.0	23.0		23.1
15. 11	AMPS PICKUP NO.IIAMPS FLOW BETWEEN ELEC.	AMPS	119.3	716.7	716.1	943.8	9+1.6	944.6	1035.5	• •	1093.5
16. 12	AMPS PICKUP NJ.ZIAMPS FLOW BETWEEN ELEC.	AMPS	780.0	777.1	776.8		769.4	769.3	769.6	764.3	1.277
	ELE	AMPS	1499.4	1443.8	1492.9	1719.9	1717.0	1714.0	ISCS.I	3	1865.6
10. DEL E	VOLTAGE DROP BETHEEN ELECTRODES	VOLTS	0°4	3.9	3.9	5.0	5.0		5.7	÷.	0.0
19. 11	PROP.BULK TEMP.AT TEST SECTION INLET	DEG F	35.0	35.0	35.0	34.7	34.7	34.7	34.8	34.4	34 . 8
22 IO	TEST	່ບ	68.2	68°C	0°89	н2.Е	82.8	82.9	92.3	101.7	102.3
23. TSI	UTER WALL	0EG F	325.3	324.0	324.3	513.7	516.5	517.7	640.3	928.7	875.1
		ى	311.5	310.9	310.6	493.9	496.B		517.1	801.8	848 .0
25. 152		ی	306.7	305.7	305.3	459.6	463.H	466.2	597.9	692.9	706.5
		ی	242.9	292.9	291.6	439.8	444.0		574.7		679.0
	TEST SECTIONS OUTER WALL	13	305.3	364.1	303.5		445.9		529.3		576.7
28. TH3	TEST SECTIONS INNER WALL	UES F	291.5	290.4	289.5	423.7	426.Ù	420.6	505.9		548.9
		ى	299.7	298.4	297.8		429.5		439.2		551.2
	TEST SECTIONS INNER	J	285.9	284.7	284.1		409.7		465.8		\$23 • <b>4</b>
31. TS5	TEST SECTIONS OUTER WALL	0	308.4	307.4	306.7	397.5	400.4		425.6		461.2
32. TH5	SECTIONS INNER	ی	294.5	293.7	293.0	379.5	380.5		403.0	428.7	433.1
	OF 5 STATIONS-OUTER	÷.	309.1	30Å.C	307.5	443.8	451.2		536.0	-	634.1
	AVERAGE OF 5 STATIONS-INNER WALL	ċ	245.2	274.3	293.3	428.9	431.4		513.2	5	627.5
33. DIN		ATHZEF	5.5		4 ° 5	4.2	8.7	8.1	7.6	11.5	11.6
	TDANCEED OUT DE TEET AUEA	0107010 0107010		•	•				7.4	10.2	
35. ERROR	BALANCE	PERCENT	12.80	12.32	12.50	10.67	10.34	10.95	13.36	11.57	11.35

TABLE III (5 of 9)

.

## **MEASURED AND DERIVED DATA - TEST 1199**

1. S. S. M.

ς,

.

