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FOREWORD

The work reported herein was conaucted ai the Arnold Engineering Development
Center (AEDC) at the jequest of the Marshall Space Flight Center (NASA-MSFC),
Huntsville, Alabama, under Program Element 921E-2.

The resuits of tests presented were obtained by ARO, Inc. (a2 subsidiary of
Sverdrup & Parcel and Associates, Inc.), contract operator of AEDC, AFSC, Amold Air
Force Station, Tennessee. The tests were conducted in June and Sepiember, 1971 under
ARO Project No. VT1162. The final daia analysis was completed on May 10, 1972. The
manuscript was submitted for publication on October 5, 1972,

The authors wish to express their appreciation to L. L. Trimmer, who was the Facility
coordinator for these tests at AEDC. The assistance of H. R. Little and A. H. Boudreau,
who helped on the Tunnei F test. is also acknowledged. Dr. J. C. Adams and W. R
Martindale are responsible for the theoretical solutions presented herein, and G. E. Gilley
deserves recognition for his efforts in deveioping the phasechange paint data reduction
program.

This technicai report has been reviewed and is approved.

JIMMY W, MULLINS A. 1. COAPMAN
Lt Colonel, USAF Colonel, USAF
Chief Air Force Test Director, VKF Director of Test
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NOMENCLATURE
Specific neat of phase-change paint models, Btu/lbm-°R
Stagnation enthalpy, Btu/lbm
Heat-transfer coefficient, g/(T, - T« ), Btu/ft2-sec-°R
Conductivity of phase-change paint modeis, Btu/ft-sec-°R
Axial length of model. £ = 24 in.
Mach number
Pressure, psia
Stagnation pressure downstream of a normal shock, psia
Heat-transfer rate. Btu/ft2-sec
Unit Reynolds number, ft-1

Reynolds number based on edge conditions and momentum thickness at
beginning of transition

Free-stream Peynolds number based on length, £

Model prcfile nose radius, 0.675 in.

Temperature, °F or °R as noted

Time increment that model has been exposed to uniform flow, sec
Free-stream velocity, ft/sec

Axial distance from model nose, in. (see Fig. 2)

Spanwise distance from model centerline, in. (see Fig. 2}

Local semispan at a given axial location, in. (see Fig. 2)

Angle of attack, deg

Angle betw.en local tangent to model surface and vow shock, deg

Density, lbm/ft3
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SUBSCRIPTS

aw Adiabatic wall conditions

< Edge conditions

i Initial conditions

0 Stilling chamber conditions

pc Phase change

ref Heat-transfer parameter based on 0.675-in. nose radius

M_ = 8 (Tunnel B), Qrer and hyer based on Fay-Riddell Theory.
! M_ = 10.5 (Tunnel F), h,.¢ based on Fay-Riddell Theory and
Gyef measured on a 0.5-in_-radius
hemisphere cylinder and adjusted

; to a 0.675-in. radius.
' w Wall conditions
- Free-stream conditions
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SECTION |

i INTRODUCTION

P In support of the Phase B design studies of the Space Transportation System (Space
Shuttle), extensive aerothermodynamic tests of several proposed configurations sponsored
by NASA-MSFC were conducted at the von Kannan Fadility of the AEDC. Briefly, these
tests were to previde aerodynamic heating results for the booster and orbiter during lauzich
and reentry for various model designs submitted by two Phase B contractor teams. In
addition, tests of basic delta wing configurations supplie by NASA-LRC were included
in the test program. All data generated during this test program were submitted to the
NASA-sponsored "System for Automated D:velopment of Static Aerothermodynamic
Criteria” (SADSAC) and are documented in data reports (Refs. 1 through 15). Test results
from booster and orbiter configurations from the Phase B contractor teans are summarized
in two AEDC technical reports (Refs. 17 and 18). Test resuits from the delta wing
configurations for NASA !angley Research Center are reported herein.

From a theoretical viewpoint it is desirable to analyze and under: 1and tlie flow prccess
for simple geometry shapes before analyzing the more complex space shuttle configurations.
This report summarizes the aerodynamic heating on two relativelv simple delta wing

configuratioas provided by the Langley Research Center that should provide useful
information for designing more complex configurations.

The cbjectives for the tests rermorted herein were as follows:
1.

Provide turbulent heating data corresponding to the reentry trajectory of
typical orbiter configurations.

2.

