
PIMP V AN

AD-755 370

MAGIC III: AN AUTOMATED GENERAL PURPOSE
SYSTEM FOR STRUCTUAAL ANALYSIS. VOLUME
IIL. PROGRAMMER'S MANUAL

A. Michael Gallo

Bell Aerospace Company

Prepared for:

Air Force Flight Dynamics Laboratory

July 1972

-DISTRIBUTED BY:

Nation Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

,. . w .. ,

AFFDL-TR-7242
Q VOLUME III

to MAGIC III: AN AUTOMATED GENERAL PURPOSE
SYSTEM FOR STRUCTURAL ANALYSIS

VOLUME III: PROGRAMMER'S MANUAL

A. MICHAEL GALLO

BELL AEROSPACE COMPANY

TECHNICAL REPORT AFFDL-TR-72-42, VOLUM- IT,

JULY, 1972

Approved for public rleae; distributlo ulmited.

Retproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

U 5 DeorimanI of Commerce
Sp=lng I.d VA 221S1

AlA FoRCE FLGrTD'YNAMlCS-LADORATORY
AIR FORCE SYSTEMS COMMAND

Gr-PATTERSON; AIR FORCE BASE, OH~IO

NOTICE

When Government drawings, specifications, or other data
are used for any purpose other than in connection with a
definitely related Government procurement operation, the United
States Government theroby incurs no responsibility nor any
obligation whatsoever; and the fact that the government may have
formulated. furnished, or in any way supplied the said drawings,
specifications, or other dat, is not to be regarded by implication
or otherwise as in any manner licensing the holder or any other
person or corporation, or conveying any rights or perm-ssion to
manufacture, use or sell any patented invention that may in any way
be related thereto.

DC [: :Ak 0

I j

ay
I."

Copies of this report should not be returned unless return is
required by security considerations, contractual obligations, or
notice on a specific document.

AIR FORCE/56710/1 Dcnmb" 1972-400

- -~ - Mir

Unclassified
Securit Classification

I'SeCudri classificaion of title, body of abstract and indoxi annotation mest be onteted when the overall repot to classified)

ORI..INATING ACTIVITY (Cu.Tnate author) Ia.. REPORT SECURITY CLASIFICATION
BellAeropac ComanyUnclassified

Buffalo, New York 1424026 "uA
3. REPORT TITLE.

MAGIC III -An Automated General Purpose System for Structural
Analysis -Volume III - Programmer's Manual

4. DESCRIPTIVE NOT ES (Type of repoti and Inclusive dates)

Final Report
3. AU TNOR(31 (First name, mid.dle Initial. lost nlame)

A. Michael Gallo

S. REPORT OATC 74. TOTAL NO. OF PAGES 7b. No. or Mess

August, 1972 ______ _____

a.CONTMACT OR GRANT NO. So. ORIGINATOR'S REtPOrT ,JUMOCRISI

AF 33615-71-C-1390 A.FFDL-TR-72-42 - Volume III
b. PROJECT NO.

1467 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

146Ta k02 o Sb. C)T,4ERf REPORT NOS? (Anyoghelnumbor telmay ba assalned

30. OISTRIBUTION STATEMENT

This document has been approved for public release and sale;
its dietribution is unlimited.

It. SUI-PLII1,90,TARY NOTES 2. 11PONSOAING MILITARY ACTIVITY

A41r Force Flight D:'namics Laborator,

T1one Structures Division for

13. ASISTRACT
An automiated general purpose syistem for analysis is presented.

This system, identified by the acronymr, "MAGIC III" for Matri
Analysis via Generative and Interpret~ive Computations, is an extension
of the structural analysis capabilit., available in the initial
MAGIC Syszein. I4AGIn, III provides a powerful framework for imple-
mentation of the finl t~e e.Lement analysia technology and provides
diversified capability for displacement, stress, vibration, aa'i
stability analyses.

Additional elements have been added to the MAGIC element library
in this phase of 14AGIC development. These ere the solid element~s;
rectangular prism, tetrahedron, triaqngular prism, symmetric
triangular prism, and triangular ring (asymmetritcal loading), .lsci
included are the symmetric shear web element and a revised qusd.'I-
lateral thin shell element. The fin:lze elements listed include
matricas for stiffness, mess, prestrain load, thermal load, distri-

-buted mechanical load, pressure and stress.
Documentation of the MAGIC III System is presented in three

parts; nabieJly, Volume I: Engineer's M~anual, Volume !I: tUserle
Manual and Volume III: Programmer's Manual.

DD I NOV 0.11473 Onclassified

Sec'jr C! "stI'c*:ton

K4. LINK A LINK 8 LINK C

POLK WT ROL WT POLK WY

1. Structural Analysis

2. Matrix Methods

3. Matrix Abstraction

4. Digital Computer Methods

5. Finite Element Techniques

II

aUS.Government PrInting Offices 1972 - 759.438/252 Unclassified
,+5.c wIty Classificatin

MAGIC III: AN AUTOMATED GENERAL PURPOSE
SYSTEM FOR STRUCTURAL ANALYSIS

VOLUME III: PROGRAMMER'S MANUAL

A. MICHAEL GALLO

Approved for public release; dstribution unlimited.

FOREWORD

This report was prepared by Textron's Bell Aerospace
Company (BAC), Buffalo, New York, under USAF Contract No.
F33615-71C-1390. The contract was initiated under Project
No. 1467, 'Structural Analysis Methods", Task No. 146702
'Thermal Elastic Analysis Methods."' The program was admin-
istered by the Air Force Dynamics Laboratory (AFFDL), Aii
Force Systems Command, Wrighc-Patterson Air Force Base,
Ohio 45433 under the cognizance of Mr. G.E. Maddux, AFFDL
Program Manager. The Program was carried out by the Structural
Systems Department, Bell Aerospace Compa:iy, during the period
15 March 1971 to 15 March, 1972, under the direction of
Mr. Stephen Jordan, Program Manager.

This report, "MAGIC III: An Automated General Purpose
System for Structural Analysis" is published in three volumes,
"Volume I: Engineer's Manual", "Volume II; User's Manual',
and 'Volume III: Programmer's Manual'. The manuscript for
Volume III was released by the author in January 1972 for
publication.

The author wishes to thank Miss Beverly Dale for her
contribution to the development of the MAGIC System, and to
acknowledge the assistance of the following personnel:
M. Morge.e, S. Skalski, W. Crill, W. Luberacki, S. Mah.

Tis technical report has been revised and is approved.

FRANCI J ANK
Chief, o ical Mechanics Branch
Structures Division

ij.

ABSTRACT

An automated general purpose system for analysis is
presented. This system, identified by the acronyn "MAGIC II':
for "Matrix Analysis via Generative and Interpretive Computa-
tions," provides a flexible framework for implementation of
the finite element analysis technology. Powerful capabilities
for displacement, .tress nd stabil4 ty analyses are included
in the subject MAGIC III System for structural analysis.

The matrix displacement method of analysis based upon
finite element idealization is employed throughout. Sixteen
versatile finite elements are incorporated in the finite
element library. These are: frame, shear panel, triangular
cross-section ring, toroidal thin shell ring, quadrilateral
thin shell, triangular tilin shell, trapezodial ringj trian-
gular plate, incremental frame, quadrilateral plate, tetrahedron,
triangular prism, rectangular prism, symmetrical shear web,
asymmetric triangular cross-section ring and high aspect-ratio
quadrilat'ral thin shell elements. These finite element repre-
sentations include matrices for stiffness, consistent mass,
incremental stiffness. thermal stress, thermal load, distribated
mechanical load, and stresses.

The MAGIC III System for structural analysis is presented
as an integral part of the overall design cycle. Considera-
tions in this regard include, among other things, preprintei
input forms, automated data generation, data confirmation
features, restart options, automated output data reduction and
readable output displays.

Documentation of the MAGIC III System is presented in
three parts; namely, Volum I: Engineer's Manual, Volume II:
User's Manual and Volume iII: Programmer's Manual. The subject
Volume, Volume III, is designed to facilitate implementation,
operation, modification, and extension of the MAGIC III System.

iii-

TABLE OF CONTENTS

Section Page No.

I INTRODUCTION 1

II COORDINATION OF STRUCTURAL GENERATIVE SYSTEM

WITH FORMAT II 3

A. Detailed Analysis of .USER04. Instruction 3

1. Input and Output Matrix Position
Functions 3

2. Suppression Option 5

B. Use of FORMAT II Data Sets 6

1. Master Input and Master Output Use for
Material Library 6

2. Instruction Input Data Sets 6

3. Instruction Output Data Sets 7

4. Sciatch Data Sets 7

iII ORGANIZATION OF STRUCTURAL GENERATIVE SYSTEM . 9

A. Basic Logic Flow 9

B. Input Phase Logic Flow 9

1. Report Form Input 9

2. Interpreted Input 11

C. Element Matrices Generation Phase Logic
Flow 11

D. Output Phase Logic Flow 12

1. Organization of Output Matrices . . . 12

2. Sequence of Output Matrices 17

iv

TABLE OF CONTENTS, Continued

Section Page No.

IV OPERATIONAL CONSIDERATIONS 20

A. Implementation 20

1. Direct Machine Control 20

2. SUBSYS Control 20

APPENDICES

I Overlay Structure 1.1

II Logical Flow Charts 2.1

III List of Structural System Subroutine
Functions. 3.1

IV List of Subroutine Functions of Modules Added
to the FORMAT IT System 4.1

V Revisions to FORMAT System Decks 5.1

VI MAGIC Error Messages. 6.1

VII Examples of Static and Stability Instruction
Sequences 7.1

VIII Subroutine Documentation 8.1

IX Direct Machine Control Implementation 9.1
Document 0

X SUBSYS Control Documentation 10.1

",t Documentation for Element Insertion Into the
MAGIC Systern 11.1

REFERENCES . 12.1

V

SECTION I

INTRODUCTION

A Structural Generptive System has been developed and
inserted into FORMAT II (Reference 2) for the purpose of
generating structural matrices for use by FORMAT II. The
insertion of a Structural Generator into FORMAT II resulted
in a computer program retaining ease of implementation and
use, yet offering diversified capabilities.

Machine compatibility has been retained by the complete
use of FORTRAN IV in the development of the structural Genera-
tive System. The absence of machine or assembler language
from every portion of the program eliminates the problems
of machine dependency and implementation difficulty.

Input to the Structural Generative System is accomplished
by filling in preprinted structural engineering orientedinput sheets. The combination of these sheets and the normal

matrix abstraction instructions of FORMAT II allows minimal
training for use of the program, thus decreasing the
possibility of input errors.

The program is capable of restart at any point in the
abstraction instruction sequence stipulated at the discretion
of the User. Input data, intermediate results, final results
or any matrix whatsoever may be automatically saved, by use
of the proper instruction, and used as a starting point or
new input to subsequent applications on continuing or
independent projects.

The MAGIC System consists of a total of 477 subroutines of
which 296 form the Structural Generative System. The 477 sub-
routines can be logically designed into an overlay structure
which reflects the optimum use of available storage in relation
to the longest link so that the program will maintain respectable
execution efficiency. The Structural Generative System requires
a mir.lmum of 13,000 decimal words of work storage which is assigned
to an unlebeled common block. A minimum of eight external storage
units available to the FORMAT II System are required for use of
the Structural Generative System, including at least one assigned
to the Master Input FORMAT function, one assigned to the Master
Output FORMAT function, and four assigned to the Utility FORMAT
function. The other two units are necessary for intermediate
matrix results and for an instruction data set. The MAGIC System
needs 48,3) decimal words of internal storage to execute on an
IBM 360/6, using a 91 link OVERLAY structure and a blank common
area of l?,000 decimal words. (not considering internal core
necessary for I/0 buffers and OS system rout!nes). Using the
three level OVERLAY of CDC and a blank common area of 13,000 words,
the MAGIC System can execute using 34,698 decimal (103,612 octal)
words of internal storage on the CDC 6400, not considering internal
storage for'I /O buffers and SCOPE system routines necessary to
execute the OVERLAY program.

1

The MAGIC System has been implemented on the IBM 360/65
under direc- machine control, but some installations may not
be able to execute MAGIC under direct machine control. This
was the case when the MAGIC I System was implemented on the
IBM 7090.

The number of subroutines contained in the FORMAT II
program necessitated the use of SUBSYS, a software package
developed by Westinghouse, which improved the loading
capabilities of IBSYS on the IBM 7090/94. In addition to
allowing the program to be loaded, SUBSYS allowed the program
overlay tape to be saved, thereby improving execution time.
Programs may be stacked on this overlay tape. Taking advantage
of this fact, FORMAT II with the Structural Generative System
insertion, was actually three programs executed automatically
with no intervention by IBSYS. The first program consisted
of the FORMAT II Preprocessor, the second consisted of the
FORMAT II Execution Monitor and the third contained the
Structural Generative System. Although the Structural
Generative System was actually a separate program when
operating under SUBSYS control on the IBM 7090/94, it is
activated and controlled os a -.ormal User Module under the
FORMAT II System. Explicitly, the Structural Generative System
is the fourth User Module (USER04) available under FORMAT II.

2

S--. -

SECTION II

COORDINATION OF STRUCTURAL GENERATIVE SYSTEM WITH FORMAT II

A. DETAILED ANALYSIS OP USER04 INSTRUCTION

1. Input and Output Matrix Position Functions

The Structural Generative System may have as many
as fifteen actual output matrices and require as many as
four actual input matrices. The basic form of the USER04
instruction may be represented as follows:

OMPI, OMP2, OMP3, OMP4, OMP5, OMP6, OMP7, OMP8,
OMP9, OMPIO,OMPI1, OMP12, OMPl3, OMPI4, OMP15 =
IMP1, IMP2, IMP3, IMP5 .USERO4.

where OMP is iead as output matrix position and IMP as input
matrix position. All matrix positions, whether input or
output, must be present. They may contain inatvix names or
be blank, but there must be nineteen matrix positions re-
presented by the appropriate number of commas. Blank matrix
positions are discussed in the next section. The output matrix
positions, if nonblank, will contain the following matrices
upon exit from the Structural Generative System:

OMPI - copy of input structure data deck
OMP2 - revised material library
OMP3 - interpreted input (structure input

data as stored after being read
and interpreted)

OMP4 - external system grid point loads
and load scalar matrix

OMP5 - transformation matrix for applica-
tion of boundary conditions

OMP6 - transformation matrix for assembly
of element matrices

OMP7 - element stiffness matrices stored
as one matrix

OMP8 - element generated load matrices
stored as one mratrix

OMP9 - element stress matrices stored as
one matrix

OMPlO - element thermal stress matrices
stored as one matrix

OMPII - element incremental stiffness
matrices stored as one matrix

3

OMP12 - element mass matrices stored as
one matrix

OMP13 - structural system constants stored
as one matrix

OMP14 - element matrices in compressed
format stored as one matrix

OMP15 - prescribed displacement matrix

The input matrix positions, if nonblank must contain
the following matrices:

IMP1 - structure data deck (this would be
a previously generated matrix saved
in OMP1)

IMP2 - interpreted input (this would be a
previously generated matrix saved
in OMP3 used for restart)

IMP3 existing material library (this
would be a previously generated
matrix saved in UMP2)

IMP4 - displacement or stress matrix to
be used for stability analyses
(the stress matrix must have been
generated by the structural abstraction
instruction .STreSS.)

It should be noted that the following matrix positions
are called matrices only in the sense that all input and output
entities are considered matrices by FORMAT II - OMPI, IMP2,
OMP3, OMP14, IMP1, IMP2 and IMP3.

It is important to note that OMP14 is mutually
exclusive with OMP6, OMP7, OMP8, OMP9, OMP10, OMPll, and OMP12.
In order to retain oompatability with the MAGIC I system and
eliminate redundant execution time, the following rules must
be observed.

(a) If OMP14 is suppressed then OMP6, OMP7, QMP8,
OMP9, OMPI0, OMPII, and OMP12 will be generated according to
their definition in Part A.1 of Section II. If this is the
case then it is assumed the user is using MAGIC I abstraction
instructions to solve his problem.

(b) If OMP14 isi not suppressed then OMP7, OMP8,
0MP9, OMP10, OMPl1 and OMP12 will serve only as indicators
to the .USER04,. instmuction for generation or non-generation
of their respective element matrices. Since no matrices will
be generated in OMP6 through OMP12 (if OMP14 is not suppressed)
they should never be referenced in subsequent abstraction
Instme-tlons.

2. Suppression Option

Incorporated into the Structural Generative System
is an option to suppress the generation and output of any of
the output matrices and also to indicate the absence of any
of the input matrices. This option is indicated to thI
Structural Generative System by the absence of a matrix name
in the desired position in the .USER04. instruction. A matrix
name is considered to be absent if the matrix position con-
tains all blanks or the character length of the name is zero.
For example, an instruction of the form: ,,INTINP, LOADS, TR,
TA, KEL, FEL, SEL, SZALEL,,,,, - ,,MATLB1,.USER04.; would
cause suppression of the copy of the data deck, the revised
material llbrary, the element incremental stiffness matrices,
the element mass matrices, the structural system constant
matrix, the compressed element matrix and the prescribed
displacement matrix. The instruction also indicates that
there is no input data deck on tape, (directing the Structural
Generative Sy..tem to read data from cards), no interpreted data
on tape and no input displacements or stresses. It should be
noted that certain sections of the data deck are necessary for
the generation of each of the output matrices and that error
checking is done to determine if the required sections are
present. A table of the required data sections for generation
of each matrix appears in the User's Manual. Accordingly,
error checking is invoked for the input matrix positions to
determine if ambiguous or conflicting input indications have
been made.

Internally, the logic flow of the suppression option
is controlled by inserting key characters for suppressed
matrices. Upon detection of a suppressed matrix by Subroutine
INST, a matrix name of the form ////XX is inserted into that
matrix position. The four slashes are inserted for recognition
by the Structural Generative System of a suppressed matrix
and the last two positions may each contain the digits 0-9
assigned sequentially starting from 00 for each suppressed
matrix encountered. The- last two positions in the inserted
name for suppressed matrices ensure that each suppressed matrix
name will be unique, thereby eliminating inconsistencies in
the FORMAT II Preprocessor.

5

AW

Suppr'essed input matrices, i.e. thcse occurring to
the right of the equal sign in the input .USER04. abstraction
instruction, are recorded on NDA2A, the data set reserved for
card irput matrices, as null matrices to satisfy FORMAT II
Preprocessor input matrix existence requirements. This
operation is accomplished by subroutine MATSUP.

B. USE OF FORMAT II DATA SETS

1. Master Input and Master Output Use for Material Library

References to the Material Library are indicated by
output matrix position two and input matrix position three in
the .USER04. abstraction instruction. Retention of a newly
generated or revised Material Library is governed solely by
use of the SAVE abstraction instruction at the discretion of
the User. If retention ir desired, the matrix name in output
matrix position two must appear in a SAVE abstraction instruction,
in which case it will be placed on a Master Output tape. If
a non-blank matrix name appears in input matrix position three,
the Master Input Tape will be searched for that name.

Usage and generation of the Material Library is

controlled by the three legal combinations of suppression of
output matrix position two and input matrix position three.
If the matrix name in output matrix position two is non-blank,
but input matrix position three is suppressed, a new Material
Library will be generated' and used. If both involved matrix
positions are non-blank, the old Material Library will be
located on the Master Input tape, will be revised, stored as
the matrix named in the rpecified output position, and then
this revised Material Library will be used. If output matrix
position two is suppressLed and input matrix position three is
non-blank, then the named input Material Library will be used:
Suppression of.both involved matrix positions results in an
error condition.

Since the material library is stored under a matrix
name on Master Output tapes, and also, therefore Master Input
tapes, any other matrices may also be saved on the same tape,
including other Material Libraries.

2. Instruction Input Data Sets

An instruction input data set is an externcl storage
unit that contains at least one of the non-blank matrices
named in input matrix positions one, two, three or four in

6

the .USER04. abstraction instruction. The Structural Genera-
tive System conforms to all the rules of FORMAT II with
regard to use of instruction input data sets. All searching,
reading, and rewinding is accomplished by use of the FORMAT II
data set handling subroutines EUTLI-EUTL9. No attempt is ever
made to write on ar. instruction input data set.

3. Instruction Output Data Sets

An instruction output data set is an external storage
unit which has been designated by the FORMAT II Preprocessor
to contain at least one of the non-blank matrices in output
matrix positions one to fifteen in the .USER04. abstraction
instruction. The Structural Generative System conform5 to
all rules of FORMAT II with regard to instruction output data
sets by using the FORMAT II data set handling subroutines
EUTLI-EUTL9 to write all matrix headers, matrix trailers,
data set trailers and end of files on instruction output data
sets. All matrices are stored by column in the required record
format. No attempt is ever made by the Structural Generative
System to rewind an instruction output data set.

4. Scratch Data Sets

Scratch data sets are external storage units that have
been assigned by the FORMAT II System to the Structural Genera-
tive System to be used as temporary stovage areas. There are
no reading, writing or rewinding ratles imposed on scratch data
sets by the FORMAT II System. The required four scratch data
sets are assigned to the following functions by the Structural
Generative System:

SCRATCH DATA SET 1 - 1st use - external storage areas
for report form input preprocessor

2nd use - contain structure
control information including
system orders, boundary conditions
and system print operations

SCRATCH DATA SET 2 1st use - contain temporary
copy of direct input structure
data deck

2nd use - contain generated
element matrices in compact
form

7

NEW

SCRATCH DATA SET 3 Ist use - contain temporaoy
copy of actual input deck

2nd use - contain element
input data after reading and
interpretation

SCRATCH DATA SET 4 1st use - external storage
area for report form input
preprocessor

2nd use - contain input
loads matrix

3rd use - contain input dis-
placements or input stresses,
if any

8

SECTION III

ORGANIZATION OF STRUCTURAL GENERATIVE SYSTEM

A. BASIC LOGIC FLOW

The Structural Generative System has three basic phases
of operational flow; the input phase, the clement matrices
generation phase, and the output phase. The input phase consists
of reading, interpreting and storing the information contained
in the structure data deck. From the stored input, the
element matrices selected ar'e generated in the second phase.
Phase three outputs all non-suppressed matrices indicated by the
.USER04. abstraction instruction in output matrix position
six through twelve, if output matrix position fourteen has
been suppressed, or outputs only output matrix position
fourteen if it was non-suppressed. Output matrix positions
one t',rough five and thirteen and fifteen are generated
directly from the input structure data deck and for this
reason are actually output during the first or input phase.
Subroutine US04 controls the three logical phases by directly
controlling subrouting US04A which controls the input phase
and US04B which controls the generation and output phases.
Normally, the basic logical flow of the Structural Generative
System would be sequentially through the three phases, however,
by use of the suppression option, it is possible to completely
skip a given phase. The actual logic flow of the system is
created by subroutine LOGFLO as determined by the .USERO4.
a.bstraction instruction. For example, if the .USERO4.
iLnstruction was written such that only the boundary conditions
had changed and the remainder of the necessary matrices were
saved from a previous application as indicated by the suppression
option, subroutine LOGFLO would eliminate the second and
third phases.

B. INPUT PHASE LOGIC FLOW

The logic flow of the input phase is determined by the
type of input encountered. The two types of input are report
form input and interpreted input.

1. Report Form Input

The location of the input data deck is determined by
examining IMPI of the input .USER04. abstraction instruction.
If this input position was blank, then the data deck is assumed
to be on NAPIT, the system input unit. If IMP1 contained a

9

non-blank matrix name, then the input data deck exists as a
matrix and the original card form deck is reconstructed by
subroutine INDECK.

Report Form Input is a highly flexible, engineering
oriented type of input for the Structural Generative System.
From a programming viewpoint, report form input allows ease
of use by the Analyst and by translation allows logical
readability oy the program.

Encountering a report form input deck causes the input
phase to pass control to the Report Form Input Preprocessor.
Basically, the report form input preprocessor translates the
flexible report form Input deck into a sophisticated direct
input deck. Translaticn is accomplished by two steps con-
trolled by subroutine REFORM.

The first step is to read and store the report form
input deck. This step is accomplished by subroutine PHASE1
with support by subroutines LATCH and FORMIN. PHASE1 controls
all storage, both internal core storage and external storage
on scratch data sets one and four. LATCH performs label
matching tests to determine the various sections of input and
FORMIN reads all table form input, sections; non-table form
input sections are read directly in PHASE1.

The second step in processing a report form input deck
is to merge the data stored by the first step into a direct
data deck. These two operations are performed by subroutine
PHASE2 supported by subroutine OPEN. The information stored
by the first step is merged into a compact direct data deck
by PHASE2 and output on scratch data set two. The OPEN sub-
routine aids PHASE2 by locating, in any order designated by
PHASE2 the input sections stored on scratch data sets one and/or
four. At this point, a complete direct data input deck is
resident on scratch data set two and control returns to US04A.
Once a direct data deck is resident on scratch data set two,
reading, interpreting and storage is controlled by subroutine
INPUT with each input section handled as indicated by the
following table:

INPUT SECTION SUBROUTINE INTERPRETED STORAGE

Title (TITLE) INPUT None
System Control (SYSTEM) INPUT Scratch data set 1
Grid Points (COORD) INPUT Scratch data set 3
Boundary Conditions (BOUND) BOUNT Scratch data set 3
Element Definitions (ELEM) ELEM Scratch data set 3
Grid Point Loads (LOADS) FGRLDS Scratch data sez 4
Grid Point Axes (GRAXES) FRED Scratch data set 3
Material Library Requests (MATER) FMAT Master Output data set
Grid Point Temperatures (TEMP) INPUT Scratch data set 3
Grid Point Pressures (PRESS), INPUT Scratch data set 3
Prescribed Displacements (PDISP) BOUND Scratch data set 3

10

If output matrix position one was non-blank, then a
copy of the actual input data deck is also written on the
instruction output data set specified by the FORMAT II System
by subroutine COPYDK.

2. Interpreted Input

After the data deck has been read and interpreted
under control. of subroutine INPUT, all pertinent data exists
on ocratch data sets one and three. If output matrix position
three in the .USER04. abstraction instruction is non-blank,
then the contents of scratch data sets one and three are output
under that matrix name onto the instruction output data set
specified by the FORMAT ii System by subroutine OUTINT. If
this "matrix" is saved and input at input matrix position two
in the .USER04. inst'uction, the Structural Generative System
is capable of restart at the second or element generation
phase, thereby eliminating a repeat of the input phase. This
feature is recommended for usage on large applications where
the procedure would be to run the data deck, stop after
interpreting and storing the data, check for input errors,
and if no errors are present restart at the element generation
phase.

Before exiting from the input phase, subrouitine CHEK
is called to perform input error cross-checking. While
determining the logical flow at the Structural Generative System,
subroutine LOGFLO also recorded the input sections required to
generate the requested output matrices. If any of the required
input sections have not been processed, then execution will be
terminated after the input phase.

C. ELEMENT MATRICES GENERATION PHASE LOGIC FLOW

The second phase of operation of the Structural Generative
System consists of generation of the element matrices.

If input matrix position two of the input .USER04, abstrac-
tion instruction is non-blank, then subroutine ININT is called
to reconstruct the data on scratch data sets one and three from
the input matrix.

If input matrix position four of the input .USER04.
abstraction instruction is non-blank, then subroutine DEFLEX
is called to store the input displacements or stresses (which
ever was input) on scratch data set four.

l1

At this point all the necessary data is located on scratch
data sets one and three, plaued there by either phase one or
restart using input matrix position two of the .USER04.
abstraction instruction. Basic control of the second phase is
accomplished by subroutine FELEM under subroutine US04B. FELEM
reads scratch data set one to obtain system control information
and sets suppression controls to eliminate generation of
undesired element matrices by calling subroutine SQUISH. Scratch
data set three contains the necessary input for each element,
one set of element input per record. For each element, sub-
routine ELPLUG reads an element input record, selects the proper
element to calculate the matrices and then writes the generated
matrices on scratch data set two in compact form.

Prior to being written upon scratch data set two, the
element matrices are temporarily stored in the blank common
work area. Also, all work areas that are needed by the
specific element are allocated from the blank comm n work
area. For these reasons, the Structural Generative System
requires a blank common work area of at least 13,000 words
of internal core storage.

Imbedded into the Element Matrices Generation Phase, at
strategic locations, are utility packages accessible by the
specific elements which require their capabilities. Integra-
tion packages and small scale matrix operation packages are
examples of utility sections commonly accessible to the neces-
sary elements. The exact locations of these packages are
indicated by the Structural System Overlay Chart (Appendix I).
Overlay to each element has been avoided wherever possible
to reduce execution process time. However, an area of
approximately 1000 locations between the longest link and
the origin of the common area has been kept clear to allow
for future substantial alterations to be made without re-
designing the complete overlay structure.

D. OUTPUT PHASE LOGIC FLOW

1. Organization of Output Matrices

All output entities from the Structural Generative
System are written following the rules of the FORMAT II System.
Each output entity is written as a matrix, consisting of a
matrix header, matrix column records and a matrix trailer.
The following list exhibits the contents, interpretation of
matrix header information (number of rows, number of columns)
and interpretation of matrix column records for each output
position in the .USER04. abstraction instruction.

12

a. Output Matrix Position One (OPi)

Contents - Copy of card input data deck
Number of rows - Set to eighty (80)
Number of columns - Number of cards in data deck
Column records - One data card per column record,

one card column per row

b. Output Matrix Position Two (OMP2)

Contents - Material library
Number of rows - 306 (maximum nur-,er of words

possible for one material
entry)

Number of columns - Number of material tables in
library plxs one

Column records -, One materia, table per
column record

c. Output Matrix Position Three (OMP3)

Contents - Interpreted input
Number of rows - Set to number of words in

maximum record created
Number of columns - Number of elements plus four
Column records - One element input block per

record

d. Output Matrix Position Four (OMP4) x

Contents - External system grid point
loads

Number of rows - Number of degrees of freedom
in total system'plus 1

Number of columns - Number of load conditions
Column records - The first word is the external

load scalar followed by one load
condition per cQlumn record
(use .DEJOIN. to obtain the
load scalar).

e. Output Matrix Position Five (OMP5)

Contents - Transformation matrix for
application of boundary
conditions

Number, of rows - Number of degrees of freedom
in total system

Number of columns - Number of degrees of freedom
in total system

13

13- -- -

Column records - (1) for desired degrees of
freedom - contain a one
in the assigned reduced
degree of freedom row

(2) for undesired degreet of
freedom - column record
is omitted (null column)

f. Output Matrix Position Six (OMP6)

Contents - Transformation matrix for
assembly of element matrices

Number of rows - Number rf degrees of freedom
in total system

Number of columns - Summation of element degrees
of freedom

Column records - Contain a one in the assigned
degree of freedom row for that
summed element degree of
freedom

g. Output Matrix Positirn Seven (OMP7)

Contents - Element stiffness matrices
Number of rows - Summation of element degrees

of freedom
Number of columns - Summation of element degrees

of freedom
Column records - Each record contains a column

of an element stAffness matrix

h. Output Matrix Position Eight (OMP8)

Contents - Element applied load matrices
Number of rows - Summation of element degrees

of freedcmn
Number of oolumns - One
Column record - Contains all element applied

load matrices

i. Output Matrix Position Nine (OMP9)

Contents - Element stress matrices
Number of rows - Summation of element stress

point and component orders
Number of columns - Summation of element degrees

of freedom
Column records - Each record contains a column

of an element stress matrix

14

III

3. Output Matrix Position Ten (OMPI0)

Contents - Element thermal stress
matrizes

Number of rows - Summation of element stress
point and component orders

Number of columns - Jne
Column record Contains all element thermal

stress matrices

k. Output Matrix Position Eleven (OMPll)

Contents - Element incremental
stiffness matrix

Number of rows - Summation of element
degrees of freedom

Number of columns - Summation of element
degrees of freedom

Column records - Each record contains a
column of an element incre-
mentil stiffness matrix

1. Output Matrix Position Twelve (OMP12)

Contents - Element mass matrices
Number of rows - Summation of elemeni

degr6es of freedom
Number of columns - Summation of element

degrees of freedom
Column records - Each record contains a

column of an element mass
matrix

ri. Output Matrix Position Thirteen (OMPI3)

Contents - System constants
Number of rows - Twenty-seven
Number of columns - One
Column record - Ninteen structural system

constants (for use outside
of the .USER04. module)

The following is a description of the variables
in this matrix:

Word I - Number of directions allowed
Word 2 - Number of types of movement allowed
Word 3 - Number of reference points (highest

reference node in element connections)
Word 4 - Order of the reduced system (number

of l's plus 2's)
Word 5 - Number of bounded degrees of freedom

(number of 0's)

15

Word 6 - Number of unknown degrees of
freedom (number of l's)

Word 7 - Number of known degrees of
freedom (number of 2's)

Word 8 - Number of O's plus l's
Word 9 - Element type code, equal to zero

if word 2-3, equal to one otherwise
Word 10 - Order of the total system
Word 11 - Number .f elements
Word 12 - Number of load conditions
Word 13 - Word 20 - Reserved for fucure

expansion
Word 21 - Number of eigenvalues requested
Word 22 - Eigeavalue/vector convergence

criteria
Word 23 - Maximum number of iterations
Word 24 - Control for iteration debug print
Word 25 - First normalizing element for

print
Word 26 - Second normalizing element for

print
Wo: d 27 - Control for guess vector iteration

start

n. Output Matrix Position Fourteen (OMP14)

Contents - Element matrices in com-
pressed fn'om

Number of rows - Varies depending on problem
Number of columns - One column for each element
Column records - Each recovd contains all

element matrices generated
by .USER04. instruction in
compressed form (to be used
by structural modules out-
side of .USER011.)

o. Output Matrix Position Fifteen (OMP15)

Contents - Prescribed displacements
Number of rows - Number of degrees of freedom

in system
Number of columns - Number of load conditions
Column records - One prescribed displacement

condition per column record

16

It should be noted that OMPI, OMP2, or OMP3 and OMPl4
are not actually matrices and, therefore, should never be
referenced as input to an algebraic matrix operation. OMP7,
OMP9, OMP11 and OMP12 are formed by placing the element matrices
into the output matrix such that the main diagonal of the
element matrix coincides with the next available main diagonal
positions in the output matrix. For example, if the first
two element stiffness matrices represented 48 element degrees
of freedom each (such as 8 element defining points with 6
degrees of freedom each) then the first would be located in
rows one to 48 and column one to 48 in the output matrix and
the second would be plac'ed into rows 49 to 96 and columns 49
to 96. Output matrices in these positions are almost always
written in FORMAT II compressed column format due to the
inherent sparseness of non-zero matrix elements.

OMP8 and OMP10 are formed by placing each element
matrix, which is a column matrix, into the succoeding available
row positions in the output matrix.

2. Sequence of Output Matrices

Output matrix positions one to five, thirteen and
fifteen are output sequentially in numerical order by the
Structural Generative System. Since these seven matrices are
generated directly from data contained in the input deck, they
are output, if non-blank, as part of phase one or input phase
operations. Specifically, these seven output matrices are
placed into the FORMAT II system by the following subroutines
in phase one:

OMP1 - Subroutine COPYDK
OM?2 - Subroutine FMAT
OMP3 - Subroutine OUTINT
OMP4 - Subroutine FLOADS
OMP5 - Subroutine FTR
OMP13 - Subroutine TSYS
OMP15 - Subroutine PDISP

Either output matrix positions six through twelve or output
matrix position fourteen is released into the FORMAT II System
during phase three of the Structural Generative System. Out-
put of matrices six through twelve is controlled by subroutine
OUTMAT using utility subroutines US461, US462 and US463. In
cohtrast to output of the first seven matrices, which is achieved
consecutively, output of matrices six through twelve will

17

usually occur concurrently. Output mftAX pOtbtiOn fourteen
is released to the FORMAT System by Aubroubine MAT, ginoe
output matrix fourteen is mutually exolunivo with o tput
matrice six through twelve only one of the aboVe subroutines
OUTMAT or ELMAT is activated.

Operational flow in the output phase of matrices six
through twelve, if output matrix fourteen is suppressed,
consists of extracting the compacted element matrices from
scratch data set two and releasing them to the FORMAT II
System in the required form. Due to the fact thet more than
one output matrix may have been assigned tc the same instruction
output data set by the FORMAT II System, direct output at
matrix generation time (phase two) is impossible, thus
necessitating the use of scratch data set two. However, at
output time, the optimum procedure is determined by subroutine
OUTMAT to achieve multiple matrix output per pass of scratch
data set two. The procedure involves determining which matrices
may be output during the same pass of scratch data set two by
(a) comparing the assigned instruction output data set number,
and (b) type of matrix being output. Output matrix positions
eight and ten, if non-blank, are always output on the first
pass. Output matrix positions six, seven, nine, eleven, and
twelve may require from one to five passes of scratch data
set two, recognizing the best and worst possible cases. In
general, OUTMAT may only output one matrix per pass on a given
instruction output data set with the exception of output matrix
positions eight and ten which are always output on the first
pass regardless of their instruction output data set numbers.

For example, given the following instruGtion output
data set assignments by the FORMAT II System (all output
matrix positions referenced are non-blank):

Format Assigned Instruction
Output Matrix Position Output D&t Set

6 4
7 8
8 3
9 3
10 8
11 41
12 3

18

,-.---c~.--- * -- -

- w.. . .. --

OUTMAT would release all the requested matrices (6-12) to
the FORMAT II System in two passes of scratch data set two
as indicated below.

PASS 1 - 6, 7, 8, 9, 10
PASS 2 - ii, 12

Output Matrix Positions 6, 7 and 9 may be output concurrently
on pass one since they are to be located on different data
sets. Positions eight and ten will always be output on pass
one. Since positions 11 and 12 are to be located on different
data sets, they may be output on the same pass.

If a matrix is less than 50% dense, the compressed
column record format is invoked.

1 I

19

SECTION IV

OPERATIONAL CONDITIONS

A. IMPLEMENTATION

I. Direct Machine Control

tnder direct machine control the only changes required
for implementation on any system are contained in one deck,
subroutine MRES. The implementation operations involved are
explained in detail in Appendix IX. In general, the infor-
mation which must be supplied consists of defining system
parameters; such as system input unit, system output unit,
size of blank common work area, and limiting size of matrix
capability; and assigning MAGIC III System functions to the
available external storage units.

Under direct machine control the Structural Genera-
tive System has been inserted as a normal user module with
the same origin and accessibility as any other user module.

Operation of the Structural Generative System requires
the common area to be at least 1300010 storages and the number

of external storage units to be at least eight. Both of these
facts must be inserted into MRES at implementation time.

2. SUBSYS Control

Implementation upon an IBM 7090/94 requires an improve-
ment of the loading capabilities of IBSYS. The software
package selected is SUBSYS, developed by Westinghous Corpora-
tion. A software package was selected in deference to multiple
passes at IBJOB due to the inflexibilities of IBLDR under
IBJOB. For example, IBLDR requires the use of at least three
tape drives to load each portion, thereby removing units fro z
use by FORMAT II. Also, data would be inserted in the middle
of program deck and printed output would be interspersed with
IBJOB PrOcessor OutpUt. The most decisive advantage, however,
was the saving of load time under SUBSYS. Normal load time
under IBLDR for the complete program is approximately eight
minutes on a 7090, whereas under SUBSYS control the program is
planed into core and execution started with a load time of
fifteen to twenty seconds. A more detailed discussion of
SUBSYS is given in Appendix X.

20

V--~

APPENDIX I

OVERLAY STRUCTURE

The Overlay structure is divided into two sections.
The first section is the revised FORMAT II Overlay
Structure (Reference 2) and the second section is the
Structural System Overlay structure.

I

1.1

H

-I H

H H0
H 0 EH- E*4Z H 0 E-4

0 -1 0 m

0 r>4

H ,::Z O H ____ ___

oo rx

co coE44t-4
C/') 1.

H

1..2

C)

.

000

00 nm
00C.

00

0 H- Hcm 4-

C4 I~~k, C.) C) o) to))fr

0

H

w 0

HHH~ ~ H r- m-I 94~~D~4.
~~0 0000

c\:~~ H H--H H H H Hc H9 -C H

00

E-4

m 04 C "4 A.a. 11

1.3 m' Clm00.0t-DC

m c N cm I I cmIc

141

C"j-Q
CC',

141

0a
<

0.1 0L~!i~JiL~iL~. 0

tL

\00

9-f cH

DW-- 2-(- C',

00

H~ CU4 > -I - \

0

i-I- H0

P4rz HI-4IH :

H H

-c H c V zz

X47ag-cc-c

rz4

H 0 H

1.5

oo 0 -
C,4 cZ2;Z c

;k4 CC 9 4 0

c'J 0- C
E- 0 CZ 0 SjCj H

M: H OZ=HH

00
H cm z

y Pyl IH4H 0 H-

0
H

oo ID0
If\ 3 0
-q C\, E-
14 -1 Z O i c~q co CD

:D W1.6

:) w - CC

0 ~ IH0 Q

I= W
H,-4 ~ E- r-JH CIr~

'o- 0. 00E-40E- iE

E-0 H -C 2 :H

HHHHH~0HHH O ~H
J~H~I~H I~C),2H .)H E-

P0 I~ I- H- - Cjc
C.3U C'0 L a Q m O W0m m XC~j C\OO

HHHH~HoHHZw

oA Z -1Z4ZOH Z 0 0 H0 JI&X1L
rt4M M3: -1W R 2:E-

1.7o

z 0

.H.

Cl)~

'm1m0

Z

04 -4 -4

E4rr0

oozo

:400

'1W H

z z-

Hw 0

E- C/ .C-

0 r0

rH E

0 mzo E-

CO

Cl) 0

) ce0 H 0

H E-1. HO -

Cl,

LLI

E-48

r-wi

0

C4 H

U

19

C//

E-fw

2; z

E- 0 HE-M

CO E- 4

E-f
E-i :D

(4 E-4

C~~~jC COfE-

0 CM
NE-f

6E-4
Hz

H HH

1.1.0

CC 0 -i

H Q -
I I Oel F

X: HW

.. z a I • No .

- -I
H!

, I =1

ca N

. ... P

14 wE-4

H .

r i m , i4 .. H

_ - i-- C

H
- ,00 \ 1 s'4 0,

Ho o o_

M E-- 0H r-.H\

HH

M .)1 E- E4 P:
ri ~ ~ .1OIH< -

r.- .wC $
E.4C~ H14

cic

94 H

ow-

FIG

us4 I.3)

OC21
14ABCLPLUG26

NEWPT C2 F

PIPRTA PA10CT

BP126 FT

CDELPQ CK11 MATB, I MBS
CHDELl CT11 TUDJAC STflS26-
CSTM MAT160 CK26 MABS
CDM CTOOM SZAr 26 I GENSM
CFMT3 Ccl FT26 I
CFMV---------- -
CMMASSJ

Figure I.11 Quardrilateral Thin Sehil Element and Ifigh-Aspect
Hat.1o Quadrilateral Thin Shell Elemniet

1.12

H. 5k4 w

z

Ha

Of 0

CO 0 U 0

p1.13

WH $
oE-i

-E-4

z

094

0: - Z
Z1z.r H

4 E4 P4

H

On0 l H 0
r0 0 - 1 a$

w) .o D -

PLO H 00 H 4 E- 0H

moo

-rz

1.*14i

.4

N rH

C~C,

P44

E-44E-

E4
0

0

CA

E-4 E-4
Op V2 0

-1

1.16

O~4C4

z

H

M

H m
%i

1.17

wE-1

rz

W

CCl)

HH

-

8-1

w -~ - -

z

E-4

E-44

E-4

4 CO

OH C~ H~ ~4 0

H. kq

FIG

1.19

US4132

PLUC25
HRAICS
HRAIKS
HRAISS
HRAIES
HLOGEN
HMASSG
HTHGEN

Figure 1.19 Asymmetric Triangular Cross-Section Ring Element

1.20

.I.

BPV

PLUG10
PLUG13
VOL
CMASS
BDEF
P1OTM

~PIOFP

I i i i

Figure 1.20 Triangular Prism Element and Tetrahedron Element

12

1.21

BPV

* It
* I]

Figure 1.21 Symmetrical Shear Web Element

1.22

-w -
. .

BPIV

PLU020
GEOND
MPOWJF
GAMMAG
GAMMASI ISPMT
P20FT
PASSYM
P20PP-

Figure 1.22 Rectangular Prism Element

1.23

APPENDIX II

LOGICAL FLOWCHARTS

A. STRUCTURAL GENERATIVE SYSTEM LOGIC FLOW

EXEQ

FO14AT II CALL TO
.USERo4. MODULE

U s04

CONTROL .'USERO 1I. MODULE/

EXAMINATION OF .USER014._INSTRUrTION

NO~~~~ O OE T OUTFVEO

THIRTEEN AND FIFTEEN NON-

US014A

ONTROL INPUT PHASE

7~B

1'~~~ -.]Epp-

AREKN FOTU
MARXPOIIN

AES

MAOTRIX POSI ERTIN
SNX THOUGH TWELVESOR

TUER4 INSRUTIN

RETURN TOPORMAT II 'SYSTEM

2.2

___,____.___ -i| -w - --.- : .W 7

B. INPUT PHASE LOGrC FLOW

\CONTROL INPUT PHASE

YES- POSITION 1

READ DATA DECK BLANK?
FROM SYSTEM
INPUT UNIT

(NPIT) NO

INDECK

RECONSTRUCT DATA DECK
FROM INPUT MATRIX

I,____________________________CONTRL
EXTRACT STRUCTURAL SYSTEMPARAMETERS FROM DATA DECK

OUTPUT MATRIX YES

NO

23

OTTROLCUPU L DATA OESN

CONTINUE

INPUTIDATA
COROCESSINGAA ROESIN

LSIN PHFRED, ND OEN ADVRD

SETM INDICATOOTOO
IGO>CAL< TOI

USO4B NO O PLE

LABEL

CHEK
\ERFORM INPUT CROSS CHECKING

is
OUTPUT MATRIX

YES POSITION 3 BLANK OR

YES INPUT INSUFFICIENT FOR

UTINT
OUTPUT INTERPRETED INPUT

AS A MATRIX

is
OUTPUT MATRIX

POSITION 4 BLANK OR YES
INPUT INSUFFICIENT FOR

GENERATION OF OUTPUT
MATRIX 4I?

FLOADS

OUTPUT GRID POINT)
LOADS MATRIX

YESPSIIO 5 BLANK ORRI .

G ENERATION OF OUTPUT/

FTR

\OUTPUT BOUNDARY CONDITION
TRANSFORMATION MATRIX

is
OUTPUT MATRI YES
POSITION 133
BLANKK

No

T T

MISNOTR

I

T y..,YS
T S M

PUT STRUCTURALS ATR;IXSYSTEM CONZANTS MATRIXOUTPUT

IS
UTPUT MATRIX

POSITION 15 BLANK
YES OR INPUT INSUFFICIENT

FOR GENERATION OF
OUTPUT MATRIX

15?

NO

r--
j PDISP

OUTPUT PRESCRIBED
DISPLACEMENT MATRIX

(RETUR N CONTROL
TO US04

2.6

C. GENERATION AND OUTPUT PHASE LOGIC FLOW

C>

US014B

CONTROL GENERATION AND

NO

I-ININT
/,RECONSTRUCT INTERPRETE
INPUT DATA FROM INPUT

MATRIX 2

is[POSITION 4

STESS RMINPUT M~ATRIX 4__ YS

FELEM

CONRO GNEATONOF2LM7

rAV

Nol
NO OUTPUT MATRI

POSITION 14I

YES

fOUTPUT GENERATED LEMENT 4

\MATRICES USING U51461,
\ US4i62 AND US146 3

ELMAT
(OUTPUT GENERATED ELEMENT

\MATRICES IN COMPRESSED FORMW
RET URN CONTROL

TO US04J

2.8

APPMZIX III

LIST OF STRUCTURAL SYSTEMS SUBROUTINE FURNCTIONS

Section Page No.

A Control and Utility Subroutines 3.2

B Quadrilateral T.dIn Shell Element
Subroutines , , , , . , . , , . , * 3.6

C Frame and Incremental Frame ElementSubrtutines o .. . 0 , , , a , . , , , * . , 1 . 0 3.8
D Triangular Plate and Quadrilateral Plate

Element Subroutines o. . o , , * 3.9

B Triangular Thin Shell Element Subroutines . . o . . . 3.10

F Triangular Cross Section Ring Element Subrouti'ines. . , 312

G Toroidal Ring Element Subroutines . o o . 14

H Quadrilateral Shear Panel Element Subroutines . , , , . 3.15

I Trapezoidal Ring Element Subroutines. . . o o o . .o. . 3.16

J Rectangular Prism Element Subroutines 3.17

K Tetrahedran Element Subroutines . o o o , • 3.18

L Triangular Prism Element Subroutines o . 3.19

M Symmetrical Shear Web Element Subroutines . . . o . . . 3.20

N Asymmetric Triangular Cross Section Ring

Element Subroutines . o n. , , . . , . It ?3.21

0 High Aspect Ration Quadrilateral Thin Shell
Element Subroutines... s,...,3.22

3.1

APPENDIX III

LIST OF STRUCTURAL SYSTEM SUBROUTINE FUNCTIONS

A. CONTROL AND UTILITY SUBROUTINES

Ut04 Control three phases of operation of

.USER04. module

NTEST Examine matrix name foz sippression code

RECI Perform writing and reading of tape records
for interpreted element input

LOGFLO Determine logical path for .USER04.
module

US04A Control first phase (input phase) of
operation of .USER04. module

INPECK Create data deck from input deck matrix

CONTRL Select scratch tape unit for copying
structural data deck, extracting structural
system information in the process

COPYDK Create input deck matrix from data deck

INPUT Master control subroutine for reading and
storing of structural input data

FRED Generate grid point axes transformation

matrices

BOUND Read and store boundary constraints

ELEM Read and store element input data

MATCH Compare a material name to an entry name
in the material library

LAG Interpolate material properties with respect
to temperature

FGRLDS Read and store grid point load conditions
and loaa scalars

FMAT Generate, revise and/or display material
library information

3.2

SHIFT Manipulate material library internal

storage area

REFORM Control report form. input preprocessing

PHASEl Read and store report form input data deck

LATCH Compare an Input label to list of legal
input labels

FORMIN Read and store report form table input

PHASE2 Merge data stored by PHASEl into logical
sequence for INPUT

OPEN Control scratch tape manipulations for
report form input

PDISP Output prescribed displacements as a
FORMAT matrix

CHEK Perform input cross checking

OUTINT Output interpreted input as a matrix

FLOADS Output grid point load conditions and load
scalars as Format matrix

FTR Output boundary constraints as a Format
matrix

TSYS Output structural system constants as a
Format matrix

US04B Control second ard third phases (element
matri:: generation and output) of operation
of .USER04. module

ININT Create interpreted input from a matrix

DEFLEX Sort and store input displacements

FELEM Control generation of element matrices

SQUISH Set non-generation indicators for suppressed
matrices

ELPLUG Allocate work storage for eliments, read
interpreted element input, select proper
element and store element matrices on
scratch tape in compact form

3.3

REC3 Perform writing of tape records for element
control data

REC4 Perform compact writing of tape records for
generated element matrices

MINV Perform in-core matrix inversion

AXTRA2 Apply grid point axes transformation

MAB Perform in-core matrix multiplication

MSB Perform in-core matrix multiplication where
first matrix is symmetric

BCB Perform in-core matrix triple product of the

form TTKT where K is symmetric

MATB Perform in-core matrix multiplication of the

form ATB

SYMPRT Print symmetrically stored matrix

LOC Compute single subscript index given double
subscript indices

ELTEST Compare input element control information
to required element control information

MPRD Perform generalized in-core matrix
multiRlication

TPRD Perform generalized in-core matrix transpose
multiplication

POOF Expands element matrices to displacement
degrees of freedom

MSTR Change storage arrangement of a matrix

AXTRAl Apply grid point axes transformations

AXTRA3 Apply grid point axes transformations

ELPRT Print generated element matrices

OUTMAT Output generated element matrices as
Format matrices

3.4

791

US461 Write a matrix column record in compressed
format

US462 Generate each elements contribution to the
assembly transformation matrix

US463 Generate full column from symmetrically
stored matrix

ELMAT Output compressed element matrices as a
format matrix

AI Controls calculation procedures of triangular
integration package

BINT Perform integration by expansion of binomial
theorem

AK Calculate slope of line between two points
of a triangle

AM Calculate intercept of line between two
points of a triangle

IFAC Calculate 11 factorial for a given n

FJAB Pe.'±orm defined integration

F6219 Perform defined integration

F6211 Perform defined integration

AJ Perform defined integration

COEF Calculate binomial coefficients

F89 Perform defined integration

FF100 Perform defined integration

I

3.5

V - --- ---- - _ --- -

B. QUADRILATERAL THIN SHELL ELEMENT SUBROUTINES

PLUGI Master control

CC21 Form intermediate stiffness matrix by
summation

MABC Perform in-core matrix triple product

multiplication

NEWFT Calculate revised thermal load formulation

CDELPQ Calculate coordinate integrals

CHDEL1 Arrange coordinate integrals in storage

P1PRTA Print results of coordinate and material
properties calculations

CK11 Control generation of membrane stiffness
matrix

CT11 Generate membrance stiffness transformation
sub-matrix

MATI60 Invert 8 x 8 matrix in-core

CTOOM Generate membrane transformation matrix for
transformation from oblique to geometric
coordinates

CTGRM Generate membrane transformation matrix for
transformation from geometric to reference
system coordinates

CCl Generate membrane stiffness sub-matrices

CMMASS Generate membrance contribution to element
mass matrix

CSTM Generate membrane contribution to element
stress matrix

CDM Generate membrance displacement derivative
matrix for element stress matrix control

rlFmTd Control generation of membranco contribution
to element thermal stress and element thermal
loaa matrices

3.6

CFMV Generate membrane thermal load matrix

PRTl Print membrane and ."lexure transformation
matrices and contribution to element
stiffness, stress, thermal stress, thermal
load and pressure

CK22 Control generation of flexure stiffness

matrix

CTGB Generate flexure transformation sub-matrix

MATI70 Invert 16 x 16 matrix in-core

CTOGB Generate flexure transformation matrix for
transformation from oblique to reference
system coordinates

CTGRB Generate flexure transformation matrix for
transformation from geometric to reference
system coordinates

CC2 Generate flexure stiffness sub-matrices

CFP Control generation of element pressure load
matrix

CFPB Generate intermediate element pressure load
matrix

CSTF Generate flexure contribution to element
stress matrix

CDF Generate flexure displacement derivative
matrix for element stress matrix

CDFX Generate flexure displacement partial with
respect to X derivative matrix for element
stress matrix

CDFY Generate flexure displacement partial with
respect "o Y derivative matrix for element
stress matrix

CFFTS Control generation of flexure contribution
to element thermal stress and thermal load
matrices

CFFV Generate flexure contribution to elument
thermal load matrix

CFMASS Generate flexure contribution to element
mass matrix

3.7

C. FRAME AND INCREMENTAL FRAME ELEMENT SUBROUTINES

CTS Generate transformation matrix for
transformation from geometr4 ^ to reference

CTCQ Generate transformation m4,rix for trans-
formation from material to geometric axes

CECC Evaluate effect of eccentriities

INCRE Generate element incremental stiffness
matrix

P7PRT Print transformation matrices and inter-
mediate calculations

PLUG7 Master control, generation of irame element
matrices

PLUG22 Master control, generation of incremental
frams matrices

FINP22 Generate element incremental matrix for
the incremental frame element

3.8

D. TRIANGULAR PLATE AND QUADRILATERAL PLATE ELEMENT SUBROUTINES

DSICOS To evaluate the direction cosines given any
three points that define a plane

BCB12 To evaluate a triple product matrix where
all matrices are square

XOBLIQ 'To perform a transformation on the element
stiffness matrix AKEL (TRANT*AvEL*TRAN)

P1718M Initialize element properties from the
material table for membrane properties with
flexural data only for PLUG21 and PLUGlB

SELQ To transform the stress matrix generated by
PLUG17 and PLUGl8 to the stress system required
(generally local)

FTELQ To transform the element thermal load matrix
into global or oblique system

PLUG17 Master control for the generation of
triangular plate element matrices

PLUGI8 Master control for the generation of
quadrilateral plate element matrices

TR18ST From transformation matrices for the stress
and thermal stress matrices)

FBMP18 To evaluate the B matrix for the quadrilateral
plate elements, out of plane

3.9

,. _ _ - - - -. •

E. TRIANGULAR THIN SHELL ELEMENT SUBROUTINES

PLUG2 Master Control

ASSY2 Assemble membrane and flexure stiffness
sub-matrices

DCD Performi in-core matrix multitlication of
the form TST where T is a diagonal matrix and
8 is a symmetr5c matrix

DTAPR Process coordinate data

PFMASS Calculate the flexural contribution to the
mass matrix

PMMASS Calculate the membrane contribution to the
mass matrix

MATPR Generate material properties matrices

NEWFTI Calculate revised thermal matrices

PTBM Generate membrane transformation matrix
for transformation from oblique to geometric
ccordinate systems

PTMGS Generate membrane transformation matrix for
transformation from geometric to reference
system coordinates

DPQINT Calculate coordinate integrals

PKM Generate membrane contribution to element
stiffness matrix

PSTM Generate membrane contribution to element
stress matrix

PFMTS Generate membrane contribution to element
thermal load and thermal stress matrices

PFMVI Generate intermediate membrane thermal load
matrix

APRT Print membrane and flexure transformation
matrices and contributions to element
stiffness, stress, thermal stress, thermal
load and pressure load matrices

I 10

PTFGS Generate flexure transformation matrix
for transformation from geometric to
reference system coordinates

PKF Generate flexure contribution to element
stiffness matrices

CCB Perform in-core matrix triple product of

the form T6KT where K is symmetric and
accuracy criteria is imposed

PFP Generate element pressure load matrix

PFFTS Generate flexure contribution to element
thermal stress and thermal load matrices

PFFVl Generate intermediate flexure thermal
load matrix

PSTF Generate flexure contribution to element
stress matrix

PTBF Generate flexure transformation matrix for
trnasformation from oblique to geometr.lc
coordinate systems

EPRT Print final element matrices

PLAS2D Non-functional

PNCINE Non-functional

PNGINE Non-functional

Ii

T'

"-- wlimpV -

F. TRIANGULAR CROSS SECTION RING ELEMENT SUBROUTINES

PLUG6 Master control

EXPCOL Expand column matrix to six degrees of
freedom per point

EXPSIX Expand symmetric matrix to six degrees of
freedom per point

TRAIC Generate coordinate transformation matrices
and integrals

TESTJ Impose accuracy criteria upon integrals

TRCPRT Print coordinate transformation matrices
and integrals

TRAIE Generate material properties matrices

TIEPRT Print material properties matrices

TRAIK Generate element stiffness matrix

TIKPRT Print element stiffness matrix

TRAIFP Generate element pressure load matrix

TFPPRT Print element pressure load matrix

TRAIFT Generate element thermal load matrix

TFTFRT Print element thermal lead matrix

TRAIS Generate element stress matrix

TISPRT Print element stress matrix

TRAITS Generate element thermal stress matrix

TTSPRT Print element thermal stress matrix

TRAIM Geuserate elemtnt mass matrix

TIMPRT Print element mass matrix

TRAIFS Generate element pre-strain load matrix

TFSPRT Print element pre-strain load matrix

3.12

TRAIST Generate element pre-stress load matrix

TSTPRT Print element pre-sbresr load matrix

PL6PRT Print all element matrices generated

3.13

G. TOROIDAL RING ELEMENT SUBROUTINES

PLUG5 Master control, generate element stiffness,
thermal load, pressure load, stress and
thermal stress matrices

ROMBER Perform integration by Romberg Method

F4 Evaluate a defined function for ROMBER

F5 Evaluate a defined)'unction for ROMBER

F6 Evaluate a defined function for ROMBER

jMATRX Generate coordinate transformation matrix

DMATRX Generate material properties matrix

GAMMAT Generate ierial transformation matrix

FCURL Generate intermediate thermal load matrix

PLMX Generate intermediate pressure load matrix

SCRLM Generate intermediate strebZ matrix

SOLVE Solve for element stress coefficients

QUADI Performs integration using numerical
quadrature methods

PRINT5 Print generated element matrices

3.11

H. QUADRILATERAL SHEAR PANEL ELEMENT SUBROUTINES

PLUG14 Master control, generate element stiffness,
stress and mass matrices

MULTF Performs in-core specialized matrix
multiplication

P14PRT Prints intermediate calculations and
generated element matrices

3.15

I. TRAPEZODIAL RING ELEMENT SUBROUTINES

PLUG8 Master control for the generation of
trapezodial ring element matrices

SUBINT Solves the Integral HI= Z- drdz

for values of Q = 0, 1 ai'd 2 for a trapezoid

ZMRD Perf'orm double precision multiplication of
two matrices (C - A * B)

ZTRD Perform double precision multiplication of

two matrices (C a AT * B)

KMPY Multiply, in double precision, each element
of a matrix by a scalar to form a resultant
matrix

ERIC Compute the pressure load vector for the
trapezodial ring

P8MASS Generate element mass matrix for the
trapezodial ring

3.16

o -

J. Rectangular Prism Element Subroutines

PLUG20 - Master Control

GEOMD - Generate geometry data

TRAAE - Generate material properties matrix

MPOWJF - Print element matrices

GAMMAG - Generate reorder transformation matrix

GAMMAS - Generate system transformation matrix

DISPMT - Generate strain-displacement matrix

MASS20 - Generate consistent mass matrix

P20FT - Generate thermal load

P2OFP - Generate pressure load

PASSYM - Assembles lccal consistent mass matrix into
system mass matrix

3.17

K. Tetrahedran Element Subroutines

PLUG1O - Master Control

PIOTM - Generates transformation matrix

CMASS - Generates the consistent mass matrix

BDEF - Generates area terms of tetrahedran

PlOFP - Generates pressure load

VOL - Generates volume of tetrahedran

3.18

L. Triangular Prism Element Subroutines

PLUG13 - Master Control
PLUG1O - Generates element matrices for the 3 tetra-

hedrans of the prism

3.39

M. Symmetrical Shear Web Element Subroutines

FLUG23 - Master Control

3.*20

N. Asymmetric Triangular Cross Section Ring Element

subroutines

PLUG25 - Master Control

HRAIKS - Generate element stiffness matrix

HRAIES - Generate elastic constants

HLOGEN - Generate pressure load

HMASSG - Generate mass matrix

HTHGEN - Generate thermal load

HRAICS - Generate transformation matrix and

area integrals

HRAISS - Generate stres3 matrix

3.21

O. High Aspect Ratio Quadrilateral Thin Shell Element
Subroutines

PLUG26 - Master Control

NEWFT - Calculate thermal load

CDELPQ - Calculate coordinate integrals

CK26 - Generate membrane stiffness and trans-

formation matrix

CMMASS - Generate membrane mass matrix

PIPRTA - Print results of coordinate and material

properties matrix

GENSM Calculate mode shapes and derivative functions

PRT1 Print transformation, stiffness, stress,

thermal stress, thermal load, and

pressure matrices

CK22 - Generates flexural stiffness matrix

CFP - Generates pressure load

CSTF - Generates flexuzal stress matrix

CFFTS - Generates flexural thermal load and

thermal stress

CFMASS - Generates flexural mass ..atrix

STRS26 - Generates membrane stress matrix

FT26 - Generates membrare thermal load matrix

SZAL26 - Generates membrane ther.mal stress matrix

3.22

APPENDIX IV

LIST OF SUBROUTINE FUNCTIONS OF MODULES
ADDED TO THE FORMAT II SYSTEM

ANALIC Control routine for statics analysis in core
when using the .ANALIC. abstraction instructions

ASSEM Control routine for assembling element matrices

using the .ASSEM. abstraction

ASSEMC Assembly thermal load element matrices

ASSEMS Assembly element stiffness, element mass and
element incremental matrices

(/ EQS Control routine for solving simultaneous equations
and triangularizing matrix using the .CHOL.,
.C1TRIA., .TRIA. abstraction instructions

COLMRD Utility subroutine to uncompress a column of
a matrix in dynamic storage

CCLREP Generate a rectangular matrix by repeating the
input column the specified number of times using
the .COLREF. abstraction instruction

DECODE Generate a copy of a Format matrix on a scratch
tpae in full format

DEJNC Perform column partitioning of a matr.x

DEJNR Perform row partitioning of a matrix

DEJCJIN Control routine for matrix partitioning using
the .DEJOIN. abstraction Instruction

DISPLl Printihg routine used by GPRINT

DISPPR Controls printing of displacements from GPRINT

EIG Main ,eration routine of .EIGEN2. module

EIGB Controls iteration routine EIG

EIGI Controls routine for calculating eigenvalues
and eigenvectors using the .EIGENI. abstraction
instruction

EIGPPR Controls printing of elgenvalues and vectors

4.1

ELREAD Routine to decode the compressed element
matrix output by the .USR04. module

EPRINT Controls printing of element stresses arid
forces when using the .EPRINT. abstraction
Instruction

FORCE Control routine to calculate element force
when using the .FORCE. abstraction instruction

FORCE Routine to set up dynamic sotrage and control

calculation of element forces for each element

FORCE2 Calculates element force

FREEUP Ro-tine to return work sotrage to available use

GPRINT Control routine to print reactions, displacement,
eigenvalues and eigenvectors when using the
.GPRINT. abstraction instruction

GPRNTI Controls storage and correct print transfers
for .GPRINT.

HDECO Control routine to calculate element matrices
dependent upon the Nth harmonic when using the
.HDEC. abstraction instruction

HSUM Control routine for assembling the contributions
of the hermonics when using the .HSUM. abstraction
instruction

IDENTC Generates an identity matrix when using the
.IDENTC. abstraction instruction

IDENT Generates an identity matrix when using the
.IDENTR. abstractUon instruction

INST04 Instruction analyzer for the .GRPINT. instruction

INST05 Instruction analyzer for the ;EPRINT. instruction

INST43 Instruction analyzer for the .DEJOIN. instruction

INST60 Instruction analyier for the .STRESS. and .FORCE.
instruc tions

MATPRT Controls printing of a user matrix when using
GPR:LNT.

4.2

MATSUP Insert suppressed input mat'ix names into the
Format 3ystem

NULL Generates a null matrix using the .NULL. abstraction
instruction

REACTP Controls printing of reactions when using .GPRINT.

REGE2 Utility routine used by EIGI

REPLAS Control routine to replace one matrix with another
matrix when using the .REPLAC. abstraction instruction

STRESS Control routine to calculate element stresies
when using the .STRESS. abstraction instruction

STRES1 Routine to set up dynamic storage and control

calculation of element stresses for each element

STRES2 Calculates element stresses

STRPRT Prints element stresses and forces

TSUM Generates a tape summary of matrices on a specified
logical unit

4.3

------------'I---

APPENDIX V

REVISIONS TO FORMAT SYSTEM DECKS

Subroutine Name: PREP

Purpose of Revision: Provide the cabability for suppressing
input matrices in an abstraction instruction

Method: Fortran statement number 200 was changed to
initialize the variable NUMSUP to zero. NUMSUP was added
to the calling sequence to subroutine IN T and upon return
will contain the number of input suppressed matrices located
during compilation of the input abstraction inatructions.
If NUMSTJP is non-zero upon return from INST, then subroutine
MATSUP is called to introduce the input suppressed matrices
into the Format system.

5.1

Subroutine Name: EUTL4

Purpose of Revision: To retain the second word in the matrix
header when copying a matrix. Thus the KODE word in the
matrix header will not be changed to zero when copying
matrix.

Method: After EUTL3 finds the matrix to be copied, a back-
space is Issued to read the KODE word of the matrix header.
This KODE is transferred to the matrix header of the new
matrix.

5.2

Subroutine Name: EUTL5

Purpose of Revision: To insure that the second word in the
matrix header is givm the value assigned by the user in the
czlling argument of IUTL5 to the variable KODE.

Method: When writing the matrix header write the variable
KODE from the argumeat list as the second word of the header.

5.3

W- -W

Subroutine Name: INST

Purpose of Revision: Provide distinct names for suppressed
matrices and record the number of input suppressed matrices
encountered while compiling the abstraction instructions.

Method: The variable NUNSUP was added to the calling sequence
of INST and inserted into the calling sequence for INST90 to
record the number of itput suppressed matrices located. The
variable KOUNT was initialized in INST as zero and inserted
in the calling sequence to INST90 to be . ,d as a counter to
ensure the generation of unique suppressed matrix names.

5.4

Ab -

Subroutine Name: INST9O

Purpose of Revision: Introduce unqiue matrix names into the
Format system for both output and input suppressed matrices
for the .USERXX. form input abstraction instruction.

Method: The variables KOUNT and NUMSUP were added to the
calling sequence for subroutine INST90, KOUNT to indicate
the next unique suppressed matrix name and NUMSUP to record
the number of input suppressed matrices cncountered. Whether
input or output, a suppressed matrix is located and a name
assigned to it by the same procedure. All blanks have been
removed from the input ins'.ruction by subroutine PUTL1. The
instruction is scanned, first the output side, then the input
side. Whenever a matrix position has length zero, i.e. the
matrix name was blank, the suppressed name is created by
inserti-g four slashes for the first four characters and
adding one to KOUNT and inserting that value as the last two
characters. The sign of the matrix is set to plus. If the
suppressed matrix was an input matrix, i.e. was encountered
on the right sign of the equal sign, then NUMSUP is incremented
by one.

5.5

- -- -- iw.-w- -Y --- -.- - ,

Subroutine Name: MATR

Purpose of Revision: Provide the capability of" placing
card input matrices on the same data set as input suppressed
matrices, if necessary,

Method: If card input matrices are present then subroutine
MATH is called to place these matrices on NDATA, the data
set selected by the Format pre-processor for that purpose,
However, if input suppressed matrices were present then they
already exist on NDATA at the time that MATH is called. There-
fore MATR had to be revised to check NUMD, tuhe variable
indicating the number of matrices already oi NDATA, before
recording card input matrices on NDATA. If NUMD is zero
then NDATA is rewound and a data set header written and the
card input matrices recorded. If NUMD is non-zero, then
NDATA is searched until the data set trailer is located, then
backspaced over the data set trailer and then the card input
matrices are recorded.

5.6

Subroutine Name: ALOC

Purpose of Revision: Pass the value of IPRINT, the Format
system print control, to subroutine ALOC1I for transmittal
when operating under SUBSYS control.

Method: The variable !PRINT was added to the calling
sequence for ALOC and inserted into the call statement to
ALOC4.

5.7

2aim

Subroutine Name: ALOC31

Purpose of Revision: Indicate to the Format system the
number of scratch data sets required to execute the .USER04.
instruction.

Method: The variable MINSCR(94) was set equal to four.

5.8

Subroutine Name: ALOC4

Purpose of Revision: Store on the instruction data set,
NINST, the necessary data for re-initialization of program
constants for operation under Subsys control.

Method: When proceeding from program to progrein under
Subsys control, the necessary system parameters must be
reset at the start of each program. The v3jues of the
parameters are obtained as follows: NPIT, the system input
unit, NPOT, the system output unit, KONST, the maximum
matrix size capability and NWORK, the number of available
work storages are obtained via the COMMON statement in
ALOC4. The value of IPRINT is received through the calling
sequence of ALOC4. These five system parameters, NFIT,
NPOT, KONST, NWORK and IPRINT, are added as extra words to
the return instruction recorded on NINST.

5.9

APPENDIX VI

MAGIC ERROR MESSAGES

The following is a list of all MAGIC error messages.
The list is divided into three sections. The first section
contains all Format error messages (Reference 2) and is
divided into two parts, the preprocessor error message, and
the execution error message. The second section contains
error messages from all arithmetic and non-arithmetic modules
developed to be used in conJun-vtion with the structural
generative module. The third section contains error messages
generated by the structural generative system itself, which
is the .USER04. module. In each section the error messages
are in alphaoetic order. The error message codes are signifi-
cant in that the first six characters identify the subroutine
from which the error message emanates. The occurrence of ****
in the error message indicates that additf nal descriptive
information will be supplied.

6.1

W- - -- wA-w ----

SECTION 1. FORMAT ERROR MESSAGES

ALOC01 INSUFFICIENT STORAGE FOR ALLOCATION

The number of words of working storage available to the
allocator is less than the minimum required for complete
allocation of this job. This condition can be remedied by
reducing the number of abstraction instructions.

ALOC02 INVALID NO. OF MASTER INPUT/OUTPUT DATA SETS SPECIFIED

The number of master input data sets and/or master output
data sets specified on "INPUT TAPE" or "OUTPUT TAPE" cards is
greater than the number of master input and/or master output
data sets defined in the machine resources area as being
available to FORMAT II. This condition can be remedied by
reducing the number of "INPUT TAPE" and/or "OUTPUT TAPE"
cards.

ALOC03 INSUFFICIENT UTILITY DATA SETS FOR ALLOCATION

The number of data sets with the FORNAT Ii system functLcn
IOUTIL is less than the minimum number required by the FORMAT
II Preprocessor during the preprocessing phase. This condition
can be remedied by reducing the number of "INPUT TAPE" or
"OUTPUT TAPE" cards used in this job or by modifying the machine
resources area. (i.e., define additional data sets with the
FORMAT II system function IOUTIL.

ALOC04 MASTER OUTPUT DATA SET ****** SPECIFIED IN SAVE
INSTRUCTION NOT DEFINED

A "SAVE" instruction in the abstraction instruction sequence
refers to a master output data set name which has not been
defined on an "OUTPUT TAPE" card. This condition can be remedied
by including the appropriate "OUTPUT TAPE" card in the Job.

ALOC05 MASTER INPUT DATA SET ****** HAS NOT BEEN MOUNTED

The FORMAT II allocator has not been able to locate a master
input data set which has been specified on an "INPUT TAPE" card.
This condition is usually caused by mounting the correct master
input data set on the wrong unit or by misspelling the name of
a properly mounted data set on the "INPUT TAPE" card.

6.2

L!

ALOC06 MATRIX **** IS NON-EXISTENT

A matrix, which appears in the abstraction instruction
sequence and which has not been created in the abstraction
instruction sequence prior to its use, has not been card input
and does not appear on any master input data set. This con-
dition can be remedied by inputting the required matrix.

ALOCO7 DUPLICATE MATRICES m****, IN MATRIX DATA

Two or more matrices with the same name have been card
input. This condition can be remedied by ensuring that all
card input matrices have unique names.

ALOC08 CREATED MATRIX ****** IS CARD INPUT

A matrix which is created in the abstraction instruction
sequence has the same name as a matrix which is card input.
This condition can be remedied by removing the matrix in
question from the card input matrix data.

ALOC09 SUBSCRIPTS OF *** ** EXCEED DIMENSION'S OF MATRIX

The indices of a scalar element to be extracted from a
matrix are larger than the dimensions of that matrix. This
condition can be remedied by changing the indices of the scalar
element specified in the abstraction instruction sequence.

ALOC10 DUPLICATE MATRICES CREATED -- NAME *

A matrix in the abstraction instruction sequence appears
more than once on the left side of an equal sign. This condition
can be remedied by ensuring that all matrix names, which appear
on the left side of an equal sign in the abstraction instruction
sequence, have unique names.

ALOC11 MATRIX ****** IS USED MORE THAN ONCE IN INSTRUCTION **

The matrix names appearing in the indicated instruction
in the abstraction instruction sequence do not have uniquenames. This condition can be remedied by ensuring that all

matrix names appearing in a given abstraction instruction have
unique names.

ALOC12 CREATED MATRIX ****** HAS BEEN INPUT

A matrix which appears on the left side of an equal sign
in the abstraction instruction sequence has the same name as
a required input matrix. This condition can be remedied by
either changing the name of the required input matrix or by
changing the name of the matrix which appears on the left side
of the equal sign.

6.3

ALOC13 MATRICES CREATED IN INSTRUCTION *** NEVER REFERENCED

The indicated abstraction instruction in the abstraction
instruction sequence 6reates matrices, none of which are
referenced in subsequent abstraction instructions. This con-
dition can be remedied by removing the indicated abstraction
instructions from the abstraction instruction sequence.

ALOC14 DUPLICATE STATEMENT NUMBERS **w,,

Duplicate statement numbers occur in the abstraction
instruction sequence. This condition can be remedied by
ensuring that each statement number occmring in the abstraction
instruction sequence is unique.

ALOC15 GO TO DESTINATION *** IS MISSING OR OCCURS BEFORE
IF TEST

An abstraction instruction "IF" in the abstraction
instruction sequence conditionally transfers to a non-existent
statement number cr transfers to a statement number on an
abstraction instruction which is sequentially earlier than
the "IF" abstraction instruction in question. This condition
can be remedied by ensuring that all "IF" abstraction instructios
conditionally transfer to a statement number which occurs
sequentially after the "IF" abstraction instruction.

ALOC16 NON CONFORMABLE MATRICES IN INSTRUCTION ***

Two matrices occur in the indicated abstraction instruction
in the abstraction instruction whose dimensions are such that
the matrix operation in the indicated abstraction instruction
is not defined.

EXEQ01 THE FORMAT SYSTEM IS UNABLE TO LOCATE MATRIX *

This message signifies a malfunction of the user-coded
subroutine which creates the specified matrix.

EXEQ02 CONFORMABILITY ERROR IN INSTRUCTION CREATING MATRIX *

The matrices involved on the right side of th equals
sign in the instruction creating the specified matrix are
unconformable.

6.4

EXEQ03 MATRIX ****** IS SINGULAR

The matrix is singular in a "Solution of Equations'
routine, i.e., in "STRCUT," "SEQEL" or "INVERS."

EXEQ04 AN ERROR HAS OCCURRED IN THE USER ** MODULE

An error recognized by the indicated user-coded subroutine
has occurred. This will usually be associated with incorrect
definition of the special data for use by thesubroutine.

EXEQ05 AN IMPROPER UPDATE HAS BEEN MADE TO THE FORMAT SYSTEM -
EXECUTION TERMINATED

A new permanent module has not been properly incorporated.
The FORMAT II systems analyst should be contacted if this error
message occurs.

EXEQ05 AN ERROR HAS OCCURRED IN A USER-CODED MOIDULE, ERROR
HAS BEEN WRITTEN BY MODULE

An error has occurred in a non-Format module. The
specific error has been written by the subrbutine in which
the error was found.

EUTL3 THE SYSTEM IS UNABLE TO LOCATE A MATRIX. A TAPE SUMMARY
OF LOGICAL UNIT **** WILL FOLLOW

The Format system is unable to locate a matrix. A tape
summary of the data set on which the matrix should have been
is printed out. The name of the matrix will appear in the
next error message.

INST01 ILLEGAL OPTION SPECIFIED ON $INSTRUCTION CARD

An option other than "SOURCE" or "NOSOURCE" has been
specified on the "$INSTRUCTION" card or a valid option starts
before card column 16 in the "$INSTRUCTION" card.

INST02 INVALID STATEMENT NUMBER SPECIFIED

The statement number which is specified in card columns
1-5 of the abstraction instruction preceding this error message
is composed of characters which are not all numeric.

INST03 INVALID CHARACTER IN COLUMN 6

Card column 6 of the abstraction instruction preceding
this error message contains a character other than a blank or zero,

6.5

INST04 UNRECOGNIZABLE OPERATION CODE

The operation specified in the abstraction instruction
preceding this error message is not contained in the FORMAT
II library of valid operations.

INSTO4 SYNTAX ERROR IN - GPRINT - INSTRUCTION

INST04 ILLEGAL NEGATIVE INPUT VALUE FOR SUPPRESSION OF MATRIX
ELEMENTS, ABSOLUTE VALUE TAKEN

The effective zero value for suppression of element
print in the GPRINT instruction must be positive.

INST04 INVALID SPECIFICATION OF INPUT MATRICES

An incorrect number of input matrices has been specified

in the GPRINT instruction.

INST04 ILLEGAL SPECIFICATION OF COLUMN HEADERS

Incorrect syntax in GPRINT when written column headers.

INST05 SYNTAX ERROR IN - IF - INSTRUCTION

The abstraction instruction "IF" which precedes this error
message contains an unrecognizable field.

INST05 SYNTAX ERROR IN - EPRINT - INSTRUCTION

INST05 INVALID PRINT CONTROL

The print control in the EPRINT instruction was incorrectly
specified.

INST05 ILLEGAL NEGATIVE INPUT VALUE FOR SUPPRESSION OF MATRIX
ELEMENTS, ABSOLUTE VALUE TAKEN

The effective zero value for suppression of element print
in the EPRINT INSTRUCTION must be position.

INST05 ILLEGAL SUPPRESSION OF PARAMETER

The code indicating either stress or force matrices to
be printed has been omitted.

6.6

INST06 SYNTAX ERROR IN - PRINT - INSTRUCTION

The abstraction instruction "PRINT" which precedes this
error message contains. an unrecognizable field.

INST07 SYNTAX ERROR IN - SAVE - INSTRUCTION

The abstraction instruction "SAVE" which precedes this
error message contains an unrecognizable field.

INST08 OPERATION CODE NOT INCLOSED BY PERIODS

The operation code in the abstraction instruction preceding
this error message is not inclosed by periods.

INST09 SYNTAX ERROR IN ARITHMETIC INSTRUCTION

The arithmetic abstraction instruction preceding this
error message contains an unrecognizable field.

INST10 THIS INSTRUCTION IS NOT AVAILABLE

An incomplete modification to the instruction car processor
area has been made. The FORMAT II systems analyst should be
notified immediately.

INST43 INVALID SPECIFICATION OF PARAMETERS

A syntax error has occurred in the DEJOIN instruction.

INST43 - INVALID INDEX SPECIFIED

Parameter specifying row or column dejoin is illegal.

XNST43 INVALID MATRIX NAME

The DEJOIN instruction contains one invalid matrix
name.

MATR01 UNRTCOGNIZABLE OPTIONS ON $MATRIX CARD STANDARD OPTIONS
USED WARNING ONLY

An option other than "LIST", "NOLIST", "PRINT" or "NOPRINT"
has been specified on the "$MATRIX" card or a valid option
starts before column 16 on the "$MATRIX" card.

6.7

MATR02 CARD FOLLOWING $MATRIX CONTROL CARD IS NOT A HEADER
CARD OR HAS - H - MISSING IN COLUMN 1

The first card following the "$MATRIX" card must be the
header card of the first card input matrix. All data up to
the first header card will be ignored.

MATR03 NAME ON DATA CARD IS DIFFERENT FROM NAME ON HEADER
CARD. THIS MATRIX WILL BE IGNORED

The matrix header card and all associated matrix data must
have the same name in card columns 67-72.

MATR04 ROW AND/OR COLUMN VALUE EXCEED MATRIX SIZE, IS NEGATIVE
OR IS ZERO AND VALUE IS NONZERO. THIS MATRIX WILL BE
IGNORED.

An element specified in the matrix card input data is out-
side the dimensions of the matrix, of which it is supposed to
be an element.

MATR05 MATRIX EXCEEDS ALLOTTED STORAGE. THIS MATRIX WILL BE
IGNORED.

The number of words of working storage available to the
matrix card reader module is less than the number of words
necessary to contain all the nonzero elements in one of the
card input matrices. The number of words of working storage
required for a given matrix is approximately three (3) times
the number of nonzero elements in the matrix. This condition
can be remedied by decreasing the number of nonzero elements
in the card input matrix.

MATR06 DUPLICATE I-J VALUES ENCOUNTERED. THIS MATRIX WILL BE
IGNORED. I - ***9 J = ****

Two or more values have been specified for the same matrix
element in the matrix card input data. This condition can be
remedied by ensuring that each matrix element has a unique set
of I - J values.

MATR07 I VALUE ON HEADER CARD EXCEEDS ALLOTTED SIZE OR IS LESS
THAN OR EQUAL TO ZERO. THIS MATRIX WILL BE IGNORED.

The number of rows specified In tne header card of a card
input matrix is greater than the maximum number of rows permitted
in a matrix which is processed by the FORMAT II system, or is
less than or equal to zero. This condition can be remedied by
reducing the dimensions of the card input matrix.

6.8

- -- - -w - *- " - l . .

MATRO8 J VALUE ON HEADER CARD EXCEEDS ALLOTTED SIZE OR IS LESS
THAN OR EQUAL TO ZERO. THIS 1,!TRIX WILL BE IGNORED.

The number of cclumns specified in the header card of a
card input matrix is greater than the maximum number of columns
permitted in a matrix which is processed by the FORMAT II system,
or is less than or equal to zero. This condition can be remedied
by reducing the dimensions of the matrix.

MATR09 FIRST CHARACTER OF MATRIX NAME ON HEADER MUST BE
ALPHABETIC. THIS MATRIX WILL BE IGNORED.

The matrix name which is to be given to a set of matrix
card input data and which is punched in card cqlumn 67-72 of
the header card and all associated data cards must follow the
rules for valid matrix names as defined for the FORMA! II
system. The rule wnich applies in this case is that the first
character of a matrix name must be alphabetic.

MATR1O ILLEGAL CARD ENCOUNTERED. FOLLOWING CARDS IGNORED UNTIL
ANOTHER - - CONTROL CARD IS FOUND.

A card has been encountered 4n the matrix card input data
which has an illegal character punched in ckrd column 1. The
only valid characters which may appear in card column 1 are "H",
"Ell, and blank.

MATRll CARD FOLLOWING E CARD IS NOT A $ CONTROL CARD - WARNUI:G
ONLY.

In a valid FORMAT II deck setup the only cards which may
follow the "E" card which is the last card in the matrix card
input data, are the "$SPECIAL" card and the "$END" card.

MRES01 FIRST CARD IS NOT A - $ - CONTROL CARD

The first card of all FORMAT II Jobs must be a "$MAGIC"
or a "$FORMAT" card.

MRES02 FIRST - $ - CONTROL CARD TS NOT A $MAGIC CARD. ALLOCATION
SUPPRESSED

The first card of all FOFt,'T II Jobs must be a "$MAGIC"
or a "$FORMAT" card.

6.9

MRES03 UNRECOGNIZABLE OPTION ON - $MAGIC CARD STANDARD
OPTION ASSUMED

An option other than "NEW" "STANDARD" (or blank) or
"CHANGE" has been spe6ified on the "$LMAGIC" card or a valid
option starts before column 16 on the "$MAGIC" card,

MRES04 ILLEGAL CARD FOR - CHANGE - OPTION - AtilOCATION'
SUPPRESSED

The "DELETE" card and the "UPDATE" card are the only
valid machine resources data cards which are valid when the
"CHANGE" option has been specified on. the "$FORMAT" card. The
"SETUP" card is the only valid machine resources data card
which is valid when the "NEW" option has been specified on
the "$FORMAT" card.

MRES05 THE SYSTEM INPUT DATA jET OR OUTPUT DATA SET HAS BEEN
SPECIFIED AS A FORMAT II SYSTEM FUNCTION

Two Fortran logical data sets which must not be specified
on "UPDATE", "DELETE", or "SETUP" cards ai the system input
data set and the system output data set.

,RES06 DUPLICATE DATA SETS SPECIFIED - ALLOCATION SUPPRESSED

A Fortran logical data set has been specified more than
once on "SETUP" or "UPDATE" cards.

MRES07 INVALID **** VALUE DETECTED ALLOCATION SUPPRESSED

An invalid field has been specified on an "UPDATE" or
"SETUP" ,ard. The valid fields are as follows. The first
field must contain the logical data set number (an integer).
The second field a valid FORMAT II system function (e.g.,
"MASTRI", "MASTRO", or "IOUTIL"). The third field must
contain the physical device containing the data set. The
valid specifications in the fIeld are "TAPE", "DISK", "DRUM",
or "CELL". The fourth field must contain the logical channel
designation. This consists of a letter A to H. The fifth
field must contain the capacity of the data set in basic
machine units (e.g., bytes, etc.). This field must be an
integer number. The error message indicates which of the five
fields is in error.

