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FOREWORD

This report covers the performance of Task 1l of the Propellant Improve-
ment Prosram - Iron Contamiration Effects in High Density Aecid. The tesk was
performed by Bell Aerospace during the period 1 March 1972 to 3i Cctober 1972 for
the Air Force Rocket Propulsion Laboratory, Liguig Rocke: Division, Edwards Air
Force Base, California. The work, performed in satisfaction of Air Force Contract

F04611-72-C-0026 was under the direction of Air Force Project Engineer, Lt. J. J.
Bon, LKDP.

The BAC Project Manager/Technical Director was Mr. H. Joseph Loftus.
Other principal contributors in accomplishing the work were:

A. H. Blessing R. Kubis

N. Engel E. E. Seymovur
H. Ph. Heubuschk J. C. Tynan
R. D. Kalp T. F. Zack

This report was submitted and apnroved by H. Joseph Loftus. The con-
v ; trartor's secondary report numbe = is 8643-928002.

This technical report has been reviewed and is approved.

J.J. Bon 1st Lt. USAF
Project Engineer
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ABSTRACT

The objectives of this task were to establish the forced convection hect
transfer characteristics of standard and modified High Density Acid (HD4) and the

effect of iron impurity level up to 100 parts per million as Fe9O3 or. HDA heat
transfer.

Thirty tests were conducted utilizing resistance heated, circular, 6061T6
aluminum tubes. Results showed that normal nucleate boiling did 2ot cecur with
either of the HDA compositions. As the tube wall temperature increased above 300°F
it was geperally observed that heat iransfer was adversely affected. This effect was
manifested by an increased tb :rmal resistance which resulted in geperally higher
wall temperature to support a given heat flux.

The experimental forced convection heat iransfer coefficients were upaf-

fected by iron impurity level and exhibited increased values with increased bulk
temperature.

Modified HDA when compared to Standard EDA, produced abcut 10 per-

cent lower hezt transfer coefficients and somewhat higher beat flux at tabe destruc-
Hon.
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1.0 INTRODUCTION '

Previous HDA work was conducted by BAC under Lockheed Mi~siles and
Space Company Subcontract to Air Force Contract FO4701-68~C-0235 in 1970
(Reference 1). This program :nvolved Agena Engine fire test investigations with ‘
HDA/UDMH and HDA/UDMH + Si propellants. Although satisfzatory engine operation 1
was demonstirated the thrust chamber thermal margin could not be defined since the
HDA coolant properties were unknown. Further, s.uce a Modified HDA containing

PFg inhibitor was developed under Task I a need for experimental determination of
its coolant properties was required.

Iron contamination of HDA occurs during manufacture and storage and
the present procurement specification requires maximum limits of 20 ppm as iron
oxide (FegOs3) for procurement and 30 ppm for use. These limits resulted from
early Agena engine development fire tests during which thrust chamber overheating

occurred. This cverheating was atiributed to iron contamination of the JRFNA cool-
ant (Reference 2).

"

The overall objective of this program is to improve the propelliants used
in the Agena and other propulsion systems. As a result of conducting this task the
foliowing specific objectives were achieved:

I

(1) The heat transfer properties of Standard and Modified HDA ere
established; and (2) the effect of iron impurity level up to 100 ppm as Fe;04 on
heat transfer of Standard and Modified HDA was determined.

|
|
3
a
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i
|

UK A AT

2.0 SUMMARY, CONCLUSIONS, AND RECOMMENDATICNS
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2.1 Summary

Heat transfer tests were concucted with resistance heated 6(61T6
aluminum, 1/8-inch diameter tubes to determine the coolant characteristics of
Standard and Modified HDA. The effects of iron impurity level, propellant inlet
temperature and simulated engine shutdown were established. Thirty tests were
conducted, 15 with each type HDA. Coolant conditions, veloeity and pressure, were

those characteristic of the Agena thrust chamber whickh is regeneratively cooled
with HDA.

2.2 Conclusions

As a result of performing this work the following conclusions were
. obtained:

Normal nucleate boiling did not occur with either of the HDA composi-
tions. As the heat flux was increased the tube wall temperat.re increased wauch

i
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above the saturation temperature of 280°F. Film boiling cooling was apparent up to
wall temperatures of about 900°F when tube failure occurred. As the wall tempera-
ture increased above 30u°F, heat transfer was adversely affected with both HDA
compositions at all levels of iron impurity.