PO T T

Provide boundaiy-layer transition data at reentry conditinns.

To accomplish these test objectives, two VKF test facilities, the continuous Hypersonic
Wind Tunnel (B) and the hoishot-type Hypervelecity Wind Tunnel (F), were utilized.

The tests were concucted in Tunnel B at Mach number 8 and in Tunnel F ai an anproximate
Mach number 10.5 for angles of attack of 20, 40, and %0 deg.

In Tunne: B hezt-transfer rates were determined by the phase-change paint technique.

The rominal test condition: were Mach 8 and free-stream Keynolds numbers based on
modei length (2 ft) of 5.0 x 106 and 7.4 « 106.

In Tunnel F heat-transfer r:tes were determined primarily by gage measurements with
limited results obtained by the thermographic phosphor paint technique. A few pressure
measurements weie made in conjunction with the heat-transfer measurements. The nominal

test conditions were Mach 10.5 and frec-stream Reynolds numbers baszd on model length
(Z ft) from 5.0 x 10% to 23.0 x 106.
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In addition to the experimental program described above, a parallel analytic research
program was conducted by the VKF under Air Force sponsorship. One particularly valuable
result of this research was the deveiopment of a calculation technique for the laminar
and turbulent windward surface heating of space shattle ccnfigurations at large angles
of attack. Results from the calculation are compared with the experimental results from

the present program in his report, and a thorough description of the analytical procedures
and additional data comparisons are presented in Ref. 19.

SECTION 1I
APPARATUS

21 WIND TUNNELS

211 Tunnel B

Tunnel B is a continuous, closed-circuit, variable deasity wind tunnel wiih an
axisymmetric contoured nozzie and a 50-in.-diam test section. The tunnel can be operated
at a nominal Mach number of 6 or 8 at stagnation pressures from 20 to 300 and 50
to 900 psia, respectively, at stagnation temperatures up to 1350°R. The model can be
injected into tie tunnel for a test run and then retracted for model cooling or model
changes witnout interrupting the tunnel flow.

2.1.2 Tunnel F

Tunnel F is an electric-arc-heated impulse hypersonic wind tunnel of the hotshot
type developed at AEDC. The test gas, nitrogen or air, is initially confined in an arc
chamber by a diaphragm located near the throat of a convergent-divergent nozzle. The
gas is heated and compressed by an elestric arc discharge resulting in rupture of the
diaphragm and subsequent expansion thiough a 4-deg hLalf-angle conical nozzle to a
maximum diameter of 108 in. Testing is possiole at eithc: the maximum diameter for
Mach numbers from 13 to 22 or at the 54-in.-diam station for Mach numbers from 10
to 17, Useful run times between 50 and 200 msec are obtained. The presert tests were
conducted with nitrogen as the test gas at the 54-in.-diam station with a useful run time
of approximately 100 msec utilizing the 4-cu-ft arc chamber.

22 MODELS

221 Tumnel B

Photographs and drawings of the models are presented in Figs. 1a and 2 (Appendix
I), respectively. The original Tunnel B models were provided by the Langley Research
Center and were fabricated with a 1/4-in. layer of Stymsl® over a fiber-glass manarel
The phasechange paint technique, which was used to provide heat-transfer-rate
measurements in Tunnel B, requires a model material of relatively low thermal diffusivity
to permit extraction of accurate heating data. Basically, the data are reduced by assuming

vk
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that the model wall temperature response is the same as a semi-infinite slab. Szveral
materials have been used in wind tunnel tests which satisfy the semi-infinite slab
requirement (within reasonable limits of time and material thickness). Probably the most
commonly used material at present is Stycast, which is a filled, high-temperature epoxy.
Stycast 2762 was selected as the model material for the present tests. However, during
the June entry the Stycast cracked on the windward surface of the delta body and as
a result the Stycast layer was removed and replaced with silcone rubber (RTV) prior to
the September entry.

ChromefP-Alumel® thermocouples were cast into all the Stycast models
approximately 1/8 in. from the surface to wmeasure the initial model temperature.

