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Section 1

INTRODUCTION

The statistical approach to the sol.tion of radiant energy transfer among
surfaces of a system, commonly known as the Monte Carlo Method, makes
it possible to attack difficult problems which are not amenable to conven-
tional analytical or computer methods such as Fourier Transform tech-
niques. Monte Carlo methods represent radiant energy flux statistically
as rays which can be traced through the system according to a set of
probability distribution functions. Although the ray representation of the
radiant energy is similar to that of a photon character’_.ation, it is treated
in this method as merely a statistical representation,

A distinct disadvantage of the method is the extremely large number of
calculations necessary to simulate a fairly complicated system with a
reasonable degree of accuracy. With the advent of high speed digital com-
puters, however, it has become a feasible tool in a wide variety of problems.

With the general radiation analysis in mind, the GUERAP (General Unwanted
Energy Rejection Analysis Program) was written specifically for tracing
radiant energy through systems with extremely high attenuation., Since the
number of rays necessary to analyze a system normally is directly pro-
portional to its attenuation, the "brute force' Monte Carlo method becomes

impractical in tracing rays through systems with high attenuations, e.g.,
> 106,

Many rays are required for a high attenuation system because all but a
handful of the rays generated are lost in the system, without contributing
anything to the net energy at points of interest, e.g., a detector. The
situation can be drastically improved if rays are directed to follow pre-
determined paths toward the points of interest.

This is accomplished by dividing the angular probability density distribu-
tion function of an emerging ray intec multiple sections, Each section is
represented by a ray whose direction is randomly selected within the
angular confine of the section. The total energy of the original ray is
distributed among the several rays according to their ''share" of the total
probability distribution function. This method is commonly known as the
Importance Sampling or Expected Value Technique (Reference 1),

1-1
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Diffraction of radiant energy as 1t pagses through an apurture is generally
regarded as a manifestation of the wave-like nature of radiation. The
theory then dictates that the diffraction pattern behind the aperture can
only be obtained by simultaneously considering the total wave in the sys-
tem, thus making it impossible to rigorously include diffraction ~ffects by
the Monte Carlo ray tracing approach,

A semi-empirical diffraction model is adopted in this program that agsumes
an angular probability density function of a ray as it passes through a small
aperture (Reference 2). The model makes use of the prediction by the
Uncertainty Principle (Reference 4) which allows the ray to be bent as a
result of the interaction between the ray and the aperture edge. The model
is successfully tested by comparing results of several simple systems

with classical solutions.

To analyze radiant energy transfer in a system, the user f{irst represents
the system with a set of surfaces, expressible in terms of simple equa-
tions. A series of basic surfaces that can be used for such purpose are
presented in Section 2. Although it is sometimes necessary to supplement
by inputting surfaces in terms of general equations, these basic surfaces
are sufficient for most systems commonly encountered. We then proceed
to present the procedure of simulating the systems.

In Section 3, details are given for various radiation models. These include
emission, absorption, reflection, transmission, refraction and diffraction.,
The total energy of a ray interacting with a surface is represented by 2n
angular distribution function ior each model.

The importance sampling technique is briefly described in Section 4. For
the usage of the technique, the user is referred to the procedure of assign-
ing important surfaces given in Section 2 as well as Section 4,

For users who wish to gain better understanding of the program, Section 5
presents a brief description of the program structure and the purpose of
each subroutine. Flow charts are given for the main program and the
commanding subroutines.