Tubes which had previously been operated at wall temperatures above
300°F with shutdown, generaliy exhibited increased thermal resistance during the
subsequent test. For Standard HDA, this effect was observed to vary with iron
impurity level, i.e., slight at 30 ppm, nril at 55 and 72 ppm and pronounced at 96 ppm.
This effect was observed as an increased thermal resistance which caused generally
higher wall temperatuires to support a given heat flux. This increased thermal re-
sistance was attributed to scale formed on the inner surface of the tube. Qualitative
analysis of the scale from a sectioned tube showed its cemposition to be inorganie
sulfates and nitraies, with aluminum as the major metallic component.

Tes . with Modified HDA showed that increased thermal resistance was
exhibited at each of the iron impurity levels of 10, 50 and 97 ppm. Tests with tubes
which had previously been operated up to near engine conditions and shutdown by
venting to simulated altitude conditions generaily indicated prescnce of the increased
thermal resistance. Slight scale formation was observed on the sectioned tubes,
which chemical analyses showed to be inorganic nitrates, with aluminum as the major
metallic component.

Iron impurity level had no effect on the forced convection heat transfer
coefficients which were derived from initial tube tests.

Comparison of results showed that the Modified HDA exhibited about 10%
lower forced convection heat transfer coefficients but somewhat higher heat flux at
tube destruction than Standard HDA.

The effect of propellant temperature followed the expected trend of in-
creasing heat transfer coefficient with increased bulk temperature.

Thermal analvsis of the Agena thrust chamber using the results from the
investigation indicate that adequate thermal margin exists for the most severe cool-
ant side conditions.

2.3 Recommendations

Based on results from this investigation, it is recommended that the
present HDA specification limits for iror impurity be relaxed. Agena thrust chamber
fire tests are recommended ic demonstrate operation with higher iron imourity
level, prior to HDA procurement and use limits specification changes.
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3.0 TECHNICAL DISCUSSION

3.1 Test Plan

B —

Thirty tests were planned to establish t.e effects of soluble iron impurity ;
on the heat transfer characteriatica of HDA. Effects of the impurity level were
determined with both Standard and Modified HDA at two levels of bulk inlet tempera-
ture. Composition of Standard and Modified HDA is included in Table I. In addition,
simulated shutdown under altitude conditions was evaluated. The following test
variables and associated levels were investigated:

Percent Iron Impurity 3 levels 20 ppm
60 ppm
100 ppm

Type HDA 2 levels Standard
Modified

Type Test 2 levels W/0O Shutdown
W/Shutdown

Bulk Inlet Temperature 2 levels 32°F

The minimum number of tests necessary to conduct a statistically com-
plete test program is 23 x 3 =24. Furthermore, simulated shutdowns require two
tests which increases the total number of tests to thirty-six.

These thirty-six tests can, .nder certain assumptions, be reduced by
conducting a partial factorial test program. Therefore, assuming that the second
order interacticn among the variables with two levels are negligible, and noting that
the effects of percent impurity are of primary importance, it was decided to frac-
tionalize with respect to only the variables with two levels. The resultant test plan

was one half replicate of the complete 23 experiment, with the following test series
conducted at each impurity level.

Bulk HDA
Temperature lvp_e_ Test Type
32° STD W /0 Shutdown
90° STD W/Shutdown
90° STD W/O Shutdown
32° MOD W/Shutdown
32° MOD W/O Shutdown §
90° MOD W/0 Shutdown
3
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A matrix consisting of 18 tests as shown in Table II was planned for initial evaluation.
This left 12 tests available to further define the relatiouzhip between the response
variables and the impurity level.

3.2 Test Specimen

Each test specimen (Figure 1) was constructed from a 10.7 inch seamed
tubing section of 6061T6 aluminum of 1/8-inch nominal tube diameter. The actual
outside diameter of the tube varied between 0.1258 and 0.1265 inches with a wall
thickness of 0.020 = 0.002 inch. The 10.7 inch section allowed six inches for the
heated section, four inches for the two electrodes, and 0.7 inches for attachment to
the upstream and downstream adapter fittings.

The heated lengtb of 6 inches was selected for two reasons:

(1) It provided sufficient electrical resistance to generate a heat flux
well bevond the expected maximum burnout heat flux for the test
program.

(2) It provided a convenient length with enough room to attach five
surface temperature thermocouples.