222 Tunnel F

A photograph of the windward surface of the Langley delta wing model {LRC-DB)
is shown in Fig. 1b. The LRC-DB and LRC-SB configurations (identification for this report)
were instrumented identically along the windward centerline. A complete layout of the
instrumentation and model wetails is shown in Fig. 2 for both Langley configurations.
The models were designed and fabricated at Langley Research Center, Hampton, Virginia,
from No. 416 stainless steel. A thin sheet metal cover was attached to the top surface
to protect instrumentation leads and to streamline the flow in the sting region. The cover
may be seen in the schlieren phiotographs presented in Fig. 3. The modei dimensions
corresponding to the instrumeniation locations are tabulated in Ref. 16.

SECTION il
PROCEDURES

3.1 TEST CONDITIONS

A summary of the nominal test conditions is given in Table J (Appendix Ii). The
specific test conditions with tabulated and graphicai presentation of the data results are
documented in two SADSAC reports (Refs. 15 and 16).

311 Tumnel B

The Tunnel B flow conditions are such that perfect gas, isentrcpic relationships can
be used to compute test section properties. Flow calibrations are made periodically using
a pitot tube rake, and these data are used to determine a mean test section Mach number.
Using the calibrated Mach number and measured stilling chamber conditions (p, and T,),
all test section properties can be computed.

3.1.2 Tunnel F

Since Tunnel F operates with a constant volume reservoir with an initial charge
density, the reservoir conditions decay with time. As a result, all tunnel conditions and
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model data results vary with time during the useful data range. Nondimensional values
such as py/p, and model p/p, are relatively constant with time. Timewise variations in
such parameters as Reynolds number permits acquisition of data at different Reynolds

numbers for the same run. In many instances, laminar, transitional, and turbulent flow

may be identified at the same gage location as a resuit i Reynolds number variation

during one run. An illustration of the timewise behavior of various parameters for typical
tunnel conditions encountered during this test is illustrated in Fig 4.

To monitor the tunnel conditions, twc 1.0-in.-diam hemisphere cylinders instrumented
with slug-calorimeter-type heat-transfer gages were installed in the test section at an
appropriate distance from the model to eliminate shock interference. A pitot probe was
located near each hemispbere cylinder to measure the normai shock stagnation pressure.
The reservoir pressure and pitot pressures were measured with strain-gage-type transducers.

The use of these measurements to compute flow conditions is summarized as fol.ows:
instantaneous values of p, and p; and an instantaneous value of q,.r is inferred from
the hemispherscylinder shoulder heat rate measurements. Stagration enthalpy, H,, is
calculated from these measurements using Fay-Riddell theory (Ref. 20). With values of
Po- Po, and H, known, the remaining flow conditions (M., Re_, etc.) are calculated as
described in Refs. 21 and 22. For the short nin times experienced in a hotshot tunnel,
the model wall temperature ratio, T, /T, varies between 0.15 and 0.30 which appro<imates
the range experienced with reentry vehicles. The flow conditions corresponding to results
presented herein are provided in Table Il along with the corresponding values of b, g,
and a Tunnel F test matrix is tabulated in Table Il

3.1.3 Test Condition Uncertainties

Uncertainty ir. the basic tunnel flow parameters p,. To, Po, and Q,es was estimated
from repeat calibrations of the instrumentation and fiom repeatability and uniformity
of the test section flows during tunnei calibrations. The individuzl contributions of these

uncertainties were propagated through the appropriate flow equations tc obtain the
remaining uncertainties.

Approximate uncertainties in tunnei fiow conditions are:

Uncertainty, percent
Parameter Tunnel B Tunnel F
s +0.5 *5
Po +0.3 +4
T, +1.0 +4
Eltc { N/A +5
M, +0.3 +1.5
4
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Uncertainty, percent

Parameter Tunnel B Tunne! F
P 20 6
P 1.1 ¥
U, +0.5 %3
H, 14 *5
hy.¢ +1.0 +2
Re_ ¢ 2.0 10

32 TEST PROCEDURES AND DATA REDUCTION
3.2.1 Phase-Change Paint Test Technique {Tunnel B)

The phase-change paint technique of obtaining heat-transfer data uses an opaque
coating which changes phase from a solid to a liquid (melts) st a specific tzmperature.
Tempilaq®, a paint consisting of calibrated melting peint inaterials suspended in an inert
carrier, was used as the phase-change indicator. The specific melting temperatures of the
Tempilaq paints used were 113, 125, 163, 200, 252, 300. 350, and 400°F. Uncertainties
in the phase-change temperatures are estimated by the manufacturer to be %1 percent.