The complete set of input parameters is listed in Section 6. Each param-
eter is {ollowed by a brief definition and the page number for reference.
An experienced user of the program can complete a set of input data with
the help of this sectioa alone,
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Most of the output listing and the error messages are self-explanatory.
However, the user can refer to Sections 7 and 8 for more detailed explana-
tions lacking in the output listing,

Finally, a series of examples are presented in Section 9, Experiences on
the part of this writer indicate that, in learning the usage of a new program,
it is sometimes easier to follow the lead of examples. For this reason,

the examples are presented for problems with different degrees of complex-
ity. As many features as deemed necessary to demonstrate the common
usage of the program are included in the examples.
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Section 2

SYSTEM CONFIGURATION

The basis of the Monte Carlo method is in tracing the probable paths of an
energy bundle as it interacts with the optical system, The present program
is coiicerned primarily with radiant energy transfer through non-participating
media, Thus, interactions occur only when a ray is intercepted by an optical
surface of the system,

In order to detect such interceptions, it is necessary to represent the sur-
faces by some mathematical model, preferably in the form of analytical
equations that define the surfaces and their boundaries, A series of simple
surfaces have been developed as the basis of a general optical system,
While these surfaces are sufficient for the simulation of the systems en-
countered during the development of the program, some additional basic
surfaces will undoubtedly be added as needs arise,

The basic surfaces with their standard boundaries (the boundaries defined
by the basic parameters) will be first described, The boundaries, which
we refer to as constraints, are represented by a set of constraint equations,
Frequently, a surface requires a set of constraints other than the standard
sct, Thus, attention will be given to the method of prescribing these
special constraints,

When a surface cannot be represented by any of the basic surfaces, the
coefficients of the surface equation: '
2 2

ClX +C2Y2+CZ +C4XY+C XZ+ C YZ+C7X+C Y+CZ=Cl

5 6 8 9 0

3

(2-1)

can be read in through the array

COEF(J,I) = C J=1,2, ..., 10

J
where I is the surface number, The degree of the equation is specified by
the array IDGREE in input data set NAME2, Namely, IDGREE(]) is set at
1 if the first six coefficients in the surface equation are zero, Otherwise,
it is set equal to 2, The set of constraints for the surface is specilied as
special constraints (see Subsection 2,2),

2-1
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2.1 BASIC CONFIGURATION

2.1, 1 Plane

A plane bounded by two concentric circles as shown in Figure 2-1 is used
as the basic plane configuration, It is described by the coordinates of the
center point (X., Y., Z.), the unit normal vector (a, B, v) and the radii of
constraints Ry and Ry9. When it is possible, the unit normal should point
into the region, The parameters in this sequence are stored as PTLCTR
of the surface,

In subroutine PLANE coefficients of the surface and the constraint equations
in terms of the system coordinates X-Y-Z#* are calculated, The two inverse
transformation matrixes between the two coordinate systems are calculated
and stored, The unit normal n is used as the z-axis, The orientation of

the x and y axes is immaterial,

‘'here are two standard constraints, The first is the cylinder of radius R)
around the unit normal n while the second is one of radius R2 also around

-

n. Rj = 0 indicates that there is no inner constraint,
2,1,2 Cone

A cone bounded by two planes perpendicular to the axis, see Figure 2-2,

is used as the basic cone configuration, It is described by the coordinates
of the two center points (X, Y), Z)), (Xz, Yp, Z2) and the radii R; and Rj.
The parameters in this sequence are stored as PTLCTR of the surface,

In subroutine CONE coelficients of the surface and the constraint equations
in terms of the system coordinates X-Y-Z are calculated, Two transforma-
tion matrixes between the system and the local coordinates are calculated
and stored, Note that the local coordinate origin is at the first center point
(X1, Yy, Z;) and the z-axis points toward the second center point (X2, Y2,
Zj).

There are two standard constraints, The [irst is the perpendicular plane
through (X}, Y), Z)) while the second is the one through (X3, Y3, Z,).

* X-Y-Z are the system coordinates while x-y-z are the local coordinates
except as otherwise noted,

2-2
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FIGURE 2-1. PLANE CONFIGURATION
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FIGURE 2-2. CONE CONFIGURATION
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2.1.3 Sphere

A sphere is best described by the center (X, Y, Zl) and a point on the
surface (X9, Yo, Z9), see Figure 2-3, Similar to a plane, a sphere is
bounded by two cylinders of radii R] and Ry, The parameters in this
sequence are stored as PTLCTR of the surface,

In subroutine SPHERE coefficients of the surface and the constraint equa-
tions in terms of the system coordinates are calculated, As before two
transformation matrixes are obtained, The origin of the local coordinates
is at (X1, Y1, Z)) and the z-axis points toward (X2, Yg, Zj).