Aluminum sleeves were joined to the 606176 alumninum test sections by
an interference fit. This allowed for the attachment of large copper bus bar clamps
for electrical power input. Because of the very small resistance associated with this
bus bar clamp technique, almost all the resistance and thus the temperature rise,
occurred in the six inch test section.

Surface temperature thermucouples were ma. by tightly twisting No. 28
gauge chromel-alumel wire together and forming a junction bead by arec welding,
using an inert gas ané¢ a nor-consumable tungsten electrode. The thermocouple junc-
tion bead was made as small and as smooth as possible and then turned to the inside
to contact the tube surface. The thermocouples were electrically insulated from the
tube surface by an initia> uniform ceramic coating of aluminum oxide which was
0.005 + 0.001 inch thick. A support was installed across the pressure fittings approxi-
mately one inch from the top as zhown in Figure 2, and the individual leads were
formed around the tube, pulled taut and secured to the support. The outer insulation
was pulled duwn and a recheck made of each thermocouple bead to assure contact to
the initial coating. A second coating of aluminum oxide approximately 0.030 inches
thick, was then applied over the entire length of the test section of the tube to securely
fagten the surface thermocouples as shown in #igure 3.

3.3 Test Apparatus
Power was provided by four 28 volt dc - 75(: ampere, compound-wound
Hobart motor generators. These units were connected in an equalizer bus connection

in the positive leg, which tied their series fields in parallel. A contactor rated at

4
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1000 amps dc, complute with arc chute and blowout coil was installec in the negative
leg of each machine, so that it could be switched on-line individually. The field of
each generator was separately excited by a 0-72 vdc supply, resulting in a saturation
no-load terminal voltage of 50 vde. Generator bus hars and cable were sized for
1000 amps per machine. The entire system was wired for a capacity of 4000 amps.

When the tube failed the generators viere shut down, the upstream and
downstream prepellant valves were closed and a CO, fire extinguishing system was

automatically turned on. In all cases the termination of the test was well controlled
with no test stand damage.

Shutdown simulation tests at 70% of burnout were terminated oy auto-
matically switching the generator contactors off, closing the upstream propellant
valve and energizing a three-way valve. This ducted the downstream section of the
test specimen to a vacuum tank, all in a timed sequence (see Figure 4).

The power source characteristics map shown in Figure 5 was constructed
to depict the voltage and current values expected. Only aluminum tubes with 0.020
inch wall thickness were available, although 0.015 inch wall thickness tubes were

sought. Superimposed cn the map are lines of constant heat flux cover'ng the expected
range for the HDA.

The propellant supply svstem is shown schematically in Figure 6. The
supply tank and receiver tank each have a capacity of 100 gallons and can be pressur-
ized to 1200 psia. For this program the supply tank contained 90 gailons of propellant
which allowed test durations of up to 60 minutes for an 1/8 inch tube at a flow velacity
of 75 feet per second. Both the supply and receiver tanks were pressuri:ed wiwn a

regulated gaseous nitrogen source to obtain the required 750 psia opera'ing pressure
at the test specimen.

Propellant was conditioned to the required inlet temperati -es by a system
consisting primarily of a circulation pump, and a steam heat exchangz ¢ for hot condi~
tioning or a COy cooled brine exchange for cold conditioning. It is # ~losed loop
system, circulating the propellant from the supply tank only, and car: provide uniform
propellant temperatures over the entire range of 39° to 200°F. Du- :ng the test the
propellant conditioning system was isclated from the supply tank.

A 1/2 inch diameter line carried propellant to the test section. I'low was
controlled by two parallel valves (one for cezrse adiustments and one for fine adjust-
ments) which were located downstream of the test section. The test section zould be
isolated from the supply and receiver syvstem by upstream and downstream pneumatic
operated valves. Under normal operziing conditions, flow through the test specimen
was remotely controlled by these valves. Whenever a rapid drop in pressure occurred
(as is the case at tube destruction) a pressure switch automaticaliy closed these
valves, isolating the test section. The receiver tank was vented to sea level atmos-
pheric conditions during all tests except those designed to determine the effect of

[3]]
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simulated altitude shatdowns. Altitude simulation capability of approximately 100,000
feet was provided by an aspirator vacuum tank and cold trap connected to the three-
way type propellant valve located immediately downstream of the test section.

3.4 Test Instrumeaniation

Standard instrumentation provided the capability of recording propeilant -
flow rate, supply and receiver tank pressures, inlet and outlet pressure and temper-
ature, surface temperatures, and the current flow and voltage drop.