MRES08 INCORRECT SETUP OR UPDATE CARD ALLOCATION SUPPRESSED

A missing field has been detected on a "SETUP" or "UPDATE"
card.

6.10

MRES09 INSUFFICIENT I/O UTILITY DATA SETS - ALLOCATION
SUPPRESSED

A minimum number of Fortran logical data sets available
to FORMAT II must have the FORMAT II system function of "IOUTIL".
The FORMAT II preprocessor selects several of the data sets with
this function for scratch data sets during preprocessing. This
condition can be remedied by specifying additional data sets on
"SETUP" or "UPDATE" cards with the FORMAT II system function
"IOUTIL".

MRES10 IT-LEGAL DEVICE SPECIFIED FOR MASTER INPUT DATA SET

The only valid device types which may be specified for a
FORMAT II data set whose system function is "MASTRI" are
"TAPE" and "DISK". A "SETUP" or "UPDATE" card is the source
of the error.

MRESll ILLEGAL DEVICE SPECIFIED FOR MASTER OUTPUT DATA SET

The only valid device types which may be specified for a
FORMAT II data set whose system function is "MASTRO" are
"TAPE" and "DISK". A "SETUP" or "UPDATE" card is the source

of the error.

PREP01 INVALID CONTROL CARD OR INCORRECT DECK SETUP

The FORMAT II preprocessor has encountered a control card
which is unrecognizable or which is valid but does not occur
in its proper place. Recommended corrective action is to check
the spelling of all control cards and check the deck set up.

PREP02 NOT A - $ - CONTROL CARD. CARD IGNORED

When an invalid control card is encountered or incorrect
deck setup is recognized, the preprocessor searches for the
next "$" control card.

PREP03 PREPROCESSING TERMINATED EXECUTION HALTED

Whenever a serious error occurs the preprocessing is
terminated and a "NOGO" condition is established.

PROB01 UNRECOGNIZABLE OPTION ON - MRUN - CARD. STANDARD
OPTION USED.

An option other than "GO", "NOGO", "LOGIC" or "NOLOGIC"
has been specified on the "$RUN" card or a valid option starts
before column 16 in the "$RUN" card.

6.11

PROB02 CONTRADICTORY EXECUTION OPTIONS - ALLOCATION SUPPRESSED

The options "GO" and "NOGO" have been specified on the
"$RUN" card.

PROB03 CONTRADICTORY LGOIC OPTIONS - ALLOCATION SUPPRESSED

The options "LOGIC" and "NOLOGIC" have been specified on
the "$RUN" card.

PROB04 MISSING LEFT PARENTHESIS - ALLOCATION SUPPRESSED

A problem specification data card has a missing left
parenthesis.

PROB05 UNRECOGNIZABLE CARD

A problem specificaticn data card is unrecognizable. The
valid problem specification data cards are the "ANALYSIS" card,
the "PROBLEM" card, the "PAGE SIZE" card, 6he "INPUT TAPE" card,
and the "OUTPUT TAPE" card.

PROB06 MISSING COM4A ON MASTER I/O TAPE CARD - ALLOCATION
SUPPRESSED

There is a missing field on an "INPUT TAPE" card or on
an "OUTPUT TAPE" card in the problem specification data.

PROB07 ILLEGAL MASTER I/O DATA SET NAME - ALLOCATION SUPPRESSED

The master input or master output data set name which has
been specified on "INPUT TAPE" card or on "OUTPUT TAPE" card
in the problem specification data is invalid. Master Input/Output
data set names follow the same rules as matrix names. In
particular, the name must be 1-6 characters long and the first
character must be alphabetic.

PROB08 ILLEGAL INTEGER ON MASTER I/O TAPE CARD

The second field of an "INPUT TAPE" or "OUTPUT TAPE" card
in the problem specification data is not an integer number.

PROB09 ILLEGAL PAGE SIZE - ALLOCATION SUPPRESSED

An invalid page size has been specified on the "PAGE SIZE"
card in the problem specification data. The valid page sizes
are "11 * 8", "8 * 11" and "114 0 11".

6.12

PROBI0 MASTER INPUT OR OUTPUT DATA SET USED PREVIOUSLY

All master input and output daba set names as specified on
"INPUT TAPE" and "OUTPUT TAPE" cards in the problem specification
data must be unique.

PROB11 INVALID SIZE SPECIFIED ON SIZE CARD

An integer number must be specified ir. the only field of
the "SIZE" card.

6313

- - --- 1W

SECTION 2. MISCELLANEOUS ARITHMETIC MODULE ERROR MESSAGE

ASSEM - The order of the- assembled - unreduced system,
NSYS a ****, t.e i.ximum size system can
only a *****,D.O...

The variable KONST In subroutine MRES must be
updated to allow the user to an3emble a system
with NSYS degrees of freedom.

ASSEMC -Element number *****, generated a LISTEL value

of *"***, while NSYS =

If this error occurs see the MAGIC system analyst.

ASSEMS Must update the dimension of the list and format
arrays to allow for **** degrees of freedom.

The dimension of two arrays in subroutine ASSEMS
must be updated to assemble more degrees of freedom
than allowed. If this error occurs see the
MAGIC system analyst.

COLREP Inpit matrix ***** exceeds allowable sie
IMAX = ****.

The number of rowS of the input matrix exceeds
the value of KONST. IMAX is the number of rows
In the input matrix.

DVJ'1C The partition number - , is greater than
or equal to the column dimension = m of the
input matrix.

An invalid column partition number has been
specified in the DEJOIN instruction 1 < JPART < ICOL.

DEJNR The partition number - , is greater than or
equal to the row dimension a of the input
matrlx.

An Invalid row partition number has been specified

ii the DITOIN instruction 1 < JPARr < IROW.

DEJOIN Invalid partition numoer -

The matrix partition r mber must be greeter
than one.

6.14~

EPRINT Unable to execute the EPRINT module. The work
array is not long enough for execution.

The variable NWORK in subroutine MRES must be
updated for more work storag'.

EPRINT The element information is for element number
**** - go to next element.

Unable to print out stresses or forces for this
element, continue execution. If this error
occurs contact the MAGIC system analyst

EPRINT The number of elements in the input matrices
are not the same.

If this error occurs contact the MAGIC system
analyst.

EPRINT Printing for element type *****, are not available,
proceeding to next element.

The EPRINT module- has not been updated to handle
this element type. Contact the MAGIC system
analyst.

FORCE1 Unable to execute the force module. The work
array contains ******** words, and *******
words are needed to process the maximum elemeut.

There is not enough work storage to calculate
the forces for all elements. The variable
NWORK must be updated in subroutine MRES.

FORCE2 Forces for element type *****, are not available,
proceeding to next element.

The FORCE module has not been updated to handle
this element type. The MAGIC system analyst should
be contacted if this error occurs.

FREEUP The number of matrices to be kept was input as
MATOUT w 1 the number of non-zero elements
of MAT -

If this error should occur contact the MAGIC
system analyst.

GPRNT1 The row dimension of TR(transformation matrix
for application of boundary conditions) = *****.
The number of columns of TR * **I ** This
should equal row dimension.

An incorrect matrix was input in the .GPRINT.
instruction.

6.15

GPRNTi The analyst has asked for ***** eigeavalues to
be printed. Subroutine OPRINT allows a maximum
of 0*U** values to bc printed - see a program
analyst to correct this error

Subroutine GPRINT must be updated to allow
more eigenvalues to be printed.

GPRNTI - Error while processing matrix ******.

An error has occurred in the GPRINT instruction
while processing matrix named.

GPRNTl - The matrix to be printed has ****** rows while
TR indicates that it should have ***** rows.

The input matrix to be printed is incorrect or the
input transformation matrix is incorrect.

GPRNT1 - Eigenvector matrix has ***** eigenvectors,
while the eigenvalue matrix has **** eigenvalues.

The eigenvector and eigenvalue matrices input
into the GPRINT instruction are not compatable.

STRESI Unable to execute the STRESS module. The work
array contains ******** words, and ******* words
are needed to process the maximum element.

There is not enough work storage to calculate
the stresses for all elements. The variable
NWORK must be updated in subroutine MRES.

STRES2 Stresses for element type *****, are not available
proceeding to next element.

The STRESS module has not been updated to handle
this element type. The MAGIC system analyst should
be contacted if this error message occurs.

6.16

SECTION 3. .USER04. ERROR MESSAGES

CHEK Input section **** has not been found. This
input section is required for generation of
the following matrices.

Tile named matrices cannot be generated due to
the omission of the specified input section.

CONTRL System information card missing. Cannot allocate
storage.

All input data decks must have SYSTEM section
to allocate storage for processing of input.

CONTRL System information card missing. Cannot
allocate storage.

The SYSTEM card is missing from the report
form input deck.

CONTRL $END card encountered while %eading .USER04.
input, indicating absence of end or check card.
Check card will be inserted.

END or CHECK card missing from report form input
deck.

DEFLEX - .USERo4. Module unable to locate matrix *nnn*.

The system is unable '.o locate a matrix.

DEFLEX - Matrix """*** doss not qualify as an input
displacement matrix for the .USER04. module.
Dimensions are ***** by **** and should be

em by Mmm

The input displacement matrix used to calculate
incrementals is of the wrong order.

DEFLEX Matrix ****** does not qualify as an input
displacement or stress matrix.

The input matrix used to calculate incrementals
is of the wrong order. If the matrix was a
stress matrix then it must have been generated
using the .STRESS. abstraction instruction.

6.17

- --v --------

ELEM Element control error in subroutine ELEM.
Element number **** calls plug number ***.
Plug number should be greater than zero.
Execution terminated.

All element type code numbers are greater than
zero. Proper element type cannot be selected.

ELEM Element control error in subroutine ELEM.
Element number ***** has material number *****.
Material identification must be different from
zero.
Execution terminated.

Self-explanatory.

ELEM Element control error in subroutine ELEM. Element
number ***** has number of grid points =
Number of grid points must be greater than zero
and no greater than eight. Execution terminated.

Self explanatory.

ELEM Element control error in subroutine ELEM. Element
number ***** has number of input points =
Number of input points must be position.
Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM. Element node
point is negative or zero in element number *****.

No element defining point nxmber may be negative
and only mid-points may be zero.

6.18

ELEM Input error in subroutine ELEM, after inter-
polation value of Young's Modulus equals
+.Iw***M* + ** in material number **m***
r*mu**aimar~**M***a*II#* Value should be
greater than 1.0. Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM, after inter-
polation Poisson value equals +.m******E
+ ** in material number *****,.
Value should be greater than -1.0 and less than
1..0. Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM, after inter-
polation thermal coefficient values equals
+.*******E +,** in material number *****
T~miw***u**M?* * '. Value should be
greater than -1.0 and less than 1.0. Execution
terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM, after inter-
polation rigidity value equals + .*****E
+ a* in material number ** .*,
Value should be greater than 1.0. Execution
terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM. Mass density
value equals + . XXXXXXXXE + ** in material
number ' R******. Value
should be greater than zero. Execution terminated.

Self-explanatory.

ELEM Input error in subroutine ELEM. Value of
IP - 5, value of IPRE, - *** for element number
one. Request to repeat data from element previous
to first element is illogical. Execution
terminated,

IP and IPRE cannot be negative for first
element.

6.19

ELEM Input error in subroutine ELEM. Element number
#*.*** is defined by node points for which no
coordinates have been input. Calculation of
material temperature impossible. Execution
terminated.

Self explanatory.

ELEM Cannot locate material library.

The system cannot locate the material library
matrix.

ELEM Material error in subroutine ELEM. Material
number ***** was not located on material
tape. Execution terminated.

The specified material number was not available
in the material library.

ELPLUG Input error for element number
element tpe X X X. element grid
points x K X 9 X x x 1 1.

FMAT Input error in sdbroutilne F.'.AT. Material
number ******, *********IR************.
Number of material temperature points is w*.
Number of plastic temperature points is *m.

Number of temperature points in either case
cannot exceed 9. Execution terminated.

Self explanatory.

FMAT Input error in Subroutine FMAT. Mass density
value equals +*U*****U + ** in material number
I**, i*. aw* *** *** . Value should
be non-negative. Execution terminated.

Self-explanatory.

FMAT Input error in subroutine FMAT. Poisson value
equals + .I* * + * in material number
5Im ,-*i~ W**. Value should
be greater than -1.0 and less than 1.0.
Exerution terminated.

Self-explanatory.

6.20

FMAT Input error in subroutine FMAT. Rigidity value
equals + . I#*****E + ** in material number
. *, **mu*,.wmr*~******m*. Value should

be greater than 1.0. Execution terminated.

Self-explanatory.

FMAT Input error in subroutine FMAT. Thermal
coefficient value equals + .********E + *,
in material number ***** ***********i,*****m**.
Value should be greater than -1.0 and less than
1.0. Execution terminated.

Self-explanatory.

FMAT Input error in subroutine FMAT. Value of
Young's modulus equals + .***NVIE + **
in material number , ******M*****I***,*.
Value should be greater than 1.0.

Self-explanatory.

FMAT Error message from subroutine FMAT. Attempt
to delete mater_,%l number **** using lock
code . incorrect lock cod#, request ignored.

Self-explanatory.

FMAT Error message frorm subroutine FMAT. Attempt to
delete material that was not on material tare.
Material number Material identification
is . Input code is .
Request ienored.

Self-explanatory.

FMAT Error message from subroutine FMAT. Attempt to
revise material number ***** using lock code I .
Input lock code does not match tape lock code
for this material. Revisions or deletions not
allowed without proper lock code. Execution
terminated.

Self-explanatory.

FMAT Error message from subroutine FMAT. Additions
requested exceed capacity of material tape.
Maximum number of materials cannot -exceed .

Self-explanatory.

6.21

FMAT Error message.from subroutine FMAT. Request
for print of material that was not on tape.
Material number . Material identific*ation
is . Input code is
*mm. Request ignored.

Self-explanatory.

FMAT Error message from subroutine FMAT. Unrecognizable
data input code. Legal codes are PI, PO, I.
0, P, OUT, ALL, SEE, SUM. Material number
III**. Material identification is
##**I '***fl*******W. Input code is .

Execution terminated.

Self-explanatory.

FMAT Error message from subroutine FMAT. Number
of requests received is zero.

Number of requests must not be zero. Value of
zero indicates improper operation of program.

FMAT Error message from subroutine FMAT2. Attempt to
input plastic data only for material which was
not on tape. Material number . Material
identification is I* ** ***********.
Input code is * . Request ignored.
Usage of an input code of ""' requires that the

material to be revised already exists in the
material library.

FMAT New material tape not generated. All revisions

and/or deletions requested by this case have
been ignored.

Due to a previous error, generation of a new
material library has been abandoned. Execution
will be terminated.

FORMIN Unexpected label card read - point .

Input section label card encountered while
reading table form input. Point reflects entry
now being processed.

FORMIN Repeat for first paint ignored.

Repeat option un table forms of report form
input cannot be used for first ,value entered.

6.22

FRED There is a mistake in the coordinates for this
transformation, we will calculate the remaining
in spite of this.

An error has occurred in generating a grid point
axes transformation matrix. Execution will
continue.

P6211 The integral of (LN(A+B*X)/X) DX is not allowed
for A+B*X=O. A - +.#****E + *.,
B = + .u******E + ¥#, X = + .**M*E + ,

Natural log of zero is undefined.

INDECK .USER04. input matrix ****** is not a valid
deck (word count error).

The specified matrix does not qualify as a
valid interpreted input deck.

INDECK .USERo4. input matrix ****** is not a valid deck
(compression error).

The specified matrix does not qualify as a valid
interpreted input deck.

INPUT Input error, number of directions of grid points
not equal to number of directions of transformation
matrix. Execution terminated.

Order of grid point axes transformation matrices
must be equal to three.

INPUT Input error, number of reference points input
exceeds ***.

Program cannot accommodate more than the given

number of input points.

INPUT Label card error **#***.

Input card read should have been label card.
Execution will be terminated.

LOG LO Logical input error - matrix ,*** cannot be
generated by .USER04. module due to suppression
of fourth input matrix. Execution phase suppressed.
Input processing continuing.

The incremental matrices cannot be generated
because the input displacement or stress matrix
has been suppressed.

6.23

PDISP Input setion 0000** matrix not generated due
to presaibed displacement conditions .NE. 1
and .LT. Load conditions input.

The Prescribed Displacement matrix has not been
generated because of an illegal combination of
external load conditions and prescribed displace-
ment conditions.

PHASE1 - Unexpected blank label card encountered.

Card read should have contained an input section
label. Input processor will attempt to continue.

PHASE1 - No option has been selected for request number
*** of material library.

Self-explanatory.

PHASE1 - More than one option has been selected for
request number *** of material library. Only
the first selection will be retained.

Self-explanatory.

PHASE1 - Maximum number of load conditions allowed is
100. This problem contains .

Self-explanatory.

PHASE1 - Load condition *** sub-label is incorrect.
Program cannot distinguish between load conditions.

Load condition sub-label in report form input
is in error.

PHASE1 - Illegal MODAL card encountered. Card will be
ignored.

A MODAL card has been found while reading an
input section for which no MODAL card has been
defined.

PHASEi Due to previously encountered error condition
this section is being skipped. Program will
flush data deck until next recognizable input
section is encountered.

6.24

ri

1W,__ -

PHASE1 Unrecognizable input section.

Input section label has been read which is
undefined in input processor.

PHASEl - Due to above error message this section will
be omitted and check card inserted.

Self-explanatory.

PHASE2 - Number of entries read V'or this section, m
does not agree with- number that was to be read,
*****. Actual number read will be used.

Self-explanatory.

PHASE2 - This section has either been omitted or flushed
by phase one error. In either case this section
is considered'critical and execution will not
be allowed.

Self-explanatory.

PHASE2 Due to the omission of this pectioni the folloving
sections may be ignored - Y ' , * ***** .

The final processing of certain sections requires
data from other sections which by omission or
other input error are not present.

PHASE2 This section is to be merged with ** and
IUm*** for which values have been assigned by
both for point number . Two values cannot
be assigned to the same point. Neither value
will be used.

Self-explanatory.

PHASE2 This section is to be merged with *** and
***** for which modal cards have been encountered
for both. Two values cannot be assigned to the
same point. Both modal cards will be ignored.

Self-explanatory.

PHASE2 Number of elements read **** is greater than
9999. Number of elements will be set at 9999.

Self explanatory, execution will be suppressed.

6.25

PHASE2 No end or check card has been found. Check
card will be inserted, suppressing execution.

Self-explanatory.

PHASE2 - Due to above error condition check card will
be inserted. Execution will be suppressed.

Self-explanatory.

PHASE2 - Internal tape error has occurred. Processing
abandoned.

Report form input preprocessor cannot retrieve
information stored on a scratch data set.

PLUG1 - Value of sin (alpha) is zero - run terminated.

Element defining points are in error for
Quadrilateral Thin Shell Element.

PLUG5 - For I - XX and N a XX integral does not converge.

No convergence has been obta~ined for the given
integral calculated by the Romberg technique
in the Toroidal Ring Element.

PLUG5 - Maximum number of iterations reached in Romberg
'integration routine.

Convergence was not obtained in 15 iterations
for an integral in the toroidal thin shell element.
Processing will continue, using 15 iteration
result.

PRINT5 Toroidal ring element with coordinates
Rl a + *******E + * R2 u + .********E + **
Z1 a ± .********E + * Z2 - +-.***** + i,
is not diagonally aominant ani should be iubdivided.

Element stiffness matrices must be diagonally
dominant.

P7PRT PLUG7 error - third point to define plane was
not given - input error.

Three element defining points are required for
the frame element, the third supplying definition
of the plane.

6.26

TRAIC Subroutine MINV has determined array GAMABQ
to be singular, execution terminated by
subroutine TRAIC.

Transformation matrix to system coordinates in
triangular cross-section ring element cannot be
inverted, usually because three ele4ent defining
points do not define a triangle.

US04A Available scratch data sets **** is less than
the required 4.

The .USER04. module requires at least four

scratch data sets. T"he addition of more data
sets is repa 4ired by the program%

US04A - Input routine, core storage required **
exceeds that available ****** to displacement
method matrix generator.

Blank common work area is not large enough for
processing input.

US04A Report routine core storage required *
exceeds that available ***** zo displacement
method matrix generator.

Blank common work area is not large enough for
processing report form input data.

US04A Grid point loads matrix storage required *
exceeds that available ***** to displacement
method matrix generator.

Blank common work area is not large enough for
generation of grid point loads matrix.

US04A - Reduction of transformation matrixes storage
****** exceeds that available to displacement
method matrix generator.

Blank common work area is not large enough for
generation of reduction transformation matrix.

US04A Element generation core storage required *I**
exceeds that available ****** to displacement
method matrix generator.

Blank common work area is not large enough for
generation of element matrices.

6.27

US04A Assembly transformation matrix size ,*Im~*
exceeds limit *""** of MAGIC system.

Self-explanatory.

USO4A - Grid point load matrix size ****** exceeds
limit ****" of MAGIC system.

Self-explanatory.

USO4A - Reduction transformation matrix size ."'m.
exceeds limit ***** of MAGIC system.

Self-explanatory.

US04A - Stiffness matrix size *A*** exceeds limit of
MAGIC system.

Self-explanatory.

US04A - Stress matrix size *4**** exceeds limit
of MAGIC system.

Self-explanatory.

US04A - Number elements size ***** exceeds limit * *H
of MAGIC system.

Self-explanatory.

US04A Output matrix W will be a duplicate of
input matrix .

The user is saving the interpreted input deck
when he already has an interpreted input matrix.

US04B Element sort routine core storage required *
exceeds that available **** to displacement
method matrix generator.

Blank common work area is not large enough for
output of generated matrices.

6.z8

APPENDIX VII

EXAMPLE STATIC AND STABILITY INSTRUCTION SEQUENCES

A. STATICS ANALYSIS INSTRUCTION SEQUENCE

1 7 Colurinms

C GENERATE ELEMENT MATRICES
C

,MAT,,XLD,TR,,KEL,FTEL,SEL,STEL,, ,SC,EM,=,,,.USER04.
C
C --- ASSEMBLE ELEMENT STIFFNESS MATRICES
C

KELA - EM.ASSEM.SC,(1)
C

C-- ASSEMBLE ELEMENT APPLIED LOAD MATRICES
C

FTELA = EM.ASSEM.SCj(4)
C
C --- REDUCE ASSEMBLED STIFFNESS MATRIX
C

KO, KNO = KELA .D]:JOIN. (SC(5,1),I)
KCO, STIFF = KNO .DEJOIN. (SC(5,1),O)
PRINT(FORCE,DISP,,) STIFF

C
EXTRACT LOAD SCALAR AND APPLY TO ELEMENT LOADS

C
LSCALE,LOADS*= XLD .DEJOIN . (1,1)
FTELS = FTELA ..MULT. LSCALE

C
C --- TRANSFORM EXTERNAL LOADS TO 0-1-2 ASSEMBLED
C --- S'3TEM AND FORM TOTAL LOAD COLUMNS
C

LOADO = TR .MULT. LOADS
TLOAD = LOADO .DD. ?TELS
TL,TLOADR = TLL-AD . DEJOIN. (SC(5,1),I

C
C --- SOLVE FOR DISPLACEMENTS
C

7.1

XX - STIFF.SEQEL.TLOADR
TRO)TR12 -TR.DEJOIN.(SC(5,1),l)
X =TR12.TMULT.XX
XO =TR.MULT.X

C
C -- SOLVE ANL PRINT ELEMENT STRESSES AND FORCES
C

STRES? - EM, XO,.STRESS. (14,)
FORCE? = EM, XOj.FORCE. (4i,)

C
C -- SOLVE FOR SYSTEM REACTIONS
C

REACTS = KELA.MULT.XO
REACT? = REACTS.SUBT.TLOAD

C
C --- PRINT ELEMENT APP.LIED LOADS, EXTERNAL LOADS,
C -- DISPLACEMENTS AND REACTIONS IN ENGINEERING FORMAT
C

GPRINT(14,,IPX.FY.FZ.MX.MY.MZSC,TR) FTELA
GPRINT(14,,,FX.FY.FZ.MX.MY.MZSC,) LOADS
GPRINT(2,,,U.V.W.THETAX.TiiETAY.THETAZSC,) X
GPRINT(l,...FX.FY.FZ.MX.MY.MZ,SC,TR) REACT?

B. STABILITY ANALYSIS INSTRUCTION SEQUENCE

C GENERATE ELEMENT MATRICES
,MAT,INTP,LXD,TR,,.KEL,FTEL,,SELSTEL,,,CEMP*a,,.$ER1 4.

C
C -- ASSEMBLE ELEMENT STIFFNESS AND ELEMENT LOAD MATRICES
C

KELA EM.ASSEM.SG2 1)
VTELA aEM.ASSEM.SC(I)

C
C --- EPUCE ASSEMBL.ED STIFFNESS MATRIX

KO,KNO - KELA.DEJOIN.(SC(5,l),1)
KCO,STIFF -K140.DEJOIN. (SC(5)1),)
PRINT(FORCEIDISP. ')STIPF

C
C -- EXTRACT LOAD SCALARS AND APPLY TO ELEMENT LOADS
C

LSCALE,LOADS - XLD.DEJOIN.O.,l)
FTELS =FTELA.MULT.LSCALE

7.2

p- w

C
C -- SOLVE FOR TOTAL LOADS

LOADO - TR.MULT.LOADS
TLOAD - LOADO.ADD.FTELS
TL,TLOADR - TLOAD.DEjOIN.(SC(5,l),1)

C
C -- CREATE FLEXIBILITY MATRIX
C

FLEX a STIP'F.INVERS.
PRINT(DISP,FORCE,,)FLEX

C
C -- SOLVE FOR DISPLACEMENTS

XR -FLEX.MULT.TLOADR
TROITR12 - TR.DEJOIN.(SC(5,1),1)
X TR12.TMULT.XR
XO TR.MULT.X

C
C -- SOLVE FOR ELEMENT STRESSES
C

STRESS -EM,XO.STRESS. (4,)
C
C -- GENERATE ELEMENT INCREMENTAL STIFFNESS MATRIX
C

C -- ASSEMBLE AND REDUCE INCREMENTAL MATRICES
C

INCRA =EL.ASSEM.SC,(3)
IO,INO =INCRA.DEJOIN..(SC(5,1),1)
100,114CR - INO.DEJOIN.(SC(5,1),O)
PRINT(,,,)I14CR

C -- CREATE EIaEN MATRIX
C

EIG = FLEX.MULT.INCR
PRINT(, ..)EIG

C -- CALCULATE AND PRINT E-VALUES AND E-VECTORS
C

EVALUEEVECTR,, = EIG, .EIGEN1. (5,,,)
GPRINT(3,.... SC,TR12)EVECTREVALUE

C -- PRINT ELEMENT APPLIED LOADS, EXTERNAL LOADS, AND
C DISPLACEMENTS IN ENGINEERING FORM
C

GPRINT(4 ... FX.FY.FZ.MX.MI.MZ,SCITR) F'TELA
GPRINT(4,,,FX.PY.FZ.MX.MY.MZ.SC,) LOADS
GPRINT(2,,,U.V.W.THETAX.THETAY.THETAZ,SC,) X

7.3

APPENDIX VIII

SUBROUTINE DOCUMENTATION

Subroutine Page No.

A ENDM * * . * * o * & . e 8. 12AI0 0 a 0 8.290'
AJ0 0 8.305
AK . * * 0 * . . . * 8.299
AK9Z . o o 8. 89AM a.0 0 8. 300
ANA1 I * * o * & o * 9 * o* * o * . o * . . * .8 970ANALIC . o 8.197
ASPRT * o * o o * * # * 8913

ASSEM 8. 48
ASSEMIC 8. 50
ASSEMS * * * * 8. 51
ASSY2 8.314AXTRAI 1 .0 0 8.437
AXTRA2 8,225
AXTRA3 . 8.439
BACK 8.141
BCB . 8.229
BCB12 * 8.421
BDEF 8.458
BEQSX .. 8. 93
BINT . o o e e * * e o * &8.298
BMATRX 8.390
BOUND 8.16
COB 8.337
CCO 8.257
CC2 . 6 & . . . 0 : : . . *0 8.274
CC 1 o # 8.41

CDEL Q . o 8.246CDF 0 0 8. 279
CDFX *. o .* **. .*. . ..e.. 8.280
CDFY # o c . . I o 8.281CDM0 00 * 8.26i
CECC a. * &.* s 8 .293

CFFTS * o & o & o * 8.282
CFFV c . . . e 8.284CFMASS o. o o. . . *. 8. 285
CFMTS 8.262CFMI o. . *. . o. . *. . . .# . .o .*9 8. 264CFP0 00 8.275
CFPB *. o &. 8. 276
CHDELI o. a *. o. . *.o 8. 4l
CHEk . 8. 201
CliEQS 8. 88

8.1

L/-

Subroutine Page No.

CK1 8.250
CK22 8.266
CK26 . 8.500
CMMASS * o 6 * * a 9 o * * 8.258

COEF&. 8.306
COLMRD . o . .o. 8. 72
COLREP . 4o. . * . . o o . . 8. 42
CONTRL # 0 0 . . 8.153
COPYDK o o 8.154
CSTF o . o 8.277
CSTM . o o o . . . 8.259
CTCQ . . . o o 8.292
CTGB o 8.269
CTGRB a 8.273
CTGRM 8.256
CTOGB o s o o o o 8.272
CTOGM o 8.255

DECODE . .0. 8. 76
DECOMP . # . . .a. # 8.138
DEFLEX 8.212
DEJNC . o o o 8. 47
DEJNR - o o o .o 8. 46
DEJOIN o 8. 44
DIRCOS . . . * 8. 418
DISPMT o o . o. . * a * . 8.1463

DEATRX # v o * * o * 9 o s o . . * . 8.344
DPICT 8.4218

DISPIC 8.117
DISPL 8. 71
DISPMT 8.473
DISPPR * . * . . . a. 8. 78DMATRX a**o8.391
DPQINT 8.324
DSPCIC . . . o 8. 115DTAPR s.- # 8. 317
EIG . . . ° 4
EIGB . s 6 8. 39
EIGPPR 8. 79EIGI 8. 35

ELEM 8.163
ELMT8. 450
E L P L U G 8 .2 1 8
ELPRT o. * .o .o. 8,441i
E L R E A D o4 8 . 6 8
ELTEST 8.2311

8.2

Subroutine Page No.

EPRINT 8. 65
EPRT o o 8.347
ERIC o o o o o & o o . . o o * . . *0 8.413
ESCONT 8. 95
EXPCOL o 8.354
EYPSIX 8.355
FARCIC 8.119
FBMp18 o o o o o o o * 8.432
FCURL . * * . 0 0 * * * 0 * 0 * 0 * . . 8,393
FELEM . . .0 * 0 0 0 a 0 8.214
FFOO . o o . o . . . o . * 8.308
FGRLDS o o o o 8.170
FINP22 o o 8o435
FJAB o s ... o o o .. 8.302
FLOADS o 8. 204
F M T o 8 o 1 7 2

FORCE 8. 59
FORCEI o 8. 61
FORCE2 8. 63
FORMIN 8.192
FRED 8.159
FREEUP . o o * o * . a o * * . o 8. 70
FTELQ 8.425
FT 6 0. 8.205
FT26 . 8.1504
FWD 8.140

F I 8. 38
F6211 8. 304
F6219 . 8.3 3
F89 , * 8.307
GAI E 8.471G A M I S 8 . 4 7 2

GAM.AT 8. 392
GELS o.o8128
GENSM 8.498

8.3*7

GE OMD 8 . 17
GPRINT 8. 73
G P R N T 1 0 8 . 7 4
HARGEN 8. 179
HARGEI # 8.182
HARMA* 8.181
HDECO . 8. 84
HLOGEN o 98.491
HMASS G 8.492

8.3 :

Subroutine Page No.

HRAICS 8.487

HRAIES . 8.490
HRAIKS . 8.488
HRAISS 8.489

INUT....... 8.155

HST T 8. 13
HTHO 8.24
IDNT 8. 13
IDNTR * 8. 3
IDNTA 8. 31
INSTCRE....... 8.326

INCRT.6 ..O .* 8. 288

INDECK . 8.152
ININT....... 8.210
INPTIC 8.103
INPTI . 8.105
INPUT 8.155
INSTWT 8. 10
INSTO4 8. 13
INST05 8. 14
INST06 8. 16
INST078. 18
INST43 . 8. 20
INST44*. 8. 22
INST45 8. 24

INAT56 8.16
INT6 0 8. 26

INSTO 8. 28
KALCON 8.108
KCAL 8. 9KMPY' 8.412
KOBLIQ 8.422
LAG 8.29
LATCH o. 8.191LISTIC . 8.106
LO0 o. 8L 233
LOGFLO o. 8.147
MAB I.. 8.227
'MABC . . o;.,242
MABS * o s. oo.0 0 0 8.510
KASS20 . . * 8s480
MATB * 8.231
MATBS . . o. 8.511
MATCH 8.167
MATI 60 o. 8.254
MAT170 o. 8.271
MATPR . 8.318
MATPRT . . . o 8. 80
M4ATSUP8 .30
MBS . . *. 8.509
MFSD o. o . . 8.129
MIIIV . .oo 8.224
MPOWJF . o. 8.474
MPRD o - 8.294

8.4

Subroutine Page No.

MSB * 8.228
MSBB8.132

MSTR . s # o * & # f 0 . .. 8.382
MTDS o.9 9 9 9 8.130

MULTF * * s o. 8.4o0
NEWFT . 8.244
NEWFTI o * . a o . . v . . 8.320
NTEST 8.144
NULL 8. 43
OPEN 8.200
OUTINT * & o & 8.202
OUTMAT 8.443
PASSYM 8.481PDISP 8.198
PFFT2S 8.342
PFFV1 * 0 : 0 a 0 0 * * * 8.344
PFMASS . 8.313
PFM* * e * * o o a 8.331

PFP , # . . . 0 0 e0. . . 8.339
PHASE1 8.194
PHASE2 8.192
PKF .# 8.335
PKM 8.325
PLAS2D 8.348
PLMX o 8.394
PLUG1 8.237
PLUG O 8.452
PLUG13 . 8.465
PLUG14 . 8.398
PLUGl7 8.414
PLUG1 : : 8.427
PLUG2 . 8.309
PLUC120 8.467
PLUG22 a 0 8.433

PLUG23 8.482
PBUe-25 8.494
PLUG5 8.378
PLUG6 8.350
PLUG7 8.286
PLUG8 8.403
PL6PHT 8.377
PMMASS o o 8.312
PNC1 8.345
PNG1 . o o .. o. 8.346
POOP 8.401P'RINT5 8. 391
PRTI 8.265

8.5

Subroutine Page No.

PSTF . 8.340
PSTM 8.327
PTBF .o. 8.349
PTBM* o. 8.322
PTFGS 8.334
PTMGS .r 8.323
PUTL4 8.8
PUTL5 . 8.9
PIPRTA * * . * * . . . 8.248
P10FP 8.461
PLOTM . 8.459
P14PRT 8.402
P1718M . 8.423
P2OFP 8.476
P2OFT 8.478
P PRT 8.289
P MASS 8.4o6
QUADI . 8.388
RDCLOCK. 8.134REACTP8.77
RECTIC8.122
REel 8.145
REC3 8.221
REC4 8.222
REFORM 8.184
REGE2 . 8.37
REPLAS 3.82
.!O-BEr. * *
SCRLM 8.395
SELQ . 8.424
SHIFT 8.178
SINVIC * # 8.131
SIZEIC * 8.99
SOLVE 8.396
SQUISH . 8.216
STORIC 8.101
STRCIC . . * B..125
STRESS 8.53
STRES1 8.55
STRES2 * 8.57
STRPRT 8.67
STRPIC . 8.127STRSIC . 8 123
STRS26 8.507
SUBINT 8.408
SUMDIS 8.86
SUMSTR* 8.85
SYMPRT 8.232
SZAL26 8.506

8.6

limp

Subroutine Page No.

TCONTX 8. 90
TESTJ * .. . 8.357
TFPPRT 8.364
TFSPRT * . 8.37
TFTPRT 8.366
TIEpPRT 8.360

TIKPRT . 8.362
TIMER 8.135

TIMPRT 8,372
TISPRT 8.368
TPRD . 8.295
TRAAE 8.469
TRAIC . 8.356
TRAIE 8.359
TRAIFP . 8.363
TRAIFS . 8.373
TRAIFT 8.365
TRAIK 8.361
TRAIM 8. 371
TPAIS . . . 8.369
TRAIST 8.375T R A I T So o. .s o.o e 8 . 3 6 9
TRCPRT 8.358

TRI8ST , 8.1431
TSTPRT * . . 8.376TSUM 8. 32
TSYS 8.206
TTRI 8. 91

TTSPRT . 8.370
TUDJAC . * * s s o o * e . o o 9 * * 8.502
TXOUT . 8.477

UN1TNM o . * 9 * 8.107
US04 8.142
uSO4A . 8.149

uso4B o o.. 8.208

us461 . 8.446

us462 8.448

WAVEFM 8.136

WCLOCK 8.133
XCALK 9 e e o 8. 94ZMRD . . 3a 8. 410
ZTRD 8.411

8.7

Lu - I

IMF-

1. Subroutine Name: P1UTL4

2. Purpose:

This routine converts an array of B C D characters into an
array containing a valid matrix name with an appropriate sign
addended.

3. Equations and Procedures:

The array to contain the valid matrix name is first filled with
B C D blanks. Next all blank characters are compressed out of the
array which is to be converted to a matrix name. If the first
location of the input array contains a B C D plus sign or a
B C D minus sign, an appropriate flag is initialized. The first
location of the input array is then qhecked against an array con-
taining all the alphabetic characters. When a match is found, all
the characters of the input array except for the possible B C D
plus or B C D minus in the first location are placed on the output
array. If a slash is encountered a utility routine is called to
determine the subscript. The subscript is then placed on the
seventh location of the output array. An integer one is placed
in the eighth location of the output array. If a slash is not
found, an integer plus one or a minus one is placed in the
seventh location of the output array. Finally an integer zero
is placed in the eighth location of the output array.

4. Input Arguments:

N - length of CARD array
CARD - array of B C D characters to be converted to a new name

5. Output Arguments:

XNAME - an eight character name with a sign in the seventh
position and an integer one or zero in the last
position

ERROR - logical flag indicating presence of an error

6. Error Returns:

If the first character of the matrix name excluding the possible
B C D plus of B C D minus i.s not an alphabetic character, an
error condition results. Also if the matrix name is longer than
six characters long, an error condition results.

7. Calling _Sequence:

PUTL4 (CARD, XNAME, N, ERROR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine Required:

PUTL1
PUTL5

8.8

I

1. Subroutine Name: PUTL5

2, Purpose:

This routine extracts the subscript of a matrix name

3. Equations and Procedures:

The abstraction instruction card is scanned beginning in the
first card column follow the fi'st slash after a matrix name.
The scan continues until a second slash is encountered. The
number of nonblank characters :LS counted. This sub-field should
contain a one to four digit decimal integer. A utility routine
is called which converts this sub-field to a binary integer.
Contrdl is then returned to the calling routine.

4. Input Arguments:

CARD - an array containing the last card image

LIMIT - length of the array containing the card image

5. Ou2put Arguments:

ERROR - logical flag indicating the presence of an error

INTG - binary integer is in this case the subscript of the
matrix name

6. Error Returns:

An error condition occurs when the second slash cannot be located

or when no digits can be found between the slashes.

7. Calling Sequence:

PUTL5 (CARD, INTG, LIMIT, ERROR)

8. Input Tapes: None

9. Output. Tapes: None

10. Scratch Tapes: None

11. Subroutine Required:

PUTL3

8.9

!

1. Subroutine Name: INSTWT

2. Purpose:

This routine writes the looped instructions on the preprocessor
utility data set NPREP.

3. Equations and Procedures:

a. Algorithm
The coded looped instructions in the working storage array
is analyzed and stored in a temporar-y array, decoded.
Subscripts of matrix names are incremented if necessary.
Then the matrix names and their subscripts are stored in
the temporary arr ",. Scalars are packed and stored in the
temporary array. -ne temporary array is written on the
preprocessor scratch data set NPREP. This process is
repeated for all the instructions in the range of the REPEAT
loop and repeated for all the instructions in the range of
the REPEAT loop and thf.s sequence of instructions is repeated
the specified number of times. Finally, when the REPEAT
loop is satisfied, the loop flag is set back to .FALSE.

4j. Input Arguments:

IBUFER - working storage array containing the analyzed
instructions within the range of the REPEAT loop

ITEMP - temporary array contatning the record to be written
on the preprocessor scratch data set NPREP

NOSTAT - the number of statement. in the range of the REPEAT
loop

NTIMES - the number of times the sequence of looped
instructions is to :e repeated

LOOP - logical flag indicating whether or not the
instruction is in the range of the REPEAT loop

NPREP - the number of the preprocessor scratch data
set NPREP

5. Output _.rguments: None

6. Error Returns: None

7. Caling .3equence:

INSTWT (IBUPER, ITEMP, NOSTAT, NTIMES, LOOP, NPREP)

8. input Tapes: None

9. Outpt Tapes:
The coded lo.ped instructions are written on the preproces3or
scratch data set MPREP.

10. Scratch Taes: None

8.1o

11. Subroutine User: INST

12. Subroutine Reuired: None

4

A

I

1 '

8.11 0

-°-4

1. Subroutine Name: AGENDM

2. Purpose: To locate in the Agendum library the abstraction
instructions specified by the uiser on the $INSTRUCTION control
card in MAGIC.

3. Equations and Procedures: 'The name of the desired Agendum
on the $INSTRUCTION card is passed to AGENDM by INST. The
specified name is compared against all available agendum
names in the TYPE array. If the specified option is a valid
name then the agendum library is searched until the correct
abstraction instruction seqiience is found, if it is not found
an error occurs. If it ia found then NPIT is redefined to be
NSETA and control is passed to INST.

4. Input Arguments:

OPTION - agendum name on $INSTRUCTION card
LENOP - length of agendum name on $INSTRUCTION card
NPIT - logical unit number defining system card reader
NSETA - logical unit number defining data set of

agendum library
WORK - work storage

5. Output Arguments: None

6. Error Returns:

ERROR - TaUE, if the option specified on the $INSTRUCTION
card is unavailable or unrecognizable.

7. Calling Sequence:

AGENDM(OPTIONLENOP NPITNSETAWORKERROR)

8. Input Tapes:

NSETA - agendum library

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total storage required is 4D4 1 6 Bytes.

12. Subroutine Uzep: INST

13. Subroutine Required: PUTL2

14. Remarks: MAGIC

8.12

1. Subroutine Name: INSTO1

2. Purpose:

This routine analyzes the REPEAT abstraction Instructicn.

3. Equations and Procedures:

The abstraction instruction is scanned starting in the card
column following the left parenthesis, and continuing up until
a comma is encountered. This sub-field should contain a B C D
integer specifying the number of abstraction instructions to be
included in the range of the REPEAT loop. This BCD integer is
converted to a binary integer using a utility routine. The
scan continues starting in the card column following the comma,
and continuing up until the right parenthesis is encountered.
This sub-field should contain a B C D integer specifying the
number of times the sequence of abstraction instructions in the
range of the REPEAT loop is to be repeated. A utility routine
is called to convert the B C D integer to a binary integer.
Finally the LOOP flag is set to .TRUE.

4. Input Arguments:

CARD - an array containing the image of the last card read

LIMIT - intermediate counter

NOSTAT - the number of abstraction instructions to be repeated

NTIMES - the number of times the sequence of abstraction
instructions is to be repeated

LOOP - logcal flag indicating the presence of a loop

5. Output Arguments:

ERROR - logical flag indicating the occurance of an error

6. Error Returns:

An error condition occurs when the two sub-fields are omitted
or when the comma and/or the right parenthesis are omitted.

7. Calling Sequence:

INST04 (CARD, LIMIT, NOSTAT, NTIMES, LOOP, ERROR)

8. Input Tapes: Noae

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine Required:

PUTL3

8.13

.

-I-

1. Subroutine Name: INST05

2. Purpose: To analyze the EPRINT instruction which is of
the form:

EPRINT(N,EZERONAMINl)NAMIN2

3. Equations and Procedures: This subroutine uses the same
procedure as all the other MAGIC instruction analyzers. The
card image with blanks suppressed and starting one column
to the right of the first (is broken into 4 fields as
defined within successive delimiters.

Field Defined By Checked For

(, Integer Scalar
Real Scalar

) Matrix Name
) A-blank Matrix Name

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is syntactically correct, information required
for execution is written on tape and control is returned
to ENST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of instruction (05)
INSTNO - statement number of instruction
CARD - card image (starting in column to right of

first (, blanks suppressed)
NONBLK - number of non-blank characters on card.

5. Output Arguments:

NUMIN - number of input matrices
ERROR - error control

6. Error Returns: The logical variable ERROR is set to .TRUE.
if an erroi is detected and control returns-to INST. Additional
diagnostics and warnings are printed for invalid values of
parameters and illegal suppre3sion of parameters.

7. Calling Sequence:

Call INST.05(NPREP,NOPCINSTNO,CARD,NONBLKNUMINERROR)

8. Input Tapes: None

9. Output Tapes: NPREP

8.14

10. Scratch Tapes: None

11. Storage Required:

SYMBOL(4)

Total Storage is 6D8 16 Byes.

12. Subroutine User: INST

13. Subroutine Required:

INSTFP
PUTL3
PUTL4

14. Remarks: This is a special instruction analyzer.

8.15

!C

1. Subroutine Name: INST06

2. Purpose:

This routine analyzes the PLOT instruction.

3. Procedure:

The abstraction instruction card is scanned starting in the
card column following the left parenthesis, and continuing up
until a right parenthesis is encountered. This sub-field should
contain a B C D integer greater than zero and less than 8. This
field is checked for validity (PUTL3) and an error message is
printed if the field is not valid. The scan continues starting
with the card column after the right parenthesis until a comma
or a blank character is encountered. This sub-field contains
a matrix name. A utility routine is called PUTL4 which checks
thu validity of the name and converts this sub-field into the
proper format. If the scan was interrupted by a blank, the scan
is terminated. If the scan was interrupted by a comma, the
scan continues in the first card column following the comma up
until another comma or blank is encountered. The second field
again should contain a valid matrix name and the matrix name is
processed in the same manner in which the first matrix name was
processed. This process is repeated at least three times or until
finally a blank character is encountered at which point the scan
is terminated. If the PLOT instruction is within the range of a
REPEAT loop, the analyzed abstraction instruction is stored in
the working storage array, later to be written on the pre-
processor scratch data set NPREP. However, if the PLOT
instruction is written in coded form on the preprocessor scratch
data set NPREP.

4. Input Arguments:

NPREP - preprocessor scratch data set -- logical unit number
NOPC - operatlen code for PLOT instruction
ISTNO - instruction number from abstraction instruction card

label field

CARD - array containinig an B C D eharacter/word of abstraction
instruction card starting with card column following
the left parenthesis

NONBLK - length of CARD array
LOOP - logical Jif true then instruction is in range of a

repeat loop)

JWORI. - working storage array
IPNT - location counter for working storage array

5. OutputArguments:

ERROR - error return indicator
NUMIN - number of input wAtricee in the instruction

8.16

6. Error Returns:

An error condition occurs when:

a) an invalid character in a matrix name
b) wrong SYNTAX
c) number of matrices not correct for value of input integer
d) invalid Character or value in integer field

7. Calling Sequence:

INST06 (NPREPNOPC,ISTNO,CARD,NONBLK,MUMIN,ERRORLOOP,IWORK,IPNT)

8. Subroutine User: INST

9. Subroutine Required:

PUTL4
PUTL3

8 17

1. Subroutine Name: INST07

2. Purpose: To analyze the OPRINT instruction which is of
the form:
GPRINT(NPRT,EZERO,ROWL,COLl.COL2.COL3. ... COL12,

TSYS,TR)XX1,XX2

3. Equations and Procedures: This subroutine uses the same
procedure as all the other MAGIC special instruction analyzers.
The card image with blanks suppressed and starting one column
to the right of the first (is broken in 3 groups. The first
group is checked for the 3 fields defined by scalars.

Field Checked For

(, Scalar
Scalar
Scalar

Next a check is made for the 12 column labels. These labels
are positional and may be suppressed. After the labels have
been determined, the third group is checked for matrix names.
Two, three, or fiour matrices may be specified depending on use.

Field Checked f6r

end of labels , Matrix Name
) Matrix Name

) , Matrix Name
A-blank Matrix Name

Each fieiu is checked in turn and detection of an error
results in an error return. If the card image for the
instruction is syntactically correct, information req, ired
for execution is written on tape. Control is returned to
INST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of instruction (04)
ISTNO - statement number of instruction
CARD - card image (starting in column to right offirst (, blanks suppressed)NONBLK number of non-blank characters on card

8.18

5. Output Arguments:

NUMIN - number of input matrices
ERROR - error control

6. Error Returns: Logical variable ERROR is set to .TRUE.
if an error is detected and control returns to INST. Additional
diagnostics are printed for illegal values of parameters,
invalid specification of matrices and illegal specification
of column headers.

7. Calling Sequence:

Call INST04(NPREP,NOPC,INSTNO,CARD,NONBLK,NUMINERROR)

8. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes: None

11. Storage Required:

SYMBOL(3)
TYMBOL(4)

D881 6 Bytes

12. Subroutine User: INST

13. Subroutine Required: INSTFP, PUTL3, PUTL4

14. Remarks: This is a special instruction analyzer.

8i

I

8.29

K) _

1. Subroutine Name: INST43

2. Purpose: To analyze the .DEJOIN. instruction.

Al,A2 a B.DEJOIN (C(IJ) KODE)
Al,A2 = B.DEJOIN.(K,KODE)

3. Equations and Procedures: This subroutine uses the same
procedare as all the other analyzers in MAGIC. The card
image wtth blanks suppressed and starting in column 7 is
broken iihto 6 fields as defined within successive, delimiters.

Field Defined By Checked For

Column 7 Matrix Name
I Matrix Name
- . Matrix Name
o o Not Checked
o (Not Checked
() Checked For Matrix Name

and 3 Scalars or 2 Scalars

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is symtactically correct, information
required for execution of the Instruction is written on tape
and control is returned to INST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of Instruction (43)
ISTNO - statement number of inst:ruction
CARD - card image (starting ir column 7, blanks suppressed)
NONBLK - number of non-blank characters in card

5. Output Arguments:

NUMOT - number of output matrices
NUMIN - number of input matrices
NUMSC - number of scalars
ERROR - error control

6. Error Returns: Logical variable ERROR i[. set to .TRUE.
if an error is detected in this routine and a return is made
to INST. Adbitional messages are printed out for invalid
matrix names and invalid indices.

7. Calling Sequence:

Call INST43(NPREP,NUPCISTNOCARDNONBLKNUMOTNUMINNUMSC,
ERROR)

8.20

8. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes: None

11. Storage Required:

MATRIX(7T4)
SYMBOL(6)
INDEX(3)

Total Storage is A5816 Bytes.

12. Subroutine Users INST

13. Subroutine Required: PUTL3, PUTL4

14. Remarks: This is an arithmetic type instruction analyzer.

8.21

1. Subroutine Name: INST44

2. Purpose: To analyze the ANALIC instruction which is

of 'he form

DISPSTRFORIEC - TR,SC,EMXLDPD,KR,PR,TRANS,W,.ANALIC.

(KALC,NNOMNRSELM)

3. Equations and Procedures:

This subroutine uses the same procedure as the other MAGIC
analyzers. The card image with blanks suppressed, starting
in column 7 is broken into 18 fields as defined inside
successive delimiters. Optionally, 1 to 4 output matrices
may be specified. Any number of input matrices may be
indicated. Each matrix and scalar present is indicated by
a value of 1 in the NUMSCL array. Suppressed matrices and
scalars are denoted by a 0 in NUMSCL. Each field is examined
and checked in turn. Detection of an error results in an
error return. If the card image for the instruction is
syntactically correct, information required for execution
is written on tapes. Control is returned to INST.

4. Input Arguments:

NPREP - Output tape number
NOPC - OP code of instruction (44)
ISTNO - Statement number on instruction
CARD - Card image (starting in column 7, blanks suppressed)
NONBLK - Number of non-blank charac.ers on card

5. Output Argumentst

NUMOT - Number of output matrices
NUMIN - Number of input matrices
NUMSC - Number of scalars (16)
ERROR - Error flag

6. Error Returns:

ERROR - Set to true, if an error is detected inside
INST44 routine

7. Calling Sequence:

Call INST 44 (NPREPNOPCINSTNOCARDZNONBLKNUMOTNUMINNUMSC,
ERROR)

8.22

8. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes: None

11. Storage Required: 91616 bytes

12. Subroutine User: INST

13. Subroutines Required:

PUTL3, PUTL4

14. Remarks: None

8.22 /

1. Subroutine Name: INST45

2. Purpose:

This routine analyzes the abstraction instruction. EIGEN2.

3. Equations and Procedures:

The field consisting of nonblank characters of the of the
abstraction instruction card is scanned beginning in card
Column 7 and continuing up until a comma is encountered. This
sub-field is tested for validity as a matrix name. This process
is repeated until four commas have been encountered and four
matrix names read. The scan begins again in the first card column
following the last comma and continues up until an equal sign
is encountered. This sub-field is tested for validity as a matrix
name. The scan begins again in the card column following the
equal sign and continues until a period is encountered. This
bus-field is tested for validity as a matrix name. The
scan begins again uith the card column following the first period
until a second period is encountered. This "ub-field is ignored,
The scan begins again following the period aad continues until
a left parenthesis is encountered. At thi.s point a conditional
test is made. The test determines whether or not a matrix name
exists in the sub-field. If there is a matrix name a test is
made on its validity as a matrix name. If the matrix name is
valid, the number of input matrices is set equal to 2. If a
name does not exist in the sub-field, the number of input matrices
is set to 1. The scan begins again in the card column following
the left parenthesis and continues until a comma is encountered.
The sub-field is converted to a binary integer. This process
is repeated until four integers, separated by commas, have been
read. The scan begins in the card column following the last
comma and continues until another comma has been encountered.
This sub-field is converted to a floating point number. The
scan begins again in the card column and continues until a right
parenthesis is encountered. The sub-field is also converted to
a floating point number. This completes the abstraction in-
structuion analysis. If it is determined that this abstraction
instruction is within the range of the REPEAT loop, the instruc-
tion is stored in the working storage array in coded form.
However, if it is determined that the analyzed instruction is not
within the raige of the REPEAT loop, the instruction is written
in coded form on the preprocessor scratch data set, NPREP.

4. Input Arguments.

NPREP - the preprocessor utility data set

NOPC - the number of the operation code

ISTNO - the statemw nt number of this abstraction instruction

8.24

- !

OARD - an array containing the last card image

NONBLK - the number of nonblk characters in this field

NUMOT - the number of output matrices in this instruction

NUMIN - the number of input matrices in this instruction

NUMSC - the number of Scalars in this instruction

LOOP - logical flag indicating whether this instruction is
within the range of the REPEAT loop

IWORK - working storage array

IPNT - an integer pointer indicating the location of the
next word of the " orking storage array

5. Output_ Arguments:
ERROR - logical flag indicating the presence of an error

6. Error Returns:

An error condition occurs when an error is returned from a sub-
routine, that is, when a matrix name contains an invalid character,
or too many characters, or when a sub-field which is to be con-
verted to an integer or real number does not contain all B C D
integers.

7. Calling_ Sequenc:

INST45 (NPREP,NOPCISTNO,CARD,NONBLKNUMOT,NUMIN,NUMSC,ERROR,
LOOPIWORK, IPNT)

8; Input Tapes: None

9. Output Tapes:

The statement number, the operation code, the number of input
matrices, the number of output matrices, the number of scalars,
the matrix names and the scalars are written on the preprocessor
scratch data set, NPREP.

10. Scratch Tapes: None

11. Subroutines Required:

PUTL3
PUTL4
INSTFP

8.25

Subroutine Name: INST56

2. Pur_ e: This routine analyzes the abstraction instruction

DJOIN.

3. Equations and Procedures:

This field of nonblank characters of the abstraction instruction
card is scanned beginning in card column 7 and continuing up
until a comma is encountered. This sub-field is tested for
validity as a matrix name. The scan begins again the in card
column following the comma and continues Lp until an equal sign
is encountered. This sub-field is tested for validity as a
matrix name. The scan begins again in the card column following
the equal sign is encountered and continues up until a period
is encountered. This sub-field is tested for validity as a
matrix name. The scan again begins in the card column following
the period upo until a second period is encountered. This sub-
field is ignored. The scan continues until a left parenthesis
is encountered. This sub-field is ignored. The scan starts again
and continues up until a comma is encountered. This sub-field
is converted into a bina?.?y integer. The scan resumes until a
right parenthesis is encountered. This sub-field is converted
to a binary Integer. If this instruction is determined to be
within the range of the REPEAT loop, the instruction in L.oded
form is stored in the working storage array. However, if the
analyzed instruction is determined not to bie within the range
of the REPEAT loop, the instruction in ooded form is written on
the preprocessor scratch data set, NPREk.

14. Input Arguments:

NPREP - the number of the preprocessor utility data set

NOPC - the number of the operation code

ISTNO the statement number of this instruction

CARD - an array containing the last card image

NONBLK - the number of nonblank characters in the array
LOOP - logical flag indicating whether or not the analyzed

instruction is within the range of the REPEAT loop

IWORK - working storage array

IPNT - an integer pointer indicating the location of the
next word in the working storage array

5. Output Arguments:

NUMOT - the number of output matrices in this instruction
NUMIN - the number of input matrices in this instruction
NUMSC - the number of scalars in this instruction
ERROR - a logical flag indicating the presence of an error

8.26

6. Error Returns:

An error condition occts when an error is returned from a sub-
routine, that is, when a matrix name contains an invalid character
or when one of the sub-fields which is to be converted to a binary
integer does not contain all BCD integers.

7. Calling Sequence:

INST56 (NPREP,NOC,ISTNOCARD,NONBLK,NUMOT,NUMINNUMSC,LOOP,
IWORK, IPNT)

8. Input Tapes: None

9. Outkut Tapes:

The statement number, the operation code, the number of output
matrices, the number of input matrices, the number of scalars,
the matrix namea and the scalars are written on the preprocessor
utility data set, NPREP.

10. Scratch Tapes: None

8.27

1. Subroutine Name: INST60

2. Purpose: To analyze instructions of the form

(±)NAMOUT = +NAMIN1, +NAMIN2.OPCODE. (NPRT ,EZERO)
.FORCE. and •STRESS. are presently of this form.

3. Equations and Procedures: The subroutine uses the same
procedure as all other analyzers in MAGIC. The card image
with blanks suppressed, and starting at column 7 is broken
into 7 fields as defined inside successive delimiters.

Field Checked For

Column 7-------- Matrix Name
-- , Matrix Name

Matrix Name
Not Checked

(Not Checked
(, Integer

) Real Number

Each field is examined and checked in turn. Detection of
an error results in an error return. If the card image for
the instruction is syntactically correct, information required
for execution is written on tape. Control is returned to
INST.

4. Input Arguments:

NPREP - output tape number
NOPC - opcode of instruction (61 or 62)
ISTNO - statement number on instruction
CARD - card image (starting in column 7, blanks suppressed)
NONBLK - number of non-blank characters in card

5. Output Arguments:

NUMOT - number of output matrices
NUMIN - number of input matrices
NUMSC - number of scalars
ERROR - error control

6. Error Returns: Logical variable ERROR is set to .TRUE. if
an error is detected in this routine and control returns to
INST.- Additional messages printed out for illegal values of
scalars NPRT and EZERO.

8.28

7. Calling Sequence:

Call INST60(NPREP,NOPCISTNOCARD,NONBLKNUMOTNUMINNUMSC,
ERROR)

8. Input Tapes: None

9. Output Tapes: NPREP

10. Scratch Tapes! None

11. Storage Required:

MATRIX(7,3)
SYMBOL(7)

Total Storage is 7A4 16 Bytes.

12. Subroutine User: INST

13. Subroutine Required:

PUTL3
PUTL4
INSTFP

14. Remarks: This is an arithmetic type instruction analyzer.

8.29

1. Subroutine Name: MATSUP

2. Purpose: Insert suppressed input matrix names into the

Format System

3. Equations and Procedures: Scratch unit NPREP is backspaced
to the beginning of the instruction section. If scratch
unit NDATA already contains matrices then it is positioned
at the data set trailer; otherwise it is rewound and a data
set header written upon it. Each instruction record is then
read to determine if the op-code is capable of containing
input suppressed matrices as indicated in the array LEGAL.
If the operation is capable of containing suppressed input
matrices then the input matrix names are checked to see if
they contain a %ash in the first position. If this is
the case the suppression name is entered as a null matrix
on NDATA. NDATA is then returned to the first suppressed
matrix name and re.read so that each added matrix on NDATA
is recorded on NPREP after the instructions. Control is
then returned to the calling program.

L4. Input Arguments:

NUMD : Number of matrices on NDATA

NUMSUP : Number of suppressed input matrices to be
added to NDATA

NDATA : Logical unit containing card input matrices
NPREP : Logical unit containing preprocessor data
NUMI : Number of instructions on NPREP

IWORK : Work storage area

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NUMD, NU4SUP, NDATA, NPREP, NUMI, IWORK)

8. Input Tapes:

NDATA : contains card input matrices, if present
NPREP : contains input abstraction instructions in

coded form

9. Output Tapes:

NDATA : will contain suppressed input matrices
NPREP : will contain suppressed input matrix names

8.30

10. Scratch Tapes: None

11. Storage Required: Total storage is 74016 Bytes.

12. Subroutine User. PREP

13. Subroutines Required: None

14. Remarks: None

8

8.31

1. Subroutine Name: TSUM

2. Purpose: To generate a summary of the matrices on a
format tape if EUTL3 cannot find a matrix on the specified
tape.

3. Equations and Procedures: The data set header and modifier
are printed out. Then each matrix header is printed out
giving the matrix name, the sign of the m,,tr'x and the row
and column dimension of the matrix. A record count is also
provided so the number of columns in a matrix can be
calculated.

4. Input Arguments:

NSET The logical unit number of the format tape
to be summarized

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: TSUM(NSET)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required Total Storage required is 56016 Bytes.

12. Subroutine User: EUTL3

13. Subroutine Required: None

14. Remarks: None

8.32

i. Subroutine Name: IDNTR

2. Purpose: To form an identity matrix of the same order as
the row dimension of the input matrix.

3. Equations and Procedures: The input matrix is located by
EUTL3 and an identity matrix is formed. The order of the
identity matrix is the same as the row dimension of the
input matrix.

4. input Arguments:

NUMOT - the number ;f output matrices
OUTPUT - array containin* the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
INPUT - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number o. scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORKR - the number of words of available work storage
WORKR - working storage array

5. Output Arguments: None

6. Error Returns: IRROR - 11, if the input matrix cannot
be found.

7. Calling Sequence:

IDNTR(NUMOT,OUTs1UT,IOSPEC,NUMIN,INPUT,INSPEC,NUMSRISSPEC,
NUMSCSCALARIERRORNWORKRWORKR)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required Total Storage required is 50E 16 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Remarks: A - B.IDENTR.

8.33

1. Subroutine Name: IDlTC

2. Purpose: To form an identity matrix of the same order
as the column dimension of the input matrix.

3. Equations and Procedures: The input matrix is located
by EUTL3 and an identity matrix is generated. The order
of the identity matrix is the same as the column dimension
of the input matrix.

4. Input Arguments:

NUMOT - the number of output matrices
OUTPUT - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
INPUT - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers

NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORKR - the number of words of available work storage
WORKR - working storage array

5. Output Arguments: None

6. Error Return: IERROR = 11, if the input matrix cannot be
found.

7. Calling Sequence:

IDNTC(NUMOT,OUTPUTIOSPECNUMIN,INPUT,INSPEC,NUMSR,ISSPEC,
NUMSC,SCALAR,IERROR,NWORKR,WORKR)

8. input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: Ncne

11. Storage Required: Total Storage required is 50E 16 Bytes.

12. Subroutine User:
EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

15. Remarks: A = B.IDENTC.

8.34

1. Subroutine Name: EIGI

2. Purpose: To create dynamic storage for eigenvalue
and eigenvector calculations and locate input matrix.

3. Equations and Procedures:

1) Dynamic storage is allocated.
2) REGE2 ie called to transfer matrix to scratch tape.
3) EIGB is called to iteration on a matrix.
4) Storage required is 5 vectors of equal length

(order of matrix).
5) If the NWORK storage is too small for this, an

error message is printed out.
6) If the eigenmatrix cannot be located, another error

message is written.

4. Input Arguments:

NMOUT - the number of output matrices
NAMOT - array containing the names of the output

matrices
IODS - array containing output data set numbers
NMIN - the number of input matrices
INPT - array eontaining the names of the input

matrices
INSP - array containing input data set numbers
NSCR - the number of scratch data sets
ISSP - array containing scratch data set numbers
NMSCL - the number of input scalars
NAMSC - array containing the input scalars
ERR - - error return code
NWKR - the number of words of available work storage
WKR - working storage array

5. Output Arguments: ERR

6. Error Returns:

ERR = true if input matrix can't be found
= true if not enough storage to calculate eigenvalue

and vector.

7. Calling Sequence:

Call EIGl(NMOUT,NAMOTIODSNMIN,INPTINSP,NSCR,ISSP,
NMSCLNAMSC,ERRNWKIWKR)

8. Input Tapes: INSP

9. Output Tapes: IODS, NPOT

8.35

10. Scratch Tapes: ISSP (4 scratch tapes needed)

11. Storage Required:

Total Storage Required is A301 6 Bytes.

12. Subroutine User: EXEQ

13. Subroutines Required:

REGE2
EIGB
EUTL3

14. Remarks:

8.36

1. Subroutine Name: REGE2

2. Purpose: This routine takes compressed (Format) Eigen-
,natrix and transfers it (exponded) to a scratch data set.
Storage on the scratch data set is optimized by placing
as many columns into a record (which has NLEFT words
max) as possible.

3. Equations and Procedures:

1) Compute number of columns/NLEFT record = NCR:
maximum NCOL records.

2) Compute number of columns in last record - NRR
3) Compute total number of records - NR

a) Number of full records NFR
b) Number of columns in last record NRR

4) Read compressed matrix from 113 expand column
using EUTL9. Provide for suppressed column.

5) Take care of full records first.
6) Next write final clean-up record containing

remaining matrix columns.

4. Input Arguments:

112 - data set to which eigen-matrix is transferred
113 - data set with compressed (Format) eigen-matrix
ARRAY - work storage
DARRAY - work storage
NCOL - order of matrix
NR - total number of records on scratch data set
NLEFT - maximum record length

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call REGE2(I12,113,ARRAYDARRAYNCOL,NRNLEFT)

8. Input Tapes: 113 contains original format compressed
eigenmatrix.

9. Output Tapes: 112 contains expanded eigenmatrix each
record is up to "NLEFT" words and contains an integer
number of matrix columns/record.

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 6D4 1 6 Bytes.

8.37

12. Subroutine User:

EIG1

13. Subroutine Required:

EUTL9

114. Remarkvs:

8.38

1. Subroutine Name: EIGB

2. Purpose: Control iteration routine EIG. Writes

eigenvalue, eigenvector matrices on tape.

3. Equations and Procedures:

1) Write out controls used in iteration:
NE - number of eigenvalues requested Defaults are
IFLAG - row or column iteration NOiT = 500
NOIT - number of iterations per CRIT - .001

criteria update
CRIT - convergence criteria

2) Locate and expand input vecotrs using EUTL3
3) Call routine EIG
4) Print out frequency in CPS and radians/sec and

the normalized eigenvector
5) If output vecotrs are requested write them on an

outpat tape when vectors are written.

4. Input Arguments: See calling sequence.

5. Output Arguments: None

6. Error Returns:

7. Calling Sequence:

Call EIGB(NE,IBEGIENDWKR(NI),WKR(N5),WKR(N3),WKR(N4),
WKR(N2),NMDB,NEIGL,NEIGV,NAMOT,NMOUT,WKR(N3),
WKR(N4),NSAVE,INIEC,INPTNMIN,ERR,IFLAGNOIT,
NRIT,NVECTNR,NLEFT)

8. Input Tapes:

9. Output Tapes: NSAVE, NVECT, NPOT, NSIGL, 0

10. Scratch Tapes: NSKRAT

11. Storage Required:
Total Storage required is 18B216 Bytes.

12. Subroutine User: EIGI

13. Subroutines Required: EUTL3, EIG, EUTL5, EUTL6

14. Remarks:

8.39

1. Subroutine Name: EIG

2. Purpose: This routine computes only one eigenvalue and
vector for each call from EIGB.

3. Equations and Procedures:

1) Power method iteration with hotteling deflation to
remove dominant root.

2) Iterate on column vector, get vector and valued
3) If another value is desired, iterate on row vector

and value.
4) Use row and column vectors to deflate matrix.
5) Use deflate matrix when iterating for next column

vector
6) If the convergence must be updated (CRITZ - CRITZ+CRIT)
7) Return to routine EIGB.

4. Input Arguments:

N - order of characteristic matrix
IPRINT - = 0 no iteration print; = J.print iterations
NEIG - a always a I
CRIT - convergence criteria
NOIT - number of iterations
IBEG - location (unit) of col (characteristic)

vector matrix
IBEND - unit on which deflated matrix is placed

5. Output Arguments:

ROOTS - returned eigenvalue
XIN - returned eigenvector
NERR - error indicator a 0 no er-ror;=l col o not converge
ICOUNT - u 1 if value converged -2 row does not converge
IFLAG - a both input and output =3 row root Y col root

=4 machine or input error
- 0 go directly to col

iteration
n 1 continue row iteration

indicates row iteration
failed previously and
criteria has been increased

6. Error Returns:

FERR I 1 no error; w 2 eigencols do not converge;
=3 eigenrows do not converge; - 4 row root not equal to
col. root; a 5 no nonzero element in (col); - 6 no non-
zero element in row; - 7 scalar product of row and column
vectors - zero.

8.40

7. Calling Sequence:

Call EIG(N,IPRINT,NEIGROOTS,XINNERRCRITNOITICOUNT,
IBEG,IEND,AXISIMINXINPNMDBXIPXIMINPNE,
IFLAG,NUMRNLEFTNOFPNTR

8. Input Tapes:

9. Output Tapes:

10. Scratch Tapes:

IBEG - initial (A) matrix location st
IEND - location of swept (A) matrix after 1 eigenvalue

is found. This unit then becomes the input for
calculating the next eigenvalue and IBEG will
receive the resulting swept matrix.

11. Storage Required:
Total Storage required is IB0616 Bytes.

12. Subroutine Uoer.: EIGB

13. Subroutines Reuired: None

14. Remarks:

8,41

- - -- -lw-

1. Subroutine Name: COLREP

2. Purpose: To generate a matrix by repeating the first
input column matrix X number of times where K is the column
dimension of the second input matrix.

3. Equations and Procedures: The second input matrix is
located and its column dimension, NCOL, is noted. The
first input matrix is located and stored in core and its
row dimension, IROW, is noted. A matrix header for the
output mat, Ix of order IROW by NCOL is written. The input
column is repeated NCOL times and the matrix trailer for
the output matrix is written.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error flag.

6. Error Returns:

IERROR = 11, if first input matrix can't be found
= 12, if second input matrix can't be found
= 21, if output matrix can't be generated

7. Calling Sequence:

COLREP(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPEC,NUMSR,ISSPEC,
NUMSCSCALAR,IERROR,NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 644 16 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

141. Remarks: A = B.COLREP.C

8,4.2

1. Subroutine Name: NULL

2. Purpose: To generate a null matrix of order n x m.

3. Equations and Procedures: The first input matrix is
located and the row dimension of this matrix is saved in
KROW. The second input matrix is located and the column
dimension of this matrix is saved in KCOL. Then a matrix
header and trailer is written. The dimension of the out-
put matrix is KROW x KCOL.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error flag

6. Error Returns:

IERROR w 11, if firzt input matrix can't be found
= 12, if second input matrix can't be found

7. Calling Sequence:

NULL(NUMOTNAMIOIOSPECNUMIN, NAMIN, INSPEC,NUMSRISSPEC,

NUMSCSCALAR,IERRORNWORKWORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 4BA 16 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Reimarks: A n B.NULL.C

8.43

1. Subroutine Name: DEJOIN

2. Purpose: This routine is the controlling routir to
provide matrix column or row partitioning.

3. Equations and Procedures: First, the input and output
dat sets are defined. Next a check is made to determine
if the input data set is the same as either output data
set. If either or both of the output data sets are the
same, the output data set is redefined as a unique scratch
data set. Now a test is made to determine if the partitlon
number was input or if it must be found. If it was not
input then EUTL7 extracts the partitioning scalar. Now a
test of whether a column or a row DEJOIN is desired is
performed. If it is a column DEJOIN, subroutine DEJNC
is called. If it is a row DEJOIN, subroutine DEJNR is
called. If either or both output data sets are different
from the originally allocated output data sets, a copy of
the output data set is made onto the originally allocated
data set by a call to EUTL4.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
ISCALE - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error flag

6. Error Returns: An error condition occurs when a matrUx
cannot be located, the subscripts used to extract the
partition number exceed the dimension limit, or when the
partition number is invalid.

7. Calling Sequence:

DEJOIN(NUMOT,NAMIOIOSPEC ,NUMIN,NAMININSPEC,NUMSRISSPEC9
NUMSC,ISCALE, IERROR,NWORKWORK)

8. Input Tapes:_ One or two input data sets in the INSPEC
array.

8. 4

9. Output Tapes: Two output data sets in the IOSPEC array.

10. Scratch Tapes: Two scratch data sets in the ISSPEC array.

11. Storage Requiredz Total Storage required is 91816 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTL1
EUTL3
EUTL7
DEJN'
DEJI
EUTL4

14. Remarks: AB - C.DEJOIN.(d,e)

8.45

1. Subroutine Name: DEJNR

2. Purpose: This routine row partitions a matrix at a
specified row.

3. Equations and Procedures: First the partition number
is tested against the row dimension of the matrix to be
partitioned if it is greater than the number of rows an
error occurs. If it is less than or equal to the row
dimension then the input matrix A is partioned to form
two output matrices Cl on C2.

A(MXN) - Cl(J-l x n), C2(m-J+l x n) where 1 < J < m

4. Input Arguments:

NAME - the names of the output matrices
NSET - the data set number of the input matrix to be

partitioned
NSET1 - the data set number of the first output matrix
NSET2 - the data set number of the second output matrix
JPART - the row number at which the input matrix is'to

be partitioned
IROW - the row dimension of the input matrix
ICOL - the column dimension of the input matrix
NWORK - the number of words of available working storage
WORK - working storage array
ERROR - error flag.

5. Output Arguments: ERROR

6. Error Returns: An error condition occurs when JPART
is greater than the row dimension of the input matrix.

7. Calling Sequence:

DEJNR(NAME,NSETNSET1,NSET2,JPART,IROW,ICOL,NWORK,WORK,
ERROR)

8. Input Tapes: NSET

9. Output Tapes: NSET1, NSET2

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 5F6 1 6 Bytes.

12. Subroutine User: DEJOIN

13. Subroutine Required: EUTL5, EUTL9, EUTL8s EUTL6

14. Remarks: None

8.46

1. Subroutine Name: DEJNC

2. Purpose: This routine column partitions a matrix at a
specified column.

3. Equations and Procedures: First the partition nuimber is
tested against the column dimension of the matrix to be
partitioned. If it is greater than the number of columns
ani error occurs. If it is less than or equal to the column
,imension the input matrix A is partitioned to form two
output matrices Cl and C2.

A(MXN) = Cl(M x J-l), C2(m x n-J+l) where 1 < J < n

4. Input Arguments:

NAME - the names of the output matrices
NSiET - 'the data set number of the input matrix to

be partitioned
NSET1 - the data set number of the first output matrix
NSEr2 - the data set number of the second output matrix
JPART - the column number at which the input matrix is

to be parti~ioned
IROW - the row dimension of the input matrix
ICOL - the column dimension of the input matrix
NWORK - the number of words of available working storage
WORK - working storage array
ERROR - error flag

5. Output Arguments: ERROR

6. Error Returns: An error condition occurs when JPART is
greater than the column dimension of the input matrix.

7. Calling Sequence:

DEJNC(NAME,NSET,NSET1,NSET2,JPARTIROWICOL,NWORKWOR,
ERROR)

8. Input Tapes: NSET

9. Output Tapes: NSET1, NSET2

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 63816 Bytes.

12. Subroutine User: DEJOIN

13. Subroutine Required: EUTL5, EUTL6

14. Remarks: None

8.47

1. Subroutine Name: ASSEM

2. Purpose: To assemble the element matrices generated
by the USER04 module.

3. Equations and Procedures: The matrix containing the system
constants is found to generate the value NSYS. The assembled
matrices will be of order NSYS, that is, they will not be
reduced. Next, the variable ITYPE is tested to see what
type of matrices are to be assembled. Depending on the
value of ITYPE control is transferred to either ASSEMC or
ASSEMS to assemble and write the matrices

ITYPE a 1, for element stiffness assembly
n 2, for element mass assembly
- 3, for element incremental assembly
* 4, for element applied load assembly.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
ISCALE - array containing the input scalars
IERROR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: None

6. Error Returns:

IERROR a 21, if the matrix containing the system constants
can't be found

u 15, if there is not enough work storage for the
assembled matrix

7. Calling Sequence:

ASSEM(NUMOT ,NAMIOIOSPEC ,NUMINNAMIN,INSPEC,NUMSR,ISSPEC,
NUMSC,ISCALE,IERRORNWORKWORK)

8. Inppt Tapes: The data set numbers are contained in the
INSPEC array.

8.48

9. Output Tapes: The data set numbers are contained in
the IOSPEC array.

10. Scratch 'apes: The data set numbers are contained in
the ISSPEC array. This module uses at most two scratch
tapes.

11. Storage Required: Total Storage required is 72C 1 6 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTL3
ASSEMC
ASSEMS

14. Remarks: A * B.ASSEM.C,(d)

8.49

pw- Y

1. Subroutine Name: ASSEMC

2. Purpose: To assemble the element applied load columns.

3. Equations and Procedures: The tape containing the element
matrices is read and the LISTEL and FTEL arrays are stored for
each element. Using the LISTEL array the FTEL arrays is
assembled into a master applied load array. This process
is repeated for each element.

Input Arguments:

NSET1 - data set on which the input element matrices
are stored

NSET2 - data set number of output matrix
NAMEl - array containing name of matrix on NSET1
NAME2 - array containing name of matrix on NSETL
NSYS - order of assembled matrix
LISTEL - storage for the LISTEL array
FTEL - storage for the element applied loads array
FCOL - storage for the assembled FTEL
NWORK - number of words of work storage
WORK - work storage
IERROR - error return

5. Output Arguments: None

6. Error Returns:

IERROR - 11, if the input matrix can't be found
= 15, if a value of LISTEL is greater than NSYS

7. Calling Sequence:

ASSEMC(NSETI,NAME1,NSET2,NAME2,NSYS,LISTEL,FTEL,FCOL,
NWORKWORK,IERROR)

8. Input Tapes: NSETI

9. Output Tapes: NSET2

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 67816 Bytes.

12. Subroutine User: ASSEM

13. Subroutine Required: EUTL3, EUTL5, EUTL6

14. Remarks: None

8.50

1. Subroutine Name: ASSEMS

2. Purpose: To assemble the element stiffness, element mass
or element incremental matrices as generated by the USER04
module,

3. Equations and Procedures: The matrix containing the input
element matrices is found and depending on what type of
matrices are to bo assembled a different read statement is
initiated. The LISTEL array and element matrix is then
stored in core. Then using LIST processing techniques the
element matrix is assembled in core. Only non-zero values
art considered. If all non-zero values can't fit in core
then the values in core are written on tape until more
elements are assembled in core. These non-zero values are
then merged with the ones on tape to produce the output
assembled matrix.

4. Input Arguments:

NSETl - data set number of tape containing element matrices
NAMIN - array containing name of matrix on NSET1
NSET2 - data set num-er of output matrix
NAMOUT - array containing name of output matrix
NSI - scratch tape 1
NS2 - scratch tape 2
NSYS - order of assembled matrix
NCORE - number of available words of core storage
ITYPE - indicates type of matrices to be assembled
ICOLPT - storage needed for assembly
VALUE - storage needed for assembly
IERROR - error flag

5. Output Arguments: None

6. Error Returns:

IERROR - 11, if the input matrix on NSET1 cannot be found

7. Calling Sequence:

ASSEMS(NSET1,NAMINNSET2,NAMOUToNSI,NS2,NSYSNCOREITYPE,

ICOLPTVALUEIERROR)

8. Input Tapes: NSET1

9. Output Tapes: NSET2

10. Scratch Tapes: NS1, NS2

8.51

JC

11. Storage Reouired. Total Storage required is 292416 Bytes.

12. Subroutine User: ASSEM

13. Subroutine Required:

EUTL3
EUTL5
EUTL6

14. Remarks: For a more detailed documentation see the
source listing os subroutine ASSEMS.

8.52

1. Subroutine Name: STRESS

2. Purpose: This is the control routine for computing the
ne'" element stress matrix. It also controls the optionalengineering print of apparent ei.!ment stresses, elementapplied stresses and net element stresses.

3. Equations and Procedures: This module first zests the
allocation of the input and output matrices. If both input
matrices are on the same data set, but not on the data set
t' contain the output matrix, thei, one of these input matrices
is copied onto a scratch data set. If both input matrices
are on the same data set as the output mat-'x, then each
input matrix is located and copied onto a suratch data set.
When this has been completed both ikput matrices are
positioned and the matrix header for the output matrix is
written.
Pointers are next set up Indicating positions in the work
area for arrays needed to compute the streE!es.

Subroutine STRESI is called to read element data and
displacements contained in the input matrices.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch da.a setz
ISSPEC - array containing scratch daba sp numbers
NUMSC - the number of input scalars
SCALAR - arrev containing the input scalars
IERRCR - error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Argumentz: IERROR

6. Error Returns:

IERROR a 11 or 21, if either the first or second input matrix
can't be found by EUTL3

7. Calling Sequence:

STESS(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPEC,NUMSR,ISSPECNUMSC,
SCALAR,XERROR,NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

8.53

10. Scratch Tapes: ISSPEC

11. Storage Required Total Storage required is 704 16 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required:

EUTLI
EUTL3
EUTL4
EUTL5
STRESI

14. Remarks: C - A,B.STRESS.(de)

8.54

1. Subroutine Name: STRESI

2. Purpose: This routine reads element data and displacements,
calls STRES2 to calculate the stresses, then writes the net
elemen~t stresses for each element.

3. Equations and Procedures: A test is first made to see if
enough work space is available to process all elements
successfully. Then for each element this module:

(a) Reads a column of the input matrix containing element
data on NSET1.

(b) Compresses this column, keeping only the element data
necessary to calculate the stress.

(c) Calls STRES2 to calculate the stresses and print
them out.

(d) Writes the calculated net element stresses on tne
output data set. One column is written for each
element, such that each column contains net stresses
for each load condition.

4. Input Arguments:

NFELEM - the number ' elements
NLOAD - Lhe number of load conditions
NMDB - the order of the displacement array
MAXEL - the length of work storage needed to process

the maximum size element
NL48 - NLOAJ)*48
NSETI - the dat: set number of the input matrix con-

zaining element data
NSET2 - the date set number of the input matrix con-

taining the displacements
NSET3 - the data set number of the uutput matrix
NAME - the name of thz mat..ix on NSET2
SCALAR - an array containing the input s~alars
MAT - a work array local to STRESI
IPM - a work array local to STRESI
STRESN - work storage for the net element stresses
NWORK - the number of words of available working storage
WORK - working storage array
IERROR - error return

5. Output A.guments: IER.%; - error return

6. Err.s- Returns:

IERROR * 15, i" not enough work storage to process all
elements.

8.55
-c

7. Calling Sequence:

STRES1(NELEM,NLOADNMDB,MAXEL,NL48,NSETINSET2,NSET3,
*NAME,SCALARMAT,IPM,STRESN,NWORK,WORKIERROR)

8. Input Tapes: NSETi, NSET2

9. Output Tapes: NSET3

10. Scratch Ttpes: None

11. Storage Required: Total Storage required is 75A 16 Bytes.

12. Subroutine User: STRESS

13. Subroutine Required:

ELREAD
FREEUP
STRES2

14. Remarks: None

8.56

1. Subroutine Name: STRES2

2. Purpose: This rout!'ne calculates the net element stresses
for each load condition. Then calls STRPRT to print the
apparent, applied end net element stresses,

3. Equations and Procedures: A test is first made to see
if the displacements for all load conditions can fit in
core. If they can, then they are read into core. If the
displacements for all load conditions do not fit into core
then the displacements for each load condition are read
into core one at a time. For each load condition the net
element stresses are calculated and depending on the option
specified the apparent, applied or net stresses are printed
for each element.

~4. Input Arguments:

IEL - the element number
IPL - the element type (nei plug number)
NMDB - the order of the displacement array
NLOAD - the number of load conditions
NRSEL - the order of the element stress array
NORD - the order of the LISTEL array
NNO - the order of the NODES array
NSET2 - the data set number of the displacement matrix
INCORE - a logical variable indicating in all displacements

are INCORE
FIRST - a logical variable
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
LISTEL - a decoding array to go from reduced degrees

of freedom to system degrees of freedom
SEL - the element stress matrix
SZALEL - applied element stress matrix
NODES - an array containing the element node points
STRESN - net element stress matrix
NWORK - the number of words of available working storage
DISPL - the displacement array
IERROR - error return

5. Output Arguments: STRESN, IERROR

6. Error Returns:

IERROR - 21, if EUTL3 can't find the displacement matrix

8.57

7. Calling Sequence:

STRES2(IELIPL, NMDB,NLOADNRSEL,NORD,NNO,NSET2,INCORE ,FIRST,
NAMESCALAR,I4SCLISTEL,NODES,SEL,SZALEL,STRESN,NWORK,
DISPL,IERROR)

8. Input Tapes: NSET2

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 117A 16 Bytes.

12. Subroutine User: STRESI

13. Subroutine Required:

COLMRD
EUTL3
STRPRT

Ill. Remarks: None

8.58

1. Subroutine Name: FORCE

2. Purpose: This is the control routine for computing the
net element force matrix. It also controls the optional
engineering print of apparent element forces, element
applied forces and net element forces,

3. Equations and Procedures: This module first test the
allocation of the input and output matrices. If both input
matrices are on the same data set, but not on the data set
to contain the output matrix, then one of these input matrices
is copied onto a scratch data set. If both input matrices
are on the same data set as the output matrix, then each
input matrix is located and copied onto a scratch data set.
When this has been completed both input matrices are
positioned and the matrix header for the output matrix is
written.

Pointers are next set up to indicating positions in the
work area for arrays needed to compute the forces.
Subroutine FORCEl is called to read element data and
displacements contained in the input natrices

4. Input Arguments:

NOMOT - the number of output matrices
NAMOT - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR - error return code
NWORK - the number of words of availcble work storage
WORK - working storage array

Output Arguments: IERROR

Error Returns:

IERROR = 11 or 21, if either the first or second input
matrix can't be found by EUTL3

Calling Sequence:

P(jRCE(NU4OT,NAMOT,IOSPEC, NUMIN,NAMIN,INSPEC,NUMSR,ISSPEC,
NUMMSC,SCALARIERROP,NWORKX,-ORK)

8.59

A -

Now 7F ----- Y--- -- ,- --

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: ISSPEC

11. Storage Required: Total Storage required is 701416 Bytes.

12. Subroutine User: EXEQ

13. Subroutine RequIred:

EUTLJ.
EUTL3
EUTL4
EUTL5
FORCE1

1 l4. Remarks: C *A,B.FORCE.(d,e)

8. 60

1. Subroutine Name: YORCE1

2. Purpose: This routine reads element data and displacements,
calls FORCE2 to calculate the stresses, then writes the
net element forces for each element.