There are two standard constraints: (1) the outer cylinder of radius R
and (2) the inner one of radius Rs. Again Rg = 0 indicates that there is no

inner constraint,

2.1.4 Paraboloid

A paraboloid is described by two points on the axis of revolution, see
Figure 2-4, The first point is the vertex (X, Y;, Z;) while the second
is the focal point (X2, Y2, Zg). Similar to the plane and the sphere con-
figurations, two standard cylindrical constraints are obtained from two
radii R; and R,. The parameters are stored in this sequence as PTLCTR
of the surface,

In subroutine PARABL coefficients are obtained for the surface and the
constraint equations, Two transformation matrixes between the system
and the local coordinates are calculated, The origin of the local coordin-
ates falls on the vertex (X;, Y1, Z;) and the z-axis points toward the focal
point (X9, Y2, Zg).

There are two standard constraints given by the cylinders of radii R, and
Ry. Again Rg = 0 indicates that there is no inner constraint,

2.1.5 Plane Baffle

A thin plate with sharp edged circular aperture can be represented by four
surfaces as shown in Figure 2-5., The first surface is a hyperboloid of
half width §, Besides the radius of the aperture R, the surface equation
can be chosen to satisfy the edge radius, This is important because it is
the sharpness of the edge that determines the amount of reflection off a
knife edge aperture,

2-4
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FIGURE 2-3. SPHERE CONFIGURATION
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FIGURE 2-4. PARABOLOID CONFIGURATION
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FIGURE 2-5. PLANE BAFFLE
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The second surface is a cone representing the blade of the knife edge, The )
remaining two plane surfaces are two side faces of the baffle, The values
of the edge radius Re, the hyperboloid half-width 6, the blade angle and the
baffle thickness are read in as a set of constants,

In addition to the above constants, the parameters necessary to describe

a baffle are similar to those of a plane, The first three values of PTLCTR
refer to the center of the aperture (X, Y¢, Z.), and the second refer to
the unit normal of the aperture (a, B, yY) (see Figure 2-5). Note that the
unit normal is on the opposite side of the blade surface 2, The radius of
the aperture R and the angle of inclination, P in Figure 2-6, which is zero
for a plane baffle, arc the last two parameters stored as PTLCTR of the
baffle, Since there are four surfaces referred to by a set of PTLCTR, it
is necessary to read in the parameter for the first surface only,

Iu subroutine BAFFLE, coefficients are calculated for the surface and the
constraint equations, There are two standard constraints for eacn of the
first two surfaces, Each of the remaining surfaces has only one, It is
sometimes necessary to describe an outer constraint for each of them in
terms of special constraints,

2.1,6 Conical Baffle

The parameters of a conical baffle are arranged in exactly the same way
as that of a plane baffle, A non-zero value is given for the angle of
inclination, B (see Figure 2-6).

Instead of hyperboloid, the first surface is now represented by a toroid,
This gives a better representation of the knife edge quality, although it
results in slower execution due to its more complicated equation, The
second is again a cone representing the blade, The last two surfaces arc
cones instead of planes,

Again there are two standard constraints for each of the first two surfaces,
but only one for cach of the remaining two, I[f necessary, additional outer 1
constraints are specified as special constraints for surfaces 3 and 4,

e N

2.2 CONSTRAINTS

shows a surface with one of its constraint surfaces, In order to test
whether an intercepting point P (X), Y|, Z;) is within the boundary, we
substitute (X, Y], Z)) in the equation that defines the constraint surface,

The boundary of a surface is defined by a sct of constraints, Figure 2-7 j

2-17 1
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FIGURE 2-6. CONICAL BAFFLE
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CONSTRAINT EQUATION
F(X, ¥, )=0