11 110010 BUX FM-1 STA-1 STA-			PARAMETER	R R			UNI TS									
The isolation burk frees. AT   STA: 3   STA: 3 <th>Ĩ</th> <th>1-8</th> <th></th> <th></th> <th></th> <th>5 T A- 1</th> <th>30</th> <th></th> <th>°.°,</th> <th>÷.</th> <th>٠</th> <th>5.0</th> <th>••</th> <th>16.0</th> <th>29.0</th> <th></th>	Ĩ	1-8				5 T A- 1	30		°.°,	÷.	٠	5.0	••	16.0	29.0	
H=   Lioung Bukir Fiew, AT   STA-3   Star   Star<	6. II	8-2				51 A-		n -		÷.,		46.7		4 <b>9</b> •2	51.5	51.6
Thest   Litholing Bulky Tigney, AT   STA-5   StA-7   StA-5   StA-5   StA-7   S	7. 11					STA-		• •		÷.,		9.8¢		63.6	68.2	
110-5 LIQUID BULK TENP. AT STA-5		1	OILD			STA-4		<b>۱</b> 0	• •	• •				70.8	70.6	
11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1		8-5	OTIO			STA-6	20	•	•	•		8.07	•	18.0	85.0	٠
51-71 S1-71 <td< td=""><td>,</td><td>•</td><td></td><td></td><td></td><td></td><td>5</td><td>•</td><td>••••</td><td><b>.</b></td><td></td><td>76.8</td><td></td><td>85.2</td><td>93.4</td><td></td></td<>	,	•					5	•	••••	<b>.</b>		76.8		85.2	93.4	
37-113 371.04 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 371.0 <		1-TB1	SATURATI	ION TEMP			e	- 4		247.9			30			
55-163 STUATION (Feb. 514) STUATION (FED. 514) <t< td=""><td></td><td>2-T82</td><td>SATURATI</td><td>TENF</td><td></td><td></td><td>e e</td><td>2</td><td>: ;;</td><td></td><td></td><td></td><td>•</td><td></td><td><b>.</b></td><td></td></t<>		2-T82	SATURATI	TENF			e e	2	: ;;				•		<b>.</b>	
First structure   Struct   Struct <t< td=""><td></td><td>3-183</td><td>SATURATI</td><td>ION TEMP</td><td></td><td></td><td>) U</td><td>2 2</td><td>••••</td><td></td><td></td><td></td><td>• • •</td><td></td><td><b>.</b></td><td></td></t<>		3-183	SATURATI	ION TEMP			) U	2 2	••••				• • •		<b>.</b>	
• 55-155 STUT MANTER STUT SALTUMATTOM TEMP-JEUK TEMP. STUT SCI.1	S	<del>1</del> -184	SATURATI	AK31 NO			) U	22		221.0	-		::			
PHI   HEAT FLUX-ALL   STATIONS   BTU/SEC-IN2   3.437   3.430   5.031   5.037   5.035   5.978   7.043     H=1   HEAT FLUX-ALL   STATIONS   BTU/SEC-IN2-F   0.0128   0.0128   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0111   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112   0.0112	•	5-185	SATURATI	ON TEMP			0	16	16.	216.6			03.		::	195.3 186.3
H-I   HAT TAMSER COFFICIENT   STA-1   BTU/SEC-IN2-F   0.0128   0.0123   0.0113   0.0111   0.0115   0.0017   0.0013     H-I   HAT TAMSER COFFICIENT   STA-1   BTU/SEC-IN2-F   0.0143   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113   0.0113	•	H	HEAT FLU		STATIONS		U/SEC-	4	.43	.43	• 0 5	• 03	•02		<u>.</u>	.14
H=2 HEAT RANSFRA COFFICIENT STA-2 BTUVSEC-TRU-F CLOITY			HEAT TRA	NSFER C	OEFFICTENT	STA-1	SEC-IN2	10-	< 10 ·	5		5	5			č
H-1 HEAT TRANSFER COFFICIENT 577-3 BUV/SEC-INA-F 0.0114 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0134 0.0114 0.0114 0.0114 0.0114 0.0144 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114 0.0114			HEAT TRA	NSFER C	OFFEIC FENT	CTA-2		5				5	5	2	20.	5
H-4   HEAT TRANSFER COEFFICIENT   STA-1   Points   Dualts   Dualts <thdualts< th="">   Dualts   Dualts</thdualts<>			HEAT TRA	NSFER C	DEFEICIENT	CTA-2		5		ן קיני	• 1 •	53	57	115	110	<b>.</b>
H=5   HEAT TAMNFER COFFICIENT   STI-5   BUUSGE-INC-F   COULD   COULD <th< td=""><td></td><td></td><td>HEAT TRA</td><td>NSFER C</td><td>DEFFICIENT</td><td>STA-4</td><td></td><td></td><td></td><td>5</td><td></td><td>53</td><td>56</td><td>013 13</td><td>015</td><td></td></th<>			HEAT TRA	NSFER C	DEFFICIENT	STA-4				5		53	56	013 13	015	
P-1 LIOUID STATIC PRESSURE STA-1 PSIA 78.1 77.1 750.4 764.5 754.6 755.1   P-3 LIOUID STATIC PRESSURE STA-2 PSIA 78.1 771.1 750.4 754.5 754.0 755.1   P-3 LIOUID STATIC PRESSURE STA-3 PSIA 755.3 751.1 750.4 754.5 754.0 752.0 752.1   P-3 LIOUID STATIC PRESSURE STA-3 PSIA 720.4 751.1 750.4 754.1 752.0 752.1 754.2 752.1 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 754.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2 774.2			HEAT TRA	NSFER 7	DEFETCIENT					5	1 T O	5	5	510	016	.01