3. Equations and Procedures: A test is first made to see
if enough work space is available to process all elements
successfully. Then for each element this module:

(a) Reads a column of the input matrix containing element
data on NSET1.

(b) Compresses this column, keeping only the element data
necessary to calculate the forces.

(c) Calls FORCE2 to calculate the forces and print them
out.

(d) Writes the calculated net element forces on the
output data set. One column is written for each
element, such that each column contains net stresses
for each load condition.

4. ..nput Arguments:

NELEM - the number of elements
NLOAD - the number of load conditions
NMDB - the order of the displacement array
MAXEL - the length of work storage needed to process

the maximum size element
NL48 - NLOAD*48
NSETI - the data set number of the input matrix

containing element data
NSET2 - the data set number of the input matrix

containing the displacements
NSET3 - the data set number of the output matrix
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
MAT - a work array local to FORCE1
IPM - a work array local to FORCEI
FORCEN - work storage for the net element forces
NWORK - the number of words of available working storage
WORK - working storage array
IERROR - error return

5. Output Arguments: IERROR - error return

6. Error Returns:

IERROR a 15, if not enough work storage to process all
elements

7. Calling Sequence:

FORCEl(NELEM,NLOADNMDBMAXELNL48,NSETI,NSET2, NSET3,NAME,
SCALAR,MATIPM,FORCENNWORK,WORK,IERROR)

8.61

8. Input Tapes: NSETI, NSET2

9. Output Tapes: NSET3

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 75616 Bytes.

12. Subroutine User: FORCE

13. Subroutine Required:

ELREAD
FREEUP
FORCE2

14. Remarks: None

I

8.62

1. Subroutine Name: FORCE2

2. Purpose: This routine calculates the net element forces
for each load condition. Then calls STRPRT to print the
appcrent, applied and net element forces.

3. Equations and Procedures: A test is first made to see
if the displacements for all load conditions can fit in
core. If they can, then they are read into core. If the
displacements for all load conditions do not fit into core
then the displacements for each load condition are read
into core one at a time. For each load condition the net
element forces are calculated and depending on the option
specified the apparent, applied or net forces are printed
for each element.

4. Input Arguments:

IEL - the element number
IPL - the element type (new plug number)
NMDB - the order of the displacement array
NLOAD - the number of load conditions
NOINK - the order of the element stiffness array
NORD - the order of the LISTEL array
NNO - the order of the nodes array
NSET2 - the data set number of the displacement matrix
INCORE - a logical variable indicating if all displace-

ments are in core
FIRST - a logicrl variable
NAME - the name of the matrix on NSET2
SCALAR - an array containing the input scalars
NSC - an array containing the number of stress

components for each element type
LISTEL - a decoding array to go from reduced degrees

of freedom to system degrees of freedom
AKEL - the element stiffness array
FTEL - an array containing element applied force
NODES - an array containing the element node point
FORCEN - net element force matrix
NWORK - the number of words of available working storage
DISPL - the displacement array
IERROR - error return

5. Output Arguments: FORCEN, IERROR

6. Error Returns:

IERROR = 21. if EUTL3 can't find the displacement matrix

8.63

7. Calling Sequence:

FORCE2(IELIPLNMDBNLOAD,NOINK,NORD,NNO,NSET2,INCORE,
FIRSTNAMESCALARNSCLISTEL,AKEL,FTEL,NODES,
FORCENNWORK, DISiLIERROR)

8. Input Tapes: NSET2

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 10CA1 6 Bytes.

12. Subroutine User: FORCEI

13. Subroutine Required:

COLMRD
EUTL3
STRPRT

1.4. Remarks: None

8.64

1. Subroutine Name: EPRINT

2. Purpose: To print out the net element forces or net
element stresses calculated by the FORCE or STRESS modules.

3 Equations and Procedures: This module first tests the
allocation of the input matrices. If both input matrices
are on the same data set, then the first input matrix is
copied onto a scratch data set.

The input matrices arc found and tested for compatability
and the first input matrix is copied if necessary.

The matrix containing element information is read a column
at a time as is the matrix containing the net element stress
or forces. Then the input print control is tested in order
to write out the correct heading for either the forces or
stresses. Subroutine STRPRT is called for each load
condition to print out the values in the second input matrix.

4,. Input Arguments:

NUMOT - the number of output matrices
NNMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
IERROR -, error return code
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR - error return.

6. Error Returns:

IERHOR - 11 if EUTL3 can't find first input matrix
= 12 if EUTL3 can't find second input matrix.

7. Calling Sequence:

EPRINT(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPEC,NUM.. ,ISSPEC,
NUMSC,SCALAR,IERROR,NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: None

8.65

10. Scratch Tapes: This routine uses at most one scratch
tape.

11. Storage Required: Total Storage required is 1D28 1 6 Bytes.

12. Subroutine Use r: EXEQ

13. Subroutines Required:

EUTL3
ELREAD
FREEUP
STRPRT

14. Remarks: EPRINT(a,b,c)D

8.66

1. Subroutine Name: STRPRT

2. Purpose: To write on the system output data set the

values calculated by the FORCES and STRESS modules.

3. Equations and Procedures:

(a) Test the input variable TFMT to write out the correct
heading for the element type being processed.

(b) Calculate the number of stress or force points to
be printed.

(c) If ABS(STRESS(I)) < EZERO then STRESS(I)=0.0.
(d) Write out the values in array STRESS according to

the input format.

4. Input Arguments:

IFMT - indicates eJement type and eici,,- FJess or
force print

EZERO - suppression value
NRSEL - length of STRESS array
FMT - format used in printer
NSC - number of force or stress component
STRESS - input array containing force or stress

to be printd.

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

STRPRT(lFMT,EZERO,NRSEL,FMT,NSC,STRESS)

a. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is E201 6 Bytes.

12. Subroutine User: STRES2, FORCE2, EPRINT

13. Subroutine Required: None

14. Remarks: None

-8.67

1. Subroutine Name: ELREAD

2. Purpose: This routine reads one column of the matrix
which contains element information and puts that column
in working storage and returns element variables.

3. Equations and Procedures: Reads one column of the input
matrix which contains:

IEL,IPL,
NORD,(LISTEL(I),I=I,NORD),
NOINK,(AKEL(I),I-INOINK),
NORD,(FTEL(I),I=,NORD),
NNO,(NODES(I),I=l,NNO),
NSEL,(SEL(I),I=I,NSEL),
NRSEL,(SZALEL(I),I=l,NRSEL),
NOINK,(ANEL(I),I=l,NOINK),
NMASS,(AMASS(I),I=I,NMASS)

Then decodes and returns the variables

IEL,IPL,NORD,NOINK,NNO,NSEL,NRSEL and NMASS

where

LISTEL - contains boundary condition information
AKEL - is the element stiffness matrix
FTEL - is the applied load matrix
NODES - contains the grid points defining the element
SEL - is the element stress array
SZALEL - is the thermal stress array
ANEL - is the incremental stiffness array
AMASS - is the element mass matrix

Lj. Input Arguments:

NSET - data set number of input matrix
WORK - working storage into which element data is read
NWORK - number of words available in the work array
IEL - the element number
IPL - the element type (plug number)
NORD - the order of the LISTEL and FTEL arrays
NOINK - the order of the AKEL and ANEL arrays
NNO - the order of the nodes array
NSEL - the order of the SEL array
NRSEL - the order of the SZALEL array
NMASS - the order of the AMASS array

5. Output Arguments:

NLEFT - the number of work remaining in the work array
NEXT - the next useable position in the work array

8.68

M Imp--

6. Error Returns: None

7. Calling Sequence:

ELREAD(NSET,WORK,NWORK,NLEFT,NEXT,IEL,IPL,NORD,NOINKNNO,
NSEL,NRSEL,NMASS)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 434 1 6 Bytes.

12. Subroutine User: STRES1, FORCEI

13. Subroutine Required: None

14. Remarks: None

8.69

1. Subroutine Name: FREEUP

2. Purpose: This routine is used to compress the work
array by compressing out unwanted matrices and freeing
up more storage used after a call to ELREAD.

3. Equations and Procedures: This routine will only com-
presss an array containing submatrices which are preceeded
by the length of the submatrix.

The number of non-zero elements of MAT is tested against
NMAT. If they aren't equal then an error occurs.

The work array is then compressed by searching for those
submatrices to be saved as indicated by a non-zero position
in the MAT array. When a submitrix to be kept is found it
is moved up in the work array and its initial position in
the work array is kept track of in the IPM array.

The space taken up by submatrices not wanted is now freed-up
for use by someone else.

4. Input Arguments:

WORK - the input matrix to be compressed up
ISTART - the position of the dimension of the first

submatrix in the work array
IPWORK - the position in the work array at which the

submatrices are to be moved up to
MATOUT - an integer indicating the number of submatrices

to be kept, should equal the number of non-zero
elements in the MAT array

NMAT the length of the MAT and IPM arrays
MAT - If MAT(I) is non-zero then the sub-matrix

in the Ith position will be kept, if
MAT(I)=0 then that submatrix will be compressed
out.

5. Output Arguments:

WORK - the cleaned-up input array
IPM - contains the initial position of the saved

submatrix in the cleaned-up work array
NEXT - the next useable position in the work array
IERROR - error return

6. Error Returns:

IERROR = 15, if there is an input error

8.70

7. Calling Sequence:

FREEUP(WORK,ISTART,IPWORKMATOUT,NMAT,MAT,IPM,NEXT,IERROR)e

8. Input Tape: None

9. Output Tape: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1IB41 6 Bytes.

12. Subroutine User: STRESI, FORCE1

13. Subroutine Required: None

114. Remarks: None

8.71

1. Subroutine Name: COLMRD

2. Purpose: This routine is a utility routine used to
read a column and uncompress it if necessary. Used
when storing more than one column in the work array.

3. Equations and Procedures: One column of the input data
set is read and EUTL9 is called to uncompress the column
if necessary.

4. Input Arguments:

WORK - working storage array, used to input and
output the column read

NSET - the data set number of the matrix to be
read

LENGTH - the length of storage available to EUTL9

5. Output Arguments: WORK

6. Error Returns: None

7. Calling Sequence:

COLMRD(WORK,NSET,LENGTH)

8. Input Tapes: NSET

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1DA 1 6 Bytes.

12. Subroutine User: STRES2, FORCE2

13. Subroutine Required:

EUTL9

14. Remarks: None

8.72

1. Subroutine Name: OPRINT

2. Purpose: This is the control routine for engineering
printout of grid point data of reactions, displacements
and eigenvectors. It can also be used for printout of
user matrices.

3. Equations and Procedures: Index pointer indicating the
initial position in the work array are calculated to make
use of dynamics storage allocation.

Subroutine GFRINT1 is called to process input matrices.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - array containing the names of the output matrices
IOSPEC - array containing output data set numbers
NUMIN - the number of input matrices
NAMIN - array containing the names of the input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data sets
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
SCALAR - array containing the input scalars
NWORK - the number of words of available work storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns: None

7. Calling Sequence:

GPRINT(NUMOT,NAMIO,IOSPEC,NUMINNAMIN,INSPEC,NUMSR,ISSPEC,
NUMSC,SCALAR,IERROR,NWORK,WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

10. Scratch Tapes: ISSPEC - one scratch tape required

11. Storage Required: Total Storage required is 3C8 1 6 Bytes.

12. Subroutine User: EXEQ

13. Subroutine Required: GPRINTl

14. Remarks: GPRINT(a,b,c,Cl.C2.C3.C4.C5.C6.C7.C8.C9.C!IXCll.CI 2 ,
D,E,F)G,H

8.73L

1. Subroutine Name: GPRNT1

2. Purpose: This routine processes the input matrices and
calls the appropriate subroutines to print either reactions,
displacements, eigenvalues and eigenvectors or the user
input matrix.

3. Equations and Procedures: The input matrices are all
found and processed as they are found. If an input matrix
can't be found then IERROR is set to indicate which matrix
could not be found. Processing is terminated.

(a) Process first input matrix -
This matrix contains system constants:

NDIR - the number of directions
NDEG - the number of types of degrees of freedom
NREF - the number of reference points

These are used to calculate the number of degrees of
freedom in the system

NSDOF = NDIK*NDEG*NREF

(b) Process second input matrix -

This is the transformation matrix for application of
boundary conditions from which the LIST array can be
calculated. If this matrix is suppressed then generate
a dummy list array.

(c) Process third and fourth input matrix -

This matrix is either the reaction, displacement, eigen-
vector or user matrix to be printed in eigineering
format. If it is the eigenvector matrix then the fourth
input matrix is the eigenvector matrix. Depending on
the input scalar KPRT control is transferred to the
section which decodes one of the above matrices for
constants. Then the matrix is stored in a scratch tape
and control transfers to the subroutine which prints
out the matrix.

4. Input Arguments:

NUMOT - the number of output matrices
NAMIO - the names of the output matrices
IOSPEC - an array containing output data set information
NUMIN - the number t.' input matrices
NAMIN - the names of ;he input matrices
INSPEC - an array coitaining input data set information
NUMSR - the nu.mber ,f scratch data sets available
ISSPEC - an arra, i Uning scratch data set information

8.711

4. Input Arguments, Contd.

NUMSC - the number of input scalars
SCALAR - an array containing the input scalar
MAGEIG - maximum number of eigenvalues that can be asked for
LIST - array used for boundary condition infor-'tion.

Deccding list to go from reduced degree,- of
freedom to total degree of freedom.

DISPL - working storage for third input matrix
EIGVAL - array to contain eigenvector
NWORK - number of words of available working storage
WORK - working storage array

5. Output Arguments: IERROR

6. Error Returns:

IERROR - 15, user type error
= 10*K+l, where K is the position of the input matrix

not found.

7. Calling Sequence:

GPRNT1(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIt ,INSPEC,NUMSRISSPEC,
NUMSC,SCALAR,IERRORMAXEIG,LIST',DISPLEIGVAL,NWORK,
WORK)

8. Input Tapes: INSPEC

9. Output Tapes: IOSPEC

Scratch Tapes: ISSPEC

l. Storage ReQuired: Total Storage required is 100016 Bytes.

12. Subroutine User: GPRINT

13. Subroutine Required:

EUTL3 DISPPR
EUTL9 EIGPPR
DECODE MATPRT
REACTP

14. Remarks: None

8.75

1. Subroutine Name: DECODE

2. Purpose: This routine will decode a format matrix and
put it out in the form of full column records with no headers
or trailers.

3. Equations and Procedures: Read each column into a work
array and test to see if it should be uncompressed. Also
keep count of the number of columns read in case there are
any missing columns. A missing column indicates that all
row elements are zero so regenerate the zero column. If
an error occurs then call TSUM to give a tape summary of the
input data set.

4. Input Arguments:

NSET - the data set number of the FORMAT matrix
NSETS - the data set number of the tape on which the

decoded matrix will go
IROW - row dimension of input matrix
ICOL - column dimension of input matrix
WORK - work array of order IROW

5. Output Arguments: JERROR - error flag

6. Error Returns:

JERROR = 0, no error
JERROR = 1, error

7. Calling Sequence:

DECODE(NSET,NSETS,IROW,ICOL,WORK,JERROR)

8. Input Tapes: NSET

9. Output Tapes;. NSETS

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3F8 16 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required:

EUTL9
TSUM

14. Remarks: None

8.76

1. Subroutine Name: REACTP

2. Purpose: This routine controls the printing of reaction.

3. Equations and Procedures: Subroutine DISPL1 is called to
print out reactions for each load condition.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of load conditions
NMDB - number of degrees of freedom in a reduced system
NSETS - data set number of reaction matrix
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
REACT - array containing reactions
EZERO - effective zero for suppression
ROW - row label
COLMS - array of column labels
KPRT - code denotes reaction print
NWORK - number of words available in working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

REACTP(NREF,NDIR,NDEG,NLOAD,NMDB,NSETS,LIST,REACT,EZERO,
ROW,COLMSKPRT,NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage Required is 32216 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required: DISPLl

14. Remarks: None

8.77

1. Subroutine Name: DISPPR

2. Purpose: This routine controls the printing of the
displacements.

3. Equations and Procedures: Subroutine DISPLI is called
to print out displacements for each load condition.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of lohd conditions
NMDB - number of degrees of freedom in reduced system
NSETS - data set number of displacement matrix
LIST - array for boundary conditions. Decoding list

to go from reduced degrees of freedom to total
degrees of freedom.

DISPL - array containing displacements
EZERO - effective zero f.r suppression
ROW - row label
COLMS - array of column labels
KPRT - code denoting displacement pr'int
NWURK - number of words of available working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

DISPPR(NREF,NDIXNDEG,NLOAD,NMDB,NSETS,LiSTDISrL,EZERO,
ROW,COLMS,KPRT,NWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 32216 Bytes.

12. Subroutine User: GPRNT1

13. Subroutine Required: DISPLI

14. Remarks: None

8.78

1. Subroutine Name: EIGPPR

2. Purpose: This routine controls the printing of eigenvalues
and eigenvectors.

3. Equations and Procedure, Subroutine DISPLI is called to

print out eigenvalues anc, eig,. vector for each eigenvalue.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NEVAL - number of eigenvalues
NMDB - length of eigenvector array
NSETS - data set number of eigenvector matrix
LIST - decoding list to gc from reduced degrees of

freedom to total degrees of freedom
DISPL - array containing eigenvector
EIGVAL - array containing eigenvalues
EZERO - effective zero for suppression
ROW - row label
COLMS - array of column labels
KPRT - code denoting eigenprint
NWORK - number of words available in working storage
WORK - working sv0uage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

EIGPPR(NREFNDIR,NDEG,NEVAL,NMDB,NSETSLIST,DISPLEIGVAL,
EZERORC',COLMSKPRTNWORK,WORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapeo: None

11. Storage Required: Total Storage required is 34416 Bytes.

12. Subroutin User: GPRNT!

13. Subroutine Required: DISPLI

14. Remarks: None

8,79

L __

K

1. Subroutine Name: MATPRT

2. Purpose: This routine controls the printing of the USER
matrix.

3. Equations and Procedures: Subroutine DISPLi is called
to print each column of the user matrix.

4. Input Arguments:

NREF - number of reference points
NDIR - number of directions
NDEG - number of types of degrees of freedom
NLOAD - number of columns
NMDB - length of rows
NSETS - data set number of USER matrices
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
DISPL - array containing user matrices
EZERO - effective zero for suppression
NAME - name of input inatrix
ROW - row label
COLMS - array containing column label
KPRT - code denoting user matrix print
NWORK - number of words available in working storage
WORK - working storage

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

MATPRT(NREF,NDIR,NDEG,NLOADsNMDB,NSETSLISTDISPL,EZERO,
NAMEROWCOLMSKPRT,NWORKWORK)

8. Input Tapes: NSETS

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 36616 Bytes.

12. Subroutine User: OPRNTI

13. Subroutine Required: DISPL1

14. Remarks: None

8.80

1. Subroutine Name: DISPLI

2. Purpose: To print reactions, displacements, eigenvectors,
user matrices, and calculate and print eigenvalues and frequency.

3. Equations and Procedures: The value oV KPRT is tested to
see if the eigenvalue frequency must be calculated and to
write out correct heading then the input matrix is decoded
and printed out.

4. Input Arguments:

NMDB - number of degrees of freedom in reduced system
EZERO - effective zero suppression code
DISPL - input matrix to be printed
LIST - decoding list to go from reduced degrees of

freedom to total degrees of freedom
NREF - number of reference points
NDEG - number of types of degrees of freedom
NLOAD - load condition number
ROW - row label
TITLE - column label
iPRT - code indicating types of print
EXTRA - ontains name of input matrix or eigenvalues
DISP - working storage

5. Output Arguments: None

6. Error Returns: None

7.. Calling Sequence:

DISPL1(G"'7B,EZERO,DISPL,LIST,NREFNDIR,NDEGNLOADROW,TITLE,
KPRT,EXTRA,DISP)

8. Input Tapeb: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 9C6 1 6 Bytes.

12. Subroutine User: REACTP, DISPPR, EIGPPR, MATPRT

13. Subroutine Required: None

14. Remarks: None

8.81

1. Subroutine Name: REPLAS

2. Purpose:

Whenever B matrix element equals corresponding elements of U
or whenever element of C = 0, the output matrix A will contain
a direct mapping of B. When B elements are not equal to
corresponding e~eme ts of C, elements of A equal those non
equal elements of C (excluding C- 0.0)

3. Equations and Pr.iedures:

a) input matrices B and C are copied onto two scratch tapes

b) Record #I is read from input matrix B

c) Record #J is read from input matrix C

d) If record #I words equal record #J words, then the output
record equals Record #I

e) If record #I words are not equal to Record #J words then
the output record is equal to Record J

f) If Record J --.Q then the output record will equal Record I

4. Input Arguments:

NMOUT - number of output matrices
NAMOT - names of output matrices
IODS - unit numbers for output matrices
NMIN - number of input matrices
INPT - names of input matrices
INSP - unit numbers for input matrices
NSCR - number of scratch units
ISSP - unit numbers for scratch files
NMSCL - number of scalers
SC - scaler array (not used)
NWKR - length of work array
MU - work storage array
IPRINT - print control (not used)

5. Output Arguments:

ERR - error return control

6. Error Returns:

ERR a .TRUE. if input matrix cannot be located

7. Calling Sequence:

Call REPLAS (NOUT,NAMOT,IODS,NMIN,INPT,INSP,NSCRISSP,NMSCL,
SC,ERRNWKR,WKR,IPRINT)

84 Subroutine User: EXEQ

9. Subroutine Required:

EUTL3
EUTL5
EUTL6

8.82

1. Subroutine Name: IISUM

2. Purpose: A control subroutine which is used to call subroutine
SMDIS and SUMSTR to compute the sum of displacement, the sum of
reaction and the sum of stress.

3. Equations and Procedures:

(a) Retreive the number of harmonic and circumferential bound
constants from system matrix.

(b) Set control variable, then call subroutine SUMDIS and
subroutine SUMSTP

4. Jnput Arguments:

AUMOT - the number of output matrices (3)
NAMIO - array containing the names of output matrices
IOSPEC - array containing the output data set number
NUMN - the number of input matrices (4)
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data set
ISSPEC - array containing scratch data set numbers
NUMSC - the number of input scalars
ISCALE - used by EXEO
ERROR - error return code
NWORK - the number of words available for work storage
WORK - working storage array

5. Output Arguments: ERROR - Error Flag

6. Calling Sequence:

(NUMOT,NAMIO,IOSPEC,NUMIN,NAMIN,INSPECNUMSR,ISSPEC,NUMSC,
ISCALE,ERROR,NWORK,WORK)

7. Input Tapes: INSPEC

8. Output Tapes: None

9. Scratch Tapes: None

10. Subroutine User: EXEO

11. Subroutine Required: EUTL3, SUMSTR, SUMDIS

8.83 '

.1

1. Subroutine Name: HDECO

2. Purpose:

(a) To update the harmonic control loop matrix

(b) Extract the element stiffness matrix, the element load
matrix from the master element stiffness matrix

3. Equations and Procedures:

(a) Read the harmonic number into core and decrease this
number by one. If this number is equaled to zero then a
null harmonic control loop matrix will be formed. There
will be a harmonic loop control matrix output with the
dimension of IXI.

(b) Element stiffness matrix and the element load matrix will
be extracted from the master element stiffness matrix. The
extraction is dependent upon the harmonic number.

I. Inpuc Arguments:

NUMOT - the number of output matrices (2)
NAMIO - array containing the names of output matrices (2)
IOSPEC - array containing output data set numbers (2)
NUMIN - the number of input matrfces (3)
NAMIN - array containing the names of the input matrices (3)
INSPEC a array containing input data set numbers
NUMSR - the number of scratch data sets (1)
ISSPEC a array containing scratch data set numbers (1)
NUMSC a the number of input scalars
ISCALE a used by EXEO
ERROR a error return code
NWORK a the number of words available for work storage
WORK - working storage array

5. Output Argument: Error - Error Flag

6. Calling Sequence:

(NUMOT, NAMIO, IOSPEC, NUMIN, NAMIN, INSPEC, NUMSR, ISSPEC,
NUMSC, ISCALE, ERROR, NWORK, WORK)

7. Input Tapes: INSPEC

8. Output Tapes: IOSPEC

9. Scratch Tapes: ISSPEC

10. Subroutine User: EXEC

11. Subroutine Required: EUTL3, EUTL5, EUTL6

8.84

- -

Pw- w

1. Subroutine Name: SUMSTR

2. Purpose: To compute the sum of stress for each element for

a given circumferential bounds, then output the results.

3. Equations and Procedures:

(a) Compute the working storages which require retreiving all
the element stress from the input matrix and retaining
them in core.

(b) Compute the sum of stress of each element.

(c) Output the sum of stress for each element.

4. Input Arguments:

NUMOT - the number of output matrices (2)
NIMIO - array containing the names of the input matrices
IOSPEC - array containing the output data set numbers
NUMIN - the number of input matrices
INSPEC - array containing the input data set numbers
NUMSR - the number of scratch data set
ISSPEC - array containing the scratch data set numbers
NUMSC - used by EXEOISCALE - used by EXEO

IERROR - error control flag
NWORK - the number of words available for the work storage
WORK - working storage array
ALLEM - number of element
INUM - number of the working storages has allocated

5. Error Returns:

IERROR - 21 Does not have enough working storage to be
allocated to retreive all the element Stress from
the input matrix

IERROR - 15 Unable to find the input matrix

6. Calling Sequence:

(NUMOT, NAMIOIOSPECNUMINNAMIN,INSPECNUMSR,ISSPEC,MUMSC,
ISCALE, IERROR,NWORKWORKALLEMINUM)

7. Input Tapes: INSPEC

8. Output Tapes: IOSPEC

9. Scratch Tapes: None

10. Subroutine User: HSUM

11. Subroutine Required: EUTL3, EUTL9, EUTL5, EUTL8, EUTL6

8.85

IMP -

1. Subroutine Name: SUMDIS

2. Purpose: To compute the sum of displacement and the sum of
reactions for a given circumferential bounds, then output the
results

3. Equations and Procedures:

(a) Compute the working storages required to retreive all
the displacement or all the reactions from the input
matrix and retain them in core.

(b) Compute the sum of displacements and the sum of reactions.

(c) Output the sum of displacement or the sum of reaction.

4. Input Arguments:

NUMOT - the number of output matrices (2)
NIMIO - array containing the names of the input matrices
IOSPEC - array containing the output data set numbers
NUMIN - the number of input matrices
INSPEC - array containing input data set numbers
NUMSR - the number of scratch data set
ISSPEC - array containing scratch data set numbers
NUMSC - used by EXEO
ISCALE - used by EXEO
NWORK - the number of wrls available for work storage
WORK - working storage array
DNEGI - number of degree of freedom
INUM - number of working storages allocated
SUMT - sum displacements and sum reactions based on

computation control variable

5. Error Returns:

IERROR = 21 Not enough working storage to hold a21 th
displacements or all the reactions in core

IERROR = 15 unable to find the input matrix

6. Calling Sequence:

(NUMOT,NAMIO,IOSPECNUMINNAMININSPEC ,NUMSP.ISSPEC,NUMSC,
ISCALEIERRORNWORKWORK,DNEGI, INUM,SUMT)

7. Input Tapes: INSPEC

8. Output Tapes: IOSPEC

8.86 L..I

9. Scratch Tapes: None

10. Subroutine User: IASUM

11. Subroutine Required: FUTL3, EUTL9, EUTL5; EUTL8, EUTL6

8.87

-W ---. - - v-

1. Subroutine Name: CHEQS

2. Purpose: Main execution routine Cholesky Equation Solver

Abstraction Instruction

3. Equations and Procedures:

(a) Locates input matrices and transfers them to separate
scratch units. Coefficient matrix is converted to banded
form (by repeated calls to AKNZ)

(b) Triangularizes coefficient matrix by call to TCONTX place
triangularized matrix as output matrix NAMQT(l,l) on unit
IODS (1,1)

(c) Allocates storage for equation solver calls BEQSX which
generates solution matrix. Solution matrix placed as out-
put matrix NAMO' (1, NMOUT) on unit IODS (1,NMOUT)

4. Input Arguments:

NMOUT - Number of output matrices
NAMOT - Names of output matrices
IODS - Units for output matrices
NMIN - Numoor of input matrices
INPT - Names of input matrices
INSP - Units for input matrices
NSCR - Number of scratch units
ISSP - Logical unit numbers for scratch units
NMSCL - Number of scalars input
SC - Input scalars
NWKR - Working storage size
WKR - Actual working storage
IPRINT - Print control

5. Output Arguments:

ERR - Logical variable indicating error

6. Error Returns: None

7. Calling Sequpnce:

Call CHEQS (NMOUT,NAMOr, TODS,NMININPT,INSP,NSCR,ISSP,NMSCL,
SC,ERR,NWKR, WIHfl, IPRINT)

8. Subroutine User: EXEQ - Instruction Execution Control Routine

9o Subroutine Required:

EUTL3, EUTL9, AKNZ, TCONTX, EUTL8, BEQSX, EUTL5, EUTL6

8.88

"- w - ' . ..- -!

1. Subroutine Name: AKNZ

2. Purpose: Store A - Matrix in banded column form

3. Input Arguments:

ACOL,I3,IZRNZEL, ICOL,N, ICND

4. Error Returns: None

5. Calling Sequence:

Call AKNZ (ACOL,I3,IZR,NZEL,ICOL,N,ICND

6. Output Tapes: 13

7. Scratch Tapes: None

8. Subroutine User: CHEQS

9. Subroutine Required: None

8.89

1. Subroutine Name: TCONTX

2. Purpose: This routine controls tape flow for the triangularization

routine.

3. Equations and Procedures:

(1) Controls for setting up computation passes are computed in
ICALC and ISTRT.

(2) A portion of the input matrix A is :v'?ad in from MTAPE.

(3) This information is given to the routine TTRI which
actually performs the triangularization for row numbers
ISTRT to ICALC.

(4) This triangularized ou'put portion in A is stored on tape

NTAPE.

(5) Computation is repeated foo each portion of the matrix
until all rows are completed.

14. Input Arguments:

N = order of system to be handled
IZR a banding information array
NZEL - banding information array
A - storage array for input row of banded matrix which is

read by routine

NTOTAL = total number of words which can be considered as a
"core-full"

ATRI = intermediate storage array equals length of maximum
order

MTAPE = input tape logical number
NTAPE - output tape logical number

5. Output Arguments:

IERROR - error indication value
WS w accumulative determinant

6. Error Returns: IERROR not = 0 if WS is returned from TTRI
as less than zero

7. Calling Sequence: CALL TCONTR (N, IZR, NZEL, A, NTOTAL, ATRI,
MTAPE, NTAPE, IERROR, WS

8. Input Tapes: MTAPE a input matrix A in banded row form. Each row

equals I record

9. Output Tapes: NTAPE = triangularized matrix T in banded row
form. Each row equals 1 record.

10. Scratch Tapes: None

8.90

1. Subroutine Name: TTRI

2. Purpose: To triangularize rows ISTRT to ICALC of a banded

Matrix A.

3. Equations and Procedures:

(1) This routine triangularizes rows ISTRT to ICALC of a
banded matrix A where rows 1 to ISTRT =1 of the A matrix
(already triangularized) are on tape NTAPE.

(2) If ISTRT = 1, then NTAPE and work storage ATRI are not

used since A is assumed to be in core.

(3) Procedure:

Using Cholesky technique, the off diagonal terms of the
portion in core are triangularized. Off diagonals are
then computed. Output is stored in array A.

(4) Cholesky equations:
(i-1

(2) sj = i-iSl1 4 sij =aij - sisjJ

1=i

sii

(5) slj =0o , i> J I

4. Input Arguments:
ISTRT = beginning row of triangularizad portion

ICALC = end row of triangularized portion
IZR = banding information array
NZEL " banding information array
NTAPE = logical tape number of input tape. NTAPE = 7
A = storage array for input A and also output array
ATRI = working storage array

5. Output Arguments: A = output array

6. Error returns: IERROR I = row number such that WS = s is
not greater than zero.

7. Calling Sequence: CALL TTRI (ISTRT, ICALC, IZR, NZEL, NTAPE,
A, ATRI, IERROR, WS)

8. Input Tapes: NTAPE = tape which contains already triongularized
rows of matrix.

9. Output Tanes: None

10. Scratch Tapes: None

1i. Storage Required: A(), ATRI(1), NZEL(1), IZR(l)

8.91

/

1.2. Subroutine User: TCONTX

1.3. Subroutines Required: None

a92

1. Subroutine Name: BEQSX

2. Purpose: To perform simultaneous equation solution for banded
symmetric matrix input using Cholesky procedure.

3. Equations and Procedures:

(1) Tape I10 which contains the assembled load columns is
spaced down to the appropriate position for reading.

(2) A loop is set up based on NL load conditions. Each load
is considered separately.

(3) The program is designd so that a "core-filled" piece is
considered at one time. The procedure to handle this is
set up.

(4) Each load is read into FROL from Tape 110 and the known
displacements are placed into their appropriate position
in DISPL

(5) A call to ESCONT is made. This is the routine which

actually does the computation.

(6) Displacement equals answers are written on Tape 112.

(7) Steps 6-9 are repeated for each load condition.

4. Input Arguments: CKI FORMAT tape compatible matrix name

5. Output Arguments: None

6. Error Returns: None

'. Calling Sequence: CALL BEQSX(AK,NZEL,IZR,XK,DISPLPCOL,RSUM,
NROW,,I3,17,Il0,NMDB,Il2, U1TOAL,f!L)

8. Inrut Tapes: I10 - assembled loads
7 - input triangularized tinded matrix array

9. Quput Tapes: 112 - displacements

10. Scratch Tapes: None

11. Storage Required: XK (2000) NROW(250)

12. Subroutine User: CHEQS

13. Subroutines Required: ESCONT

8.93

1. Subroutine Name: XCALK

2. Purpose: Solves for X where A*X - XK and A is upper triangular
matrix,

3. Equations and Procedures: Determines ISTRT to ICALC of the
column vector X in the matrix equations A*X = XK where A is
upper triangular matrix and X and XK are column vectors

X(N) XK(N X(I) XK(I) - N

nn

This constitutes the second part in calculating an equation
solution by Cholesky or "square root" method.

4. Input Arguments:

N - order of system
ISTRT - beginning row number of computation pass
ICALC = end row number of computation pass
IZR = number zero elements In row of reduced matrix
NZEL - cumulative total of nonzero elements from row 1 thru

i - 1 of reduced matrix
A = sborage array for matrix
XK = column vector array

5. Outt Arguments:

X = output vector array
RSUM = updated intermediate array

6. Error Returns: None

7. Calli e- uenc': CALL XCALK (N, ISTRT, ICALC, IZR, NZE1J, A,
XK, RSUM X N

8. Input Tapes: None

9. Output Taines: None

10. Scratch Tapes: None

11. Storage Required: A(3.-,XK'),SUM(1),X(l),IZR(l),NZEL(l)

12. Subroutine User: ESCONT

13. Subroutines Required: None

8.94

L -

1. Subroutine Name: ESCONT

2. Purpose: Solves matrix equation A * A transpose * X F for X

3. Equations and Procedures: The matrix equation A ' A transpose
X a F is solved for X by solving the two matrix equations
A*XK= F
A TRANSPOSE * X - XK
Where A is a banded lower triangular matrix and X and F are column
vectors.

Procedure:

(1) Rows ISTRT to ICALC of A are read from Tape 7.

(2) A call to KCALC routine computes XK.

(3) A call to XCALK routine computes X.

(4) Steps 1, 2, and 3 are repeated for each pass.

4. Input Arguments:

N = order of system
NPASS = number of computation passes necessary
NROW - array for control of computation passes
IZR = banding information array
NZEL = banding information array
A = storage array for input matrix
F = storage array for input column
NTAPE = input tape logical number = 17
XK = working storage array
RSUM = working storage array

5. Output Arguments: X = output answer column array

6. Error Returns: None

7. Calling Sequence: CALL ESCONT (N, NPASS, NROW, IZR, NZEL, A,
F, X, XK, RSUM, NTAPE)

8. Input Tapes: Tape 17 contains input triangular matrix A. A is
in banded form. Each row is a separate record.

9, Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: NROW(1),IZR(1),NZEL(l),A(1),F(l),X(1),XK(1), RSUM(l)

12. Subroutine User: BEQSX

13. Subroutines Required: KCALC
XCAI:

8.95

1. Subroutine Name: KCALC

2. Purpose: Solve for XK where A*XK - F and A is a banded lower
triangular matrix.

3. Equations and Procedures: Determine elements ISTRT to ICALC of
the column vector XK in the matrix equations A*XK w F

F1 I - 1

XK(l) - A XK(I) - F(I) -Z ALI XK(L) 1>l
All L 1 1

This constitutes the first step In equation solution by Cholesky
or "square root" method.

4. Input Arguments:

ISTRT - beginning row number of computation pass
ICALC = end row number of computation pass
IZR - number zero elements in row of reduced matrix
NZEL = cumulative total of nonzero elements in rows 1 thru i - 1

of reduced matrix

A a storage array for input matrix
F a column vector array

5. Output Arguments: XK = output vector arrrty

6. Error Returns: None

7. Calling Sequence: CALL KCALC (ISTRT, ICALC, IZR, NZEL, A, F, XK)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: A(l),XK(1),F(l),IZR(l),NZEL(l)

12. Subroutine User: ESCONT

13. Subroutines Required: None

8.96

Lf

1. Subroutine Name: ANALIC

2. Purpose: Driver routine for ANALIC Module System constants
are defined in core and the storage required is calculated.
If sufficient storage exists for this problem, execution
continues with the actual storage allocation in routine
STORIC.

3. Equations and Procedures: None

4. Input Arguments:

NUMOUT - Number of output matrices
NAMOUT - Array containing output matrix names
IODS - Array containing output matrix logical units
NUMIN - Number of input matrices
NAMIN - Array containing input matrix names
INSPEC - Array containing input matrix logical units
NUMSCR - Number of scratch data sets available
ISSPEC - Array containing scratch data set units.
NUMSCL - Number of scalars
NAMSCL - Array containing scalars
N'WORKR - Number of words of available working storage
W - Array of working storage

5. Output Arguments:

IERROR - Error flag

6. Error Returns:

IERROR - 21 - input matrix 2 could not be found
- 15 - error occurred somewhere in ANALIC
0 - no error

7. Calling Sequence:

Call ANALIC (NUMOUT, NAMOUT, IODS, NUMIN, NAMIN, INSPEC,
NUMSCR, ISSPEC, NUMSCL, NAMSCL, IERROR, NWORKR,
W)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.97

_ _ _ _ _-

11. Storage Required: A2A 16 bytes

12. Subroutine User: EXEC

13. Subroutines Required:

WOLOCK, EUTL3, SIZEIC, STORIC, TIMER

14i. Remarks: None

8.98

1. Subroutine Name: SIZEIC

2. Purpose: To determine the total amount of storage needed
in local arrays and in working storage for the problem to
be solved.

3. Equations and Procedures:

For Equation Solution Only

Local storage must be less than 4000

(2*NLV+I)*NMDB < 4000

Common working storage must be less than NWORKR

(NMDB*(NMDB+l))/2 < NWORKR

For Total Statics Problem

Local storage required must be less than 4000

2*NMDB2+NORDM+iNOM+2*MAX(NORDM,NRSELM)+2NSYS

+ MAX((NORDM*(NORDM+I))/2, NORDM*NRSELM)+1

+ NLV*(l+NMDB+NMDB2) < 4000

NLV is reduced to 1 to try to make problem fit. Common
working storage must be less than NWORKR.

MAX([NR*NELEM+(NMDB2+(NMDB2+l))/21,

[2*NORDM+NRSELM+I3+3(((NORDM*(NORDM+1))/2 +

NNOM+NELEM*NRSELM] < NWORKR

4. Input Arguments:

NMDB - Order of the reduced system
NLV - Number of load conditions (may be reduced on return)
NREF - Number of reference points
NORDM - Largest number of rows in element stiffness matrix
NNOM - Largest number of node points for any element
NMDB2 - Number of l's and 2's in system
NRSELM - Maximum number of rows in elemenk stress matrix
NELEM - Number of elements
NSYS - Total number of unreduced systemu degrees of freedom
NWORKR - Number of words of available working storage
KALC - Calculation control
EQUAT - Logical equation solver only indicator
ERROR - Error flag

5. Output Arguments: None

8.99

- -- w ------------- V -----

6. Error Returns:

ERROR - True if problem will not fit in core

7. Calling Sequence:

Call SIZEIC (NMDB,NLV, NREF,NORDM,NNOM,NMDB2,NRSELM ,NELEM,
NSYS,ERROR,NWORKR,KALC,EQUAT)

8. Input Tapes: None

9. Output Tapes: NPOT

10. Scratch Tapes: None

11. Storage Required: 80E16 Bytes

12. Subroutine User: ANALIC

13. Subroutines Required: None

14. Remarks: None

8.100

1. Subroutine Name: STORIC

2. Purpose: To define the storage for all arrays used by

ANALIC.

3. Equations and Procedures:

Storage is dynamically allocated in both the local array
and common working storage. Starting locations are defined
in the large local and common area and passed thru the
argument list to the KALCON routine.

4. Input Arguments:

NMDB - Order of reduced system
NLV - Number of load conditions
NREFV - Number of reference points
NORDM - Largest order of element stiffness
NNOM - Maximum number of nodes for any element
NRSELM - Maximum number of rows in any element stress matrix
NMDB2 - Number of l's and 2's
REPORT - Array used to store printout information
NOUT - Scalar used with REPORT
KALC - Calculation control for equation solver
NSYS ' Total number of unreduced system degrees of freedom
NMDBO - Number of bounded out points OS
INSPEC - Array containing input matrix logical units
NAMIN - Array containing input matrix names
NAMSCL - Array containing input scalars
IODS - Array containing output matrix logical units
ISSPEC - Array containing input matrix logical units
NAMOUT - Array containing output matrix names
U - Work array of order NWORKR
SC - Array containing system constants
NELEM - Number of elements
FQUAT - Equation solver only indicator
iERROR - Error flag

5. Output Arguments: None

6. Error Returns: IERROR

7. Calling Sequence:

Call STORIC (NMDBNLV,NREFV,NORDM,IINOM,NRSELMNMDB2 ,REPORT,
NOUT, KALC,NSYS, NMDBOINSPECNAMIN,IERRORNAMSCL,
IODSISSPECNAMOUT,U,SCNELEMEQUAT)

8.101

8. Inu Taes None

8. Intput Tapes: None

10. Scratch Tapes: None

11. Storage Requir'ed: 47A416 Bytes

12. Subroutine User: ANALIC

13. Subroutines Required: INPTIC, KALOON

14. Remarks: None

8.102

1. Subroutine Nam~e INPTIC

2. Purpose: Reads input matrices into core.

3. Equations and Procedures:

A. Define input matrix logical unit numbers.

B. If TR matrix 's present, have total statics problem.

1. Generate LIST by calling LISTIC routine.

2. If PR present, read in W array
If not present Wl(I) = 0.0 and go to 5.

3. If SUBL present, read into FCOL array.
If' not Wl(I) = W(I) (Trans matrix)

4. If SUBL present compute WI(FCOL(I)) - W(I).

5. Read in PCOL array.

6. Form TOTAL load column

PCOL(IL) = W(JL) + Wl(JL)

7. Compute TRST array = [TRANS] [LIST-
1].

8. Read column of AK into WI. Use TRST to map
column of W into AK stored lower half symmetric.

C. If TR matrix is not present, just equation solve

1. Read PR matrix into DISPL array (NL columns).

2. Read AK matrix into core (lower half symmetric).

D. Read values of prescribed displacements into core,
if present.

4. Input Arguments:

LIST - Array which maps reduced to unreduced D.O.F.
CONOPT - Load scalar
PCOL - External load column
DISPL - Prescribed displacement column
W - Working storage
NOYS - Total system unreduced degrees of freedom
NMDBO - Number of bounded out degrees of freedom
NMDB2 - Number of l's and 2's
NL - Number of load conditions
NAMIN - Array containing input matrix names
INSPEC - Array containing input matrix logical units
IERROR - Error flag
NAMSCL - Array containing scalars
NMDB - Order of reduced system
Wl - Working storage
AK - Stiffness matrix
IW - Working storage
TRAN - Working storage for trnasformation matrix

8.103

.

5. Output Arguments: None

6. Error Returns:

IERROR - Set to i*10+1 if Input matrix i cannot be found.

7. Calling Sequence:

Call INPTIC (LIST,CONOPTPCOLDISPL,W,NSYSNMBDNMD2,NL,
NAMIN,INSPEC,IERROR,NAMSCL,NMDB,WIAKIW,TRAN)

8. Input Tapes:

NAMIN(l,l), (1,4), (1,5), (1,6), (1,7), (1,8)

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 133A16 bytes

12. Subroutine User: STORIC

13. Subroutines Required:

UNITNM, LISTIC, INPTIl, EUTL3, EUTL9

14. Remarks: None

8.104

1. Subroutine Name: INPTIl

2. Purpose: Read a column of a specified input tape into
core in full format.

3. Equations and Procedures:

1. Locate matrix on specified tape by calling EUTL3.

2. Uncompress column if necessary by calling EUTL9.

4. Input Arguments:

NAME - Input matrix name sought
IN - Input matrix logical unit
WORK - Working storage
MAXW - Number of words of working storage

5. Output Arguments:

IMAX - Number of rows in matrix found
JMAX - Number of columns in matrix found
ERROR - Error flag

6. Error Returns:

ERROR - True if matrix could not be found

7. Calling Sequence:

Call INPTIl (NAME,IMAX,JMAX,IN,ERROR,WORKMAXW)

8. Input Tapes: IN

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 2B6 16 Bytes

12. Subroutines Used:

INPTIC

13. Subroutines Required.,

EUTL3, EUTL9

14. Remarks: None

8.105

1. Subroutine Name: LISTIC

2. Purpose: Generate values for LIST array from the
USER04 TR matrix.

3. Equations and Procedures:

1. Locate TR matrix.

2. Read values into core.

3. Eliminate IROW values < NMDBO.

4. Sort the remaining terms by IVAL values.

4. Input Arguments:

IA - Working storage of length NSYS
IB - Working storage of length NSYS
NMDB2 - Number of l's and 2's
NMDBO - Number of O's
NSYS - Number of O's plus l's plus 2's
NAME Array containing input matrix name
IN1 - input matrix logical unit

5. Output Arguments:

LIST - Array which maps reduced to system D.O.F.'s
ERROR - Error flag

6. Error Returns:

ERROR - True if input matrix cannot be found

7. Calling Sequence:

Call LISTIC(IA,IB,LIST,NMDB2 NMDBO,NSYSNAME,IN1,ERROR)

8. Input Tapes: INI

9. Output Tapes: None

10. 1"ratch Tapes: None

!I. Storage Required: 41C 1 6 Bytes

12. Subroutine Used: STORIC

13. Subroutines Required: EUTL3

14. Remarks: None

8.106

1. Subroutine Name: UNITNM

2. Purpose: To generate input or output matrix names and
logical units based on only the matrices present.

3. Equations and Procedures:

Check the NAMSCL array which represents all input and output
matrices. If the value of NAMSCL(I) = 1, then matrix I was
present; if NAMSCL(I) = 0, the matrix was suppressed. Searcn
for only the retrices present and define their matrix position
and logical unit in arrays MATN and-UNIT, respectively.

4. Input Arguments:

NAMSCL - Array containing input scalars
MAXN - Number of NAMSCL values to be searched
ISPEC - Array containing matrix logical units

5. Output Arguments:

NP - Number of matrices present
MATN - Array containing present matrix names
UNIT - Array containing present matrix logical units

6. Error Returns: None

7. Calling Sequence:

Call UNITNM(NAMSCL,MAXNISPEC,NPUNIT,MATN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 22616 Bytes

12. Subroutine Used:

KALCON, INPTIC

13. Subroutines Required: None

14. Remarks: None

8
~8.107

1. Subroutine Name: KALCON

2. Purposer To control solution of statics problem in core.
Displacements, stresses, forces, and reactions are computed.

3. Equations and Procedures:

If complete STATICS problem,

(a) Read element properties.
(b) Assemble stiffness matrix.
(c) Solve for displacements.
(d) Generate stresses and forces.
(e) Generate reactions,

If equation solve only,

(a) Solve system of equations.

4. Input Arguments:

DISPL
PCOL
LIST
CONOPT Arrays which define storage locationsLIST to be used inside subroutine. AetualLISTEL
NODE values need not be present when routine
SIGEL is called. The values will be generated
SIGELN inside the routine.
w
AKEL
AK
FTEL
FCOL
AF
WI
SEL
SZALEL

5. Output Arguments:

REPORT - Array used for time printout later
NOUT - Scalar used for time printout later
NL - Number of load ccnditions
KALC - Calculation control for equation solver
NORDM - Number of rows in largest element stiffness matrix
NAMSCL - Array containing scalars

8.108

5. Output Arguments, Continued:

IODS - Array containing output matrix logical units
ISSPEC - Array containing scratch matrix logical units
NAMIN - Array containing input matrix names
NAMOUT - Array containing output matrix names
INSPEC - Array containing input matrix logical units
IERROR - Error flag
SC - Array containing system constants
EQUAT - Equation solver indicator

6. Error Returns: None

7. Calling Sequence:

Call KALCON (DISPL,PCOL,LISTCONOPT,LISTELNODE,SIGEL,SIGELN,
W,AKELAK,FTELFCOL,AFW1,SELSZALEL,REPORT,NOUT,
NL,KALCNORDMNAMSCLIODSISSPECNAMINNAMOUT,
INSPECIERRORSC,EQUAT)

8. Input Tapes: NAMIN

9. Output Tapes: NAMOUT

10. Scratch Tapes: ISSPEC(II)

11. Storage Required: 148E 1 6 bytes

12. Subroutine User: STORIC

13. Subroutines Required:

UNITNMEUTU-,EUTL4,WCLOCKASMAICASMPIC,DSPCICDISPIC,
EUTL5sEUTL6,FARCICRECTICSTRSIC

14. Remarks: None

8.109

1. Subroutine Name: ASMAIC

2. Purpose: Assembles and reduces the following matrices
in-core based on the value of KODE.

KODE Matrices Assembled and Reduced

1 Stiffness and Element Applied Loads
2 Stiffness
3 Element Applied Loads
4 Mass

3. Equations and Procedures:

The value of KODE is determined and control passes to one
of the three areas to perform the assembly and reduction.
Next, the appropriate element matrices and the LISTEL array
are read from tape K4 for. the first element. Assembly
and reduction is now performed using the LISTEL array and
iterating across the matrix bottom half rows and columns
process is repeated for each element.

For the case where both the stiffness matrix and the element
applied loads are to be assembled (KODE-1), the presence of
prescribed displacements causes the routine to form the
product of the prescribed displacements and the corresponding
elements in the stiffness matrix and then subtract this
quantity from the load column. The reason for this can
be seen below. If (1) represents our problem,

K11 K12 X P1
W (i)

K21 K22 X 2 1 (1)

where X2 represents the prescribed displacements, we can

write

KIIXI + K12 X2 =P1

and since X2 is known, our problem reduces to

UX P1 - K1 2X2

8.110

-

3. Equations and Procedures, Continued:

Thus K11 is our assembled and reduced stiffness matrix and

P1 - K12X2 is our assembled and reduced element applied

load column.

If just the stiffness matrix or the mass matrix is to be
processed (KODE=2 or 4), the assembly and reduction is
straightforward based on LISTEL and iterating across the
bottom half matrix row and columns. For the assembly of
the mass matrices, this routine assumes that the point loads
are already assembled on the diagonal of AK when AK is
input.

If only the element applied load column is desired (KODE=3),
the assembly and reduction is performed using LISTEL on
the column.

4. Input Arguments:

K4 - Unit number of tape which.contains element matrices
NMDB - Order cf assembled and reduced system
DISPL - Prescribed displacement column (if required)
KODE - Input parameter which controls which matrices

are assembled
NAMIN - Array containing input matrix names
NMDBO - Number of O's.

5. Output Arguments:

FCOL - Assembled and reduced element applied load
column

AK - Assembled and reduced element matrix (symmetric
stored in lower half by rows)

AKEL - Element matrix
FTEL - Element applied load column
Tl - Time assembly and reduction started
LISTEL - Array which maps element coordinates into

system coordinates
IERROR - Error flag

6. Error Returns:

IERROR - Non-zero if error occurs in ASMAIC

7. Calling Sequence:

Call ASMAIC(K4,NMDB,DISPL,FCOL,AK,AKEL,LISTEL,FTE:L, Tl,
KODE,NAMIN, IERROR,NMDBO)

8.111

8. Input Tapes:

INSPEC(1,3) - contains element matrices

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (DFE)16 bytes

12. Subroutine User: KALCON

13. Subroutines Required:

REVCLOK2 EUTL3

14. Remarks: None

8.112

1. Subroutine Name: ASMPIC

2. Purpose: To print the following assembled matrices based
on the value of KODE. The grid point number and degree of
freedom are printed for each row of the symmetric matrix or
column.

KODE Matrices Printed

1 Stiffness and Element Applied-Loads
2 Stiffness
3 Element Applied Loads
4 Mass
5 Incremental Stiffness
6 InVerse of Stiffness

3. Equations and Procedures:

(a) The time since the start of the assembly and reduction
or Jnversion is calculated and printed out.

(b) If the inverse is requested, the matrix is checked for
singularity and a message is printed and control returned
if a matrix is singular.

(c) Appropriate labels are printed based on the value of
KODE.

(d) The matrix iz printed out as a symmetric matrix by rows
(except load coluumn). The grid point number and degree
of freedom, based on the bounds table input for the
problem, are also printed for each row.

(e) If the element applied load column was requested, it
is printed in Engineering Format.

(f) Error checks are made for the stiffness mazrix. A
non-positive diagonal element in the stiffness matrix
causes a message to be printed out and the variable
ICOUNT (initially 0), to be incremented by +1. A
positive value for ICOUNT i returned as an error
return.

14. Input Arguments:

W - Array of working storage
WSYS - Number of system degrees of freedom
NREF - Number of reference points
AK - Assembled and reduced element matrix (symmetric,

stored in lower half by row3)
FCOL - Element applied load column (if required)

8.113

f~

4. Input Arguments, Continued:

NMDB - Order of assembled/reduced system
Ti - Time when assembly or inverse started
ISING - Indicator which reflects singularity of inverse

of stiffness matrix
LIST - Array which nmaps coordinates from assembled

reduced to unassembled/unreduced coordinates
NDIR - Number of directions per grid point
NDEG - Number of degrees of freedom for system
KODE - Input parameter which controls which matrix

is printed.

5. Output Arguments:

ICOUNT - Number of non-positive diagonal elements if
stiffness matrix was printed

6. Error Returns:

ICOUNT - Positive value reflects non-positive diagonals
in stiffness matrix

KODE - Value of KODE outside interval (1,6) is error
and causes return

7. Calling Sequence:

Call ASMPIC(AKFCOL,NMDB,T1,ISING,ICOUNT,LIST,NDIRNDEGKODE,

NREF,NSYS,W)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 9F2 16 bytes

12. Subroutine User: KALCON

13. Subroutine Required:

RDCLOK, DISPIC

14. Remarks: None

8.114

fi/

1. Subroutine Name: DSPCIC

2. Purpose: To control the calculation of the displacements
for the analysis package in core.

3. Equations and Procedures:

For Total STATICS Problem:

(a) The total load column is formed in DISPL.

DISPL - PCOL + CONOPT*FCOL

(b) The total load column is printed by calling DISPIC.

(c) The displacements are obtained by one of the following
methods based on the value of KALC.

KALC SOLUTION

I Inverse
2 Gauss Elimination
3 Cholesky Triangularization
4 Gauss Wavefront

For Equation Solve Only:

(a) Compute displacements as in (c) above.

4. Input Arguments:

AK - Reduced stiffness matrix
FCOL - Element applied load column
PCOL - External load columns
CONOPT - Load scalar array
NMDB - Order of reduced system
NL - Number of loading conditions
NOUT - Scalar used for printout
NREF - Number of input node points
REPORT - Array used for time report printout
SEL - Stress matrix
KALC - Caiculation control

LIST - Array which maps reduced to system
NDIR - Number of directions/grid point

NDEG - Number of degrees of freedom
NSYS - Total system unreduced degrees of freedom
WORK - Working storage of length NSYS
NAME - Array containing output matrix name
10 - Output matrix logical unit
KR - Output matrix generation indicator
NAMSCL - Array containing scalars
EQUAT - Equation solve only indicator

- 1

5. Output Arguments:

DISPL - Displacement columns

6. Error Return:

KALC < 0 - error condition appropriate message will be
print out

7. Calling Sequence:

Call DSPCIC(AK,FCOLPCOL,CONOPTDISPLNMDB,NLNOUT,NREF,
REPORTSELKALC,LISTNDIRNDEGNSYS,IORK,NAME,IO
KR,NAMSCL,EQUAT)

8. Input Tapes: None,

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (CPA)16 bytes

12. Subroutine User: ANALIC

13. Subroutines Required:

WCLOCKSINVIC,ASMPICMSBB,GELS,MFS',MTDS,DISPIC
WAVEFM,DECOMPFWDBACK

14. Remarks: None

8.116

1. Subroutine Name: DISPIC

2. Purpose: Print the following matrices in Engineering
format based on the value of KP

KP Matrix Printed

1 Element applied load column
2 Total load column
3 Displacements

Generate displacement matrix if KR is unequal to 0.

3. Equations and Procedures:

The components are sorted using the LIST array to identify
the correct degree of freedom. They are printed according
to the degree of freedom

U,V,W, THETAXTHETAY,THETAZ
or

PX,FY,FZMX,MYMZ

for each grid point.

If KR # 0, the output displacement matrix is generated.

4. Input Arguments:

NMDB - Order of reduced system
DISPL - Column to be printed
LIST - Array which maps reduced to system d.o.F's
NREF - Number of reference points
NDIA - Number of directions
NDEG - Number of degrees of freedom
NLOAD - Load condition number
NSYS - Number of unreduced system degrees of freedom
WORK - Work storage
NAME - Name of output matrix to be written
10 - Output matrix unit number
KP - Print control
KR - Output matrix generation control

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequenceo

Call DISPIC(NMDBDISPLLISTNRENDIRNDEGNLOADNSYS,
WORKNAME,!O,KP, KR)

8.117

1'

8. Inu Taes None

8. Intput Tapes: None

10. Scratch Tapes: None

11. Storage Required: 88E16 bytes

12. Subroutine User:

DSPCIC, ASMPIC

13. Subroutines Required:

EUTI15, EUPPL6

ill. Remarks: None

8.118

1. Subroutine Name: FARCIC

2. Purpose: Generates, prints element forces, and assembles
forces for onp load condition.

3. Equations and Procedures:

Calculates element forces for each load condition, potential
energy, work, and strain energy.

Calculations:

Apparent element forge: [$IGEL] - ,[AKEL*EDI$PL

Net element force: [$IGELN] - [$IGELJ - CONOPT * [FTEL)

Total work of element = energy

Applied loads: WORKEM = WORKE

where WORKE = E [DI$PL) [FTEL] * CONOPS

Total work of gridpoint

Applied load: ENE$M - -ENE$

wher ENE$ - [[DI$PL)*[PCOL)

Total work: WORKM a -WORK

- WORKE + ENE$

(work energy + strain energy)

where WORKE a F [DI4PL])[FTEL) * CONOPS

and ENE$ is defined above.

Total strain energy: $TREN - E .5 * [DISPL)*C$IGEL]

Net Energy: ENERGY w TREN - WORK

where $TREN and WORK are defined above.

CAKEL) - element stiffness matrix

[DI$PL] - displacements

[FTEL) - element applied load

CONOPS - 1.0 unless a different value is inputted

[PCOL) w grid point loads

8.119

PrV

3. Equations and Procedures, Continued:

[AF] a [AF) + [SIGELN]

If KR matrix was input, the contribution [KR)EDISPL) must
be added into the assembled force calculations. This contribution
is not added into the element force calculations.

4. Input Arguments:

NMDB - Order of assembled and reduced system
LOAD - Load condition
PCOL - External load columns
DISPL - Displacement columns
CONOPS - Load scalar array
LIST - Array which defines boundary ccndition3 for

assembled system
K4 -Input tape which contains element matrices
IASM - Control which indicates if assembly is to be done
NREF - Number of reference points
NDIR .- Number of directions
NDEG - Number of degrees of freedom
NAMIN - Array containing input matrix names
IERROR - Error flag
NAM3 - Output force matrix ind'.ca-or
NSYS - Total system degrees of freedom
NMDBO - Number of bounded out points
AK - Reduiced stiffness matrix
TRAN - Trasnformation matrix needed if KR matrix

is present
W - Working storage
NAMSCL - Array containing.input scalars
IW - Working storage
INSPEC - Array containing input matrix logical units

5. Output Arguments:

SIGEL - Apparent element forces
SIGELN -Net element forces
AKEL - Eement stiffness matrix
NODE - Element node point numbers
IPML - Element applied load columns
LISTEL - Array which maps olement nodes to system nodes
AF - Array which contains assembled element forces
N03 - Total length% of assembled force column

6. Error Return:

IERROR - Non-zero if an error was detected in FARCIC

8.220

7. Calling Sequence:

Call FARCIC(NMDBLOAD,PCOL DISPLCONOPSSIGELSIGELN,AKEL
NODEFTELLISTLISTELIASM,AF,NREF,NDIRNDEG,K4,
NAMIN;IERROR,N03,NAM3,NSYS,NMDBOvAKTRAN,W,NAMSCL,
IW, INSPEC)

8. Input Tapes:

INSPEC (1,3)

9. Output Tapes! None

10. Scratch Tapes: None

11. Storage Required: 14F616 bytes

12. Subroutine User:

KALCON

13. Subroutines Required:

UNITNM, INPTII, EUTL3,EUTL9

14. Remarks: None

8.12

8.121

i. Subroutine Name: RECTIC

2. Purpose: Compute and print reactions for every grid
point for one load condition. For non-bounded points,
the values supply an "inverse" check.

3. Equations and Procedures:

Reactions = . sembly of element forces - load column procedure

(a) The load column for the load condition is read into
PCOL and subtracted from R, the assembled forces.

(b) Reactions are printed for the load condition.

4. Input Arguments:

NDIR - Number of directions
NDEG - Number of degrees of freedom in system
LOAD - Number of the loading conditions
NMDB - Order of assembled and reduced system
NREF - Number of reference points in system
PCOL - External load columns
LIST -- Array which defines boundary condition, for

asseibled system
R - Assembled element force 7,dtrix

104 - Output reaction matrix logical unit
NSYS - Number of system degreas of freedom

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call RECTIC(NDIR,NDEG,LOAD,NMDBNREF,PCOL,LIST,R,I04,NSYS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: None

12. Subroutine User: KALCON

13. Subroutines Required: None

14. Remarks: None

8.122

1. Subroutine Name: STRSI

2. Purpose: Controlo the calculation and printing of
element stresses.

3. Equations and Procedures:

(a) The element matrices a.e read from input tape IN.

(b) For each element and each load condition, the element
stresses are calculated and printed by subroutines
STRCIC and STRPIC, respectively.

1 . Input Arguments:

NAMI - Name of output matrix stress matrix
NMDBO - Number of bounded out points
DISPL - Calculated displacements
LOAD - Load ccndition under consideration
NMDB - Order of assembled and reduced system
CONOPT - Array containing load scalars
IN - Unit number of input tape which contains element

matrices

5. Output Arguments:

SIGEL - Array containing apparent element stresses
SIGELN - Array containing net element stresses
LISTEL - Array which maps element nodes to system nodes
SEL - Element stress matrix
NODE - Array containing node points of an element
SZALEL - Element thermal stress matrix
KRSEL - Length of column record of output stress matrices

6. Error Returns: None

7. Calling Sequence:

Call STRSIC(NMDB,DISPL,CONOPT,SIGEL,SIGELN,LISTEL,SEL,NODE,
BZALEL,NAMI,IN,LOAD,KRSEL,NMDBO)

8. Input Tapes:

IN - Contains element matrices

9. Output Tapes: None

10. Scratch Tapes: None

8.123

-P 'Imp-w~

11. Storage Required:

BB2 16 bytes

12. Subroutine User:

KALCON

13. Subroutines Required:

STROIC, STRPIC, EUTL3

14l. Remarks: None

8.124I

1. Subroutine Name: STRCIC

2. Purpose: To calculate element stress resultants.

3. Equations and Procedures:

Calculates the stress array $IGEL and the corrected stress
array STRESN for one load condition.

[SIGEL] - i [SEL] [DISPL]

(STRESN] = (SIGEL] - CONOPT * [SZALEL)

where CONOPT - 1.0 unless a different value is inputted.

14. Input Arguments:

IEL - Input element number
IPL - Plug number
NMDB - Number of reduced degrees of freedom
NLOAD - Number of load conditions printed - 1
NRSEL - Number of rows in element stress matrix
NORD - Number of element degrees of freedom
NNO - Number of element node points
NAME - Name of output stress matrix
CONOPT - Element load scalar
LISTEL - Array which maps system degrees of freedom

to element degrees of freedom
NODES - Array containing element node point numbers
SEL - Element stress matrix
SZALEL - Thermal stress matrix
DISPL - Displacement matrix
IERROR - Error return
NLL - Load condition number
NMDBO - Number of bounded out points

5. Output Arguments:

SIGEL - Array containing apparent element stresses
STRESN - Array containing net element stresses

6. Error Returns: None

7. Calling Sequence:

Call STRCIC(IELIPL,NMDBNLOAD,NRSELNORDNNONAME,CONOPT,
LISTELNODES,SELSZALELSTRESN, DISPL,IERRORNLL,
NMDBO)

8.125

8. Input Tapes: None

9. output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

51016 bytes

12. Subroutine User: STRSIC

13. Subroutines Required: None

14, Remarks: None

8,126

1. Subroutine Name: STRPIC

2. Purpose: Prints out element stresses which were
ca.lculated in STRCIC.

3. Equations and Procedures:

Locates the stresses that are to be printed out and prints
them with respect to their stress component designations;i.e.., 6 xx, 6yy, 6 zz, 6 xy, 6 yz, 6 zx.

Element number and node points are also printed.

4. Input Arguments:

IFMT - Format control indicator
EZERO - Suppression print option value
NRSEL - Number of rows in the element stress matrix
KFMT - Format control indicator
NSC - Format control indicator
STRESS - Stress matrix to ba printed

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call STRPIC(IFMT,EZERONRSELKFMTNSCSTRESS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes:. None

11. Storage Required:

8DO 16 bytes

12. Subroutine User: STRSIC

13. Subroutines Required: None

14. Remarks: None

8.127

1. Subroutine Name: GELS

2. Purpose: To solve a system of simultaneous linear
equations with symmetric coefficient matrix upper
triangular part of which is assumed to be stored column-
wise.

3. Equations and Procedures:

Solution obtained by Gauss Elimination with pivoting in
main diagonal. (See writeup in IBM Scientific Subroutine
Package.)

4. Input Arguments:

H - MXN right hand side-matrix (destroyed)
A - Upper triangular part of symmetric MXM matrix
M - Number of equations in the system
N - Number of right hand side vectors
EPS - Relative tolerance used to test loss of

significance
AUX - Auxiliary storage array

5. Output Arguments:

IER - Error return
R - Solution of equations

6. Error Returns:

IER a 0 No error
IER - -1 No resglt because of zero pivot element
IER - K Warning - possible loss of significance at step K

7. Calling Sequence:

Call GELS(R,A,M,N,EPSIERAUX)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1. Storage Required: (8C6)16 bytes

12. Subroutine User: DSPCIC

13. Subroutine Required: None

14. Remarks: None

8.128

1. Subroutine Name: MFSD

2. Purpose: Factor a given symmetric positive definite
matrix.

3. Equations and Procedures:

Solution obtained by Cholesky square root method. The
given matrix is represented as the product of two triangular
matrices, where the left hand factor is the transpose of
the returned right hand factor. (See IBM Scientific
Subroutine Package Writeup.)

4. Input Arguments:

A - Upper triangular part of given symmetric
matrix NxN

N - Number of columns (rows) in given matrix
EPS - Relative tolerance for test of loss of

significance

5. Output Arguments:

IER - Error return
A - Resultant upper triangular matrix

6. Error Returns:

IER - 0 No error
IER - -1 No result because some radicand is non-positive
IER a KK Warning indicating loss of significance

7. Calling Sequence:

Call MFSD(A,N,EPS,IER)
i8. Input Tapes: None

8. Input Tapes: None
9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (3FC)i6 bytes

12. Subroutine User: DSPCIC

13. Subroutine Required: None

14. Remarks: The routine forms the first part of the LU
decomposition solution of simultaneous equations.

8.129

1. Subroutine Name: MTDS

2. Purpose: Multiply a general matrix A on the left or right
by (t inverse) ((T transpose) inverse) or (inverse (transpose
(T*T)). The triangular matrix T is stored in the upper
half by columns.

3. Equations and Procedures:

See IBM Scientific Subroutine Package writeup.

4. Input Arguments:

A - Given matrix (MxN)
M - Number of rows in A
N - Number of columns in A
T - Given triangular matrix stored in upper half

by columns
IOP - Variable which controls operation to be

performed by routine (see IBM writeup)

5. Output Arguments:

IER - Error code

6. Error Returns:

IER = -1 Invalid input value for IOP or M and N
IER - 0 Successful operation
IER = 1 Triangular matrix is singular

7. Calling Sequence:

Call MTDS(A,M,N,T,IOP,IER)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (632)16 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: Use MFSD first and IOP - 3 to do LU decomposition.

8.130

1. Subroutine Name: SINVIC

2. Purpose: Inversion of a bottom-half symmetric matrix.

3. Equations and Procedures:

The Inversion is performed by the method of partitioning.

4. Input Arguments:

10 - Order of symmetric matrix to be inverted
A - Symmetric matrix stored in column form
COL - Work array to store a column of A

5. Output Arguments:

ISING - Error Messages
A - Inverted matrix
Ti - Time when inversion process started

6. Error Returns:

ISING = 0 No error
ISING = 1 Singular matrix
ISING - 2 Negative main diagonals

7. Calling Sequence:

Call SINVIC(IO,AISING,COL,Tl)

8. Input Tapes: None

9. Output Tapes: None

IV. Scratch Tapes: None

11. Storage Required: 5E81 6 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: None

I

8.131

1. Subroutine Name: MSBB

2. Purpose: To evaluate the matrix product of a symmetric
bottom half matrix and a rectangular matrix and store result
back in rectangular matrix.

3. Equations and Procedures:

ANnm a E Sne * Bem

e

B nm = ANnm

4. Input Arguments:

S - Elements of ES] matrix (symmetric)
B - Elements of [B] matrix
N - Number of rows in the ES), [B] and [AN]

matrices (order)
M - Number of columns in the [B] and [AN]

matrices (order)
Nl - Dimension of the (B] matrix
AN - Auxiliary storage column of length N

5. Output, Arguments:

B - Matrix product

6. Error Returns: None

7. Calling Sequence:

Call MSBB(SB,ANNM1,N1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (326)16 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: Performs same function as routine MSB, but
stores product back into the rectangular array B.

8.132

1. Subroutine Name: WCLOCK

2. Purpose: Generates the specific item being comipited
and the time.

3. Equations and Procedures:

NOUT a NOUT + 1

REPORT(1,NOUT) - ITEM

REPORT(2,NOUT) - RDCLOK(T)

4. Input Arguments:

NOUT - Cumulative namber of items being performed
REPORT - Array containing time summary information
ITEM - Number of calculations being performed

5. Output Arguments: None

6. Error Returns: None

7. Calling Seqrence:

Call WCLOCK(NOUTREPORTITEM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 1B816 bytes

12. Subroutine User: KALCON

13. Subroutines Required: RDCLOK

14. Remarks: None

8.133

1. Subroutine Name: RDCLOK (Functlon)

2. Purpose: To convert CPU and I/O time from milliseconds
to minutes.

3. Equations and Procedures:

Call Gettim (IX)

(Total chargeable time - CPU TIME + I/O time)MIlliseconds

RDCLOK a TOTAL CHARGEABLE TIME/60000

4. Input Arguients:

T - Not used

5. Output Arguments:

RDCLOK - Total chargeable time in minutes

6. Error Returns: None

7. Calling Sequence:

Call Y = RDCLOK(T)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes' None

11. Storage Required: 18816 bytes

12. Subrutine User: WCLOCK

13. Subroutines Required: GETTIM

14. Remarks: GETTIM is a locally written IBM/360 timer function.

8.134

1. Subroutine Name: TIMER

2. Purpose: Prints a time summary of the completed analysis.

3. Equations and Procedvres:

The routine scans over the NOUT entries la the report array
treating each one consecutively. It looks at the two
variables for each entry, the first giving the calculation
code and the second the starting time. It then prints a
summary cf the items, their starting, ending and execution
times.

4. Input Arguments:

NOUT - Number of codes
REPORT - Array containing codes and starting times

5. Output Arguments: None

6. Error REturns: None

7. Calling Sequence:

Call TIMER(NOUT,REPORT)

8. Input Tapes: None

9. Output Tapes: NPOT

10. Scratch Tapes: None

11. Storage Required: None

12. Subroutine User: ANALIC

13. Subroutines Required: None

14. Remarks: None

I

8.135

*W- -w.----w y-

1. Subroutine Name: WAVEFM

2. Purpose: To generate the pointers and change the form
of the stiffness 'matrix for the wavefront solution for
displacements.

3. Equations and Procedures:

The three pointers which correspond to iR, IC and IA are
stored in one word in the array IP. IR is the row number
in the stiffness matrix. IC is the column which contains
the first non-zero element in row IR. IA is th, number of
diagonal elements in row IR, in the IP arrpv. All leading
zero elements in each row of the stiffness matrix are
eliminated. The maximum order of the system to be solved
is 255, with no more than 32767 non (leading) zero elements.
This limit is set by the word length of the 360.

FORMAT OF IP

IR IC IA

8 bits 8 bits 15 bits

3130 22 14 0

4. Input Argum~nts:

AK - Reduced assembled stiffness matrix

NMDB - Order of AK

5. Output Arguments:

KK - Number of elements in the modified AK matrix
(leading zeros eliminated)

IP - Array containing pointers

6. Error Returns: None

7. Calling Sequence:

Call WAVEFM(AK, KKNMDB, IP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.136

11. Storage Required: (334)16 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: None

I

8.137

1. Subroutine Name: DECOMP

2. Purpose: Decompose a symmetric matrix for the Wavefront
Solution for displacements.

3. Equations and Procedures:

Given:

K21 K2U 2 P 2

decompose K1 1 as

-1 TK11 = L11 D L11

where L is lower triangular

D 1 is diagonal with dii = 9ii

T
Ll T is transpose of L

Elements of L are given by

i-l

Z n J ni (i < J)
ij kij nn

nl

i4. Input Arguments:

KK - Number of elements in symmetric matrix
N - Order of matrix A
ERR - Not used
A - Symmetric matrix stored by rows with leading

zero elements eliminated
A - Auxiliary storage
IP - Array containing pointers

8.138

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call DECOMP(KK,N,ERRA,Y,IP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (894)16 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: None

8.139
C'

1. Subroutine Name: FWD
2. Purpose: To do the forward decomposition step for the

Wavefront Gauss solution.

3. Equations and Procedures:

Perform forward substitution to determine Y in

LilY = PI - KI2U2

4. Input Arguments:

KK - Number of elements in symmetric matrix A
N - Order of matrix A
ERR - Not used
A - Symmetric matrix stored by rows with leading

zero elements eliminated
DSP - Load column
IP - Array of pointers

5. Output Arguments: None

6. Error Returns; None

7. Calling Sequence:

Call FWD(KKN,ERR,A,DSP,IP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (5FE)1 6 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: None

8.140

1. Subroutine Name: BACK

2. Purpose: To do the backward substitution step in the

Wavefront Gauss solution for displacements.

3. Equations and Procedures:

F- form backward substitution to determine U1 from

11 U

4. Input Arguments:

KK - Number of elements in symmetric matrix A
N - Order of matrix A
ERR - Not used
DSP - Load column
A - Stiffness matrix
IP = Array of poInters

5. Output Arguments:

X - Displacements

6. 2rror Returns: None

7. Calling Sequence:

Call BACK(KK,N,ERRDSP,A,X,IP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: (550)16 bytes

12. Subroutine User: DSPCIC

13. Subroutines Required: None

14. Remarks: None

8.141

1. Subroutine Name: US04

2. Purpose: Control operation of the structural generative
system (USER04 module)

3. Equations and Procedures: The error indicator, ERROR, is
initially set to .FALSE.. Subroutine USO4A is then called
to control the input operations. Subroutine USO4B is called
to control the element matrix generation and output phases.
If an error has occurred in the input phase then the call
to USO4B is skipped. All information received from the
Format Monitor is relayed to USO4A and USO4B.

4. Input Arguments:

NUMOT: Number of output matrices
NAMOUT: Array containing output matrix names
IOSPEC: Unit specifications for output matrices
NUMIN: Number of input matrices
NAMIN: Array containing input matrix names
INSPEC: Unit specifications for input matrices
NUMSR: Number of available scratch units
ISSPEC: Scratch unit specifications
NUMSC: Number of scalars
SCALAR: Array containing scalars
NWORKR: Number of available storages in blank common work

area
WORK; Work storage area
IPRINT: System print control

5 Output Argument:

ERROR: Error condition indicator

6. Error Returns: If error has occurred in USO4A or USO4B
then ERROR will be .TRUE. upon return to the calling program.

7. Calling Sequence:

CALL uso4 (NUMOT, NAMOUT, IOSPEC, NUMIN, NAMIN, INSPEC,
NUMSR, ISSPEC, NUMSCt SCALAR, ERROR, NWORKR, WORK, IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

-11. Storage Required: Total storage required is 52C16 Bytes.

12. Subroutine User: SEXEQ

8.42

13. Subroutin~es Required:

US04IA
uso4B

14. Remarks: None

8.143

1. Subroutine Name: NTEST

2. Purpose: To determine if output matrix is to be generated
by USo4

3. Equations and Procedures: The first position in the output
name is compared to a slash (/). If this first character is
a slash then the matrix is not to be calculated. If the first
character is not a slash then the matrix will be calculated
and output.

4. Input Arguments: NAME - array containing output matrix name

5. Output Arguments: K0DE - control code
if KODE equals zero then matrix is

calculated
if K0DE equals one then matrix is

not calculated

6. Error Returns: None

7. Calling Sequence: Call NTEST (NAME, KDE)

8. Input Tapes: hone

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage req'ilred is 15616 Bytes.

12. Subroutine User: USO4A, USO4B

13. Subroutines Required: None

14. Remarks: None

8.144

1. Subroutine Name: REC1

2. Purpose: Write or read element input tape record

3. Equations and Procedures: The decision to write or read the
tape record .is determined by examing the input variable
IOPT in the following manner:

l If IOPT 2 then the tape record will be written

If IOPT 1 then the tape record will be read

4. Input Arguments: (when IOPTZ2)

IOPT : Read/write indicator
K : Involved unit number
NIl : Number of words in tape record, excluding NIl
IPL : Element type number (plug number)
X : " t' coordinates of element definition points
Y : " Y" coordinates of element definition points
Z : " Z" coordinates of element definition points
T : Temperatures at element definition points
P : Pressures at element definition points
NLIST : Total degrees of freedom in element
LISTEL : Boundary condition information list
NNO : Number of element defining points
NODES : Grid point numbers of element defining points
IP : Extra element input and matrix repeat indicator
DISPEL : Input displacements for element degrees of freedom
PCOLEL : External loads for element degrees of freedom
LISTDL : Not used
IG : Maximum number of element defining points
NEL : Element number
GPAXEL : Grid point ax s transformation matrices for element

defining points
NUIMVAT : Length of MAT array
MAT : Array containing interpolated material properties

NUMEPS : Length of EPSIO array
EPSIO : Pre-strain load vector
NUMSO : Length of SO array
SO : Pre-stress load vector
EXTRA : Extra element input

5. Output Arguments: (when IOPT l)

With the exception of IOPT and K, which are always input
arguments, all of the above input arguments are output
arguments when IOPT 1.

6. Error Returns: None

8.145

7. Calling Sequence: (IOPT, K, NIl, IPL, X, Y, Z, T, P,
NLIST, LISTLL, NNO, NODES, IP, DISPEL, PCOLEL, LISTDL,
IG, NEL, GPAXEY,, NUMMAT, MAT,. t MEPS EPSIO, NUMSO, SO,
EXTRA)

8. Input Tapes: When IOPT <1 the input tape number is the
variable K.

9. Output tapes: When IOPT 2 the output tape number is the
variable K.

10. Scratch Tapes: None

11. Storage Required: Total storage required is C1416 Bytes.

12. Subroutine User: ELEM, ELPLUG

13. Subroutines Required: None

14. Remarks: None

8

8.146

1. Subroutine Name: LOGFLO

2. Purpose: Set logical execution controls for USER04
module

3. Equations and Procedures: APHASE, BPHASE and ERROR are
initially set to .FALSE. All positions in MASTER are set
to zero. If any of the first five output matrix positions
are non-blank then APHASE is set to .TRUE. If any of the
last seven output matrix positions is non-blank then BPHASE
is set to .TRUE. MASTER is then filled by packing in the
output matrix position number the requires that input
section. At present there are six possible required input
sections indicated in MASTER:

MASTER (1) - System control input indicator
MASTER 2 - Grid point coordinates input

indicator
MASTER C - Boundary condition input indicator
MASTER - Element definition input indicator
MASTER 5 - Grid point loads input indicator
MASTER (6 - Material library input indicator

4. Input Arguments:

NUMOT : Number of output matrices 1
NAMOUT : Array containing output matrix names
NUMIN : Number of input matrices
NAMIN : Array containing input matrix names
APHASE : Logical variable indicating necessity to

execute subroutine USO4A
BPHASE : Logical variable indicating necessity to

execute subroutine USO4BNUMAST : Length of MASTER

MASTER : Array indicating required input sections

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Returns: If output matrix position eleven is non-
blank and input matrix position four is blank, then ERROR
is set to .TRUE.

7. Calling Sequence:

(NUMOT, NAMOUT NUMIN, NAMIN, APHASE, BPHASE, NUMAST,
MASTER, ERROR5

8. Input Tapes: None

8.1.47

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 78616 Bytes.

12. Subroutine User: US04

13. Subroutines Required: None

14. Remarks: None

8.148

1. Subroutine Name: USO4A

2. Purpose: Control input phase operations of structural system
(USERO4 module)

3. Equatione and Procedures: Input, output and scratch units supplied
by the Format Monitor are assigned to their respective functions.
Subroutine CONTRL is called to copy the entire structural data
input onto a scratch tape, extracting structural system information
in the process. From this point, subroutine INPUT controls the
selection of all other subroutines which process input (see INPUT).
The function of USO4A is to partition the blank common work storage
area and relect the proper subroutine for the following operations:
If material library requests are present t! -i subroutine FMAT is
called, if report form input processing is required then subroutine
REFORM is called, if generation of te loads matrix is not suppressed
then subroutine FLOADS is called and finally if the broundary
condition transformation matri:: is nct suppressed then FTR is
called.

4. Input Argume.'ts:

NUMOT: Number of output matrices (12)
NAMOUT: Array containing output matrix names
IOSPEC: Unit specifications for output matrices
NUMIP': Number of input matrices (4)
NAMIN: Array containing input matrix names
INSPEC: Unit F!ecifications for input matrices
NUMSR: Number of available scratch units
ISSPEC: Scratch unit specifications
NUMSC: Number of scalars (0)
SCALAR Array containing scalars
NWORKR: Number of available work storages in blank common

area (WORK)
WORK: Work storage area
IPRINT: System print control
HPHASE: iogical control variable indicating whether or not

to go into element matrix generation
MASTER: Array indicating required input sections
NUMAST: Length of master array

5. Output Arguments:

ERROR: Error condition indicator
KNMD: Array containing structural system control information
KNUMD: Array containing structural system control information
NUMK: Length of KNUMD array

KNMD (1) - NSYS - Total number of degrees of freedom in
application

KNMD (2) - NL - Number of load conditions
KNMD (3) - NHDB - Number of degrees of freedom after application

of boundary conditions
KNIMD (4) - NNORD- Summation of element degrees of freedom
KNMD (5) - NELEM- Number of elements
KNMD (6) - NNRSEL-Summation of element stress orders
KNMD (7) - NTD - Number of degrees of freedom per point
KNMD (8) - NRSELM-Maximum eleuent stress order
KMD (9) - NORDM- Maximum element degrees of freedom

8.149

5. Output Arguments: (Cont'd)

XNMD(10) - NOINRM-Maximum number of storages required for an
element stiffness matrix

KNMD(11) - MAXNIl-Length of longest element record
KNMD(12) - NDIR - Number of directions per point
KNMD(13) - NDEG - Number of tyris of degrees of freedom
KNMD(14) - NMDBO- Number of zero boundary conditions

6. Error Returns: If at any time the number of required work
storages exceeds NWORKR or a generated matrix will have a dimen-
sion greater than KONST (matrix size limitation), the appropriate
message will be written, ERROR set to .TRUE. and control returned
to the calling program.

7. Calling Sequence:

CALL, IS04A (NUMOT, i!AMOUT, IOSPEC, NUMIN, NAMIN, INSPEC,
NUMSR, ISS.'EC, NUMSC, SCALAR, ERROR, NWORKR, WORK,
IPRINT, KNMD, MASTER, NUMAST, NUMK, BPHASE)

8. Input Tapes:

1TAPEl - INSPEC (1,1) - Unit containing input structure
data deck

1TAPE2 - INSPEC (1,2) - Unit containing interpreted input
1TAPE3 - INSPEC (1,3) - Unit containing existing material
l-() library
SITAPE4 - INSPEC (1,4) - Unit containing input displacements

9. Output Tapes:

JTAPE1 - IOSPEC (1,1) - Unit which will contain copy of input
structure data deck

JTAPE2 - IOSPEC (1,2) - Unit which will contain revised or new
material library

JTAPE3 - IOSPEC (1,3) - Unit which will contain interpreted input
JTAPE4 - IOSPEC (1,4) - Unit which will coatain grid point loads

matrix
JTAPE5 - IOSPEC (1,5) - Unit which will contain boundary condition

application transformation matrix
JTAPE6 - IOSPEC (1,6) - Unit which will contain assembly trans-

formation matrix
JTAPE7 - IOSPEC (1,7) - Unit which will contain element stiffness

matrices
JTAPE8 - IOSPEC (1,8) - Unit which will contain eleuernt load

matrices
JTAPE9 - IOSPEC (1,9) - Unit which will contain element stress

matrices
JTAP10 - IOSPEC (1,10) - Unit which will contain element thermal

stress matrices
JTAP11 - IOSPFt (1,11) - Unit which will contain element in-

cremental stiffness matrices
JTAP12 - IOSPEC (1,12) - Unit which will contain element mass

matrices

8.150

10. Scratch Tapes:

NTAPEl - ISSPEC (1,1) - External storage area for report torm
input preprocessor and later will con-
tain structural control information

NTAPE2 - ISSPEC (1,2) - Contain temporary copy of translated
input data deck and later contain gen-
erated element matrices in compact form

NTAPE3 - ISSPEC (1,3) - Contain temporary copy of actual input
deck and later contain interpreted
element input data

NTAPE4 - ISSPEC (1,4) - External storage area for report form
input preprocessor and later contain
input load conditions

11. Subroutine User: US04

12. Subroutines Rcquired:

CONTRL
INPUT
FMAT
REFORM
NTEST
FLOADS
FTR

13. Remarks: None

8.151

1. Subroutine Name: INDECK

2. Purpose: Translate input matrix containing a data deck
into a BCD input deck

3. Equations and Procedures: The matrix is located by
utilizing subroutine EUTL3. Each column of the matrix
contains one input card divided into eighty rows. Each
column is read in binary from the unit specified in
INSPEC(l) and written on NOUT by an 80A1 format. The
number of columns, as contained in the matrix header, is
actually the number of cards in the data deck.