The primary data were obtained by photographing the progression of the melt lines
with a 70-mm sequenced camera. The camera was mounted in the top window of the
tunnel and photogravhed the model windward surface (model rolled 180 degj. The camera
used TRI-X Pan Kodak® black-and-white fiilm and the time from the start of model

injection and of each shutter opening was recorded on magnetic tape. The camera was
operated at two frames per second.

Backup data were obtained with a '5-mm motion-picture camera. This camera was
operated at 24 frames per second, and Kodak Ektachrome EF® color film was used. The
models were lighted with fluorescent light banks to minimize radiant heating of the models.

Prior to each run, the model was cleaned and cooled with alcohol and then
spray-painted with Tempilag. The model was installed on the mo icl injection mechanism
at the desired test attitude. and the model temperature was measured with a therm »couple
probe or with the model-embedded thermocouples. During the course of the test. many
of the embedded thermocouples became inoperatize. and the probe temperature was
gererally used to deter aine the model initial t2inperature. The model was then injected

into the airstream for approximately 15 sec, and during this time the model surface
temperature rise produced isotherm meit lines.
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The data reduction procedures used were somewhat more involved than previously
used for paiit data since the melt lines were transformed into body coordinates ang the
corresponding heat-transfer coefficients. The fundamentalssof this data reduction technique
are described below.

During each run, the tunnel conditions and time of each picture were recorded on
magneiic tape. The heai-transfer coefficient for each picture was calculated from the

semi-infinite slab transien: heat conduction eguation.
Tpe - T

c 2
— =1 - ¢ erfc B
Taw - T;

/At
where B =\/_p_cT’ and vV pck = 0.11-0.008 v/ At for Stycast, and v pck = 0.037 for RTV.

The equation for the thermal properties / Ec—k) of Stycast was obtained by evaluation
of 21 considerable amount of hemisphere calibration data and supplemented by VKF
laboratory measurements. The value of Vpck for RTV was obtained from Langley
personnel.

PR —

e et e -

Heat-transfer coeificients were calculated from assumed adiabatic wall temperatures
: of T,, 0.9 T,, and 0.85 T,. The use of three values of T,, provides an indication of

the sensitivity of the heat-transfer coefficient (h) to the vaiues of T, assuried (see Ref.
. 15). For the sake of consistency all plots an. melt lines in this report are tased on T,
i = To.

[T

H
‘ All heat-transfer coefficients were nondimensionalized by dividing by the stagnation
i point heat-transfer coefficient (Ref. 20) on a 0.675-in. radius sphere. The h,.¢ heat-transfer
] - -

coefficients are tabulated in Table I.

The transformation of the melt line coordinates, as vicwed by the camera (picture .
plane), to model coordinates is as follows. The 70-mm film v.as projected onto an 8-
x 10-in. glass plate, and the melt contour coordinates were recorded on magnetic tape.
In reginns of relatively constant heating, a distinct melt line was frequently difficult to
deiine, and in some cases the melt line tracings were terminated because of poor definition.
A considerable amount of cagineering judgement was involved in the interpretation oi
the melt patterns; conseguertly this was performed, or closely supervised, by an
experienced engineer. To transform the melt lines into body coordinates the following
additional steps were taken:

1. The model susface coordinates were measured at selected model stations
with a modified Sheffield Cordax coordinate measuring machine (Model
200);

‘tJ

The camera location relative to the mcJlel was determined;
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3. Using thc principies of photogrammetry and the information obtained in

steps 1 and 2. the mocel coordinaivs were transformed into the picture
plane;

4., The body coordinates of a given melt line were then obtaincd by

interpoiation in the piciure plane with the results being stored on magnetic
tape.

The level cof the heat-transfer coefficieat associated with each melt line was obtained
by the soluticn of the semi-infinite slab conduction equation as previously discussed. With
the level and body coordinates of the heat-transfer coefficients stored on magretic tape.
any dcsired machine-generated plot within the limits ~f available data can be produced.

Much of ihe phase-change paint data in this report are presenied as data fairings obtained
from machine-generated plots.