P-1   LIQUID STATIC PRESSURE   STA-1   PSIA   TBL.2   TBL.2   TSL.1   TTT.0   TTL.1   TBU.2   TBL.2   TSL.1   TSL.1   TSL.2   TSL.2   TSL.1   TSL.2   TSL.1   TSL.2   TSL.2 <td></td> <td></td> <td></td> <td></td> <td>A CLASSEN</td> <td></td> <td>2EC-142</td> <td>10.</td> <td>• 01 5</td> <td>0</td> <td>.016</td> <td>3</td> <td>2</td> <td>0<b>1</b>8</td> <td>021</td> <td>• 05</td>					A CLASSEN		2EC-142	10.	• 01 5	0	.016	3	2	0 <b>1</b> 8	021	• 05
P-2 L10UID STATIC PRESSURE STA-2 PSIA 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 754.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1 744.1<	4			TATIC P	RESSURE	5 T A - 1	5		6	6	5	ŗ		0		é
P-3   LIQUID STATIC PRESSURE   STA-3   PSIA   TA-2   TA-	۲. ۲		LIQUID S	TATIC P	RESSURE	STA-2	5			2 2		: ;		• 20 2 2	- u	
P-4   LIQUIO STATIC PRESSURE   STA-4   PSIA   T29-5   T31.5   T31.4   T24.6   T38.8   T29.1   T29.2     REB   REYNOLDS NUMBER   BULK   STA-4   PSIA   T29.5   T18.6   T18.6   T18.6   T18.6   T16.2   T16.2<	4		LIQUID S	TATIC P	RESSURE	STA-3	s I	52.		. 4					• •	•
P-5 LIQUID STATIC PRESSURE STA-5 PSIA TID.6 TID.6 TID.7 TID.6 TID.2 TID.2<		•	LIQUID S	TATIC P.		STA-4	S	20		2	24.			• • •	•	
REF-1   REYNOLDS   NUMBER   BULK   23893.   23855.   23766.   25605.   25965.   26495.   2144377.     REF-1   REYNOLDS   NUMBER   FILM   STA   23893.   53445.   54314.   54071.   98513.   899061.   88433.   111675.   144377.   1     REF-1   REYNOLDS   NUMBER   FILM   STA   2   53289.   52443.   800591.   88433.   111675.   144377.   1     REF-3   REYNOLDS   NUMBER   FILM   STA   2   53289.   52443.   800591.   81386.   81055.   165334.   124592.   124495.   124495.   124491.   102734.   124592.   124491.   102734.   124592.   124495.   124495.   14495.   14495.   102734.   124592.   124495.   124495.   124495.   124495.   124495.   1124592.   124495.   124495.   124495.   124495.   124495.   124495.   124495.   124495.   124495.   124495.		Ś	LIQUID S	TATIC P		STA-5	SI	16.	18.	191				16.		716.0
RF-1 REYNOLOS NUMBER FILM STA 54455. 54314. 54077. 38513. 89061. 88433. 111675. 144377. 1   RF-2 REYNOLOS NUMBER FILM STA 52883. 52443. 124591. 84534. 124592. 166334. 124592. 166334. 124592. 1   RF-3 REYNOLOS NUMBER FILM STA 52883. 52443. 80591. 81386. 81052. 166334. 124592. 166334. 124592. 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 124592. 1 122492. 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </td <td></td> <td></td> <td>REYNOL DS</td> <td>NUMBER</td> <td></td> <td></td> <td></td> <td>3893</td> <td>3855</td> <td>3766</td> <td>5809</td> <td>5815</td> <td>5565</td> <td>6</td> <td>7496</td> <td></td>			REYNOL DS	NUMBER				3893	3855	3766	5809	5815	5565	6	7496	
RF-3 REYNOLDS NUMBER FILM 57A 2 526893. 526886. 52443. 80591. 81386. 81052. 156334. 124592. 1   REF-3 REYNOLDS NUMBER FILM 57A 3 53294. 53066. 52797. 78779. 78516. 94554. 16274a. 1   REF-3 REYNOLDS NUMBER FILM 57A 4 53394. 53066. 52797. 78779. 78552. 98395. 71972. 84496.   REF-5 REYNOLDS NUMBER FILM 57A 5 533074. 533074. 533074. 533074. 54530. 72903. 72385. 77772. 84496.   PR PRANDTL NUMBER BULK 23.054 23.021 23.024 21.956 21.295 21.292 20.673   PR PRANDTL NUMBER FILM 57A 23.054 23.024 21.956 21.295 21.292 20.673 7.113   PRF-1 PRANDTL NUMBER FILM 57A 21.067 23.021 23.024 21.956 21.295 21.295 21.295 21.295 7.113			REYNOLDS	NUMBER	FILM			4455	4314.		8513		8433.	111675.	144377.	151003.
REF-3 REYNOLOS NUMBER FILM STA 3 53294. 53266. 5797. 78779. 78756. 94554. 1027443.   REF-4 REYNOLOS NUMBER FILM STA 4 53378. 52839. 52548. 79180. 78516. 94554. 1027443.   REF-4 REYNOLOS NUMBER FILM STA 4 53378. 52839. 52548. 79180. 78516. 94554. 102743. 144.46.   REF-4 REYNOLOS NUMBER FILM STA 5 53378. 52839. 52548. 70912. 77279. 94496. 94905. 14496.   REF-1 REYNOLOS NUMBER BULK 23.054 23.021 23.024 21.956 21.956 21.292 20.673 7113   PRF-1 PRANDTL NUMBER BULK 23.054 23.021 23.024 21.956 21.956 21.292 20.673 7113   PRF-2 PRANDTL NUMBER FILM STA 2 11.583 11.696 11.695 21.956 21.403 7.113   PRF-2 PRANO			KETNUL US	NUMBER	FILM			2883	2688	-	0591		1052.	1663342	124592	127233