4. Input Arguments:

NAMIN : Array containing input matrix name
INSPEC : Array containing unit specification for

input matrix
NOUT : Logical unit reserved for output data deck
CARD : Work storage

5. Output Arguments:

IER : Logical variable indicating error condition

6. Error Returns: For each column of the input matrix, the
compression code must be zero and the number of words must
be eighty. If either cundition is not satisfied then the
matrix does not qualify as an input deck matrix and IER
will be set to .TRUE..

7. Calling Sequence:

(NAMIN, INSPEC, NOUT, CARD, IER)

8. Input Tapes:

INSPEC(l) . unit containing input data deck matrix

9. Output Tapes:

NOUT : unit which will contain BCD data deck

10. Scratch Tapes: None

11. Storage Required: Total storage required is 56E 16 Bytes.

12. Subroutine User: US04A

13. Subroutines Required: EUTL3

14. Remarks: None

8.152

L

1. Subroutine Name: CONTRiL

2. Purpose: Generate BCD tape from system input tape data
and read constants needed by US04 for dynamic storage
and matrix sizes.

3. Procedure: The input data is read in BCD format of 12
words/card. A scanning of the data is made for certain
card types.

a. REPORT card - defines NBCD to be NTAPE3
b. SYSTEM card • defines NBCD to be NTAPE2
c. CHECK card - end of file of NBCD
d. END card - end of file placed on NBCD
e. SYSTEM card - NREF, NREFP, NTD, NL, NELEM

are read to allocate storage

4. Input Arguments: NTAPE2 - tape storage number for defining
NBCD

NTAPE3 - tape storage number for defining
NBCD

NPIT - system input tape number

5. Output Arguments:

NBCD : tape unit number on which data is stored
NREF : number of reference points on system
NREFP : number of reference points in grid point table
NTD : number of degrees of freedom per point
NL : number of grid point load conditions
NELEM : number of elements

6. Error Returns: None

7. Calling Sequence: CALL CONTRL (NREF, NREFP, NTD, NL, NELEM,
NTAPE2, NPIT, NBCD, NTAPE3)

8. Input Tapes: NPIT - Input data tape

9. Output Tapes: NBCD - Output BCD tape

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 7DA16 Bytes.

12. Subroutine User: US04A

13. Subroutines Required: None

14. Remarks: None

8.153

1. Subroutine Name: COPYDK

2. Purpose: Output a data deck in matrix form

3. Equations and Procedures: A matrix header is written
in which the number of 'ows is set to eighty and the
number of columns is set equal to the number of cards ih
the data deck. Each card of the data deck is read from
NINPUT in 80A1 format and then written on the unit
specified in IOSPEC(i) in a binary matrix column record
containing eighty words. The process continues until an
END, CHECK or $END card is encountered. FJnally the
matrix trailer is written and control is returned to the
calling program,

4. Input Arguments:

NAMOUT : Array containing output matrix name
IOSPEC : Array containing unit specifications for

the output matrix
CARD : Work storage
NINPJT : Unit containing data deck
JMAX : Number of cards in data deck

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, IOSPEC, CARD, NINPUT, JMAX)

8. Input Tapes:

NINPUT : unit containing input data deck

9. Output Tapes:

IOSPEC(1): unit which will contain outpat data deck matrix

10. Scratch Tapes: None

11. Storage RequLed: Total storage required is 4C4 16 Bytes.

12. Subroutine User: USO4A

13. Subroutines Required:

EUTL5
EUTL6

14. Remarks: None

8.15

1. Subroutine Name: INPUT

2. Purpose: Process directly or control processing of all
structural input data

3. Equations and Procedures: The input variable IN designates
the Fortran logical unit number containing a direct label
card input deck. If the input deck was actually direct it was
copied onto IN by subroutine CONTRL. If report form input was
used then the report form input preprocessor placed the generated
direct label card input deck on IN.

The logic in INPUT is to read a label card and branch to the
appropriate section to process the indicated data. The
available label sections and the action taken upon encountering
each is indicated in the following list.

Input Section Action Taken
Label

TITLE Title cards are read and printed on system

output unit in INPUT

PRINT No used, the data card is flushed through

NRt," Processed directly in INPUT, data eventually
stored on scratch tape (NTAFEl)

GRID Processed directly in INPUT, data eventually
stored on scratch tape (NTAPE3)

BOUND Processed by direct call to subr .tlne BOUND,
data stored on scratch tapes (NTAPEl and NTAPE3)

ELEM Processed by direct call to subroutine ELEM,
data stored on scratch tape (NTAPE3)

LOADS Processed by direct call to subroutine FGRLDS
data stored on scratch tape (NTAPE4)

END Processed directly in !NPUT, terminates input
processing

TRANS Processed directly in INPUT, data eventually
stored on scratch tape (NTAPF3)

GRAXES Processed by direct call to subroutine FRED, data
eventually stored on scratch tape (NTAPE3)

MATER Procossed by setting input/output variable ITRA(CE
equal to number of requests and returning to USO,""
where ITRACE will be tested causing subroutine
FMAT to be called; after the MATER section is pro-
cessed US04A will again call INPUT.

8.155

L

TZERO: Processed directly in INPUT,eventually stored
on scratch tape (NTAPE3)

CHECK: Processed directly in INPUT, terminates input
processing for a case but does not execute data

REPORT: Processed by setting input/output variable IN to
the value of NTAPE2 and returning to USO4A where IN
will be tested causing subroutine REFORM to be
called; after report form input processing is com-
pleted US04A will again call INPUT.

SYSTEM: Processed d*.. ctly in INPUT

ELPR Element pressures processed directly in INPUT,
3000 data eventually stored on scratn tape (NTAPE3)

ELTE Element temperatures processed directly in INPUT,
4000 data eventually stored on scratch tape (NTAPE3)

HARM: Processed by direct call to subroutine HARGEN

TEM: Processed by direct call to subroutine HARGEN
SDC: Processed directly in INPUT, data eventually used

by subroutine HARGEN

4. Input Arguments:

NTAPEl: Scratch unit number
NTAPE2: Scratch unit number
NTAPE3: Scratch unit number
NTAPE4: Scratch unit number
ITAPEl: Existing material library unit number
JTAPEI: Revised or new material library unit number
NREFPI: Not used
NSYS: Total degrees of freedom in application

(adjustable dimension)
IN: Data deck unit number
IPRINT: System print control
NPITl: Scratch input control for report form input
ITRACE: Material library residence indicator
NAMIN: Existing material library matrix name
INSPEC: Existing material library unit number
NAMOUT: Revised or new material library name
IOSPEC: Revised or new material library unit number
NRF: Number of total reference points in application

(must be equal to highest point number)
X,Y,Z: Storage allocated for coordinate data
T: Storage allocated for grid point temperatures
F: Storage allocated fo? grid point pressurea
TGRA: Storage allocated for grid point axes transformation

matrices
IZR: Not used
LIST: Storage allocated for boundary conditions
DISPL: Storage allocated for input displacements
LNOD: Not used
NZEL: Yot used

8,156

PCOL: Storage allocated for grid point loads
ELPRM: Array of element pressure modal values
ELTPM: Array of element temperature modal values
NUMIN: Number of input matrices
NUMOT: Number of output matrices
WORK: Work storage
NWORKR: Maximum work storage available
NIN: Number of work storages used
IHONT: Array containing harmonic data

5. Output Arguments:
ICALC: Execution indicator

if END Card read, ICALC is set to 1 and US04A
will relinquish control to US04B for matrix
generation

if CHECK card read, ICALC is set to zero and
subroutine US04A will set controls to return
to Format Monitor (execution of data is suppressed)

ITRACE: Material request indicator

if ITRACE is not equal to zero upon exit from
INPUT then USO4A will call FMAT

IN: Repor. form input preprocessor indicator
if IN is equal to NTAPE2 upon exit from INPUT
then US04A will call REFORM

ICONT: Array indicating processed input sections

6, Error Returns: If any errors are detected then INPUT will set
ERROR to .TRUE. and return.

7. Calling Sequence:

CALL INPUT (X, Y, Z, T, P, TGRA, IZR, LIST, DISPL, LNODJ NZEL,
PCOL, ITRACE, ICALC, NTAPEI, NTAPE2, NTAPE3, NTAPE4, ITAPEI,
JTAPE1, NREFP1, NSYS, IU, IPRINT, NMD, NPIT1, ERROR, NAMIN,
INSPEC, NAMOUT, IOSPEC, NRFJ NUMIN, NUMOT, ICONT, ELPRM, ELTPM,
WORK, NWORKRE, NIN, IHONT)

8. Input Tape:

ITAPEi - Contains existing material library
JTAPE1 - Contains revised or new material library

9. Output Tapes: None

10. Scratch Tapes

NTAPE1 - Temporary storage for structure control information
including system orders, boundary conditions and
system print operations

8.157

NTAPE2 - Scratch unit used when rewriting NTAPE3 for grid

point axes data storage

NTAPE3 - Stovage for interpreted element input

NTAPE4 - Storage for input grid point load conditions

11. Subroutine User: US04A

12. Subroutines Required:

BOUND
ELEM
FGRLDS
FRED
RECI
HARGE4

13. Remarks: None

8.158

1. Subroutine Name: FRED

2. Purpose: To compute transformation matrices when input
for GRAXES is encountered.

3. Equations and Procedures:

VI = IT]
w! w

where (I) u, v, w, are the displacements in the global
x, y, z system

(2) ut, v', wt are the displacements in the new
Xt, y', t, system

(3) [Tj contains the direction cosines

4. Input Arguments:

X :X coordinates of plane defined by 3 pts.
Y :Y coordinates of plane defined by 3 pts.
Z :Z coordinates of plane defined by 3 pts.
KID :See Rentarks
L :Point 1 of Plane
M :Point 2 of Plane
N ;Point 3 of Plane

5. Output Arguments: TRANSC - transformation matrix IT]

6. Error Returns:

l) If points 1 and 2 have same coordinates, no plane defined.
2 If point 3 lies on the line connecting points 1 and 2,

there is no plane defined.

7. Calling Sequence:

CA.LL FRFM (X, Y, Z, TRANSC, KID, L, M, N)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: X(l), Y(l), Z(1), TRANSC (3,3)

12. Subroutine User: INPUT

13. Subroutines Required: None

8.159

14. Remarks:

1. Since 3 points define a plane, KID may be

(a) 0 when the ist 2 points define the x, axis
1 when the 1st 2 points define the z' axis

c) 2 wen the 1st 2 points define the z' axis

The direction cosineb are first computed for points 1 and
2 defining the x' axis. If KID is p 0, then the direction
cosines are rearranged to give the respective notation
described above.

2. In spite of error returns indicated, analysis does
not terminate.

8.160

1. Subroutine Name: BOUND

2. Purpose: Read and process boundary condition data and input

displacement data

3. Equations and Procedures: The boundary conditions are read
for each point input and the data is stored in the array
LIST to be later written on scratch tape NTAPE1 by sub-
routine INPUT. Omitted points are constrained for all
degrees of freedom. Only unconstrained degrees of freedom
are stored in LIST, giving LIST a length equal to the actual
degrees of freedom for which solution will be obtained
(14DB). For each degree of freedom for which a solution
is desird, its appropriate total system degree of freedom
locatioi, which is NTD*(IN-1)+L, where NTD is the number of
degreeu o,' freedom per point, IN is the point number and L
is the subject degree of freedom for that point number, is
placed in the next available position in LIST. The same
procedure is followed for input displacements, which are
stored in DISPL.

4. Input Arguments:

IVEC - Not used
NDIRNDEG - Product equals NTD, number of degrees of

freedom per point
NREF - Total number of points referenced in application
NREF4 - Number of points for which boundary conditions

have been input
IN - Input unit containing boundary condition data
NSYS - Total number of degrees of freedom in application

5. Output Arguments:

NMDB - Number of degrees of freedom for which solutions
are desired

NMDB2 - Number of degrees of freedom for which dis-
placements have been input

LIST - Array containing degree of freedom numbers for
which solutions are to be obtained and dis-
placements have been input

DISPL - Array containing input displacements

6. Error Returns: None

7. Calling Sequence:

CALL BOUND (IVEC, NDIR, NDEG, NREF, NMDB, NMDB2, LIST, DISPL,
NREF4, IN, NSYS)

8. Input Tape:

IN - Unit con' aining boundary condition and input displacement
du.ta

8bl1 i

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 7FA 1 6 Bytes.

32. Subroutine User: INPUT

13. Subroutines Required: None

14. Remarks: None

8,162

-"

1. Subroutine Name: ELEM

2. Purpose: Process element input data (input section ELEM)

3. Equations and Procedures: Processing of element input
data begins by reading the element definition input for an
element and checking tie values for errors and inconsisten-
cies. Error messages for subroutine ELEM are exhibited in
Appendix III. The information read is then printed on the
system output unit. If no errors have been detected then
the element definition input is merged with the required
system input. Specifically, the following operations are
perfc med fcor each element to assimilate the required in-
forma',ion for generation of element matrices:

the coordinates, temperatures and pressures are
extracted and stored for each of the elementdel'ini-
tion node points;

the grid point axes transformation matrices are
initialized as identity matrices and stored for each
of the element definition node points;

the interpolation temperature for material properties
is read or calculated dependent upon input, the
material library is searched to locate the requested
material, the interpolation is performed and the
results stored;

the element generation print control is stored;

the boundary conditions for the degrees of freedom
referenced by the element defining node points are
extracted from the system boundary condition list
and stored;

the input displacements, if any, for the degrees of
freedom ref -enced by the element defining node points
are extracteu from the systerm input displacement list
and stored;

the pre-strains and pre-stresses, if input, are read
and stored;

the extra element input data, if any, is read and stored
and finally, subroutine REMl is called to place all
of the above interpretated element data on scratch tape
NTAPE3 (see RECl).

8.163

PEP~IPW -

4. Input Arguments:

NELEM: Number of elements
X,Y,Z: Arrays containing coordinates of system grid

points
T.P: Arrays containing temperatures and pressures

respectively for system grid points
IVEC: Not used
LIST: Array containing boundary condition informa-

tion for system grid points
NMDB2: Number of entries in array LIST
NDIR,NDEG: Product equals number of degrees of freedom

per grid point
IG: Maximum number of element defining points

possible for an eleaent
NMDB: Number of system degrees of freedom for which

solutions are desirad
DISPL: Array containing input displacements
LNOD: Not used
GPAXEL: Work storage reserved for grid point axes

transformation matrices
NUTAPE: Logical variable indicating that new or

revised material library has been generated
TZERO: Base temperature for application
NUMSEQ: Material library sequence number
XEL,17EL, Work storage reserved for extracting coordinates
ZEL: for element definition node points
TEL, PEL: Work storage reserved for extracting tempera-

tures and pressures for element definition
node points

LISTEL: Work storage for extracting boundary condi-
tion information for element definition node
points

NODES: Array containing element definition node point
numbers

DISPEL: Work storage reserved for extracting input
displacements for element definition node
points

PCOLEL: Not used
MAT: Work storage reserved for interpolated material

properties, element print control, mass density
and TZERO

EPSIO: Work storage reserved for pre-strain load
vector

SO: Work storage reserved for pre-stress load
vector

EXTRA: Work storage area reserved for extra element
input

IN: Element data input unit number
NREFP: Number of input system grid points
ITAPEl: Existing material library unit number
JTAPE: Not used

8.164

JTAPEl: New or revised material library unit number
NTAPE3: Scratch unit number
NAMIN: Name of existing material library
INSPEC: Same as ITAPE1
NAMOUT: Name of new or revised material library
IOSPEC: Same as JTAPE1

5. Output Arguments:

:WLAG: Error indicator
NNORD: Summation of element degrees of freedom
NNRSEL: Summation of element stress orders
NORDM: Maximum element degrees of freedom for this

application
NOINKM: Maximum number of storages for element stiff-

ness matrix for this application
NRSELM: Maximum element stress order for this application

6. Error Returns: If an error is encountered then IFLAG is
set to minus one and control is returned to the calling
program.

7. Calling Sequence:

CALL ELEM (NELEM, X, Y, Z, T, P, IVEC, LIST, NMDB2, NDIR,
NDEG, IG, NMDB, DISPL, LNODj GPAXEL, NUTAPE, TZERO, IFLAG,
NUMSEQ, XEL, YEL. ZEL, TEL, PEL, LISTEL, NODES, DISPEL,
PCOLEL, MAT, EPSIO, SO, EXTRA, IN, NREFP, NNORD, NNRSEL,
NORDM, NOINKM, NRSELM, ITAPEI, JTAPE, JTAPE1, NTAPE3,
NAMIN, INSPEC, NAMOUT, IOSPEC)

8. Input Tape:

IN - Contains element input data

9. Output Tapes:

NTAPE3 - Contains interpreted element input

10. Scratch Tapes: None

11. Storage Required: Total storage required is 4D78 1 6 Bytes.

12. Subroutine User: INPUT

13. Subroutines Required:

MATCH
EUTL3
LAG
RECI

8.165

14. Remarks: In calculating the Interpolated material proper-
ties, if the requested material and the interpolation tem-
perature of the present element being processed are the same
as the previous element then the results calculated for the
previous element are used and no searching or interpolation
is done; if the requested material is in core but the inter-
polation temperature is different then just the searching
is eliminated.

8.166

LJ

POW limp- 7 - -

1. Subroutine Name: MATCH

2. Purpose: Compare a material number and its interpolation
temperature to the material number and interpolation temper-
ature last referenced in order to determine if a search of
the material library tape and/or interpolation is necessary.

3. Equations and Procedures: The material number, TAG1, is
compared to the material number now residing in core, NSPVE1.
If they do not match, then they are tested again to see if
they differ only by an asterisk in the first position. If
they still do not match then control is returned to the calling
program at the statement following the CALL MATCH statement.
If a match was obtained while testing for an asterisk then
STAR is set to TRUE. Once a match has been obtained for the
material number, the following procedure is followed:

If IELEM equals one then control is returned to the
statement number replacing the first asterisk since
interpolation must be done for the first element.
If IELEM is not one then a check is made to see if
a search of the material library was in progress to
find this material number. If this is the case then
control is returned to the calling program at the
statement number replacing the first asterisk since
this material table has just been place in core
and interpolation will be necessary. If a search
was not in progress then TEMP is compared to SAVTEM.
If they are equal then interpolation of the material
table has already been calculated and control is
returned to the calling program at the statement
number replacing the second asterisk. If TEMP
does not equal. SAVTEM then control returns through
the first asterisk in order to perform the inter-
polation.

4. Input Arguments:

TAG1 : Material number desired
NSAVE1 : Material number now residing in core
TEMP : Interpolation temperature desired
SAVTEM : Last interpolation temperature processed
NDIFF : Constant used to determine if asterisk is

present in material number
IELEM : Element number
SEARCH : Logical variable indicating if a search of the

material library is in progress

: Non-standard returns to calling program
(See 7. Calling Sequence)

8.167

5. Output Arguments:

STAR : Logical variable indicating presence of asterisk

in material number.

6. Error Returns: None

7. Calling Sequence: CALL MATCH (TAG1, NSAVE1, TEMP, SAVTEM,
NDIFF, STAR, IELEM, SEARCH, *,*)

Where the asterisks are statement numbers, preceded by a
dollar sign ($), that MATCH will return control to in the
calling program. Control will pass to the statement number
replacing the first asterisk if TAG1 matches NSAVE1 but
TEMP does not match SAVTEM (i.e. the material is the same
but the interpolation temperatures differ). Control will
pass to the statement number replacing the second asterisk
if TAG1 matches NSAVE1 and TEMP matches SAVTEM (i.e. the
material is the same as the last material referenced and
the interpolation temperatures are also the same). If
TAG1 does not match NSAVE1 then control is returned to the
calling program at the statement following the CALL MATCH
statement.

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storag. required is 2FE 1 6 Bytes.

12. Subroutine User: ELEM

13. Subroutines Required: None

14. Remarks: None

8.168

1. Subroutine Name: LAG

2. Purpose: Linear interpolation routine for material properties

3. Equations and Procedures:

ZAPX X (I) Y(I-l) - X (I-l) Y (I) + P(Y(I) - Y (I-1))X(I) - X (I-1)

4. Input: P - temperature at which material properties will
be interpolated

K - number of pairs of coordinates
X - X coordinate
Y - Y coordinate

5. Output; ZAPX - value of the material property being

interpolated

6. Error Returns: None

7. Calling Sequence: CALL LAG (P, ZAPX, K, X, Y)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 2F2 16 Bytes.

12. Subroutine User: ELEM

13. Subroutines Required: None

14. Remarks: If there is only one X-Y pair, ZAPX will be set
equal to Y.

6.169

1. Subroutine Name: FGRLDS

2. Purpose: Read and print grid point loads data

3. Equations and Procedures: System input is read from NTAPE4
and includes LIST which is an array containing row numbers of
degrees of freedom which are to be retained in the reduced
load column. Grid point loads are read for each input point
and printed. If grid point axis transformations are present,
this transformation is applied. The assembled PC0L is stored
on tape NTAPE4, followed by the reduced PC$L. This process
is repeated for each load condition.

I. Input Arguments:

NL :Number of grid point load -.onditions
TGRA :Grid point axes transformation matrices
N$GPA :Number of grid point axes transformations
LIST :Reduction array
IT :System input tape number
NTAPE1:Input tape number

NTAPE4:Output tape number

5. Output Arguments: PC0L - Loads Column

6. Error Returns: None

7. Calling Sequence:

CALL FGRI,DS (NL, TGRA, N0GPA, LIST, IT, PC0L, NTAPE1,
NTAPE4, NSYS)

8. Input Tapes: NTAPEl: Record 1 - not used

Record 2 - NM4DBl, NMDB, LIST

9. Output Tapes: NTAPE4: Record 1 - N1, NI4DB1, N.MDB

Record 2 - PCOL (assembled)

Record 3 - PCOL (reduced)

Repeat Record 2 and 3 for each
load condition

10. Scrav-h T,. : None

11. Storage Required: LIST (NSYS)
EL0AD (12)
PCOL (NSYS)
COL (3
ISAVE (3)
TGRA (3, 3, NREFP)

8.17o

12. Subroutine User: INPUT

13. Subroutines Required: None

14l. Remarks: None

8. 171

1. Subroutine Name: FMAT

2. Purpose:

a Generate material library tape
(b Update material 1ibrary tape
c Print material library information

3. Equations and Procedures:

Subroutine FMAT operates in three distinct phases.

First, a test is made on NM. If NM is positive, then
it assumed that this is an update run and the original
material library is read into PROPER from ITAPE1. Each
table in the library is placed in PROPER in a block of
length NT$T, where NT$T is computed as the necessary
storage needed. If NM is zero, it is considered an error
condition and a message is printed and control is returned
to the calling program. If NM is negative, then it is
assumed that this is a generation of a new material library
tape and the section which reads the original material
library tape is skipped.

The second phase consists of processing the requests. The
requests are controlled by an input code read into location
D. The legal input codes are:

(1) I : add or revise isotropic material

(2) 0 : add or revise orthotropic material table

(3) PI : add or revise plastic isotropic material table

(4) PO : add or revise plastic orthotropic material table

(5) P : add plastic section to existing material table

(6) OUT : delete material table with. correct lock code

(7) ALL : print entire material library

(8) $EE : print material table

(9) ;UM : print summary of material library

(10) /*/ : print lock code for material table

(11) ZAP : delete material table regardless of lock code

8.172

pop -- W11- W

If NM was negative, then the only allowable codes are
I,0,PI and P0 and the requests are processed and placed
into the array PROPER starting from the beginning and
ending at NT0L. If NM was positive, then the material
number is checked against the materials in PROPER to see
if it already existed in the original library. If no
match is obtained, then the material is added at the next
open block in PROPER and NT$L is updated accordingly.
If a match occurred, then the revised table will be placed
in same position as the original table. If the locations
for the material is greater or lesser tharn before, the
remaining contents of PROPER, i.e. those tables after the
one in question, are shifted down or up respectively.
If the request is of the type that will alter or delete
the original table, then the lock code (TAG2) must match
the lock code of the original table, otherwise an error

condition is encountered and control returns to the
calling program. Once it has been decided where the
table is to be placed, then the table ..s read into PROPER
by material temperature points and plastic temperature
points. The material properties are as follows:

E - Young's Modulus
- Poisson's Ratio
- Coefficients of Thermal Expansion

G - Rigidity Modulus

For an input code of I or PI only E, ') , and oc are read
and G is computed from E/2(l+') for each material tempera-
ture point. For an input code of 0 or PO, then ExI Ey,
Ez, ' xy, 0 yz, zx, 4 x, o" y, C4 Z, Gx G C and Gzx are
read for each material temperature poin. U the input
code contains a P, then for each plastic temperature point
the following data is read:

N - exponent of stress-strain function assumption
K - scalar of stress-strain function assumption
X - nondimensionalizing factor for Van Mises yield criteria
Y -y _ II I

R -

S -

T - "

8.173

L

The procedure for input codes 6-11 is as follows:

OUT - If the material is not located in PROPER, then a
message is printed to this effect and the request
is ignored. If the material is located and the
lock codes do not match, then a message is printed
and the request ignored. If the material is
located and the lock codes match, then the deletion
occurs when the remaining contents of PROPER are
merely shifted up over the deleted material.

ALL - A flag (WRTALL) is set for phase three and ccntrol
passes to the next request.

SEE - If the material is not located, a message is
printed and the request ignored. If the material
is located, the table is printed and control
passes to the next requast.

SUM - All the tables in PROPER are scanned and the
following information is printed for each table:

Material Number (TAG1)
Material Identification (MIDENT)

9 Analysis Capability (derived from 1,0, PI'P0)
Number of Material Temperature Points (NPl)
Number of Plastic Temperature Points (NP2)
Temperature Range of Material Table
Temperature Range of Plastic Table

1*/ - if the material is Iccated, the lock code is
pzinted. If the material is not located, the
request is ignored.

ZAP - If the material is not located, the request is
ignored, If the material is located, it is
deleted regardless of lock code.

Phase two ends when all of the requests have been processed.

Phase three consists of writing the new or updated material
library on JTAPE1 and printing the entire tape if it has
been requested. Writing of the tape and a rent of the
entire material library, if requested, are done in a parallel
processing manner; i.e., a table is written on tape and then
printed, if requested. Either process may be done separately
or together depending upon the requests re~eivad. Finally,
if a tape has been written, a summary is printed.

8.174

4. Input Arguments:

NM : Number of Requests
MATTAP : Code Controlling Selection of Input and Output

Tapes
IN : Input Tape Unit
TABMAT : Material Properties Work Storage Area
TABPLA : Plastic Properties Work Storage Area
PROPER : Material Library Work Storage Area
NWORK : Number of Available Work Storages
ITAPEl : Input Material Library Tape Unit
JTAPE1 : Output Material Library Tape Unit
NAMOUT : Array Containing Output Material Library Name
NAMIN : Array Containing Input Material Library Name

5. Outp:,t Arguments:

MATTAP • Code signifying error condition has been
encountered, if MATTAP > 0, then no error
has been encountered, if MATTAP <0 , then error
condition exists.

6. Error Returns:

Message Action Taken

t Value of Young's Modulus (1.0 RETURN
(2) Value of Poisson's Ratio < -1.0 or

> 1.0 RETURN
(3) Value of thermal expansion coefficient

((4 * <-1.0 or > 1.0 RETURN

I Vajv- of Rigidity Modul.us (G).5 1.0 RETURN
5 Value of mass density is negative RETURN
6 Lock codes do not match for revision RETURN

Lock codes do not match for deletion IGNORE REQUEST
Capacity of material library exceeded RET;J N

9 Number of material or plast!,-
temperature points> 9 RETURN i

1O) Attempt to delete nonexistent material IGNORE REQJEST
)i Attempt to input plastic data only for

nonexistent material IGNORE REQUEST
(12) Unrecognizable input code RE.TURN
, 13 Request to print nonexistent material IGNOIRE REQUEST
(i1l Number of requests is zero RETURN

81

8k7

7. Calling Sequence:

Call FMAT (NM, MATTAP, IN, TABMAT, TABPLA, PE.IPER, NW$RK,
ITAPE1, JTAPE1, NAMOUT, NAMIN)

8. Input Tapes
9. Output Tapes

Input and output tapes are identical with respect to
information contained and record format. Records are
as follows from the matrix header to the matrix trailer:

Format Matrix Header Record

Record number 1 - IC0L, KODE, IW0RDS, NUMTAB, NUMSEQ

Record numbers 2 to NUMTAB+I - IC$L, KODE, IvJRDS, NT$T,
D, TAG1, TAG2, NP1, NP2,
DENSTY, MIDENT, ((TABMAT
(IJ), J'<l, NMAT)
"=l, NPl) ((TABPLA(I,J),

J=l, NPLA), I=l,NP2)

Format Matrix Trailer Record

where IGOL : Dummy- Variable
K$DE : Dummy Variable
IW0RDS : Number of Words Remaining in Record
NUMTAB : Number of Material Tables in Library
NUMSEQ : Sequence Number of Library
NT0T : Total Number of Words in the Specific

Table
D : Input Code
TAG1 : Material Number
TAG2 : Lock Code
NP1 : Number of Material Temperature Points
NP2 : Number of Plastic Temperature Points
DENSTY : Mass Density
MIDENT : Material Identification (Short

Description or Name)
TABMAT : Material Properties Table
NMAT : Number of Material Properties per

Temperature Point + 1
TABPLA : Plastic Properties Table
NPLA : Number of Plastic Properties per

Temperature Point + 1

10. Scratch Tapes: None

8.176

11. Storage Required:

C0M(IO), MIDENT(4), G(16), iLBADER(2O), TAG1(6), NFIXIA(6),
Total Storage required is 4EB816 Bytes. FLIA(6)

12. Subroutine User: US04A

13. Subroutines Required: SHIFT

14. Remarks:

Whenever new or updated material tape is written, all
changes and/or additions and a summary of the output tape
are printed.

[1

8.177

w77-

1. Subroutine Name: SHIFT

2. Purpose: Given a one-dimensional array. this routine can
relocate a block of data, within the array.

3. Equations and Procedures: The routine computes the size
of the block to be shifted. it checks the direction of
shift, and initializes the shift constants, finally
performing the shift.

It. Input Arguments:

PROPER : Array in which shifting is to occur
IFROM : Ini,.ial subscript of block to be shifted
ITO Final subscript of block to be shifted
ISIZ73 Size of shift
NDlR -irection of shift

5. Output Arguments:

IERROR : Error return

6. Error Returns: If the size of the block to be shifted
is cotmputed to be negative (IFROM . ITO) IERROR is set
equal to 1 (one).

7. Calling Sequence:

SHIFT (PROPER, IFROM, ITO, ISIZE, NDIR, IERROR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 2B63 6 Bytes.

12. Subroutine User: FMAT

13. Subroutines Required: None

14. Remarks: None

8.178

1. Subroutine Name: HARGEN

2. Purpose:

Compute the working storages which are required to form harmonic
numbers and harmonic coefficients.

3. Equations and Procedures:

(a) Read the number of element from the tape NTAPE3 and number
of harmonic required from the tape NPIT.

(b) (b) Compute the working storages required.

(c) Call subroutine HARGE1

4. Input Arguments:

XEL: used by REC1
YEL: used by REC1
ZEL: used by REC1
TEL: used by RECI
PEL: used by REC1
NORD: used by RECI
LISTEL: used by REC1
NNO: used by REC1
NODES: used by REC1
IP: used by RECI
DISPEL: used by REC1
PCOLEL: used by RECI
LISTDL: used by REC1
IG: used by REC1
NEL: used by RECI
GPAXEL: used by RECI
NUMMAT: used by RECI
MAT: used by RECI
NUMEPS: used by RECI
EPSION: used by RECI
NUMSO: used by REC1
SO: used by RECI
EXTRA: used by RECI
WORK: working storage array
NWORK: the number of words available for the working storage
NIN: number of the working storage allocated
IHONT: used by HARGE1
NTAPE3: input tape
NTAPE4: used by HARGE1
IN: input tape
HPTC: used by HARGE1
HARP: used by HARGEI
HART: used by HARGEI
ERROR: error return code

8.179

5. Output Arguments:

If error - TRUE on return. It means it does not have enough

core storage to compute the harmonic number and the harmonic
coefficient.

6. Calling Sequence:

(XEL,YEL,ZEL,TEL,PEL,NORD,LISTEL,NNO,NODES,IP,DISPEL,PCOLEL,LISTDL,
IG,NEL,GPAXEL,NUMMATMAT,NUMEPS,EPSION,NUMSO,SO,EXTRA,WORK,NWORKR,
NIN,IHONT,NTAPE3,NTAPE4,IN,HPTC,HARP,HART,ERROR)

7. Input Tapes: NTAPE3, IN

8. Output Tapes: None

9. Scratch Tapes: None

10. Subroutine User: Input

11. Subroutine Required: HARGE1

8.180

1. Subroutine Name: HARMA

2. Purpose: Subroutine HARMA is used to compute the harmonic number

and the harmonic coefficient from fourier series.

3. Equations and Procedures:

9he .general formula for fourier series is

Ao Nr NT X
F(X) = 2 + E (AnCOS L X + BnSIN L), Where

N=1

1 L N rX
An = 7 Z (+(X) COS L) N= 0, , 2

L -L

1 L N 7X
B=L (+ (X) SIN L),N =1, 2 2
n -L

For a given value of +(X) and N, the harmonic coefficients An and
Bn will be computed by using formula 0 and (2). The harmonic
number is formed by taking the average value b6tween -L and L.

4. Input Arguments:

Y - Y array contains pressure loads or thermal loads
Fc - On return array Fc contain the fourier coefficients
KH - Fourier number
NPT - Number of the pressure loads or the thermal loads
c - COS value
S - SIN value
KMAX - Maximum fourier number to be generated
CONV - Array cony contains the convergent factors

5. Output Arguments:

Fc - Array Fc contain the fourier coefficients
KH - Fourier number

6. Error Returns: None

7. Calling Sequence:

(Y,A,KHNNH,NPTC)C,S,KMAX,CON)

8.181

1. Subroutine Name: HARGE 1

2. Purpose: Read input data for subroutine HARMA. Output the
harmonic numbers and the harmonic coefficients.

3. Equations and Procedures:

(a) Retrieve the number of elements from the input tape
(b) Read the necessary harmonic generated inpit data
(c) Call subroutine HARMA to generate the harmonic number and

the harmonic coefficients for each element in this analysis.
(d) Add the harmonic number and the harmonic coefficents onto

Ntape 3. Ntape 3 contains element informations.

4. Input Arguments:

XEL -Used by REC1
YEL -Used by aECi
ZEL -Used by REC1
TEL -Used by REC1
PEL -Used by REC1
NORD -Used by REC1
LISTEL -Used by REC1
NNO -USed by REC1
NODES -Used by RECI
IP -Used by R C1
DISPEL -Used by REC1
PCOLEL -Used by RECi
LISTDL -Used by REC1
IG -Used by REC1
NEL -Used by RECI
GPAXEL -Used by REC1
NUMMAT -Used by REC1
MAT -Used by REC1
NUMEPS -Used by REC1
EPSION -Used by REC1
NUMSO -Used by REC1
SO -Used by REC1
EXTRA -Used by REC1
Work -Work Storage Array
NWOKR -Number of work storages
NIN -Number of work storage allocated
IHONT -Harmonic information array
NTAPE3 -Input tape contains element informations
NTAPE4 -Scratch tape
IN -Card input unit
HPTC -Control for the pressure load or the thermal load

HARP -Control for the pressure load
HART -Control for the thermal load

8.182

5. Output Arguments:

IHONT - This array contains the harmonic informations

6. Error Returns: None

7. Calling Sequence:

(XEL, YEL, ZEL, TEL, PEL, NORD, LISTEL, NNO, NODES, IP, DISPEL, PCOLEL,
LIS TDL, IG, NEL, GPAXEL, NUMMAL, MAT, NJMEPS, EPS ION, NUMSO, SO, EXTRA,
WORK, NWOKR, NIN, IHONT, NTAPE3, NTAPE4, IN, HPTC, HARP, HART)

8. Input Tapes: NTAPE3

9. Output Tapes: NTAPE3

10. Scratch Tapes: NTAPF4

11. Storage Required:

12. Subroutine User: Input

13. Subroutine Required: HARMA, REC1

8.183

1. Subroutine Name: REFORM

2. Purpose: Control generation of BCD input tape from Report
Form Input Sheets.

3. Equations & Procedures: Storage is allocated for all vari-
ables needed by PHASE1 and PHASE2 combined. All valid
input section names are stored by a data statement in array
NAMES. Temporary tape storage for input sections which
must be merged are assigned to scratch tapes NTAPE1 and
NTAPE2. Subroutine PHASEI is entered to read and store all
data. Subroutine PHASE2 is entered tc merge and output on
INTAPE the data that was read in PHASE1. If a dump has
been requested then the contents of INTAPE are printed on
the system output unit. Control is then returned to the
calling program.

4. Input Arguments:

INTAPE: Tape unit number cn which BCD input data
is to be generated

NTAPElNTAPE2: Scratch tape unit numbers

IN: Input tape unit number

NRFP,NSSNRF: Adjustable dimension variables

COORD: Storage area reserved for grid point
coordinates.

T: Storage area reserve for grid point
temperatures.

P: Storage area reserved for grid point
pressures.

IBOUND: Storage area reserved for grid point
boundary conditions

IODISP: Output unit of prescribed displacement
matrix

NAMDIS: Name of prescribed displacement matrix

5. Output Arguments:

ELPRM; Modal values from element pressure input
section.

ELTPM Modal values from element temperature

input section.

DINFO: Array containing dynamics informaticn
for analysis

ERROR: Logical variable indicating error condition.

8.184

6. Error Returns: If an error has occurred in PHASE1 or PHASE2
then ERROR is set to .TRUE..

7. Calling Sequence:

CALL REFORM (INTAPE, NTAPE1, NTAPE2, IN, NRFP, NSS, NRF,
COORD T, P, IBOUND, ERROR, IODISP, NAMDIS, DINFO, ELPRM,
ELTPM s

8. Input Tapes:

IN - Scratch tape containing card images of data deck

9. Output Tapes:

INTAPE - BCD tape containing sorted data generated for sub-
routine INPUT

10. Scratch Tapes:

NTAPE1 - Temporary storage for grid point axes input, initial
displacement input and element definiti-n input.

NTAPE2 - Temporary storage area for grid point loads input,
prescribed displacement input and special element input

11. Subroutine User: USO4A

12. Subroutines Required:

PHASE1
PHASE2

13. Remarks: None

8.185

1. Subroutine Name: PHASEI

. Purpose: Read, sort and store temporarily, all report form
input data.

3. Equations & Procedures: First, all core storage areas are
initialized with either blanks or zeroes. The following
core storage areas are initialized with blanks: IBOUND,
COORD, BM, LM, INM, PRM, EM and ERRMOD. The following core
storage areas are initialized with zeroes: P, T, MEMORY,
TM and PM.

Reading of input is controlled entirely by label cards for
each input section. Correlation between label codes and
input sections Is as follows:

Code -nput Section

TITLE Title cards
COORD Grid point coordinates
TEMP Grid point temperatures
PRESS Grid point pressures
BOUND Grid point boundary conditions
MATER Material library requests
LOADS Grid point external loads
GRAXES Grid point axes (matrices generated)
TRANS Grid point axes (matrices input)
INITA Grid point initial displacements
PRDISP Grid point prescribed displacements
ELEM Element definition data
EXTERN Special element data
INPUT Master input control
PRINT Print controls
CALC Calculation controls
END End card
CHECK Check card
SYSTEM System control information
STST Element stress-strain data
ELPR Element Pressure data
ELTP Element Temperature data

After initialization, the data may be read from IN. The
only restriction placed upon order of input sections is that
SYSTEM may only be preceded by TITLE, MATER and/or INPI;T.

The procedure for a typical input section is as follows:
(1) Subrloutine LATCH is called to determine the identity

of the input section.

8.186

-w--w- Y - y

(2) Control s transferred to the corresponding section
of PHASE. that will read and store the data. This
step is accomplished either directly in PHASE1 itself
or by a call to FORMIN.

(3) Data storing for a section terminates upon reading of
a section label card which differs from the section
being read.

Upon reading a CHECK or END card, PHASE1 returns control to

the calling program.

4. Input Arguments:

NAMES: Array containing valid input section labels

INTAPE: Tape unit number on which BCD input data is
to be generated

LOCATE: Array containing tape unit numbers locating
temporary tape storage for input sections.
For each entry in NAMES there is a corres-
ponding entry in LOCATE pointing to a tem-
porary storage area. If the entry in
LOCATE is a zero then storage is in core.
If the entry is non-zero then storage is
on the tape number indicated.

NUMCAL: Number of possible solution techniques
NUMNAM: Number of valid input section labels

ICASE: Case number

NDIR: Number of directions per grid point

NEND: Last word of every input bection placed
on tape

IN: Input tape unit number

NRFP: Adjustable dimensions for COORD, T and P

NRF: Adjustable dimension for IBOUND

DINFO: Dynamics information

5. Output Arguments:

COORD: Array ccntaining grid point coordinates

T: Array containiing grid point temperatures

P: Array containing grid point pressures

MEMORY: Array containing indicators which record
input sections that have been encountered
during processing of data

8.187

IBOUND: Array containing grid point boundary condi-
tions

TM: Array containing grid point temperature
modal values

PM: Array containing grid point pressure
modal values

BM: Array containing grid point boundary
condition modal values

SM: Array containing grid point load modal
values for each load condition

INM: Grid point initial displacement modal values

PRM: Grid point prescribed displacement modal
values

EM: Special element input modal values

NLOAD: Array containing number of points in each
load condition

NINITA: Array containing numberz of points in each
initial displacement condition

NPRDIS: Array containing number of points in each
prescribed displacement condition

ICALO: Array containing solution procedures desired

NREF: Number of system referenced grid points

NREFP: Number of input grid points

NTD: Number of degrees of freedom per grid point

NL: Number of load conditions

NID: Number of initial displacement conditions

NPD: Number of prescribed displacement conditions

NAXES: Number oi grid point axes systems

NELEM: Number of elements

NM: Number of requests of the material library
tape

NREF4: Number of input boundary condition grid points

TZERO: System reference temperature

NREF4C: Number of boundary condition points read
by PHASEl

NREFPC: Number of grid points read by PHASEl

NELEMC: Number of elements read by PHASEI

8,188

NGRAXC: Number of grid point axes systems read
by PHASEl

NTRANC: Number of grid point axes transformation
matrices read by PHASE1

ERROR: Error indicator

DUMPT: Debug dump indicator

ELPRM Array of element pressure modal values

ELTPM Array of element temperature modal values

NPRKT Number of entries in element pressure
section

NTPKT Number of entries in element temperature
section

NPDL Number of prescribed displacement conditions

6. Error Returns:

Message: Action Taken:

Unexpected blank label Flush to next recognizable label
card encountered, card and insert check card.

No option has been se- Flush to next recognizable label
lected for request number card and insert check card.
xxx of material library.

More than one option has Retain first selection encountered.
been selected for request
number xxx of material
library.

Maximum number of load con-
ditions allowed is 100. Flush to next recognizable label
This problem contains xxx. card and insert check card,

Load condition xxx sub- Flush to next recognizable label
label is incorrect. Pro- card and insert check card.
gram cannot distinguish
between load conditions.

Illegal modal card en- Self-explanatory
countered. Card will be
ignored.

Due to previously encoun- Self-explanatory
tered error condition this
section is being skipped.
Program will flush data
deck until next recogniz-
able section is encountered.

Unrecognizable input Flush to -iext recognizable label
section. card and insert check card.

8.189

-__~~~I

Due to above error message Self-explanaory
this section will be omit-
ted and check card inser-
ted.

7. Calling Sequence:

CALL PHASEl (COORD, T, P, MEMORY, IBOUND, NAMES, TM, PM,
BM, SM, INM, PRM, EM, NLOAD, NINITA, NPRDIS, ICALC, NREF,
NREFP, NTD, NL, NID, NPD, NAXES, NELEM, NM, NREF4, TZERO.
INTAPE, LOCATE, NUMCAL, NUMNAM, ICASE, NDIR, NEND, NREF4I,
NREFPC, NELEMC, NGRAXC, NTRANC, IN, NRFP, NRF, ERROR,
DUMPT, DINFO, NPDC, ELPRM, ELTPM, NPRKT, NrPKT)

8. Input Tapes:

IN - BCD tape containing card images of data deck

9. Output Tapes:

NTAPE1 - Temporary storage for grid point axes input,
initial displacement input, and element defini-
tion input

NTAPE2 - Temporary storage for grid point loads input,
prescribed displacewent input and special
element input

INTAPE - TITLE, MATER, PRINT sections are output if they
were present,

10. Scratch Tapes: None

1L Subroutine User: REFORM

12. Subroutines Required:

LATCH
FORMIN

13. Remarks: None

8.190

1. Subroutine Name: LATCH

2. Purpose: Compare a six character name to the recognizable
list of input section names for Report Form Input.

3. Equations and Procedures: The six character name LABEL is
compared to each of the legal input section names (array
NAMES). If a match is found then LEADER is set to the
position number in NAMES which contained the matching name.
If no match is found then LEADER is set equal to one plus the
number of legal section names.

4. Input Arguments:

LABEL - name to be matched
NUMNAM - number of valid input section names
NAMES - array containing valid input section names

5. Output Arguments:

LEADER - position number in NAMES of input section name which
matches LABEL

If no match was found then LEADER is set equal to
NUMNAM + 1

6. Error Returns: None

7. Calling Sequence: CALL LATCH (LABELs LEADER, NUMNAM, NAMES)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1BA!6 Bytes.

12. Subroutine User: PHASE1

13. Subroutines Required: None

14. Remarks: None

I
8.191

1. Subroutine Name: FORMIN

2. Purpose: Read and store on tape or in core all table
form input to Phase One of Report Form Input Preprocessor.

3. Equations and Procedures: The decision to store data on
tape or in core is determined by examining the input
variable NTAPE. If NTAPE is less than or equal to zero
then the data is stored in core, otherwise the data is
stored on the unit specified by NTAPE. Any modal values
read are always stored in core.

4. Input Arguments:

LEADER : Index number referring to input section being
processed

MEMORY : Not used

NAMES : Array containing legal input section labels
NTAPE : Storage indicator, if*O then NTAPE contains

unit number for external storage
AMODAL : Storage reserved for modal values read, if any
MODAL : Modal card label
NUMBER : Nwmiber of input values to be read per card
REPEAT : T-ogical variable indicating legality of repeat

option
FMTl-5 : Input formats
MSGl-3 : Error message formats
WARN : Error message warning flag
FATAL : Error message fatal flag
NCARD : Number of input cards per table entry
CORE : Core storage area if data is to remain in core
NR, NC : Adjustable dimensions of CORE
LABSUB : Sub-label for multiple condition input sections
IN : Unit number containing input data

5. Output Arguments:

LABEL : Input section label encountered which was
different from input section label now being
processed

KOUNT : Number of input table entries read
NERROR : Error indicator
NCOND : Condition number for encountered sub-label
SCALAR : Constant for encountered sub-label

8.192

6. Error Returns: Error conditions are indicated in NERROR
as follows:

If NERROR equals zero, then no error has occurred
If NERROR is less than zero, then a sub-label has been
encountered
If NERROR is greater than zero, then a fatal error has
occurred and an appropriate message will be printed

7. Calling Sequence: Call FORMIN

(LEADER, MEMORY, NAMES, LABEL, KOUNT, NTAPE, AMODAL, MODAL,
NUMBER, REPEAT, FMT1, FMT2, FMT3, FMT4, FMT5, MSG1,
MSG2, MSG3, WARN, FATAL, NERROR, NCARD, CORE, NR, NC,
LABSUB, NCOND, SCALAR, IN)

8. Input Tape: IN contains input data

9. Output Tape: If NTAPE is greater than zero then it will
contain the stored input, otherwise there is no output
tape.

10. Scratch Tapes: None

11. Storage Required: Total storag(required is C74 6 Bytes.

12. Subroutine User: PHASEl

13. Subroutines Required: None

L4. Remarks: None

8.193

1. Subroutine Name: PHASE2

2. Purpose: Merge, order and output form input data stored
by PHASE1.

3. Equations and Procedures: The input sections stored by
PHASE1 are detected by examining the array MEMORY. The
exact procedure is to check the MEMORY array in the order
required for output and if the MEMORY value for that section
is greater than zero then output that section's stored data;
otherwise continue to the next section. The order in which
the stored input sections are output, if present, and the
sections that they are to be merged with is as follows:

Inout Section Generated from Report Form Input Sections

NREF SYSTEM
TZERO SYSTEM
GRTD COORD, TEMP, PRESS
BOUNDS BOUND, CALC, INITA, PRDISP
ELEM ELEM, EXTERN
TRANS TRANS
GRAXES GRAXES
YOADS LOADS
END END
CHECK CHECK

I. Input Arguments:

COORD : Array containing system grid point
coordinates

T : Array containing grid point temperatures

P : Array containing grid point pressures

MEMORY : Array indicating report from input
sections read

IBOUND : Array containing grid point boundary
conditions

NAMES : Array containing legal report form input
section names

TM : Array containing modal values for grid
point temperatures

PM : Array containing modal values for grid
point pressures

BM Array containing modal values for grid
point boundary conditions

SM : Array containing modal values for grid
point load conditions

INM : Array containing m3dal valuee for initially
displaced grid points

8.194

PRM : Array containing modal values for pre-
scribed displaced grid points

EM Array containing modal values for special
element input

NLOAD : Number of loaded grid points per load
condition

NINITA : Number of initial displacement conditions

NPRDIS : Number of prescribed displacement condi-
tions

ICALC : Array containing solution codes

NREF : Number of g.id points in system

NREFP : Number of input grid points

NTD : Number of degrees of freedom per grid point
NL : Number of load conditions

NID : N,,mber of initially displaced grid points

NPD : Nixber of prescribed displaced grid points

NAXES : Number of grid point axes transformation
systems

NELEM : Number of elements

NM : Npumber of requests of material library

NREF4 : Number of input boundary condition points

TZERO : System base temperature
INTAPE : Unit on which processed output is to be

written
LOCATE : Array indication storage location of input

sections

NUMCAL : Number of solution codes

NUMNAM ; Number of legal report form input section
labels

ICASE : Not used

NDIR : Number of directions per g, ' point

NEND : Not used

NREF4C : Number of input boundary condition points
actually read

NREFPC : Number of input grid points actually read

NELEMC : Number of input elements actually read

8.195

NGRAXC : Number of input grid point axes systems
actually read (transformation matrices

generated)

NTRANC : Number of input grid point axes systems
actually read (transformation matrices
input)

IN : Net used

NRFP : Not used

NRF : Adjustable dimension for COORD, T, P, and
IBOUND

NPRKT : Number of entries in element pressure
section

NTPKT : Number of entries in element temperature
section

IODISR : Output unit number for prescribed dis-
placement matrix

NAMDIS : Name of prescribed displacement matrix

NPDC : Number of prescribed displacement condi-
tikons

5. Output Argument

DINFO :Array containing dynamics information

for eigewvalue analysis
ERROR :Error indicator

6. Error Returns: Error messages are indicated in Appendix.
If an error occurs logical variable ERROR is set to TRUE
and control is returned to the calling program.

7. Calling Sequence: Call PHASE2

(COORD, T, P, MEMORY.. IBOUND, NAMES, TM, PM, BM, SM, INM,
PRM, EM, NLOAD, NINITA, NPRDIS, ICALC, NREF, NREFP, NTD,
NL, NID, NPD, NAXES, NELEM, NM, NREF4, TZERO, INTAPE,
LOCATE, NUMAL, NUMNAM, ICASE, NDIR, NEND, NREF4C, NREFPC,
NELEMC,. NGRAXC, NTRANC,. INI NRFP, NRF, ERROR, DINFO, IODISP,
NAMDIS, NPDC, NPRKT, NTPKT)

8. Input Tapes: .he array LOCATE contains the unit number, if
any, on which aata was stored by subroutine PHASE1.

8.196

-,. ,=q~ i I- ...

9. Output Tape: INTAPE contains processed output.

10. Scratch Tapes: None

11. Subroutine User: REFORM

12. Subroutine Required: OPEN

13. Remarks: None

8.197

; L ...-...

1. Subroutine Name: PDISP

2. Purpose: Generate prescribed displacement matrix if
required.

3. Equations and Procedures:

A. Check if matrix name is suppressed, if it is then
return (no matrix is output).

B. Check if NPDC+J and NPDC<NL print error message and return.
C. Use EUTL5 to write matrix header.
D. If MODAL array is blank insert zeros, if not insert

MODAL values into displacement column.
E. Loop on number of grid points for which values were

given, inserting them into the displacement column.
F. Compress column each time, using EUTL8, and write it out.
G. If column compresses to zero skip write out.
H. Do (D) to (G) for each prescribed displacement condition.
I. At end use EUTL6 to -rite matrix trailer.

4. Input Arguments:

NREF - number of system grid points
NTD - number of degrees of freedom/point (NDEG*NDIR)
NL - number of external load conditions input
PRM array of modal values/condition
NPROIS - number of input points/condition
IODISP - output logical unit number of matrix
NAMDIS - name of output matrix array (7 elements long)
NPDC - number of prescribed displacement conditions input
DISP - (array area used by IBOUND array used in PHASE2-

now used to store displacement column)
KTAPE - tape logical unit number used for displacement input

5. Output Arguments: ERROR - logical variable true if error
return is used.

6. Error Returns: If NPDCIl and NPDC<NL.

7. Calling Sequence:

Call PDISP(NREF,NTD,NL,PRMNPRDIS,NPDC,IODISP,NAMDIS,DISP,
KTAPEERROR)

8. Input Tapes: KTAPE - See item 4.

9. Output Tapes: NPOT - standard print out unit; IODISP - See Item 4

10. Scratch Tapes: None

8.198

11. Storage Required: Total Storage required is 7DE 16 Bytes.

12. Subroutine User: PHAS.'2

13. Subroutine Required:

EUTL5
EUTL6
EUTL8

14i. Remarks: None

8.199

1. Subroutine Name: OPEN

2. Purpose: Select a unit and then locate the requested
input section on that unit

3. Equations and Procedures: The correct unit number is
extracted from the array LOCATE. The unit is then searched
for the requested input section. Searching starts from the
present position of the unit and allows the end of the
unit's extent to be reached twice before the search is
abandoned.

4. Input Arguments:

LEADER : Identification number of input section
being proce-ssed

NAMES : Array containing valid labels
LOCATE : Array containing corresponding logical

units for valid labels
* : Non-standard return for error condition

5. Output Arguments:

NTAPE : Unit containing requested input section

6. Error Returns: If the requested input section is not
located on the selected unit the non-standard return
is used.

7. Calling Sequence: Call OPEN

(LEADER, NAMES, LOCATE, NTAPE, $XXXXX) where XXXXX
is the statement number to which control is returned
in the calling program if an error occurs.

8. Input Tapes: The array LOCATE contains the logical unit
numbers which may be input tapes.

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 24A 1 6 Bytes.

12. Subroutine User: PHASE2

13. Subroutines Required: None

14. Remarks: None

8.200

1. Subroutine Name: CHEK

2. Purpose: Perform input/output cross-checking for
USER04 module

3. Equations and Procedures: The required input sections
for the selected output matrices are indicated in the
array MASTER (see subroutine LOGFLO). The actual input
sections processed are indicated in the array ICONT.
The logical array, GO, is set according to the informa-
tion in MASTER as compared with ICONT. If an output
matrix requires an input section that is not present
then a message is printed giving the matrix name and
correspondihg position in the GO array is set to .FALSE.

4. Xnput Arguments:

NAMOUT : Array containing output matrix names
NUMOT : Number of output matrices
NAMIN : Array containing input matrix names
NUMIN : Number of input matrices
MASTER : Array indicating required input sections
NUMAST : Length of MASTER
ICONT : Array indicating processed input sections
NCONT : Length of ICONT

5. Output Arguments:

GO : Array indicating input requiremern.s have
been satisfied, one position for each
possible output matrix

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, NUMOT, NAMIN, NUMIN, MASTER, NUMAST, ICONT,

NCONT, GO)

8. Inpat Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Rcsquired: Total storagc required is 59A 16 Bytes.

12. Subroutir User: USO4A

13. Subroutines Required: NTEST

14. Remarks: None

8.201

1. Subroutine Name: OUTINT

2. Purpose: Output interpreted input data as a matrix

3. Equations and Procedures: After processing the input
data deck, all necessary information is stored in three
areas. System control information is stored in the array
KNMD and in the first two records on scratch unit NTAPE1.
Element generation data is stored on scratch unit NTAPE3.
All of this data is output as a matrix, the first column
containing KNMD, the second and third columns containing
the first two records from NTAPE, the fourth column
containing two words (number of elements, NELEM, and
grid point axes indicator) and the last 2*NELEM columns
containing the input element generation data.

4. Input Arguments:

NAMOUT : Array containing output matrix name
IOSFEC : Array containing unit specifications for

output matrix

NTAPEI : Unit containing system control information
NTAPE3 : Unit containing element generation data
KNMD : Array containing system control information
NUMK : Length of KNMD
IWORK : Work storage area

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, IOSPEC, NTAPE1, NTAPE3, KNMD, NUMK, IWORK)

8. Input Tapes:

NTAPE1 : Unit containing s, .tem control information
NTAPE3 : Unit containing element generation data

9. Output Tapes:

IOSPEC(l): Unit whl"' will contain interpreted input I
data matiix

10. Scratch Tapes: None

11. Storage Required: Total storage required is 6DEI 6 Bytes.

12. Subroutine User: USO4A

8.202

13. Sub~routine Required:

EUTL5
EUTL6

14. Remarks: None

8,203

-- Nor-

1. Subroutine Name: FLOADS

2. Purpose: To generate a matrix of external grid point
loads which is aeceptable to Format.

3. Equations and Procedures: A grid point load matrix, PCOL,
is read from NTAPE4 for each load condition. It is then
converted into compressed format and stored on tape I0SPEC.

The matrix dimensions are NSYS x NL, where NSYS is the
size of the total assembled load column and NL is the
number of grid point load conditions.

I. Input Arguments-

NSYS - Size of total assembled load column
NAMOUT- Array containing output matriX name for load

matrix
IOSPEC- Output tape unit number for loads matrix
NTAPE4- Input tape unit number containing loads matrix
PCOL - Core storage area. for loads matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: CALL FLADS (NSYS, NAM$UT, IOSPEC,

NTAPJ4, PCoL)

8. Input Tapes: NTAPE4

9. Output Tapes: IOSPEC

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 34A 16 Bytes.

12. Subroutine User - USO4A

13, Subroutines Required - None

14. Remarks: None

8.2o4

1. Subroutine Name: FTR

2. Purpose: To generate a matrix which will transform
another matrix from full system coordinates to "reduced"
system, i.e. boundary condition constrained.

3. Equations and Procedures: The matrix TR is of order
NMDB X NSYS such that if J = LIST (I), then the element
TR (I, J) = 1.0. LIST contains the row numbers of the
full system which are to be retained in the reduced
matrix. Only fixed bounds are reduced out as indicated
by KODE = 0 in input data bounds.

Each column is generated and stored on tape as defined
by FORMAT. Each column record consists of: J, 1, 2, l.O
where J = LIST (i).

Input Arguments: NMDB - order of reduced matrix
NSYS - order of full system

NAM0UT - matrix name of TR
ITSPEC - matrix output tape for TR

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL FTR (NSYS, LIST, NTAPE1, NAM0UT, IOSPEC)

8. Input Tape: -NTAPE1

Record #1 COMI (not required)
R,,lord #2 XNDB1, NDB., (LST (1), I=l, NMDB)

9. Output Tpon: IOSPEC - Format Output Tape Number

10. Scratch Tapes: None

11. Storage Roquired: Total Storage required is 34816 Bytes.

12. Subroutine User: USOtA

13. Subroutines Required: None

14. Remarks: None

8.205

-- I

i. Subroutine Name: TSYS

2. Purpose: To output as a format matrix system constants
needed outside of the USER04 module.

3. Equations and Procedures: The array NMD containing
system constants generated in the input phase of the
USERO4 module is passed to subroutine TSYS by subroutine
USERO4A. These constants are then converted to floating
point variables and outputs a matrix with 2 columns to
the format system.

The constants that are output are as follows in their
respective order:

NDIR - number of directions
NDEG - number of types of degrees of freedom
NREF - Highest reference node in element connections
NMDB - the order of the reduced system = NMDBI+NMDB?
NMDBO - the number of zero boundary conditions
NMDB1 - The number of ones
NMDB2 - the number of twos
NMDBO1 - the number of zeros plus ones
NMDB12 - the number of ones plus twos
NTYPE - code for element degrees of freedom

NTYPE = 0 for 3 types of D.O.F.
NTYPE = 1 for 1 or 2 types of D.O.F.

NSYS - the total number of system degrees of freedom
equals NDIR*NDEG*NREF

NELEM - the number of elements in the analyses
NL - the number of external load conditions in the

analysis

4. Input Arguments:

NMD - array of system constants
NAMOUT - Array containing the name of the format matrix
NSET - logical unit number matrix is to be written on
NREF - highest reference node in element connections
DINFO - array containing dynamics information for

eigen value analysis
DINFP 1 - the number of eigen values requested
DINFg 2 - the convergence criteria
DINF 3 - the maximum number of iterations
DINFO 4 - control for debug print
DINFO 5 - first normalizing element for print
DINF9 6 - second normalizing element for print
DINFI 71 - control for guess vector iterations start

8.206

I

5. Output Arguments:

IHONT - contains harmonic data

6. Error Returns: None

7. Calling Sequence: TSYS(NMD,NAMOUT,NSETNREFIHONT)

8. Input Tapes: None

9. Output Tapes: NSET

10. Scratch Tapes: None

11, Subroutine User: USO4A

12. Subroutine Required: EUTL5,EUTL6

13. Remarks: Note that thase constants have been converted to
floating point numbers

p20

1. Subroutine Name: USO4B

2. Purpose: Control Phase Two and Phase Three operations
(element matrix generation and element matrix output,
respectively).

3. Equations and Procedures: System control information
is extracted from the array KNMD. Scratch units are
assigned from the array ISSPEC. If input displacements
are present then subroutine DEFLEX is called to record
the input displacemeftts on scratch unit NTAPE4. If the
interpreted input matrix position is non-blank then
subroutine ININT is called to generate input tapes NTAPE1
and NTAPE3. Subroutine FELEM is called to control the
generation of the element matrices. And, finally, sub-
routine OUTMAT is called to place the generated matrices
into the Format System.

4. Input Arguments:

NUMOT : Number of output matrices
NAMOUT : Array containing names of output matrices
IOSPEC : Arrby containing unit specifications

for output matrices
NUMIN : Number ol input matrices
NAMIN : Array containing names of input matrices
INSPEC : Array containing unit specification for

input matrices
NUMSR : Number of available scratch units
ISSPEC : Array containing scratch unit specifications
NUMSC : Number of scalars
SCALAR : Array containing scalars
NWORKR : Number of available storages in work area
WORK : Work area
IPRINT : System print control
KNMD : System control information
MASTER : Array containing input/output cross-checking

codes
NUMAST : Length of MASTER
NUMK : Length of KNMD

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Return: If an error is detected in element matrix
generation or in element matrix output then ERROR is set
to TRUE and- control is returned to the calling program.

8.208

7. Calling Sequence: Call USO4B

(NUMOT, NAMOUT, IOSPEC, NUMIN, NAMIN, INSPEC, NUMSR,
ISSPEC, NUMSC, SCALAR, ERROR, NWORKR, WORK, IPRINT,
KNMD, MASTER, NUMAST, NUMK)

8. Input Tapes:

NTAPE1 : Contains system control information
NTAPE3 : Contains interpreted element input

9. Output Tapes:

IOSPEC(l,6) : Reserved for assembly transformation
matrix

IOSPEC(1,7) : Reserved for element stiffness matrices
IOSPEC (1,8) : Reserved for element load matrices
IOSPEC 1,9) : Reserved for element stress matrices
IOSPEC 1,10) : Reserved for element thermal stressmatrices
IOSPEC(I,1) : Deserved for element incremental

stiffness matrices
I-OSPEC(I,12) : Reserved for element mass matrices

10. Scratch Tape:

NTAPE2 : Contains element generated matrices
in compact form

NTAPE4 Contains input displacements, if
present

ii. Storage Required: Total storage required is 7D816 Bytes.

12. Subroutine User: US04

13. Subroutines Required:

NTEST
ININT
-DEFLEX
FELEM
OUTMAT

14. Remarks: None

8.209

[I

1. Subroutine Name: ININT

2. Purpose: Restore data from interpreted input matrix

3. Equations and Procedures: Subroutine EUTL3 is called
to.locate the input matrix. The first column of the
matrix contains system control information and is read
into KNND. Columns two and three contain fulther system
information ane, are recorded as the first two records
on NTAPE1. Column four and all succeeding columns contain
element generation input data and are recorded on NTAPE3.

4, Input Arguments:

NAMIN : Array containing input matrix name
INSPEC : Array containing unit specifications

for input matrix
NTAPEI : Unit reserved for system control information
NTAPE3 : Unit reserved for element generation input data
KNMD : Array reserved for system control information
IWORK : Work storage area
NUMK : Length of KNMD

5. Output Arguments:

IER : Logical variable indicating error condition

6. Error Returns: If the input matrix cannot be located, or
a word count error occurs for columns one or four, or the
matrix trailer record is encountered unexpectedly, thcn
IER is set to .TRUE..

7. Calling Sequence:

(NAMIN, INSPEC, NTAPE1, NTAPE3, NMD, IWORK, NUMK, IER)

8. Input Tapes:

INSPEC(l) : Unit containing interpreted input matrix

9. Output Tapes:

NTAPE1 : Unit reserved for system control information
NTAPE3 : Unit reserved for element generation input

data

10. Scratch Tapes: None

11. Storage Required: Total storage required is 91216 Bytes.

8.210

12. Subroutine User: US04B

13. Subroutines Required: EUTL3

14. Remarks: None

4 8,211

iw

1. Subroutine Name: DEFLEX

2. Purpose: Sort input displacement matrix into separate
element input sections

3. Equations and Procedures: The input displacements for
the system are read into the IWORK array and restored
at the end of the IW6RK array. For each element, the
following procedure is invoked: the element generation
input data is read from scratch unit NTPE3; the array
containing the element definition points is extracted;
the input displacements corresponding to these points
are selected from the system input displacements and
written on scratch unit NTAPE4.

4. Input Arguments:

NSYS : Total degrees of freedom in system
NAMIN : Array containing input matrix name
INSPEC : Array containing unit specifications

for input matrix
NTAPE'2 : Unit containing element generation input
NTAPE 4 : Unit reserved for element input displacemients
IWORK : Work storage area
NWORK : Length of IWORK
MAXNI1 : Maximum length of record on NTAPE3

5. Output Arguments:

IER : Logical variable indicating error condition

6. Error Returns: If the input matrix cannot be found,
or its dimensions are not NSYS by one or !WORK does not
contain .sufficient storage locations then IER is set
to .TRUE..

7. Calling Sequence:

(NSYS, NAMIN INSPEC, NTAPE3, NTAPE4, iwom, NWORKR,
MAXNIl, IER5

8. Input Tapes:

NTAPE3 : Unit containing element generation input data
INSPEC(l): Unit containing system input displacement matrix

9. Output Tapes:
NTAPE4 : Unit reserved for element input displacements

8.212

10. Scratch Tapes: None

11. Storage Required: Total storage required is AD416 Bytes.

12. Subroutine User: USO4B

13. Subroutines Required:

EUTL3
EUTL9

14. Remarks: None

I

{ 8.213

.- -..

Vow,-

1. Subroutine Name: FELEM

2. Purpose: Set element matrix generation controls and
initiate matrix generation.

3. Equations and Procedures: Logical unit definitions are
assigned to their structural system functions. An array,
IWORK, 1r v served for storage of generation controls
and system information. The generation controls are
determined bt, examining the output matrix names and the
system informatllnn : retrieved from unit NTAPE1. Sub-
routine SQJISH is cal3ed to compute matrix suppression
controls. The number of elements is read from unit NTAPE3
and subroutine ELPUJG, which selects the correct element
type, is called for each element.

4. Input Arguments:

KP : Not used
NTAPE1 : Logical unit containing system control

information
NTAPE2 :Logical unit reserved for generated element

matrices
NTAPE3 : Logical unit containing interpreted element

input
NORDM : Maximum element degrees of freedom
NRSELM : Maximum element stress order
NOINKM : Maximum storage required for element stiffness

matrix
NIAM : Maximum storage required for element matrix

record on NTAPE2
NTAPE4 : Logical unit containing input displacements,

if present

5. Output Arguments:

ERROR : Logical variable indicating error condition

6. Error Returns: If an error occurs in generation of element
matrices then ERROR is set to .TRUE. and control is
returned to the calling program.

7. Calling Sequence: Call FELEM

(KP, NTAPE!, NTAPE2, NTAPE3, NORDM, NRSELM, NOINKM,
NIAM, ERROR, NTAPE4)

8. Input Tapes:

NTAPE1 : Contains system control in:formation
NTAPE3 : Contains interpreted element input

8.214

-- - ---- ---- ----- ----

9. Output Tapes:

NTAPE2 : Reserved for compact storage of element

generated matrices

10. Scratch Tapes: None

11. Storage Required: Total storage required is 5D8 16 Bytes.

12. Subroutine User: USOB

13. Subroutines Required: ELPLUG, SQUISH

i1. Remarks: None

8 .I

I
4

., 8.215

$ C!

1. Subroutine Name: SQUISH

2. Purpose: Set matrix suppression codes for element
generation phase

3. Equations and Procedures: The indicators are initially
set to zero, signifying suppression is desired. Sub-
routine NTEST is called to examine the output matrix
names for suppression selections. For each non-suppressed
matrix position encountered the corresponding indicator
is reset to one.

4. Input Arguments:

NAMOUT : Array containing matrix names
NUMOT : Number of output matrices

5. Output Arguments:

KK : Suppression indicator for element stiffness
matrices

KF : Suppression indicator for element load matrices
KS : Suppression indicator for element stress

matrices
KN : Suppression indicator for element incremental

stiffness matrices
KM : Suppresston indicator for element mass matrices
KDS : Suppression indicator for element structural

damping matrices
KDV : Suppression indicator for element viscous

damping matrices
KTS : Suppression indicator for element thermal

stress matrices

6. Error Returns: None

7. Calling Sequence:

(NAMOUT, KK, KF, KS, KN, KM, KDS, KDV, KTS, NUMOT)

8. Input Tapes: None

9. Output Tapes: None

10. -Scratch Tapes: None

8.216

1. Storage Required: Total storage required is 3DE1 6 Bytes.

12. Subroutine User: FELEM

33. Subrotines Required: NTEST
!4. Remarks: None

8.217

. Subroutine Name: ELPLUG

2. Purpose: Select proper element type to generate
requested element matrices.

3. Equations and Procedures: Subroutine REC1 is called
to obtain the interpreted element input. If input dis-
placements were present then the values are retrieved
from unit NTAPE4. Included in the interpreted element
input is the element type code number (plug number).
From this data the proper plug subroutine is called and
the requested element matrices are generated. If the plug
number is five, six or fourteen the grid point axes
transformations are then applied. If the plug number
was one, two or seven then grid point axes transform-
ations were applied inside the plug. Subroutines REC3
and REC4 are called to write as external units element
control data and the generated element matrices,
respectively. Finally, if an element matrix print has
been requested then subroutine ELPRT is called to
perform the printing.

There is only one exception to the above procedure.
If the option to reppsc element matrices has been
selected (IP = -2).. then the plug subroutine is bypassed
and element matriceR from the previous element are
written again by REC3 and REC4.

4. Input Arguments: The input arguments contained in JWORK
are:

JWORK(l)-IEL : Element generation sequence
number (IEL = 1,2,3, . . . , NELEM)

JWORK(2)-ITAPE : Indicator controlling writing of
matrices on external unit

JWORK(3)-KK : Element stiffness matrix suppression
control

JWORK(4)-KF : Element load matrix suppression
control

JWORK(5)-KS : Element stress matrix suppression
control

JWORK(6)-KM : Element mass matrix suppression
control

JWORK (7) -KDS : Not used
JWORK (8) -KDV Not used
JWORK (9) -KN : Element incremental stiffness matrix

suppression control
JWORK(l)-NNDB : Not used
JWORK(12)-NDZR : Nu;ber of directions per grid point
JWORK(13)-NDEG : Number of sol.ution degrees of

freedom per grid point
JWORK(lIl)-ICONT : Grid point axes transformation

indicator

8.218

JWORK(15)-NTAPE2 : Unit number reserved for generated
element matricesJ ORK(16)oNRTAPE3 : Unit number containing interpreted
element input

JWORK(18)-ILP : Internal element type code

JWORK (19) -IPL : Input element type code
JWORK (20)-NTAPE4 : Unit number containing input dis-

placement, if present
JWORK(21)-Ih9D!SP : Variable indicating presence of

input displacements

Other input arguments are:

NUMOT : Number of output matrices
NAMOUT : Array containing output matrices names

5. Output Arguments: Input and output arguments are contained
in the array JWORK. The output arguments contained in
JWORK are:

JWORK(10)-NORD : Element degrees of freedom
JWORK(17)-NIAM : Maximum number of storages required

to write a record on unit NTAPE2
JWORK(20)-NERR : Returning error code,

if NERR is zero then no error has
occurred,
if NERR is one then element type code
number is incorrect,
if NERR is two then the number of
element defining points is incorrect,
if NERR is three then the special
element input is incorrect, and
if NERR is four then the number of
element degrees of freedom is
incorrect.

6. Error Returns: If NERROR is not zero upon return from

ELPLUG, then an error has occurred.

7. Calling Sequence: Call ELPLUG (JWORK, NUMOT, NAMOUT)

8. Input Tape:

NTAPE3 : Unit containing interpreted element
input

9. Output Tape:

NTAPE2 : Unit reserved for generated elentent
matrices

10. Scratch Tapes: None

8.219

11. Subroutine User: FELEM

12. Subroutines Required:

REC1
PLUG1
PLUG2
PLUO5
PLUG6
PLUGT
PLUGI
AXTRA3
AXTRA2
AXTRA1

REC3
EtEC 3
ELPRTHTC 0
PLUG25
PLUGIO
FLUG13
PLUG23
PLUG20
PLUG26

13. Remarks: Storage for the generated element matrices and
work areas required by ELPLUG is allocated by equivalencing
into the blank common wcz-k area starting at location 1001
and extending to location 6000. Work storage for the
various element types is allocated by equival6nding into
the blank common work area at location 6001.

8.220

NIP
1. Subroutine Name: REC3

2. Purpose: Write or read element control information tape
records.

3. Equations and Procedures: The decision to read or write
the record is determined by examining the input variable
IOPT in the following manner:

if IOPT - 1 the record is read
if IOPT - 2 the record is written

4. Input Arguments: (if IOPTt2)

IOPT: Read/write indicator
K: Fortran logical unit number
N13: Number of words in record (excluding N13)
JEL: Element number
IPL: Element type code number (plug number)
NLIST: Element order (number of degrees of freedom

per point * number of points)
LISTEL: Vector containing boundary condition information

for element
NIA: Not used (set equal to one)
IAKEL: Not used

5. Output Arguments: (if IOPT 1)

Given the proper value of IOPT, all of the above input
arguments will be output arguments with the exception of
IOPT and K, which are always input arguments.

6. Error Returns: None

7. Calling Sequence:

CALL REC3 (IOPT, K, N13, JEL, IPL, NLIST, LISTEL, NIA, AKEL)

8. Input Tape: If IOPT_<I, then K is an input tape.

9. Output Tape: If IOPT; 2, then K is an output tape.

10. Scratch Tape: None

11. Storage Required: Total storage required is 36816 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: None

8.221

1. Subroutine Name: REC4

2. Purpose: Read or write generated element matrices records.

3. Equaticns and Procedures: The decision to read or write
the record is determined by examining the input variable
IOPT in the following manner:

if IOPT.!:l then a record is read
if IOPT 2 then a record is written

4. Input Arguments: (when IOPTz_2)

IOPT: Read/write indicator

K: Fortran logical unit number

NOINK: Number of storages required for stiffness and
incremental stiffness matrices

AKELT: Element stiffness matrix

NORD: Number of storages required for element loads
matrix

FTEL: Element loads matrix

NNO: Number of element defining points (node points)

NODES: Grid point numbers defining element
NSEL: Number of storages required for element stress

matrix
NRSEL: Number of rows in element stress and thermal

stress matrices, also number of storages required
for element thermal stress matrix

SEL: Element stress matrix

SZALEL: Element thermal stress matrix

ANEL: Element incremental stiffness matrix

FNEL: Not used

NMASS: Number of storages required for element mass
matrix

AMASS: Element mass matrix

NDMPV: Number of storages required for element viscous
damping matrix

DAMPV: Element viscous damping matrix

NDMPS: Number of storages required for element structural
damping matrix

DAMPS: Element structural damping matrix

8.222

- - --- ---

5. Output Arguments: (when !OPT 5I)

N14 - number of words contained in record (excluding Ni4)
All of the above input arguments are output arguments given
the correct value of IOPT except for IOPT and K which are
always input arguments.

6. Error Returns: None

7. Calling Sequence:

CALL REc4 (IOPT, K, N14, NOINK, AKELT, NORD, "TZL, NNO,
NODES, NSEL, NRSEL, SEL, SZALEL, ANEL, FNEL, NKASS, AMASS,
NDMPV, DAMPV, NDMPS, DAMPS)

8. Input Tape: If IOPTl then K is an input unit.

9. Output Tape: If IOPTa-2 then K is an output unit.

10. Scratch Tapes: None

11. Storage Required: Total storage required is 85016 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: None

8.223

1. Subroutine name: MINV

2. Purpose: Invert a matrix.

3. Equations and Procedures: The standard Gauss-Jordan Method
is used in which the inverted matrix is stored back on itself.

4. Input Arguments:

A: Matrix to be inverted

N: Order of matrix

D: Determinant of matrix

L: Work vector of length N

M: Wcrk vector of length N

5. Output Arguments: A - Contains the inverted matrix

6. Error Returns: If D = 0, matrix is singular.

7. Calling Sequence: CALL MIN-V (A, N, D, L. M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 81816 Bytes.

12. Subroutine User: TRAIC, NEWFT, PLUG1, PTBM, PTBF, MATPR, NEWFT1

13. Subroutines Required: None

14. Remarks: None

8.224

1. Subroutine Name: AXTRA2

2. Purpose: Apply grid point axes transformation by post-
multiplication using either the actual transformation
matrix or its transpose.

3. Equations and Procedures:

I'llOUT] [Mj [rop or [MOU = GPAJ T

where: [MI@ is the input element matrix,

is the element grid point axes tr-ans-
PIJ formation matrix,

[M0 J is the output transformed element matrix,

[MOU is stored in the same location as [M1 , therefore,

the input element matrix is lost once the multiplication
has been effected. Advantae is taken, during multiplica-
tion, of the fact that [rGPA is structured as a set of

(3 x 3) or (2 x 2) matrices with main diagonal positions
lying on the main diagonal of rpA1.

L PA

4. Input Arguments:

GPAXEL : Element grid point axes transformation matrix, p j

SEL : Input element matrix N
NROW : Number of rows in SEL
NNO : Number of element node points
NDEG : Number of degrees of freedom
NDIR : Number of directions
IPL : Element plug number
ITRAN : Control code, if ITRAN = 0, then[Mou M

if ITRAN = 1, theno[MOU iI [=P T

5. Output Arguments:

SEL : Output transformed element matrix,[Mou

6. Error.Returns: None

7. Calling Sequence:

CALL AXTRA2 (GPAXEL, SEL, NROW, NNO, NDEG, NDIR, IPL, ITRAN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

9.225

11. Storage Required: Total Storage required is 4D61 6 Bytes.

ROW (3)
ISAVr Z3)

12. Subroutine User: ELPLUG, PLUG7, PLUG2, CK22, CKl1

13. Subroutine Required: None

14. Remarks: The output matrix is stored in the input matrix
storage. Grid point axes transformation is not applied
to the rotation terms at the mid-points of the quadri-
lateral thin shell and the triangular thin shell elements.

I

8.226

w.

1. Subroutine Name: MAB

2. Purpose: To evaluate the matrix product A * B = AN

3. Equations & Procedures.

ANnm A nS * B jM

)i. Input Arguments:

A: Elements of A matrix
B: Elements cf[B] matrix
N: Number of rows in [A] matrix
L: Number of columns/rows in [A] B]'matrix
M: Number of columns in [B]matrix
Nl,Ml: Dimension of CA] matrix
N2,M2: Dimension of [B matrix

5. Output Arguments:

AN: The matrix product

6. Error Returns: None

7. Calling Sequence: CALL MAB (A,B,AN,N,L,M,NI,Ml,N2,M2) t
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2F6 1 6 Bytes.

Al

AN(l)

12. Subroutine User . Used by many subroutines within the MAGIC
program

13. Subroutines Required: None 4

14. Remarks: None

8.227

1. Subroutine Name: MSB

2. Purpose: To evaluate the matrix product of a symmetric-
bottom half matrix and a rectangular matrix

3. Equations & Procedures:

ANnm= Sne *Bem

4. Input Arguments:

S: Elements of j matrix (symmetric)
B: Elements of Bj matrix
N: Number of rows in the IS],_ and [A matrices (order)
M: Number of columns in the'j andEAN matrices (order)
NI and MI: Dimensions of the [B] andCAN matrices

5. Output Arguments: AN: Matrix product

6. Error Returns: None

7. Calling Sequence: CALL MSB (S,B:ANN,M,Nl,M1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 31216 Bytes.

B(1)

N (1)

12. Subroutine User: Used by various subroutines within the

MAGIC Program.

13. Subroutines Required: None

14. Remarks:] is of the form
Sl

$2 1 $ 2 2

SI S I "' SN1 N1

.I 1N8

8.228

1. Subroutine Name: BCB
2. Purpose: To evaluate the triple product of the transpose of

a matrix A, a symmetric matrix S and thu A matrix.

3. Equations and Procedures:

AN= = AT *t- *A (See remark I)n n n * n A* 'n

4. Input Arguments:

A: The elements of the [A] matrix
SYM: Thi elements of the [S] matrix (symmetric-bottom half)
NDMD: Dimensicns of a matrix
N,M: Or'der of A matrix
Nl: Dumber of rows to be deleted in multiplication
SCAL: Scalar quantity
IASSY: (see remark 2)

5. Output Arguments:

AN: Elements of the matrix AN which is the final product

6. Error Returns: None

7. Calling Sequence:

CALL BCB (A, SYM, AN, ND, MD, N, M, N1, SCAL, IASSY)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Stotage Required: Total Storage required is 54216 Bytes.

12. Subroutine User: Various routines within MAGIC

13. Subroutines Required: None

14. Remarks:

1. In the summations, the n's must be replaced by dummy
subscripts, running from 1 to n. The dummy must be used
(Ie. n n) to ensure proper summing.

j =3 r2

8.229

2. IASSY controls the summation procedure.

If IASSY = 1, AN will be the sum of the calculated AN
and all previous calculations of AN.
If IASSY = 0, AN will be the triple product for

this calculation.

8

8.230

1. Subroutine Name; MATB

2. Purpose: Subroutine to evaluatr che matrix product of
A transpose and B.

3. Equations and Procedures:
= T

ANnm A en . Bem

where

'Aen is the transpose of Ane.

4. input Arguments:

A: elements of [A matrix

B: elements of 19j mrctrix

N: number of rows in [A) matrix (order)

L: number of columns in LA] matrix (order)

M: number of rows in [B] matrix (order)

Nl,Ml: dimension of [A] matrix

N2,M2: dimension of (B) matrix

5. Output Arguments:

AN: elements of matrix product

6. Error Returns: None

7. Calling Sequence: CALL kATB (A, B, AN, N, L, M, NI, Ml,
N2, M2)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 30616 Bytes.

12. Subroutine User: Various subroutines in MAGIC

13. Subroutines Required: None

14. Remarks: None

8.231

1. Subroutine Name: SYMPRT

2. Purpose: To print a symmetric matrix as output

3. Equations and Procedures: Not Applicable

4. Input Arguments:

SYM: Elements of the syrnmetr,.c matrix
Nl: Matrix identification n*'mber
N2: Dimension of matrix

5. Output Arguments: None

6. Error Returns: None

7. Callin; Sequence: CALL SYMPRT (SYM, Ni, N2)

B. Input Tapes: None

q. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 27016 Bytes.

12. Subroutine User: Various subroutines in MAGIC System

13. Subroutines Required: None

14. Remarks: None

8.232

1. Subroutine Name: LOC

2. Purpose: Compute a vector subscript for an element in a
matrix of spenified storage mode

3. Equations and Procedures: The routine determines the type

of matrix and computes the subscript accordingly.

4. Input Arguments:

I: Row number of element

J : Column number of element

H: Number of rows in matrix

M: Number of columns in matrix

MS: Storage mode of matrix

3 General

1 Symmetric (Upper Half)
2 Diagonal

5. Output Arguments: IR - Resultant vector subscript

6. Error Returns: None

7. Calling Sequence: CALL L$C (I, J, IR, N, M, MS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 29816 Bytes.

12. Subroutine User: MPRD, TPRD, AXTRA3

13. Subrout.ines Required: None

14: Remarks: None

8.233

1. Subroutine Name: ELTEST

2. Purpose: Check on input variables (plug number, number of
nodes, order of matrix', for a specific element.

3. Equations & Procedures: Logical "IF" statement is used to
check equivalence of variables with predefined program con-
stants.

4. Input: IPL & IPLI - plug number & check constant
NNO & NNO1 - number of nodes & check constant
NORD & NORDM - order of matrix & check constant

5. Output: NERR (error return.)

6. Error Returns: NERR = ONo error
NERR = 3. Plug number incorrect
NERR = 2 Number of nodes incorrect
NERR = 4 Order of matrix incorrect

7. Calling Sequence: CALL ELTEST (IPL, IPLl, NNO, NNO1, IP,
IP1, NORD, NORD1, NERR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total storage required is 27A 1 6 Bytes.

12. Subroutine User: All plugs

13. Subroutines required: None

14. Remarks: None

8,234

1. Subroutine Name: HTCO

2. Purpose: The functions of this subroutine is to rearrange the
harmonic number and the harmonic coefficients for Plug 25 to
generate the element stiffness matrix, the pressure load and the
thermal load.

3. Equations and Procedures:

a) Check the load control variable to determine type of loading
for analysis

b) Rearrange the harmonic number and the harmonic coefficients.