322 Gage Data {(Tunnel F)

Model heat-transfer rates were measvred with slug calorimeters and coaxial surface

thermocouples. The slug calorimeters have a thin-film platinum resistance thermometer

to sense the temnerature of an alurainum disk which is exposed to ihe heat flux to be
meastred. The calorimeters are opiimized to measure a given range of heat transfer by
appropriate sclection of the aluminum disk thickness. The coaxial surface thermocouple
is comprised of an electrically insulated Chromel wire enclosed in 2 constantan cylindrical
jacket. A thin film: junction is made between the Chrome! and coastantan 2t the surface.
In practical measarement applications, the surface thermocouple behaves as a homogzeneous,
one-dimensional. semi-infinite solid. The instrument provides an clectromotive forcz (EMF)
directly proportional te surface temperature which may be reiated Sy theory to the incident
heat fiux. Al heat-transfer gages were bench calibrated prior to their installation into
the model. The precisior of these calibrations is estimated to be *3 percent. Posttest
calibrations were made for the majority of gages with calibratici: repeatability being within
+3 percent. A limited number of model pressure measurements were made by
strain-gage-type transcucers developed at the AEDC-VKF, Deiailed information concerning

all hieat-transfer and pressure instrumentatior and corresponding data reduction equations
can be found in Ref. 23,

The accuracy of the data is a function not only c¢f the uncertainty of the direct
measurements but also of the test condition flow parameters. Assessments of the estimated

uncertainties in individual data points bas:d con instrument calibraticns and run-tc-run
repeatability are as follows:

Parametes Uncertainty. percent
p. psia %5
q. Btu/ft2-sec +9
h, Btu/fi-sec-°R* +10

*The unxertainty in h was determined by the same method as hyes (sec Section 3.1.2).

“3'1"“'”“

"""'m\

"
Mk

PIYLY IPLT Y

i

D A

J
<

i

b4

i

=

ST P




‘—P———v—v-——f — g ol

N

\

AEDC-TR-72-18€

3.2.3 Phosphor Paint Technique (Tunnel F}

Because of certain unique problems particular to high angle-of-attack testing on the
windward surface such as the paint applicaiion procedure and shock 2low, a limited amount
of phosphor paint results were obtained on the Langley configurations. A brief description
of the phosphor paint technique is reported herein. The reader should refer to Ref. 18
for a comaplete description of the phosphor paint technique as used in Tunnel F.

The phosphorescent paint technique consists of photographing the painted model
surface and measuring the optical density of the recorded image. An ultraviolet light is
used to excite the phosphorescence of the paint. Two view-cameras located at an optical
port on the bottom of the tunnel with 163-mm lens and 4 x 5-in. Polaroid® backs were
used to record the pictures on Type 57 Polaroid (ASA 3000) film. Each camera had
a set of filters io pass only the 5000- to 6000-A light emitted by the paint. The optical
density distributions of the pictures were read and recorded on magnetic tape by a P-1000
Photoscai® microdensitometer manufactured by Optronics International. The data on the
magnetic tanes were input to the VKF digital computer which was used to create contour
mappings of the optical density. The optical density is related to heat-transfer rate by
measuring a few heat-transfer rates with standard heat-transfer instrumentation at the same
time the paint pictures are taken. Heat-transfer rates as determined from gages give a
calibration for the paint, since it can be shown that the optical density is proportional
te the medel heat-transfer rate. Therefore, by relating the paint data to the heat gage
measurements, thz paint data yield the detailed heat-transfer-rate distribution over the
model.

A sample of a reduced phosphor paint picture on the LRC-SB configuration is shown
in Fig 5. The model image is distorted by the viewing angle of the camera and,
consequently, is reflected in the final contour mapping Automated procedures are available
whereby one may obtain body coordinates directly from the picture plane coordinates
as described in Section 3.2.].

SECTICN 1Y
RESULTS AND DISCUSSION

This s=ction documents results pertaining to the windward shock angles and pressure
distributions at Mach =10.5 and windward centerline and spanwise heat-transfer
distributions at Mach 8 and 10.5. Comparisons are made tttween experiment and theory
where appropriate. A detailed description of the theoretical applications presented herein
may be found in Ref. 19.

4.1 SHOCK ANGLE AND SURFACE PRESSURE
Experimental shock angle measurements and limited centerline pressure distributions

are presented in Fizs. 6 and 7, respectively, at Mach number 10.5 for angles of attack
of 20, 40, and 60 deg for the LRC-DB and LRC-SB configurations. The shock angle resuits

- anms mee rh e m——




A\

X

AEDC-TR-72-195

—— — v

shown in Fig. 6 are presented in terms of the incremental angie between the local body
slcpe and the local bow shock. The incremental angles are compared with a conical sheck
and an empirical fit from Ref. 24. Although the empirical fit of Ref. 24 (Eq. 10j) is
from sharp-lead.ng-edge deita wing numerical solutions. the results are in good agreement
with this experiment. At a = 20 and 40 deg, the conical shock theory is within 1 deg
of the data on the LRC-DB configuratior. However, the change in body sirape (at x/%
= 0.33) of the LRC-SB configuration obviously changed the bow shock angle at a = 40

and 60 deg. The different shock shapes are further illustrated with the schlieren photographs
shown in Fig. 3 at a 40-deg angle of attack.