FIGURE 2-7, CONSTRAINT

IF(NX, Y, Z). The sign of this value indicates on which side of the constraint
surface the point P is, It is necessary to predetermine and store the sign
of P in the region. A region is the side of a constraint where the system

surface exists,

There are three types of constraints as follows:

Linear - Plane
Quadratic - Cone, sphere, paraboloid, hyperboloid, etc,
Angular - Toroid

The angular constraint is specified in subroutine BAFFLE and used in
subroutine GEOM, Since no input data is required, we will bypass its
discussion, The other two types of constraints are presented below
followed by a detailed discussion of special constraints,

2-9
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The type of a constraint surface and the sign of the constraint function
value in the region, for the Ith constraint of surface J, are designated by
the parameter KSTRT(I, J) as follows:

KSTRT Type of Constraint and Sign
1 Linear constraint with F < 0 in the region
2 Linear constraint with F > 0 in the region
3 Quadratic constraint with F < 0 in the region
4 Quadratic constraint with ¥ > 0 in the region

2.2.1 Linear Constraint - Plane

Referring to the Subsection 2,1,1, we know that a plane is described by a
point on the surface and a unit normai, In subroutine PLANE the coefficients
of the plane are chosen such that F > 0 on the side where the unit normal is
pointing, Thus, in using an existing plane as a constraint, assign

KSTRT = 1 when the unit normal of the plane is pointing away from
the region

2 when it is pointing into the region,

2.2,2 Quadratic Constraints

A general quadratic constraint is represented in the system coordinates
by the equation:

2 2 2 '
F(X,Y,2) = C,X +C2Y +C427 +C, XY +C XZ+CYZ +C X

+cay+CQZ+Clo= 0 (2-2)

which is obtained from transforming the equation in the local coordinates,

f(x,y,z) = c Xy +c_Xxz+c_yz+cC

2 2 2
lx +c2y +c32 +c4 5 6 7x~0»c8y+c92+cm-0

Because of the second degree terms in the equations, the sign of the func-
tion value is invariant to transformation, I[n other words, for any point in

space P(Xl. Yl. Zl) :p (xl. Yy zl) we have

Sign of F(.\’l. Y., 7‘1) = Sign otl‘(xl, Yy z').
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This makes it very easy to identify the orientation of a quadratic surface
by the following arrangement,

a, Cone, In subroutine CONE, we use the z-axis as the axis of the cone (see
Figure 2-2), Thus both c; and cgy are positive, and if we substitute the
coordinates of any point on the z-axis (0, 0, z) in the equation, we will
obtain
f(0, 0, z)< O,
Therefore, we have
f< 0and F < 0 for any point inside the cone
and
f>0and FF > 0 for any point outside the cone,
b, Sphere. In subroutine SPHERE, we start with the equation

2 2 2

f(x,y,z)=x2+y +2 -R =0

Thus we have
f< 0 and F < 0 for any point inside the sbhere.
f>0and F > 0 for any point outside the sphere,
c. Paraboloid, The paraboloid equation is written as
f(x, y, z):x2+y2+cgz=0

in subroutine PARABL (see Figure 2-4), By keeping a constant z and
decreasing the magnitude of x and y, we obtain

f< 0and FF < 0 for any point "inside' the paraboloid (see Figure 2-8)
and consequently,

f>0and F > 0 for any point "outside' the paraboloid,

2-11
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d, Hyperboloid, Referring to Figure 2-5, we see that the hyperboloid
surface is in the form

f(x,y, z)=c¢ xz+c2y2+c,7,2+c = 0

1 3 10

where

= >
c C2 0
and

c3< 0

By holding z constant and decreasing the magnritude of x and y, we obtain

f< 0and IF < 0 for any point in the region including the center (sce
Figure 2-8),

and
f>0and F > 0 for any point in the opposite region,

The above observation is summed up, together with that of a plane, in
Figure 2-8, The unit normals are included to assist in mcmorizing the
orientation of the surfaces, They always point toward the positive sides
of the surfaces,