4. Input Arguments:

IRT - Load control variable
NL - Harmonic number for the pressure load
NLL - Number of the harmonic for this analysis
JAY - Harmonic numbers array for the pressure load
PRZO - Harmonic coefficients array for the pressure load
NLT - Harmonic number for the thermal load
JAY - Harmonic number array for the thermal load
PRZT - Harmonic coefficients array for the thermal load
JA - Har-monic number constant for the pressure load
PR - Harmonic coefficient constant for the pressure load in radial

direction

PZ - Harmonic coefficient constant for the pressure load in the
axial direction

ST - Harmonic number constant for the thermal load
PRT - Harmonic coefficient constant for the thermal load in the

radial direction

IAI - Harmonic loop control value

5. Output Arguments:

JA - Harmonic number constant for pressure load
PR - Harmonic coefficient constant for pressure load in radial direction
PZ - Harmonic coefficient constant for the pressure load in the

axial direction

JT - Harmonic number constant for the thermal load
PRT - Harmonic coefficient constant for the thermal load in the

axial direction

PZT - Harmortic coefficient constant for the thermal load in the
radial direction

8.235

6. Error Returns: None

7. Calling Sequence:

(IRT,NL,NLL,JAYPRZO,NLTJAT)PRZT,IIRTsJA,PR,PZ,JT,PRT,PZTIAI)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

12. Subroutine User: Elpiug

13. Subroutine Required: None

8.236

1. Subroutine Name: PLUG1

2. Purpose: To formulate the element matrices for a quadri-
lateral plate

3. Equations and Procedures: The iollowing sequence of op-
erations are necessary in order to obtain the element
matrices. Equations are found in Volume I.

A. The material. and geometric properties are obtained from
MAT and EXTRA respectively.

B. From the Appendix of reference 1, the corner points
defining the element are redefined to local oblique
system by TRAOBQ. Provision is made to also account
for different material axis orientation (due to ortho-
tropy) or for a specific input stress direction.

C. The following operations are performed as formulated in
the appropriate equations:

(1) Call NEWFT to form matrices necessary for
thermal loadings,

(2) Call CDELPQ to determine integrals of each zone
of the quadrilateral,

(3) The material property matrix dependent upon the
stress-strain input of EXTRA (4) is coded as EM,

(4) The strain, stress and displacement transformations
are coded as TES, TESS and TW respectively,

(5) Compate [EG] = [TE$JT [EM] [TE$],
(6) Store transpose of[TE$$] .nto[T$AVE] , [T$AVE]is

then stored back into[TE$$J and inverted,

(7) If print option eauals -1, call P1PRTA for print
of intermediate computations,

(8) Initialize the thermal load, pressure, thermal
stress, stress and mass matrices to zero.

D. Membrane computations are performed in the following
manner:
1. Call CKIl to formulate the [K21S] element stiff-

ness matrix in global system,

2. Formulate the transformation from local to global
system by forming the product [TAOM] [TOGM] [TGM] =
TMSJ,

8.237

3. Equations and Procedures: Continued

(3 If mass matrix is requested then
a. Call CMMASS to form the membrane mass matrix

in local systems (CMM),
b. The mass matrix is then transformed to global

systems as [AMASS] = [TGNM]T [CMM] [TGSM].

(4) If stress and/or force matrices are requested then
a. Call C$TM to formulate the membrane stress

matrix [S] ,
b. Call CIMTS to formulate the membrane thermal

force and stress matrices.

(5) If print controls equal -1, call PRT1 to print
out intermediate matrices.

E. Flexural computations are then performed in the
following manner:

(1) Call CK22 to add the flexural contributions to
the stiffness matrix [K21S] ,

(2) Appl transformation to global system by perform-
ing fTFM] = [TGAMB] [TOGB[TGRB2(3) if stress and/or force matrices are requested then

a. If input pressure not equal to O, call CFP
to formulate the pressure matrix,

b. The flexural contributions to the stress
matrix are formulated by calling C$TF,

c. If flexural input temperature not equal to
zero, calls CFFTS to formulate the thermal
force and stress matrices.

(4) If mass is requested then
a. Call CFMASS to form the membrane mass matrix

In local system [CMF],
b. The mass matrix is transformed to global sys-

tem as [AMASS] = [TGFS]T (CMF ETGFS]

(5) Again if the print option is -1, intermediate
element computation printout is obtained from PRT1.

8.238

4. Input Arguments:

IPL : Plug number
NNO : Number of nodes (8)
X',YC,ZC : Coordinates of element node points
TEL : Temperature array of element node points
PEL : Pressures at element node points
NN : Number of nodes
NL : Node point numbers
KK,KN : Control for computation of matrices (see remarks)
GPAXEL : Grid point axes transformations
MAT : Array containing material properties
EXTRA : Array containing geometric properties

5. Output Arguments:

K21S : Stiffness matrix
FTEL : Element force matrix
S : Stress matrix
SZALEL : Thermal stress matrix
AMASS : Mass matrix for dynamic analysis

6. Error Returns:

a. StAndard error returns by ELPLUG (NERR)
b. Sin k = 0 indicates coordinate input data error

7. Calling Sequence:

CALL PLUGI (I.. NNO, XC, YC, ZC, TEL, PEL, QS, IP, NORD,
NERR, NOINK, K21S, ANl, FTEL, S, SZALEL, AMASS, DAMFV,
DAMPS. NSE&L, NN, NL, NMASS, NDMFV, NDMPS, NSEL, KK, KF, K8,
KTS, K , KDS, KDV, KN, TUSEL, EPSLON, SIGZER, MAT, EXTRA.
GIAXEL, 1-,IR, NDEG, ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 291616 Bytes.

12, Subroutine User: ELPLUG

8.239

13. Subroutines Required:

ELTEST CSTM
NEWFT CFMT9
CDELPQ PRT.
MINV CK22
BCB CFP
CKl CSTF
MABC CFFTS
CMMASS CFMASS

14. Remarks:

The following is a list of control indicators for PLUG1.
For all indicators shown a value of one will cause the
operation to be performed and a value of zero will
cause the operation to be skipped.

LT1 - compute membrane contributions
LT2 - compute flexural contributions
KK - compute element stiffness matrix
KF - compute element force matrix

(thermal and/or pressure)
K8 - compute element stress matrix
KTS - compute element thermal stress matrix
KM - compute element mass matrix
IMS - not used
KDV - not used
KN - compute element incremental stiffness matrix

8.240

1. Subroutine Name: CC21

2. Purpose: To assemble a submatrix into an assembled matrix

3. Equations and Procedures: None

4. Input Arguments:

K : Control on positioning of elements for assembly
NI : Constants from PLUGI
C : elements of input matrix

5. Output Arguments:

C21 - elements of the expanded matrix

6. Error Returns: None

7. Calling Sequence: CALL (K, NI, C, C21)

8. Input Tapes: None

9. Output: None

10. Scratch Tapes: None

11. Storage Required: NI(8,lo), C(1), C21(105) and total
storage is (145)10

12. Subroutine User: CK11

13. Subroutines Required: None

14. Remarks: None

8.241

1. Subroutine Name: MABC

2. Purpose: To evaluate the triple product of
[AN] = [A] (B] [C]

3. Equations and Procedures:

a. Each row of the [A] matrix is multiplied by the corres-
ponding column of the (B] matrix and stored in the

[AM) matrix by column.

b. Then each row of the [AM] matrix is multiplied by the
corresponding column of the [C] matrix and the final
product stored in the [AN] matrix by column.

4. Input Arguments:

A: elements of [A] matrix
B: elements of B matrix
C: elements of [CJ matrix
AM: working storage
N: number of rows in A matrix (order)
L: number of rows in [B matrix (order)
K: number of rows in [Cj matrix (order)
M: number of columns in[d matrix(order)
NI., Ml: dimension of [A] matrix
N2, M2: dimension of Almatrix
N3, M3: dimension of LCJ matrix

5. Output Arguments:

AN: Elements of triple product matrix

6. Error Returns: None

7, Calling Sequence:

(A, B, C, AN, AM, N, L, K, M, NI, Ml, N2, M2, N3, M3)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 40A16 Bytes.

8.242

!,

12. Subroutine User: general subroutine used by many other
subroutines

13. Subroutines Required: None

14. Remarks: Standard matrix multiplication routine; but
caution must be exercised when the dimensions and orders
of input and output matrices are different

P-2113

1. Subroutine Name: NEWFT

2. Purpose: Generate membrane and flexural thermal loads
for quadrilateral thin shell in local coordinates

3. Equations and Procedures:

- [F] -1 LOT)
=1 D3CT] {TEMM}

LBFT] = [BC! (TEMF)

where [F] and (CT) are geometric matrices of local

coordinates

{TEMM} = {TEL (I,l)} membrane temperatures

{TEMF} = {TEL (1,2)1 flexural temperatures

4. Input Arguments:

DELTM : Average membrane temperature
DELTF : Average flexure temperature
TEL : Temperature array of element
RIB : Local ' coordinate of node 1
R2B : " Y of node 2
R" X of node3
R B : " Y of node 4
IPRINT : Print option
TZ i Initial membrane temperature

5. Output Arguments:

BMT : Membrane thermal load in local coordinates
BFT : Flexural thermal load in local coordinates

6. Error Returns: None

7. Calling Sequence:

(DELTM, DELTF, TEL, RIB, R2B, R3B, R4B, BMT, BFT, IPRINT,
TZ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.2, 4

Rw

11. Storage Required:

F(3,3), BCT(3,4), CT(3,4), BMT(4,1) BFT(4,1), TEMM(4.),
TEMF (4), TEL(12,2), R1B(l), R2B(1), R3B(1), R4B(I)

Tobal Storage is (22710).

12. Subroutine User: PLUG

13. Subroutines required: "7V, MAB

14. Remarks: a. If print option equals -1, intermediate
computations are printed out.

b. The membrane or flexural contribution is
by passed if the respective thickness is 0.

8.2145

1. Subroutine Name: CDELPQ

2. Purpose: To compute the integrals from equations in
documentation for PLUG1 in Volume I.

3. Equations and Procedures:

DELPQJ = Cx Y where p = 0,1,2,3,4
q i ,1,2, 3,4

C = constant

4. Input Arguments:

AJ - x distance from centroid to respective node point
BJ - y distance from centroid to respective node point

5. Output Arguments:

DELPQ - table of integrals for the 4 zones of the quadri-
lateral

6. Error Returns: None

7. Calling Sequence:

Call CDELPQ (AJ, BJ, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELPQ (4,5,5)
AJ (Li)
BJ 4

Total Storage is (241)1,.

12, Su . routine User: PLU01

13. Subroutines Required: CHDEL1

14. Remarks: None

8.246

L - ~'11

1. Subroutine Name: CHDELI

2. Purpose: To rearrange the integrals generated by CDELPQ

3. Equations and Procedures: None

4. Input Arguments: DELPQ - integrals generated by CDELPQ

5. Output Arguments: DELPQ - rearranged integrals

6. Error Returns: None

7. Calling Sequence: CALL CHDELD1 (DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: DELPQ (4,,5,5)

Total Storage is (70)iO.