Limited pressure distributions are presented in Fig 7 for both configurations at Mach
number 10.5 for angies of attack of 20, 40, znd 60 deg. The experimental results are
bracketed by simple theories at 20- and 40-deg angle of attack, and the modified Newtonian
theory is in reasonable ag==ement with the pressure measurements on the aft section of
the model at a 60-deg angle of attack There is a considerable pressure decay for the
LRC-SB configuration at 40- and 6U-deg angles of attack. A 20-deg half-angle sphere cone
characteristics solution at zero angle of attack is also compared to data at a 20-deg angle
of attack. This solution is in good agreement with the experiment and is included since
it was used in making some of the theoretical heat-transfer calculations. To add validity
to the above procedure, pressure data results from Langley Research Center at Mach 8
and 20-deg angle of attack on the LRC-I'B configuration (Ref. 25) were analyzed and

found to be in good agreement over the complete windward centerline with a characteristic
solution for a 20-deg half-angle sphere cone.

4.2 HEATING DISTRIBUTIONS

The results of the heat-transfer measurements are shown in Figs. 8 through 13.
Heat-transfer coefficients presented at Mach number 8 were obtained using the phase-change
paint technicue. Typical photographs using the phase-change paint are presented in Fig.
8. Isotherm lines are indicaied by the dark model surface showing through the white

paint (Tempilag). The Mach number 10.5 heat-transfer coefficients were obtained using
heat-transfer sensors.

‘The windward centerline heating distributions at a = 20, 40, and 60 dez for Mach
numbers 8 and 10.5 are presented in Figs. 9 and 10, respectively. The 20-deg angle-of-attack
data are compared with two-dimcnsional laminar and turbulent nuraerical boundary-layer
solutions without crossflow. The edge conditions were calculated using experimen¢al shock
(shock angle = 23.5 deg) and normal shock conditions. The input pressure distribution
was for a 20-deg half-angle sphere cone at zero-degree angle of attack as illustrated in

Fig. 7. A more complete discussion of the two-dimensional boundary-layer equations with
comparisons and applications are illustrated in Ref. 17.

The laminar and turbuient tleoretical distributions at a = 40 and 60 deg were
calculated by the method described in Ref. 19. Inviscid conical flow was assumed for
the 40-deg angle-of-attack calculations while a shock angle equal to the body angle and
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oqual to the experiniental shock angle were both considered at @ = 60 «deg. The cronflow
inviscid velocity gradient was obtained by approximating the local body lower surface
with a rounded-shoulder flat-fare cylinder using the one-strip method of integral relations
from Scuth (Ref. 26). Additional data comparisons and a more complete description of
th= theoretical calculations used herein are pressnted ir Ref. 19.

Mach 8 heat-transfer distributions along the vindward centerline nbtained using the
phas» change paint technique at a = 20, 40, and o deg are presented in Fig. 9. At e
= 20 Jeg the laminar data are above the theory, but 1t thould be pointed out that for
vj¢ < 0.1 the gradient is so steep that a relatively small crror in th: x/2 values could
account for some of this discrepancy. For x/2 = 0.5 the da.a are tran-itional and app=ar
t. be approaching the turbulent level based on edge conditions obtained from the
experimental shock angle. The a = 40 deg LRC-DB data ;how excellent agrecment with
both the laminar and turbulent levels predicted by cros.rlow theory (Ref. 19). However,
the LRC-SB data overshoot the turbulent thcory, and t-» date the cause of this discrepancy
is unknown. The a = 60-deg data indicate transitional conditions occur at about x/¢ =
0.4, and upstream of this point there is good agreement with theory.