Pressure measuraments were made with Taber Teledyne (PSIA) trans-
ducers and Statham (PSID) transducers. Transducerc vsed to measure the inlet and
outlet pressures were electrically isolated from the heated test section by special
insulation blocks. The demonstrated measurement uncertainty for this type of trans-
ducer is +0.7% (three sigma) of nominal output.

Propellant temperatures were measured using probe tvpe chremel-alumel
ungrounded thermocouples, which are imbedded in a mineral insulation and protected
from the propeliants by a stainless steel sheath. The demonstrated measurement
uncertainty for these thermocouple probes is :2.0°F of nominal temperature.

Surface temperatures of the test tubes were measured with thermocouples
made from No. 28 gauge chromel-alumel wire with an asbestos/glass fiber insulation.
Accuracy of these thermocouples is rated at :4.0°F up t{o 530°F and :0.75% from
530°F to 1400°F. All of the thermocouples, four propellant and five surface temper-
atures, were referenced to 150°F using a Pace Reference Junction Box.

The power delivered to the test section was determined by measuring the
current flowing in the circuit and the total voltage drop across the heated section of
the tube. Current was measured with a shunt calibrated to generate 50 mv at 2000
amps. Voltage was measured directly across the test section by wires attached to
the bus-bars. To obtain a millivolt cuiput, the measured voltage was divided by a
calibrated circuit.

—
T g

Redundant Fischer-Porter turbine-type flowmeters were used to measure
propellant flow rates. Prior to the initiation of the test program the flowmeters and
their installation line sets were calibrated as a unit in water. At least two calibraiions,
over the expected region of operation, were conducted on each flowmeter set and an
average sensitivity deriv:d for test data reduction. Measurement uncertainty associ-
ated with this type of flowmeter has been demonstrated to be approximaiely =1.0%.

[CIRAH Lh'd ZRC I A L I

Millivolt outputs of the transducers, the current level and voltage drop .
across the test specimen were patched to signal conditioners and recorded on a Brush
: Recorder, with an accuracy of +3% of full scale; A CEC Oscillograph, with an accuracy .
' of less than :5% over the range of the galvanometer used: and on a Beckman Model
210 Data Acquisition System, with an accuracy of :0.1% for 20 millivolt full scale
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input. The Beckman 210 data acquisition system converts the conditiored millivolt
outputs of the various transducers and measu--ed devices to a digital data bit and

records the data on magnetic tape in a format suitable for data reductior on an IBM
360 Model 44 computer.

3.5 Test Procedure

General procedure for conducting a test was to first conditicn the propel-
lant to thi desired inlet temperature by circulating from the supply tank with aa
appropriate heat exchanger. The test specimen was installed in the test stand, see
Figures 7 and 8, pressure tested and an instrumentation check made. The next step
was to pressurize the propellant system to the flow control valves by means of the
gaseous nitrogen regulator. Flow control valves were then adjusted to obtain the
proper inlet velocity and operating pressure at the test specimen. Once the desired
propellant system conditions were obtained, 2 10 second data file of the test para-
meters, such as supply pressure, flow rate, intet and outlet temperature and pressure,
and receiver tank pressure was recorded on magnetic tape.

Power was then applied to the test specimen in predetermined increments.
Once steady-state was attained at each increment, as evidenced by a visual recording
of the test specimen outside wall thermocouples, a 10 second data 1ile of all pertinent
parameters was recorded on magnetic tape. This procedure was followed until either
70% of the anticipated burnoui point or the anticipated simulated shutdown point was
achieved, deperding on the natur> of the test being conducted. The data recorders
were then tuired on and continuous recording of data was made as power was incre-
mentally applied until automatic shutdown occurred (in the case of burnout). In the

case of simulating an altitude shutdown the test engineer manually terminated the test
from the control panel.

3.6 Data Reduction

Test data were obtained from the electrical output of the various pressure
transducers, flowmeters and thermocouples. The outputs were converted to and re~
corded as digital data on a magnetic tape. These data were then used as ‘nats to a
series of assembler and Fortran language programs which performed the calculations
necessary to produce engineering units and data. The physical properties of the tube

materials and propellants were inputs to these programs. These data were obtained
from References 3 and 4.

The following describes the engineering rationale and resultant equations
which were programmed for the computer.