REF-5   REYNOLDS   NUMBER   FILM   STA 4   53J78   52839   52548   76912   77279   76582   83298   98905   1     REF-5   REYNOLDS   NUMBER   FILM   STA 5   53J78   52839   52548   76912   77279   76582   83296   98905   1     PR   PRAUOTL   NUMBER   BULK   STA 5   73074   23.024   23.024   23.024   21.956   21.955   21.292   20.673     PR   PRAUOTL   NUMBER   FILM   STA 1   11.588   11.604   11.612   8.393   8.350   7.403   7.113     PRF-2   PRAUOTL   NUMBER   FILM   STA 2   11.588   11.604   11.612   8.363   7.403   7.113     PRF-3   PRAUOTL   NUMBER   FILM   STA 2   11.582   11.612   8.363   7.403   7.113     PRF-4   PRAUOTL   NUMBER   FILM   STA 2   11.872   11.870   11.870   8.3			REYNOLDS	NUNBER	FILM			3294	3066		8729		9516.	94554.	102748	104471-
KET-3   REYNOLDS   NUMBER   FILM   STA   55C29.   54836.   54530.   7203.   7363.   72385.   77972.   84496.     PRB   PRANDTL   NUMBER   BULK   STA   23.054   23.021   23.024   21.956   21.955   21.292   20.673     PRF-1   PRANDTL   NUMBER   FILM   STA   1   11.588   11.604   11.612   8.394   8.353   7.403   7.113     PRF-2   PRANDTL   NUMBER   FILM   STA   1   11.889   11.604   11.612   8.394   8.353   7.403   7.113     PRF-2   PRANDTL   NUMBER   FILM   STA   11.883   11.604   11.612   8.363   7.403   7.113     PRF-3   PRANDT   NUMBER   FILM   STA   11.883   11.612   8.363   7.403   7.113     PRF-4   PRANDT   NUMBER   FILM   STA   2   11.819   11.612   8.363   7.403   7.113			REYNOLOS	NUMBER	FILM			3078	2839	-	6912		6582	33298.	98905.	101177.
PRB   PRANDTL   NUMBER   BULK   23.004   23.024   23.024   21.956   21.955   21.292   20.673   20     PRF-1   PRANDTL   NUMBER   FILM   STA 1   11.588   11.604   11.612   8.394   8.353   7.453   7.113   7     PRF-2   PRANDTL   NUMBER   FILM   STA 2   11.883   11.604   11.612   8.363   8.355   7.453   7.113   7     PRF-3   PRANDTL   NUMBER   FILM   STA 2   11.883   11.690   8.904   8.816   7.563   7.116   7     PRF-4   PRANDTL   NUMBER   FILM   STA 3   11.782   11.879   8.904   8.816   7.563   7.146   7     PRF-4   PRANDTL   NUMBER   FILM   STA 3   11.782   11.879   9.194   9.009   9.001   8.0353   7.146   7   8.466   8.916   7.701   7   7   7   7   7   7   7			REYNOLDS	NUMBER	FILM			5029	4 H 36	-	2903		2385	77972.	84496.	85544.
PRF-1 PRANDTL NUMBER FILM STA 11.588 11.604 11.612 8.363 8.355 7.453 7.113 7   PRF-2 PRANDTL NUMBER FILM STA 11.588 11.604 11.612 8.363 8.355 7.453 7.113 7   PRF-3 PRANDTL NUMBER FILM STA 11.853 11.870 8.904 8.816 7.563 7.146 7   PRF-3 PRANDTL NUMBER FILM STA 11.782 11.819 11.628 9.009 9.001 8.035 7.701 7   PRF-4 PRANDTL NUMBER FILM STA 11.782 11.871 9.156 9.152 8.351 7.853 7   PRF-5 PRANDTL NUMBER FILM STA 11.496 11.522 11.871 9.156 9.152 8.351 7.853 7 7 7 8 8.607 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 <td>R</td> <td>•</td> <td>PRANDTL</td> <td>NUMBER</td> <td>BULK</td> <td></td> <td></td> <td>3.00</td> <td>3.02</td> <td>3.02</td> <td>1.95</td> <td>1.95</td> <td>1.95</td> <td>1.29</td> <td></td> <td>0</td>	R	•	PRANDTL	NUMBER	BULK			3.00	3.02	3.02	1.95	1.95	1.95	1.29		0
PRF-2 PRANDTL NUMBER FILM STA 2 11.853 11.879 11.890 8.904 8.849 8.816 7.563 7.146 7   PRF-3 PRANDTL NUMBER FILM STA 3 11.782 11.414 11.628 9.009 9.001 8.035 7.701 7   PRF-4 PRANDTL NUMBER FILM STA 4 11.819 11.828 9.009 9.001 8.035 7.701 7   PRF-4 PRANDTL NUMBER FILM STA 4 11.819 11.853 11.871 9.134 9.152 8.351 7.853 7   PRF-5 PRANDTL NUMBER FILM STA 4 11.496 11.520 11.538 9.526 9.529 9.647 8.607 8			PRANDTL	NUMBER				• 58	1.60	1.6		2		Ω4.	7	1.25.1
PRF-3 PRANOTL NUMBER FILM STA 3 11.782 11.814 11.628 9.042 9.001 8.035 7.701 7   PRF-4 PRANDTL NUMBER FILM STA 4 11.819 11.853 1 9.156 9.152 8.351 7.853 7   PRF-5 PRANDTL NUMBER FILM STA 4 11.496 11.520 11.538 9.526 9.510 9.647 8.607 8   PRF-5 PRANDTL NUMBER FILM STA 5 11.496 11.520 11.538 9.526 9.510 9.647 8.607 8			PRANDTL	NUMBER	FILM			.85	1.87	1.8	: •	8.4	۰œ	• 5 6		7.115
PRE-5 PRANDIL NUMBER FILM STA 4 11.819 11.853 11.871 9.156 9.152 8.351 7.853 7 PRE-5 PRANDTL NUMBER FILM STA 5 11.496 11.520 11.538 9.526 9.510 9.509 9.647 8.607 8			PRANDTL	NUMBER	FILM			.78	1.41	<b>1</b> •6	ុះ	3	0.0	5.0	2	7.644
· · · · · · · · · · · · · · · · · · ·			PKANUL	NUMBER				. 81	1.85	1.8	<b>`</b>	.15		.35	. 35	7.767
		•	3101401		F 1.L M	T A		40	1.52	1.5	• 2	.51	ŝ	*°.	• 60	8•545