12. Subroutine User: CDELPQ

13. Subroutines Required: None

14. Remarks: None

8

8.2'~7

- ~~~ ~ ~ ~ --- 'IWO - -- ~.--y-

1. Subroutine Name: PIPRTA

2. Purpose: Print variables generated by PLUG1, if IPRINT
equals -1.

3. Equations and Procedures: Not applicable

It. Input Arguments:

EX, EY : Yoangs modulus in X and Y directions
respectively

MUXY : Poisson's Ratio
GXY : Shear modulus
GAMA : Material angle
ALPHAX, ALIPAY : Thermal coefficients of expansion in

X and Y directions
TF, TM : Flecural and membrane thickness
RZB : Vector normal to plane of quadrilateral

element
R24 : deviation of local coordinates between

points 2 and 4 of the quadrilateral
LAMDA : Coefficient of normal vector so that

element lies in a plane
R24BP : Sum of the inplane vector and normal

vector
THETA : Angle for calculating centroid of element
E : Column vector colinear with local

geometric X, Y and Z system
TPRIME : Transformation matrix
NL : Node point numbers
SINAL, COSAL : Sine and cosine of oblique coordinate

system
SINA, COSA : Sine and cosine for stress angles
SING, C0SG : Sine and cosine of material angle
EM : Coefficient matrix utilizing Hook's Law
ALPHM : Matrix containing coefficients of thermal

expansion
COORDL : local coordinates
DELPQ : table of integrals for the 4 zones of the

quadrilateral
ALPHG : Dummy
EG : E matrix transformed
TES : Strain transformation matrix
TW : Displacement function transformation

matrix

5. Output Arguments: None

6. Error Returns: None

8.248

7. Calling Sequence:

CALL P1PRTA (EX, EY, MUXY, GXY, GAMMA, ALPHAX, ALPHAY,
TF, TM, RZB, R2'1B, LAMDA, R24BP, ROB,
THETA, E, TPRIME, NL, OINAL, C0SAL, SINA,
110SA, SING, C0SG, EM, ALPHM, COORDL, DELPQ.
ALPHG, EG, TES, TW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is D38 16 Bytes.

12. Subroutine User: PUGl

13. Subroutines Required: None

14. Remarks: None

8.249

1. Subroutine Name: CKI1

2. Purpose: To generate the membrane stiffness for PLUG1,
quadrilateral thin shell element

3. Equations and Procedures: The following sequence of
operations takes place to formulate the membrane stiffness
matrix:

(1) Call CT1. to formulate the membrane displacement
coordinate transformation as TAO.

'Call MATI60 to invert the above matrix.
Call CTOGM to form the transformation from oblique to
geometric coordinates as TOGM.

(4) Generate the transformation matrix from geometric to
reference system coordinates (TGRM) by calling CTGRM.

(5) If grid point axes transformations to another system
other than global are to formulated, call AXTRA2 to
generate the new TGRM matrix.

(6) Generate the displacement function transformation as TU.
(7) Call BCB to form the product

[TU] T [EG [TU = [EO

This matrix is then multiplied by the constant T x SINA
and renamed the JPQ matrix.

(8) Generate the membrane stiffness (C matrix) by calling
CC1. The C matrix is then expanded by CC21 and C21.

(9) The transformation matrix TAO is expanded as TAOM.
(10) Call BCB to form the following products:

(a) [KIlo = [TAOM T [01J [TAOM]
(b) [KllG] = [TOGMj T (K11I1 ETOGMO

(c) [K21S] = [TGRM] T [KGJ [TGRM
The final product,EK21$% is the desired membrane
stiffness matrix.

LI. Input Arguments:

NDIR : Number of directions of movement for each
grid point, ontrol needed for AXTRA2

NDEG : Number of digrees of freedom for each grid
point, contro7. needed for AXTRA2

ICONT : Control set equal to 1 if grid point axes
transforzations a.'e required from input data

GPAXEL : The grid point pzis transformation matrix
NN: Number of grid points (8) describing the element
NL : Array containing rhe grLd point numbers
EEZ : Input on element data card for eccentricity
AJ, BJ : Local X and Y coordinates of the element

8.250

SINA, COSA : Sine and cosine of the angle defined by the
diagonals of the element between grid points
1 and 2

TPRIME : Transformation matrix
IPRINT : Print option
T : Membrane thickness
LT1 : Control set equal to 1 when membrane thickness

is not zero
EG : Material properties matrix
DELPQ : Table of integrals
NI : Array for assembly purposes

5. Output Artuments:

K21S : Membrane stiffness matrix
EO : Material properties matrix
TU
TA0
TAOM : Transformatton matrices defined in item 3 above
TOGM $
TGRM)KllOQk

Cli : Intermediate matrices formed and defined in
JPQ item 3 above.
C21)

6. Error Returns: None

7. Calling Sequence:

CALL CKl, (X21S, NDIR, NDEG, ICONT, GPAXEL, HNO, NL, EEZ,
AJ, BJ, SINA, COSA, TPRIME, IPRINT, T, N!, LT1, EG,
DELPQ, TAO, TAOM, TOGM, TGRM, KilO, KllG, Cll, JPQ,
C21, TU, EO, TF$, TMS, C)

8. Input Tapes: None

9. Output japes: None

10. Scratch Tapes: None

11. Storage Required:

NL (8), GPAXEL (3, 3, 12), AJ (1), BJ (1), TAO (8, 8),
TPRIM1E (3,3), EG (101, EO (10), (55), C21 (i05), NI(8,
10), TU (3, 4), Kll (136), K1lG (210), C3I (105), TAOM
(16, 16), TOGM (16, 20), TGRM (20, 48) JFQ (10), TGRA?16, 48), DELPQ (4 5,), TFS (16, 48), TMS (16, 48)

Total Storage is (46)iC .

8.251

12. Subroutine Users4 PLUG1

13. Subroutines Required:

CT11 CTOGM AXTRA2 ccl
MAT160 C'TGRM BOB 0C21

14J Remarks: None

8.25:

1. Subroutine Name: CT1l

2. Purpose: To formulate the membrane displacement coordinate
transformation as [TA0]

3. Equations and Procedures: The formulation is given in the
documentation for PLUG1 in Volume I.

4. Input Arguments:

AJ : Local X coordinates
BJ : Local Y coordinates
IPRINT : Print indicator

5. Output Arguments:

TA0 : Transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CT11 (AJ, BJ, TA0, IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: AJ (1), BJ (1), TAO (8,8)
Total Storage is (227)iO.

12. Subroutine User: CKl1

13. Subroutines Required: None

14. Remarks: If IPRINT equals -1, the TAO matrix is printed,

8.253

1. Subroutine Name: MAT160

2. Purpose: Invert the TAO matrix

3. Equations and Procedures: None

4. Input Arguments: N - order of matrix to b3 inverted

A - to be inverted

5. Output Arguments: ISING - error messages
DETR - value of determinant
A - contains elements of the inverted

matrix

6. Error Returns: ISING = 0 No error
ISING = 1 Singular matrix

7. Calling Sequence:

Call MATI6o(N, A, ISING, DETR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 644 16 Bytes.

12. Subroutine User: CKll

13. Subroutines Required: None

14. Remarks: None

8.254

1. Subroutine Name: CT0GM

2. Purpose: To formulate the transformation matrix from

oblique to geometric coordinates

3. Equations and Procedures: See writeup for PLUG1

4. Input Arguments:

COSA : Cosine and sine of the angle defined by the
SINA diagonals of the element between grid points

1 and 2

5. Output Arguments:

T0GM : Transformation matrix

6. Error Returns: None

7. Calling Sequence:

CALL CT0GM (COSA, $INA, TOGM)

8. Input tapes: None

9. Output tapes: None

10. Scratch Tapes: None

11. Storage Required:

T0GM (16,20)
Total Storage (67)10

12. Subroutine User CKll

13. Subroutines Required: None

14. Remarks: None

8.255

1. Subroutine Name: CTGRM

2. Purpose: Formulate the transformation from geometric to
reference system coordinates

3. Equations and Procedures: See writeup of PLUG1,

4. Input Arguments:

NL : Node point numbers
EEZ : Eccentricity factor
TRIME : Transformation matrix to be expanded

5. Output Arguments:

TGRM : Transformation matrix

6. Error Returns: None

7. Calling Sequence:

CALL CTGRM (NL, EEZ, TPRIME, TGRM)

8. Input tapes: None

9. Output tapes: None

10. Scr-tch tapes: None

11. Storage Required:

NL (1), TPRIME (3,3), TGRM (20,48),
Total Storage is (275) 10

12. Subroutine User: CK11

13. Subroutines Required: None

14. Remarks: None

8.256

1. Subroutine Name: CC1

2. Purpose: Generate the bottom half of the membrane
contribution to the element stiffness matrix for the
quadrilateral element

3. Equations and Procedures: Contained in documentation
for quadrilateral element in Volume I.

4. Input Arguments:

KI : Control for appropriate computation
JPQ : Matrix containing material properties
DELPQ : Table of integrals

5. Output Arguments:

C : Membrane contribution to stiffness matrix

6. Error Returns: None

7. Calling Sequence: CILL CC (KI, JPQ, DELPQ, C)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELPQ (4,5,5), C (551, JPQ (10)
Total Storage is (66 ."

12. Subroutine User: CKI

13. Subroutines Required: None

lt. Remarks: None

8.257

1. Subroutine Name: CMMASS

2. Purpose: Generate the membrane contribution to the
mass matrix in local coordinates

3. Equations and Procedures: Contained in documentation
for the quadrilateral element in Volume I

4. Input Arguments:

T : Membrane thickness
DOO : Area of each zone of quadril:#,eral
SINA : Sine of angle defined by points 1 and 2 and

the diagonal of the quadrilateral
DENS : Density of the plate material

5. Output Arguments:

AMS : Membrane mass contribution

6. Error Returns: None

7. CallIng Sequence: CALL CMMASS (T, DOO, SINA, DENS, AMS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2CA 16 Bytes.

12. Subroutine User: PLUG1

13. Subroutines Required: None

14. Remarks: None

8.258L. >zxm

1. Subroutine Name: CSTM

2. Purpose: Evaluate the membrane stress matrix in local
coordinates for the quarilateral element

3. Equations and Pro-edures: The following sequence of opera-
tions is performed:

(1) Call CDM to formulate the membrane displacement
derivative matrix as [DFM].

(2) Call MAB to form CAM4 = [DFM] [TMS]

3 Call MAB to form EAM51 = CTU I (AM4]
Call MSB to form [AM61 = 0G] M5

15 Call MAB to form [AM5 = [TES1 IM6
(6, Multiply [AM5]by the thickness and store in appro-

priate location of the stress matrix.

4. Input Arguments, :

R1B
R2B
R3B : Local coordinates
R4B,

TU : Displacement function transformation
EG : Material properties matrix
TES : Strain displacement matrix
I : Membrane thickness
TI4S : Transfoimation matrix to system coordinates

5. Output Arguments:

S : Stress matrix in system coordinates.

6. Error Returns: None

7. Calling Sequence:

CALL C$TM (RlB, R2B, RB, R4B, TU, EG, TE$, T, S, TFS,
TMS, DFM, AM4, AM5, AM6)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

AM41 (it 48), DFNI (4 16), TU (3 4), EG (lO, TES (3,3),
s (1 0,48), AM5 (3 ,46), AM6 (3,48), TFS (16,48), TMS (16) 8),
Total Storage is (176) 1 0 .

8.259

MEFIF

12. Subroutine Us~er: PLUG1

13. Subroutines Required: MAB, MSB

14l. Remarks: None

8.26o

1. Subroutine Name: CDM

2. Purpose: To evaluate membrane displacement derivative
matrix for the 4 zones of the quadrilateral

3. Equations and Procedures:

See Wr.teup on PLUG 1 for equat'.ons

4. Input Argumnencs:

IZ - ccnstant for zone to be evaluated

RIB, R2B, R3B, R4B - local coordinates of element

5. Output Argument..:

LFM - membrane displacement displacement matrix

6. Error returns: None

7. Calling Sequence:

Call CDM (IZ, RIB, R2B, R3B, R4B, DFM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch tapes: None

11. Storage required:

RlB (1), R2B (1), T-3B (1), R4B (1), DFM (4, 16)

Total Storage is (257)10

12. Subroutine User: CSTM

13. Subroutines Required: None

14. Remarks: None

8.261

1. Subroutine Name: CFMTS

2. Purpose: To evaluate the membrane thermal load and thermal
stress matrices

3. Equations and Procedures:

(1) The thermal load is computed as follows:

{AMl = [EM] {ALPHM}

SAM21 [TES]T IAM1j
{TT } [TU] TjA }
(IT} T (SINA)fITJ , then

Call CFM to formulate the thermal load FPB then

{FT} [TMS] T IFB}

(2) The thermal stress matrix is computed as follows:

f A2 = DELTM (T) {AM2}

('Z 12 = [TESS] JAM2)

The SZLM array is assembled into OZALEL,.

4. Input Arguments:

EM : Material properties matrix
ALPHM : Coefficients of thermal expansion
TEO : Strain transformation matrix
TU : Displacement function transformation
T : Membrane plate thickness
OINA : Sine of angle determined by the intersection of

diagonals and grid points 1 and 2
DELPQ : Table of integralsfor the 4 zones of the quadri-

lateral
ENT : Transformation matrix
DELT1 : Membrane temperature
TEO : Stress transformation
TMI : Transformation to global system
;KI : Array containing DELPQ

5. Output Arguments:

SZALEL : Thermal stress matrix
FT : Thermal. load matrix
AM4 '
AM7 : Working arrays
FPB

8.262

Awr

6. Error Results: None

7. Calling Sequence: (EM, ALPHM, TES, TU, T, SINA DELPQ,BMT, DELTM, TESS, SZALEL, FT, TFS, TMS, FPB, AM4, AM7,
WK1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: EM (1), ALPHM (1), TES (3,3), TU (3,4), FPB (16,IT (4), DELPQ (4,5,5), FT (1), AM1 (3), A12 (3), AM4 (44).vAN7 '2,480,ZL4 (3), ZALEL (1), TEZX (3,3), TF (16,)8,
TMO (16,48), WK1 (100)
Total Storages is (195)10•

12. Subroutine User: PLUG1

13. Subroutines Required: MAB, MATB, CFMF

14. Remarks: None

8.263

1. Subroutine Name: CFMV

2. Purpose: To generate the membrane thermal load matrix
in local coordinates

3. Equations and Procedures: Formulations are given in the

documentation on the quadrilateral element in Volume I.

4. Input Arguments:

DELC, : Table of integrals for 4 zones of quadrilateral
DELPQ
IT : Thermal vector
BMT : Transformation matrix

5. Output Arguments:

FPB1 : Thermal vector

6. Error Retirns: None

7. Calling Sequence:

CALL CFMV (DELC, FPBl, IT, BMT, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: DELC (4,5,5), FPB1 (16), IT (4), BMT (4), FPB (16),
DELPQ (4,5,5)
Total Storage is (310)10.

12. Subroutine User: CFMTS

13. Subroutines Required: None

14. Remarks: None

8.264

1. Subroutine Name: PRTI

2. Purpose: If IPRINT equals -1, intermediate matrices

generated are printed out

3. Equations and Prccedures: not applicable

4. Input Argument:

LT - Control on either membrane or flexural output

TU, TAO, TGAMB, TOGBM, TGRBM - transformation matrices

FP, FT, CM, EO, IJPQ, C21, K210, K21G - intermediate

element matrices

KK - Control for dynamics print

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL PRT (LT, TU, EO, IJPQ, C21, K210, K21G, TAO,

TGAMB, TOGBM, TGRBM, EM, CM, FP, FT)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: Noune

11. Storage: EO(lO), IJPQ(lO), C21(105), K210(136).

K21G(210(, TA0(8,8), TU(3,4), TGAIB(16,16),

TOGBM(16,20), TGRBM(20,48), CM(l), FP(l), ET(l)

Total Storage is (538).0

12. Subrousine User: PLUG 1

.3. Subroutine Required: SYMPRT

14. Remarks: Matrices above defined in other writeups.

8.265

1. Subroutine Name: CK22

2. Purpose: Formulate the flexural stiffness matrix in
local coordinates.

3. Equation and Procedures:

(1) The following operations take place to formulate the
transfer motion matrices

(a) Calls CTGB to evaluate the transformation to
geometric coordinates as TMAMB

SbI Inverts TGAMB
Calls CT0GB to formulate the transformation from
oblique to geometric coordinates as TOG5

(d) Calls CTGRB to formulate the transfomaUion from
geometric to reference system coordinaces as
TGRBM

(e) If grid point axes transformations are used, call
AXTRA2 to revise the flexural transformation TGRB.

(2) The flexural stiffness is then obtained by:

a Formulating the rigidity as IPQ
Sb Evaluating the []matrix for each zone by calling

CC2
(c) Assembling theCC]matrix for each zone into C21 by

calling CC2].
(d) Forming the following products:

[k~220] = [TGAMBIT TC22]LTGAB
[K 2 203 = [TOGB]T [K220iffT~OBJ
S215] = [TGRB]T 22G][TGRB]

Where K21$l is the desired flexural stiffness-matrix

4. Input Arguments:

K21$: Input Stiffness matrix from membrane contribution
IA$$Y : control to add membrane plus flexural stiffness
NL : Node points of element
NDIR : Number of direct!ons
NDEG : Number of degrees c movement
ICONT : Control on grid poi. axis transformations
GPAXEL : Grid point axis 'r;isformat-.ons
NNO : Number of no's poi t3 being transformed
AJ;BJ : Local coordin ..:tes

8.266

It - 3F - -,. . .- - '

TMS
TF$
AMATT : Transformation matrices
TRA0BQ
TGN
TPRIME
$INA : Sine and cosine of angle defined by intersection
COSA of diagonals and points 1 and 2
LT2 : Control on flexural computation
EG : Modified materials property matrix
T : F.exural plate thickness
NI : Array for assembly purposes
DELPQ : Table of integrals for 4 zones of quadrilateral

5. Output Arguments

K21$: Flexural contribution to stiffness matrix
TGA4B
T0GB : Transformation matrices
TGRB
TGRBM J
C

EQ
K220
K226 : Intermediate matrices
C22
IPQ
C21

6. Error Returns: None

7. Calling Sequence:

CALL CK22 (K21S, IASSY, NL, NDIR NDEG, IC0NT, GPAXEL,
NNO, AJ, BJ, AMAT, TRA0BQ, $INA, COSA, TGN, TPRIME,
LT2, TW, EG, T, NI, DELPQ, TGAMB, T0GB, TGRB,
K220, K22G, C22, IPQ, C21, TGRMB, EO, TF$, TMS, C)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage:

AJ (1), BJ(].), AMAT (3,4), TRA0BQ (3,3), TGN (4,2,2)
TPRIME (3,3), TW (3,3), EG (10), EO (10), NI (8, 10)
DELPQ (4,5,5 , TGAMB (16,16), C (28). C21 (105),
TGRBM (20, 48) K220 (1361 K22G (210), C22 (105),
T0GB (16,20), TGRB (20, 48), IPQ (10), TF$ \16,)48)
T.M$ (16, 48)

8.267

Total Storage is (269) 10"

12. Subroutine user: PLUG1

13. Subroutines required are:

CTGB, MATI7O, CT0GB, CTGRB, AXTRA2, BCB, CC2, CC21.

111. Remarks:

All formulations are given in the report for the
quadrilateral thin shell element.

8.68

1. Subroutine Name: CTGB

9. Purpose: To formulate the flexural transformation matrix
from local to geometric coordinates.

3. Equations and Procedures:

1) The TGB matrix is formulated from local coordinates
2) Using elements from AMAT, the lengths of the sides

of each zone are computed and assembled in the TGN
matrix

(3) The TON matrix is evaluated for the 4 zones by first
storing RABQ]into [TG] and then solving TN] =

(4) The TGB matrix is then evaluated for the 4 zones as

TGBJ = [T0N~fwx} + [r0N] {W~j
Where fX}and{WYlare arrays of local coordinate values
for the respective zones.

4. Input Variables:

AJ, BJ : Local coordinates
A:MAT : Transformation to local coordinates
TRAOBQ : Transformation from local to oblique coordinates

5. Output Variables

TGAM1 B
TGB : Transformation matrices
TGN

6. Error Returns: None

7. Calling Sequence:

CALL CTGB (AJ, BJ, AMAT, TRAOBQ, TGAMB, TGB, TGN)

8. Input tapes: None

9, Output tapes: None

10. Scratch tapes: None

11. Storage:

TON (4,2,2), TGB (16, 16), TOG (2,2), XD (4), YD (4),
WX (16), WY (16), L (4), TGAMB (16, 16), AJ (1), BJ (1),
AMAT (3,4), TN (4AB
Total storage is (681)10

12. Subroutine User- CK22

8.269

13. Subroutines Called: None

14. Remarks:

All formulations are given in the report on the
quadrilateral thin shell element.

8.270

1. Subroutine Name: MATI70

2. Purpose: To invert the TGAMB]matrix

3. Equations: standard inverse technique where inverted
matrix is stored back on top of ttself.

4. Input Arguments:

N - order of matrix = 16
A - matrix to be inverted

5. Output Arguments

A - inverted mat-.ix
I$ING - error return
DETR - value of determinant

6. Error R.oturn:

IF I$ING = 1, singular matrix

7. Calllng Sequence: CALL MATI70 (N, A, I$!N, DETR)

2. Input Tapes: None

q. Output Tapes: None

10. Scratch Tapes: None

11. Stnrqc'e:

Total Storage required is 66416 Bytes.

12. Subroutine User: CX22

13. Subroutines Required: None

14. Remarks: None

8.271

L -

1. Subroutine Name: CT$GB

2. Purpose: formulate the flexural transformation matrix
from oblique to geometric coordinates

3. Equations and procedures: The formulation is given in the

report on the quadrilateral plate

4. Input Arguments:

SINA, COSA - sine and cosine of the angle defined by the
diagorals and points 1 and 2
TGN - Transformation matrix

5. Output Argiunents:

TOGB - the required transformation matrix

6. Error Returns: None

7. Calling Seqrncc:

CALL CT$ZB (SINA, COSA, TGN, TOGB)

8. Input Tapes: None

q. Output Tapes: None.

10. Scratch Tapes: None

11. Storage: TGN(4,2,2), TOGB(16 20)
Tctal Storage is (76)10

12. Subroutine User: CK22

13. Subroutines Required: None

lit, Remarks: None

8.272

1. Subroutine Name: CTGRB

2. '1urpose: formulate the flexural transformation matrix
frnm geometric to reference system coordinates.

3. Equations arid Procedures:

(1) Elements of the TPRIME matrix are first assembled into
their respective positions

(2) If any midpoints are sunnressed, the contribution of
the midnoints is redistributed to the respective
corner points

4. Input Arguments:

NL - node point numbers
TGH - transformation matrix for midpoints
TPRIME - transformation matrix to local coordinates

5. Output Arguments:

TGRB, TGRBM - transformation from geometri: to reference
system coordinates

6. Error Returns: None

7. Calling Sequence:

CALL CTGRB(NL, TGN, TPRIME, TGRBM, TGRB)

3. Input Tapes: None

9. Output Tapes: None

1.0. S'rah Tapes: None

11. -orage: NL(1), TIGN(4,2,2), .A(4, BI(4), TPRIME(3,3)
TGPJ(20,48), TGRBM(2o,48)
Total storage is (345)1 0

12. Subroutine User: CK22

13. Subroutines Required: None

14. Remarks: Formulation is given in report on Quadrilateral
Plate

8.273

1. Subroutine Name: CC2

P. Purpose: Form for the 4 zones of the quadrilateral the
flexural contributions to an intermediate matrix C.

3. Equations ai'd Procedures: Thu formulation is given in
report on quadrilateral thin shell element

'I. Input Argumerts:

K : Control on zone contribution
IFQ : Rigidity m-trix
DELFQ : Table of inuegrals for th- 4 zones of the quadr5-

lateral

5. Output Arguments:

zlements of the intermediate matrix

,. Error Returns: None

7. Calling Sequence:

CALL CC2 (K, IPQ, DELPQ, C)

. input tapes: None

.1. Output tapes: None

10. Scratch Tapes: None

11. Storage:

Total Storage required is 5B6 1 6 Bytes.

12. Subroutine User: CK22

13. Subroutine Required: None

14. Remarks: None

8.274

1. Subroutine Name: CFP

2. Purpose: Formulate the pressure load for the quadrilat-

eral plate in reference system coordinates

3. Equations and Procedures:

Call CFPB to generate the pressure loarl vector in refer-
ence system ,ooordinates as FPB as defined by

{FP) = TF$] T {FPJ3)

4;. :nput Argumet.I;:

)ELPQ : Table of integrals for the 11 zones of the
quad rilate ral

P : Pressures at node pcints
SINA : Sine of angle defined by intersection of

diagonals and points 1 and 2 of the element
TFTB : Flexural transformation matrix

'5. Output Arguments:

FP : Pressure load vector in reference system
coordinates

FPB : Pressure load in local system.

6. Error Returns: None

7. Calling Sequence:

Call CFP (DELPQ, P, $INA, FP, TFS, TMS, FPB)

8. input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1]. Storage:

DELPQ (4,5,5), FP (4,8), FPB (16), TFB (16,48), TMS (16,48)
Total Storage is (57)10.

12. Subroutine User: CK22

13. Subroutine Required: CFPB, MATB

14. Remark1: The formulation is given in the documentation
on the quadrilateral element in Volume I.

8

l , 8.275

iQ

1. Subroutine Name: CFPB

P. Purpose: Formulate the pressure load in local coordinates
for the quadrilateral thin shell element.

3. Equations and Procedures: Formulation is given in the
report on the quadrilateral thin shell element.

4. Input Arguments:

DELPQ : Table of intergrals for the 4 zones of the element
: Pressure value.

SINA : Sine of angle defined by intersection of diagonals
and points 1 and 2 of the element

%. Output Arguments:

FPB : Pressure load in local coordinates

I,. Error Returns: None

7. -.:alling Sequence:

CALL CFFB (DELPQ, P, SINA, FPB)

8. input tapes: None

() . Output tapes: N one

10. 3cratch tapes: None

11. Storage:

DELPQ (4,5,5), FPB (16)
Total Storage is (227)iO.

12. S3broutine User: CFP

13. Subroutines required: None

14. Remarks: None

8.276

1. Subroutine Name: CSTF

2. Purpose: To evaluate the flexural contribution to
the stress matrix in reference system coordinates for the
quadrilateral element.

3. Equations and Procedures:

(1) Call CDF to evaluate the membrane displacement
derivative matrix DFM.

(2) Perform the following operations:

E AM [DFMJ LTFS]

b [AMQI = (TW] AM5J
[AM = [EG] [AM6
[AM6J = [TE4 fAM5J

The AM6 matrix is then assembled into the stress matrix
S.

(3) Call CDX to evaluate the flexural derivatives matrix
DFM.

(4) After generating the G matrix, perform the following:

(a) [AM = [DFM][TF$]
b [AM = [TW I [AM5]
c CAM51 = EG I [AM 6d [AMtj = [3 1 JAM5]

(5) Evaluate another G matrix and call CDFX and CDFY
to formulate the flexural derivate matrix DFM.

(6) Perform the following operations:

ji [AM5 = [DFM [TR$JQAMGJ=[TW [AM]

c AMS]1 = EG J[AM6
[AMI = IG I CAM5]

The U17 and AM8 matrices are then assembled into the
stress matrix S.

4. Input Argumants:

T : Flexural thickness
TWTETE : Transformatio.. matrices

TM
EG : Material properties matrix

8.277

RIBR2B
R3B :Local coordinates

R4B
COSA, :Sine and cosine of angle defined by the intersection
SINA of the diagonals and points 1 and 2 of the element

5. Output Arguments:

S :Stress matrixDFM)
AM5
AM6) :Intermediate matrices
AM7
AM8)

6. Error Returns: None

7. Calling Sequence:

CALL C$TF (T, TW, EG, TES, R1B, R2B. R3B, R4B, COSA, SINA,
S, TFS, TMS, DFI, AMS, AM6, AM7, AMA 5

8. Input tapes: None

9. Output tapes: None

10. Scratch Tapes: None

11. Storage Required:

RlB (3), R2B (3), R3B (3), R4B (3), DFM (4, 16), TW (3 3),
EG (10), TES (3,3), S (40, ',(8), AM5 (3), 4(),'
AM7 (2, 48), AM8 (2, 41), G (2, 3), TF1 (16, 18), TMS
(16, 48).
Total Storage is (446)10•

12. Subroutine User: PLUG1

13. Subroutines Required:

MAB, MSB, CDF, CDFX, CDFY

lit. Remarks :

The formulations are given in the documentation on the
quadrilateral element.

8.278

1. Subroutine Name: CDF

2. Purpose: To evaluate the fle-ure derivative matrices for
the 4 zones of the quadrilateral element

3. Equations and Procedures: Formulation is given in the
documentation on the quadrilateral element.

4. Input Arguments:

IZ : Control on zone computation
RIB
R2B : Local coordinates
R4B

i. Output Arguments:

DF4 : Flexural derivative matrix

6. Error Returns: None

7. Calling Sequence:

CALL CDF (IZ, RIB, R2B, R3B, R4B, DFM)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

RIB (1), R2B (1), R3B (1), RIB (1), DFM (4, 16)
Total storage is (271)10.

12. Subroutine User: CSTF

13. S'broutines required: None

14. Remarks: None

3.279

L .

I. Subroutine Na1ne: CDFX

r'. Purpose: To evaluate the partial derivatives with respect
to x of the flexural displacement matrix for the 4 zones
of the quadrilateral element

3. Equations and Procedures: Formulation is given in the

documentation on the quadrilateral element.

input Arguments:

ITE : Control on constant (Ti)
IZ : Control on zone computation
C0SA,: Sine and cosine of angle defined by the intersection
SINA of the diagonals and points 1 and 2 of the element.

Output Arguments:

DFM : Flexural derivative matrix

Error returns: None

7 Calling Sequence:

%.ALL CDFX (ITE, COSA, SINA, IZ, DFM)

8. Input tapes: None

J. Output tapes: None

10. Scratch tapes: None

11. Storage Required: 1DFM (4, 16)
Total Storage is (176)10.

1P. Subroutine User: CSTF

13. Sub'.outines required: None

14. Remarks: None

8.280

-. _

1. Subroutine Name: CDFY

2. Purpose: To evaluate the partial derivatives with rospect

to y of the flexural displacement derivative matrix for the4 zones of the quadrilateral element

3. Equations and Procedures: Formulation is given in the
documentation on the quadrilateral element

4. Input Arguments:

IZ : Control on zone computation
SINA : Sine of angle defined by the intersection of the

diagonals and points 1 and 2 of the element

5. Output Arguments:

DFM : Flexural derivative matrix

6. Error Returns: None

7. Calling Sequence:

CALLJ CDFY (IZ, SINA, DFM)

8. Input tapes: None

'). Output tapes: None

10. Scratch tapes: None

11. Storage Required: Total Storage required is 2E8 16 Bytes.

12. Suhroutine User: CSTF

13. Subroutines required: None

11. Remarks: None

8.281

1. Subroutine Name: CFFTS

9. Purpose: To evaluate the flexural contribution to the
th(;r.jnl load and 4tress matrices for the quadrilateral element.

3. Fquation anJ Procedures:

. The thermal stress is obtained by:

(a) {AMI} [EM] {ALPHM}

(b) {n,121 [TE J AM1}

(JiW, rId IAM2)
d (AMPI = 04 JAM2 where C4 is a flexural constant

[SZLF) = [TESS] fAM2)
*SZLF is assembled Into the thermal stress matrix
SZALEL.

i') The tneimal load is obtained by:

a) % Define a flexural constant C3,
b {JT} = C3 x (JT},

Call CFFV to formulate the thermal load in local
sy; tem coordinates as (FPB},

(d) Transform the thermal load to reference system

coordinates as [AM3J = [TFSJ T (FPB],
{AY3) is assembled into the thermal load matrix
FT.

4. Input Argunents:

EM : Material properties matrix
ALPHM : Thermal cofficient matrix
TMS
TE$
TWSS : Transformation matrices
TE$
BMT
TF$
DELTF : Flexural temperature
T : Flexural thickness
SINIA : Sine of angle defined by intersection of diagonals

and points 1 and 2 of the element
DELPQ : Table of integrals for the 4 zones

5. Output Argutments:

SZALEL : Thermal stress matrix
FT : Thermal load matrix
FPB '.

AM3 : intermediate matrices
WKI

8.282

1•- - -' -- .

"i. Error Returns: None

7. Calling Sequence:

CALL CFFTS (Er.!, ALPHM, TES, TW, DELTF, T, TESS. SINA,
DELPQ, B.MT, SZALEL, FT, TFS, TI4S, FPB, AM3, WK1)

. Input Tapes: None

. Output Tapes: None

1C0. Zcratch Tapes: Nc" .p

11. Storage Requireu'

EM (10), ALPHM (3), TES' (3,3),TW (3,3),DELPQ (4,5,5),
FT (48), FPB (16)? JT (3), BMT (3,1), SZLF (3), SZALEL (1),
TESS (3,3) A113 (48), AM1 (3), AM2 (3), TFS (16, 48),
T'.I,- (16, 4), WKl (100)
Total Storage is (222)i0.

12. Subroutine User: PLUG1

13. Subroutines Required: MAB, CFFV, MATB

14. Remarks: Formulation is given in documentation on the
quadrilateral element in Volume I.

8.283

/f

1. Subroutine Name: CFFV

2. Purpose: To evaluate the flexural thermal load m-trix in
local system coordinates for the quadrilateral element

3. Equations and Procedures: Formulation is given in the
report on the quadrilateral element in Volume I

4. Input Arguments:

DELC, :Table of iintegrals for the 4 zones of the quad-
DELPQ rilateral
JT :Flexural rigidity
BT :Transformation matrix

5. Output Arguments:

FPBl :Flexural load matrix in local coordinates

6. Error Results: None

7. Calling Sequence:

CALL CFFV (DELC, FPB1, JT, BMT, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELC (4,5,5), DELPQ (4,5,5) FPB1 (16), JT (4), BMT (4),
FPB (16)
Total Storage is (365)10.

12. Subroutine User: CFFTS

13. Subroutines Required: None

14. Remarks: None

8.284

Mwwl

1. Subroutine Name: CF.ASS

2. Purpose: Evaluate the flexural mass matrix in local
system coordinates for the quadrilat. 'al thin shell element

3. Equations and Procedures: Formulation is given in report
on the quadrilateral thin shell element.

4. Input Arguments:

T : Flexural thickness
DO0 : Area array of the 4 zones of the quadrilateral
SiNA : Sine of angle defined by intersection of the

diagonals and points 1 and 2 of the element
DENS : Density of element material

5. Output Arguments:

AMS : Elements of the mass matrix in local coordinate
system

6. Error Returned: None

7. Calling Sequence:

CALL CFMA$$ (T, DO0, SlNA, DENS, AMS)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

Total Storage required is 23A 16 Bytes.

12. Subroutine User: PLUG1

.3. Subroutines Required; None

14. Remarks: None

8.285

- .-- *- -

1. Subroutine Name: PLUG7

2. Purpcse: To formulate the element matrices for a frame
element

3. Equations and Procedures: The following sequence of
operations take place:

1) Plug constants are set and checked against plug input
2) Data is processed for:3 grid points

Sb element data such as area, inertia, etc.
(3) The length for the element and the direction cosines

are determined and stored in TPRIME.
(4) Call CTS and CTCQ to formulate transformation matrices

TS and TCQ. The ecoentity of the element is taken into
account by calling CECC and modifing the TS matrix.

(5) The transformation to systems coordinates is per-
formed as ETCQS] = [TCQ [TS] and if grid point axes
transformations are necessary, [TCQSJ is modifiea.

(6) The matrix [KS] is evaluated and then pre ana post
multiplied by [TCQS] to form the stiffness matrix as

(7) Dependent on the type of analysis, the incremental

and mass matrices may be computed.
8 The thermal load is set equal to zero.

The 1:tiffness matrix is rearranged into the stress
matrix and the thermal-.stress matrix set equal to zero.

(10) If the print option is not equal to 0 calls P7PRT
to print out intermediate computations.

. Input Arguments:

IPL : Plug number
NNO }: Number of nodes

YC : Element coordinates

TEL : Temperature array
PEL : Pressure array
QS : Initial displacements
NORD : Order of stiffness matrix
NERR : Error return

K8
KM): Controls on elemen matrices to be computed
ZT
KVMKN)

8. 86

/
- . .- --- - - -

EPSI } Prestress and prestra .n .alues

MAT : Material properties array
EXTRA : Element geometric properties
GPAXEL : Grid point axis transformations
NDIR Number of directions and degree control for
NDEG grit) point axis transformation
IC0NT : Control on grid point axis

'j. Output Arguments:

KSEL : Stiffness matrix
GT : Gradient
FTEL : Thermal load matrix
SEL : Stress matrix
SZALEL : Thermal stress matrix
AMASS : Mass MatrixDAMPVDAMPS : Viscous and Structurel Damping Matrices

1RCE'L : Number of rows in stress matrix
NL : Node point numbers
N0INK
WMASSNDMS Number of elements in the stiffness, mass, viscous

damping, structural damping and stress matricesi U MP$
N$EL

6. Error Returns: If third node point is not present, then exit.

Standard tests on plug constants.

7. Calling Sequence:

CALL PLUG7 (IPL, NNO, XC, YC, ZC, TEL, PEL, QS, IP, NORD,
NERR, N0INK, K$EL, ANI, FTEL, SEL, SZALEL, AMASS,
DAjPV, DAMPS, NRSEL, NN, NL, NMASS, 1'DMPV, NDMPS,
NSEL, KK, KF, K8, KM, ET, KVM, KN, IUSEL, EPSIO, SO,
MAT, EXTRA, GPAXEL, NDIR, NDEG, IC0NT)

8. Input Tapes: None

9. Output Tapes: None

10, Scratch Tapes: None

11. Storage Required: Total storage required is 16A6 1 6 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: ELTEST, CTCQ, MAB, AXTRA2, CECC,
BCB, MSB, MATB, P7PRT, CTS, INCRE

111. Remarks: Formulations are given in report on Frame Element.

8.287

1. Subroutine Name: INCRE

2. Purpose: To evaluate the incremental matrix for the frame
element.

3. Equations and Procedures: Formulation in given in report
on Frame Element.

4. Input Arguments:

CONf : Constants set equal to 1.0
L : Physical properties of element
Jl IC : Input displacement matrix

TCQS : Transformation matrix

5. Output Arguments:

AN1 : Element incremental stiffness matrix transformed to
reference system coordinates.

AI
CI
H : Intermediate matrices
AN2
AN3

6. Error Returns: None

7. Calling Sequence:

CALL INCRE (C0NI, C0N2, L, J1, AN1, AN2, C, TCQS, N, AN3,
AI, CI)

8. Input Tapes: None

9. Oittput Tapes: None

10. Scratch Tapes: None

ii. Storage Required:

AN1 (171), AN2 (78),N (78), AN3 (78), AI (3,5), C (1),
TCQS (12,12), CI (18)

12. Subroutine User: PLUG7

13. Subroutines Required: BCB

14. Remarks: None

8.288

1. Subroutine Name: P7PRT

2. Purpose: To print out intermediate computations and
matrices from the frame element

3. Equations and Procedures: Not applicable.

4. Input Arguments:

NERR : Error test
GRI
GR4 } : Gradient ternis
GRT)PHIlPHI4 : Energy terms

AM1AS : Mass Matrix
EX
G
A
AJ1
i1 : Material and geometric properties
L
AIY
AIZ
EEI
ET : Control on element matrix computation
RN
R1
R2 Intermediate computations
R3
RM
TPRIME
TCQ Transformation matrices

TCQS
AN1Ail2 Incremental matricesA142
KS : Stiffness matrix
C : Intermediate displacement matrix
IPRINT : Print option

5. Output Arguments: Not applicable

u. Error Returns: If node point 3 equal to zero, then exit.

7. Calling Sequence:

CALL P7PRT (NERR, GR1, GR4, PHI1, PHI4, AMMAS, G, A, AJI,
L, AIY, AIZ, RN, Rl, R2, R3, AJ, TPRIME, KS, TCQ,
TS, TCQS, C, QS, AN2, AN1, RM, EX, EEl, PRINT, AN1
ET)

8.289

8.IpuFaps Nn

8. Input tapes: None

i. Output tapes: None

10. Scratch tapes: None

11. Storage Requird:

GR (1), GR4 (l'., AMMAS (1), RN (1), RM ,,l., Ri (1), R2 (1),
R3 (1), AJ (I , TPRIME (3,3), KS (I), T Q' (12,12), TS
(12,11), C (i', QS (1), AN2 (1), AN1 (1), TCQS (12,12),
3RT (1). Total storage is (687)10.

12. Subroutine Use c: PLUG7

13. Subroutines Required: SYMPRT

14. Remarks: None

8

8.290

p~w

1. Subroutine Name: CTS

2. Purpose: To evaluate the transformation matrix from local
to referenced system coordinates for the frame element

3. Equations and Procedures: Formulation is given in
documentation on frame element.'

4. Input Arguments:

TPRIME : Local coordinates transformation matrix

5. Output Arguments:

TS : Required transformation matrix

6. Error Returns: None

7. Calling Sequence: WLJL CTS (EEl, EE2, TS, TPRIME)

8. Input tapes: None

9. Output tapes: None

J0. Scratch tapes: None

11. Storage Required: TS (12,12), TPRIME (3,3)
Total Storage is (105)10•

12. Subroutine User: PLUG7

13. O3ubroutines Required: None

l4. Remarks: EEl, EE2 - Dummy arguments

8.291

1. Subroutine Name: CTCQ

2. Purpose: To formulate the transformation matrix to local
system coordinates for the frame element

3. Equations and Procedures: Formulations are given in

documentation on Frame Element.

4. Input Arguments:

TGQ : Elements of input transformation
L2
L2
L : Length, Length squared, etc.
L5

5. Output Arguments:

TCQ : Required transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CTCQ (TCQ, L, L2, L3, L4, L5)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None
11. Storage required: Total Storage required is 2FC 1 6 Bytes.

12. Subroutine User: PLUG7

12. Subroutines Required: None

14. Remarks: None

8.292

1. Subroutine Name: CECC

2. Purpose: To compute modifications to the transformation
matrix to account for eccentricity for the frame element

3. Computations And Procedures: Formulation is given in
documentation on Frame Element.

it. Input Arguments:

EEl
EE2 1: Eccentricity matrices
TS : Transformation matrix to be modified

5. Output Arguments:

TS : Modified transformation matrix

6. Error Returns: None

7. Calling Sequence: CALL CECC (EEl, EE2, TS)

8. Input tapes: None

9. Output tapes: None

10. Scratch tapes: None

11. Storage required: TS (12,12), EEl (3), EE2 (3)
Total Storage is (146)16

12. SubroutIne User: PLUG7

13. Subroutines Required: None

14. Remar.%: None

8.293

IMF

1. Subroutine Name: MPRD

2. Purpose: Multiply two matrices to form a resultant matrix

3. Equations and Procedures:

[R] [A] [B]

4. Input Arguments

A: First input matrix

B: Second input matrix

N: Number of rows in A matrix

L: Number of col.umns in B

MSA: Control on storage mode of A See Remarks

I4SB: Control on siorage mode of B f

9. Output Arguments: R - Resultant matrix

6. Error Returns: None

7. Calling Sequence: CALL MPRD (A, B, R, N, M, MSA, MSB, L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3EA 16 Bytes.

12. Subroutine User: Utility subroutine

13. Subroutines Required: L$C

14. Remarks:

Storage Control of A and B matrix (MSA and MSB)

0 - General
1 - Symmetric (upper half)
2 - Diagonal

8.294

1. Subroutine Name: TPRD

2. Durpose: Transpose a matrix and postmultiply by another
-to form a resultant matrix.

3. Equations and Procedures

[R] - [A] T [B]

A is not actually transposed. Instead, elements in matrix
A are taken column-wise rather than row-wise for multipli-
catioa by B.

4. Input Arguments

A: First input matrix

1": Second input matrix

N: Number of rows in A and B

M: Number of columns in A and rows in R

,: Number of columns in B and rows in R

MSA: Control of storage mode of A See Remarks

MSB: Control of storage mode of 11)I

3. Output Arguments: a - Resultant matrix

6. Error Returns: None

7. Calling Sequence: CALL TPRD (A, B, R, N, M, MSA, MSB, L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3EA1 6 Bytes.

12. Subroutine User: Utility subroutine

13. Subroutines Required: LOC

14. Remarks

Storage Control of A end B Matrix (MSA and MSB)

0 - General
1 Symmetric (upper half by columns)
£ - Diagonal

8.295

1, Subroutine Name: AI (Function)

2. Purpose: Control operation of the triangular
integration package.

3. Equations and Procedures: The integration package will
calculate the value of a double definite integral of
the form

z
mn

SS rPzqdz dr i

Zkl

The procedure is to call a series of function subprograms
dependent upon the values of p and q. The variables in
the above integral are represented by the following
program variables, which are defined in the input
arguments section below:

integral Variable Corresponding Program Variable

r R
z z
p IP
q
i I
j J
k K
1 L
m M
n N

4. Input Arguments:

I : r coordinate subscript of i th element
defining point

J : z coordinate subscript of j th element
defining point

K, L : Slope of element line passing through the
element defining point Zkl

M, N : Slope of element line passing through element
defining point zmn

IP : Exponent of r coordinate
IQ : Exponent of z coordinate

8.296

. S

R : Array containing r coordinates of element
defining points

Z : Array containing z coordinates of element
defining points

5. Output Argument:

AI(Function) : Result of performing the indicated
integration

6. Error Return: None

7. Calling Sequence:

AI(I, J, K, L, M, N, IP, IQ, R, Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 9FE1 6 Bytes.

12. Subroutine User: TRAIC, DPQINT

13. Subroutines Required:

AM
AK
BINT
F89
FF100
FJAB
F6219
F6211

14. Remarks: None

8.297

1. Subroutine Name: BINT

P. Purpose: Perform integration
rifr r V a+br)W dr

'. Equations and .Procedures:

Expand rV(a~br)w by binomaial theorem

and integrate term by term.

4. Input Arguments: I, J, A, B, IV, IW, R, Z

'3. Output Arguments: BINT

6. Error Returns: None

7. ralling Sequence: BINT(I, J, A, B, IV, IW, R, Z)

. Input Tapes: None

q. Output Tapes: None

30. Scratch Tapes: None

11. Storage Required: Total Storage required is 35E16 Bytes.

12. Subroutine User: AI

13. Subroutines Required: COEF, AJ

it. Remarks: None

8.298

1. Subroutine name: AK

2. Purpose: Generate slope of line between two points of a
triangle

3. Equations and Procedures:

AK = [Z(J) - Z(I)] / [R(J) - R (I)]

4. Input Arguments: I, J, R, Z

5. Output Arguments: AK

6. Error Returns: None

7. Calling Sequence: AK(I, J, R, Z)

S. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 18C1 6 Bytes.

12. Subroutine User: AI

13. Subroutines Required: None

14. Remarks: None

8.299

PA

3. Subroutine Name: AM

2. Purpose: Generate intercept of line between two points of

triangle.

3. Equations and Procedures:

AM = [R(J)Z(I) - R(I)Z(J)] / [R(J) -R(I)]

4. Input Arguments: I, J, R.Z

5. Output Arguments: AM

6. Error Returns: None

7. Calling sequence: AM (I, J, R, Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 1.9816 Byte.

12. Subroutine User: Al

13. Subroutines Required: None

11t. Remarks: None

8.300

/

1. Subroutine Name: IFAC

2. Purpose: Compute N factorial

3. Equations and Procedures: N! IFAC = n(n-l)(n-2). .. ()

4. Input Arguments: N

5. Output Arguments: IFAC

6. Error Returns: None

7. Calling Sequence: IFAC(N)

3. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 17616 Bytes.

12. Subroutine User: FF100
F89

13. Subroutines Required: None

11i. Remarks: None

8.301

1. Subroutine Name: FJAB (function)

2. Purpose: To generate

f [X fl/(a + bx)]Idx

3. Equations and Procedures:

F = [(xm log (a+bx))/m] - [(b/m) f(xl/ (a-b)nl dx]I

evaluated at x = x (I)

4. Input Arguments: I, A, B, M, Ne X

5. Output Argument: PJAB

6. Error Returns: None

7. Calling Sequefiee: FJAB (I, A, B, M, N, X)

* . Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 28616 Bytes.

12. Subroutine User: Al

13. Subroutines Required: F89

14. Remarks: None

8.302

1. Subroutine Name: F6219 (function)

2. Purpose: To generate integral of

(log (a + bx) / (xm+ 1)) dx

3. Equation and Procedures:

F = (- log (a + bx) / (mxm)) + (fcb/(m(a + bx) xm)) dx)

evaluated at x = X(I)

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: F6219

6. Error Returns: None

7. Calling Sequence: Function F6219 (I, A, B, M, N, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 28616 Bytes.

12. Subroutine User: AI

13, Subroutines Required: FF100

i4. Remarks: None

8.303' 1
!I

ww_ j - - - - -
----- ------------

1. Subroutine Name: P6211

2. Purpose: To generate

f [(log (A.4.1X)/X] dx

3. Equations and Procedures:

F = log (A) log (X) + BX B+
A 4A2

evaluated at X = X (I)

4. Input Arguments: I, A, B, X

5. Output Arguments: P6211

6. Error Returns: None

7. Calling Sequence: Function F6211 (I, A, B, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total. storage required is 49C16 Bytes.

12. Subroutine User: AI

13. Subroutines Required: None

14. Remarks: -None

8.304

1. Subroutine Name: AJ (function)

2. Purpose: Generates

for M + 1 > 0 [R(J)M - R(I)M] / (M1)

for M + 1 = 0 log [R(J)/R(I)]
3. Equations and Procedures: None

4. Input Arguments: I, J, R, M

5. Output Arguments: AJ

6. Error Returns: None

7. Calling Sequence: Function AF(I, J, R, M)

3. Input Tapes: None

9. Output Tapes: None

10, Scratch Tapes: None

11. Storage Required: Total storage required is 26216 Bytes.

12. Subroutine User: BINT

13. Subroutines Required: None

14. Remarks: None

8.305

_ _ 'I,

1. Subroutine Name: COEF

2. Purpose: Generate binomial coefficient

3. Equations and Procedures:

COEF= n n1
r nCr ri (n - r)!

(the combination of n items taken r times)

4. input Arguments: N,R

5. Output Arguments: COEF

6. Error Returns: None

7. Calling Sequence: COEF (N,R)

~. Input Tapes: None

9. Output Tapes: None

3. Scratch Tapes: None

11. Storage Required: Total storage required is 1FO 6 Bytes.

12. Subroutine User: BINT

13. Subroutines Required: None

14. Remarks: None

8.306

1. Subroutine Name: F39 (Function)

2. Purpose: To generate integral

(xm/(a+bx)n) dx

3. Equations and Procedures:

r8 m ml (a) sXmn-+lF9=bm~ S =o (m-s) I s (m-n-s+l)

where X = a+bx

evaluated at x

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: F89

6. Error Returns: None

7. Calling Sequence: F89 (I, A, B, M, N, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapei: None

II. Storage Required: Total storage required is 47616 Bytes.

12. Subroutine User: AI

13. Subroutines Required: IFAC

14. Remarks: None

8.3 Q7

1. Subroutine Name: FF100 (function)

2. Purpose: generate

f (l/(xmXn)) dx

where X = a + bx

I. Equations and Procedures:

F100 m + n -2 m-s-1 b 1FFnO0 = E (- 2)1 X (-b)

a7' L s = 0 (m+n-s-2)1s! (m-s-1)xm s- j
evaluated at xi

4. Input Arguments: I, A, B, M, N, X

5. Output Arguments: FF10

6. Error Returns: None

7. Calling Sequence: FF100 (I, A, B, M, N, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 4EB 16 Bytes.

12. Subroutine User: F6219

13. Subroutines Required: IFAC

14. Remarks: None

8.308

1. Subroutine Name: PLUG2

2. Purpose: Control generation of element matrices for the
triangular thin shell element.

3. Equations and Procedures:

a) Call subroutine ELTEST to verify input control values.
b) Call subroutine DTAPR to calculate sub-element coordinates

and boundaries.
c) Call subroutine MATPR to generate material properties

matrices.
d) Call subroutine NEWFT1 to apply revised thermal load

formulation, if necessary.
e) Call subroutine PTBM to generate sub-element to local

geometric coordinate system transformation matrix.
f) Call subroutine PTMGS to generate local geometric

coordinates to reference system coordinates transformation
matrix.

g) Call subroutine MAD to combine transformation matrices
generated in (e) and (f) above into one matrix that will
apply transformation from sub-element to reference system
coordinates.

h) If grid point axes are to be applied then call subroutine
AXTRA2 to appropriately modify final transformation matrix
generated in (g) above.

i) Call subroutine DPQINT to evaluate the integrals over
the three sub-elements.

J) Call subroutine PKM to generate the membrane contribution
to the element stiffness matrix.

k) Call subroutine PMMASS to generate membrane contributions
to element mass matrix.

1) Call subroutine PSTM to generate the membrane contribution
to the element stress matrix.

m) Call subroutine PFMTS to generate membrane contribution
to element thermal load and thermal stress matrices.

n) If rectil-ed, call subroutine APRT to print intermediate
resaults.

o) The flexural contributions to the elenment matrices are
then generated with the following flexure subroutines
performing the same function as their membrane coun'erpartv.

PTBF is the flexural counterpart to PTBM
PTFGS " " " H P-TMCS
pJF it t , " PKM
PFMASS " " It PMMASo
PSTF " " i " PSTM
PFFTS " " " PFMTS

p) Call subroutine PFP to generate element pressure load
matrix.q) Call subroutines PNCI and PNGI to generate element

incremental stiffness matrix (non-functional).
r) Call subroutine PLAS2 to generate plasticity premultipliers

(non-functional).

8.309

4. Input Arguments:

IPL - internal element identification number (2)
NNO - number of element defining points (6)
XC - coordinates of element defining points
YC
zc
TTL - temperatures at element defining point
PEL - pressures at element defining points
QS - input displacements at element defining points

(not used)
IP - not used
NORD - total e'ement degrees of freedom (36)
NOINK - number of Btor;,es required for element

stiffneas matr', (NORD * (NORD + 1)/2)
NN - not used
NL - array containing grid point numbers of element

defining points
KK - suppression control for element stiffness matrix
KF - suppression control for element thermal and

pressure load matrices
K8 - suppression control for element stress matrix
KTS - suppression control for element thermal stress

matrix
KM - suppression control for element mass matrix
FN - not used
KVM - not used
KN - suppression control'for element incremental

stiffness matrix
IUSEL - not used
EPSLON - input pre-strains (not used)
SIGZER - Input pre-stresses (not used)
MAT - input temperature interpolated material properties
EXTRA - special element input
GPAXEL - grid point axes transformation matrices
NDIR - number of directions of element defining points (3)
NDEG - number of solution degrees of freedom

(2 - translation and rotation)
ICONT - grid point axes indicator

5. Output Arguments:

NERR - error indicator
AK - element stiffness iitrix
ANEL - element incremental stiffness matrix
FTEL - element thermal and pressure load matrix
S - element stress matrix
SZALEL - element thermal stress matrix
AMASS - element mass matrix

8.310

5. Output Arguments (Contd):

DAMPV - element viscous damping matrix
DAMPS - element structural damping matrix
NRSEL - number of rows in element stress and thermal

stress matrices
NMASS - number of storages required for element mass

matrix
NDMPV - number of storages required for :Lement

viscous damping matrix
NDMPS - number of storages required for element

structural damping matrix
NSEL - number of sturages required for element

stress matrix

6. Error Returns:

If no error, then NERR is set to zero
If IPL 2, then NERR is set to one
If NNO p 6, then NERR is set to two
If NORD ' 36, then NERR is set to four

7. Calling Sequence:

Call PLUG2(IPL,NNO,XYYC,ZCTTL,PEL,QS,IPNORD,NERRNOINK,
AKANEL,FTELS,SZALELAMASS,DAMPV DAMPS,NRSELNN,
NL,NMASSNDMPVNDMPSNSEL,KKKF,KA,KTSKM,FN,KVM,
KNIUSEL,EPSLON,SIGZERMAT,EXTRA,GPAXELNDIR,NDEG,
ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes; None

11. Storage Required: Total Storage required is 2A78 16 Bytes.

12. Subroutine User: ELPLUG
S13. Subroutines Required:

ELTEST, DTAPR, MATPR, NEWFTIPTBM, PTMGS, MAB, AXTRA2,

DPQINT, MINV, PKM, PSTM, PFMTS, APRT, PTBF, PTFGS, PKF,
PFP, PSTF, PFFTS, PNC1, PNGI, EPRT, PLAS2, PFMASS, PMMASS

14. Remarks: None

8.311

K , 7

1. Subroutine Name: PMMASS

2. Purpose: To calnulate the membrane contributions to the
mass matrix for the triangular thin plate element.

3. Equations and Procedures: The weight of the element is
calculated to be the area x thickness x density. This is
then distributed equally to the 3 corner points.

4. Input Arguments:

T - thickness of element
DOO U area of triangle
DENS a density of element's material

5. Output Arguments: AMS a local mass matrix

6. Error Returns: None

7. Calling Sequence: Call PMMASS (T,DOOSINA,DENSAMS)

8. Input Tape3: None

9. Output Tapes: None

10, Scratch Tapeb: None

11. Storage Required: Total Storage required Is 222, Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

14. Remarks: None

83

II

8.312

1. Subroutine Name:. PFMASS

2. Purpose: To calculate the flexural- contribution to the
mass matrix for the triangular thin plate element.

3. Equations and Procedures: The weight of the element is
calculated to be the area x thickness x density. This is
then distributed equally to the three corner points.

4. Input Arguments:

T thickness of element
DOO = area of triangle
DENS - density of element's material

5. Output Arguments: AMS - local membrane mass matrix

6. Error Return: None

7. Calling Sequende: Call PFMASS (TDOO,SINADEFS,AMS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required* Total Stora;e required is 2BA1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

14. Remarks: None

8.313

1. Subroutine Name: ASSY2

2. Purpose: Assemble membrane and flexure contributions
into element stiffness matrix for triangular thin shell
element

3. Equations and Procedures: The elements of the Cl matrix
are b,..Jied into the C2 matrix as directed by the input
array IASY.

4. Input Arguments:

Cl : Array containing input elements to be
assembled

IASY : Array containing assembly instructions
Nl . 0rder of C1

5. Output Arguments:

C2 : Assembled matrix

6. Error Returns: None

7. Calling Sequence:

(C2, Cl, IASY, N1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 29616 Bytes.

12. Subroutine User:

PKM
PKF

13. Subroutines Required: None

14. Remarks: None

8.314

1. Subroutine Name: DCD

2. Purpose: To evaluate the triple matrix product of a
diagonal matrix D, a symmetric matrix S,and the diagonal
matrix D.

3. Equations and Procedures:

ANn n Dnn Snn * Dim (See remarks)

'.. Input Argnents:

SYM: Elements of symietric matrix ES_
D: Elements of a diagonal matrix [DJ
N: Order of [S]and [D] matrices

5, Output Arguments:

AN: Elements of matrix product

6. Error Returns: None

7. Calling Sequence:

CALL DCD (SY-M, D, AN, N)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storaap Rpnuirp,4

Total Storage required is 30A 16 Bytes.

12. Subroutine User: PKF, %M

13, Subroutines Required: None

8.315

pw e - -

14. Remarks: The sitmmations occur over

d. o 0 d 1 . 0

o d22 . 21 S 22 0 d22•

.... dn S S *...S 0

All redundant multiplications (i.e. those where zero ele-
ments exist in the D matrix and those where the upper
elements of the S : .atrLx would be considered) are dispensed
within the program and only significant multiplications
take place.

8,316

1. Subroutine Name: DTAPR

2. Purpose: Create three sub-elements and transformation
matrix frcm system to local coordinates

3. Equations and Procedures: The sub-element coordinates
are calculated from the system coordinates by generating
a transformation matrix and applying it to the system
coordinates array.

4. Input Arguments:

Rl,R2,R3 : Reference system coordinates
ElE2,E3,E : Arrays containing coordinate differences
R12,R13 ; Work storage
COORDS : Reference system coordinates

5. Output Arguments:

RO : Origin of sub-elements coordinate system
RLI.RL2,RL3 : Local sub-elements coordinates
TGS : Transformation from reference system to

local sub-element coordinates matrix
COORDL : Local sub-elements coordinates

6. Error Returns: None

7. Calling Sequence:

(RI, R2, R3, RL1, RL2, RL3, El, FE, E3, E, TGS, RO,
R12, R13, COORDS, COORDL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 6EA1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: MAB

14. Remarks: None

8.317

1. Subroutine Name: MATPR

2. Purpose: Generate material properties matrices
for triangular thin shell element

3. Equations and Procedures: The material properties
matrix, EM; is generated dependent upon the formulation
option selected; plane stress, plane strain or normal.
The matrix angle and stress angle is determined by
examining the extra element defining points. The

material properties matrix is then oriented to the
desired material angle and the stress angle transforma-
tion matrix is generated.

4. Input Arguments:

NL : Array containing grid point numbers
of element defining points

XC,YC,ZC : Arrays containing reference system
coordinates for element defining points

EX,EY, EZ : Young's Moduli
GXY : Rigidity Modulus
VXY,VZX,V'Z : Poisson's Ratios
ALPHAX,AILPHAY : Coefficients of thermal expansion
GAMXY : Material angle
T : Thickness
EXGRID : Array containing coordinate differences

for stress angle definition points
EXGRDL : Array containing coordinate differences

for material angle definition point5
ALPHAM : Not used
ALPHAG : Not used
TGS : Transformation matrix from reference

system to sub-element coordinates
IST : Plane strain, stress control
Rl,R2,R3 : Not used
ROB : Origin of sub-element coordinate system
RL1,RL2,RL3 : Loeal sub-element coordinates
EES : Work storage
NEXGR : Work storage
AMAT : Local sub-element coordinates
L,M : Work storage

5. Output Argiments:

EM : Material properties matrix
EG Transformed mateiial properties matrix

(oriented to material angle)
TES : Material angle transformation matrix
TESS : Stress angle transformation matrix

8.318

6. Error Returns: None

7. Calling Sequence:

(NL, XC, YC, ZC, EX, EY, GXY, VXY, EZ, VZX, VYZ,
ALPHAX, ALPHAY, GAKY.YY, T, EM, EG, EXGRID, EXGRDL,
ALPHM, ALP1G, TGS, IST, RI, R2, R3, ROB, RL., RL2,
RL3, EES, TES, TESS, NEXGR, AMAT, L,M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is BEE!6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

PTNV

BOB

14. Remarks: None

8.319

1. Subroutine Name: NEWFTI

2. Purpose: Generate membrane and flexural thermal loads
for triangular thin shell element in local coordinates

3. Equations and Procedures:

BCT = F * CT
BMT = BCT * TEMM
BFT = BCT * TEMF

where F and CT are geometric matrices of local coordinates,
and TEMM and TEMF are membrane and flexure temperatures,
respectively, at the element defining points.

4. Input Arguments:

DELTM : Average membrane temperature
DELTF : Average flexure temperature
RLlRL2,RL3 : Local coordinates
TZ : T for structure
F,BCT,CT : Wrk storage
TEL : Temperatures at element defining points
TEMM,TEMF,L,M : Work storage

5. Output Arguments:

BMT : Membrane thermal load in local
coordinates

?FT : Flexure thermal load in local
coordinates

6. Error Returns: None

7. Calling Sequence:

(DELTM, DELTF, RL1, RL2, RL3, TZ, BMT, BFT, F, BCT,
CT, TEL, TEMM, TEMF, L, M)

8. Input Tapes: None

9. Outpu* Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 51616 Bytes.

12. Subroutine User: PLUG2

8.320

1. Subroutine Required:

MINV
MAB

i1.Remarks: None

8.321

1. Subroutine Name: PTBM

2. Purpose: Generate membrane transformation matrix
from sub-element to geometric coordinate system

3. Equations and Procedures: The transformation matrix
is generated directly from sub-element coordinate
values and inversion.

4. Input Arguments °

TGSM : Not used
RL1,RL2,RL3 : Sub-element coordinates
L,M : Work storage

5. Output Argument:

TBM : Sub-element to geometric coordinate
system membrane transformation matrix

6. Error Returns: None

7. Calling Sequence:

(TBM, TGSM, RLI, RL2, RL3 L, M)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 49A 1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: MINV

14. Remarks: None

8.322

- ...

1. Subroutine Name: PTMGS

2. Purpose: Generate geometric to reference coordinate
system membrane transformation matrix

3. Equations and Procedures: The transformation matrix is

generated by utilizing the TGS matrix. The effect of
eccentricities and mid-point suppression is also
reflected in the generation of the TGSM matrix.

4. Input Arguments:

NL : Array containing element defining
grid point numbers

EEZ : Eccentricity
TBM : Not used
TGS : Reference system to sub-element

transformation matrix

5. Output Arguments:

TGSM : Geometric to reference coordinate system

membrane transformation matrix

6. Error Returns: None

7. Calling Sequence:

(NL, EEZ, TBM, TGSM, TGS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 47816 Bytes.

12. Subroutine User: PLUG2j

13. Subroutines Required: None
14. Remarks: None

8.323

Kl

1. Subroutine Name: DPQINT

2. Purpose: Generate integrals over the three sub-
elements of a triangular thin shell element

3. Equations and Procedures: The integrals are calculated
by using the triangular integration package controlled
by the function subprogram AI. The output values of
the integrals are placed in the array DELPQ.

4. Input Arguments:

RL1,RL2,RL3 : Sub-element coordinates
R,Z.,TEMP : Work storage

5. Output Arguments:

DELPQ : Array containing integral values

6. Error Returns: None

7. Calling Sequence:

(DELPQ, RL1, RL2, RL3, R, Z, TEMP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 7AC 16 Byt!s.

12. Subroutine User: PLUG2

13. Subroutines Required: AI (Function)

14. Remarks: None

8.324

1. Subroutine Name: PKM

2, Purpose: Generate membrane contribution to triangular
thin shell element stiffness matrix

3. Equations and Procedures: The membrance contribution
to the element stiffness matrix is formed by generating*
sub-element stiffness matrices, assembling them into a
work area and then transforming from the work area to
the reference coordinate system.

4. Input Arguments:

AK1 : Work storage
DELPQ : Sub-element integrals
EM : Material properties matrix
EG : Material Droperties matrix orinted

to material angle
TMS : Sub-element to reference coordinate

system transformation matrix
TFS : Not used
IASEM : Array containing assembly parameters
AD : Work storage
CM : Work storage
AIJ : Work storage
IPRT : Element print control
EX : Not used
EY : Not used
OXY : Not used
VXY : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Membrane thickness

5. Output Argument;

AK : Membrane contribution to element
stiffness matrix

6. Error Returns: None

7. Calling Sequence:

(AK, AK1, DELPQ, EM, EG, TMS, TFS, IASEM, AD, CM, AIJ,
IPRT, EX, EY, GXY, VXY, ALPIAX, ALPHAY, GAMXY, T)

8. Input Tapes: None

9, Output Tapes: None

10. Scratch Tapes: None

8.325

- -- ,t'

11. Storage Required: Total storage required is 74616 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

SYMPRT
DCD
ASSY2
BCB

14. Remarks: None

I

8. B26

1. Subroutine Name: PSTM

2. Purpose: Generate membrane contribution to -lk.ment
stress matrix for the triangular thin shell element

3. Equations and Procedures: The membrane contr'butions
to the element stress matrix are generated by fi3' t
forming the stress values in local coordinates, ..
transforming to reference system coordinates and
finally applying the stress angle transformation,

4. Input Arguments:

RU : Sub-element coordinates
RL2
RL3
TMS : Sub-element to reference coordinate system

transformation matrix
TFS : Not used
EM : Not used
EG : Material properties matrix oriented to

material angle
SN : Work storage
AMI : Work storage
AM2 : Work storage
TES : Stress angle transformation matrix
EX : Not usedEY : Not used

GXY : Not used
VXY : Not used
ALPHAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Membrane thickness
R : Work storage
U : Work storage
X : Work storage
TY : Work storage

5. Output Arguments:

S : Membrane contribution to element
stress matrix

6. Error Returns: None

8..327

7. Calling Sequence:

(S, RLI, RL2, RL3, TMS, TFS, EM, EG, SN, AMl, AM2,
TES, EX EY, GXY, VXY, ALPHAX, ALPHAY, GAMXY, T, R,
U, X, Y5

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 61C16 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Requ..red:

MAB
MSB
MTB

14. Remarks: NJone

8.328

1. Subroutine Name: PFMTS

2. Purpose: Generate membrane thermal load and membrane
thermal stress matrices for the triangular thin shell
element

3. Equations and Procedures: Subroutine PFMV1 is called
to generate the thermal load matrix in geometric
coordinates from BMT. This matrix is then transformed
to reference system coordinates by TMS. The thermal
stress matrix is generated and the stress angle applied
by TESS.

4. Input Arguments:

DELTM : Average membrane temperature
TES : Material azigle transformation matrix
TESS : Stress angle transformation matrix
BMT : Membrane thermal load contribution

in sub-element coordinate system
EM : Not used
EG : Material properties matrix oriented to

material angle
TMS : Sub-element to reference coordinate

system transformation matrix
TFS : Not used
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
FMV : Work storage
ALPHAX, : Coefficients of thermal expansion
ALPHAY
GAMXY : Not used
T : Membrane thickness
TO : Not used
TI : Not used
FME : Work storage
EMI : Work storage
EM1 : Work storage
SZLM : Work storage
SZLM1 : Work storage
WRK : Work storage
DELPQ : Array containing sub-element

integral values

5. Output Arguments:

FT : Membrane contribution to element
thermal load matrix

SZALEL : Membrane contribution to element
thermal stress matrix

8.329

6. Error Returns: None

7. Calling Sequence:

(FT, DELTM, SZALEL, TES, TESS, BMT, EM, EG, TMS, TFS,
EX, EY, GXY, VXY, FMV, ALPHAX, ALPHAY, GAMXY, T, TO,
TI, FME, EMI, EMI, SZLM, SZLM1, WRK, DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 60D 1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

PFMV1
MAB
MATB
MSB

14. Remarks: None

8

I

8.330

1. Subroutine Name: PFMVI

2. Purpose: Generate membrane contribution to element
thermal load matrix in local coordinates

3. Equations and Procedures: The integral values across
the sub-elements are re-arranged. The membrane contri-
bution for each sub-element is generated in FMV by
direct formulation as a function of the integral values
and the material properties matrix. The sub-element
matrices are placed in FMV1 and pre-multipled by BMT.

4. Input Arguments:

DELC : Array containing sub-element integral values
EG : Material properties matrix oriented to

material angle
BMT : Array containing revised formulation for

membrane thermal load matrix in local
coordinates

FMV : Work storage
T : Membrane thickness

5. Output Arguments:

FMVI : Membrane thermal load matrix in local
coordinates

DELPQ : Re-arranged sub-element integral values

6. Error Returns: None

7. Calling Sequence:

(FMVl, DELC, EG, BMT, FMV, DELPQ, T)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage rcquired is 76616 Bytes.

12. Subroutine User: PFMTS

13. Subroutines Required: None

14. Remarks: None

8.331

1. Subroutine Name: APRT

2. Purpose: Provide print of intermediate triangular

thin shell element computations

3. Equations and Procedures: None

4. Input Arguments:

LT : Membrane/flexure indicator
LT1 : Not used
LT2 : Not used
DELPQ : Array containing sub-element integral

values
RL1, : Sub-element coordinates
RL2,
RL3'
RI, : Reference system element coordinates
R2,
R3
RO : Origin of sub-element coordinate system
El, : Sub-element coordinate differences
E2,
E3,
E
TGS : Sub-element to geometric coordinates

transformation mctrix
TBF : Flexure sub-element to geometric system

coordinates transformation matrix
TGSF : Flexure geometric to reference system

coordinates transformation matrix
TMS : Membrane sub-element to reference system

coordinates transformation matrix
TFS : Flexure sub-element to reference system

coordinates transformation matrix
EM : Material properties matrix
BG : Material properties matrix oriented to

material angle
TES : Material angle transformation matrix
TBM : Membrane sub-element to geometric

coordinates transformation matrix
TGSM : Membrane geometric to reference system

coordinates transformation matrix

5. Output Arguments: None

6. Error Returns: None

8.332

7. Calling Sequence:

(LT, LTl, LT2, DELPQ, RLI, RL2, RL3, RI, R2, R3, RO,
El, E2, E3, E, TGS, TBF, TGSF, TMS, TFS, EM, EG,
TES, TBM, TGSM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Stor 3e Required: Total storage required is B2C1 5 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

111. Remarks: None

8.333

1. Subroutine Name: PTFGS

2. Purpose: Generate flexure .geometric to reference
system coordinates transformation matrix

3. Equations and Procedures: The flexure geometric to
reference system coordinates transformation matrix is
generated from the TGS matrix and the sub-element
coordinates. The effect of mid-point suppress
contained in this transformation matrix suppression.

It. Input Arguments:

NL : Array containing element definition
grid point numbers

TGS : Sub-element to geometric transformation
matrix

TBF : Not used
XD, : Work storage
YD,
L,

AI,
BI
AMAT : Array containing sub-element coordinates

5. Output Arguments:

TGSF : Flexure geometric to reference system
coordinates transformation matrix

6. Error Returns: None

7. Calling Sequence:

(NL, TGS, TBF, TGSFJ XD, YD, L, Al, BI, AMAT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 58216 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

14. Remarks: None

8.334

* /

LT

1. Subroutine Name: PKF

2. Purpose: Generate the flexure contribution to the
triangular thin shell element stiffness matrix

3. Equations and Procedures: The sub-element flexure
contributions are generated and assembled into a
work area. A transformation is then applied to the
reference coordinate system.

4. Input Arguments:

IASSY : Control indicating flexure contribution
will supplement membrane contribution or
flexure contribution alone is requested

DELPQ : Array containing sub-element integrals
EM : Not used
EG : Material properties matrix oriented

to material angle
TMS : No, used
TFS : Flexure sub-element to system reference

coordinates transformation matrix
IASEM : Work storage for assembly control array
AD : Work storage
CM : Work storage
AIJ : Work storage
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
ALPHAX : Not used
ALFHAY : Not used
GA1XY Not used
T : Flexure thickness
IPRT : Intermediate results print control
AKU : Work stoyage
ROW : Work storage
ROWN : Work sturage

5. Output Argument:

AK : Flexure contribution to element
stiffness matrix

6. Error Returns: None

8.335

7. Calling Sequence:

(AK, IASSY, DELPQ, EM, EG, TMS, TFS, IASEM,
AD, CM,

AIJ, EX, EY, GXY, VXY, ALPHAX, ALIPHAY, GAMXY,
T,

IPRT, AK1, ROW, ROWN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 77216 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Requirid:

DCD
ASSY2
CCB

14: Remarks: None

8.336

1. Subroutine Name: CCB

2. Purpose: Perform triple product multiplication, ATSA,
where S is a symmetric matrix stored lower half by rows

3. Equations and Procedures: A row of the intermediate
matrix product ATS is generated at a time. From the
product of this row and A, a row of the final triple
product is generated.

Options are present for scalar multiplication of the
triple product, summing the triple product into an
existing matrix, and deleting upper rows of the matrices
from the operation.

4. Input Arguments:

A : First input matrix, doubly dimensioned in
calling program

SYM : Second input matrix, symmetric, singly sub-
scripted, stored lower half by rows

ND,MD : Dimensioned size of A
N,M : Actual size of A
N1 : Number of upper rows to be deleted in the

operation
SCAL : Scalar multiplier
IASSY : Sum option indicator
ROW,ROWN: Work storage

5. Output Argument:

AN : Triple product of ATSA, symmetric, singly
subscripted, stored lower half by rows

6. Eiror Returns: None

7. Callipg Sequence:

(A, SYM, AN, ND, MD, N, M, N1, SCAL, IASSY, ROW, ROWN)

8. Input Tapes: None

9, Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 5B61 6 Bytes.

12. Subroutine User:
PLUG2

8.337

POW'

13. Subroutines Required: None

!i4. Remarks: HTone

8.338

1. Subroutine Name: PFP

2. Purpose: Generate element pressure load matrix for
the triangular thin shell element

3. Equations and Procedures: The element pressure load
matrix is generated in local coordinates and then
transformed to reference system coordinates.

4. Input Arguments:

TMS : Not used
TFS : Flexure sub-element to reference system

transformation matrix
DELPQ : Array containing sub-element integral values
P : Pressures at element definition points
FPB : Work storage

5. Output Arguments:

FP : Element pressure load matrix

6. Error Re+urns: None

7. Calling Sequence:

(FP, TMS, TFS, DELPQ, P, FPB)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total storage required is 2A21 6 bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: MATB

14. Remarks: None

8.339

I/

1. Subroutine Name: PSTF

2. Purpose: Generate flexure contribution to element
stress matrix for the triangular thin shell element

3. Equations and Procedures: The sub-element stress
matrices are generated and assembled into one matrix.
This matrix is then transformed to reference system
coordinates and the stress angle is applied.

4. Input Arguments:

RU
RL2 : Sub-element coordinates
RL3
TMS : Not used
TFS : Flexure sub-element to reference system

coordirates transformation matrix
EM : Not used
EG : Material properties matrix, oriented the

material angle
SNM : Work storage
TES : Stress angle transformation matrix
EX : Not used
EY : Not used
GXY : Not used
VXY : Not used
ALIJPAX : Not used
ALPHAY : Not used
GAMXY : Not used
T : Flexure thickness
R : Not used
U : Not used
X : Work storage
Y : Work storage
AM1 : Work storage
AM2 : Work storage
AM13 : Work storage
AM4 : Work storage
G : Work storage

5. Output Argument:

S : Flexure contribution to element stress matrix

6. Error Returns: None

7, Calling Sequence:

(S, RL1, RL2, RL3, TMS, TFS, EM, EG, SNM, TES, EX(, EY,
OXY, IvXY, ALPHAX ALPHAY, GAMXY, T, R, U, X, Y, A141,
AM2, AM3, AM11, G)

8.31o

8. Input Tapes: N.ne

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage iequired is BD 1I6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

MAB
MSB
MTB

14. Remarks: None

6.31I

1. Subroutine Name: PFITS

2. Purpose: Generate flexure contribution to element
thermal load and thermal stress matrices for the
triangular thin shell elf. ient

3. Equations and Procedures: The flexure contribution to
the element thermal load matrix in local: cocrdinates is
generated by calling subroutine PFFV1. 2he material
angle transformation is applied and the. transformation
from local to reference system coordinates is performed.

The flexure contribution to the element thermal stress
matrix is generated and transformed to the selected
stress angle.

4. Input Arguments:

DELTF : Average flexural temperature
TES : Material angle transformation matrixTESS : Stress angle transformation matrix

BFT : Flexural thermal load fcrmulation revision
EM : Not used
EG : Material properties matrix, oriented to

material angle
TMS : Not used
TFS : Flexure sub-elenent to reference system

coordinates trnsformation matrix
EX : Not used
NY :Not used
GXY : Not used
VXY : Not used
FFV : Not used
ALPHAX : Not used
ALPHAY : Not used
GAWL : Not used
T : Flexure thickness
TO : Not used
TI : Not used
EFI : Work storage
FFE : WorX storage
FF : WorY ',torsge
SZLF : Work storage
SZLF1 : Work storage
EF1 : Work storage
WRK : Work storage
DELPQ : Array containing sub-element integrals

8.342

5. Output Arguments:

FT : Flexure contribution to element thermal
load matrix

SZALEL : Flexure contribution to element thermal
stress matrix

6. Error Returns: None

7. Calling Sequence:

(FT, DELTF, SZALEL, TES, TESS, BFT, EM, EG, TMS,
TFS, EX, EY, GXY, VXY, FFV, ALPHAY, ALPHAY, GAMXYf,
T, TO, TI, EFI, FFE, FF, SZLF, SZLFI, EFI, WRK,
DELPQ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 65616 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: PFFV1

PFFV1
MAB
MATB
MSB

14. Remarks: None

8.343

L !. . .

1. Subrouine Name: PFFVI

2. Purpose: Generate flexure contribution to element
thermal load matrix in local coordinates

3. Equations and Procedures: The array containing the
subelement integral values is re-arranged. The sub-
element thermal load matrices are generated from the
integral values and the material properties matrix.
The sub-element thermal load matrices are assembled
into one matrix and then multiplied by BFT to apply
the revised thermal load formulation.

4. Input Arguments:

DELC : Array containing sub-element integral
values

EG : Material properties matrix, oriented to
material angle

BFT : Array containing revised thermal load
formulation

FFV : Work storage

5. Output Arguments:

FFV1 : Flexure contribution to element thermal
load matrix in local coordinates

DELPQ : Array containing re-arranged sub-element
integral vnlues

6. Error Returns: None

7. Calling Sequence:

(FFV, DELC, EG, BFT, FFi, DELPQ)

8. input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 9A0 1 6 Bytes.

12. Subroutine User: PFFTS

13. Subroutine Required: None

14. Remarks: None

8.344

1. Subroutine Name: PNC1

2. Purpose: Non-functional

3. Equations and Procedures: None

It. Input Arguments: None

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

i0. Scratch Tapes: None

11. Storage Required: Total storage required is F616 Bytes.

12. Subroutine User: PLUG2

13. Subroutine Required: None

14. Remarks: None

8.345

1. Subroutine Name: PNG1

2. Purpose: Non-functional

3. Equations and Procedures: None

4. Input Arguments: None

5. Output Arguments: None

6'. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is F616 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

14. Remarks: None

8.346

I_

1. Subroutine Name: EPRT

2. Parpose: Print generated triangular thin shell
element matrices

3. Equations and Procedures: None

4. input Argument.:

AK : Final element stiffness matrix
S : Final element stress matrix
ANEL : Non-functional
FN : Non-functional
FT : Final element thermal load matrix
FP : Final element pressure load matrix
SZALEL : Final element thermal stress matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(AK, S. ANEL, FN, FT, FP, SZALEL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 4FO 1 6 Bytes.

12. Subroutine User: PLUG2

13. Subrou.tines Required: None

14. Remarks: None

8.347

L A

1. Subroutine Name: PLAS2D

2. Purpose: Non-functional

3. Equations and Procedures: None

4. Input Arguments: None

5. Output Arguments: Nori,,

6. Error Returns: None

7. Calling Sequence: None

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is F61 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required: None

14. Remarks: Ncne

8.348

1. Subroutine Name: PTBF

2. Purpose: Generate flexure sub-element to geometric
axes transformation matrix

3. Equations and Procedures: The inverse of the desired
matrix is generated by direct assignment into a work
area. Inversion is performed to obtain the final
transformation matrix.

4. Input Arguments:

TGSF : Not used
RL1
RL2 : Sub-element coordinates
RL3
IPRT : Intermediate element print indicator
L : Work storage
M : Work storage
U : Work storage
TI : Work storage
B : Work storage
BFF : Work storage
BFO : Work storage

5. Output Arguments: None

TBF : Flexure sub-element to geometric
transformation matrix

6. Error Returns: None

7. Calling Sequence:

(TBF, TGSF, RL1, RL2, RL3, IPRT, L, M, U, TI,
B, BFF, BFO)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage required is 0CC1 6 Bytes.

12. Subroutine User: PLUG2

13. Subroutines Required:

MAB
MINV

14. Remarks: None

0.349

l. Subroutine Name: PLUG 6

2, Purpose: To form the element matrices for a triangular
cross section ring discrete element with applications
towards the analysis of thick walled and solid axisym-
metric structures of finite length. It may be used to
form the assembly of any axisymmetric structure taking
into account:

ll Arbitrary axial variations in geometry2 Axial variation in orientation of material axes of

orthotropy
13! Radial and axial variations in material properties

Any axisymmetric loading systems including pressure,
prestrain, prestress, and temperatur

The complete discrete element representation, consists of
the algebraic expressions for the following matrices:

(1) Stiffness
(2 Pressure load
!3 Thermal load

Pre-strain load
Pre-stress load
Stress

Structural damping
9 Viscous damping

3. Equations and Procedures: The development of the complete
element representation arises from the Lagrangian (varia-
tional) equation

+l +i b + 2 + d b ___
r r r t qr 0

where

qr= r generalized displacement coordinateD

total potential energy

structural damping dissipation energy

= viscous

1 kinetic energy

The subsequent development of the element mestrices is then
provided in algebraic form to the coded program, which
follows the format:

8,350

(1) The input data, used in forming the matrices, is
processed and organized for computation.

(2) By subroutine TRAIC, the coordinate transformation
matrices, and the table of integrals is formed. In
routine TRAIE, the material properties matrices are
formed.

(3) Using the above mentioned matrices and integrals,
the program then generates, the stiffness,

pressure load, thermal load, stress, pre-strain,
pre-stress, mass, structural damping, and viscous
damping matrices, and the stress, thermal stress,
pre-strain, pre-st.'sss, pre-strain load, and pre-
stress load vectors.

(4) After each significant matrix, vector, etc., is
formed, the program prints out the desired results.

Input Arguments:

IPL : Plug number
NNO : Number of node points
XC : X - coordinates of noces points
YC : Y - coordinates of noce points
ZC Z S- coordinates of noce points
TEL Temperatures at thl node points
PEL : Pressures at the node points
Q$EL : Input displacements of the node points
IP : Number of extra cards
NORD : Order of element stiffness matrix
NR$EL : Number of rows in the stress matrix
IN0 : Number of nodes
N0DORD : Node point numbers
KK : Code for computation of element stiffness matrix
KF : Code for computation of element thermal load
K$: Code for computation of element stress matrix
KM : Code for computation of element mass matrix
KD$: Code for computation of structural damping matrix
KDV : Code for computation of viscous damping matrix
KN : Code for computation of incremental damping matrix
IU$EL : Dummy
EP$L0N : Pre-strain load vector
$IGZER : Pre-9tress load vector
MAT : Material properties matrix
EXTRA : Extra information (angles, etc.)
NDIR : Number of directions of movement per grid point
NDEG : Number of types of movement allowed per grid point
IC0NT : Code for use of grid point axes

8.351

5. Output Arguments:

NERR : Error return
N$INK : Number of elements in lower half matrices
AKELXP : Stiffness matrix
ANEL : Incremental stiffness matrix
FTXP : Thermal load + pressure load matrix
TRXP : Stress matrix

3 Thermal stress matrix
XMA$XP : Mass matrix
DAMPV : Viscous damping matrix
DAMP$: Structural damping matrix
N$EL : Number of elements in stress matrix
N' I$$: Numbsr of elements in mass matrix
NP$L : Number of elements in viscous damping matrix
NP$$: Number of elements in structural damping matrix
GPAXEL : Grid point axes transformation

6. Error Returns

NERR = 0 No Error
= 1 Plug Number Incorrect
= 2 Number of Nodes Incorrect
= 3 Number of Input Points Incorrect
= 4 Order of Matrix (nord) Incorrect

7. Culling Sequence:

(IPL, NN0, XC, YC, Z , TEL, PEL, Q$EL, IP, NORD, NERR, N0INK,
AKELXP, ANEL, FTXP, $TRSXP, T$, XMA$XP, DAMPV, DAMP$,
NRi$EL, IN0, NOD$RD, NMA$$, NP$L, NP$$, NEL, KK, KF, K,
KM, KD$, KDV, KN, IU$EL, EP$LON, $IGZER, MAT, EXTRA,
GPAXEL, NDIR, NDEG, IC0NT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

GAMABQ(6,6) DELINT(12) DCURL(4, 6 EM1O)E(lO) TE0(4,4)
AKEL(21) FP(6) F$(6) F$T(6) 1 P$L@N(6) $ GZER(6) EXTRA(1)
ALFBAR(4) FT(6) TRE$$(4,6) T$(4) XMA$$(21) D.M(4)
D(21) DV(21) AKELXP (45) XMA$XP (45) D$XP(45) DVXP 45)
XC(3) YC(3) ZC (3) NODORD(3) X(3) Y(3) Z(3) P$LMAT (6,4)
PEL (6) Q EL(6) ANEL(6) TEM2 (6,6) IU EL (6) LI$TP(6)
TEL (12,3) El (4i,4) DAMPS(6) DAMPV(6) A(,6) B(4,6)
ALI$TP (6) FTXP(9) TRXP (4,9) P$LXP (9,4) P$$(4)
MAT(l) AKELI (6,6) AKEL2 (6,6) AMCURL (21) TEMP (6)
TEMP1 (4) XMA4$1 (6,6) TMG (2,2) AMCURL (21) AMBAR (2,?)
DZER0 (6,4)

8.352

pw - w- w--- --- *

2.2. Subroutine User: ELPIJUG

13, Subroutines Required:

ELTE$T TRAIE TRAMK TRAIFP TFTPRT
TRAIT$ TRAIM TF$PRT EXPCOL TRAIC
TIEPRT TIKPRT TFPPRT TRAI$ TT$PRT
TIMPRT TRAI$T PL6PRTv TRCPRT TPRD
EXP$IX TRAIFT TI$PRT MPRI) TRAIF$
T$TPRT

14. Remarks: None

8.353

1. Subroutine Name: EXPC$L

2. Purpose: To generate a matrix [B] , given a specific
input matrix AJ , for Plug 6.

The purpose of this operation is to impose the conditions
that flexure terms "v" are zero.

3. Equations and Procedures: The matrix terms are formed by
direct assignment.

4. Input Arguments: [A] : input Matrix

5. Output Arguments: [B] : Output Matrix

Error Returns: None

7. Calling Sequence: (A, B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 16616 Bytes.

12. Subroutine User: PLUG 6

13. Subroutines Required: None

14. Remarks: None

8.354

1. Subroutine Name- EXP$IX

2. Purpose: To generate a symmetric matrix [B]
given a specific input symmetric matrix [A] , forPlug 6. The purpose of this operation is to impose the

condition that flexure terms "v" are zero.

3. Equations and Procedures: The matrix terms are formed
by direct assignment.

4. Input Arguments: [A] : Input Matrix

5. Output Arguments: [B] : Output Matrix

6. Error Returns: None

7. Calling Sequence: (A, B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage -equired is 20616 Bytes.

12. Subroutine User: Plug 6

13. Subroutines Required: None

14. Remarks: None

8.355

1. Subroutine Name: TRAIC

2. Purpose: To generate coordinate transformation matrices
for triangular ring which vary with coordinates and
generate integrals for future use.

3. Equations and Procedures: The coordinate matrix [GA4ABQ1
is formed by algebraic assignment. The table of inte-
grals, DELINT, is formed by algebraic methods using the
function subprogram AI.

ZL. Input Arguments: R,Z: Coordinates of node points
WIPR: Print control

5. Output Arguments:

GAMABQ: Coordinate matrix
DELINT: Table of integrals
DCURL: Matrix transformation
ISING: Error return code

6. Error 1,eturns: If GAMABQ cannot be generated due to
singular matrix then ISING is set to one.

7. Caling Sequence: (R, Z, GA4ABQ; DELINT, DCURL, ISING,
WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: R(3), Z(3), GAMABQ (6,6), DELINT (12),
DCURL (4,6), LL(6), Mm(6)

12. Subroutine User: PLUG6

13. Subroutines Required: MINV, AI, TESTJ, TRCPRT

14. Remarks: None

8.356

1W - - -

1. Subroutin Name: TESTJ

2. Purpose: To check DELINT (PLUG6) for any negative or
incorrect integrals; If any errors are noted, the
integrals are recomputed by an approximation method.

3. Equations and Procedures: The checks are performed by
logical if statements. The integral approximation is

fxPzQ d x dZ ; • • A
where

X + X + X z + z3 +

A ! 1x 1 (z2 -Z3) +x(3- 1 3 x(1-z2)]

4. Input Arguments: DELINT (I) value of the i th integral
X: X coordinates
Z: Z coordinates
WIPR: print control

5. Output Arguments: DELINT (I): recomputed integral

6. Error Returns: None

7. Calling Sequence: CALL TESTJ (DELINT, X, Z, WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELINT (12), LINT (12), X (1), z (1), XO (3), ZO (3),
DELTAX (1), DELTAZ (1), XAT (1), ZHAT (1)

12. Subroutine User: TRAIC

13. Subroutine Required: None

14. Remarks: If the test necessitates recomputation, the new
integral values will be stored in the old locatiuns, thus
destroying the originals.

8.357

1. Subroutine Name: TRCPRT

2. Purpose: To print elements formed in TRAIC

3. Equations and Procedures: None

4. Input Arguments:

GAMABQ: coordinate matrix
DELINT: table of integrals
DCURL : matrix of Integrals

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (GAMABQ, DELINT, DCURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None
ll. Storage Required: Total Storage required is 320.6 Bytes.

12. Subroutine User: PLUG6

13. Subroutine Required: None

14. Revrks ; None

8.358

1. Subroutine Name: TRAIE

2. Purpose: Tc .enerate the transformed matrix of elastic

constants

3. Equaticns arid Procedures: The routine

a) Generates the transformation matrix
b) Generates the elastic constants maLrix
c Generates the transformed elastic constant matrix

4. Input Arguments:

ER, ETHETA, EZ : Moduli of elasticity (Young's)
VR0, V09, VZR : Poissons ratio
GRZ : Modulus of rigidity
GAM : Angle between material axes and

element axes
El : Work storage

5. Output Arguments:

TEO : Transformation matrix
EM : Elastic constants matrix
E : Transformed elastic constant matrix

6. Errcr Returns: None

7. Calling Sequence:

(ER, ETHETA, EZ, VRO, VqZ, VZR, GRZ, GAM, TE0, EM, E,
El, WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Requirerl. Total Storage required is 60216 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Required: MPRD, TPRD

14. Remarks: None

8.359

SM-

1. Subroutine Name-, TIEPRT

2. Purpose: To print matrices formed in TRAIE

3. Equations and Procedu?'es: None

1i. Input Arguments: TEO : Transformation matrix
EM : Elastic constant matrix
E : Transformed elastic constant matrix

Output Arguments: None

b. Error Returns: None

7. Calling Sequence: (TEO, EM, E)

8. Input Tapes: None

9- Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: Total Storage required is 29416 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Required: None

14. Remarks: None

8.360

1. Subroutine Name: TRAIK

2. Purpose: Generate stiffness matrix for triangular ring

3. Equations nd Procedures: The program uses the table of
integrals to form the first intermediate matrix. This
matrix is then transformed to form the final stiffness
matrix.

11. Input Arguments:

GAMABQ.• Transformation matrix
E Transformed elastic constant matrix
DELINT: Table of integrals
WIPR : Print control
AKEL1, AKEL2, ACURL: Work storage

5. Output Arguments: AKEL : Stiffn9ss matrix

6. Error Returns: None

7. Calling Sequence: (GAMABQ, E, DELINT, AKEL, WIPR, AKEL1,
AKEL2, ACURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

GAMABQ (6,6), E(I0),DELINT (12),AKEL (21),AKELl (6,6),
AKEL2 (6,6), ACURL(21)

12. Subroutine User: PLUG6

13. Subroutines Required: TPRD, MPRD

14. Remarks: None

8.361

1. Subroutine Name: TIKPRT

2. Purpose: To display matrices generated in TiIK

3. Equations and Procedures: None

I. Input Arguments: AKEL : Stiffness matrix
ACURL : Intermediate stiffness matrix

Output Argnuments: None

,. Error Returns : None

'. Calling Sequunce: (AKEL, ACURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1E816 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Required: Ncne

14. Remarks: None

8.362

1. Subroutire Name: TRAIFP

2. 1krpo,;e: To generate the pressire load vector for

triangular ring.

q. Eauations and rocedures: The program

I.N Generates necessar- constants
P.) Generate; pressure load vector (non-transformed)
3.) Transforms. pressure load vector

'.. Tnput Argumentr:

R,7: CoordJnates of node points
Node p~int pressures

GAMIAQ: Coordinate transformation matrix
WIPR: Print control

q. "utput Arguments:

F'URLP: Non-transformed pressure load vector
p,:: Transformed pressure load vector

6. Error Returns: None

7. Calling Sequence:

tR, 7, P, GAMABQ, FP, WIPR, FCURLP)

9. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Reauired: R (3,Z(3),P(3),GAMABQ(6,6),FP(6),
F(3), FCURLP(6), DELTA (6)

.2. Subroutine User: PLUG6

13. Subroutines Reauired: TPRD

14. Remarks: None

8.363

1. Subroutine Name: TFPPRT

2. FiArpose: To display the non-transformed and transformed
pressure load voctors.

3. Emuations: None

4. Input arguments:

FP: transformed pressure load vector
FCURLP: non-transformed pressure load vector

5. Cutput arguments: None

6. Error returns: None

7. Calling sequence: (FP, FCURLP)

3. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is 1E81 6 Bytes

12. Subroutine User: PLUG6

13. Subroutines required: None

14. Remarks: None

8.364

1. Subroutine Name: TC.AIFT

P. Purpose: To generate a thermal load vector for a triangular
ring element

3. Equations & Procedures: The input matrices are manipulated
by matrix algebra to form the thermal ioae vector.

k. Input arguments:

ALFBAR: vector of coefficients of linear thermal expan-
sion

TMTZRO: base temperature
,AMABQ: transformation matrix
DCURL: matrix containing integral values
E: transformed elastic constant matrix
WIPR: print control

5. Output arguments:

FT: thermal load vector

6. Error returns: None

7. Calling sequence:

(ALFBAR, TMTZRO, GAIPL.BQ, DCURL, E, FT, WIPR)

8. Input tapes: None

9. Output tapes: None

J0. Scratch tapes: None

11. Storage: ALFBAR(4), GAMABQ(6,6), DCURL(4,6), E(1O), W..),
TEMPI(4), TEMP2(6), SAVE(4)

12. Subroutine User: PLUG6

13. Subroutines Used: MPRD, TPRD

11 . Remarks: None

8.365

1. Subroutine Name: TFTPRT

. Purpose: To display thermal lop,' vector for triangular

ring element

3. Equations: None

) . Input arguments:

FT: thermal load vector
ALFBAR: cooffiients of linear expansion
TNTZRO: base temperature

5. Output arguments: None

6. Error Returns: Ncne

7. Calling Sequence: (FT, ALFBAR, TMTZRO)

iF. Input Tapes: None

Q. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 25C 1 6 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: gone

14. Remarks: None

8.366

1. Subroutine Name: TRAI$

P, Purpose: To generate the stress matrix for triangular
ring element

3. Equations and Procedures: Given input constants, an
intermediate matrix is formed, which is ihen multiplied
by the system matrices to form the final matrix

4. Input Arguments:

R, Z: coordinates of node points
GAr1.ABQ: coordinate transformation matrix
E: elastic constant metrix
WIPR: print control
DZERO: work space
TEMP: node point temperatures

9. Output Arguments: TRE: stress matrix

6. Error returns: None

7. Calling sequence: (R, Z, GAMABQ. 8, STRESS, [PR, DZERO,
TEMP)

R. Input Tapes: Ncne

Q. Output Tapes: None

10. Scratch Tapes: None

i. Storage: R(3 Z(3 , GAMABQ(6,6), E(lO), STRESS(4,6),DZER0(4,6),

12. Subroutine User: PLUG6

13. Subroutines Used: MPRD

14. Remarks: None

8.367

- - w

1. Subroutine Name: TI$PRT

2. Purpose: To display the stress matrix for a triangular

ring element

. Equations: None

It. Input Arguments:

$TP,$$: stress matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: ($TRE$$)

3. Input Tapes: Ncne

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage: Total Storage required is IFCI 6 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: None

1. Remarks: None

8.368

1. Subroutine Name: TRAIT$

2. Purpos?: To generate thermal stress vector for a
triangular ring element

3. Equations and Procedures: The input matrices are combined,

using matrix algebra, to form the thermal stress vector.

It. Input Arguments:

E elarstic constant matrix
ALFBAR: linear thermal expansion coefficients
TMTZRO: base temperature
WIPR: print control

5% Output Arguments:

T$: thermal stress matrix

A. Error Returns: None

7. Calling Sequence: (E, ALFBAR, TMTZR0, T$, WIPR)

. Input Tapes: None

'. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

E(lO), ALFBAR(4), T$(), SAVE(4)

12. % ubroutine User: PLUG6

13. Subroutines Used: MPRD

14. Remarks: None

8.369

1. Subroutine Name: TT$PRT

P. Purpose: to display the thermal stress vector of a
triangular ring element

3. Equations: None

4. Input Arguments:

T$: thermal stress vector

'3. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (T$)

q. Input Tapes: None

, . Output Tapes: None

1O. Scratch: Tapes: None

11. Storage: Total Storage requireJ is 1C0 16 Bytes

12. Subroutine User: PLUG6

13, Subroutines Used: None

14. Remarks. None

8 370

,..-

1. Subroutine Name: TRAIM

2. Purpose: To generate a mass matrix for a twiangular ring
element

'i. Equations and Procedures: The program

' 1 Forms a transformation matrix [TMG]
Generates a matrix [R] which is a functio~i of the
mass coefficients.

(3) Generates a matrix [m] which is a function of [R]
and the table of integrals.

(4) .Qnerates the mass matrix [M] whi.ch is a functicn of
IM and the transformation matrix [(,AMAhQ]

[M]= [GAMABQ] T [] [GAMABQ]

).. Input Arguments:

ArMASS1, AMASS2: mass coefficients
GAM: angle between material axes and element axes
'IA!4ABQ: coordinate transformation matrix
DELINT: table of integrals
WIPR: print control
XMASS1, TEMP, AMCRUL, TEMP1, AMBAR: storage
TMG: transformation matrix

5. Output Arguments:

XMASS: mass matrix

6. Error Return: None

7. Calling Sequence:

(AMASS1, AMASS2, GAM, GA, ABQ, DELINT, XMA$$, WIPR, XMASSl,
TEMP, TMG, AMCURL, TEMP1, AMBAR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:
AMASS (2), GAMABQ (6,6),DELINT 12),
XMASS (21),XMASSl(6,6),TEMP(6, ,'TMG(2,2),AMBAR(2,2),
TEMP1 (2,2), AMCURL (21)

12. Subroutine User: PLUG6

13. Subroutines Used: TPRD, MPRD

14. Remay'ka: None

8.371

ii- -..... -

1. Subroutine Name: TIMPRT

'. ~Prpose: To display the mass matrix of a triangular ring

element

'. Equations: None

1L. Input Arguments:

XMASS: mass matrix
AMCURL: intermediate mass matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling S-iquence: (XMA$$, AMCURL)

S. Output Tapes: None

Q. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

Total Storage required is IE816 Bytes.

12. Subroutine User: PLUG6

13. Subroutines Used: None

14. Remarks: None

8-372

.. Subroutine 'Lame: TRAIF$

2. Purpose : To generate pre-strain load vector for a
trisngular ring element.

3. 2quatlons and Procedures: The routine uses the inputed
matrices and combines these to form the pre-strain load
vector.

4. Input Arguments:

EP$LON: Input pre-strain values
GAMABQ: Transformption matrix
DCURL: Integral matrix
E: Elastic constant matrix
WIPR: Print control
TEMP: Dumrpy storage
TEkP1l,
TEMP2: Dummy storage
P$LMAT: Dummy storage

5. Output Arguments:

F$: Pre-strain load vector

6. Error Returns: None

7. Calling Sequence:

(EPLN, GAMABQ, DCURL, E, F$, WIPR, TEMP, TEMP1, TEMP2,
P$LMAT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

EPSLON (),GAMABQ (6,6),DCURL (4,6),E(lo),FS(6),TEMP(l),
TEMPI(l),TEMP2(6,4), P$IMAT(6,4)

12. Subroutine Userx: PLUG6

13. Subroutines Required: MPRJ), TPRD

14. Remarks: None

8.373

I. Subroutine iHame: TF$PRT

2. Purpose: Display pre-strain load vector for triangular

ring

q. Enuations: None

. Tnput arguments: F$: pre-strain load vector

Ii. Output arguments: None

6. Error returns: None

7. calling sequence: (F$)

8. Input tapes: None

o. Output Tapes: None

lo. Scra..2h taper : None

]I. Storage required: Total Storage required is 1C0 16 Bytes.

1. Cubroutine user: PLUGS

ii. Subroutines required: None

]4. Remarks: None

8.374

1. Subroutine Name: TRAI$T

2. Purpose: To generate the pre-stress load vector for a
triangular ring element

3. Eauations & Procedures: The input matrices are combined
by matrix manipulations to form the pre-stress load vector.

4. Input arguments:

$IGZER: column of pre-stresses
GAVABQ: transformation matrix
DCURL: Integral value matrix
WIPR: print control

5. Output arguments:

F$T: pre-stress load vector

6. Error Returns: None

7. Calling sequence:

($IGZER, GAMABQ, DCURL, F$T, WIPR)

3. Input tapes: None

O. Output tapes: None

10. Scratch tapes: None

11. Storage Required:

$IGZER (it), GAMABQ (6,6), DCURL (4,6), F$T (6), TEMP(6)

12. Subroutine User: PLUG6

13. Subroutines required: TPRD

14. Remarks: None

8.375

1. Subroutine Name: TITPRT

2. Purpose: Display pre-stress load vector for triangular
ring element

. Equations. None

4. Input arguments: F$T

5. Output arguments: None

6. Error returns: None

7. Calling Sequence: (F$T)

8. Input tapes: None

0. Output tapes: None

10. Scratch tapes: None

11. Storage: Total Storage required is 1CO 16 Bytes.

12. Subroutine User: PLUG6

13. Subroutines used: None

14. Remarks: None

8.376

A.I

1. Subroutine Name: PL6PRT

2. Purpose: To display structural damping, viscous damping,
pre-strain and pre-stress m5,trices for a triangular ring
element

3. Equations: None

'.. Input Argument.s:

D$XP: structural damping vector
DVXP: viscous matrix
El: pre-stress multiplier matrix
F"'L4AT: pre-stral multiplier matrix

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (D$XP, DVXP, El, P$LMAT)

q. Input Tapes: None

', Output Tapes: None

10. Scratch Tapes: None

11. Storage: DXP(45), DVXP(45), l(4,4), P$LMAT(4,4)

12. Subroutine User: PLUG6

13. Subroutines Used: None

14. Remarks: None

8.377

'I

1. Subroutine Name: PLUG 5
2. purpose: To form the element matrices for a doubly curved

ring (toroidal ring) discrete element. This ring confi;ura-
tion, defined by an arbitrary section of revolution of a
complete right circular toroidal shell, enables smoothly
continuous idealization of general axisymmetric thin shell
problems.

The matrices which are formed are:

~ 1 Stiffness matrix

Stress matrix
3) Thermal load matrix + pressure load matrix
4) Thermal stress matrix

3. Equations and Procedures: There are two cases treated for
this type of element. They are:

(1) The angles of the interior and exterior membranes arenot equal (Toroidal section)
(2% The angles of the interior and exterior membranes are

equal. (Conic section).

In the second case, the interior angle is increased by a
factor of .50* so that they can be treated as in case one.
A special case arises for the degenerate situation where
the two angles equal 900. In this case a different path
is followed.

A variational (Lagrangian) approach is taken in formulating
the discrete element representation. On account of this, it
has been found necessary to use numerical integration
techniques, namely the Romberg technique and the nuirerical
quadrature technique.

The sequence of procedures is as follows:

(1) The first general part of tha routine processes input
information, forming constants to be used in calcula-
tions. Also, several constants are extracted from
the inputed materiel and extra matrices.

(2) After testing as to tlhe relative values of the membrane
angles (i.e. equal or no'), the program selects the
correct path to take in Porming the integrals used in
later calculations. Eithsr the Romberg or Numerical
Quadrature methods are used to evaluate the integrals.

(3). Using the integrals and the program constants, the
program forms several intermediate element matrices.

8.378

V

-- + V'--- ll-.7W

(4) By several. matrix operations (multiplications,
transformations, etc.), the stiffness matrix, AKEL,
is for'med.

5) In like manners, the program forms the thermal load
(FTEI) matrix, the pressure load (FPEL) matrix, the
combined thermal and pressure load (TPEL) matrix, the
stress ($EL) matrix, and the thermal stress (T$EL)
matrix.

(6) After all the calculations are completed, the program
calls a subroutine to print all the matrices.

4. Input Arguments:

TPL: Pl,ig Number
NN0: Nunber of node points
R: X coordinates of nodes
Y: Y - .o ,;cinates of nodes

Z,- cx ,6inates of nodes
TEMP: hode point temperatures
P: Node point pressures
Q$: Node point i puted displacements
IP: Number of extra cards
KK: Code for computation of' element stiffness mamrix
K,: Code for computation of element thermal load
K$: Code for computation of element -'tress matrix
KM: Code for computation of element mass matrix
KN: Code for computation of element incremental matrix
KD$: Code for computation of element structural damping
KDV: Code for ccmputation of elenent viscous damping
NORD: Order of element stiffness matrix
MAT: Material properties table
EXTRA: .perific element information
NDIR: Number of directions for each grid point
NDEG: Numier of types of movement allowed
IU$EL: Dummy
EP$IIN: Pre-strain load vector
$0: Pre-stressei;
INN$: Number of nodes
IC0NT: "ode for use of grid point axes
NR: umbe.x -f ro,: in stress matrix
N0DE$: Node p.,int numbers

8.379

5. Output Arguments:

NERR: Error return
N0INK: Number of elements in lower half matrices
AKEL: Stiffne ss matrix
ANEL: Incremental matrix
TPEL: Thermal load + prsssure load matrix
$EL: -Stress matrix
T$EL: Thermal stress matrix
AMA$$: Mass matrix
DAMPV: Visco'us damping matrix
DAMP$: Structural damping matrix
N$EL: Number of elements in stress matrix
NMA$$: Number of elements in mass matrix
NDAMPV: Number of elements in viscous damping matrix
NDAMP$: Number of elements in structural. damping matrix
GPAXEL: Grid point axes transformation matrix

6. Error Returns:

NERR = 0 No error
= 1 Plug number incorrect
=2 Number of nodes incorrect

Number of input points incorrect
- 4 order of matrix (nord) incorrect

7. Calling Sequence;

(IPL, NN$, R, Y, 9, TEMPI P, Q$. IP, ,IRDI NERR, N0INIIX
AKELI ANEL, TPELI, EL, TEL, AMA$$t DAMPIT, DAr'.P$, NR,
INN$, NODE$, NMA$$, NDMPV, NDMP$, N$E'L, 1KI, KF, K$,v KM,
KD$, KDV, KN, IUME, EP$LN, $ MAT, EXTRA, GPAXEL,
NDIR, NDEG, ICONT)

8. Input Tapes: None

9. output Tapes: None

10. Scratch Tapes: None

11. Stcrage Requirad:

T(21)W(!10,18) Wl(18,18) R(2) Y(Q) 9(2) D(2\ TEMP \(12,B)
NODE (1))W2 (18,18) W3 (18,185 TAKEI '.18,189 AKL11
GAMMj (018) XI (6,12) YI(6,12 x(6) KL11

FTE (8,1GA(10) E 100g) FMAE1 (10,2) PFEQ(10'.2)
FFE1 (10,2) E(2,2) AIK(2,2) AJK (2,2) ET$ (2,31) ETl1)
ALTO 2,1) ALTi (2,1) V1 (18 2) V2 (18,2) V3 (18,1 V418,i)
V5 -(1,1) v6 (18.1) FEEL (16) PPCQ (10,I) TPEL (18) $EL
(15,18) XXI (3) EXTRA(1) $CURL (15,10) TtSE. (15) TEl (2,1)
TE2 (2,1) EMi (2,1) EM2 (2,1) EPLN (l)$ (1) MAT(1)

8.380

-~ w - - ---------- __

12. Subroutine User: ELPLUG

13. Subroutines Required:

Fit, Y5, F6, ELTE$T, MPRD, GAMMAT, $CRLM, BMATRX, TPRD,
FCURL, $OLVE, DMATRX, M$TR, PLMX, PRINT5

lit. Remarks: None

8.381

1. Subroutine Name: MOTR

2. Purpose: To change the storage mode of a matrix.

3. Equations and Procedures: MSTR will perform the operation
on the right when HSi and MSR are equal to

MSA MSR ' PROCEDURE

0 [A] is moved to [R]

0 1 The upper triangle elements of a general matrix
are used to form a symmetric matrix

0 2 The diagonal element of a general matrix are used
to form a diagonal matrix

1 0 A symmetric matrix is expanded to form a
general matrix

1 1 [A] is moved to [R]

1 2 The diagonal elements of a symmetric matrix are
used to form a diagonal matrix

2 0 A diagonal matrix is expanded tc form a general
matrix

2 1 A diagonal matrix is expanded to form a symmetric
matrix

2 2 [A] is moved to [R]

The cedes for M$A and MR stand for

0 General matrix form
1 Symmetric matrix form
2 Diagonal matrix form

4. Ipput Arguments:

[Al Input matrix

N Number of rows and columns in[A] and 1R]

MA Code designating storage mode of (A]

MR Code designating storage mode of [h]

8.382

5. Output Arguments:

[RJ : Output matrix.

6. Error Returns: None

7. Calling Sequence: (A, R, 11, M, A, M ; R)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage RequirL Total Storage required I3 29C16 Bytes. I
12. Subroutine User: PLUG 5

13. Subroutines Required: L 0C

14. Remarks: Matrix[A]may not be in the same storage as [R]

8.383

/

1. Subroutine ffame: ROMBER

2. Purpose: To integrate f (x) from x = a to x v b.

3. Equations arid Procedures: The precision of large numbers
in terms of number of significant digits and the accuracy
of small numbers in terms of number of significant digits
is measured. The subroutine terminates when either of
these conditions is met.

1I. Input Arguments:

A: Lower limit
B: Upper limit
N$SIG: Numbor of correct significant digits

(not more than 7)
NIM: maximum number of halvings of (a,b)

to be made (not more than 99)
KODE: controls the form of the print-out
FUNCT: function of X - F4, F5, F6
X: variable of integration

). Output Arguments:

ITDONE: number of iterations
FINITG: value of the integral
PRECIS: actual number of significant digits

attained

6. Error Returns:
None

7. Calling Sequence: (A, B, NOSIG, PRECIS, NUM, ITD$NE,
FINTG, KODE, FJNCT, X)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 742 1 6 Bytes.

12. Subroutine User: PLUG5

13. Subroutines Required: FUNCT

14. Remarks: None

8.384

1. Subroutine Name: F4

2. Purpolt" To set up a function toi be used by R$MBER
in the computation of ig, one of the six
basic integrals used in PLUG5.

3. Equations and Procedures:

whe = (xl) x6-1 SIN (X,,) /DEN

where

DEN = X3 - X2 X5 + X X5 Cos (X)+ X2 X4 SIN (Xi)

;-. In ,ut Argument: X: array containing integration arguments

5. Output Arguments: F4: functional value

6. Error Returns: None

7. Calling Sequence: r4 (X)

8. Input Tapes: None

9. Output Tapes: None

In. Scrat-%h Tapes: None

11. Storage Required: Total Storage required is 25616 Bytes.

12. Subroutine Uger: R0MBER

13. Subroutines Required: SIN, COS

14. Remarks: None

8.385

L. -

1. Subroutine Name: F5

2. Purpose: To set up a function to be used by RMBER in
the computation of i 4, one of the six basic integrals
used in PLUG 5.

3. Equations and Procedures:

F5 = (x1)X6 - 1 2 sin (xl) cos(xl)/DEN

where
DEN = x3- x2 x5 + x2 x5 cos (xl) + x2 x4 sin (xl)

. Input Arguments:

X: array containing integration arguments

5. Output Arguments: F5 - functional value

6. Error Returns: None

7. Calling Sequence: F5(X)

8. input Tapes : None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 28216 Bytes.

12. Subroutine User: RMBER

13. Subroutines Required: SIN, COS

14. Remarks: None

8.386

1. Subroutine Name: F6