The neat flux into the liquid at any point is given by the following equation:
g -
Q/A = (0.000948) (AE) (D BTU

() (I.D) (D) Sec-in.2
Heat flux was treated as a constant along the length of the tube.
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Bulk temperature at any station is given by the following equation:

. S
Tg =T; + (0, "T) 1 F

This assumes that no significant change in temperature occurs outside

the heated section, and that the temperature variation along the length of the tube is
linear.

The equation for local static pressure is similar to the equation for bulk
temperature. However, it is assumed that pressure drops linearly between the two
pressure tzps which are placed at either end of the 11-inch test section and a single
phase flow exists. The pressure is therefore given by the follcwing equation:

_ 25+X
P =P ~(P-P) 11

Inside wall temperature at each thermocouple station along the heated
section of the tube was calculated from the thermal conductivity of the tube material
and the measured power input, surface temperature, and tube dimensions, i.e.

Ku'x‘etal = Az BTs
1 \1/2
2 B, 2 Lo. 0.D.,_LD.
Ty, = -A+ 47428, ) AT + — T " -Q/A. T3 an(F50) 3
\ (55

B

Where A and B are the coefficients of the appropriate thermal conductivity relation-
ship.

Epergy transfer into and out of the system is giv -n by the following
equations:

©
[}

0.000948 (AE) (I) L0
n sec

-

Qoui: w Cp (To-Ti-(To-Ti) Q/A = 0\)

Ad of the electrical energy releazed into the system is assumed to be
converted to enthalpy increase of the fuel. Heat losses due to convection and radiation
have been calculated and found to be regligible. Change in the kinetic energy of the
fluid as it passes through the system is negligible. The (To-Ti)Q_’-\ o term is

included to 2account for frictional effects and thermocouple errors which are oresent
before power is applied.
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Flow rate used it “*e egquaticn above was derived from the measured ‘
volumetric flow rates:

W =p.4
Whire q is the measured volumetric flow rate, and p, is the propellant density.

The heat transfer coefficient can be calculated at any station by applying
ihe equation chown beiow.

h = Q/a (T_-Tp)

Flow velocity is calculated by 2pplying the simple cpe-dimensional con-
tinuity eguation:

2
1.D.7)
7 = t2 P S
vV =W (p) @x143) (=)
where 1.D. is the inside diameter of the appropriate test specimen.

The computer was alco programmed to calculate the following dimension-

less correlation parameters with fluid properties evaluated at local bulk temperatures
and estimated mean film temperatures.

Nusselt Xxumber Nu = (h)K(Il’-D')
Reynolds Number Re = (I-D->p(¥) {(P)
C .
Prandtl X-um}nr Pr = ( p{ (p)
hl{_

These parameters were utilized to monitor test results.

3.7 Descripiion of the Heat Transfer Process

A graptic illustration of the heat transfer process for forced convection
turbulent ficw of normal flu'ds is shown in Figure 9. With reference to this figure,
ihe heat transfer proccss may be explained as foilows:

a. The bouadary layer characteristics for the nonboiling condition are
shown. The heat is transferred through three layers.
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Layers Mode of Heat Transier

Lamipar Ssb-layer Cornduction
Buffer Layer Couduction and Eddy Currer’s
Turbalent Layer Eddy Currents

In this 1egion the thermal resistance to heat transfer remains ~on-
stant {or a given flow rate, geometric configuration and type of fiuid. Tke driviag

force is the temperafire difference between the heated surface ard ccolanmt temper-
ature.

b. If the heat transfer rzte is sufficiently high, the beated suriaze
i{emperzture may exceed the saturation temperature of the coolznt, and nucleate
boilinz will occur at the heated surface. The agitation of the boundary layer caused
by these fast moving bubbles, de< -ezse the thermal resistance tc heat transfer to
such zn exient that it is possible to obtain increased bezt traansfer rates with no change
in heated surface temperature. As the rate of heat transfer increases, tke bubble
population increases to such a point that 2 vapor layer covers the heated surizce.
From this point the heat transfer process may proceed by two means.

c. I the thermal resistance offered by the gas film is low enough, stabi-
lized film beiling will occur. The heat will s> transferred zcross this vzpor film into
the liquid. Stabilized film boiling wiil usually occur =t high coolant velocities and at
pressures above the coolant's critical pressure. Faijure cf the heated surfzce occurs
wken the {emperature exceeds the melting point or the working pressure exceeds the
stress limit of the material at this higher temperature.

d. If the thermal resistance of the vzpor film is grezt enough, the

temperature of the heated surface will rise to the melting point of the material and
barpout will cccur.