#### TABLE III (6 of 9)

٠

4

32.0 195.3 254.8 329.6 355.2 458.6	318.U 357.0 419.8 447.3
29.0 205.6 258.2 332.0 360.6 460.0	313.4 357.7 450.6 450.5 547.5
16.0 228.5 254.0 258.3 258.3 258.3 258.3 258.3	500.8 327.4 368.5 404.9 477.9
6.0 241.0 280.6 300.6 320.7 358.2	292.6 332.6 333.5 314.8 413.2
242.3 242.3 283.1 361.8 321.8 359.1	293.9 335.0 356.8 376.0 414.2
4.0 244.5 287.0 304.7 324.5 351.2	296.1 338.8 357.6 378.8 416.4
6.0 276.4 307.8 315.5 329.4 322.5	304.0 336.8 345.7 345.7 355.2
5.0 276.7 304.0 315.5 329.2 322.3	304.4 337.1 345.8 360.5 355.0
4.C 278.9 310.0 330.9 324.5	306.9 339.4 347.9 362.6 357.6
UNITS SEC	
514 1 514 2 514 2 514 4 514 5	574 L 574 2 574 3 574 3 578 5
8ULK 8ULK 8ULK 8ULK 8ULK	7118 7118 7118 7118 7118 7118
R NUMBER NUMBER NUMBER NUMBER NUMBER	NUMBER NUMBER NUMBER NUMBER NUMBER
PARAMETER NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT	NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT NUSSELT
TIME 78. NUB-1 79. NUB-2 80. NUB-2 81. NUB-4 82. NUB-5	83. NUF-1 84. NUF-2 85. NUF-2 85. NUF-3 86. NUF-4 81. NUF-5