In Fig. 10, Mach 10.5 heat-transfer-rate gage data for both configurations at 20-.
40-, and 60-deg angles of attack are compared to theoretical solutions calculated in the
same manne; as previously discussed. Based on a thorough analysis of these results and
the Mach 10.5 results reported in Ref. 18, it was concluded that the majority of the
Tunnel F results were influenced by surface roughness such as pressure orifices and heat
gages that unintentionally "tripped” the boundary layer at high angle of attack. Transition
onset was definitely traced to pressure orifices by optical data, and these results are reported
in Ref, 18. With cpecial precautions in mo<!li preparation and gage installation, some
“natural” transiticnal results were obtained on the McDonnell-Douglas orbiter model at
a = 40 dcg. A coreplete discussion anu analysis of the orbiter model Tunnel F transition
results is presented in Ref. 18.

The experimental results at Re.¢ = 10 x 106 at Mach 10.5 include two or three
runs as illustrated by the large number of symbols in Fig. 10. The a = 20-deg results
on the aft section of thec model are in good agreement with the two-dimensional turbulent
calculation based on experimental shock edge conditions. There is no discernible difference
in leve! between the two configurations. The results at a = 40 deg are in good agreement
with the turbulent crossflow theory (Ref. 19) based on conical shock conditions. There

is a tendency for the LRC-SB configuration heat-transfer results to have a higher level
than thc LRC-DB resuits. The results at a 60-deg angle of attack are compared with

turbulent crossflow theory (Ref. 19) using a shock angle equal to 60 deg (parallel shock)
and an experimental shock distribution, As noted in Fig. 6 there is a considerable difference
in the shock angle between the two configurations, Since the Newtonian pressure used
to make the theoretical calculations was in reasonabl: agreement with experiment, the
pressure values were not adjustcd. Both configurations are in cxcellent agreement with
the theoretical calculation based on the experimental shock.

10
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The effect of Reynolds number on the LRC-DB heating distributions at a 40-deg
angie of attack for Mach 8 and 10.5 is presented in Fig. 11. The limited turbulent data
at Mach 8 are in good agreement with theory. As expected, the high Reynolds number
condition (Rc. @ = 7.4 x 10%) caused transition on the model surface to move upstream.
The Mach 10.5 resuits illustrate the theoretical turbulent Reynolds riumber scaling over
a large Reynolds number range. The experimental results are in good agreement with theory
at all three Reynolds numbers. Thz Mach number 10.5 results illustrate the inability of
the parameter hfh;.s to collapse turbulent heating data at different Reynolds numbers
to a single curve. This can be atiributed to the use of h,.s which is based c¢n laminar
considerations and varies as the vV Re,_ g, whereas the measured turbulent heating rates

vary as the V/Re_ ¢. Consequently, the scaling of the turbulent hcat-transfer coefficient
{h) nondimensionalized by h,.s should scale as follows:

h/h,es = (Re. g Ratio)0-3

Comparison of experimental and theoretical spanwise heating distributions at Mach
numbers 8 and 10.5 are presented in Figs. 12 and 13 for both configurations. The theoretical
calculations were obtained by assuming inviscid conical flow along the centerline for a
= 40 deg and an experimental shock for a = 60 deg. The spanwise surface pressure
distribution was obtained by approximating the local body lower surface with a
rounded-shoulder flat-face cyliader using the one-strip method of integral relations from

South (Ref. 26). A complete description of the calculation procedures for the theoretical
spanwise distributions is presented in Ref. 19.

The Mach 8 spanwise heat-transfer distributions (Fig. 12) are shown at x/2 = 0.3
and 0.7 for a = 20, 40, and 60 deg In general, these distributions are as expected with
the exception of the a = 40 data at x/f = 0.3 and the a = 20 data at x/2 = 0.7. The

cause of the variations in these daia could be attributed to crossflow transition, nose
bluntness effects, relaminarization, or a combination of these.

Comparison of experimental and theoretical spanwise pressure and heat-transfer
distributions at Mach 10.5 and x/2 = 0.743 are shown in Fig. 13. The theoretical solutions
were calculated as discussed above Reference theoretical calculations at y/yq.x = 0 are
noted at a = 20 deg, and the theoretical calculations are in reasonable agreement with the
experimental results at a = 40 and 60 deg. The spanwise pressure decay with distance
{(¥/¥max) is more severe jor the LRC-SB configu ation at all angles of attack. In general,
the M_ = 10.5 LRC-DB experimenfal heat-transfer results are higher than the LRC-SB
results contrary to the theoretical results. it is interesting 10 note that both the M_ =

8.C and 10.5 spanwise data exhibit characteristics which are not easy to explain even
though the configurations are relatively simple shapes.