3.8 Test Results

Shown in Figure 10 is the beat flux versus wall temperature for Test 1199
which typifies the general trend of results obtained with the HDA. It can be seewn that
wall temperzature increases with heat fiux to values much in excess of saturztion.
Normal nucleate boiling did not occur when the wall t2mperzture increased sbove the
sataration temperature of 280°F. An zudible oscillation was cbserved at wall temper-
atures in excess of about 400°F. The fube was apparently cooled by film boiling und
the oscillation was zttritated to two phase flow. Aleso, surface temperatures were
non-uniform with abnormal temperature gradients indicated along the tube length in
this film bciling mode. These temperature gradients increasad with heat flux until
tube burnout occurred. Xf{ezsured and derived data for Test 1139 are included in
Table il which shows tube wall inner wall temperzatures of 908°F near the iclet
(Station 1) and 445°F near the outlet (Station 5) at a heat flux (Q/A of .58 BTU/in.”
sec. The average inside wall temperature of this data point was 637°F.
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This test was 2 repezt of the izitial test coaducted with a coolant iniet
temperzature of 32°F. This test condition always resulted in tube wall temperature j
maximums znd tube destruction pear the inlet end. Tesis «t 59 F inlet resulted in
tube wall temperziure maximams and tub2 destruction near the outlet end. Because i
of the zbnormal resuits optained from the initial test some additional verification {
tests were conducted including one with CRES 347 tube material. )

Results irom the CRES 47 tube iesting were consistent with the §081
aluminum material testing except thzt the former exhibited much bigher heat fiux at
tube destruction. Thir was atributed to the highe: temperature capability of the
CRES 347. Wall temperatares in the range of 1862°F were indicated znd the tube

w2s observed to glow during this test. A summary of hezt transier test results is
presented in Table IV.

3.8.1 Effect of Ircn Impurity Level

In accorgance with the test mairix the first 1est series was conducted
with Staadard HDA containing 30 ppm iron imparity 2s Fe,03. This impurity level
was somewhzt higher than the 2u ppm level originally planned, however, it was con-
sidered satisfzactory for tse since it conformed to the maximum iron concentration
use imits allowed in MIL-P-7254F. Tests with Standard HDA were then conducied
at 96, 35 znd 72 ppm. lmpurity concentrztior was cozirolled by iron niirate zddition
or dilution technigues. Resulls from these iesis are presented in Figares 11, 12, 12,
and 14 which show the beat flux versus wall temperature characteristics cbizained.
Ezch of these figures include the shutdown fest during waich the tube was operated
up io the heat flux condition correspording to that of the Agena thrust chamber throat
stztion and then sub ected to a simulzated altitude shutdown afier which tne same tube
was then operated to burnout. As the wall teraperature increased above 300°F heat

transfer was adversely affected with both HDA compositions at all levels of iron
imparity.

Tubes which had previously beet coerated at wall temperatures zbove
300°F with shutdown, generally exhibited increased thermal resistance during the
subseguent test. For Standard HDA this effect was observed to vary with iron im-~
purity level, i. e, slight at 30 ppm, nil 2t 55 2nd 72 ppm and pronounced at 96 ppm.

This effect was observed as a reduced hezt transfer coefficient or an
increase in thermal resistance which is indiczted by the generally higher wall
temperatures reguired to support a given heat flux. This increased thermal resis-
tznce 1s apparently caused by scale formed o1 tube inner surface. Inspection of
Figures 11-14 indicates that the scale zppears to form, as reflected by the change
in slope, at hezt flux values zbove 3.0 BTU/in.2 sec with corresponding wall temper-
atures above 300°F. The tnbe from Test 1207 which was sectioned for observation
and analysis, showed a tan gel over a brown stain. Qualitative analyses by emission
spectroscopy and infrared, revealed that the scale was composed of inorganic sulfates
and nitrates with alumirum 2s the major metallic component.

f @ IR 8 e A 0w
. MW,%MWM. (RYPRPPTITT S

- _ o it et
m e = =




Similar tesis were then conducted with Modified HDA (0.55% PFg) ccx -
taining iron contaminant levels of 10, 50 and 97 ppm.