#### TABLE III (7 of 9)

	PARAMETER	STINC		
TIME		SEC	31.0	32.0
	INLET FLOW VELOCITY	FPS	84.1	35.7
2. MPI	PROPELLANT FLOW NO.1	LHS/SEC	<3C•0	C.367
		LBS/SEC	5.353	0.364
	•	LJS/SEC	0.354	0.355
•	THAP.NU.1 IN	0F0 F	34.4	34.4
	TEMP .NU. 2 IN LINE NEAR	OFG F	34.6	34.5
	ROP.BULK TEMP.AVG. IN LINE NEA	DEG F	34.5	34.5
•	SPECIFIC GRAVITY CORR TO TL ITEM 7		1.672	1.071
	FUEL PRESSURE AT TEST SECTION IMLET	<b>FSIA</b>	940.3	842.5
10. P0	FUEL PRESSURE AT TEST SECTION OUTLET	AISY	601.2	657.0
	CALCULATED PI-PO	PSID	189.1	
12. DELTA		01Sd	199.6	LH7.2
	PRESSURE IN	PSIA	\$	454.4
	TUTAL PRESSURE IN RECEIVER TANK	PSIA	23.1	23.1
15. 11	ANPS PICKUP NU.I (ANPS FLON BETWEEN ELE		1153.8	1127.6
		ANPS	1877.1	1404.6
18. DEL E	VOLTAGE ORIP BETHEEN ELFCTRODES	VOLTS	0.7	<b>6</b> •3
19. 11	PROP.BULK TENP.AT TEST SECTION INLET	DEG F	34.4	34.8
22.10	TENP.AT TEST	DEG F	113.0	
23. TSI	TEST SECTIONS UNTER WALL		417.0	930.1
24. THI	TEST SECTIONS INNER WILL	JEG F	589 <b>.</b> 4	9.7.5
25. TS2	TEST SECTIONS OUTER WALL		710.6	732.0
261 - 02	TEST SECTIONS INNER WALL		688 <b>.</b> 5	703.0
27-153	OUTER		83	604.3
20 INS	TEST SECTIONS INNER MALL	0EG F	559.5	574.0
29. 134	TEST SECTIONS OUTER WALL		563.8	582.1
	TEST SECTIONS INNER WALL		535.3	552.6
	TEST SECTIONS OUTER	06G F	465.0	474.3
CHI - 25	TEST SECTIONS INNER WALL	0EG F	436.2	444 . 5
	JE 5 STATIONS-OUTER N	Dec.F	٠	645.B
	AVERAGE DF 5 STATIONS-INNER WALL	0EG.F	621 <b>.</b> 6	5.969
	TRANSFER	BTU/SEC	6.11	12.3
34. 00UT	TRANSFER	<b>å⊺U/SFC</b>	10.4	11.0
35. ERROR	ENERGY BALANCE	PERCENT	12.49	10.51

#### TABLE III (8 of 9)

32.J 52.3 52.3 6.8 13.5 81.4 96.1	233.1 213.4 203.5 193.6 183.7 7.581	0.0089 0.012J C.0153 J.0163 0.C219 0.C219	775.2 749.4 737.1 724.4 711.7 711.7 28775.	163140. 136326. 1113394. 1117715. 91251. 20.471	+12.1 572.1 572.5 572.5 575.8 575.8
31.0 51.8 68.9 77.4 75.6 94.5	234.1 214.8 205.1 195.4 185.7 7.320	0.0118 0.0118 0.0118 0.0152 0.0163 0.0214	781.0 755.2 742.4 720.5 716.6 27708.	155182. 156182. 106750. 19833. 36387. 20.589	7.455 7.007 1.575 7.057 7.055 8.505
UNITS SEC SEC DEG F DEG F DEG F DEG F	066 F 066 F 066 F 066 F 066 F 066 F	ATU/SEC-IN2-F ATU/SEC-IN2-F BTU/SEC-IN2-F BTU/SEC-IN2-F BTU/SEC-IN2-F BTU/SEC-IN2-F	₽ 25 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25 1 2		
514-1 514-2 514-3 514-5 514-5	518-1 518-2 518-3 518-3 518-4 518-4	578-1 578-2 578-3 578-3 578-5 578-5	518-1 518-2 518-3 518-4 518-5	518 2 518 2 518 3 518 4 518 5 5	514 1 514 2 514 2 514 4 514 4
PARAMETER LIQUID BULK TEMP. AT LIQUID BULK TEMP. AT	I SATURATION TEMPBULK TEMP. 2 SATURATION TEMPBULK TEMP. 3 SATURATION TEMPBULK TEMP. 4 SATURATION TEMPBULK TEMP. 5 SATURATION TEMPBULK TEMP. HEAT FLUX-ALL STATIONS	HEAT TRANSFER COEFFICIENT HEAT TRANSFER CUEFFICIENT HEAT TRANSFER CUEFFICIENT HEAT TRANSFER CUEFFICIENT HEAT TRANSFER CUEFFICIENT HEAT TRANSFER CUEFFICIENT	LIQUID STATIC PRESSURF LIQUID STATIC PRESSURE LIQUID STATIC PRESSURE LIQUID STATIC PRESSURE LIQUID STATIC PRESSURE LIQUID STATIC PRESSURE	REYNOLDS NUMBER REYNOLDS NUMBER REYNOLDS NUMBER REYNOLDS NUMBER REYNOLDS NUMBER REYNOLDS NUMBER PRANDTL NUMBER	I PRANDTL NUMBER FILM 2 Prandtl Number Film 3 Prandtl Number Film 4 Prandtl Number Film 5 Prandtl Number Film
TIME 45. T8-1 46. T8-2 46. T8-3 49. T8-3 49. T8-5	50. 51-T81 51. 52-T82 52. 53-T83 53. 54-T84 54. 55-T85 55. PH1	56. H-1 37. H-2 3. H-2 3. H-3 59. H-3 60. H-5	61. P-1 62. P-2 63. P-3 64. P-4 65. P-4	00. KED 67. REF-1 68. REF-2 69. REF-3 70. REF-4 71. REF-4 71. REF-5	73. PRF-1 -4. PRF-2 5. PRF-3 77. PRF-5