4. BOUNDARY-LAYER TRANSITION

Heat-transfer measurements as documented in Figs. 9, 10, and 11 were used to evaluate
the onset of transition. As previously mentioned, it was concluded that the Tunnel F

11
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result: were influenced by suriace roughness such as pressure orificzs and heat gages that
unintentionally "tripped” the boundary layer. A complete discussion of surface roughness
’ effects and general procedures for analyzing transition data results are presented in Ref.
t 18. Tran<ition Reynolds number data from the AEDC-VKF Tunnels B and F are presented

in Fig. 14 in terms of the Kipp-Masek (Ref. 28) correlating parameters. A similar plot
is presented in Ref. 18 with the McDonnell-Douglas delta wing orbiter resuits including
a description of the method of calcuiating the correlating parameters. The following
observations are made from Fig. 14:

1. The revised best fit of the correlated data was determined from delta wing
data having a large scatter band.

2. The Tunnel B transition data are in good agreement with the revised best-fit
fairing.

} 3. Agreement or disagreement of =xperimental transition results with the
best-fit correlating curve should not be the soie factor used to establish
whether transitior data are "good” or "bad”. Data affected by surface
roughness can lie within the correlating data scatter band as illustrated by
the Tunnel F tripped data.

SECTION V
g CONCLUSIONS

Based on the results presented herein, the conclusions are:
1. The geometry chanze on the LRC-SB configurations at x/f = 0.33 changes

the shock shape which in turn promotes a pressure decay on the model
centeriine windward ray for x/2 = 0.4 for a = 40 and 60 deg.
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In most cases the centerline heating distributions at Mach 8 and 10.5 are
in gcod agreement with the applicable theory. § !

3. The spanwise heating distributions at Mach 8 and 10.5 are in general
agreeraent with most theoretical comparisons; however, some of the data
trends canot be explained theoretically.
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E 4, Agreement or disagreement of experimental transition results with the ;
best-fit correlating curve of Kiop and Masek should not be the sole factor H
used to establish whether transition data are "good” or "bad”. Data affected

E by surface roughness can lie within the correlating data scatter band. :
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a. Straight Body (LRC-SB), Tunnel B

b. Deita Body (LRC-DB), Tunnel F
Fig. 1 Model Photographs
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b. LRC-SB, Re_¢ = 15.3 x 106
Fig. 3 Schiieren Photographs at 40-deg Angle of Attack, M_ = 105
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Fig. 6 Comparison of Experimental and Theoretical Shock Angles at M_ = 10.5 (Tunnel F)
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Fig 7 Comparison of Experimental and Theoretical Windward Centerline Pressure
Distributions at M_ = 10.5 and Re_ ¢ = 10 x 108 (Tunnel F)
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c. a =60 deg
Fig. 8 Typical Phese-Change Photographs at M_ = 8 and Re_ ¢ = 7.4 x 10° (Tunnel B)
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Fig. 9 Comparison of Experimentat and Theoretical Windward Centerline
Heating Distributions at M_ = 8 and Re_.2 = 7.4 x 108 (Tunnel B)
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Fig. 14 Comparison of Transition Data with the Kipp-Masek Correlation
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t TABLE i1
TUNNEL F TEST MATRIX

Model a, deg Run ~M, ~Re, ¢
b LRC-DB 20.0 3631 10.4 7-13 x 106
20.0 3632 10.5 7-21 x 106
20.0 3633 10.4 7-15 x 155
40, 2 3634 15,4 6-14 x 106
; 40,5 3635 10.4 5-22 x 106
; 61.0 3636 10,8 9-22 x 106
; 60. 2 3637 10.4 5-9 x 106
‘ 51,0 3638 10.6 9 x 105 :
b v 60.5 3639 10.6 10-20 x 106 ‘
LRC-SB 20,2 3646 10.6 10-18 x 106 !
P 20.2 3647 10. 3 6-18 x 106 ‘
Lo 40,2 3541 10,7 7-16 x 106 !
5 40,2 3645 10.6 11-23 x 106 ’
60. 2 3642 10. 6 5-10 x 106 ’
66. 2 3643 10.6 10-20 x 106
! 60.5 3649 10.5 6-17 x 108
| ;
3
]
3
35 32
. 2=