The 10 ppm level for the initial series was the irocn measured upcn chem- :
ical apalysis after blending the Modified HDA in the test cell tank. Subsequently, the
impurity level 'vas adjusted by adding iron nitrate.

Shutdcwn tests were conducted with a propeliant inlet temperature of
32°F, and the 10 ppin tests were repeated at a S0°F inlet temperature. Results pre-
sented ir Figures 15, 16, and 17 show that the increased thermal resistance was
indicated at each of the contaminant levels investigated. However, the variation
between the initial and burnout test was somewhat different than that observed with
Standard HDA. 1t was observed from these tests that the effect was greatest at 50
ppm with less degradation at 97 ppm. No cause for this could be established, however,
it should te poted that chemical analyses indicated tke total solids of the Modified HDA i
increased from 0.026% initially io 0.120% following Test 1223, and finally to 0.140% at
the conclusion cof the program. It is possible the higher solids which indicates nigher

concentrztion of aluminum nitrate altered the scale composition formed during tests
subsequent to Test 1223.

Tubes from Tests 1223 and 1226 were sectioned for observation and
analysis. It should be noted that each of these tubes was inerted prior to sectioning
with methylene chloride while the tube from test 1207 was iperted with water. This
inerting fluid was selected because it has little or no dissolving effect on the scale !
deposit. Results of the chemical analyses which showed there was less deposit when
PF5 was vsed as inhibitor are included below. The major metallic component was
aluminum. Infrared showed mostly anhydrous inorganic nitrates. Hydrates -nd
suifates were also discernible in the deposit formed from Standard HDA. _.:afer ;
than attributing the variance in the aralysis results to a diffeent reaction or material,

it was concluded that the water inerting used on Test 1207 formed the hydrates and
removed most cf the nitrates.

TUBE ANALYSIS RESULTS

Appearance
Test Of Tube Inhibitor Spectroscopic Infrared
X1-1207  Moderate coat, tan HF

Al > Fe, Cu Hydrated Sulfates
gel over brown film

yoenr

Hydrated Nitrates :
2— X1-1223  Trace of white salt PF. Al > Fe, Cu Anhydrous 3
{ Inorganic Nitrates 3
b § X1-1226  Small amount of P¥s £’ > Fe, Ni, Anhwdrous 2
! white salt over Cu Inorganic Nitrates i\%
brown stain =
: =
’ 12
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3.8.2 Effect Of Inlet Temperature

Temgerature efiects were included by conducting the heat {ransfer tests
at 32 and $0°F. It was previously mentioned that all of the burnout tests at 32°F
inlet temperature exhibited maximum tube wall temperatures at Station 1, near the
inlet. Tests at 90°F inlet temperature indicated 2 maximum tube wall temperature
at Station 5, near the tube outlet. These effects were as predicted by calculation of
the forced convecticn heat trausfer coefficient hy according to the classical corre-

0.3 £\ 0.4
lation - hy = 0.0265 ( D XP> (ﬁk_) k

D -

The hy, is a function of temperature since the coolant properties vary
with temperature. This temperature effect was calculated to show the variation of

hy over the inlet temperature range evaluaied using the properties of Reference 5 as
shown below:

| HDA Properties

’ ; 32°F  90°F

} i Density g/ce 1.677 1.612
! Viscosity, Centipoise 4.95 1.88
P Specific Heat, ¢, BTU/Lb °F 0.446  0.446

[ i : Thermal Conductivity, K BTU/Br Ft °F 0.189 0.184

i Substituting in the hy equation:

0.8

——————y amcmmtene e ses  a

= b 9o [ DV1612 1.88 0.4 .189
| L™ _ 1.88 p 0.184 D
h, 32 1.677 c 4.95 184
: L sy P 3189 D
r
= 2535 (03010 1.03
¥ h, 90
H L _
¢ 32 1.495
i

Therefore, the hy at 90°F is shown to be 50 percent greater than the

valve obtained at 32°F. The lower hy at 32°F results in higher wall ten:perature
to support a given heat flux.
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Actual forced convection heat transfer coefficients derived from tests of i

this investigation are presented in Table IV and graphically in Figure 18. Data shown ‘
in this figure were nermalized to 75 ft/sec inlet velocity. The data follows the pre- :
dic’2d trend but the values were generally greater. : ‘

PR

3.8.3 Effect Of Velocity

. -

The final three tests were conducted at 30 ft/sec inlet velocity corres-
ponding to Agena thrust chamber section conditions. Results shown in Figure 19 and
Table IV show both lower forced convection heat transfer coefficient and heat flux at
tube destruction than obtained at 75 ft/sec inlet velocity.