#### TABLE III (9 of 9)

	32.0	193.2	261.0	333.0	355.2	474.2	337.6	373.7	432.3	456.6	570.3
	31.0	140.4	257.4	330.8	354.9	466.7	325.3	363.7	424.6	450.4	58.l
STINU	SEC										
		STA 1	STA 2	SIA 3	STA 4	STA 5	STA 1	SIA 2	STA 3	STA 4	STA 5
		BULK	BULK	BULK	BULK	BULK	FILM	FILM	FILM	FILM	FILM
~		NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER	NUMBER
<b>PARAMETER</b>		NUSSFLT	NUSSELT	<b>NUSSELT</b>	NUSSELT	NUSSELT	<b>NUSSELT</b>	NUSSELT	<b>NUSSELT</b>	NUS SEL T	NUSSELT
	Ē	76. NUB-1	NUB-2	NUB-3	NU8-4	NUH-5	NUF-1	NUF-2	NUF-3	NUF-4	NUF-5
	TIM	78.	79.	80.	81.	82.	83.	84.	85.	86.	87.

TABLE IV (1 of 2)

ъ.

.

,

i

4

:

:

.

### SUMMARY OF HDA HEAT TRANSFER TESTS

<b>7</b>	Tont Number	lton Anpurity 1.evel	l'ont	mut Propollant Tompr raturu	Innt atture	Inlot	llutk Propullant Tomporatu <del>ro</del>	lhulk Propollant emperatu <del>ro</del>	Forced Convection Nont Trainafor Coefficient BrTU/In. ² -see *F	orced Convuction Hont Trunnfor Coofficient hrtt//in. ² -sue *F	l'orcad Convocti	Avorage Inner Wall	Heat Flux At Tube
Cell	(1-X [[0.)	ьр. Ке2 ⁰ 3	чқт (1)	1: xpoute-!	Acturl	Veloalty FPS	Station 1	Station 5	Station 1 Inlet	Station 6 Chitlet	lloat Flux lrTU/ln. ² -Sec	Tomp.	lbestruction BTU/In. ² -Sec
-	.106	30	n.o.		2716	63 1	40.3	0°D	81.10.0	0.0102	00.0	250	7.3
	1100	96	11.0.	312	0.46	42.0	43.2	63.8	0.0128	0910'0	84.6	204	0.7
	1200	30	N.O.	32	32.8	1.87	0.14	64.0	0.0127	0.0120	3.06	318	14.1 (2)
	1051	96	.0.II	00	£.9 <del>8</del>	1.07	1,80	119.3	0.0170	0.0123	5.040	301	6.2
	1263	30	4.D.	00	02.3	10.3	1.00	116.2	1010.0	0.0211	2.30	224	
	1203	30	8.D.	00	6.0Q	10.3	1.00	0.011	0.0170	0.0180	3.108	281	*
	1204	30	N.O.	06	01.i	ίν.υ	1.70	12.0	0.0170	0.01.17	2,333	246	0.2
	1206	80	n.o.	22	1.06	44 33	43.0	1.10	C.0164	0.0210	3,302	230	0.0
	1200	90	8.D.	00	RU.2	74.0	N'00	1.011	0.4170	0.0176	3.020	27H	•
	1207	90	11.0.	00	C.14	74.0	P.00	0.011	1010.4	0,0095	2.46	307	4.6
	120n (3)	62	n.o.	22	30.7	H4.2	00'00	1-11	1010.0	0.0103	3.48	263	6.4
	1200	ųq	N.O.	22	0.65	84.0	44.0	11.10	0.01.10	0.0201	3,68	270	0'0
	1210	00	я.р.	00	ND.2	74.0	0.10	110.4	0.0102	0.0217	3.34	260	1 2
	1311	υu	n.o.	00	V. C.N	76.2	1.10	118.1	0.0141	0,0201	3.07	200	6.3
	1212	72	и.D.	00	0.84	76.0	114.8	110.4	0.0135	0,0183	3.67	326	
	1213	72	.U.N	00	1.4.4	76.3	N'10	110.6	0.0140	0910'0	91.5	Cut	1 2
	1214	13	11.0.1	00	6, 0M	70.0	C. FO	112.3	0+10*0	0.0146	3.03	316	C.H