2. Purpose: To set up a function to be used by RMBER
in the computation of ig, one of the nix basic integrals
used in PLUG5

3. Equations and Procedures:

F6 = COKST" Cos (XI)/DEN

where

DEN = x -x2x5 + x2x5 Cos (Xl) -x sin (xl)J 1 x= I

CONST= ((Xl)x6-1 ×

It. Input Arguments:

X: array containing integration arguments

5. Output Arguments:

F6: functional value

6. Error Returns: None

7. Calling Sequence: F6X)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Require. Total Storage required is 25616 Bytes.

12. Subroutine User: RMBER

13. Subroutines Required: None

14. Remarks: None

8.387

I. Subroutine Name: QUADI

Puroose: To evaluate integrals by an enclosed quadrature

formula

R. Equations and Procedures:

Given the integrals of the form

2 fs rI + j COS cc

when it is true that

S Cos I1

r 1

it follows that m-I

ij ~ 1+ S-i 'CSC,

r m=l j+.0 r J
where En is the error term.

The formula converges when

F n < Im ~- s cos&%) m

14. input Arguments:

RI: Change in coordinates (distance)
S: Upper bound of integration
N: Number of integral (N = J + 1) S CosN
TRM: Criteria for convergence CTR4 =L_

r1

5. Output Arguments:

XI: Value of approximation

6. Error Returns: If the quadrature doesn't ecverge after
1000 iterations, the program terminates.

7. Calling Sequence:

CALL QUADI (R!, S, N, CTRM, XI)

8.388

8. Tnput Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3C816 Bytes.

12, Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks: None

8.389

1. Subroulina Name: BMATRX

2. Purpose: To generate a metrix [B] , given specific input,
for PLUG5

3. Equations and Procedures: The routine forms * e terms of
the matrix by direct assignment

4. Input Arguments:

S: Variable used to form terms of matrix

5. Output Arguments

B: completed transformation matrix

6. Error Returns: None

7. Oalling Sequence: (B ,$)

8. Input Tapes: None

q. Output Tapes: None

10. Scratch Tapes: None

11, Storage Requireu. Total Storage required is 39826 Bytes.

12. Subroutine User: PLUG5

1.3. Subroutines Required: None

1)4. Remarks: Typical Element

B(6, 9) -i.o/2.o * s * s * 5)

1.390

LJ

1. Subroutine Name: DMATRI"

2. Purpose: To generate a matrix [D] , for Plug 5, given
specific input.

1. Equations and Procedures: The routine forms the termsof
the matrix by direct algebraic assignment

It. Input Arguments:

V
C
CA
CA2 :All variables used to form
VA the terms
DM
DB
YI

9. Output Arguments:

[TD] : Compileted Matrix

6. Error Returns: None

7. Calling Sequence

(D, V, C, CA, CA2, VA, DM, DB, YI)

8. Input Tapes: None

9. Output Tapes: None

lO Scratch Tapes: None

l1. Storage Required: Total Storage required is BA6 16 Bytes.

12. Subroutine Usert Plug 5

13. Subroutines Requ.red: None

14. Remarks: Typical Element

D(3,2) = DB * (2.*V*YI(4, 1) - 2.x YI(6,2) + D(4,l))

8.391

1. Subroutine Name: GAMMAT

2. Purpose: To generate a matrix EGAMM], given another matrix

3. Equations and Procedures: The routine rearranges the rows
of the input matrix to form the output matrix.

4. Input Arguments:

B: Input Matrix

5. Output Arguments:

GAMM: Output Matrix

6. Error Returns: None

7. Calling Sequence: (GAMM, B)

8. input Tapes: None

9. Output Tapes: None

1O. Scratch Tapes: None

11. Storage Required: Total Storage required is 1AA1 6 Bytes.

12. Subroutine User: PITP5

13. subroutines Required: None

14. Remarks:

Typical Element GAMM (4, 3) = B (10, 3)

8.392

I

1. Subroutine Name: FCURL

2. Purpose: To generate 4 matrices, [FME] ,[FMEl] , rFFE%] ,
and [FFEl] , given specific input, for Plug 5

3. Equations and Procedures: The routine forms the terms
of the matrices by direct algebraic assignment.

4. Input Arguments:

YT .variable& used to form
S c" he terms cf the matrices.LAMI

5'. Output Arguments:

FME}
FMF1FFET:l output matrices
FFE1

6. Error Returns: None

7. Calling Sequence: (FME0, FMEl, FFE$, FFE1, YI, $, LAM1)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

FME0(lO,2), FFE%(lO,2), FMEI(l0,2), FFEI(!0,2), YI(6,12)

12. Subroutine User: PLUG5

13. Subroutines Required: None

14. Remarks: Typical Element

FMEI(4,2) = $1 * YI(4,5)

8.393 L1

1. Subroutine Name: PLMX

P. Purpose : to generate a matrix FPcoQ], given specific
input for Plug 5.

3. Equations and Procedures: The routine forms the terms of
the matrix by direct algebraic assignment.

It. Input Argumento:

YI
CON'i. Variables used to form
CNT2 the terms of the matrix
P1

5. Output Arguments:

FPCQ Output Matrix

6. Error Returns: None

c 7. Calling Sequence: (FPCQ, YI, CONTl, CONT2, P1)

8. Input Tapes: Ncne

9. Output Tapes: None

10. Scratch Tapes; None

l1, Storage Required:

Total Storage required is 22816 Bytes.

12. Subroutine User

PLUG 5

13. Subroutines Required: None

14. Remarks: Typical Element

FPCQ (6,j) = CON$TI * (PI * YI (1,2) - CONOT2 * YI(1,3))

8.394

.- - - -.. ' ", '--- - - -- ', - -

-- - - ---------

1. Subroutine Name: SCRLM

2. Purpose: To generate a matrix [$CURL] , given specific
input, for PLUG5 I

3. Equations and Procedures: This routine forms the terms
of the matrix by direct algebraic assignment.

4. Input Arguments:

XXI.
E:

H: Variables used to form the terms of the matrLx
CONT:
RP:
ALFI:
Rl:
IAM1:

'5. Output Arguments:

SCURL: outpt element stress matrix

6. Error Returns: None

7. Calling Sequence:

($CURL, XXI, E, H, CONT, FP, ALF1, RI, LMi)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes . None

11. Storage Required:

12.Total Storage required is 9F8-6 Bytes.

12. Subroutine User: PLJG5

13. Subroutines Required: None

14. Remarks:

Typical Element

$CURL(41,8) = $CURL4,6) * 3.0 * XX2 - E(l,2) * 6.o * XX1

8.395

7I

1. Subroutine Name: $OLVE

2. Purpose: To solve for lambdas as functions of XI.

i.e. A = f (XI)

3. Equations'and Procedures: The roxtine uses algebraic
techniques to arrive at a solution.

eg.)

LAM2 Cos (Al + "R-)
Rl-RP* (SIN (A!) +SIN fA +X

where Al, Ri, RP are constants

LAM3 and LAM4 are similar

11. Input Arguments: Al
R1 -Variables used for calculation
RP of the lambdas
XI)

5. Output Arguments: LAM2
IAM :Output values

6. Error Returns: None

7. Calling Sequence: (Al, Ri, RP, XI, LAM2, LAM3, LAM4, CONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3-416 Bytes.

12. Subroutine User: PLUG 5

13. Subroutines Required; None

14. Remarks: None

8.396

=./

1. Subroutine Name: PRINT5

2. Purpose: To print, as output, the intermediate matrices
and single valued variables, generated in Plug 5.

3. Equations and Procedures: The routine contains the proper
write and format statements.

4. Input Arguments: All the variables to be printed.
(See calling sequence)

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: (C, DM, DB, PHIB, RP, $, BB, RT, F$I1,
P$12, CO$l, $INl, XI, YI, B, D, W, Wl, Ho, ALF2, ALFl, W3,
Rl, R2, Zl, 92, EP, ET, VPT, AXI, ABETA, TlI, Tl0, T21,
T20, LAMl, AIK, AJK, ET%, ET1 ALTO, ALT1, E, FME%, FMEl,
FFE$, FFE1, FTEL, Pl, P2, CONTl, CONT2, FPCQ, FPEL,

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1 ii. Storage Re uired: W(lO,18), Wl(18,18), XI(6,12), YI 6,121,
*B(1.O,l8o D?1,lO FTEL(l8, FME$ S,10 ,2) FMEIO 2),SFFEO IO,) FFE1(IO,2 E (2,1'- AIK(221 AJK(2,21 ET (2,1l

ETl(2,ol ALT$(2,lj ALTL(2l-,l FEL(18), FPCQ(10,1), W(8,1)
$CURL(15ol, 10)PL

12. Subroutine User: PLUG 5

13. Subroutines Required: None

14. Remarks: None

8.397

1. Subroutine Name: PLUG 14

2. Purpose: To compute the element stiffness, stress and
diagonal mass matrix.

3. Equations and Procedures: The routine first generates the
transformation matrix, PH, and prints it out (using P14PRT)
if option is in effect. It then calculates the stress matrix
depending on input code KI / 2. It now calculates the stiff-
ness matrix, transforms it to system coordinates using MULTF,
and expands it using POOF. If KI = 2, the routine will then
calculate the lumped mass matrix and expand it using POOF.

4. Input Arguments:

IPL: Plug Number (must equal 14)
NNO: Number of node points (must equal 4)
X,Y$Z: Three vectors of length four each having the X,Y,Z

coordinates of the 4 node points.
NORD: Order of stiffness and mass matrix (must equal 24)
KI: Selective calculation code
MAT: Material properties array

MAT 12 E - Young's ModulusMAT u - Poisson Ratio

MAT 22) = DENSM- mass density
MAT 23-= CONT- print control

EXTRA: Extra input array (EXTRA (1) = T = thickness)

5. Output Arguments:

NERR: Error return code
NINK: Number of elements in symmetric stiffness matrix

(equals 300)
AKELXP: Singly subscrtpted array of element stiffness matrix

(symmetric lower half by rows)
SELXP: Singly subscripted array of element stress matrix

"of size 1 x 24

AMASS: Singly subscripted array of element mass matrix
(symmetric lower half by rows)

NRSEL: Number ,of rows in stress matrix (equals i)
NMASS: t,"z-,ber of elements in symmetric mass matrix (equals

300)
NSELXP: Number of elements in stress matrix (equals 24)
TSELXP: Thermal stress vector of length 1 is set to zero.
TPELXP: Applied load vector of length 24 is set to zero.

6. Error Returns: If NERR / 0 then error was detected in input
arguments. (See ELPLUG)

7. Calling Sequence:

(IPL, NN0, X,Y,Z, TEMP, P, -q, IP, NORD, N$INK, AKELXP_, ANEL,
TPELXP, SELXP, TSELXP, AMASS, NDMPV, NDMPS, NSELXP, KI, KF,
KS, KM, KDS, KDV, KN, IUSEL, EPSI , So, MAT, EXTRA, GPAXEL,
NDIR, NDEG, ICONT)

8.398

8. Input Tapb3: None

9. Output Tapes: None

10. Scratch Tapes: None

11: Storage Required: 505 decimal locations of work storage used
from unlabeled common block.

12: Subroutine User: ELPLUG

13t Subroutines Requir'ed:

ELTEST, P14PRT, MULTF, POOF

it: Remarks: All arguments in calling sequence not defined were
not used in subroutine.

8.9

0 S
, 'I

.4g

8.399

-- --------

1. Subroutine Name: MULTF

2. Purpose: To preform the matrix multipl ication B transpose
times A times B, where A is a symmetric inatrtx and B is a
rectangular martrix.

3. Equations and Procedures:

C = B (transpose) * A * B

The routine first generates the product of a row of B
transpose times each column of A and stores this in a
temporary storage V. It then multiplies V times the appro-
priate columns of B to generate the corresponding row of C.

4. Input Arguments:

A: The symmetric input matrix doubly dimensioned 8x8
with only symmetric lower half needed.

NA: Order of A must be less than 9.

B: The rectangular input matrix doubly dimensioned
8x12 with size NA x NBC

NBC: Number of columns of B (less than 12)

V: A work storage vector of length NA.

5. Output Arguments:

C: The results of the multiplication, doubly dimensioned

12xl2 with only symmetric lower half returned. Size
is NBC x NBC.

6. Error Returns: None

7. Calling Sequence:

(A, NA, B, NBC, V, C)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 35016 Bytes.

12. Subroutine User: PLUG 14

13. Subroutines Require: None

14. Remarks: None

IL 400

1. Subroutine Name: POOF

2. Purpose: Expand element stiffness matrix (lower symmetric
by rows or upper symmetric by col) and element thermal
load vector and add the components into the expanded matrix
and vector in their appropriate positions.

3. Procedure. Using the decoding vector determine the locations
of the ccmponents of the element stiffness matrix in the
new expanded (assemoled stiffness) matrix and add these
old element components into their new positions. The same
procedure is used for the thermal load vector.

4. Input Arguments:

LIST - decoding vector consisting of NORD components
the subscript of each component gives the old
(element) row or column and the component
itself gives the row or column in the new
expanded matrix.

NORD - order of old element stiffness matrix (AKEL)
also length of old thermal load vector (FTEL).

AKEL - old element stiffness matrix [upper symmetric
by cols].

FTEL - old thermal load vector.

5. Output Arguments:

AK - expanded stiffness matrix [upper symmetric
by cols]

FCOL - expanded thermal load vector.

6. Error Returns: None

7. Calling Sequence:

(LIST,NORD,AKEL,FTELAKFCOL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 30016 Bytes.

12. Subroutine Users: PLUG8

13. Subroutines Required: None

14. Remarks: None

8.401

I. Subroutine Name: P14PRT

2. Purpose: To prInt out on the system output unit the vari-
ables in the Input argument list.

3. Equations and Procedures:

11. Input Arguments:

D22: variable printed out and lab)ed 1'I1

D35: ""1D3 :"" " " "' IA(' t ALX : f A14X
ALY: " " " LAMY
AL".. " " " AMZ
PX: " " P. IX
PY: " " " PSIY
PZ: "" " PSIZ
XP4:" XP4
YP4: "YP4
PH: An 8 x 12 matrix printed out ac labled ELEMENT

TRANSFORMATION MATRIX

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

(D12, D15, D35,. ALX, ALY, ALZ, PX, PY, PZ, XP4, YP4, PH)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

1'. Storage Required: Total Storage required is 41816 Bytes.

12. Subroutine User: PLUG 14
13. Subroutines Required: None

14. Remarks: None

8.402

I!

1. Subroutine Name: PLUG8

2. Purpose: Generate element matrices for the trapezoidal

ring element.

3. Equations and Procedures:

a) Call subroutine ELTEST to verify input control values.
b) Initialize material properties, node point pressures,

geometric constants and integration constants.
c) Call subroutine SUBINT to calculate other integrals.
d) Define transformation matrix to transform to displacement

degrees of freedom.
e) Generate mechanical property matrix, thermal coefficient

matrix, stiffness matrix and thermal load matrix.
f) Call subroutine POOP to calculate pressure load veccor.
g) Call subroutine ERIC to inflate stiffness matrix and

element thermal load vector.
h) Generate stress matrix and therhal stress.
i) Call P8MASS to generate element mass matrices.
J) Print debug print if requested.

4. Input Arguments:

IPL - internal element identification number (8)
NNO - number of element defining points (4)
XC - coordinates of element defining points
YC - coordinates of element defining points
ZC - cooidinates of element defining points
TPS - temperatures at element defining points

PVP - pressures at element defining points
QS - input displacements at element defining points

(not used)
IP - not used
NORD - total element degrees of freedom (12)
Kl - number r" storages required for element stiffness

matrix (,.JRD*(NORD + 1)/2)
INNO - not used
NL - array containing grid point numbers of element

defining points
KK - suppression control for element stiffness matrix
KAF - suppression control for element thermal and

pressure load matrices
KS - suppression control for element stress matrix
KTS - suppression control for element thermal stress matrix
KAM - suppression control for element mass matrix
KDS - suppression control for structural damping matrix
KDV - suppression control for structural viscous matrix
KSN - suppression control for element incremental

stiffness matrix
IUMEL - not usedEPSIO - input pre-strains

8.403

(

4. Input Arguments, Contd:

SO - input pre-stresses
MAT - input temperature interpolated material properties
EXTRA - special element input
GPAXEL - grid point axes transformation matrices (not used)
NDIR - number of directions of element defining

points (3)
NDEG - number of solvtion degrees of freedom

(1-translation)
ICONT - grid points axes indicator

5. Output Arguments:

NERR - error indlcatwr
2K - element stiffniess matrix
ANEL3 - element incremental stiffness matrix
XT - element thermal and pressure load matrix
SEL - element stress matrix
SZALEL - element therrnal stress matrix
AMASS - element mass matrix
DAMPV - element viscous damping matrix
DAMPS - element structural damping matrix
NRSEL - number of rows in element stress and thermal

stress matrices
NMASS - number of storage required for element mass matrix
NDMPV - number of storages required for element viscous

damping matrix
NDMPS - number of storages required for element

structural damping matrix
NSEL - number of storages required for element stress

matrix

6. Error Returns:

If-no error, then NERR is set to zero
If IPL p 28, then NERR is set to one
If NNO p 4, then NERR is set to two
If 14ORD p 12, then NERR is set to four.

7. Calling Sequence:

Call PLUG8(IPL,NNO,XC,YC,ZCTPSPVP,QSIP,NORD,NERR,KI,ZK,
ANEL3,XT:SEL,SZALEL,AMASS,DAMPVDAMPS,NRSEL,INNO,
NLEPSIO,SO,MAT,EXTRAGPAXEL,NDIR,NDEGICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 588E 1 6 Bytes.

8.4o4

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTESTSYMPRT,LOC,ELTEST,MPRD,TPRD,MSTR,I"UBINT,ZMRD,ZTRD,
KMPY, ERIC, POOF5 P8MASS

14l. Remarks: None

- 8.405 /

1. Subroutine Name: P8MASS

2. Purpose: To generate element mass matrix for PLUG8.

3. Equations and Procedures: The (8x8) re.t.ced mass matrix
AMEL3 is formed in terms of the integration constants.
Then the transformation to displacement degrees of freedom
is performed. The matrix is then expanded to order
(NORDxNORD) by subroutine POOP.

4. Input Arguments:

DENSM - element mass density vector (first element)
HH - transformation to displacement degrees of

freedom
NORD - order of mass matrix (= 12)
NMASS - number of elements in mass matrix (= 78)
I10 - 132 - integration constantg for rectangular cross

section ring
CHH - working storage (64)
SH - working storage (64)
LIST - code list for transforming system reduced

degrees of freedom to system expanded degrees
of freedom

AMASS - work storage (36)

5. Output Arguments:

AMASE - resultant mass matrix (symmetric 12 x 12)
AMEL3 - order 8 MASS matrix before transformation

and expansion to order 12

6. Error Returns: None

7. Calling Sequence:

Call P8MASS(DENSM,HH3AMASE,NORD,NMASS,IIO,111,I12,120,121,
122,I30,l3lI32,CHHSH,AMEL3,LIST,AMASS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 6C2 Bytes.
16

8.1406

V .

- w 'Imp__ _- -7'

12. Subroutine User: PLU08

13. Subroutines Required:

MPRD
TPRD
MSTR
POOP

14. Remarks: None

8o

I,

4

1. Subroutine Name: SUBINT

2. Purpose: Solve integral used in integration constants
for PLUG8 element matrix definitions.

J. Equations and Procedures:

Iaff DR DZ

Solve for H given R, Z and Q for values of 0, 1 and 2. The
R and Z values are coordinates of a trapezoid arca. The area
is divided into two triangles (A and B). The centroid and
area of each triangle is found

(RA3 ZAI RB' ZB) (AA, AB)

H (AA ZA Q
(AB ZB

Q)

RA RB

H - HA 4 HB

4. Input Arguments:

R - variable (double precision) array
Z - variable (double precision) array
Q - integer (exponent)

5. Output Arguments:

H - value of integral (double pre,.islon)

6. Error Returns: None

7. Calling Sequence-:

Call SUBINT(R,Z,Q,H)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 2A6 1 6 Byte3.

8.408

- I

-PW-
- -.-

12. Subroutine User:, PLU08

13. Subroutines Required: None

14I. Remarks: R, Z and H must be double precision in
calling program.

8.409

1. Subroutine Name: ZMRD

2. Purpose: Multiply two matrices to form a resultant
matrix. (This is a modification of MPRD to include double
precision.)

3. Equations and Procedures:

[R] - [A] j

4. Input Arguments:

A - first input matrix (double precision)
B - second input matrix (single precision)
N - number of rows in A matrix
M - number of rows in B matrix
L - number of columns in B
MSA - control on storage mode of A
MSB - control on storage mode of B See remarks

5. Output Arguments:

R - resultant matrix (double precision)

6. Error Returns: None

7. Calling Sequence:

Call ZMRD(A,B,R,NM,IAZA,MSB,L)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3FEI6 Bytes.

12. Subroutine User: PLUG8

13. Subroutines Required: LOC

14. Remarks:

I. General subroutine.
2. Storage control of A and B matrix

0 - General
1 - Symmetric (upper half)
2 - Diagonal

3. A and R must be double precision in calling program.

8.1110

1. Subroutine Name: ZTRD

2. Purpose: Transpose a matrix and post multiply by
another to form a resultant matrix.

This routine is a modification of TPRD to ihclude
double precisnion.

3. Equations and Procedures:

[Rj _ [A3 T [BJ

[A] is not actually transposed.

14. Input Arguments:

A - first input matrix (single precision)
B - second input matrix (double precision)
N - number of rows in A and B
M - number of columns in-A and rows in R
L - number- of columns in B and rows in R
MSA - control of storage mode of A
I4SB - control of storage mode of B See remarks

5. Output Arguments:

R - resultant matrix

6. Error Returns: None

't. Calling Sequence:

Call ZTRD(A,B,R,N,M,14SAM4SB,L)
8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: No-ne

11. Storage Required: Total Storage required is 40616 Bytes.

12. Subroutine Usert PLUG8

13. Subroutines Required: LOC

14. Remarks:

1. General subroutine.
2. Storage control of A and B matrix

0 - General
3 - Symmetric (upper half)
2 - Diagonal

3. B must be double precition in calling progran.

~ 1.1

1. Subroutine Name: KMPY

2. Purpose: Multiply each element of a matrix by a scalar
to form a resultant matrix.

3. Equations and Procedures: This subroutine multiplies
each element in the input matrix A, by a scalar C and
places the result in R. Soubroutine LOC calculates the
vector length IT of the resultant vector R.

4. Input Arguments:

A - name of input matrix
C - scalar multiplier
N - number of rows in matrix A
M - number of columns in matrix A
MS - storage mode of matrix A

- 0 General
- 1 Symmetric
- 2 Diagonal

5.c Output Arguments:

R - name of output matrix
N,Y4,MS - defined above, refer to the R matrix also.

6. Error Returns: None

7. Calling Sequence:

Call KMPY(A,C,R,N,M,MS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 1F8 16 Bytes.

12. Subroutine User: PLUG8

13. Subroutine Required: LOC

14. Remarks: Good comments are evailable in the subroutine
listing.

8.412

. . .- , n

1. Subroutine Name: ERIC

2. Purpose: Compute pressure load vector (FP)

3. Equations and Procedures:

FP = SCAL [HiiT LQj EL j jj 1Pv

50 Multiply ITH col of HH * QP to get WORK(8) vector
Multiply WORK * HP to get WORK2(8) vector
Multiply WORK2 * PV * SCAi. to get FP(I)
Update I and go to 50

4, Input Arguments:

HH - EQ. 2.10
QP - EQ. 4.3.1.27 (less 21)
HP - EQ. 4.3.1.29
PV - EQ. 4.3.1.29
SCAL - 2H See 4.3.1.27

5. Output Arguments:

FP - pressure load vector

6. Error Returns: None

7. Calling Sequence:

(HH, QP, HP, PV, FP, SCAL)

8. Input Tapes: None

,. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 36C1 6 Bytes

L 12. Subroutine User: PLUG8

13. Subroutines Required: None

14. Remarks: Equation are given in "Formulation and Evaluation
of a Trapezoidal Cross Section Ring Discrete Element",
R. H. Mallett, S. Jordan, November, 1966.

8.413

1. Subroutine Name: PLUG17

2. Purpose: (1) To generate both membrane and flexural element
matrices of a triangular thin plate, (2) if applicable,
generate incremental matrices for instability.

3. Equations and Procedure3:

A. Formulation of Equation - The formulation for any
computations involved in evaluating the element matrices
will be found in references (1) and (2). (See Remarks
section of this report.) Modifications were, however,
necessary to make the notation compatable with 3648
procedures and applications. The formulations and coding
are not necessarily in the same sequence or labeling.

B. Initial Computations -

1. Constants have to be set for:
a) If the element matrices are to b6 computed,

LAMDA(I) = 1 where

I = 1, for membrane stiffness and stress
I = 2, for flexural stiffness and stress
I = 3, for membrane thermal. load and stress
I = 4, for flexural thermal load and stress.

b) The incrementals will not be computed:
INCREM a 0 since ICONT = 0.

2. Material properties and element data from MAT and
EXTRA array noting that if either membrane or flexure
thickness is zero, the appropriate LAMDA above is
reset to zero.

3. According to reference (2), transformation matrices
have to be formulated with the appropriate direction
cosines.
a) From cylinder coordinates to local coordinates

{x} - [Tt {xo } (1)

b) From cylinder coordfnates to oblique coordinates

{xo} = [TOj {Xc} (2)

where {xI are the local x, y, z coordinates
{x I are the cylinder x, y, z coordinates
{xc} are some other orthogonal X' Y' Z' coordinates

[-T cl [T0j contain the respective direction cosines.

Since the element displacements are in local
coordinates, combining equations (1) and (2) yields

{x I- [Ttc1 [Tor1T{ o0 - [TTOBI {xo 1 (3)

8.414

3. Equations and Procedures (Contd.):

4. Transformation of the above cited displacements,
xlx 2,x3,y,,etc. into 3648 notation xlY1 ,ZlX 2,etc.

will result in the formulation of
{x1,x2,x3,etc} T1718] (x ,yZl,etc} (4)

C. Flexural Computations - (All equations cited are in
Reference 1).
1. Using equation IV-6, the [Bj matrix is formulated.

However, it should be noted that the SEL array is
used to relabel the displacements as W, % X and 8y

(instead of ex, ey, W).

2. Using equations IV-15, 16, and 17, the geometric
properties of the element are first defined in local
and then in global coordinates. These are shown as
Figures IV-3 and IV-2 respectively.

3. If the incrementals are to be computed (Nx , NY, Nxy)

the following sequence of operations take place:
a) Using equation IV-14, the respective [cj matrices

are formulated.
b) The respective incremental is formulated according

to equation IV-ll and then transferred to 3648
notation by [T1718J.

4. The remaining element matrices are then formulated
according to the respective equations cited:
a) Stiffness - Equations IV-2, 6 and 10
b) Stress - Equation IV-24
c) Thermal Load - Equation IV-21
d) Thermal Stress - Equation IV-26

D. Membrane Computations - (All equations cited are in
Reference 1). The following membrane matrices are then
formulated according to the respective equation cited:
a) Element - Equations 11-1, 5 and 11
b) Stress - Equation 11-16
c) Thermal Stress .- Equacion 11-25
d) Thermal Load - Equation II-.;2

E. Remaining Operations - The element stiffness, stress
and thermal load matrices are then transformed first to
global and then to 3648 notation.

It

_--

4. Input Arguments:

NCEl - number of node points
ZELG,YELCZELC - X, Y and Z coordinates
TEL,PEL - temperature and pressure array
NORD - order of element stiffness matrix
NCEI - node point numbers
GPAXEL - grid point axes transformation for element
KN - control for instability (ifl -et = 1, incrmentals

computed)
ICONT - control of grid point axes transformation
MAT - material properties array
EXTRA - element properties array

5. Output Arguments:

NOINK - number of elements in stiffness matrix
AKELX - elements of stiffness matrix (symmetric -

bottom half)
FTELX - elements of thermal load matrix
SELX - elements of stress matrix
PTEL - elements of thermal stress matrix
NRSEL - number of rows in stress matrix (5)
NSEL - number of elements in stress matrix (90)

6. Error Returns:

(a) NERR - standard plug checks from ELTEST
(b) If points (1) and (2) have same coordinates call EXIT

(c) If B-1 is singular - call EXIT.

7. Calling Sequence:

Call ?LUGI7(IPL,NCE1,XELC,YELC,ZELC,TEL,PEL,QSEL,IP,NORDNERR,
NOINK,AKELX,ANELX1,FTELX,SELX,PTEL,AMASS,DAMPV,
DAMPS,NRSELNNO,NCEI,NMASS,NDMPV,NDMPS,NSEL,KK,
KF,KS-,KM,KDS,KDV,KNIUSEL,EPSIO,SO,MAT,EXTRA,
GPAXEL,NDIR,NDEG,ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.416
t. ...i

W- ---- -7----

11. Storage Required:

a) Variables b) Definition

T1718 (24,24) - Transformation matrix to 3648 notation
TTOBL (3,12) - Transformation matrix from local to

global or oblique cooidinates
SEL (17,24) - Working area and stress matrix
ANELX (300) Incremental matrices in Cylinder
ANELY (300) NotationANELXY (300)

ANELEX (300,3) - Incremental matrices for Instability
in 3648 notation

12. Subroutine User: ELPLUG

13. Subroutines Required:

DIRCOS BCB
BCB12 MATB
FTELQ MAB
SELQ KOBLIQ

14. Remarks:

a) Controls are reset in programs to compute everything but
the incrementals. Initial test phase had KN = 1 to check
these computations.

o) Plug not tested out if either the flexural or membrane
thickness is zero (certain portions of plug will be bypassed
as LAMDA is set = 0).

c) Thermal load will probably have to be rederived as 2nd
input TEMP is thermal moments Mx and not the thermal
gradient as prescribed for flexural elements (PLUGS 1
and 2).

d) References:

(1) Bell Report No. D2114-95005, "Derivation of the
Force - Displacement Properties of Triangular and
Quadrilateral Orthotropic Plates in Plane Stress
and Bending" - Gallagher, Huff .. dated Jan. 1964.

(2) Bell Report No. D2114-95008, "Detailed Description
Computer Program for Stiffened Cylinder Analysis"
Gallagher, Huff, Dale - dated Jan. 1964.

8.417

1. Subroutine Name: DIRCOS

2. Purpose: To evaluate the direction cosines given any 3
points that define a plane.

3. Equations and Procedures: Subscripts 1 2 and 3 refer to
the 3 points of the plane. Dropping a perpendicular from
point 3 to the line connecting 1 and 2 results in point a.
The following computations are done in order to determine
the direction cosines.

12 2 + -Y)2 + z z212 (x2 - xl) + (Y2 - y1) + (z2 - Z1)
12 _ 2+22

123 = (x3 -x 1) + (y3 -Y) 2 + (z3 z)2

123 (x3 x2)2 + (Y3 Y2 + (z3 - z2)

11a= (l2 + 12)/21
1a 12+l13 - 23)121

x2-xI Y2-yl z2-z1Xx X y =, Xz=12 12 112

xa xI + Ix Il
Xa = 1 x 1a

Ya Y1 + Ay la

za = 1. + z I la

12 = - a2 2 + ()2

a3 (Y3 -a ()3 - Za) a

8.418

3. Equations and Procedures,(Contd.):

x 3-X a T 3y z3-
1a3 y 1a3 la3

x y Tz - Az Ty

'I= ' z Y - A 'V If
vy z x x Iz

4. Input Arguments:

XELl,YELl,ZELI - X, Y, Z coordinates of plane

5. Output Arguments:

XLAMD1 -
YLAMD1
ZLAMD1I
XPSIl direction cosines.
ZPSII
XNUl -

YNUI
ZNUI
ALI21 distance between point 1 and 2 of the plane.

6. Error Returns: None

7. Calling Sequence:

Call DIRCOS(XEL1,YEL1,ZEL1,XLAMDL,YLAMDI,ZLAMD1,XPSI1,YPSI1,
XNVl,YNUl,ZNUl,ALI21)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8. 4 i!

K 8. ~l!~

11. Storage Required: Total Storage required is 57616 Bytes.

12. Subroutine User: PLUGi?, PLUG18

13. Subroutines Required: None

14. Remarks: None

8.420

1. Subroutine Name: BCB12

2. Purpose: To evaluate a triple product matrix where all
matrices are square.

3. Equations and Procedures: Dependent upon an input
variable (ISIN2) when ISIN2 = 5.

AKEL = 'A 1 _ T CC7 Z-A - 1 _

when ISIN2 = 11

AKEL = -A T - Z- A7

where A now contains elements of A- 1 .

4. Input Arguments:

A - matrix to be inverted or the inverted matrix
C - symmetric matrix bottom half
NOR2 - order of matrices
JNL1 - dummy - set equal to 1
IKELW - print option
JELl - dummy - set equal to 1
ISIN2 - input code for above
NEC1 - node points
SUBTIl - title of matrix
SUBTI2 - type of element
NCE2 - number of grid points

5. Output Arguments:

AKEL - results of the above triple product.

6. Error Returns: If A is singular - print out error and EXIT.

7. Calling Sequence:

Call BCB12(A,C,NOR2,JNLI.,IKELW,JEL1,ISIN2,AKELNCE2,NCE1,
SUBTI1,SUBTI2)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 120816 Bytes.

12. Subroutine User: PLUG17, PLUG18

13. Subroutines Required: None - has a built in inverse routine.

14. Remarks: Note that maximum size of matrix is only 12.

8.421

1. Subroutine Name: KOBLIQ

2. Purpose: To evaluate

(TTOBL)T (AKEL) (TTOBL)

3. Equations and Procedures: TTOBL is a compressed trans-
formation matrix (3,12) that is labeled u, v, w for each
node point. Since AKEL is labeled u1, u2. u3 , etc., the

appropriate manipulation is done in this routine to do the
above product.

4. Input Arguments:

NI - order of matrices
TTOBL - transformation matrix of element
AKEL - element stiffness matrix
SUBTI1, SUBTI2 - labeling of printout
IKELW - print option
C - working storage
NAl - number of nodes defining element
NAI - node points
ROW - working storage

5. Output Arguments:

AKEL - element stiffness matrix

6. Error Return: None

7. Calling Sequence:

Call KOBLIQ(NITTOBLAKEL,SUBTI1,SUBTI2,IKELW,C,NA1,NAIROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is AFO 6 Bytes.

12. Subroutine User: PLUG17, PLUG18

13. Subroutine Required: None

14. Remarks: Note that dimension for ROW dictates size of
multiplication.

8.422

-- MP,
- --= -n

1. Subroutine Name: P1718M

2. Purpose: Initialize element properties from the material
table Tor membrane properties with flexural data only from
PLUG 17 and PLUG 18.

3. Equations and Procedures:

EXEL = MAT(!4)
EYEL x MAT(15)
BETA = EXEL/EYEL
XYMU w MAT(16)
ALFAEL - MAT(17)
GXY.L - MAT(18)

4. Input Arguments: MAT

5. Output Arguments:

EXEL
BETA
XYMU
GXYEL
ALFAEL

6. Error Retur: None

7. Calling Sequence:

PlIi8M(MATEXELBETAXYMU,GXYELALFAEL)

8. Input Tapes: None

9. Output Tapeu: None

10, Scratch Tapes: Non 1

11. Storage Required: Total Storage required is 1CO 1 6 Bytes.

12. Subroutine User: PLUG 17 ; PLUG 18

13. Subroutine Required: None

14. Remarks: None

8.423~8.423

IL F-- 1 - _

........

1. Subroutine Name: SELQ

2. Purpose: To transform the stress matrix (generated by
PLUG17 and PLUG18) to 'the stress system required -
generally local).

3. Equations and Procedures:

IS] TRANS = IS] [TTOBL]

where [Sj is the stress matrix generated by 17 and/or 18.
[TTOBL] is the transformation matrix from global to local
or global to oblique.

4. Input Arguments:

NORD6 - number of'colunns in stress matrix
TTOBL - transformation matrix
IKELW - print option
A - element stress matrix
NRSEL - number of rows in stress matrix
ROW - working storage

5. Outpuc Argument-:

A - stress matrix transformed to local system

6. Error Returns: None

7. Calling Sequence:

Call SELQ(NORD6,TTOBLIKELW,A,NRSEL,ROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 66416 Bytes.

12. Subroutine User: PLUG1, PLUG18

13. Subroutines Required: None

14. Remarks:

1. 12 elements at one time (membrane or flexure) are put
into the working area (ROW).

2. Note again the labeling of:
(a) TTOBL - u., vI , i' etc.
(b) SEL a L , U3 2 u4 , etc.

8.424

|_/

1. Subroutine Name: FTELQ

2. Purpose: To transform the element thermal (local) load
into global or oblique system.

3. Equations and Procedures:

{F}C x ETTOBrj
T {Fe

where TTOBL is the transformation matrix.

t
(Fel is the element local thermal load

x{Fla is the transformed load

11. Input Arguments:

NORD6 - size of the load vector
TTOBL - transformation matrix
IKELW - print option
THMOEL - local thermal load
ROW working storage

5. Output Arguments:

THMOEL - transformed thermal load

6. Error Returns: None

7. Calling Sequence:

Call FTELQ(NORD6,TTOBLIKELWTHMOEL,ROW)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 56C1 6 Bytes.

12. Subroutine User; PLUG17, PLUGI8

8.425

13. Subroutines Required: None

14l. Remarks:

1. Note that dimension of ROW(12) indicates 12 elements
at~ a time transformed (membrane or flexure).

2. Note labeling aof:

(a) ETTOBQf - Fx , F ,~ F z, etc.

(b) {Ft I - F, PF, Fx , etc.ele x 1 x 3

8.426

1. Subroutine Name: PLUG18

2. Purpose: (1) To generate both membrane end flexural element
matrices of a quadrilateral thin plate, (2) If applicable,
generate incremental matrices for instability.

3. Equations and Procedures:

A. Formulation of Equation - The forniAlation for any
computations involved in evaluating the element matrices
will be found in references (1) and (2). (See Remarks
Section of this report.) Modifications were, however,
necessary to make the notation compatable with 3648
procedures and applications. The formulations and coding
are not necessarily in the same sequence or labeling. |

B. Initial Computations -

1. Constants have to be set for:
a) If the element matrices are to be computed,

LAMBA(I) a 1 where 41
I 1, for membrane stiffness and stress 4
I - 2, for flexural stiffness and stress
I 3, for membrane thermal load and stress
I a 4, for flexural thermal load and stress.

b) The incrementals will not be computed
INCREM a 0 since ICONT a 0.

2. Material properties and element data from MAT and
EXTRA array noting that if either membrane or flexure
thickness is zero, the appropriate LAMDA above is
reset to zero.

3. According to reference (2), transformation matrices
have to be formulated with the appropriate direction
cosines.
a) From cylinder coordinates to local coordinates

b) From cylinder coordinates to oblique coordinates

{X0 [T0CI (X0 1 (2)

where {xo } are the loca. x, y, z coordinates
{x C are the cylinder x, y, z coordinates
{xoI are some other orthogonal X1 Y' Z' coordinates

.Zcl [Toc] contain the respective direction cosines.

Since tk'e element displacements are in local
coordinates, combining equations (1) and (2) yields

(x'l C1T]ET~~ 0 [TTOBL] (xo (3)

8.4 7

3. Equations and Procedures (Contd):

4. Transformation of the above cited displacements
xl,x2 ,x3 ylsetc. into 3648 notation xlyl,Zlsx 2 ,etc.

will result in the formulation of'

{xl,x 2,x3,etc) = [Tl71TI {xlY l,z1 ,x2 ,etc} (4)

C. Flexural Computations - (All equations cited are in
Reference 1):
1. Using equation V-5, the (B) matrix is formulated.

However, it should be noted that the SEL array is
used to relabel the displacements as W, e and 0

(instead of Ox, By$ W).

2. Using equations V-19, and 21, the geometric properties
of the element are first defined in local and then in
global coordinates. These are shown as Figures V-8
and V-7 respectively.

3. If the incrementals are to be computed (Nx, Ny, N xy)

the follow"ng sequence of operations take place:
a) Using cuation V-lI, tne respective (C) matrices

are formulated.
b) The respective incremental is formulated according

to equation V-12 and then transferred to 3648
notation by (T1718).

4. The remaining element matrices are then formulated
according to the respective equationas cited:
a) Stiffness - Equations V-2, 3rd and 5
b) Stress - Equations V-9 and 30
c) Thermal Load - Equations V-26
d) Thermal Stress - Equation V-32

D. Membrane Computations - (All equations cited are in
Refeirence 1). The following membrane matrices are then
formulated according to the respective equation cited:
a) Element - Equations 111-2, 8 and 12
b) Stress - Equation 111-26
c) Thermal Stress - Equation 111-25
d) Thermal Load - Equation 111-22

E. Remaining Operations - (1) The element stiffness, stress
and thermal load matrices are then transformed first to
global and then to 3648 notation, (2) The stress matrix
is now expanded to be consistent with 3648 applications by
(Tl8ST).

8.428

4. Input Arguments:

NCEl - number of node points
XELCYELC,ZELC - X, Y and Z coordinates
TEL,PEL - temperature and pressure array
NORD - order of element stiffness matrix
NCEI - node point numbers
GPAXEL - grid point axes transformation for element
KN - control for Instability (If set a 1, Incrementals

Computed)
ICONT - control of grid point axes transformations
MAT - material properties array
EXTRA - elenent properties array

5. Output Arguments:

NOINK - number of elements in stiffness matrix
AKELK - elements of stiffness matrix (symmetric -

bottom half)
FTELK - elements of thermal load matrix
SELKP - elements of stress matrix
PTELK - elements of thermal stress matrix
NRSEL - number of rows in stress matrix (40)
NSEL - number of elements in stress matrix (900)

6. Error Returns:

(a) NERR - standard pliig checks from ELTEST
(b) If points (1) and (2) have same coordinates call EXIT

(c) If B- is singular - call EXIT

7. Calling Sequence:

Call PLUG18(IPLNCEI,XELCYELCZELC,TEL, PELJ,QSEL,IP,NORD,
NERR,NOINKAKELX,ANELX1.,FTELX,SELKPPTELKAMASS,
DAMPVDAMPSIRSEL,NNONCEINMASSNDMPVNDMPSNSEL,
KK,KFKSKMKDS,KDVKNIUSELEPSIOS0,MATEXTRA,
GPAXELNDIR,NDEGICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8 . 4 2,

8.4

11. Storage Required:

a) Variables b) Definitions

T1718 (24,24) - Transformation matrix to 3648
notation

TTOBL (3,12) - Transformation matrix from local
to global or oblique coordinates

SEL(17,24) " Working area and stress matrix
ANELX (300) 1 Incremental matrices in cylinder
ANELY (300) notation
ANELXY (300)
ANELEX (300,3) Incremental matrices for Instability

in 3648 notation

12. Subroutine User: ELPLUG

13. Subroutines Required:

DIREC BCB
BCB12 MATB
FTELQ MAB
SELQ
KOBLIQ

14. Remarks:

a) Controls are reset in programs to compute everything
but the incrementals. Initial test phase had KN a 1 to
check these computatiori.

b) Plug not tested out if either the flexural or membrane
thickness is zero (certain portions of plug will be
bypassed as LAMDA is set a 0).

c) Thermal load will probably have to be rederived as 2nd
input TEMP is thermal moments Mx and not the thermal
gradient as prescribed for flexural elements (PLUGS 1
and 2).

d) References:

(1) Bell Report No. D21111-95005, "Derivation of the
Force - Displacement Properties of Triangular
and Quadrilateral Orthotropic Plates in Plane
Stress and Bending" - Gallagher, Huff - dated
Jan. 1964.

(2) Bell Report No. D2114-95008, "Detailed Description -
Computer Program for Stiffent.;d Cylinder Analysis" -
Gallagher, Huff, Dale - dated Jan. 1964.

8.430

I. Subroutine Name: TR18ST

2. Purpose: To form transformation for stress and thermalstress matrices to u, v, w notation
3. Equations and Procedures: See element write-up for

defined transformations.

4. Input Arguments:

NODE - element nodes

5. Output Arguments:

T1718 - transformation matrices

6. Error Returns: None

7. Calling Sequence:

Call TRl8ST(NODE,TI718sT8ST)

8. input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

l!. Storage Required: Total Storage required is 35216 Bytes.

12. Subroutine User: PLUG18

13. Subroutine Required: None

14. Remarks: None

i

i 8. 431

1. Subroutine Name: FBMP18

2. Purpose: To evaluate B matrix for quadrilateral plate
elements; out of plane.

3. Equations and Procedures: See element write-up for

definition of B matrix generation.

4. Input Arguments:

XEL - X coordinates
YEL - Y coordinates

5. Output P-guments:

B - output matrix

6. Error Returns: None

7. Calling Sequence:

Call FBMP18(XEL,YEL,B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 39A 1 6 Bytes.

12. Subroutine User: PLUG18

13. Subroutine Required: None

15. Remarks: NOne

8.432

1. Subroutine Name: PLUG22

2. Purpose: Element matrix gzneration for the incremental
frame element.

3. Equations and Procedures: None

4. Input Arguments:

IPL - plug number
NNO - number of node points
XC - X-coordinates of nodes points
YC - Y-coordinates of node points
ZC - Z-coordinates of node points
TEL - temperatures at the node points
PEL - pressures at the node points
QS - input displacements of the node points
IP - number of extra cards
NORD - order of element stiffness matrix
NRSEL - number of rows in 'Uhe stress matrix
NN - number of nodes
NL - node point numbers
KK - code for computation of element stiffness matrix
KF - code for computation of element thermal load
K8 - code for computation of element stress matrix
KM - code for computation of element mass matrix
KTS - code for computation of element thermal stress matrix
ET - code for computation of structural damping matrix
KVM - code for computation of viscous damping matrix
KN - code for computation of incremental damping matrix
ITISEL - dummy
EPS - pre-strain load vector
SO - pre-stress load vector
MAT - material properties matrix
EXTRA - extra information (angles, etc.)
NDIR - number of directions of movement per grid point
NDEG - number of types cf movement allowed per grid point
ICONT - code for Qse of grid point axes

5. Output Arguments:

NERR - error return
NOINK - number of elements in lower half matrices
KSEL - stiffness matrix
CNX - incremental stiffness matrix
FTEL - thermal load + pressure load matrix
SEL - stress matrix

8.433A - i

5. Output Arguments (Contcl):

SZALEL - therma- stress matrix
AMASS - mass matrix
DAMPV - viscous damping matrix
DAMPS - structural damping matrix
NSEL - number of elements in stress matrix
NMASS - number of el.ements in mass matrix
NDMPV - number of elements in viscous damping matrix
NDMPS - number of elements in structural damping matrix
OPAXEL - grid point axes transformation

6. Error Returns:

NERR = 0 no error
= I plug number incorrect
= 2 number of noaes incorrect
= 3 number of input points incorrect
- 4 order of matrix (NORD) incorrect

7. Calling Sequence:

Call PLUG22(IPL,NNOXCYCZCTELPEL,QS,IPNORDNERR,NOINK,
KSEL,CNXFTEL,SEL,SZALEL,AMASSDAMPV,DAMPSNRSEL,
NN,NL,NMASSNDMPVNDMPSNSELKK,KF,K8,KM,KTSRT,
KlM,KN,IUSELEPSIO,SOMATEXTRAGPAXELNDIRNDEG,
ICONT)

S. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 3FCC 16 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTEST, CTS) CTCQ, CECC, MAB, AXTRA2,SYMPRT, BCB, MATB, MSB,
FINP22,SQRT

14. Remarks: None

8.434

-- N

1. Subroutine Name: FINP22

2. Purpose: To form the incremental matrix for the incremental IC
frame element.

3. Equations and Procedures:

AIN(10) - (L)*A
AIN(14) - (L2)*A
AIN(15) = (4*L3/3)*A
AIN(19) = (L3)*A
AIN(20) = (3*L4/2)*A
AIN(21) w (9*L5/5)*A
AIN(36) = (L)*A
AIN(44) = (L2)*A
AIN(45) = (4*L3/3)*A
AIN(53) = (L3)*A
AIN(511) - (3*L4/2)*A
AIN(55) - (9*L5/5)*A
All other values of AIN are zero

4. Input Arguments:

L = X2 + y2 + Z2

Ll = I/L

L2 - L 2

.3L3 a L

L4 n L

L5 = L

PRINT = print control
A = area of member (A)

5. Output Arguments:

AIN - incremental matrix

6. Error Return: None

7. Calling Sequence:

Call FINP22(L,L2,L3,L4,L5,AIN,PRINT,A)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.435 I -

----. p A

11. Storage Required: Total Storage required is 3EC, Dytes.

12. Subroutine User: PLUG22

13. Subroutine Required: None

14. Remarks: None

8.436

1. Subroutine Name: AXTRAl

2. Purpose: Apply grid point axes transformation by pre-multi-
plication using either the actual transformation matrix or
its transpose.

3. Equations and Procedures:

LMOUT] = [GPA] [MIN or FMOUT] = [rPA] T [MIN
where [s the input elem'.. matrix,IMIN

is the element grid point axes transformation[_ matrix,

[MO is the output transformed element matrix.

LIou is stored in fhe same location as , therefore

the input element matrix is lost once the multiplication has
been effected. Advantage is taken, during multiplication,
of the fact tha.t[rGp is structured as a set of (3 x 3) or
(2 x 2) matrices with main diagonal positions lying on the
main diagonal of[GPA].

LL. Input Arguments:

GPAXEL : Element grid point axes transformation matrix,rnIGPA]
QSEL : Input element mazrix, FMT ,I
NCOL : Number of columns in SR.A
NNO : Number of element node r'ints
NDEG : Number of degrees of freedom
NDIR : Number of directions
ITRAN : Control code, if ITRAN = q then POUT] = [F PA [1t 1a

if ITRAN = 3, then [U [PTM.

5. Output Arguments:

QSEL : Output transformed element matrix, EMOUTI

6. Error Returns: gone

7. Cali.bg Sequence:

CALL AXTRAI (GPAXEL, QSEL, NCOL, NNO, NDEG, NDIR, ITRARN)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

6'.437

11. Storage Required: Total Storage required is 41E1 6 Bytes.

COL (3)
1SAVE (')

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: The output matrix is 3tored in the input matrix
storage.

e,. "38!

1. Subroutine Name: AXTRA3

2. Purpose: Apply grid point axes transformation by triple
product multiplication.

3. Equations and Procedures:

[ANJ =[rGPA]* [SYM] * [rGPA]

where

[GPA] is the element grid point axes transformation
matrix

[SYM] is symmetric input element matrix

[AN] is symmetric output transformed element matrix

The triple product is obtained by computing a row of the
intermediate product of [rGPAJ tS *YM] and then
multiplying this intermediate row with [GPA) to obtain
a row in [AN] . Advantage is taken during multiplic-
atlon of the factc that [SYM] and tAN] &re symmetric
and also that 4r?Aj is structu-oed as a set of (3x3) or
(2x2) matrices with main diagonal elements lying on the
main diagonal of _(IGPAJ

4. Input Arguments:

aPAXEL : Element grid point axes transformation matrix,

SYM : Input element matrix, symmetric, singly sub-
cripted, stored lower half by rows, LSYMJ

NCOL : Number of columns in SYM (also number of rows
in SYM)

NNO : Number of element node points
NDEG : Number of degrees of freedom
NDIR : Number of directions

5. Output Arguments:

AN : Output transformed element matrix, symmetric,
singly subscripted, stored lower half by rows,

[AN]

6. Error Returns: None

8.439

_ L

7. Calling Sequence: Call AXTFA3

(GPAXEL, SYM, AN, NCOL, NNO, NDEG, NDIR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage:

ROW(48)
Total Storage = 5178 =33510

12. Subroutine User: ELPLUG

13. Subroutines Required; LOC

14. Remarks:

SYM must be stored lower half by rows,
AN will be stored lower half by rows.

Internal intermediate storage in variable ROW is
dimensioned 48. If the order of CSYM1 is greater
than 48, an appropriate increase must 1be made in
this intermediate storage.

8.44r-

1. Subroutine Name: ELPRT

2. Purpose: Print generated element matrices.

3. Equations and Procedures: Non-suppressed matrices are
printed, complete with titles.

4. Input Arguments:

NOINK - Number of storages in element stiffness,
incremental stiffness and mass matrices

AKEL - Array containing element stiffness matrix
NORD - Number of ele3ment degrees of freedom
FTEL - Vector containing element load matrix
NNO - Number of element defining points
NODES - Array containing element defining grid point

numbers
NSEL - Number of storages in element stress matrix
NRSEL - Element stress order
SEL - Array containing element stress matr.lx
SZALEL - Vector containing element thermal stress matrix
ANEL - Array containing element incremental stiffness

matrix
INEL - Element number
NMASS - Number of storages in element mass matrix
AMASS - Array containing element mass matrix
NDMPV - Not used
DAMPV - Not used
NDMPS - Not used

DAMPS - Not used
ILP - Element type code number
NUMOT - Number of output matrices
NAMOUT - Array containing output matrix names

5. Output Arguments: None

6. ErrQr Returns: None

7. Calling Sequence:

CALL ELPRT (NOINK,AKEL,NORD,FTEL,NNO,NODES,NSEh,NRSEL,SEL,
SZALEL,ANEL,INEL,NMASS,AMASS,NDMPV,DAMPV,NDMPS,
DAMPS,ILPNUMOT,NAMOUT)

8. Input Tapes: None

9. Output Tapes: None

8.441

- - - ---

po -v--

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is A3C1 6 Bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required: None

14. Remarks: None

8.442

1. Subroutine Name: OUTMAT

2. Purpose: Sort element matrices on scratch tape and
output to Format Execution Monitor in an optimal manner

3. Equations and Procedures: First the array controlling
the selection and order of output of the matrices (IXNOW)
is formed. The IKNOW array will contain the pass number
on which each computed output matrix will be written on
an output tape. Correspondence between the IKNOW array
and the output matrices is as follows:

IKNOW 6) : Transformation assembly matrix (TA)
IKNOW 7) : Master element stiffness matrix (KEL)
IKNOW 8 : Master element applied load matrix (FTEL)
IKNOW 9 : Master element stress matrix (SEL)
IKNOW 10) : Master element thermal stress matrix

(SZALEL)
IKNOW(ll) : Master element incremental matrix (N)
IKNOW(12) : Master element mass matrix (M)

For each output matrix except the element applied load and
thermal stress matrices the fcllowing procedure takes place:

a. If the matrix has not been calculated, as determined
by a slash in its positicn in the NAMOUT array, its
position in the IKNOW array is set equal to zero.

b. If the matrix has been calculated, then its correspond-
ing output tape number is obtained from the IOSPEC
array and a search is done from the beginning-of the
IOSPEC array to this matrice's position, counting the
number of times this tape number has been encountered.
This final count is the pass number on which this
matrix will be written and is)laced into the matrix's
corresponding position in the 1KNOW array.

After the IKNOW array has been formed it is searched for
the greatest number. This number will be the number of
passes required to output all of the computed matrices.

On each pass the following procedure is used. Thr scratch
tape containing the element matrices is rewound. This
tape consists of two records per element. The first record
contains element definition data, the second cntains the
matrices for that element. The second record is read into
a dynamic storage area and interpreted by locating key
numbers that appeared in the record. A loop is entered
frow one to NELEM. The contents of the IKNOW array are

8.443

compared to the pass number. Uhen a match is found the
corresponding matrix is written on its output tape. Before
writing the first element's contribution on its output
tape, the appropriate matrix header is written. In most
cases the matrices will be output in compressed format.
However, in small applications when the maximum element
order (NORDM) or the maximum element stress order
(NRSELM) is greater than one-half the sum of the element
orders (NORSUM) or the element stress orders (NRSSUM),
respectively, then the matrices will be output in
uncompressed format. A count is maintained in IR and IC
for each output matrix in order to place each element's
contributio. in the correct position in the output matrix.
At the end of the pass the appropriate matrix trailer and
data set trailer labels are written. The TA matrix is a
special case in that it is generated from the element
definition data and then placed on its output tape. For
output of the element applied load and element thermal
stress matrices the following procedure is invoked.
During the first pass of the tape, if they were not
suppressed, the elemrent applied load and thermal stress
matrices were stored in the blank common work area.
Following the first pass these two matrices are output
in either compr.ssed or uncompressed format, dependent
upon the same criteria as all other matrices.

4. Input Arguments:

NUMOT : Number of output matrices
NAMOUT : Names of output matrices
IOSPEC : Unit information regarding output matrices
NTAP3 : Scratch tape containing system information
NTAP4 : Scratch tape containing element matrices
NSYS : System order
NTD : Number of degrees of freedom per grid point
NORSUM : Summation of element orders
NRSSUM : Summation of element stress rows
NELEM : Number of elements
NWORKR : Number of working storages available
WORK : Common work area
NORDM : Maximum element order
NRSELM : Maximum element stress order

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

CALL uS 1o(NUMOT, NAMOUT, IOSPEC, NTAP3, NTAP4, NSYS,
NTD, NORSUM, NRSSUM, NELEM, NWORKR, WORK, NORDM, NRELM)

8.444

8. Input Tapes:

NTAP : Contains system information
WARa : Contains element matrices in compact form

9. Output Tapes: Output tape units are supplied by the
Format Execution Monitor; matrices are output by columns
in compressed format. Appropriate matrix header and
trailer labels are written. An output matrix consists of
all the element matrices of that type placed such that
their main diagonal positions lie on the main diagonal
of the output metrix in succeeding positions.

10. Scratch Tapes: None

11. Storage Required:

Total Storage required is 136E16 Bytes.

12. Subroutine User: USO4B

13. ubroutines Required:

u st46 2
: US'463' us 63

14. Remarks: None

8.445

1. Subroutine Name: us461

2. Purpose: Write a column of an output matrix in uncom-
pressed or compressed format.

3. Equations and Procedures: If KODE is zero, the IWORK
array has NSUM zeros placed into it. Then, starting at
ISTART, NROW's of ISTORE are placed into the correspond-
ing positions in IWORK. The variable NUM = NSUM is the
number of words from IWORK that will be written on tape.
If KODE is one, each element of ISTORE is compared to
zero. If it is zero, it Is ignored. If the element is
not zero, then it is placed in the IWORK array in the
first unused position and the next position in IWORK in
filled by the row number in the output matrix of the
non-zero element. The row number is corrected by ISTART
in order to place the contribution in the correct row of
the output matrix. NUM is a counter used to record the
number of non-zero numbers found 3nd the number of words
that will be written frum IWORK (NUM = 2* number of non-
zero elements in ISTORE).

4. Input Arguments:

ISTORE : Matrix column to be written
ICOL : Column number of ISTORE in matrix
ISTART : Starting row number in output matrix
NROW : Number of rows in ISTORE
NTAPE : Output tape number
IWORK : Work area for compression of ISTORE
KODE Determines whether matrix is to be put

iy.to compressed form
NSUM : Sum of element orders

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence: Call US461

(ISTORE, ICOL, ISTART, NROW, WPAPE, IWORK, KODE, NSUM)

8. Input Tapes: 1one

9. Output Tape: NTAPE

Record fcrmat is ICOL, KODE, NUM, (IWORK(I), 1=1, NUM)
where ICOL is column number, KODE equals one or zero,
NUM is number of words remaining in record and IWORK is
the compressed or uncompressed version of ISTORE. Each
record then contains NUM + 3 words.

8,446

10. Scratch Tapes: None

11. Storage Required: Total storage required is 3E0 16 Bytes.

12. Subroutine User: US460

13. Subroutines Required: None

14. Remarks: None

I

8.1417

-- - - -.- _

1. Subroutine Name: US462

2. Purpose: Create a list which defines the location of the
contributions of an element to the assembly transflormation
matrix.

3. Equations and Procedures: The degrees of freedom for each
node point, with respect to the system of grid points, are
calculated and placed in LIST. LIST is therefore of length
NNO*NTD. The formula for determining this location is:
LIST(K) = (NODES(I) - l)*NTD + L

where K = 1, 2, ... , NNO*NTD
I = 1, 2, ... , NNO
L = 1, 2, ... , NTD

4. Input Arguments:

NNO - number of element node points
NODES - array containing element node point numbers
NTD - number of degrees of freedom per grid point

5. Output Arguments:

LIST - array containing row rimber in TA matrix for each
degree of freedom for each element node point.

6. Error Returns: none

(. Calling Sequence: CALL US462 (NNO, NODES, NTD, LIST)

3. Input Tapes: none

9. Output Tapes: none

10. Scratch Tapes: none

11. Storage Required: total storage required is 1FO 16 Bytes.

12. Subroutine User: US460

13. Subroutines Required: none

14. Remarks: none

8.448

- -- - - - -- A - .Z U A -

1. Subroutine Name: US463

2. Purpose: Obtain full column from symmetrically stored matrix

3. Equations and Procedures: For a symmetric matrix column is
equivalent to row. The corresponding row to ICOL is located
and the elements of that row up to and including the diagonal
element are placed in the first and succeeding position of
COL. If ICOL was the last column of the matrix the process
is complete and control is returned to the calling program.
If ICOL was not the last column thc*a each element in the
ICOL position of the remaining rows is placed into COL and
control is returned to the calling program.

4. Input Arguments:

SYM symmetric matrix stored lower half by rows, singly sub-
scripted

N order of SYM

ICOL Column number of SYM desired

5. Output Arguments;

COL - full column number ICOL

6. Error Returns: none

7. Calling Sequence: CAL US463 (SYM, N, ICOL, COL)

8. Input Tapes: none

9. Output Tapes: none

10. Scratch Tapes: none

11. Storage Required: Total storagE required is 29A6 Bytes.

12. Subroutine User: US460

13. Subroutines Required: none

14. Remarks: none

8.449

1. Subroutine Name: ELMAT

2. Purpose: To output as a format matrix element matrices
in compressed form to be used by structural. modulez outside
of the USERO4 module.

3. EquaLions and Procedures: The tape containing the
information generated by subroutine6 REC3 and REC4 is read
and then merged to form one record on the output tape for
each element. The record written for each element is as
follows:

JCOL,KODE,NUM,IEL,IPLNORD,(LISTEL(I),I-l,NORD)
NOINK,(AKEL(I),Iul,NOINK)
NORD,(FTEL(I),I-l,NORD)
NNO,(NODES(I),Izl,NNO)
NSEL,(SEL(I),I=I,NSEL)
NRSEL,(SZALELI),I-],NRSL)
NOINK,(ANEL(I),I-l,NOINK)
NMASS,(AMASS(I),I=I,NMASS)

where, i
JOOL - is the olumn number
KODE - is equal to 0 to indicate non-compression rd
NUM - is the number of words remaining in the record

NUi=2NeOINK+2NORD+NNO+NSEL+NRSEL+NMASS+10
IEL - is the element number
IPL - is the element type (plug number)LISEL a is array used to reorder the system degrees

of freedom of length NORD
AKEL - the element stiffness matrix of iength NOINK
FTEL - the element thermal load matrix of length 14ORD
NODES - an array containing the reference points for

the element of length NNO
SEL - the element stress matrix of order NSEL
SZALEL - the element thermal stress matrix of order NRSEL
ANEL - the element incremental matrix of order NINK
AMASS - the element mass matrix of order NMASS

4. Input Arguments:

NELEM - number of elements in analysis
MAXELM - length of maximum element record
NAME - arra,' containing name of output matrix
NSBT - data set number of output matrix
NTAPE - data set number of input element tape
NWORK - number of words of work storage available
MAT - work storage for reading NTAPE element data

5. Output Arguments: None

8.450

<7P -

-! .7

6. Error Returns: None

7. Calling Sequence:

.4 ELMAT (NELEM,MAXELM,NAME,NSET,NTAPE,NWORK,MAT)

8. Input Tapes: NTAPE

9. Output Tape: NSET

10. Scratch Tapes: None

11. Storage Required: Total Storage required is 6F2 16 Bytes.

12. Subroutine User: US04B

13. Subroutine Required:

EUTL5
EUTL6

14. Remarks: None

8 4

8.4151

--- A

1. Subroutine Name: PLUU10

2. Purpose: Generate the following eiement matrices of a
tetrahedron according to equations furnished by J. Batt.

(a) Stiffness if KK X 0.
(b) Stress if KS X 0.

(c) Thermal load if KF 0.
(d) Thermal Stress if KTS X 0.
(e Mass if KM / 0.

3. Equations and Procedures:

(a) Zero out stiffness (AKEL3), stress (SEL3), thermal
load (FEL3) and thermal stress (SIGEL) matrices.

(b) Call subroutine VOL to find volume.

(c) Call subroutines to form [EM] and [B] matrices.

(d) Form TM and TMC matrices if pressure is present or mass
matrix is to be calculated

(e) If KTS and KF ; 0 form

1) {a) = {AT + E}

If KTS X 0, form

2) {Sc) = [EM] {a}

(f) If KK, KS, KF = 0, go to (M), otherwise do the following

[SEL3] = [EM][B]

(g) If KK X 0, form

1) [AKEL] = [Bj][SEL3] = [B] T[EM][B]
2) Call MSTR to stor-e [AKEL] into [AKEL3].

(h) If KF X 0, form

I) {FTH} = [EM][B]{a} = [SEL3] (W}

2) Form Pressure load matrix according to new
equations: {FP} - (See PIOFP writeup)

3) Add (PPL} and (FEL} to form {FEL3),

(i) If KM#0, form

1) Call CMASS to form [M] where [M] is in the local
u,v,w system

2) Form [AMASS) = [T [M][TMI in global system.

8.52

']

4. Input Arguments:

IPL - Plug number - 10
NNO - Number of nodes =4
X,Y,Z - Coordinates of element
TEL,PEL - Temperature and pressure of element
NORD - Order of stiffness matr~x
NODES - Nodes of element
KKKF,KS,KTS,KM - Controrls on cilculations of stiffness,

therzial load, :;tress, thermal stress and
mass matrices

EPSLO,SO- Input strains and stresses
MAT - Material prope-ties array
EXTRA - External data - not used.

5. Output Arguments:

AKEL3 - Stiffness matrix
FEL3 - Thermal load matrix
SEL3 - Stress matrix
SIGEL - Thermal stress matrix
AMASS - Consistent mass matri):
NRSEL - Number of rows in stress and thermal stress

matrices = 6
NOINK,NMASS,NSEL - Number of elements in stiffness, mass

and stress matrices (respectfully 78,78,72)

6. Error Returns: Standard error return by ELTEST

7. Calling Sequence:

Call PLUG10(IPL,NNO,X,Y,Z,TEL,PEL,QSEL,IP,NORD,NFRR,NOINK,
AKEL3,ANEL3, EL3,SEL3,SIGEL,AMASS,DAMPV,DAMPS,
NRSEL,INNO,I DES,NMASS,NDMPV,NDMPS,NSEL,KK,KF,
KS,KTS,KM,KDS,KDV,KN,IUSEL,EPSLO,SO,MAT,EXTRA,
GPAXEL,NDIR,NDEG,ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

SIGEL(6), X(4), Z(4), EM(21), FEL3(6), TSTR(6), B(6,12),
SEL3(6,12), AKEL(12,2), AKEL3(l), TEL(12,2), PEL(12,2),
AMASS(l), EMASS(78), FPL(12), FP(12), TM(12,12), TMC(3,3),A(4,4), EPSLO(1), SO(l)1, MAT(l), EXTRA(l), NODES(l), Y(4)

8.5

12. Subroutine User: PLUG13

13. Subroutirnes Required:

ELTEST, VOL, TRAAE, BDEF, PIOTM, MPRD, TPRD, MSTR, PIOFP,
CMASS, BCB, SYMPRT, TXOUT

14. Remarks:

PEL(, 1) is pressure of face 431
PEL (2,1) is pressure of face 432
PEL (3,1) is pressure of face 421
PEL (4,1) is pressure of face 321

See AFFDL-TR-72-42, Volume I, Engineer's Manual for
PLUG1O equations.

8.454

I

- iJ

1 Subroutine Name: VOL

2. Purpose:

To set up a function to calculate the volume of the tetrahedror"
element

3. Equations and Procedures:

1 xI Yl Zl
1 X2 Y2 %

V = 1/6

1 x3 Y3 z 3

1 x4 Y4 z4

4. Input Arguments:

X,Y,Z - coordinates of tetrahedron

5. Outpu Arguments:

VOL - volume of tetrahedran

6. Error Returns: None

7. Calling Sequence:

Function VOL (X,Y,Z)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: PLUG10

12. Subroutine Required: None

13. Remarks: None

8.455

1. Subroutine Name: CMASS

2. Purpose: Form the local consistent mass matrix.

3. Equations and Procedures:

(a) Compute the CONST =-

(b) Consistent mass matrix and labeling is

CONST t2I Imetc.
i ii 2i 3 etc.

(c) Assemble above constants as follows:

S 2
1 V2 W2 U3 v3 4

W 4

2

2

2

1 2

1 21

CONST 112

1 2

1 1

Si 2v

8. 456

4. Input Arguments:

V - Volume of the tetrahedron
RHO - Mass density

5. Output Arguments:

CMAS- Element mass matrix in local reordered system

6. Error Returns: Yone

7. Calling Sequence:

Call CMASS (V,RHO,CMAS)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: CMAS(l)

12. Subroutine User: PIUG10

13. Subroutine Required: None

14. Remarks: None

8.457

1. Subroutine Name: BDEF

2. Purpose: Form the coordinate and area matrices matrix

3. Equations and Procedures:

(a) Form the A matrix from input coordinates.
(b) Invert the A-matrix which gives projected areas of

element
(c) Form the B-matrix according to ,iquit ions from the

inverted A-matrix in U,V,W notation.

41. Input Arguments:

X,Y,Z - Coordinates of element
WIPR - Print option

NRB,NCB - Number or row.; and colun., !n 1h matrix

5). Output Argrumentr:

A - Projected area matrix
B - Coordinate matrix

6. Error Return.;: None

7. Calling Sequence:

Call BDEF(X,Y,Z,WIPR,NRB,NCB,A,B)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tape3: None

11. Storage Required:

B(NRB,NCB), Z(1), v(1), X(l)
A(01,), EL(0), EM(4)

12. Subroutine User: PLUG10

13. Subroutine Required: MINV

ill. Remarks: None

8.458

1. Subroutine Name: PIOTM

2. Purpose: Form the transformation matrix of direction
cosines for the tetrahedron if pressures or mass is
present.

3. Equations and Procedures:

e 1 1 x3- 1 e±2 y3-Yl e 13 z 3-z1

e31 = (y3-Yl)(Z2-Z) (y2-yl)(z 3-ZI)

e32 = (x2-xl)(z3-.l) - (x3-xl)(z 2 -zl)

e3 3 = (x3-x1)(y2 -yl) - (x2-xl)(Yx-y l)

e e e e21 32'13 '12 33

e2 2 =e e -e e22 11 33 31 13
e2 3 = 3!e1 2 -e 32

2 + e12
2 + e 1

2= (e2 1
2 + e22

2 + e2 3
2)1/2

e3 = (22+ 2 2 1/2

3 1 32 e33)

[M]
= Fell e12 e13

e 21 e 22 e 23
e 2 e 2 e2

e 31 e 32 e 33

e 03 e3 e3

8.459

- It

Then store OTM] into [TM] as

[TM] 0 0 0

L 00 0TM 0

4. Input Arguments:

X, Y, Z - Input x,y,z cooro naes

WIPR - Print option

5. Output Arguments:

[TM] - Point transformation matrix
[TM] - Element transformation matrix

6. Error Returns: None

7. Calling Sequence:

Call. PlTM(X,Y,Z,WIPR,TMC,TM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Stcrage Required:

X(1), Y(l), Z(1), TMC(3,3), TM(12,12), El(3), E2(3),
E3(3), EB(3)

12. Subroutine User: PLUG10

13. Subroutine Required: None

14. Remarks: None

83

8.46o

1. Subroutine Name: PlOFP

2. Purpose: Form the local pressure matrix in the u,v,
and w notation.

3. Equations and Procedures:

(a) The equaticn for the local pressure load io

(F pt} =[T]T{F + [TI]T{pl + [T2]T{Fp2 }

(b) Procedure:

1. Noting the [T] is a reordering matrix to u, v, w
notation only, the product of

[T]T{F p

in the reordered system is

FPul 0

FP V1 P]

FPw P2 - P3FP u2 0

FP v2 0
FPw2 = P2FP u3 0

FP V3
FPw3 P2 - P3

FPu4 0
FPv4 PlFPw-

AP~ -p3

8.6

-

Where:

Pl= P431A431cosO

1P2 = V 321 A321

1P3 = +P4 3 A431 sinO

0 = tan (Y4I4 XL(4)]
Y4 = [TM] YEL(4)
z4 ZEL(4)

2. Noting that T1 contains 4 pairs of 3 constants in

the 12 x 4 matrix, the contribution here becomes

T T
LFPxlFPyl etc.J = LO ,o'c ,c2 'c3 1 c,,c2 ,c3 l 1 ,c2 ,c3j

where cI = pTI

c2 = pT2

c3 = pT 3

13P432'432

TI,T 2,T3 are typical direction cosines

3. Noting that T2 is similar to T1 (just different

values of TI,T 2 ,T3) the contribution becomes

8I

f 8.462

LFxi,,,etc = L,c 3,c,cic 2 , 3,o,o,Q ,c l c c3j I
wh.ire c I = pT I

c2 = pT2

c3 = pT3

p i13P421A421

TI,TTT re typical direction cosines

4. Input Argumrts:

PEL - Pressures on faces of tetrahedron
B - Matrix which contains local areas
XEL,YEL,ZEL - Coordinates of element
TMC - Transformation matrix
A - Area matrix
IPRT - Print option

5. Output Arguments:

FPL - Pressure load

FP - Working pressure array

6. Error Returrs: None

7.. Calling Sequence:

Call PlOFP(PEL,XEL,YEL,ZEL,TMC,A,IPRT,FPL,FP)

8. Input Tapes: None

9. Output Tapes: None

in. Scratch Tapes: None

11. Storage Required:

PEL(12,2), TIC(3,3), A(4,4), SA(3), SMA(3), FP(12), XEL(l),YEL(1), ZEL(i), X(3), XL(3), FPL(1)

8. 463

I - - - -.

12. Subroutine User: PLUG10

13. Subroutines Required: MPRD

14. Remarks:

p431 is pressure on face 431 - PEL(,1)
p432 is pressure on face 432 PEL(2,1)
p421 is pressure on face 421 = PEL(3,1)
p321 is pressure on face 321 = PEL(4,1)

A 43 1 is total projected area of face 431

A 43 2 is total projected area of face 432

A 42 1 is total projected area of face 421

A32 1 is total projected area of face 321

8.1464

4 1

1. Subroutine Name: PLUG13

2. Purpose: To form the element stiffness, stress, thermal
load, thermal stress and mass matrices for the triangular
prism.

Equations and Procedures:

The triangular prism is composed of 3 tetrahedrons:

A. For each tetrahedon, the following is done.

(1) Pick up coordinates, pressures, nodes, temperatures
of the tet-'ahedrn.

(2) Call PLUG10 to generate the appropriate element
matrices the tetrahedron.

(3) Assemble the tetrahedron contribution to the
stiffness and thermal load matrices of the prism.

(4) Assemble the tetrahedron contribution to the
stress and thermal stress matrices of the prism.

B. If symmetric wing analysis (Nodes 4,5,6 a 0), form a trans-
formation matrix and transform the generated element
matrices of the prism for the reduced system.

4. Input Arguments: 4

IPL - Plug number 13
NNO,NODES - Number of nodes and node points of elements
X,Y,Z,TEL,PEL - Coordinates, temperatures and pressures of

element
KK,KF,KS,KTS,KM- Controls on stiffness, thermal load, stress,
E O It thermal stress and mass calculations
EPSLO,SO- Initial strains and stresses
MAT - Material properties array

5. Outpat Arguments:

NORD - Order of stiffness
NOINKNMASS - Number of terms in stiffness and mass matrices
NRSEL,NSEL - Number of rows and terms in stress matrix
AKEL3,FEL3,SEL3,SIGELAMASl - Element stiffness, thermal load,

stress, thermal stress and mass
matrices

6. Error Returns: Standard returns by ELTEST

8.465

4',

7. Calling Sequence:

Call PLUG13 (IPL,NNOXY,Z,TEL,PEL,QSEI,,IF,IJORD,NERR,
NOINK,AKEL3,ANEI13,FEL3,SEL.3,SIGEL,AMASl,
DAMPV,DAMPS,NRSEL, INNO$NODEsNMASS, NDMPV,I
NDMPSsNSELKIK,KF,KS,KTS,KM,Y.DS,KDV,KN,IUSEL,
EPSLO,SO,MAT,EXTRA,GPAXEL, NDIR,NI'LG ,ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapest None

11. Storage Required:

SIGEL(18), X(6), Z(6), FEL3(18), SEL3(18,18), At2L3(1711), :
NODES(l), Y(6), EXTRA(l), EPSLO(1), 80(l), TEL(12.,2),
PEL.(21,2), MAT(l), LISTA(14,3), LISTB(32,3). LISTC12)v

PPL(12,2), EXTPR(6), AKEL3ZC78N), -IEL3Z(12), SEL3Z(6,12),
SIGEL(6), AMASS(78), TR(18,9)s SE!-3T(l8,9), AKELR(115),
FELR(9)

12. Subroutine User: ELPLUG 1
13. Subroutines Required:

EtLTEST, PLUGlO, POOF, TXOUT, SYMPRT, BOB, MPRD, TPRD

14. Remarks:

PEL(1,l) is pressure on face 123
PEL(2,l) is pressure on face 456
PEL(3,1) is pressure on face 2365 h'is 2 tetrahedrons
PEL(4,1) is pressure on face 1364

PEL(5,1) is pressure on face 25141 J1

8.466

1. Subroutine Name: PLUG20

2. Purpose: Generate stiffness, stress, thermal force,
thermal stress matrices and mass matrices for the

rectangular

prism,
Equations and Procedures:

A. Set constants and if nodes (9)#0, then constant :;train
approach is used for thermal stres.; and thermal load~matrices.

B. Zero out element matrices.
C. Call GEOMD to calculate lengths and transformation mairix

! of element.

D. Call TRAAE to generate [EM]. [KCPSYM]
%. Generate integriLls and form K-curl - prime from integral-'.
F. Call GAMMAG to form reordering transformation ma.rix.
G. Call GAMMAS to form local to global transformation.
H. Form final transformation matrix [GPGGS].
1. If KK#O, then

(I) Form [KCURL] = 1/(8abc) 2 [KCPSYM]

(ii) Form [AK] = [GPGGS]T[KCURL][GPGGS].
J. If KS#O, or constant strain approach I.; used, then

() Call subroutine to form ['DISP]

(it) Generate [STRI [EM][DISP][GPGGS].
K. If KM=V, then

(i) Call MASS20 to form local mass in [TEMPI
01i) Generate [MASXP] - [GPGs] T[(TEMP][GPGGS].

L. If KTS and KF#0, then call P20FT to form thermal load and

thermal -treo ;s.

11. Input Arguments:

IPL - PLUG Number = 20
NNO - Number of node points = 8
XC,YC,ZC - Coordinates of element
TEL - Temperatures at grid points

NODES - Node points of element
NPSL - Number of input strain, = 6
NPSS - Number of input stres.es = 6
KK,KM,KS,KF,KTS - Controls to calculate stiffness, mass, stress,

thermal load, and thermal stress matrices.
EPSLON - Initial Jnput strains

MAT - Material propertles arrayu
EXTRA - External data . not used

8. 67

5. Output Arguments:

AK,STR,FTXP,TS,MASXP -Stiffness, stress, thermal load,
thermal stress and mass matrices

NOINK,NMPSS - Number of elements in stiffness and mass 4

NRSELmatrices = 300
NRSEL - Number of rows in stress matrix = 6

NSEL - Number of' elemen~ts in stress matrix

6. Error Returns:

NERR - Set if wrong plug or bad input data

7. Calling Sequence:

Call PLUG?0(iPL, NNO,XC,YC,ZC,TELPEL,QSEL, IP,NORD,NERiR,NOINK,
AK,ANEL,FTXP,STR,TS,MASXP,DAMPV,DAMPS,NRSEL,I114,
NOD)ESNMASS,NPSL,NPSS,NSEL,KK,KF,KS,I(TS,KM,KDS-,
KDV,KN,IUSEL,EPSL5ON,SIGZER,MAT,EXTRA,GPAXEL,NDIR,
NDEG, ICONT)

InputTapes Non

9. Ounput Tapes: None

10. Scratch Tapes: None

11. Storage Required:]

EM(21),AK(300),STR(1 11),MAT(l),MASXP(l),XIXYZ(6'i),XISYM(36),

KCPSYM(300) ,KCURL(300) ,GAMGGP(576) ,GAMGSk.576) ,Xc(l) ,YC(l),

NODES (1), AMP(3i), PEL(12,2), FP(24),EXTRA (1)

12. Subroutine User: ELPILUG

13. Subroutine Required:

ELTEST,GEOMD,TRAAE,4POWJ', GAMMAG, GAMMAS, BCB, DISPMT,MPRD,
MASS20 ,P2OFT

14. Remarks:

EATRA(1) i n pressure on force 12311 x element pressures
(2) 11 "1 51678

(3) I " " 1458y element pressures
(14)~' H ~ ~ 2367

(5) H H " 1256 elmn prsus
(6) " H 31478zelmnprsus

8 .468

1. Subroutine Name: TRAAE

2. Purpose:

form the elastic constant matrix [EM]

3. Equations and Procedures: None

4. Input Arguments:

ER,ETI[ETA,EZ - modulus of elasticity
VRO,VOZ,VZR - poisson's ratio
GRZ,GOZ,GZR - shear modulus
NORDER - order of matrix - 6

5. OutputArguments:

EM - ele tic constants matrix

6. Error Returns: None

7. Calling Sequence:

Call TRAAE (ER,ETHETA,EZ,VRO,VOZ,VZR,GRZ,GAM,TEO,EM,E,E1, WIPR,
NORDEH, GOZ,GZR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutinp Used: Several plugs{I
12. Subroutine Required: None

13. Remarks:

TEO,GAM,E, and El are not used

84

! 8.1469 °

1. Subroutine Name: GEOMD

2. Purpose: Generate geometric data from coordinates of the
8 node points of the rectangular prism element.

3. Equations and Procedures:

A. Calculate A, B, and C half-edges from coordinates.
B. Generate unit vectors along element X, Y and Z axi:'.
C. Generate TGS element-to-system transformation matrix.
D. Generate XG array of rotated element coordinatez.

4. Input Arguments:

XC - X-eoordinates of the 8 element grid points In sy.;teni
coordinates

YC - Same for Y-coordinates
7 " - Same f,..:' Z-coordinates.

5. Output Arguments:

A - Half-edge of prism along element X-axis
B - HaLf-edge of prism along element Y-axis

C - Half-edge of prism along element Z-axis
TGS - Point transformation matrix for element: Rotates

element axes parallel to system axes (3x3)
XS - Array of system coordinates of grid points (3x8)
XG - Array of (transformed) element coordinates of grid

points (3x8)

6. Error Returns: None

7. CallIng Sequcnce:

Call GEOMD (XC,YC,ZC,A,B,C,TGS,XG,XS)

8. Input Tapes: None

Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

XC(8); YC(8); ZC(8) In calling prod ram
TGS(9); XG(24); XS(24)) c
RX(3); RY(3); RZ(3) - In subroutinp

12. Subroutine U:;er: PLUG20

13. Subroutines Required: MPRD

1Ii. Remark.*: k,"- n,-

8.470

1. Subroutine Name: GAHMAG

2. Purpose: Generate transformation matrix (24x24) to reorder
variable sequence from UIU 2,U3,U4,...,U 8 ,V1,V2 ,V3,...,V 8 ,

WIW2,W3,...,W 8 to UI,VI,WIU 2 ,V2 ,W2 ,...,U 8,V8,W 8

3. Equations and Procedures:

Store 1.0 in the appropriate location of the transformation
matrix.

4. Input Arguments: None

5. Output Argump ts:

GANGGP - The desired matrix (24x24) stored singly -

dimensioned, column-sequentially.

6. Error Returns: None

7. Calling Sequence:

Call GAMMAG(GAMGGP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

GAMGGP(576) - In calling program

12. Subroutine User: PLUG2O

13. Subroutines Required: None

14. Remarks: None

8.471

1. Subroutine Name: GAMMAS

2. Purpose: Generate transformation matrix from element
coordinates to system coordinates using the point-trans-
formation matrix of element.

3. Equations and Procedures:

See Engineer's Manual for mathematical formulation of Gamma-

Sub=GS matrix.

41. Input Arguments:

TGS - Point transformation matrix generated from geometric
data by 1GEOMD", stored singly dimensioned, col.amn-
wise (3x3).

5. Output Arguments:

GAMGS- Element-to-system transformation matrix

stored singly-dimensloned, column-sequentially

6. Error Returns: None

7. Calling Sequence:

Call GAMMAS (GAMGS,TGS)I

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

GAMGS(576), TGS(9) -. In calling program

12. Subroutine User: PLUG20

13. Subroutines Required: None

14. Remarks: None

8.1472
j

1. Subroutine Name: PISPMT

2. Purpose: Generate strain-displacement (D) matrix for

rectangular prism element with forces concentrated at the
centroid.

3. Equations and Procedures:

See Engineer's Manual for mathematical formulation of the

D-matrix.

4. Input Arguments:

A - Half-edge of prism along element X-axis
B - Half-edge of prism along element Y-axis
C - Half-edge of prism along element Z-axis

5. Output Arguments:

DISP - The desired strain-displicement matrix (6x24), -torod
singly-subscripted, columnwAse.

6. Eror Returns: None

7. (alling Sequence:

Call DISPMT(A,B,C,DISP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DISP(144) - In calling program

12. Subroutine User: PLUG20

13. Subroutines Required: None

14. Remarks: None

8.1173

-

IWjj

1. Subroutine Name: MPOWJF

2. Purpose: Print out a matrix, labeling rows and optionally
labeling columns.

3. Equations and Procedures:

If number of columns<8, print one-number column titles
only:

Column
1 2 3 4 5 6 7 8

If 8<numbee of columns<16, print two-number column titles
only:

Column
1.9 2,10 3,11 41,12 5,13 6,11 7,15 8,16

If 16<number of coltrmns<24, print thrce-number columns
titles:

Columns
1,9,17 2,10,18 3,11,19 4,12,20 5,13,21

6,14,22 7,15,23 8,16,211

Label rows:
R oN 1 - - -

Row 2 etc.

4. input A-rguments:

A - i,:atrix to be printed out - ;tored slngly-dimen:'ioned
N - Number or rows in A
M - Number ot' columns Jn A
L - Storage Code

0 = General (column sequential)
1 = Symmetric (lower .,ymmetric row-wise or upper'

symmetric column-wise)
2 = Diagonal (diagonal elements only)

ITITLE - Code fur desired column titling,
0 = Do not title - label r-upplled externally

(sKip one line and nta t)
1 = Title for 8 columns only
2 = Title for 16 col.umns only
3 = Title for 24 column:;

5. Output Arguments: None

6. Error Returns: None

8.474

'' '.l- " ' -" '%i ... =-:": '' ;" 7 |' .. , ,a:j.. '

*: i>

7. Calling Sequence:

Call MPOWJF (A,NM,L,ITITLE)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tape:;: None

31. Storage Required:

*V A() - Variable up to 576 - in calling program
B(50) - In subroutine

12. Subroutine User: PLUG20

13. Subroutine Required: None

14I. Remarks:

This printout; subroutine stands by itself, and may be used
for general purpose writing oi matrices with or without
column titles. Built-in titles extend only up to 24 column::,
but if no title is requested, there is no limitation on
the number of rows or columns for a general or symmetric
matrix. Diagonal matrices are limited to less than 50x50.

vI

21.:

8.475

2A

I Subroutine Name: P20FP

2. Purpose: Form the pressure vector in local coordinates
based upon pressures input on element level.

3. Equations and Procedures:

See Engineer's Manual for equations of the local pressure
vector.

4. Input Arguments:

A,B,C - Lengths of sides of prism

PEL - Pressure array

5. Output Arguments:

FP - Local pressure vector

6. Error Returns: None

7. Calling Sequence:

Call P20PP (A,B,C,PEL,FP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

PEL(12,2); FP(l)

12. Subroutine User: P20FT

13. Snbroutine Required: None

1h. Remarks: None

8.476

/r

1 Subroutine Name: TXOUT

2. Purpose:

Print element matrices dependent upon input data

3. Equations and Procedures: None

4. Input Arguments:

ICODE - title of matrix

A - matrices to be printed

J -- number of rows

M - number of columns
MS - storage mode of matrix = G for general

= I fo symmetric
= 2 for aiagonal

LINS - number of lines/pagt = 60

IPOS - number of characters per line = 132

ISP - line spacing code = 1 for single space
= 2 for double space

5. Output Arguments: None

6. Error Returns: None

7. Calling Sequence:

Call TXOUT (ICODE,A,N,M,MS,LINS,IPOS,ISP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine Use.,: Various Plugs

12. Subroutine Required: None

13. Remarks: None

8.1477

1. Subroutine Name: P20FT

2. Purpose: Form the thermal load and thermal stress matrices
for the rectangular prism dependent upon whether the element
is at a constant or varying strain.

3. Equations and Procedures:

A. For Constant Strain Approach,

(1) Determine {aAT 4 e} where AT = Taverage TO

(2) If KTS X 0 form thermal stress

{TS} = [EM] {aAT + 0}

(3) If KF X 0, form temporary local thermal load

:P] = [DISP]T[EM]

(TEMP) = [P] (aAT + si

B. For Varying Strain Approach,

(1) Form [AT} = {TEMP i- TO } where TEMP is temperature
of grid point.

(2) Form [a] = a x [I]1 where [I] is an 8th orderF [I identity matrix
ac. rIz

(3) Compute {TEMPl} = [a] {AT)

(11) Add initial strains (c) to {TEMPI)

(5) If KTS X 0, do the following for thermal stress

(a) Form [B]

(b) Compute {TEMP) = [B] (TEMP1}

(c) Compute thermal stress {TS} = [EM] (TEMP)

C. Call subroutine to form the loads due to pressure.

D. Add pressure load to local thermal load (T7MP}

E. Form global thernmal load

{FTXP} = [GPGGS] T{TEMP}

8. 178

4. Input Arguments:

MAT - Material properties
EM - Material properties matrix
XYZ - Table of integrals
TEL,PEL - Temperature and pressures of element
A,B,C - Lengths of element
ICON - Control for constant or varying strain calculations

KF,KTS - Controls for thermal load and stress calculation-
IPR - Print option
EPSLON - Input strains
DISP - Strain - displacement matrix
GPGGS - Transformation matrix to global system
CONST - Constant for thermal load

5. Output Arguments:

FTXP - global thermal load
TS - Thermal stress

b. Error Returns: None

7. Calling Sequence:

Call P20PT(MAT,EM,XYZ,TEL,PEL,A,B,C,ICON,KF,KTS,IPR,EPSLON,
DISP,GPGGS,CONST,FTXP,TS,DELTAT,ALPHAC,P,BM,
TEMP,TEMP1,FP)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

DELTAT(1), MAT(l) EM(), XYZ(1), ALPHAC(24,8), P(214,24),TEL(12,2), BM(3,24), PEL(12,2), EPSLON(1), DISr(6,24),

GPGGS(24,24'), FTXP(l), TS(l), TEMP(1), TEMPl(1), FP(1)

12. Subroutine User: PLUG20

13. Subroutines Required:

MPOWJF, MPRD, TPRD, P20FP, MATB

114. Remarks: None

5.1179

1. Subroutine Name: MASS20

2. Purpose: Form the consistent mass matrix for the
rectangular prism.

3. Equations and Procedures:

(a) Form symmetric [AMP] according to eqiations in
Engineer's Manual.

(b) Assemble [AMP] into UU portion of [AMCURL] where
[AMCURLI matrix can be partitioned as:

u v w

u [[AM P] AP
v 0 [AMP]
w 0 0 [AMP]

(c) Call subroutine to assemble [AMP] into VV and WW
parts of [AMCURL].

4. Input Arguments:

A,B,C - Dimensions of elements

DENS - Density of material

5. Output Arguments:

AMP - Consistent mass matrix [M]
AMCURL - Full consistent mass matrix in local system

6. Error Returns: None

7. Calling Sequence:

Call MASS20 (A,B,C,DENS,AMPAMCURL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

ii. Storage Required: AMP(l); AMCURL(1)

12. Subroutine User: PLUG20

13. Subroutines Required:

PASSYM - Assembles a small symmetric matrix into a larger
symmetric matrix

114. Remarks: None C. 80

1. Subroutine Name: PASSYM

2. Purpose: Assemble a small symmetric matrix I.nto a larger
symmetric matrix.

3. Equations and Procedures:

Call Small symmetric matrix [CURL].

Call Large symmetric matrix [A] which is partitioned as follows:

symmetric so
[A]0 only bottom

F91 half shown.

Symmetric Matrix [CURL] is assembled into UU, VV and WW parts.

11. Input Arguments:

NR - Number of rows to be assembled
IC, IR - Starting column and row of the assembled partition

i.e., 1,1 for UU; 2,2 for VV; and 3,3 for WW
[CURL]- Small symmetric matrix

5. Output Arguments:

[A] - Large assembled symmetric ,.atrix

6. Error Returns: None

7. Calling Sequence:

Call PASSYM (NR,IC,IR,CURL,A)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: CURL(l), A(l)

12. Subroutine User: MASS20

13. Subroutine Required: None

14. Remarks: None

8.481

1. Subroutine Name: PLUG23

2. Purpose: Form the stiffness and stress matrices for a
symmetric shear web.

3. Equations and Procedures:

A. Clear element matrices.

B. Compute length of panel and form direction ccsines
of element into [TR].

C. If KK Y 0, form the local stiffness matrix as

[KR]= AC1 1

2
-2Z 4

2 2Z, -2 z l

2 T2

22-11 _t 4(
L L LZ2

where

t~xz

60(IIZ1 + 38ZIZ 2 + llZ 2)

A 5 (Z+Z) (Z2 2
A- 2 +Z)(ZI+8ZIZ2+Z2)

D. Form global stiffness matrix

T
[AK] = [TRI [KR]CTR]

E. If KS / 0,

(a) Form global stress matrix [S]
(b) Form stress matrix into local 3ystem [SEL] = [S] [TR].

8.432

4. Input Arguments:

IPL - Element type 23
NNO - Number of grid points defining element = 2
X,Y,Z - Coordinates of element
TEL,PEL - Temperature and pressure arrays - not used
NORD - Order of stiffness matrix = 6
NODES - Grid points of elements
KK,KF,KS,KTS,KM - controls on stiffness, thermal load,

strebs, thermal stress ,.. mass calculations
EPSIO,SO- Initial stresses and strains-not used
MAT - Material properties array
EXTRA - Internal data containing thicknesses of web

5. Output Arguments:

NOINK - Number of elements in stiffness matrices
AK,SE, - Stiffness and stress matrices
FT,SIGEL- Thermal load and stress set = 0.0
AMASS - Mass matrix - set = 0.0
NRSEL,NSEL - Number of rows and number of elements in

stress matrix
NMASS - Number of terms in null mass matrix

6. Error Returns:

If length = 0 or neg - error

If Z or = 0 or neg - error

7. Calling Sequence:

Call PLUG23 (IPL,NNO,X,Y,Z,TEL,PEL,ZSEL,IP,NORD,NERR,NOINK,
AK,AN,FT,SEL,SIGEL,AMASS,DA:PV,DAMPS,NRSEL,NO,
NODES,NMASS,NDMPV,NDMPS,NSEL,KK,KF,KS,KTS,KM,
KDS,KDV,KN,IUSEL,EPSIO,SOMAT,EXTRA,GPAXEL,
NDIRNDSG,ICONT)

8. Input Tapes; None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:
X(1), Y(1), Z(1); PEL(I"',2), TEL(12,2), AK(1), FT(1), SEL(1),

SIGEL(l), AMASS(l), NOD. 3(1), EPSIO(l), SO(l), MAT(l),
EXTRA(l), TR(4,6), AKR(1O), A(4)

12. Subroutine Used: ELPLUG

13. Subroutines Reoqured: ELTEST, BCB, SYMPRT, MPRD, TXOUT

14. Remarks: None
8.48

1. Subroutine Name: PLUG 25

2. Purpose: To form the element matrices for a triangular
cross-section ring element with applications toward the
analysis of thick walled and solid axisymmetric structures of
finite length. They may be used to idealize any axisymmetric
structure by taking into account:

(1) arbitrary axial variation in geometry
(2) axlalvariation in orientation of material axes of

orthotropy
(3) Radial and axial variations in material properties
(4) any asymmetric loading system including pressure and

temperature
(5) degradation of material properties due to temperature

The complete finite element representation, consists of
the algebraic expressions for the following matrices:

(1) stiffness
(2) stress
(3) mass
(4) thermal load
t3) pressure load

3. Equations and Procedures: The development of the complete
element representation arises from the Lagrange Equation which
is:

S All at 2):0

R~ qr

where qR = yth generalized displacement coordinate

41 = total potential energy

02 = kinetic energy

4y = y th generalized velocity coordinate

The element generalized displacements yth can be expressed
in fourier series form.

8.484

The following procedure is iicluded:

(a) call subroutine eltest to varify the input control
values

(b) call subroutine HRAICS to form the coordinate trans-
formation matrix and area matrix

(c) call subroutine HRAIES to form the material properties
matrices

(d) call subroutine HRAIKS to compute the element stiffness
matrix

(e) call subroutine HRAISS to form the element stresses matrix

(f) call subroutine HLOGEN to form the pressure load matrix

(g) call subroutine HTHGEN to form the thermal load matrix

L . Input Arguments

IPL - internal element ideritifi?ation number (25)
NNO - number of element defining points (4)
XC - coordinates of element defining points
YC - coordinates of element defining points
TEL - used by elplug
PEL - used by elplug
QSEL - used by elplug
FP - used by elplug
NORD - order of' element stiffness matrix
NERR - error veturn
NOINK - number of clement in lower half of stiffness matrix
AKEL - stiffness matrix
ANEL - used by elplug
FTEL - pressure load + thermal load matrix
STRESS - element stress matrix
SZALEL. - element thermal stress matrix
AMASS - mass matrix
PAMPV - used by elplug
DAMPS - used by elplug
NRSEL - number element in stress matrix
INO - used by elplug
NODES - node point numbers
NMASS - number element in mass matrix
NDMPV - used by elplug
NDMPS - used by elplug
NSEL - number of elements in stress matrix
KK - element stiffness matrix control variable
KF - used by elplug
KS - element stress matrix control variable
KTS - used by elplug
KM - used by elplug
FN - used by elplug
KhVM - usc5 by elplug
KN - used by elplug
IUSEL - used by elplug
EPSIO - used by elplug

8.485 -

SO - used by elplug
MAT - input temperature interpolated material properties
EXTRA - used by elplug
OPAXEL - used by elplug
NDIR - number of directions of element defining points (3)
NDEG - number of solution degrees of freedom
ICONT - not used
AJ - harmonic number for pressure load
PR - harmon!c coefficient for pressure load in radial

directio-,

PZ - harmonic coefficient for pressure load in axial
direction

JT - harmonic number for thermal load
PRT - harmonic coefficient for thermal load in radial

direction
PT - harmonic coefficient for thermal load in axial

direction
IIRT - pressure and thermal load matrix generated control

variable

5. Output Arguments:

NERR - error indicator
AKEL - element stiffnesp matrix
FTEL element thermal and pressure load matrix
STRESS - element stress matrix
SZALEL - element thermal stress

6. Error Returns:

If not error, then NERR is set to zero

7. Calling Sequence:

(IPL,NUO,XC,YC,ZC,TEL,PEL,OSEL,IP,NORD,NERR,NOINK,AKEL,ANEL,
FTEL,STRESS,SZALEL,AMASS,DAMPS,NRSEL,INO,NODES,NMASS, gDMPV,
NSEL,KK,KF,KS,KTS,KM,FN,KVM,KN,IUSEL,EPSIO,SO,MAT,EXTRA,GPAXEL,
NDIR,NDEG,ICONT,AJ,PR,PZ,JT,PRT.PZT,IIRT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Calling Subroutine: Elplug

12. Subroutines Called:

ELTEST,HRAICS,HRAIES,HRAIKS,HRAISS,HLOGENHTHGEN, and HMASSG

t. 8.486

I=

1. Subroutine Name: HRAIS

1 2. Purpose: To generate coordinate transformation matrix and
area integrals table for asymmetric triangular cross section~ring element.

3. Equations and Procedures: The coordinate matrix [GAMAB.J
is formed by algebraic assignment. The area integrals table,
DELINT, is formed by algebraic methods using the function
subroutine AI.

4. Input Arguments: R, Y: coordinates of node points
WIPR: print control

5. Ouput Arumcn6: GAMABQ: coordinate matrix

DELINT: area table of integrals

6. Error Returns: None

7. Calling Sequence:

(R,V,Z,GABABQ,DEJINT,DCURL,ISING,WIPR)

8. Irput Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: Plug 25

12. Subroutine Required: AIL, TESTJ

8.487[I

1. Subroutine Name: HRAIKS

2. Purpose: Compute stiffness matrix for asymmetric triangular
cross section ring element.

3. Equations and Procedures: This subroutine uses harmoniY number
JA, elastic matrix E, and area integral table to form intermediate
matrix ACURL. This matrix is then multiplied with the coordinate
transformation matrix GAMABQ to form the final stiffness matrix
A KEL.

4. Input Arguments:

GAMABQ: coordinate transformation matrix
E : material constant matrix
DELINT: area integral table
WIPR : print control variable
JA : harmonic number

5. Output Arguments:

AKEL : final stiffness matrix

6. Error Returns: None

7. Calling Sequence:

(GAMABQ,E,DELINT,AKEL,WIPR,JA)

8. Input Tapes: N;one

,. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: Plug 25

12. Subroutine Required: TPRD,MPRD

8.488

1. Subroutine Flame: HRAISS

2. Purpose: To generate the stress matrix for asymmetric triangular
cross section %ing element.

3. Equations and Prccedures:

For a given harmonic number and element grids point constant,
an intermediate matrix WJ is formed. This matrix is then
multiplied wth the coordinate transformation matrix GAMABQ
and material constants matrix to form the final matrix STRXP.

4. Input Arguments:

X,Z: coordinates of node points
,IAMABQ: coordinate matrix
E: material constants matrix
WIPR: print control
JA: harmonic number

5. Output Arguments:

STRXP: final stress matrix

6. Error Returns: None

7. Calling Sequence;

(X,Z, AMABQ,E,STRXP,WIPR,GAM,JA,EM)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: Plug 25

12. Subroutine Required: MPRD

8.4~89

kA

1. Subroutine Name: HRAIES

2. Purpose: To generate th, transformed matrix of elastic -constants
for asymmetric triangular cross section -ing element.

3. Equations and Procedures:

a) Generate elastic constants

b) Generates the elastic transformation matrix.

4. Input Arguments:

ER,ETHETA,EZ: moduli of elasticity (Young's)
VROVOZ,VZR: poissons ratio
GRZ: modulus of rigidity
GAM: angle between material axes and element axes

5. Output Arguments:

E: transformed elastic constant matrix

6. Error Returns: None

7. Calling Sequence:

(ER,ETHETAEZ,VRO,VOZ,VZR,GRZ,GAM,TEO,EM,E,EL,WIPR,GRO,GOR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: Plug 25

8.490

1. Subroutine Name: HLOGEN

2. Purpose: To generate pressure load for asymmetric triangular
cross section ring element.

3. Equations and Procedures: Pressure load is function of harmonic
number, harmonic coefficients, and node point number.

4. Input Arguments:

X,Z: coordinates of node points
GAMABQ: coordinate matrix
JA: harmonic number
PR: harmonic coefficient for radial direction
PZ: harmonic coefficient for axial direction
WIPR: print control

5. Output Arguments:

FTXP: final pressure load matrix

6. Error Returns: None

7. Calling Sequence:

(X,Z,GAMABQ,FTXP,WIPR,JA,PR,PZ)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User, Plug 25

84

1. Subroutine Name: HMASSG

2. Purpose: To generate MASS matrix for asymmetric triangular
cross section ring element.

3. Eqations and Procedures:

For a given harmonic nurber, density constant and element area
vector, an intermediate matrix BMASS is formed. This matrix
is then multiplied with the coordinate transformation matrix
GAMABQ to form the final mass matrix AMASS.

4. Input Arguments:

AMASS: mass matrix
GAMABQ: coordinate matriv
DENS: density constant
DELINT: area vector
JA: harmonic nunber
WIPR: print control

5. Output Arguments:

AMASS: final mass matrix

6. Error Returns: None

7. Calling Sequence:

(AMASS,DENS,GAMABQ,DELINT,JA,WIPR)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: Wone

11. Subroutine User: Plug 25

12. Subroutine Required: TPRD,MPRD

8.9

-C

'-

1. Subroutine Name: HTHGEN

2. Purpose: To generate thermal load and thermal stress matrix
for asymmetric triangular cross section ring element.

3. Equations and Procedures:

a. For a given harmonic number AJT, harmonic coefficient PRT,
thermal material coefficients and area table integral,
an intermediate matrix DTT is formed. This matrix is then
multiplied with coordinate transformation matrix GAMABQ
to form the thermal load matrix.

b. Thermal stress is a function of the materia] expansion
coefficients and the material constants.

4. Input Arguments:

GAMABQ: coordinate matrix
E : material constants matrix
DELINT: area integrals table
ALFRR,ALFZZ,ALFOO: material expansion coefficient
AJT : harmonic number
PRT : harmonic coefficient
WIPR : print control variable

5. Output Arguments:

FTJ : contains thermal load element
SZALEL: contains element thermal stress matrix

6. Error Returns: None

7. Calling Sequence:

(GAMABQ,E,DELINT,FTJ,ALFRR,ALFZZ,ALFOO,AJT,PRT,PZT,WIPR,SZALEL)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Subroutine User: Plug 25

12. Subroutine Required: TPRD

8.493

1. Subroutine Name: PLUG26

2. Purpose: To process the required input and control the
generation of membrane and flexure stiffness, mass, applied
load, thermal stress and stress matrices for the high
aspect ratio quadrilateral element.

3. Equations and Procedures:

A. Initialize constants.

B. Process coordinate data and form transformation matrices
for different coordinate systems used in element.

C. Form: Material properties matrix in EM
Strain transformation matrix in TES
Stress transformation matrix in TESS
Displacement transformation matrix in TW

D. Compute [EG] = [TES]T[EM][TES]

E. If print option equals -I, call PIPRTA to print processed
input data.

F. Initialize thermal load, pressure load, thermal stress,
stress and mass matrices to zero.

Membrane computations are performed as follows:

G. Store x and y coordinates in geometric system into xx
and yy arrays.

H. Call GENSM to calculate the values of the mode shape
and derivative functions H, HZ, HV for the NR and NS
sample points.

I. Call CK26 to compute the membrane stiffness matrix and
transforwation matrix TGRM.

J. if requested, call CMMASS to compute membrane mass matrix
in geometric system, CMM.

Call BCB to form [AMASS] = [TGRM]T [Cmm][TGRM] in
system coordinates.

K. If requested, call STRS26 to compute membrane stress
matrix.

I. If requested, call FT26 to compute membrane thermal
load column.

8.4914

- ~ S~" ---. L~S--'

iiM. If requested, call SZAL26 to membrane thermalM. I reqestd, cll ZAL2 tocompute mmrn hra
stress column.

N. Change temperature multiplier on thermal stress.

Flexural computations are then performed in the following
manner:

0. Call CK22 to add the flexural contributions to the
stiffness matrix [K21S].

P. Apply transformation to global system by performing
[TFM] = [TGAMB][TOGB][TGRB].

Q. If stress and/or force matrices are requested then
(a) If input pressure not equal to 0, call CFP to

formulate the pressure matrix.
(b) The flexural contributions tc the stress matrix

are formulated by calling CSTF.
(c) If flexural input temperature not equal to zero,

calls CFFTS to formulate the thermal force and
stress matrices.

R. If mass is requested, then

(a) Call CFMASS to form the membrane mass matrix in
local system [CMF].

(b) The mass matrix is transformed to global system
as [AMASS] = [TGFS]T[CMF][TGFS].

S. Again, if the print option is -1, intermediate element
computation printout is obtained from PRT1.

4. Input Arguments:

IPL - Plug number
NNO - Number of nodes (8)
XC,YC,ZC- Coordinates of element node points
TEL - Temperature array of element node points
PEL - Pressures at element node points
NN - Number of nodes
NL .. Node point numbers
KK,KN - Control for computation of matrices (see remarks)
GPAXEL - Grid point axes transformat.ions
MAT - Array conraining material properties
EXTRA - Array containing geometric properties

8.495

5. Output Arguments:

K21S - Stiffness matrix
FTEL - Element force matrix
S - Stress matrix
SZALEL - Thermal stress matrix
AMASS - Mass matrix for dynamic analysis

6. Error Returns:

a. Standard error returns by ELPLUG (NERR)

b. Sina = 0 indicates coordinate input data error

7. Calling Sequence:

Call PL3G26(IPL, NNO, XC, YC, ZC, TEL, PEL, QS, IP, NORD,
NERR, NOINK, K21S, AN1, FTEL, S, SZALEL, AMASS, DAMPV,
DAMPS, NRSEL, NN, NL, NMASS, NDMPV, NDMPS, NSEL, KK, KF,
K8, KTS, KM, KDS, KDV, KN, IUSEL, EPSLON, SIGZER, MAT, EXTRA,
GPAXEL, NDIR, NDEG, ICONT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes; None

11. Storage Required: Total storage required is 10864 1 0/2A70 1 6 bytes.

12. Subroutine User: ELPLUG

13. Subroutines Required:

ELTEST PIPRTA STRS26
NEWFT GENSM FT26
CDELPQ PRT1 SZAL26
MINV CK22
BCB CFP
CK26 CSTF
MABC CFFTS
CMMASS CFMASS

8.496

14. Remarks:

The following is a list of control indicators for PLUG26.

For all indicators shown a value of one will cause the
operation to be performed and a value of zero will cause
the operation to be skipped.

LTI - compute membrane contributions
LT2 - compute flexural contributions
KK - compute element stiffness matrix
KF - compute element force matrix

(thermal and/or pressure)
K8 - compute element stress matrix
KTS - compute element thermal stress matrix
KM - compute element mass matrix

KDS - not used
KDV - not used
KN - compute element incremental stiffness matrix.

84LI

~8.1497

1. Subroutine Name: GENSM

2. Purpose: Evaluate the membrane displacement function,
trancformation matrix and the two derivative displacement
function transformation for all sample points in the high
aspect ratio quadrilateral thin shell element. Also
evaluate weights used for Gaussian product formula.

3. Equations and Procedures:

Loop cn the number of sample points in the product quadrature
formula and calculate the values of H, HV and HZ for each
of the eight assumed displacement degrees of freedom. If
requested, print values of H, HV, and HZ and W.

H represents displacement transformation function.

HZ represents derivative displacement -[H]3n
HU represents derivative displacement 2'-rH]

1. Input Arguments:

NR - Number of sample points in 'x-like' y direction
NS - Number of sample points in 'y-like' u direction
IPRINT - Print control

5. Output Arguments:

H - Displacement function transformation matrix for
NR*NS sample points

HZ - Derivative displacement function transformation
matrix for NR*NS sample points

HV - Derivative displacement fainction transformation
matrix for NR*NS sample poi.-ts

W - Weights for product Gauss NR*NS quad formu±a.

6. Error Returns: None

7. Calling Sequence:

Call GENSM (NR,NS,H,HZ,HV,W,IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

8.498

6J

11. Storage Required:

2? 8 8 i bytes

8F8 16 bytes

Th displacementjfunction:an the derivative displacement

(1-u)C'fz-2u-1] z[llu-2z-l1
u [IYz+2u-3] z[)Iu+2z--31

HZ (l-U)[YIz+2u--3) (I -z))Llu+2Y-3)/2
4u(l-u) , U lllz(-2u+l)
u(-8z+i) L4z(l-z) I

-1Ju(1-u) 41 ~-z)(-2u+l)
(1-u) -8z+4 -11

z(1-u) (2z-2u-l)
zu(2z+2u-3)
(1-z)u(-2z+2u-1)

H = (1-z) (1-u) (-2z-2u+l)H 4zu(l-u)
L4zu(l-z)

8.499]

1. Subroutine Name: CK26

2. Purpose: To generate the membrane stiffness matrix for
the high aspect ratio quadrilateral finite element.

3. Equations and Procedures:

1. Initialize constants and arrays.

2. Call CTGRM to evaluate TGRM matrix which maps geometric
into system reference system.

3. Loop on the number of points in the product quadrature
formulas the following calculations:
A. Call TUDJAC to evaluate the TU and D matrices and

the Jacobian for the sample point at hand.

B. Call BCB to form the product
[EO] = t 1JI[TU] T[EG][TU].

C. Call BCB to form the product

[KllG] = [KllG] + Wij[D]T[Eo][D]

D. If full print was requested, print TU, D, and K11G
matr!ces.

. Call BCB to form final membrane stiffness matrix

T[K2lS] = [TGRM] [KllG][TGRM]

4. Input Arguments:

NDIR - Number of degrees of freedom/grid point.
NDEG - Number of types of degrees of freedom
ICONT - Indicator for grid point axis transformation
GPAXEL - Array which contains grid point axis transformation
NNO - Number of grid poir.ts
NL - Array used to store element grid points
EEZ - Eccentricity coefficient
AJ - Array containing 'x-like' coefficients of 8 grid points
BJ - Array containing 'y-like' coefficients of 8 grid points
TPRIME - Transformation from geometric to reference degrees

of freedom
T - Membrane thickness
LTI - Indicator of membrane thickness
EG - Material properties matrix in geometric syztem
KllG - Array used to accumulate stiffness matrix
TU - Displacement function tranriformation
EO - Matrix used for Intermediate products
IFS - Matrix used for grid point axis transformation
HZ Matrix which contains displacement function der4vaL'vvs
HU - Matrix which contains displacement function derivativs
D - Matrix which contain.; displacement function derivatives

8.500

I

NR - Number of quadrature points in 'x-like' direction
NS - Number of quadrature points in 'y-liket direction
W - Array containing weights for product quad formulas
IPRINT - ?rint control.

5. Output Arguments:

K21S - Membrane stiffness matrix in system cooidinvtes
TGRM - Transformation from geormetri%; to system coordinate-

6. Error Returns: None

7. Calling Sequence:

Call CK26 (K21S,NDIR,NDEG,ICONT,GPAXEL,NNO,NL,EEZ,AJ,BJ,
TPRIME,T,LT1,EG,TGRM,K11G,TO,EO,ThS,HZ,HU,D,
NR,NS,W, IPRINT)

8. Input Tapes: None

9. Outuut Tapes: None

10. Scratch Tapes: None

1K. Storage Required: 245810 bytes

12. Subroutine User: PLUG26

13. Subroutines Required:

CTGRM, AXTRA2, TUDJAC, BCB

14. Remarks: None

A

8.501

. ..-

I. Subroutine Name: TUDJAC

2. Purpose: To calculate displacement function derivative
matrix, TU matrix, and Jacobian of TU matrix for one sample
point inside the quadrilateral.

3. Equations and Procedures:

8

XZ = HZ(i)*AJ(i)

i=l

8

YU = HU(i)*BJ(i)

i=l

XU = HU(i)*AJ(i)

i=l
8

YZ =HZ(i)*BJ(i)

RJAC = XZ*YU - XU*YZ (Jacoblan)

D matrix is formed from HZ and HU arrays.

YU -YZ 0 0

[TUI = 1.0 -XU XZRJAC
-XU XZ YU -Y

If print requested, print XZ, YU, XU, YZ, RJAC,

8.502

4. Input Arguments:

AJ - 'x-like' coordinates of 8 grid points in element
BJ - 'y-like' coordinates of 8 grid points in elementIPRINT - Print control if IPRINT=l, then print

HZ - Derivat.ve matrix for one sample point
IHU - Derivative matrix for one sample point

5. Output Arguments:

TU - Displacement function transformation
D - Displacement derivative function matrix
RJAC - Jacobian of TU matrix

6. Error Returns: None

7. Calling Sequence:

* Call TUDJAC (AJ,BJ,HZ,HUTU,D,RJAC,IPRINT)

8. Input Tapes: None

t 9. Ouptut Tapes: None

10. Scratch Tapes: None

11. Storage Required: 97210 bytes

12. Subroutine User: CK26, FT26

13. Subroutines Required: None

14. Remarks: None

8.r03

1. Subroutine Name: FT26

2. Purpose: To generate membrane thermal load vector for
high aspect ratio cuadrilateral element.

3. Equations and Procedures:

A. Compute temperature of element for all eight grid
points.

B. If all temperatures are 0.0, set thermal load vector
to 0.0 and return.

C. Compute [AM1] = [EM][ALPHM] by calling HSB.

Compute [AM2] = [TES]T[AM1] by calling MATB.

D. If print is requested, print all matrices aalculated
so far.

E. Loop on the number of points in the product quadrature
formula:

1. Evaluate [TU],[D] and Jacobian of [TUI for sample
point.

2. Multiply [D] matrix by temperatures at each grid
point.

3. Calculate [IT] = [TU]T [AM2] by calling MATBS.

4. Accumulate [FPB] %. [FPB] + [D]T[IT] by callina MATBS.
F. Evaluate [FT] = [TGRM]T[FPB] 'y calling MATB.

I4. Input Arguments:

EM - Material properties matrix
ALPHM - Coefficients of thermal expansion
TES - Strain transformation matrix
..'U - Displacement function transformation
T - Membrane plate thickness
FPB - Array used to accumulate intermediate thermal load
TGRM - Transformation from geometric to reference coordinates
NR - Number of sample points in 'x-like' direction
NS - Number of sample poirts in 'y-like' direction
HZ - Displacement derivative function
HU - Displacement derivative function
D - Displacement derivative function
XX - x-coordinates in geometric system
YY - y-coordinates in geometric system
W - Weights for product Gauss quadrature formula
TEL - Temperature of 4 corner element grid points
H - Displacement function transformation
TZ - Initial temperature of structure
IPRINT -. Print control

5. Output Arguments:

FT - Element thermal load in reference coordinates
TELE - Effective temperature for eight grid points

8.50:1

Ii

6. Error Returns: None

7. Calling Sequence:

Call FT26 (EM,ALPHM,TES,TU,T,FT,FPB,TGRM,NR,NS,HZHIUJD,
XX,YY,W,TEL,H,TELE,TZ,IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

284610 bytes

B28 16 bytes