3.8.4 Analysis Of Test Results

A regression analysis of available data from the heated tube test program
was conducted to determine the sensitivity of the heat transfer coefficient to various
- test variables. The variables considered in the analysis were:

Propellant (Standard or Modified HDA)
Iron Impurity Level
Bulk Temperature

Non-linear influences of hulk temperature were also conzidered. Of the data avail-
able three tests were rejected as outliers, runs 1201X-1 (Station 5), 1212X-1 (Station
1) and 1222X-1 (Station 1). However, with the exception of the form of the regression
equation obtained, the results concerning the statistical significance of each variable
would have becn essentially the same even if all the data had been used.

|
|
i
!
!
i
!
!
i
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The following resuits were obtained:

At e L I VRN IS TN TP L ST oA L AR TRY SRR LT SRR AL Sty R T S

s ¢ kT ST n e
-

3 a. The type of propellant used does seem to influence the value of the :
heat transfer coefficient. Use of Modified HDA restlts in a decrease in the heat
transfer coefficient of about 10%, 0.001 BTU/in.z-sec °F. :

e

b. Over the range tested the ivon impurity level has no effect upon the
heat transfer coefficient.

c¢. Bulk temperature has a strong non-linear influence upon the heat
transfer coefficient.

e

AT
o
b

1

newm g e

On the assumption that the required function should be monotonic a fit of
the form h = TB was established. The resultant expression plotted was given by:

0.3178

4
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hy = 0.00425 T
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3.9 Application To Agena Thrust Chamber

Peak heat {lux of the Agena nozzle at the geometric throat was established
based on previous water cooled fire tests with HDA/UDMH + SO. This is the gas side
heating rate imposed across a unit nozzle surface area which differs from the heat
flux of the heated tubes used in this program and the coolant passages of the thrust
chamber. Since the coolant pagsage is non-uniformly heated with most of the heat
flux imposed on that part of the circumference exposed to the gas side, a two dimen-
sional analysis is required to establish heat flux rates and temperature distribution.
An analysis was conducted to assess the effect of the experimental results from this
program on the Agena thrust chamber thermal conditions. Allowance was made for
coolant side scale formation which occurred on most tests at wall temperatures above
300°F by utilizing two values of coolant characteristic as shown in Figure 20.

The chamber throat station wall element is presented in Figure 21 which
also inciudes coolant bulk and gas side conditions, and resulting temperature distri-
butions. A maximum gas side wall temperature of 501°F, which is safely below the
maximum design allowable value of 750°F results. Assessment of margin based on
peak nucleate boiling heat flux was precluded since HDA exhibited no nucleate boiling
character.
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TEST NO: 1199 CELL: X-1
TEST DATE: 9-8-72

PROPELLANT TEMPERATURE: 32°F
INLET VELOCITY: 75 FPS

METAL TYPE: ALUMINUM

TUBE SIZE: 1/8 INCH

PROPELLANT TYPE: STANDARD HDA
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PERCENT IMPURITY: 30 PPM IRON
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Figure 10. Heat Flux Versus Wall Temperature - Test 1199
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PF_
5

Total Nitrates

Fe 203

TABLE I

HDA COMPOSITION (WEIGHT %)

0.05 max.

0.003 max.

0.4-0.7

0.05 max.

0.003 max.
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TABLE @I l

TEST MATRIX

Bulk HDA
Temperature - °F Type Test Type

32 STD W/O Shutdown

80 W/Shuidown
90 W/0 Shutdown
32 \W/O Shutdown

99 W/Shutdown
ya W/0O shutdown
32 /O Shutdown

90 W/Shatdown
90 STD W/0 Shutdown

i . 10 20 32 MOD W/Soutdown
- 11 20 32 W/O Shutdown
- 12 2¢ 30 W/O Shutdown

! 13 60 32 W /Shutdown
i 14 60 32 W/O Shutdown
g i5 60 90 W/O Shutdown

16 100 32 V¢ /Shutdovn
17 100 32 W/O Shutdown
i8 190 ¢ MOD W/0 Shutdown

i 19 through 36 (1)

The Iollowing conditions are fixed for ail test.:
Velocity = 75 Fps
Bulk Pressure = 750 Psia

‘Tube Material -- 645: Aluminum

Note (1): To be determined
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