<del>4</del>9

TABLE IV (2 of 2)

i

ł

ŧ ŧ

### SUMMARY OF HDA HEAT TRANSFER TESTS

			l tai		linlet .			1mtk	×	Porced Convection Reat Transfer	nnvection unafer			
	Tout	Tout Number	Inpurity Level	Juo.J.	Properation Temperation T		Inlet	Propollant To aporatury	? wyellant oafjerature	Coefficient WTU/In. ² -8ac	tent -Rov T	Forced Convector	Average Inner Wall	Heat Flux At Tube
Nymbola (1)	Matrix	1-X 110.)	PegO ₁	тууе (1)	Exputed	Acturl	Velocity PDA	Station 1	Station 6	Station 1 Inlet	Station D Chillet	lleat Plux hrtv/ln, ² -Sec	Temp.	l'entruction BTU/In. ² -Sec
MODIF	VOR ON	(474 1.00.0) AUM UNIVION												
0	3	9121	01	N.O.	00	v'ta	13.0	N.101	122.6	01-1010	0,0220	3.08	280	7.4
0	di.	0121	10	N.D.	78	0.00	0.14	12.2	64.0	9,0440	6910'0	3.026	524	4
	2	1181	e1	8.D.	2	0' DC	10'0K	40 °S	0, bb	0,0132	0110'6	3.017	202	, 1
	=	-121-	10	N.O.	2	37.0	80.1	40.a	6,69	0,0040	0110'0	2.016	292	8,0
0	97	1210	-	R.D.	uđ	14.10	9,95	1.001	143.0	1010.0	0,010A	2,061	277	
	11	1220	01	N.O.	0 <u>0</u>	1.04	73.7	0,4.01	123.4	1010,0	1110.6	1/0'2	3N2	6'0
0	10	1221	90	3.0.1	ę	00.04	70.0	103.2	122.4	2010'0	0.0164	2,03	280	۲.7
0	5	1221	0ų	н.ю.	25	12.0	10.2	0.1.0	7.4.7	0,0121	0,0177	100.1	204	
	1	1427	÷	h,0,	26	44.1	74.0	6.60	17.3	1009,0	0,0120	3.110	300	1.0
7	÷	4721	10	N.O.	DQ	12.20	1.40	100.1	120.2	1010'0	0,0162	2.042	270	ŋ't
7	5	UZTI	11	4.0.	2	7.45	74.2	n, 71-	46.2	21.10,0	a,utaa	110,1	248	:
	11	0771	11	1.0.	2	T'AC	10.3	47.8	67.0	1110'0	0.0150	2.032	240	Ч,ћ
	24	1221	PA	N.O.	00	1.04	10,1	Q' 68	97401	2010'0	1000'0	0.743	147	4.5
	â	1224	71	4'D.	00	0.20	4.04	l'out	114.1	1000'0	1,10,0	1.33	240	
	96	drrt	A	1.0.	8	11, 7.1	£.0£	9,19	104.2	1000'0	0000'0	NON.0	104	0.0
HITEN'	ΞĒ	11.0. denotes hurbout, 9.17. denotes CTREX 347 tube used.	irtout, A.D.		ahutdown.			ē E	lligh water Bymbolw: II	llikh water content 1.0°F by weight Symbols: Reference l'igure 14.	°f by wetkht. Kure 14.			

2

•

المالكين فاللا