12. Subroutine User: PLUG26

13. Subroutines Required:

MB, MATB, TUDJAC, MATBS

14. Remarks: None

8.505

1. Subroutine Name: SZAL26

2. Purpose: To generate thermal stress matrix for high
aspect ratio quadrilateral element.

3. Fquations and Procedures:

A. Form LAM1] = [EM][ALPHM] by calling MSB.

B. Form [AM2] = DELTM*T [TES]-[AM]] by calling MATBS.

C. Form [SZLM] = [TESS][AM2] by calling MAB.

D. Define elements of [SZLM] as the first three elements
in each row of [SZALEL].

E. If requested, print [TESS], [AM1], [AM2], [SZLM].

4. Input Arguments:

E - Material properties matrix
ALPHM - Coefficients of thermal expansion
T - Membrane thickness
DELTM - Membrane temperature
TESS - Stress transformation
TES - Strain transformation
IPRINT - Print control

5. Output Arguments:

SZALEL - Material thermal stress matrix

6. Error Returns: None

7. Calling Sequence:

Call SZAL26 EM,ALPHM,T,DELTM,TESS,SZALEL,TES,IPRINT)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: 124410 bytes; 4E8 16 bytes

12. Subroutine User: PLUG26

13. Subroutines Renuired:

MSB, MAB, MATBS

14. Remarks: None

8.506

1. Subroutine Name: STRS26

2. Purpose: To evaluate membrane stress matrix for 5 stress
point. (4 corner points plus centroid.)

3. Equations and Procedures:
A. Form [AM1] = [TESS] [EG] by calling MBS.

B. For each stress point

1. Calculate YU, YZM, XUM, XZ and VJAC =I.0/(XZ+YU-XUM+YZM)

2. Form elements in D matrix [D] = [TU] [D] based
on equations in remarks section.

C. Form [AM2] = [AM1] [D] by calling MABS.

D. Form [AM5] = [TGRM] [AM2] by calling MAB.

E. Store elements of AM5 as the first 3 elements in each
row of S tatrix.

F. If requested, print matrices.

4. Input Arguments:

EG - Material .operties matrix (geometric system)

TESS - Stress transformation matrix
T - Membrane thickness

TGRM - Transformation matrix from geometric to reference
D - Array used in intermediate calculations
AM1 - Array used in intermediate calculations
AM2 - Array used in intermediate calculations
AM5 - Array used in intermediate calculations
AJ - 'x-like' coordinates of eight element grid points
BJ - 'y-like' coordinates of eight element grid points
IPRINIT - print control

5. Output Arguments:

S - Element stress matrix

6. Error Returns: None

7. Calling Sequence:

Call STRS26 (EG,TESS,T,S,TGRM,D,AM1,AM2,AM9,AJ,BJ,IPRINT)

8. Input Tapes: None

9. Output Tapes: None

1 10. Scratch Tapes: None

i R.5)07

11. Storage Required: 408010 bytes FFB1 6 bytes

12. Subroutine User: PLUG26

13. Subroutines Required: MBS, MABS, MAB

14. Remarks:

The calculation [TU] [D] is required in the expression for the
stress matrix. Since the two matrices are evaluated at the
5 stress points, many of the terms for HZ and HU in the D
matrix drop out. Thus we can write the expression for [TU] [D]
directly.Ii ~ ~~~~STRESS POINTS __________

DISPLACEMENTSTESPIS
DSO.F. (1) (2) (3) (4) (5)

HZ (1,0) (1,1) (0,1) (0,0) (,)

1 3 0 0 -1 0
2 0 3 -1 0 0
3 0 1 -3 0 0
4 1 0 0 -3 0
5 0 0 0 0 1
6 0 -4 4 0 0
7 0 0 0 0 -1
8 -a 0 0 4 0

STRESS POINTS
DISPLACEMENT (1) (2) (3) (4) (5)D.O.F.HU (1,0) (1,1) (0,1) (0,0) (,)

1 -3 1 0 0 0
2 -1 3 0 0 0
3 0 0 3 -1 0
4 0 0 1 -3 0
5 4 -11 0 0 0
6 0 0 0 0 1
7 0 0 -4 4 08 0 0 0 0 -1

8.508

1. Subroutine Name: MBS

2. Purpose: To evaluate the matrix product B*S(SYM).

3. Equations and Procedures:
B is of order (M,N) and dimensioned (Ml, Ni)
S is (NxN) symmetric stored in lower half by rows
AN (M,N) is the product B(M,N) * S(N:N)
AN must h3ve row dimension M.

14. Input Arguments:

B - Rectangular matrix of order (M,N)
S - Symmetric matrix of order (N,N)
M - Number of rows in B and AN matrices
N - Number of rows in S matrix
Ml - Row dimension of B matrix
Ni - Column dimension of B matrix

5. Output Arguments:

AN - Matrix product of order (M,N)

6. Error Returns: None

7. Calling Sequence:

Call MBS (B,S,AN,M,N,MI,Ni)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Require&: 77010 bytes ; 30816 bytes

12. Subroutine User: STRS26

13. Subroutines Required: None

14. Remarks: None

8.509

-S

1. Subrcutine Name: MABS

2, Purpose: To evaluate the matrix product A * B AN.

3, Equations and Procedures:

AN = YAnj * Bjm + IASSY *AN

4. Input Arguments:

A - Elements of [A] matrix
B - Elements of [3] matrix
N - Number of rows in [A] matrix
L - Number of columns/rows in [A] [B] matrix
M - Number of columns in [B] matrix
NI,MI - Dimension of [A] matrix
N2,M2 - Dimension of [B] matrix
IASSY - Assembly control

5. Output Arguments:

AN - The matrix product

6. Error Returns: None

7. Callng Sequence:

Call MABS (A,B,AN,N,L,MN1,MI,N2,M2,IASSY)

8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required:

Total storage required is 79830 ; 31E 16 bytes.

12. Subroutine User: Used by many subroutines within PLUG26.

13. Subroutines Required: None

14. Remarks:

If IASSY = 1 AN is product plus previous AN values
= 0 AN is product only.

P.510

1. Subroutine Name: MATBS

2. Purpose: Subroutine to evaluate the matrix prcduct of
A transpose and B.

3. Equations and Procedures:

AN = scal 7 AT *B + IASSY *AN
.m en em

e

where AT is the transpose of A

eln ne

4.* Input Arguments:

A - Elements of [A] matrix
B - Elements of [B] matrix
N - Number of rows in [A]T matrix (order)
L - Number of columns in [A]T matrix (order)
M - Number of columns in [B] matrix (order)
NM,Ml - Dimension of [A] matrix
N2,M2 - Dimension of [B] matrix

SCAL - Scalar which multiplies product
IASSY - Assembly control (see Remarks)

5. Output Arguments:

AN - Elements of matrix product

6. Error Returns: None

7. Calling Sequence:

Call MATBS (A,B,AN,N,L,M,N1,MI,N2,M2,SCALIASSY)

8. Input Tapes: None

9. Output Tapes: None

10, Scratch Tapes: None

li Storage Required:

Total storage required is 92810 bytes; 3A0 16 bytes

12. Subroutine User: Various subroutines In PLUG26

13. Subroutines Required: None

1L4. Remarks:

If IASSY = 1, AN = previous AN values plus new pdt.
=0, AN -product only

i 8.511

APPENDIX IX

DIRECT MACHINE CONTROL IMPLEMENTATION DOCUMENT

This documentation is primarily intended for the
programmer analyst or systems analyst responsible for the
initial implementing and subsequent maintenance of the
system.

There are five sections in this document. Special
program considerations are presented in Section I (Reference
2). Included in this section is a description of internal
data storage, external or peripheral data storage, and
programming specifications followed. Section II deals with
the operational considerations of the program. Included in
this section is a discussion of the procedure to be followed
in an initial implementation of the program at art installation.
Data set assignments and storage limitations are discussed,
and some special control cards are described (Reference 2).
Section III describes how new agendum level abstraction
instructions may be added to the MAGIC system. Section IV
contains a catalogued procedure used for initial implementation
of the MAGIC System. Section V contains a preprinted form
to be used in reporting any problems with the implementation
or running of the MAGIC program.

9

i 9.1

TABLE OF CONTENTS

Section Page No.

I SPECIAL PROGRAMMING CONSIDERATIONS 9.4

A. Internal Data Storage 9.4

1. Common Storage 9.4

2. Storage of Alphameric Information. 9.4

3. Matrix Names 9.4

4. Data Set Names 9.5

5. Compression Scheme 9.5

B. Data Set Formats 9.6

1. Data Set He.,der Record 9.6

2. Data Set Trailer Record 9.6

3. Matrix Header Record 9.6

4. Matrix Trailer Record 9.7

5. Matrix Column Record 9.7

C. Programming Standards 9.7

II OPERATIONAL CONSIDERATIONS 9.9

A. MAGIC III Data Set Philosophy...• 9.9

B. Storage Limitations 9.1?

C. Initial Implementation 9.13

D. Machine Resource Data Card 9.16

9.2

SectionP' No.

III AGENDUM LEVEL ABSTRACTION INSTRUCTIONS
. . . 9.19

A. Introduction
9.19

B. Modifications to Subroutine AGENDM . • 9.19

C. Setting up the Agendum Library 9.20

1. Agendum Control Cards 9.20

2. Example of an Agendum Library
. . 9.2.0

3. Example of Agendum Usage ...
..... 9.21

IV MAGIC CATALOGUED PROCEDURE
.... 9.22

V. MAGIC III TEST RUN REPORT FORM
........ .. 9.24

MAGIC III TEST RUN REPORT FORM

(Trouble Supplement Sheet) 9.,26

I

9.3

SECTION I

SPECIAL PROGRAMMING CONSIDERATIONS

A. INTERNAL DATA STORAGE

1. Common Storage

There are only four variables which remain in blank
common at all times. These four variables are initialized
when the machine resources module is compiled. The four
variables are stored in the first four words of blank common
and are defined as follows: (1) the first word contains an
integer which is the logical number of the system input data
set, (2) the second word contains an integer which is the
logical number of the system output data set, (3) the third
word contains 'n integer which is the order of the large3t
matrix permittod in the system, (4) the fourth word contains
the number of %ords remaining in blank common (i.e., from word
five to the end). The remaining portion of blank common,
whose length is specified in word number four, is used by all
FORMAT II routines as working storage.

2. Storage of Alphameric Information

All alphameric information (e.g., matrix names) is
stored one charaztp' per word. Consistency is retained by
reading all alphameriG data into storage with an "Al" format
and by compiling all alphameric data into storage using DATA
statements with an "lH" format.

3. Matrix Names

The names of all matrices processed by the program
are one (1) to six (6) characters in length. T he first character
of a matrix name mus' be alphabetlc. The matrix names are
stored one enaracter per word. A seventh word is addended to
the six words which contain the characters constituting the
matrix name. This last word contains a plus (+) or minus (-)
integer one (1). The sign of the seventh word indicates the
sign of the matrix, (i.e., plus or mi.nus). (Note: The
characters in words two (2) through six (6) may be blank.)

9.4

.4 J

4. Data Set Names

The names of master input and master output data
sets follow the same rules as matrix names, with one exception.
The seventh word of the data set nai*-e does not necessarily
contain an integer oni (1). Instead it contains an integer
which is specified by the user of the program when the particular
data set was created. If the data set is neither a master input
date. set nor a master output data set, the data set name consists
of six (6) blank characters followed by an integer zero (0).

5. Compression Scheme

The columns of all matrices are stored in one of two
formats, full or compressed.

If the number of zero elements in the column is grea'.er
than fifty percent, the column is stored in compressed format.
When a column is compressed, it is stored as follows:

V
I
V
I

V
I

The V's are the non-zero values in the coluni and are
floating point numbers. The I's are the row numbers of each of
the V's and are stored as integers. The row number of any given
value is denoted by the integer immediately following the value
in storage.

If the number of non-zero elements is not greater than
fifty percent, the column is stored in full format. When a
column is full, it is stored .s follows:

V
V
V

V

The V's are the zero and non-zero elements of the
column and are floating point numbers.

9.5

B. DATA SET FORMATS

1. Data Set Header Record

The first logical record on all data sets which are
processed by the program is called a data set header. The
data set header is ten words long. The first word contains
an integer number which is minus ten (-10). This word indicates
t-hat the record is a data set header. The second word contains
an integer zero (0). This word has no significance in a data
set header. The third word contains an integer seven CT).
This word indicates the number of words remaining in the logical
record. The remaining seven words contain an alphameric data
set name if the data set is either a master input or master
output data set, or contain seven (7) zeros (0) if the data
set is not a master input or master output data set.

*2. Data Set Trailer Record

The last logical record on all data sets which are
processed by the probram 4-s called a data set trailer. The
data set tra:ler is four (4) words long. The first word
contains an integ, •' ,zich is minus twenty (-20). This word
indicates that tne record is a data set trailer. The second
word contains an integer zero (0). This word has no signi-
ficance in a data set trailer. The third word contains an
integer one (1). This word indicates the number of words
remaining in the logical record. The fourth word contains an
integer zero (0). This word has no significance in a data
set trailer.

3. Matrix Header Record

The first logical record in all matrices which reside
on data wwts which are processed by the program is called a
matrix header. The matrix header is twelve (12) words long.
The first word contains an integer which is minus one (-1).
This word indicates that the record is a matrix header. The
second word contains an integer zero (0). This word has no
significance in a matrix header. The third word contains an
integer nine (9). This word indicates the number of words
remaining in the logical record. The next seven (7) words
contain the characters which comprise the matrix name. The
last two words contain integer numbers whicb are the number
of rows and the number of columns, respectively, in the
matrix.

9.6

i.

4. Matrix Trailer Record

The last record in all matrices which reside on data
sets which are processed by the program Is called a matrix
trailer. The matrix trailer is four (4) words long. The first
word contains an integer minus two (-2). This word indicates
that the record is a matrix trailer. The second word contain.
an integer zero (0). This word has no significance in a matr:
trailer. The third word contains an integer one (1). Th s
word indicates the number of words remaining in the logical
record. The fourth word contains an integer zero (0). This
word has no significance in a matrix trailer.

5. Matrix Column Records

The logical records between the matrix header record
and the matrix trailer :ecord contain the columns of the matrl/.
one column per logical record. The column records are variabt,'
in length. The length depends on the number of rows in the
matrix and the number of non-zero elements in the column. The
first word of column record contains an integer which is the
column number. The second word contains an integer which is
either zero (0) or one (1). A zero (0) indicates that the colum:
is full. A one (1) indicates that the column is compressed.
The third word contains an integer which indicates the number
of words remaining in the logical record. Words four (4) to
the end contain the matrix column elements either in full or
compressed form. If a column does not contuiin any non-zero
elements, a corresponding column is omitted from the data set.

C. PROGRAMMING STANDARDS

In the design and coding of the MAGIC II system every
effort was made to Keep the system machine independent. With
this consideration in mind, the following rules were developed
and obeyed.

a. The MAGIC II system is written entirely in FORTRAN IV.

b. No advantage was taken of the peculiarities in the
FORTRAN IV language.

c. All variables are implicitly typed with the exception
of logical variables which cannot be implicitly
typed.

9.7

~<

d. "EQUIVALENCE" statements were used only when they
were absolutely necessary.

e. No on-line communication with the computer operator
is performed.

f. Blank common is used as working storage by all
routines. The size of blank common is compiled
into one control section (MRES) and is aade availab]h
to all routines by being stored in the fourth word
of blank common. Thus by recompiling only one
control section (MRES), the entire system is able
to take advantage of additional core storage which
may have been made available

g. All references to FORTRAN lcgical data sets are
variable. The numbers of all the FURTRAN logical
data sets available to the MAGIC II system are
compiled into one control section (MRES) and subse-
quently made available to all routines. These data
set numbers may be changed by recompilation of one
control section (MRES) or via the input data.

h. All alphameric information is stored one character
per word, thus no adcantage of word size was taken.

i. No advantage of the bit configuration of any
character was taken.

J. The MAGIC II system is extremely modular, making
additions and modifications as simple as possible.

k. In general, very straight forward and conservative
coding practices were followed.

9.8

SECTION II

OPERATIONAL CONSIDERATIONS

A. MAGIC II DATA SET PHILOSOPHY

The MAGIC II system is designed to make extensive use
if the input/output configuration of a given installation.
•'ince the philosophy of MAGIC has been to keep the system
ompletely machine independent all references to input/output

,Ievlces is in terms of' logical data sets. The MAGIC II data
zet philosophy is described in the following parces. The main
topics covered are the manner in which an installation's
standard FORTRAN data set configuration is communicated to
the MAGIC II system, the minimum data set requirements of
the MAGIC II system, and the method of selection of' data
sets for use as MAGIC II system utilities.

A logical data set in the MAGIC II Eystem can take on
one to four MAGIC system functions. The data may be a master
input data set; that is, one which contains matrices which
are required in the execution of the user's problem. The
data set may be a master output data set; chat is, one which
is to contain matrices generated by the user's problem and whieh
is to be saved at the end of the problem execution. The data
set may be an input/output utility data set; that is, one
which may be used by the MAGIC II system during both pre-
processing and execution as intermediate Storage. Finally
the data set may be the instruction data set. The only function
of this data set is to contain the executable FORTRAN instructin.,
as generated during the preprocessing phase of a given run.
This instruction data set is subsequently read during the
execution phase of the same run. In addition to the four
previously mentioned MAGIC system functions, there are two
logical data set numbers which correspond to the system input
unit and system output unit of the operating system monitoring
execution of the MAGIC II system. These two data sets are
used by the MAGIC II system exclusively for reading cards on
or off-line and for printing on or off-line. Note that this
allows batch processing.

There are two ways in which an installation's standard
FORTRAN logical data sets are made available to the MAGIC II
system. One of the two ways is by recompiling subroutine
MRES. This subroutine must have compiled into it the logical

9.9

~ ~ ~ - -I

data set number corresponding to the system input unit and
the lewjlcal data set number corresponding to the system output
unilt. The subroutine may have compiled Into it information
ib'ut some or all of the installation's standard FORTRAN
logical data sets. This information consists of the five
fnllowlng quantities for each data set: (1) the logical data
oet number; (2) the MAGI(II system function of the data
.;et; (3) the device with which the data set is associated,
(e.g., tape); (4) the logical channel to which the devize Is
attached, (e.g., A); (5) the capacity of the data set in barJ..
machine units, (e.g., 5000 words). (A capacity of zero (0)
indicates infinite capacity.) The second way the installatiori':
four standard FORTRAN logical data sets may be made available
to the MAGIC II system is by the use of the "NEW" option on
the $MA(JIC card and a SETUP card for each of the standard
data sets. The "NEW" option has the effect of zeroing out
all the data set information which has been compiled into th
fubroutlne, with the exception of the logical data set numb.,:'
uf the system input unit and the system output unit. Each
SETUP card has the effect of re-establishing thu five quantities
which are associated with each data set.

Once the installation's standard configuration has beer,
compiled into the subroutine MRES, temporary modifications
may be made by the use of the "CHANGE" option on the $MAGIC
card and a DELETE card or UPDATE card, depending on the
particular modification to be made. The "CHANGE" option
indicates that the DELETE or UPDATE cards follow the $MAGIC
card. The DELETE card has the effect of zeroing out all
information associated with the specified data set. The UP-
DATE card has the effect of changing any or all the information
associated with an existing data set, that is a data set
whose associated information has been compiled into subroutine
MRES: or has the effect of making an additional data sets
available to the MAGIC II system if the data set did not
exist, that is, if the data set information associated with
the specified data set has not been compiled into subroutine
MRES.

There are several errors which will result from improper
specification of logical data set Information in the MAGIC Ii
system. The most serious of the errors are those which the
MAGIC II system, by virtue oi' its machine independence, can-
not detect and from which it cannot recover. These errors
are: (1) having specified an invalid logical data set number
for either the system input unit or the system output unit in
the compiled soubroutine MRES; (2) having specified the
number of a logical data set as a MAGIC II system function

9.10

which is not in binary mode or which is not defined as one of
the installation's standard FORTRAN logical data sets. These
incorrect specifications may result from the use of a "SETUP"
or "UPDATE" card, or improper use of subroutine MRES during
.zompilation. There are other errors which result from invalid
specification of logical data set information, which are
internal to the MAGIC II system and hence, can be detected
by the MAGIC II system. These errors are: (1) specifying a
logical data set as a MAGIC II system function, when the
1ita set is tne system input or 3utput unit; (2) specifying
duplicate data set numbers on two different SETUP cards; (3)
specifying a device type other than tape or disk for a data
set whose function is master input or master output; (4) not
specifying a sufficient number of data sets as being available
to the MAGIC II system. Item number 4 in the list of errors
will be clarified in the following pages.

The MAGIC II system requires that a certain number of
logical data sets be available for use as system utilities
during the preprocessing phase and execution phase. The functLon
and method of selection of all required utilities is described
below. The first data set selected by tie preprocessor is
;he data set which is to contain the executable Format
instructions. Since this data set is a MAGIC II system func-
tion, it may have been established at the time all the system
functions were established. However, if no data set available
to MAGIC has been given this system function, the preprocec .or
selects for this function one of the data sets that has the
MAGIC II system function input/output utility. The next data
set selected is used as a communication medium between the pre-
processor modules. The preprocessor selects a data set which
system function is input/output utility. This data set is

set outside to contain any matrices which may be card input.
During the allocation phase a fourth data set is selected for
temporary use by the allocator. This data set is also selected
from the MAGIC II input/output utilities. If no matrices
have been card input it is possible that the data set selected
by the allocator coincides with the data set which was to
contain the card input matrices. In general, the preprocessor
can function with a minimum of three (3) data sets if each
one has the MAGIC II system function of input/output utility.
If card input matrices exist in the user's problem, four (4)
MAGIC II input/output utilities must exist.

The minimum data set requirenents for the execution phase
are deterimined during allocation. The user's problem is
analyzed and the required number of master input and master
oatput data sets is determined. Specific data sets are selected

9.11

from those whose MAGIC II system function is either master
input or master output. If any data sets, whose system function
is ma.ster input or master output, have not been selected for
the user's problem, its system function is changed from master
Input or master output to input/output utility.

Associated with each valid abstraction instruction is an
,rithmetic module which is under control of the execution
monitor. Each of these arithmetic modules requires a certain
,iumber of scratch data sets in addition to the data sets
containing the matrices which are input to the instruction or
*:reated by the instruction. As a result, the allocator scans
the user's abstraction instructions and determines the number
of scratch data sets required by each associated arithmetic
module. The maximum of these numbers is then ascertained and
this number of data sets is set aside for future use as scratch
Jata sets. These data sets are selected from the data sets
whose MAGIC II system function is input/output utility. At
this point the matrices occurring in the user's problem are
allocated to the remaining data sets whose system function .l,
Input/output utility.

There are many errors which will occur when the minimum
requirements of the MAGIC II system are not met. All of these
errors are detectable by the MAGIC II system. When one occurs
the appropriate error message is written. The most common
error which occurs is not having enough input/output utilities
a:ailable to the preprocessor at the time of the selection of
an intermediate data set. When this condition arises, the error
message which is written on the system output unit indicates
the intermediate data set which the preprocessor has been
unable to select. The condition can be corrected by specifying
more data sets with the MAGIC II system function of input/out-
put utility. An error condition also results when the user's
problem requires more master input data sets than exist with
the MAGIC II system function of master input. The error
occurs also for an insufficient number of master output data
sets.

B. STORAGE LIMITATIONS

The IM AGIC II system is very flexible in its utilization
of working storage, in that all subroutines use blank common
as working storage and in that the allocation of blank 2ommon
storage is all dynamic, The length of blank common is
initialized in the COMMON statement in subroutine MRES. The
size of blank common is bounded above only by the amount of

9.1?

r , * i

7,7

core st(,rage available at a given installation. For large
matrix problems it Is desirable to have blank common as large
as possible, since the MAGIC II system utilizes all of the
available blank commoh storage. The lower bound of the size
of blank common is determined by one of two things: (1) the sizeO)f a particular MAGIC II case, or (2) 708 words, whichevor

[is greater. The size of a MAGIC II case is a function of
such quantities as, the number of abstraction instructions,
tho size of the matrices in the system, the number of matricen
in the system, etc. Since the allocation of blank common
storage is all dynamic and is a function of the size of the
user's problem, it is very difficult to calculate the exact
number of words of blank common required. However a few
guide lines will be given. ln subroutine MRES a variable
named KONST is initialized. This variable is the order of thc.
largest matrix which the MAGIC II system will process. The
size of blank common working storage (i.e., the WORK array)
must be at least four and one half times the value of the
variable KONST. Since the MAGIC II system is designed to
nandle matrices of order up to 3000, the usual value of KONST
i 3000 and the mininum size oi' blank common working s .rage
is 135TC words.

C. INITIAL IMPLEMENTATION

The following is a discussion of the procedure a system
analyst should go through in initially implementing the
MAGIC II system at his installation. There are ieveral para-
meters which define the basic machine configuration which -ust
be set. All these parameters are contained in subroutine MRES
and are defined as follows:

a) NPIT is the FORTRAN logical data set number of the
system input data set.

b) NPOT is the FORTRAN logical data set number of the
system output data set.

c) NAIEND is the FORTRAN logical data set number of the
data set which contains the agendum level abstraction
instructions. If your installation does not make use
of the AGENDUM capabilities set this variable to zero.

d) KONST is the order of the largest matrix which the
MAGIC II system will process.

e) NWORK is the length of the table WORK. This length
is the size of blank common less foAr. NWORK must
be at least four and one half times KONST.

9.13

f) KONFIG is a tab]e which describes all the FORTRAN
logical data sets which are available for use by the
the FORMAT II system. In the KONFIG table there
are fre entries for each of the available data sets.
The first entry is the FORTRAN logical data oet
number of an available data set. Each of thes2
data sets must be in binary mode. The second entry
in the KONFIG table is the FORMAT II system function
which the data set will have. At present there are
four FORMAT II system functions, master input data
set, master output data set, utility data set, and
instruction data set. A master input data set is
one which may be mounted prior to a FORVA'AT II execution
and which may contain previously generateL matrices.
A code of two (2) is entered in KONFIG for this type
of data set. A master itput data set is one which
may be saved at the en, of a FORMAT II execution and
which may contain matrices which are generated during
a FORMAT II execution. A code of three (3) is entered
in KONFIG for this type of data set. A master out-
put data set may be used in a later FORMAT II execution
as a master input data set. A utility data set is one
which is used by the FORMAT II system as scratch
storage. A code of one (1) is entered in KONFIG for
this type of data set. The instruction data set is
the data set in the information interface between
the preprocessor monitor and the execution monitor.
A code of four (4) is entered in KONFIG for this type
of data set. The third entry in the KONFIG table for
a data set is a code for the type of device which
contains the data set. The codes are one (1), two (2),
three (3), and four (4) indicating a device type of
tape, disk, drum, and a data cell, respectively. The

fourth entry in the KONFIG table is a code for the
logical channel to which each device is attached.
The codes are one (1) through ten (10) indicating
logical channels A through J respectively. The fifth
and final entry in the KONFIG table is the capacity
in basic machine units (e.g., words) of the data set.
A zero (0) indicates that the data set is assumed to
be infinite in capacity. At present this characteristic
is non-functional.

g) One final variable must be initialized in subroutine
MRES. This variable is NUMR which is the number of
data sets defined in the KONFIG table.

i 9.14

In assigning MAGIC II systems functions to the available
data sets, the following rules must be followed:
l) The data set number of all available data sets
i.e., NPIT, NPOT, and all data sets defined in the

KONFIG) must be unique. (2) All data sets defined in
the KONFIG table must be available through the
Fortran system and must be in binary mode. (3) Only
one data set may be given the MAGIC II system function
of the instruction data set. If the MAGIC II system
function of instruction data set is not specified for
any data set, one is selected from the utility data
sets. (4) At least five (5) utility data sets must be
specified exclusive of that which may be selected as
an instruction data set. (5) Any number of master
input or master output data sets may be specified.

h) The minimum machine configuration for the MAGIC System
requires that eight (8) external storage units be
available to MAGIC and assigned to the system via
the KONFIC table in subroutine MRES. The first
external unit must have the MAGIC function of
instruction data set (INSTRN). The next two external
units must be defined to have the MAGIC functions
of master input data set (MASTRI) and master output
data set (MASTRO). The last five units must be
defined to have the intermediate utility data set
MAGIC function (IOUTIL). Four of these utility
data sets are used by the program as scratch tapes and
the other one is necessary for intermediate matrix
results.

It is important to note that if more than one data
set is used for intermediate matrix results running
time will be decreased. This can be accomplished
by defining more than five external storage units
to have the utility data set function (IOUTIL).

This concludes the initialization procedure in subroutines
MRES. The only other area the systems analyst need be concerned
with is the overlay structure of the MAGIC II system. The
overlay structure on a subroutine basis is illustrated in
Appendix I.

t. 9.15
?I

D. MACHINE RESOURCE DATA CARD

To assist the MAGIC systems analyst in initially
implementing the MAGIC systen, or in temporarily modifying
the existing logical machine configuration, several machine
resources data cards are available. These cards are (1) the
SETUP card, (2) the UPDATE card, and (3) the DELETE card.
These cards are used in conjunction with the options on the
$MAGIC card. The $MAGIC card defines the beginning of a
MAGIC case. The options define the machine resources to
be used during the running of the case. The form of the
card is:

1 16

$MAGIC STANDARD
NEW
CHANGE

Where the options are:

STANDARD - The standard machine configuration will
be used for this run.

NEW - A totally new machine configuration is to
be entered for this run using SETUP cards.

CHANGE - A change to the standard machine configura-
tion is to be made for this run using either
UPDATE or DELETE cards.

9.16

t~r-A

The machine resources data cards are defined as follows:

(1) SETUP cards are required if the NEW option has been
specified on the $MAGIC card. This set of cards defines a
new and temporary machine configuration. The form of the
card is:

7

SETU (n, function, device, channel, capacity)

whe.'e the arguments are:

n -the logical data set number

function-the MAGIC II system function to be assigned
to this data set. This argument may be
MASTRI indicating master input data set,
MASTRO indicating master output data set,
IOUTIL indicating intermediate utility data
set, or INSTRN indicating the instruction
data set.

device -the type of external storage device that the
logical data set -is to reside upon. This
argument may be TAPE, DTSK, DRUM, or CELL.

channel -the channel to which the device is attached.
This argument is an alphabetic character
from A thru J.

capacity-the capacity of the logical data set in
basic machine units (e.g., words). A zero
indicates an infinite capacity.

(2) The UPDATE card is used if the change option has been
specified on the $MAG TC card. This card defines changes or
additions to the standard machine configuration. The form of
the card is:

UPDATE (n, function, device, channel, capacity)

Where the arguments are identical to those defined for the
SETUP card.

9.37

- - TW"'-7 -M,7

(3) The DELETE card is used if the change option has
been specified on the $MAGIC card. This card deletes a
data set from the standard machine configuration. The form
of the card is:

7
DELETE (n)

Where the argument is:

n - the logical data set number of the data
set to be deleted.

The machine resources data cards immediately follow the
$MAGIC card in the deck setup. For more information on the
machine resources data cards refer to subroutines MRES, MRES1,
MRESll, MRES2.

it

~9.18

L i

SECTION III

AGENDUM LEVEL ABSTRACTION INSTRUCTIONSL:

A. INTRODUCTION

An Agendum Level abstraction capability has been incorporated
into the MAGIC System. The abstraction instructions for any
type of analysis will be automatically generated for the user
when he specifies the corresponding option on the $INSTRUCTION
card. The Agendum library is expandable and the addition ofmore abstraction instruction sequences (Agendum) only requires

the updating of subroutine AGENDM, and of course the Agendum
Library itself. The use of an Agendum in no way restricts the user
because he can include in his input deck his own abstractions to
be merged with the selected Agendum.

B. MODIFICATIONS TO SUBROUTINE AGENDM

* Subroutine AGENDM controls the selection from the Agendum
library of the abstraction instruction sequence requested on
the $INSTRUCTION card. At present, this subroutine has the
capability to select six Agenduu, s: STATICS, STATICSC, STATICS2,
DYNAMICS, DYNAMICSC ant STABILIT'.. In order to add more options,
the following variables and arra~s require modification:

a. TYPE is the matrix which contains the names of
the abstraction sequences in the agendum library.
Increase the dimensions of this matrix and add the
new Agendum names via DATA statements.

b. LTYPE is an array whicv' contains the length of each
Agendum name in the TYPE array. Increase the
dimensions of this array and add the lengths of the
new Agendum names via the DATA statement in sequential
order corresponding to the names in the TYPE array.

c. NTYPE is the variable which defines the number of
available Agendum in the library. Tncrease thisj variable to the number of names in the TYPE array.

1 9.19

Ji

C. SETTING UP THE AGENDUM LIBRARY

In subroutine MRES the variable NAGEND defined the FORTRAN
logical unit number of the data set which contains the Agendum
level abstraction instructions. Subroutine AGENDM expects the
abstraction instructions in the library to have the same charac-
teristics as card images, eighty (80) byte records.

1. Agendum Control Cards

Each sequence of Abstraction instructions must be
proceeded by a control card which contains a name corresponding
to a name in the TYPE array in subroutine AGENDM. For example,
if the name STATICS appeared in the TYPE array then the
abstraction instructions corresponding to the statics analysis
would have to be proceeded by the control card $STATICS, the
$ begins in card column 1 and there are no blanks allowed
in the control card.

The last card signifying the end of all agendum is
the $$END control card.

2. Examples of an Agendum Library

CC1
+

$S.ATICS

Statics abstraction instruction

$DYNAMICS{Dynamics abstraction instruction
$STABILITY

Stability abstraction instruction

$$END (end of agendum library)

9.20

* . - .' ' -*<- ,

3. Examples of Agendum Usage

CC1 cc7 CC16

(a) $MAGIC
$RUN GO
$INSTRUCTION STATICS
$SPECIAL

[Report Form Input Deck for .USER04. Instruction]

$END

(b) $MAGIC
$RUN

INPUT TAPE(OLD,1969)
OUTPUT TAPE(MAG,1970)

$INSTRUCTION DYNAMICS
A=DYNAM.ADD.LMASS
SAVE(MAG)DYNAM,LMASS,A

$SPECIAL

[Report Form Input Deck for .USER04. Instruction]

$END

9.21

SECTION IV

MAGIC CATALOGUED PROCEDURE

The MAGIC Program can be executed using a catalogued procedure.
For example, if the executable load module is stored in the
technical library under the program n~ame Xv563O, the following
catalogued procedure can be used for initial implementat.Lon.

//MAGIC EXEC PGM=XvY5630

//ro"LF0ol DD UNIT=SYSSQ,DISP=(NEW,DEi-ETiE) ,SPACE=(CYL, (5,4))
//FTO2FOO1 DD DDNAME=INPUTl

//INPITl1 DD UNIT=SYSSQ,DISP=(NEW,DEL~rE) ,SPACE=(CYL, (5,4))

//FTO3F) DD DD?.IAME=INPUT2

//INPUT2 DD UINIT=SYSSQ,DISP=(NEW,DELETE),SPACE=(CYL, (5,4))
//FTO4FOOl DD DDNAME=OUTPUT.

I/OUT ?UTl DD UNIT=SYSSQ,DISP=(NEW,DELETE),SPAC'E=(CYL, (5,4))
//FrC 5FC01 DD DDNAME=I'PUT

eM IOFool DD SYSOUT=A

//FTO7FOO. DD SYSOUT=B

j/FTO8FOOl DD DAkE =O-UT UTP ~ ~ ~ (,

//FTlOFOO1 DD UNIT=SYSSQ,DISP(NEW,DELE-TE),SPACE(CYL: (5,4))

//FTlFO1 DD UNIT-SYSSQ,DISP=(NEW,DELETE),SPACEr-(CYL, (5,4))
//PT12FOOl DD UNIT=SYSSQ,DISP=(NEW,DELETE) ,SPACE=(CYL, (5,4))
//F-T121FO00 DD) UNIT=SYSSQ,DISP=(NiEW4DE-LETE),S-PC%-E=(CYL, (5,4))

//FTl4FOOl DP UNIT-;SYSSQ,DISOP=(NEW,DELETE) ,SPACE=(CYLU, (5,4))
//FTl5Fol DD UNIT=SYSSQ,DISP=(NEW,DELETE),SPACE=(CYL, (5,4)
//FT15FOOl DD UNiIT=SYSSQ,DIS.P=(NEW4,DELETE),SPACE=(CYL, (5,4))

//FTlYFO0l DD UNIThSYSSQ,DISP=(I!EW,DELETE),SPACE=(CYL, (5,4)
//FTl8FOOl DD UUIT=SYSSQ,DISP=(1DE),DELETE) ,SPACE=(CYL, (5,4))
//FT19FOOl DD DSNAMP =AGENDUM, DISP=OLD

//SYSABEND DD SYSOUT=A

If the problem program required any input or output taper,
their 6efinitions would be included in~to the procedure by
overriding the DDNAMES: INPUTI, INPUT2, OYdTPUTI or OUTPIJT2. For
example, if one input tape and one output tape was required then
the job step that envoked the catalogued procedure would be:

I/JoI

_ //JOB

//JOBLIB DD DSN--TECHNICL,DISPSHR

//GO EXEC MAGIC

//MAGIC.INPUTl DD (Tape Definition)

//MAGIC.OUTPUT1 DD (Tape Definition)

//MAGIC. INPUT DD *

I MAGIC PROBLEM DECKL

//END JOB

It is important to note that the above catalog procedure
is just a sample and the actual procedure that you will implement
may greatly differ from this example. The number of data sets
defined and their meaning must correspond to the way the KONFID
array is defined in subroutine MRES.

9I2

9).23

:2*

SECTION V

MAGIC III

TEST RUN REPORT

Program Name MAGIC III

Date of Run Report Number

Customer Name

Location

Machine Hours Used

Machine Configuration (include peripheral devices):

Type Operating System or Monitor Used (version, etc.):

(1) Objective of test run: (Discuss the routines or
instructions tested and expected results.)

9.24

(2) Test run was:

Satisfactory (go to Item 8)

Unsatisfactory (go to Item 3).

(3) Check major reason for unsatisfactory run:

Program design

Program error

Documentation error,

User error

Machine failure

(4) Estimate of failure significance:

Critical (preventing further progress - go to
Item 5)

Significant (can continue but must be corrected
soon - go to Item 5)

Minor (go to Item 6).

(5) Attach trouble supplement sheets to provide a discussion
of run results.

(6) Has Development Team been notified of the probltm prior
to this report (i.e., during test session, immediately
after, etc.)?

No (go to Item 8)

Yes -- by phone; memc; ___ both;

on (go to Item 8).
date

(7) What action has been taken by Development Team?

(b) Additional comments, if any:

Signature ul Coordinator

9.25

MAGIC III- TEST RUN REPORT

(Trouble Supplement Sheet)

P-ogram Name MAGIC III

Date of Run Report Number

Customer Name

Location

INSTRUCTIONS: 1. Discuss run results, identify errors in
program and/or documentation, include
customer's comments or reactions, include
supporting information such as source
program, problem solution logic, memory
dumps, copies of manual pages, etc.

2. Attach numbered and completed trouble
supplements to appropriate MAGIC II TEST
RUN REPORT, page 1. When complete, send
one (1) copy to us and retain one (1)

I copy.

DISCUSSION:

9.,?

i I-b '. . .

APPENDIX X

SUBSYS CONTROL DOCUMENTATION

ii

Table of Contents

Section Page No.

I INTRODUCTION and EXAMPLES 10.3

II SUBSYS DOCUMENTATION i0.6

A. Introduction lI.6

B. Background

C. Instructions for Use and Deta,.is on tne
SUBSYS Package

D. Summaryl 2

III DETAILS Oq LNKSTK13

A. Introduction 13

B. LNKSTK Data Card Format lu.13

C. Examples

D. Assembly Parameters i.17

E. Error Messages u ,7

F. Dump Feature

G. RestrJctions 12.18

IV LNKSTK AS AN EXECUTABLE SUBSYSTEM. J.1)

A. Introduction lC.l)

B. Instructions for Making LNK"TK Itself
A Subsystem

lV).l

Section wage No.

V DESCRIPTION OF THE MODIFIED .LOVRY WITH

CPYLKO 10.21

VI DESCRIPTION OF THE SEARCH ROUTINES . . . 10.23

A. Introduction 10.23

B. Calling Sequence 10.23

C. Assembly Parameter 10.24[D. Error Message 10.211

VII SUBSYS SUBROUTINES 10.25

A. Introduction 10.25

B. SUBSYS Overlay Chart 10.26

C. List of SUBSYS Subroutine Functions 10.27

D. Subroutine Documentation for SUBSYS 10.28

10.2

3'

APPENDIX X

SECTION IAi

A. INTRODUCTION

The SUBSYS package consists of four subroutines written
in MAP. The first subroutine, .LOVRY, Is placed in the
program deck, thus replacing the normal .LOVRY that IBSYS
would have provided. The function of this altered .LCVRY

is to receive control after the program has ben loaded and
to then copy the main link (LINK 0), which is now resident
is core stnrage, onto a specified tape unit. Entry is then
made into LNKSTK, the second SUBSYS subroutine, which will
perform the function of copying LINK 0 from the tape written
by .LOVRY onto another tape. Also, LNKSTK will place the
overlay load file generated in the IBLDR phase and place it
on the same tape as LINK 0. Upon completion of a LNKSTK
execution, the entire program will be on tape in absolute
load mode in two files; the first containing LINK 0 and the
second containing the overlay structure. At this point the
program may now be edited onto the System Library with the
aid of the third SUBSYS subrcutine, COPYDK, in which case it
may be invoked by a $EXECUTE XXXXXX card, or thp cape may be
saved in its two file per program form accessible by the
fourth SUBSYS subroutine, SEARCH. SEARCH has the capability
of locating any program on a SUBSYS generated program tape,
loading that program's LINK 0 into cord and then transfc'rring
control to it.

Usage Gf a SUBSYS generated program tape is accomplishel
by writing a FORTRAN load program that need contain only one
executable statement, CALL SEARCH (6HPROGNM). This will
cause SEARCH to locate the program, read the main link into
core and execute the main deck. The overlay is contained in
the next file and the modified .LOVRY, now resident in core
with the main link, will control the loading of the overlay
links. The modified .LOVRY will also substitute backspace
file commands in place of rewind selections on the $ORIGIN
cards in order to keep inside of the overlay file ,on the '2Un'YS
generated program tape.

A SUBSYS generated program tape may contain more thah
one program, each being identified and locate by the name
that was assigned to Ic by tne User during the LK.T phi.e.
Execution of each program is initiated by a call to 0EAf(1i
supplying the program name.

10.3

FORMAT II, with the structural Generative System
_nsertion, is contained on one SUBSYS generated program
tape as three separate programs, named AFMTII, BFMTII and
.USER04., which are, respectively, the FORMAT II Preprocessor,
the FORMAT II Execution Monitor and the Structural Generative
System. Sequence of usage of the three programs is indicated
on the following two lists, the first reflecting an applica-
tion in which the .USER04. module (Structural Generative
System) is accessed and the second reflecting an application
in which the .USER04. module is not accessed.

B. EXAMPLES

1. .USER041 . Module Accessed

The FORTRAN load program will cause the loading of --

(a) AFMTII, which upon completion of processing
the input will issue a call to SEARCH
to load

(b) BFMTII, which upon encountering the .USER04.
instruction will issue a call to
SEARCH, to load -

(c) .UQ"ERO4.,,.hicn upon completion of matrix
generation will issue a call to SEARCH
Lo load -

(d) BFMTII, which upon completion of execution of
the input abstraction instructions will
call SEARCH to load -

(e) AFMTII, which will begin processing the next
input data deck, If any.

2. .USER04. Module Not Accessed

The FORTRAN loaa program will cause the loadlng of --

(a) AFMTII, which upon completion of processing
the input will issue a call to SEARCH
to load,

1L61

j

(b) BFMTII, which upon completion of execution of
the abstraction instructions will call
SEARCH to load -

(c) AFMTII, which will begin processing the next
input data deck, if any.

.USER04. and non-.USER04. data decks may be batched
together on a single loading of the program.

Due to the fact that FORMAT II with the Structural
Generative System is actually three separate programs, the
necessary changes required for implementation on a given
system must be made in each program. The same information
must be supplied to subroutine MRES in AFMTII that was needed

for direct machine control. Main programs BFMTII and .USER04.
each have a subroutine RESET which must re-establish the size
of blank common.

The seqaence of operations to generate a SUBSYS
program tape would Le as follows:

1. IBSYS - start Job
2. IBJOB - load AFMTII
3. LNKSTK - place AFMTII on SUBSYS program tape
4. IBJOB - load BFMTII
5. LNKSTK - place BFMTII after AFMTII on

SUBSYS program tape
6. IBJOB - load .USER04.
7. LNKSTK - place .USER04. after AFMTII and

BFMTII on SUBSYS program tape

It is extremely helpful, but not necessary, to the
above procedure that LNKSTK be placed into IBSYS as a sub-
system prior to executing the above procedure. Further
examples are given in Section I, SUBSYS Documentation.

A,

SECTION II

SUBSYS DOCUMENTATION

A. INTRODUCTION

The following section consists almost wholly of infor-
mation contained in the distributed documentation supplied
by SHARF regarding SUBSYS. Alterations have been made to
enable one va rsion of SUBSYS to be compatible on a stand
alone 7090/9-1 or on a Direct Couple System 7040/7090 or
70 4/7094.

Recognition for the bulk of the documentation is deserved
by Mr. David E. Bluett of Westinghouse Electric Corporation,
author of the original SUBSYS documentation.

This report describes a package of programs which wilI
operate upon any FORTRAN IV program in such a way as to
produce a program tape. The programs may be Overlay or
non-Overlay, and the program tape may conta" any number of
such programs. The tape may then be used ,%- a mounted program
library (similar to a CHAIN tape in FORTRAN II) or may be
edited directly onto the systei: tdpe to rroduce executable
subsystem(s) under IBSYS.

B. BACKGROUND

The need for a package such as OUBSYZ arose out of a
desire to put some high-activity, high-loau-time Overlay
codes somewhere within the framework of IBSYS to proincreased
accessibility and decreased load and peripheral times. An
attempt was first made to insert a large Overlay code into
!BLIB, with the intention of still going through IDLDR, but
eliminating the large object deck. This method of attack
ran "nto considerable troubles, the greatest of which was due
to t;ie limited size of the Subroutine Name and De-endency
Tables when doing a Librarian edit. It became obvious that
the most desirable situatiorn would be the ability to nay:

$EXECUTE XXXXXX

thereby completeiy eliminatlrvC th,: nee] Rr Inru! lor'R-; an"
any connection with IBJOB. Exan Ination of the 1B.,Y2 manual
showed that a subsystem under IBSYS should be an aborlute
ass-embly and obey certain rule. It see med that a FOR7RAN
progrim, operating under IBJOB, alread:y oboyed tLeze i'r

,_

.' ,

_p - - -,.'w - ---

more or less by definition, since IBJ0B is itself a subsystem.
The only problem seemed to be the conversion of the FORTRAN
code to an absolute assembly - a somewhat formidable task.
However, it soon became obvious that the main link of an
Overlay ob (including all the Library) was itself an "absolute
assembly once it was loaded, and that the link tape, once
written, was also in absolute scatter-loading format. The
problem was now reduced to three parts: (1) dumping out the
main link after it was loaded by IBLDR, (2) moaifying the
Overlay tape to correspond to proper subsystem rule., and (3)
2ombining these two entities into one, ready for editing onto
the system tape for use as a subsystem under IBSYS.

To solve part 1, a small program called CPYLKO (copy
Link 0) was written which receives control immediately after
exezution and merely writes the main link out on tape. For
convenience, this program has been made part of .LOVRY, which
also had to be modified to properly control the new subsystem-.

Parts 2 and 3 were solved by a separate program, LNKSTK
(Link Stack), which modifies and combines the main link (as
written by CPYLKO) and the Overlay tape (as written by IBLDR)
to form a two-file program tape.

Tests were performed, and it was proved that the output
tapes from LNKSTK couli be edited onto the system tape and
successfully used as subsystems under IBSYS. Even though these
subsystems were placed on the system tape after IBJOB and 30RT,
load time was reduced by about a factor of 4, and peripheral
time (for input) reduced to essentially zero. Card shuffling
errors in binary decks (a large source of lost runs) were
eliminated as was a large portion of tle total job setup time,
,ince LNK';TK has the ability to pack all of the record, execu-
tion time was usually improved, except in the cases of exces.s-
ive link tape rewinding (.L0VRY now must do a "backspace file"
instead of a "rewind").

Once this part of the package was operational, it wa-"
realized that the program tapes produced by LNKSTK could be
mounted and operate just as well by themselves as they did az
3ubsystems on the system tape. Since more then one complete]
program may reside on the program tape, all that was needed wa."

small loading routine to perform the functions of .'YVT. w IIh
the added feature of program selection. To provide this fun>-
tion, the :;EARCI routine wa," written, and, in addition t, sut)-
system generation, the 2!UB..YS package now provided the lonr-
sought solution to the saving of Overlay tape:-. Tt s.houl be
noted that the ability to :-rive Oierlay tape. cnifie b ,.'.t-
ially as a by-product of the proce:':" for .'ur):y.temr ,

10.7

V . -?--- ~ ~ ~ -~W .

C. INSTRUCTIONS FOR USE AND DETAILS H'iie SUB;'Y:; PACKAGIE

A.sume that a User wishes to make a program tape from an
exi,,ting PORTRAN TV Overlay program. Whether this tape will
later be edited over as a suosystem or merely used -s a "chair."
tape- is immaterial, since the technique for making the tape
i.- the oame in either case.

The special deck for .L0VRY (with CPYLKO) is in.s-erted
.o~iewhere in the main link of the protgr-tm, ,ind the job i.- .-ub-
mi'tted for running in the following way:

(1) Any deired combination of t4IATTACII or t.'WTT(i ,rd"

if needed.

(2) GO (and any other options desired or needed) on the
.:IBJB card.

(3) only one link tape specified on the t'hJGIN .,"ards.

, The normal ,':ENTRY card (if any)

() ,o data (an end-of-file s,-hould .r.m-dxntely foll w
the $' ATA -- rd).

The program aill load (The Overlay tape being wrf tten
where ,irected by the $0RIGIN cards) and execute by transfer-
rinr: to the ,re-exesuti.on initialization ,e,tion (PREE.). Thf
fi r.t in.struction in PREE' is TX 3Y'IDPI., I but a TTP to

TYI,K, has been origin..i at R in th,- TB.'Y' nucleus. The
'PYLKO sestion of .L1SPY is thu" entered immediately via .

The main link .ill now be written cut na one big record
on .,Y.;CK2. I Y_' K i., already the Overlay link tape, the
output tape must be chrnnxied by altrintg an ar:,embly parameter
in CrYL'. The size of the main link depend-, of course ,on
the lact location used by this link, rind this- location is -,%I
'ulated in CPYLK0. The m;-in link will be written from ;Y ;Li ,'
through thic last word, preceded by a few ,ommunicati ,n Ind
pointer words, and followed by an end-of-file. The utput tape
from CI 1 LKO iz left un-rewound, and control roturn. to IBY"Y
vi; ;Y.RET. The ceil .Y2;IDP in the nuI eu," hn." bon ,te r- I
by (7PYLKO. so the next two card. in the deck (an,i th,, I'i -t tw
of this first phase of th6. job) mu't b. :

" P , TVP i.;

T''he next ph.,s'o of thr- icoe. J,- th n. .b .t I th.,'

! L~ ~---- '----

output tape from CPYLKO with the Overlay tape to form the
final program tape. This combination is made by the Link
Stack program, which will normally be the next job on the
input tape. it is strongly suggested that LNKSTK (Link

F Stack) itself be made a subsystem under IBSYS, since this
greatly simplifies the deck setup and eliminates the need
for protecting the Overlay tape during the loading of LNK:;TK.
Instructions for making LNKSTK a subsystem are included o
Appendix VIII, and this description will proceed on the
assumption that this has been done.

After the $RESTORE card, the card.: are as follows:

$JOB

$EXECUTE LNKSTK

(LNKSTK data card, giving name, tapes, and'1 options)

End-of-File card

W Next may come either a return to the monitor
for signing off, a system tape edit, or a test
run on the new prograin tape using the SEARCH
routine.

Once LNKSTK is loaded, it will read its data card con-
taining the program namc and the tape information required
(the data card format is detailed in Appendix VII), and perform
the following operations:

1. Kewind all pertinent units and read the main link
as written by CPYLKO.

2. Modify this link into prope scatter-loading format
and write it as one record oz! the specified output
tape, followed by an end-if-file.

3. Read the Overlay tape, modifying the link record:
appropriately.

4. Write the modified links Dn the opecified output tape,
F followed by an end-of-file.

5. Print a map showing input and output record counts,
word counts, etc.

6. Rewind all pertinent units and exit.

10.9

- k

The program tape is written and ready for use. It may be
edited onto the system tape, loaded by means of the SEARCH pro-
gram or dismounted for later use.

As a summary by way of example, assume that it is desired
to make a program tape from a FORTRAN IV Overlay code called
TSTJ0B, edit this onto the system tape immediately following
IBJ0B, and then run i. sanple case. The deck set-up would be fos
follows:

1 8 16

IBSYS
JOB
EXECUTE IBJOB
IBJ0B jobnam G0,MAP, etc,
* IBLDR DECKI

(start of decks for main link of program "TSTJB"
Compiles and/or assemblies my be done in this run).

$IBLDR .LOrY
(special -deck of .LOY with CPYLKO included somewhere
In main link).

$ORIGIN (start of link I)

(remainder of program)

J$ENTRY card if normally included)
DATA

End-of-file card
IBSYS
RESTORE

EXECUTE LNKSTK
(Link Stack data card, explained in Appendix VII)

10.10

End-of-file card
$IBSYS
$IBEDT

xEDIT MAP,M0DS
'PLACE T2TJ0B,2. AS
*XREMARK NOW IN NAME TABLE AS 2ND SUBSYSTEM, 2 FILES
xREMARK POSITION TAPE AFTER IBJ OB

FILE *AFTER IBJOB
XREMARK DUP IN TSTJ0B FROM SYSxxx
*DUP SYSxxx,SYSUTI, 2
SREMARK ALL DONE

End-of-file card
$IBSYS
$PAUSE SET UP NEW SYSTEM TAPE, etc.

IBSYS
JOB TSTJOB MAY NOW BE USED AS A SUBSYSTEM
$EXECUTE TSTJ0B

(sample data deck for TSTJ0B)

End'-of-file card

Obviously, any number of subsystems may be DUPed on in
one edit, providing the proper *PLACE, *AFTER, and *DUP cards
are used. In the IBSYS edit, the unit SYSxxx will be the
LNKSTK output tape, which is one of the data card parameters.

As an alternate possibility, assume the activity of TSTJ0B
is not sufficiently high to warrant it inclusion as a subsystem,
but that the load time is high enough to allow significant
savings from the use of a program tape. The user therefore
desires to make a program tape to be mounted on SYSLB2. It
should be noted that program tapes produced by LNKSTK can only
be moupted on one drive due to the changed structure of .LOVRY.
In other words,f the program tape for TSTJ0B is made to run
on B5, then it must always rn on B5. This so-called "running
link tape" is one of'-e-parameters on the LNKSTK data card and
must be SYSLB2 for this version of SUBSYS. The following ex-
ample illustrates the use of the SEARCH routine in conjunction
with 6. program tape. The deck set-up is exactly -the same as
before, up through and including the EOF after the LNKSTK data
card. The last three identical cards will be re-listed for
continuity.

1 8 16

$EXECUTE LNKSTK

10.11

Lwhim

(Link Stack data card)

End-of-file card

EXECUTE IBJOBIBJ0B GOMAP
4IBFTC CALL
C

CALL SEARCH (6HTSTJ0B)

STOP
END$DATA (Sample data deck for TSTJ0B)

End-of-file card

This example assumes that SEARCH has been placed on the
IBJ0B library (IBLIB). If this is not the case, the binary
deck for SEARCH would follow the END card of the FORTRAN pro-
gram above. Note that the calling sequence to SEARCH is
similar to that used for CHAIN in FORTRAN II, except that the
tape to be searched is omitted since it is assumed to be SYSLB2.

Search finds the specified program on SYSLB2 by name and
scatter-loads it right on top of itself, leaving only enough
to execute a transfer to SYSTRA which will commence execution
of the desired program. The time saved when running with a
mounted program tape and using SEARCH is obviously most depend-
ent on the time used to hang the tape. The time taken to load
SEARCH and its calling routine and to find and load the program
is usually no more than .004 hours.

D. SUMMARY

The SUBSYS package consisting of .LOVRY with CPYLKO,
LNKSTK, and SEARCH can provide considerable savings in setup,
peripheral, and main-frame time when used with 7090, 7094,
7094/2 FORTRAN IV Overlay and non-Overlay codes.

Since no modifications are involved to IBSYS or IJ0P,
SUBSYS should be more "version independent" than other packages
available which do involve system mods. SUBSYS has been tested
on both version 12 and version 13 installations. This is a
tape-orleinted package, and its value to a disk-oriented user
is questionable. It in left to the disk user to make such an
evaluation.

10.12

- ,.**~v.-- /

SECTION III

DETAILS ON LNKSTK

A. INTRODUCTION

The information needed by LNKSTK to produce a program tape
is supplied by two sources: the communication words passed on
by CPYLKO, and the LNKSTK data card. The communication words
are obtained by LNKSTK when it reads the main link from tape,
and are described in Appendix IX.

B. LNKSTK DATA CARD FORMAT

Field Columns Contents

1 1 - 6 The program name as it will appear in
the first record of the program and on
the $EXECUTE card or SEARCH argument.
The name must be BCD, 6 character max.,
left adjusted in the field with trailing i
blanks if less than 6 characters. If
this program is to become a subsystem,
the name must be different from any
other system record name.

2 8 - 13 Input tape on which LNKSTK may expect to
find the main link as written by CPYLKO.
This unit must be specified as SYSxxx,
and would be SYSCK2 if running with the
distributed version of CPYLKO which uses
SYSCK2 for its output.3 15 .20 Input tape containing the Overlay links

as written by IBLDR. This unit, which
must also be specified by its SYSUNI
name, is the tape presently containing
the Overlay links, regardless of what
SYSUNI it may have been (due to $ATTACH
and $SWITCH cards) when the program wes
loaded. If this is not an Overlay job,
the word "NOLINK" must be inserted in
this field.

4 22 - 27 This field is another SYSUNI name which
specifies the "running link tape", or
the unit on which the program tape must
be mounted when running with the SEARCH

4program and must be SYSLB2 for the dis-
tributed version of LNKSTK and SEARCH.

10.13

Field Columns Contents

If this is not an Overlay job, the word
"N$LINK" may be inserted in this field.

5 29 - 34 Output tape for LNKSTK, also a SYSUNI
name. This name may be the same as that
in Field 2, but may not be the same as
the Overlay link tape in Field 3. It
may be, but is not necessarily the same
as the "running link tape" in Field It.

6 36 - 39 If the record packing option is desired,
this field should contain the word
"PACK". If PACK is specified, all
records for each Overlay link (written
as 464 words by IBLDR) will be combined
to form one long record. The .LRECT
table generated by the loader is modif-
ied by LNKSTK to reflect the new posi-
tions of the links on tape. So called
"remote sections" specified by $INCLUDE
cards cannot be handled by LNKSTK*. This
feature means that considerably less tape
is used for the link section of the pro-
gram, due to fewer record gaps. Link
loading is considerably faster, usually
resulting in an overall improvement in
execution time. If this option is not
specified, the records produced will be
5 words, a BCD name being added to each

record (standard system record format).
'This option is meaningless for a non-
Overlay job.

7 41 - 45 Rewind options applying to the LNKSTK
(if Field output tape. Either RB and/or RA, in
6 was either order, may occupy this field, or
present) the field may be null.

* See Version 13 IBJ0B manual, C28-6389-0, page 43.

10.14

Field Columns Contents

7 36 - 40 To permit the stacking of more than
(if Field one program on the output tape, the
6 was rewinds are strictly controlled by
absent) these options. If RB (rewind before

writing this program) is specified,
LNKSTK will perform a rewind on the
output tape immediately before it
attempts to write the modified main
link. If RA (rewind after writing this
program) is specified, LNKSTK will
finish writing the last Overlay link,
write an E$F, and write a 3 word
trailer record containing the word
"ENDTPE". It will then rewind the
output tape. This trailer record will
cause the word ENDTPE, to scatter-load
into SYSFAZ, enabling the SEARCH rou-
tine to recognize the end of the pro-
gram tape. RB must be specified for
the first (or only) program to be put
on the output tape, while RA must be
specified for the last (or only) pro-
gram. If more than two programs are
to be stacked on the output tape, any
"middle" programs would have neither
option specified to insure that
no rewinds are performed.

All fields are separated by commas (or any other non-blank
delimiter). The remainder of the card after col. 45 is availa-
ble for comments. Fields 1 - 5 must be present in the columns
assigned, while the last two fields are optional.

C. EXAMPLES

col. 1

TSTJ$B, SYSCK2, SYSUT2, SYSLB2, SYSUT5, PACK, RB, RA
SIFT , SYSCK2, SYSLB3, SYSLB2, SYSCK2, PACK
SMALJB, SYSCK2, NLINK, NOLINK, SYSLB2, RB
BIGJ0B, SYSUT3, SYSCK2, SYSLB2, SYSUT7, PACK, RA

The setup for stacking more than one program on the out-
put tape is merely an extension of the case for one program.
The order of Jobs in the deck would be similar to the follow-
3ng:

10.15

... A N I

First Program
LNKSTK run (with RB on the data card)
Second ProgramLNKSTK run (with no rewind options)

nth Program)
nth LNKSTK run, no rewinds)

Last Program
LNKSTK run (with RA on the data card)

The output tape would, of course, be the same on all
these LNKSTK data cards, while the other options may be as
desired. Overlay and nor-Overlay programs may be stacked on
the same tape. A double EOF will follow a non-Overlay proz
gram, so that each program will be 2 files for the SEARCH
routine (see Appendix X). If the system rewinds the LNKSTK
output tape between Jobs or Job segments, these rewinds must
be circumvented if more than one program is to be stacked on
a given output tape.

In addition to writing the main link in scatter-load
format, LNKSTK provides entries for the following communica-
tion cells:

1. Location 2 - TTR .LXSTR

2. Location 108 - TTR .FP RP

3. Location 2308* - A corrected skew-check mask.

4. SYSTRA - TTR PREEX (start of pre-execution
initialization)

5. SYSGET - "IBSXEC"

6. SYSFAZ - program name from data card

* A "feature" has been added in IBSYS Version 13 such that
any ICP with a word count greater than 377778 which enters
SYSTCH causes the record to be treated as if it were re-
dundant. Entry 3 above corrects this. but is only done if
LNKSTK is assembled for Version 13. See "Assembly Para-' meters".

10.16

I-k I

Im -

7. SYSLOC - zero

8. .JLIN (line ctr.) - zero

9. SYSCUR - name of each record (main or Overlay
as it is loaded

The program name enters SYSFAZ and SYSCUR when the main
link is loaded, and the name remains in SYSFAZ throughout the
run. Each link record stores its name in SYSCUR as it is
loaded, so that the contents of SYSCUR will always represent
the last record read.

The link record name is a combination of the program name
and the link number if record packing is in effect, or the pro-
gram name, link number, and record number if packing is not in
effect.

Examples from "TSTJ$B":

Packing: TSTJ04 (Link 4)
No Packing: TST721 (Link 7, Record 21)

All the link and record numbers will be BCD. The link
will occupy 2 characters if it becomes greater than 9.

D. ASSEMBLY PARAMETERS

1. VRSION - assembled as 13 by a "SET". Pertains to
the existence of SYSUT5-SYSUT9 and to skew-mask
correction. See Appendix X, since the same para-
meter is contained in SEARCH to control 1-0 table
assembly.

2. UNIT - assembled as SYSCK2. This is the output
unit on which LNKSTK will dump itself if entered by
a $ENTRY CPYLNK card. It must therefore be specified
as the input unit on the LNKSTK datu card when pro-
duqing a program tape from LNKSTK itself (see
Appendix VIII).

:. ERROR MESSAGES

If any error is detected during a LNKSTK run, a message:

ERROR IN LINK STACK AT RELATIVE LC XXXXX OCTAL (SEE LISTING).
CANNOT PROCEED. is printed off-line. £Famination of the
comments on the listing will reveal the 'ature of the error.
The message 7

ERROR IN LINK STACK. FLUSH A.3Y? h*" ,INING PARTS OF THIS
JOB HIT START 20 DUMP

OPERATOR ACTION PAUSE
is printed on-line. Depressing the START key will cause a core
dump via SYSDMP (AC, MQ, etc. are saved), but the operator is
responsible for flushing the rest of the run.

10.17

/I

F. DUMP FEATURE

If User modifications are made to LNKSTK, or if there
seems to be trouble during a LNKSTK run, it may be desirable
to obtain a core dump immediately aft3r LNKSTK is through
with its processing. To provide this facility, a feature has
been added to LNKSTK such that the console entry keys are
examined before LNKSTK returns to IBSYS via SYSRET. TIf any
prefix key (S, 1, or 2) or any combination of prefix keys is
down, LNKSTK will exit via SYSDMP rather than via SYSRET.

The operator must, of course, be informed that the key(s)
are to be set before the termination of the LNKSTK run.

G. RESTRICTIONS

The fact that LNKSTK cannot handle "remote" sections
specified on $INCLUDE cards has already been mentioned, as
has the fact that only one link tape may be called for on the
$ORIGIN cards.

Other problems may arise from certain record size limita-
tions are imposed by SUBSYS and the systems which it must use.
LNKSTK has a buffer size of 28 00010 words (665408), and this
represents the maximum size of any linik record (the main link
would usually be the largest record, since it contains all
the library routines and possibly some named C0M40N). When
running strictly from a program tape, the SEARCH routine can
load a record in excess of the LNKSTK maximum (actually 2824610
or 6 7126 8). However, things are not so simple when using the
system editor. At the time of. th'.s writing, no documentation
of any record size limitation has been found in either the
coding for EDITOR or the IBSYS manual, but examination of the
actual 1-0 command in EDITOR shows the following limits:

IBSYS Ver. 12 (EDITOR Ver.5) - 2460710 or 600378
IBSYS Ver. 13 (EDITOR Ver.6) - 2384010 or 564408

Analysis of a LOGIC or MAP will show whether a program is
within these limits. Insertion of one or two redundant $ORIGIN
cards in the main link is usually all that is needed to bring
the program back into line with LNKSTK and EDITOR.

In IBSYS Ver. 13, SYSLDR has been changed to check for
skew-errors by insisting that no bits enter bit position 3, 19,
and 20 of any scatter load ICP. This has been corrected by
the skew-mask described previously, which effectively allows
SYSLDR to lcad a record of any size. Regardless of the method
used, the practical size limit is still SYSEND-SYS$RG.

10.18

L.I

SECTION IV

LNKSTK AS AN EXECUTABLE SUBSYSTEM

A. INTRODUCTION

If LNKSTK is loaded from a binary deck, not only is the
deck setup for making a program tape somewhat more complicated,
but certain SYSUTx files (which might contain the Overlay
links) must be protected during the loading of LNKSTK. The
ideal situation is to have LNKSTK reside on the system tape as
an executable subsystem. This adds no appreciable "bulk" to
the system tape, since LNKSTK is only one file, consisting of
one 2200 word record, and the deck setup of:

SJOB
SEXECUTE LNKSTK

(LNKSTK data card)

is certainly as compact and simple as could be desired.

B. INSTRUCTIONS FOR MAKING LNKSTK ITSELF A SUBSYSTEM

LI'KSTK has its own built-in equivalent of CPYLKO, called
CPYLNK, which may be entered in the case where it is desired to
have LN,(STK operate on itself. Since this entry is not the
general case, it is not made automatically as it is in the
OPYLK section of .LVRY, but must be modc by a ,ENTRY card.
The deck setup to make a program tape from LNKSTK itself and
edit it over to the system tape immediately after IBJB is as
follows:

1 8 16

$IBSYS

1 'EXECUTE IBJOB
IBJOB G ,MAP
IBLDR LNKSTK
(LNKSTK binary deck)

DKEND LNKSTK
ENTRY CPYLNK
$ DATA

10.19

-i-~

1 8 16

data card: LNKSTK,SYSCK2,N0LINKN0LINK,SYSCK2,RB,RA
End-of-file card
IBSYS
JOB
IBEDT

*EDIT MAP,MODS
xPLACE LNKSTK,1,2

FILE *AFTER IBJ0B
xDUP SYSCK2,SYSUT1,1

End-of-file card
$IBSYS

In this example, the $ENTRY card will cause LNKSTK to
write itself out on SYSCK2 (this tape is an assembly parameter
in LNKSTK) before transferring to its normal entry. It will
then read its data card And proceed as it would on any ron-
Overlay job. Note the following on the data card:

1. The program name is specified as LNKSTK (similarly on
the *PLACE card), and this is the name that must be
specified on the $EXECUTE card when using the sub-
system.

2. The input tape for the main (and only) link is specif-
ied as SYSCK2.

3. The N0LIMK feature is specified in place of the normal
link tape designations., signifying that this is not an
Overlay job.

4. SYSCK2 is also used for the output tape, illustrating
the fact that the output tape for LNKSTK may be the
same as the main link onput tape.

5. The PACK option is not specified, since this would be
meaningless for a non-Overlay Job.

6. Since this is the only program to be put on the output
tape, both the RB (rewind before) and RA (rewind after)

The new system tape, containing LNKSTK as the 2nd 3ubsystem
under IBSYS, will be produced on whatever unit is attached as
SYSUTI.

10.20

SECTION V

DESCRIPTION OF THE MODIFIED .LOVRY WITH CPYIKO

The standard IBM rotine .LOVRY, whose function is the
loading of Overlay links, has been somewhat modified for use
with the SUBSYS package. The largest change, of course, is
the addition of the CPYLKO routine, which is discussed else-
where in this write-up. Other changes are as follows:

1. The table of legal link tapes (UNITAB) has been
reduced to one location, since now only one link
tape is used, whether running as a subsystem or
as a program tape. All general references to
UNITAB (as a table) have been removed, and the
UNITAB index in the .LRECT table is no longer
examined. The single UNITAB cell in .L0VRY is
now set by LNKSTK durin§ its processing of the
main link, the desired running" link tape being
specified on the LNKSTK data card. Since only
one link tape may now be used, certain codes which
have an extremely high activity of link loading
and link tape rewinding may run considerably longer
under this system, possibly enough to negate its
worth. This is something that is best determined
empiricall..y.

2. All disk and hypertape coding has been removed for
simplicity, since SUBSYS is a tape oriented package.

3. The IBSYS Version 13 Mod. which adds the skew error
check is not included, since this has not proved
to be troublesome in our installation. It may easily
be inserted by the User if desired.

4. The subsystem (or program tapes-) are now two files,
the main link being one, and the Overlay links the
second. .L0VRY must then skip over the EOF after
the main link on the first entry and after each BSF.
BSF's now replace rewinds when a rewind is requested
by REW on the $ORIGIN card.

10.21

5. If the PACK option is specified on the LNKSTK
data card, all records for one Overlay link will
be packed into one long record, thereby reducing
the length of tape needed for the program and
shortening the time for link. loading. However,
the .LRECT table produced by the loader ifill no
longer reflect the correct record counts and tape
positions for each lipk. This table ijs automatical-
ly modified in LNKSTK to reflect the true "one
record per link" statas of the link file on the
tape. NQ change to .LVRY is involved here.

Aside from these changes, .LRY is essentially the
samte. The number of words removed is about the same as the
number of words added by the addition Pf CPYLKO. In the
process, of writing the, main link from SYSLOC through its
last word, CLKO- also. passes on to LNKSTK: ;

1. T e address of PREEX

2. The addresses of .JA"STR. and .FPTRP

3. The address and length of the .LRECT table.

4. The address of UNITAZ In .L0VBY.

All other information needed by LNMSTK is present on the
data card.1

The length of the main link is calculated at execution
zime in CPYLKO. A search is performed from SYSEND-1O0 back-
ward (towards locaition 0), -looking for the--first word that
is not an S! 0,,0. This ia assumed to be the last word of
the main link. This is reliable as long as IBLDR performs
as it ia supposed to in its final section, and this method
is certainly preferable to using an assembly parameter as
was formerly done..

'The standard error message in .L0VRY is written on-first
entry if the UCB's for theuniVt specified in UNITAB and SYSLBI
show both uqese units at load point.

10.22

h. . m 11W -

SECTION VI

DESCRIPTION OF THE SEARCH ROUTINE

A. INTRODUCTION

The general function of the SEARCH routine has been
described earlier in this manual. The scatter-load and
redundancy-checking routine is origined :at 720008 to prevent

it from being destroyed as a large main link is scatterload-
ing in. The initialization and table sections of the program v
will be destroyed In this procesS, since they are needed Only

once. The search or the program is dependent on the BCD name
supplied in the cal-i1& sequence. The program: name from tape
will be scatter-loaded into SYSFAZ. When SYSFAZ becomes
non-zero, SEARCH compares its contents with the -name from
the CALL. If they are the same,- the scatter-load is allowed
to continue, and, if not redundant, control then passes-to
the main link via SYSTRA. If the names are not the same,
the scatter-load is immediately terminated aid 2 files are
skipped-. The process is then repeated -unt . either the
program is found or the word 1ENtYPE" enters SYSFAZ, signify-
ing the end of the tape. If this. trailer label is encountered,
an error message is printed and the program exits via SYSDMP.

B. CALLING SEQUENCE

In- FORTRAN or MAP: CALL SZARCH (Argl)

where Argl is the prograi name as 6Hxxxxxx

It is strongly suggested that SEARCH be edited onto the
IBJ0B library as soon as it has been reassembled for the
partriclar installation.

10.23

r

POW A--

C. ASSEMBLY PARAMETERS

1. VRSI$N is assembled as 13 by a "SET", and represents
the version of IBSYS in use. It pert, ns only to
the existence of SYSUT5 - SYSUT9 and is used with
IFT's and IFF's to control the assembly)f the I-0
tables.

2. BCDTAB - table of BCD SYSUNI names.

3. SYSTAB - table of SYSUNI indices.

4. RDSTAB - tables of read selects.

All of these 1-0 tables must 'be examined and made
to conform to the installattof - I-0 configuration,

D. ERROR MESSAGES

Due to a number of possible causes such as illegal tape
designatipn, the word '1ENDTPE" entering SYSFAZ, etc,, the
message:

PROGRAM 'XXXXX11 IS NO4TON SYSLB2 . SORRY

is printed on-line,-followed 'by "a dump. if" the-arg!metis 'look iil rght, the cell SYSFAZ should be
examined o

If the main link record is still redundant after 10 tries,
the-message:

REDUNDANCIY READING SYSLB2 . ..SEARCH DISCONTINUED is
printed on-line, followed by a dump,

k I

1

10.24

A

SECTION VII

SUBSYS SUBROUTINES

A. INTRODUCTION

The following is an example of how SUBSYS was imple-
mented. It describes the subroutines which were added to
the MAGIC System for SUBSYS control. The Overlay chart,
B, should replace Figure 1.7 in Appendix I for SUBSYS
control.

1 .* s

120.25

za 0

>4 E-
0 W

w Ch,

0 :) 4

2: W8 0

C*2 -H
E'4

0 0

0

E-44

r 10,26

C. LIST OF SUBSYS SUBROUTINE FUNCTIONS

.USER04. (Main deck) Control reset of system para-
meters, call SEXEQ and return control toBFMTII

SRESET Reset system input unit, system output unit,
maximum matrix limit, size of work area,
print control and re-establish blank common
area

SEXEQ Read and interpret .USER04. instruction
and pass control to US04

f

10.27

p- -- 3"-- IF 'E - -

D. SUBROUTINE DOCUMENTATION FOR SUBSYS

1. Subroutine Name: USERO4I (Main Deck)

2. Purpose: Provide main deck control under SUPSYS
implementation

3. Equation and Procedures: Logical variable ERROR is set
to false. Subroutine SRESET is called to reset system
parameters. Subroutine SEXEQ is then called to execute
the .USER04. abstraction instruction. SUBSYS subroutine
SEARCH is then called to return to the BFMTII program.

4. Input Argument: None

5. Output Argament: None

6. Error Returns: If logical variable ERROR is found to be
true after performing subroutine SEXEQ, then an error
message to this effect is printed and continuation of
execution is attempted.

7. Calling -5equence: None

I 8. Input Tapes: None

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total storage is 1208 (81O0).

12. Subroutine User: None

13. Subroutines Required: SRESET
SEXEQ
SEARCH

14. Remarks: None

10.28

/.- -

1. Subroutine Name: SRESET

2. Purpose: Reset system parameters under SUBSYS implemen-
tation

3. Equations and Frocedia'es: There are seven system parameters
which must be reset due to operating under SUBSYS. They
are:

1)NPIT : Sys tern input unit ntunber
2) NPOT : System output unit number
3 KONST : Maximum matrix order capability
4 NWORK : Number of storages in work area
5 IPRINT : Output print control
6 WORK : Dimensioned work storage area (to be in

blank common)
(7) NINST : Unit number containing instructions

NINST is defined to have a value of one.
NPIT, NPOT, KONST, NWORK and 1PRINT are reset by reading
them from the return instruction on NINST. NINST is
searched until the return inttruction is located, then
NINST is backspaced and the :return instruction is read
again, this time the requirel system par&meters are read,
thus resetting their values. The work storage area, WORK,
is allocated into blank common by a COMMON statement in
SRESET.

4. Input Arguments: None

5. Output Arguments:

NINST : Fortran logical unit number containing instructions
IPRINT : Output print control
NPO1 : System output unit number

6. Error Returns: None

7. Calling Sequence: (NINST, IPRINT, NPOl)

8. Input tape: NINST - Abstraction instruction input tape.
J

9. Output Tapes: None

10, Scratch Tapes: None

11. Storage Required: Total storage is 1638 (11510).

12. Subroutine User: USER04

13. Subroutines Required: None

214. Remarks: None

10.29

1. Subroutine Name: SEXEQ

2. Purpose: Extract and separate the required information fro .
the USERO4 istruction on the instruction tape

3. Equation and Procedure: The USER04 instruction is read
from the instruction tape into the common work storage
area. From information contained in the first six words
of the instructicn record the succeeding data in the record
is separated into its component sections and placed into
the calling sequence to US04.

4. Input Arguments:

NINST : Instruction tape number
IPRINT : Output print rontrol

5. Output Arguments:

ERROR : Error condition indicator

6. Error Returns: None

7. Calling Sequence: (NINST, IPRINT, ERROR)

8. Input Tape: NINST - Abstraction instruction tape

9. Output Tapes: None

10. Scratch Tapes: None

11. Storage Required: Total Storage is 2i78 (13610).

12. Subroutine User: USERo4

13. Subroutine Required: US04

14. Remarks: None

10.30

/

APPENDIX XI

DOCUMENTATION FOR ELEMENT INSERTION

INTO THE MAGIC SYSTEM

ii

I1

11 .1

-'I -.~ - /

TABLE OF CONTENTS

Section Pae No.

I FINITE ELEMENT MATRIX SUBROUTINES DEFINITION
RULES . * 11.4

A. Subroutine Name 11.4

B. Purpose 11.4

C. Equations and Procedures ±l.4

D. Input Arguments 11.6

E. Output Arguments 11.8

F. Error Returns 11.9

G. Calling Sequence 11.9

H. Storage 11.9

I. Subroutine User 11.9

J. Subroutines Used 11.9

II INSERTION OF FINITE ELEMENT MATRICES INTO
MAGIC 11.10

A. Revisions to .USER04. MODULE 11.11

B. Revisions to the STRESS Module 11.12

C. Revisions to the FORCE Module 11.13

D. Revisions to the EPRINT Module 11.14

E. Revisions to OVERLAY. 11.16

F. Plugs and Subroutine Changes 1117

0. Checklist Tables for Use In Insertion . . 11.18

11.2

- ~ ~.-

N - - I

-mop

I

Section Page No.

III REVISIONS TO ELEM AND FELEM 11.22

A. Revisions to FELEM. 11.22

B. Revisions to ELEM 11.22

IV EQUIVAL1ENCE OF LOCAL WORK ARRAYS 11.27

A. Work Array Equivalences for Plug
Subroutines 11.27

L1

}. 11.3

SECTION I

FINITE ELEMENT MATRIX SUBROUTINES DEFINITION RULES

A subroutine must be generated which may be used by ELPLUG
in order to generate the element matrices required for finite
element analysis in MAGIC. This module may be written and
checked out independent of MAGIC. The checked out routines may
then be added to MAGIC by following the "INSERTION OF FINITE
ELEMENT MATRICES INTO MAGIC", page 11.10.

For purposes of clarification, the standard subroutine
writeup format is used in describing the necessary rules.
This format is similar to the subroutine writeup format used
in the Volume III Programmer's Manual.

A. SUBROUTINE NAME

Any subroutine name may be chosen. Later, when the }
module is inserted into MAGIC, the name may be changed tt-
satisfy ELPLUG rules.

B. PURPOSE

To generate the finite element matrices required to
generate statics, stress dynamics, or stability analysis, this
module must be suitable for insertion into MAGIC.

C. EQUATIONS AND PROCEDURES

1. Equations

a) Equations must satisfy the requirements and
assumptions of displacement method finite
element analysis.

b) All matrices must be generated with system
degrees of freedom ordered according to grid,
point, that is: ulVlWlu 2,v2,w2,w3,v3,w3,

etc. where uI a u for grid point 1, u2 =u

for grid point 2, etc.

11.4

- /

- - . -

c) The total number of degrees of freedom
- NORD = number of grid points x number of
degrees of freedom per point. For example,
if an element has u,v,w, 0 Xe y z for each

grid point and has three grid points, then
NORD x 6 x 3 - 18.

2. Procedures

a) Element material properties, elenent grid point
data and geowetric properties are supplied as
input through the argument Jist. The form of
this input is described under "INPUT ARGUMENTS".

b) Using matrix methods, all element matrices
must be generated in zystem coordinates. That
is, all transformations required must be per-
formed internal to the subroutine. A selection
of matrix computations must be supplied, based
on input selection controls.

c) Output matrices are supplied to the MAGIC system
through the calling sequence, described under
"OUTPUT ARGUMENTS".

d) This module should be checked out independentiL
of-MAGIC and then inserted into MAGIC, using
standard rules for insertion.

e) General Flow

INPUT described
in INPUT
ARGUMENTS

Icompute s.ress matrix
f order NRSEL x NORD

ERROR TEST (described
In ERROR RETURNS) IfKSl

vector of order NRSEL x s

It KK-l, compute stiffness
matrix In AK of order I " mo
NORD*NORD in singly sub- If KM-i, compute mass matrix of
scripted symmetric orm order ORD x NORD in singly sub-

. scripted symmetric form

If KF,, compute'thermal/ Set up output controls:

pressure load vector of NSEL -,no. stress points
order iORD*1 NOINK * NORD * (NORD+l)/2

odrTURN

P C_,. 5 " R N+

• .: :: , ++ . + -. + + , • + , , > :+ I ' "+ + :+ , ' i" :,: i + + "I ++ +.. .-

D. INPUT ARGUMENTS

1. Control Information

All suppression controls should be tested for value
= 0 or I. If the value - 0, do not compute the appropriate
matrix. If the value = 1, do compute the matrix.

IPL - Internal element identification number

KK w Suppression control for element stiffness
matrix

KF - Suppression control for element thermal
and pressure load matrices

KS n Suppression control for element stress
matrix

KTS a Suppression control for element thermal
stress-matrix

KM n Suppression control for element mass matrix

KN X Suppression control for element incremental
stiffness matrix

2. Dimension Information

NNO - Number of grid points on element

NORD a Total number of degrees of freedom * orderof stiffness matrix

t 3. Gridpoint Coordinate Data

XC = X coordinates of element gridpoints of
length NNO

IY(1 a Y doordinates of element gridpoints of
length NNO

c = Z coordinates of element gridpoints of
lergth NNO

11.6

/

'C - - -

V -~ /

1 -Q

I
T" Grid point temperatures for element of

length NNO

PC = Grid point pressures for element of
length NNO

4. Material Property Input

These properties are input temperature interpolated
element related material properties stored in a one-dimensional
array: MAT. This array was generated in ELEM by computing the
effective element temperature and then interpolating the
material file tables for necessary values.

a) M Ary - MAT(l) containa temperatures at

which variables will be interpolated:

i) Elastic Prop:crties

MAT(2) E1 1
MAT(3) E Young's Modulus

MAT.(4) Ez

MAT(5) Yxy
MAT(6) Yyz Poisson's Ratio

MAT(7)zx

MAT(8) x

MAT(9) ay Thermal Coefficients
MAT~O) J of ExpansionMAT(10) a

MAT(1f) axy I
MAT(12) Gy Shear Modulus

MAT(13) G

ii) MAT(14) - MAT(21) is reserved for future use.

iii)Other Parameters

MAT(22) Mass Density - DENSTY
MAT(23) Option for element print - WIPR
MAT(24) Initial tsmperature - TZERO

1-1.7

A 7C I

E. OUTPUT ARGUMENTS

All symmetric arrays are stored such that only the lower
half is stored by rows in single subscripted form.

1. Control Information

NERR - Error oet control (described under ERROR
RETURNS).

2. Dimension Information

'NOINK - Number of words in symmetric matrix
NORD x (NORD+l)/2

NRSEL a Number of stress components = number
of rows in stress matrix

NSEL a Number of words in stress matrix
= NRSEL * NORD I

NMASS - Number of words in mass matrix.

3. Output Element Matrices

a) Stiffness Matrix - AKEL = Singularly subscripted
array which represents storage of length-
(NORD i (NORD+l))/2. Elements of lower half
of symmetric matrix 6f order NORD x NORD must
be stored in-system coordinates. The com-
putation of this matrix should be suppressed
if KK - 0.

b) If KF - 1, compute FTEL a thermal + pressure
element load matrix column of order NORD x 1.

c) If KS - 1, compute SEL a stress matrix of
order (NRSEL x NORD) where NRSEL = number of

*-; stress components.

d) If KTS a 1, compute thermal stress matrix
- STEL a NRSEL x 1 matrix column.

e) If KM z 1, pompute MASS matrix in same form as
stiffness-matrix.

[:I 11.8

/

VOW

f) NOINK - number of storages for stiffness
matrix.

g) NRSEL a number of stress points on stress
matrix.

h) NMASS a number of storages for mass matrix,
if no mass matrix exists, set NMASS - 1.

,4. EXTRA

EXTRA - a total of 5 input element properties is
possible ais input to MAGIC. Element thicknesse or other
geometric properties are obtained from this array.

F, ERROR RETURNS

Set NERR = 0 if no error
Set NERR a I If finite element number (IPL) Is incorrect
Set NERR - 2 if number of Nodes (NNO) is incorrect
Set NERR - 3 if order of matrix - NORD is incorrect.

0. CALLING SEQUENCE

Call (Subroutine Name) (IPLNNONORD,KK,KFKS,KTS,KM,
KN,XC,YC,ZCTCsPCMAT,EXTRANOINK,NRSELNSEL,NMASS,
AKEL,FTELSEL,STEL, AMASSNERR)

H. STORAGE

All singular subscript arrays should be dimensioned (1).
SEL must be dimensioned (NRSELNORD).

I. SUBROUTINE USER

ELPLUG must be updated to accept this routine. "INSERTION
OF FINITE ELEMENT MATRICES INTO MAGIC" should be consulted for

L -the changes necessary to ELPLUG and MAGIC.

J. SUBROUTINES USED

Any subroutines may be used and written ?or use in this
routine.

11.9

SECTION II

INSERTION OF FINITE ELEMENT MATRICES INTO MAGIC

As MAGIC is a General Purpose Structural Analysis Program,
certain sections can be considered as modules. Revisions to
the program is accomplished by insertion of new subroutines
or modules. This concept of inserting or "plugging" fifnlte
element matrices into a program was originally a concept in
1956 of Turner of Boting. Thus the term "plug" means
inserting different finite element equations into MAGIC.

Revisions to MAGIC Include the Following:

A. Revisions to .USER04. Module

B. Revisions to STRESS Module

C. Revisions to FORCE Module

D. Revisions to EPRINT Module
E. Revisions to OVERLAY of Program

F. Revisions to the Plug Subroutines Themselves.

11.10

IF

A. REVISIONS TO .USER04. MODULE

1. Subroutine ELEM

a) Revise the "Table of Contents" of elements,
if necessary. Consult current listing for
present form.

b) Refer to "REVISIONS TO ELEM AND FELEM" in
order to update the DATA and DIMENSION
statements for the arrays:

NUMOLD
IPLNO
NDSEL

c) increase the value of NUMPLG by +1 for each
Yplug added.

2. Subroutine FELEM

a) Update the "Table of Contents" of elements,
if necessary. See Table I.

b) Revise the data statement for the NEWNUM
array, if necessary. Refer to "REVISIONS
TO ELEM AND FELEM", page 551.

3. Subroutine ELPLUG

a) Modify the computed GOTO statement so that
control passes to statement number MNOO when
IPL assumes the value MN. (NOTE: MN is the
one or two digit plug number.)

b) Insert the CALL PLUGMN with appropriate calling
sequence at statement number MNOO.

c) Insert instructions to bypass the grid point
axis transformation, if necessary. These
transformations must be skipped in all plugs

t, which handle grid point axis transformation
inside the plug itself.

j 11

Ii .II

- V I

B. REVISIONS TO THE STRESS MODULE

1. Subroutine STRES2

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug number of all
the element types available to the MAGIC
system.

b) Update the variable NPLUGS. This variable
should be the same as the dimension of the
PLUGS array.

c) Add the new element type plug number to the
DATA statement which defines the PLUGS

- array.

d) Update the GOTO statement which transfers
control to the WRITE statement which writes
the heading for the stresses of that particular
element type. The statement number to trans-
fer to is calculated by IPL*1O00.

e) Add the WRITE statement with format number
IPLlI000+. Then define the following
variables:

i) NSC - the number of stress components
for this element

ii) IFMT - the updated value of NPLUGS
iii) KFMT a 1,2,3,4 or n depending on the format

needed to write out the stress values.
The actual format will be discussed
in Section V.

f) Add the statement GOTO 320.

g) The heading printed out for the stresses of this
element should conform to the format of all the
other headings.

11.12

f "1

C. REVISIONS TO THE FORCE MODULE

1. Subroutine FORCE2

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug-number of all
the element types available to the MAGIC
system.

b) Update the variable NPLUGS. This variable
should be the same as the dimension of the
PLUGS array.

c) Add the new element type plug number to the
DATA statement which defines the PLUGS array.

d) Update the GOTO statement which transfers I
control to the WRITE-statement which writes
the heading for the forces of that particular
element type. The statement number to trans-
fer to is calculated by IPL'l000.

e) Add the WRITE statement with format number
IPLM 000+l. Then define the following
variables:

i) NFC a the number of components of force
for this element

Sii) IFMT the updated value of NPLUGS 1 00
iil) KPMT a 1,2,3,4 or n depending on the

format needed to write out the
force values. The actual format
will be discussed in Section V.

f) Add the statement GOTO 320.

g) The heading printed out for the forces of this
element should conform to the format of all
other headings.

1I

11.13

-. . -- --- -- IM

D. REVISION TO THE EPRINT MODULE

1. Subroutine EPRINT

a) Increase the DIMENSION of the array PLUGS.
This array contains the plug number of all
the element types available to the MAGIC
sys tern.

b) Update the variable NPLUGS. This variable
should be the same as the dimension or the
PLUGS array.

a) Add the new element type plug number to the
DATA statement which defines the PLUGS array.

d) Update the GOTO statement which transfers
control to the WRITE statement which writes
the headings for the stresses or forces or
that particular element. If IPRT@,l, then
net element stresses are to be written. The
statement number to transfer to is calculoted
by 600+IPL. If IPRT-2 then net element
forces are to be written. The statement
number to b.! transferred to is calculated by
700+IPL.

Ie) Add the WRITE statement with format number
800+IPL for stresses and 900+IPL for forces.
For both stresses and forces define the

a+

variables:

i) NC - number of stress or force components
ii) IFMT w the updated value of NPLUGS for

stresses And for forces it equals
NPLUGSM 100.

iii) KFMT - 1,2*3.M or n depending on the
forat eedd t wrteout the

j stressand force values. The
actul frma-isdiscussed under

f) Add the statement GOTO 200.

g) The headings to be printed should be exactly'
the same as those written in subroutines STRES2
and FORCE2.

11.14

Mumma

wow

2. Subroutine STRPRT

Subroutine STRPRT is called by STRES2, FORCE2, and
EPRINT.

a) This routine contains the format statements
necessary to write the stress or force values.
At present, there are four different formats
available, defined by FMTI, FMT2, FMT3 and FMTII.
The value of KFMT as defined in STRES2, FORCE2
and EPRINT will point to one of these formats.
If any of the present formats are not applicable
for the printing of the values of a new element
type then the following must be done.

i) Define a new format statement in a DATA
statement. Give it the name FMTn. Set
KFMT-n.

ii) DIMENSION this format.

Iii) Update the GOTO statement which transfers
to the WRITE statement which uses the new
FORMAT FMTn. ,alculate the statement
number by KFMT'100.

b) The column headings that are to be printed for
the new stresses and forces must also be added
to this routine. Update the GOTO statement
which transfers control to the correct WRITE
statement. For stresses, the statement number
is IPL*I000 and the format number of the write
statement is IPLlI000+l. For forces the state-
ment number is IPL'I000+3 and the format number
is IPLlI00+2.

c) The FORMAT statement which contains the headings
for the columns should follow a format similar
to those already included in the routine.

11.15
tll.ZI

-~ 4. '-

E. REVISIONS TO OVERLAY

The overlay will have tc be revised whenever new sub-
routines are added to MAGIC. This overlay structure may be
a functioi. of the particular version on a particular machine.
There is i.o standard procedure but a general guideline is
available: NEWPLUGS may be placed on new links which are on
the same level as existing plugs since only one plug will be
necessary in core at one time.

11.16

/

/

- -l

F. PLUGS AND SUBROUTINE CHANGES

1. Obtain listing of PLUG which has been written and
checked out by following the rules under "Finite
Element Matrix Subroutine Definitions Rules",
page

2. Equivalence all working dimensions to WORK storage
by referring to "Equivalence of Local Work Areas
in MAGIC", page

3. Insert this card immediately after the subroutine
PLUGMN statement:

COMMON NPITIKONST,DUMMY(7097),
WORK(NLAST)

When NLAST is defined as the last location of the
WORK storage array referenced in Item (2) above.

4. REPEAT(3) above for every subroutine used by PLUGMN.

11.17

kL ~

0. CHECKLIST TABLES FOR USE IN INSERTION

This table contains all of the revisions listed. These I
tables should be used ftn order to be sure that all steps have
been completed.

When revised item has been completed, write an X in the
space provided.

A. .USERo4.

1. Subroutine ELEM

a. Revise the "'Table of Contents"

(1) REVISED
(2) No Revision Necessary

b. Revise NUMOLD

(1) DATA Statement

;2) DIMENSION Statement

Revise IPLNO

(1) DATA Statement

(2) DIMENSION Statement

Revise NDSEL
(1) DATA Statement

(2) DIMENSION Statement

c. Increase NUMPLUG by +1

2. Subroutine FELEM

a. Table of Contents Revision

b. NEWNUM Array Revision

3. Subroutine ELPLUG

a. Computed GOTO Statement NO.L

b. Call PLUGMN - Plug No.

c. Grid Point Axis Transformation

(1) Included Inside PLU,

(2) Not Includod Insioe PLUG

11.18

B. STRESS MODULE

1. Subroutine STRES2

a. Increase dimension of PLUGS
b. Update NFLUGS

c. Update PLUGS DATA Statement

d. Update GOTO Statement for Element
Stress Headings

GOTO Statement No.

e. Add WRITE Statement

Redefine:

(1) NSC

(2) IFMT

(3) KFMT
f. Add statement GOTO 320 -

g. Insert New Heading for Stress Print

C. FORCE MODULE

1. Subroutine FORCE2

a. Increase Dimension of PLUGS

b. Update NPL.UGS

c. Update PLUGS DATA Statement

d. Update GOTO Statemen for Element

Force Headings
GOTO Statement No.

e. Redefine:

(I-) Nwo
(2)- IFMT

(3) KFNT
f. Add Statement GOTO 320

g. Insert New Heading-for FORCE Print

11.19

- -i.I

D. EPRINT MODULE

1. Subroutine EPRINT

a. Increase Dimension of PLUGS
b. Update NPLUGS

c. Update PLUGS DATA Statement

d. Update GOTO Statements for Element
Stress and Force Headings-.

a.- Add WRITE Statements

Redeftine:

(1) NC

(2) IFNT|

(3) KPMT

1'. Add Statement GOTO 200 !
g. Insert Headings which are same as t-for

STRES2 and FORCE2

2. Subroutine STRPRT.

a. -Define PNTr, DATA Statement -

Set KPNTMwn

Dimension F!Tn

Update GOTO Statement
G0OTO (KOT*lOO)-

b. Update FORMAT "and GOTO Statements
for PrAit of Column Headings

STRESSES:

Foripat No. (IPL*l000+l)
GOTO (IPL§lO00) -

FORCES:

Format No. (IPLf!O00+2) --

OT1o (IPLlOOO+3)

11.26

4-1~

E. REVISIONS TO OVERLAY

1. Revise OVERLAY of Prograw

F. PLUGS AND SUBROUTINE CHANGES

1. Set up and Checkout PLUG Subroutines

2. Euivalence W(ORK 3_toragu.s

3., lIserit: COm'MON, NP!iT,*,KOWSTS~dmWYVR

in all Subroutines-

4

SECTION III

REVISIONS TO ELEM AND FELEM

A. REVISIONS TO FELEM

1. Definin$ NEWNUM (contained in FELEM)

The logical grouping of elements selected for MAGIC
is shown in Table I. The "plug" numbers are shown in Table I
also. Using Table I as a reference, the MAGIC numbering
system is arran gd; iniscending order, inserting, a zero for
an-unidentified element. This results" in data for a NEWNUM
array shown in Table II. Referring to Table I and Table II,
let I * plug number, J i MAGIC (NEWUM). Then the array
NEWNUM is defined by: NEWNUM(J) - I. NUNUM only must be
revised if new group is added.

B. REVISIONS TO ELEM

1. Defining NUMOLD

At a given point in time, NUMOLD is shown in Table III.
It is defined by the0-folloyihg: NUMOLD(I) a J. When I and A
above have the same meanilng as in (A) above, NUMOLD must be
revised where a new plug is added.

2. Defining IPLNO
IPLNO represents the group number of existing MAGIC

elements and must b extended for any new element matrix set.
This atray represents the NUNOLD array after zeros have been
deleted.

3. Defining NDSEL

NDSEL represents the number of stress points coded for
existing elements in MAGIC. This number is the Qne actually
coded in the plug and corresponds to NRSEL described under
reference "Definition of CallingSequence for ELEMENT Matrix
Subroutines."

11,*22

For example, referring tc Table I. if a sandwich
plate is to be added, I a 18p J a 28; that is, PLUG 18
representing group No. 28 is to be added. Suppose that only
5 stress points are considered for this element. Then the
revised statements and arrays are shown in Table III(A).

1 .2Ii:

1'1

11.23

- /2~--4.'~ ..

TABLE I

TABLE OF CONTENTS FOR PELEM ELEMENT DESCRIPTION

I MAGIC NUMBER
PLUG (NEWNUM) NODES DESCRIPTION OF ELEMENT

1 21 8 Quadrilateral Shell
2 20 6 Triangular Shell
3 22 3 Triangular Plate of Constant Stress
4 23 4 Quadrilateral Plate of Constant

Stress

5 30 2 Torodial Ring
6 40 3 Triangular Ring

7 11 3 Frame
8 41 4 Trapezodial Ring
9 42 1 Core (Ring)

10 50 -4 Tetrahedron
11 24 4 Shear Panel (Translation Only)
12 26 3 Sandwich Plate

13 51 6 Triangular Prism
14 25 4 Shear Panel (Translation and

Rotation)

15 _10 2 Axial
16 12 3- Stiffener

17 27 3 Triangular Plate
18 28 4 Quadrilateral Plate

- 19 43 2 Truncated Cone

20 52 8 Rectangular Prism

22 13 - Incremental Frame

Example for the "Quadrilateral Plate":

I a Plug No. a 18

J - Group No. w 28

11.24

- .- -.

TABLE 11

NEWNUM DATA STATEMENT-I.4
SUBROUTINE FELEM

DIMENSION NEWNUM(5a)
DATA NEWNIJM/

2 15#7s,:16s22sQ,OsoOsOO 0
3 2s1,3,J49llsl4l

2 17 18s I

6 10, 1 3 a20,,0o-,r,o ,0 0

1-1.*25

TABLE III

DATA STATEMENTS IN SUBROUTINE ELEM

These tables represent MAGIC with the following plug numbers:
1,2,4,5,6,14,17,18

(a) DIMENSION NUMOLD (17)
DATA NUMOLD /21,20,0,0,30,40,11,0,0,

0,0,0,0,25,0,0927,/

(b) DIMENSION IPLNO (7)

DATA IPLNO /21,20,30, 0,11,25,27/

(c) DIMENSION NDSL (7)

DATA NDSEL /40s32.15,4,120Xs8/
NUMPLG a 7

TABLE III(a)

Represents NUMOLD, IPLNO and NDSEL after addition of quadri-
lateral plate (example):

(a) DIMENSION NUMOLD (18)

DATA NUMOLD /21,20,0,03040,11,0,0
00j,00,25,0,0,27,28/

(b) DIMENSION IPLNO (8)

DATA IPLNO - /23,20,30,40ll25j27,28/

(c) DIMENSION NDSEL (8)

DATA NDSEL /40,32,1s4,12jl,8,5/

NUMPLG 8

11.26

SECTION IV

EQUIVALENCE OF LOCAL WORK ARRAYS

The MAGIC System uses a large area of blank common to
store all temporary and work arrays for the .USER0. module.
The array is set up in routine ELPLUG and modified in each
of the plugs. All local arrays used b-y subroutines called
by a plug may be defined in this large common area by an
equivalence statement 4n the plug. Thus no additional storage
is required after the common work array has been defined.

NWORK - the maximum number of WORK storages available

to the MAGIC System. The value of this parameter is set in
the MAGIC routine MRES.

NLAST - NWORK - 7096 a total number -of work storages
available for equivalence of local arrays.

A. WORK ARRAY EQUIVALENCES FOR PLUG SUBROUTINES

1. Obtain "plug" listing, with array map.

2. Check argument list of plug and determine dimensional
arrays which appear in argument list. These arrays
are not local to plug and therefore should not be
equivalenced.

3. Remaining arrays must now be equivalerst to work
array in plug. All these arrays are local to
plug itself.

4. Check dimension statement and equivalence of all
these local arrays succesisivly.

5. Now search through all array maps of subroutines
called by plug and place all arrays local to the
called subroutines (which are dimensioned 10 or
above) in the argument list. Equivalence these
arrays to the work array in the plug itself. Enter
the appropriate dimension statement in the plug.

6. Now check equivalence storage map and equivalence
-the longest number of each equivalence group to
the next available location of WORK. Enter
dimension statements if necessary. Leave the
original equivalence statements in.

11.27

'S0'-.-

. I * J

7. See the following example where subroutines SUB1,
SUB2, SUB3 with local arrays Ll, L2, LOC, EXTRA
are to be called by PLUGX. For this examp1z
NWORK - 13000. NLAST - 1300 - 7096 - 5900.

PLUGX(AMASS,STRESSFTELETC.)

COMMON NPIT,NPOTKONSTDUMMY(7097),WORK(5904)
DIMENSION Ll(50), L2(420)2 LOC(100), EXTRA(300)
EQUIVALENCE (WORK(l) Ll(l))

(WORK(51),L2(l))
(WORK(131),LOC(l))
(WORK(231),EXTRA(l))

" (WORK(531), -----

CALL SUB1 (AMASSsL1,L)
Arrays not used in PLUGX

Call SUB2 (STRESSLO) - but which are local to
SUBI, SUB2, and SUB3.

CALL SUB3 (FTELEXTRA They must be dimensioned
in PLUGX.

Search all subroutines called, by .PUox for local arrays and
put the dimension and equivalence in PLUOX to conserve
storage.

SUBROUTINE SUBl(AMASS,L1,L2,...)
DIMENSION AMASS(...),Ll(50),L2(4,20)

~'~~~KTwo work arrays used to
calculate MASS

SUBROUTINE SUB2(STRESSLOC,...)
DIMENSION STRESS(...),LOC(100)

Work array used to
calculate STRESS

SUBROUTINE SUB3 (FTELEXTRA,...)
DIMENSION PL...),EXTRA(300)

v Work array

11.28

COMMON WORK AREA FOR .USERO4.

NPIT
NPOT
KONST

DUMMY(997)

1000

SEL
LISTOL
SZALEL Area reserved for
LISTEL element (plug)

generated matricescommon to all elements

ETC.

ANEL(1)

7100

Work area available
to plugs

11.29

q . . .

REFERENCES

1. DeSantis, Daniel, "MAGIC: An Automated General Purpose
System for Structural Analysis; Volume III:
Programmer's Manual," Report No. AFFDL-TR-68-56,
VolumL III, Air Force Plght Dynamics Laboratory,
Wright-Patterson AIr Force Base, Ohio, March 1968.

2. Cogan, J.P.s "FORMAT II - Second Version of FORTRAN

Matrix Abstraction Technique; Volume II: Description
of Digital Computer Program," Report No. AFFDL-
TH-66-207, Volume II Air Force Flight Dynamics
Laboratory, Wright-Patterson Air Force Base,,Ohio,
December 1966.

1.

- i i
1 A- ---

-'- - .- - _ _ _ _ _