Modification of the set of standard constraints given by the basic configu-
rations (see Subsection 2, 1) is accomplished by specifying the arrays
NSTRT, KSIDSP, KSTRT, PTLCSP and CSTRT in Namelist NAME3,

NSTRT(l) is the number of constraints for surface I, The default value is
given by the basic paramecters of the surface PTLCTR (see Subsection 2,1),

KSIDSP(J, 1) specifies the Jth constraint of surface | in the following
manner;

KSIDSP Constraint Surface
-1 Given by array PTLSCP
0 Standard

Positive Surface number given by KSIDSP

2-13
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When the standard constraint is to be left intact, the parameter KSIDSP
assumes the value zero as given by default, When the constraint is to be
replaced by an existing surface, the number of the surface to be used as
the new constraint is specified by KSIDSP, When no existing surface is
available for the constraint, KSIDSP is set at -1,

KSTRT(J,I) is the type of the Jth constraint of surface I. When the type
of a constraint is different from the standard type (see Subsection 2,1),
the parameter KSTRT is specified as follows:

xisting Surface:

KSTRT = 1 for plane with normal pointing away from the region
2 for plane with normal pointing into the region
3 for quadratic with normal pointing away from the region
4 for quadratic with normal pointing into the region

New Surface:

KSTRT = 1 or 2 for plane
3 for quadratic with normal pointing away from the region
4 for quadratic with normal pointing into the region

The parameters of a new surface as the Jth constraint of surface I are
specified by

PTLCSP(K,J,I) K=1,2,,,,,6o0r8

The parameters have the same meaning as those of PTLCTR for basic con-
figurations described in Subsection 2. 1. However, there are only six param-
eters instead of eight for a plane, a sphere or a paraboloid because no radii
are rzquired for the constraints,

The above can be best demonstrated by the following example, In Figure
2-9 we have surface 17 to be bounded by the following four constraints--
existing cone of surface number 34, existing paraboloid of surface number
26, existing plane of surface number 43, and a new surface,

Referring to Figure 2-8, we obtain the directions of the unit normals for

the three existing surfaces, The types of constraints are determined as 3,
4 and 1, respectively, for these surfaces,

2-14
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(-0.6,0.8,0.)

(1.2, 2.5,3.2)

CONSTRAINT EXISTING SURFACE TYPE OF

NUMBER NUMBER CONSTRAINT
| K1) 3
2 26 4
3 43 1
4 -1 |

FIGURE 2-9. SPECIAL CONSTRAINT EXAMPLE
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The new surface is determined by a point on the surface (1,2, 2.5, 3.2)
and the unit normal pointing into the region (-0.6, 0.8, 0), The input data
thus appears as follows:

NSTRT (17) = 4

KSIDSP (1, 17) = 34, 26, 43, -1

KSTRT (1, 17)=3, 4, 1, 1

PTILCSP (1, 4, 17) = 1,2, 2,0, 3.2, -0.6, 0.8, 0

When a constraint surface is required for which there is no available basic
surface, the coefficients of the constraint equation, Equation 2-2, can be
read in through the array

CSTRT(K,J,I) = CK K=1,2,...,10

for the Jth constraint of surface [,

In the development of the program, the last term of the equation was placed
on the right hand side. The user should change the sign of C;q when he
inputs the coefficients of Equation 2-2,

2.3 SYSTEM MODELING

A tremendous gain in efficiency of the program is achieved by dividing an
optical system into sections, Whether they are separated by real surfaces
such as apertures and lenses or by artificial surfaces, reduced numbers of
surfaces in each of the sections resvit in fewer calculations in search of an
intercept,

Thus, in describing a system, we first divide it into a convenient number
of sections, In each of the sections, the surface numbers are assigned
that relate them to the basic surfaces gencrated,

In addition to the surface number, several pertinent parameters are
assigned to each surface, These are described in full detail in the sequel,

2.3.1 Surface Number - ISFACE

The surface number refers to the basic surface that has been specified in

namelist NMGEOM. ‘The information related to the surface number includes:

a, The degree of polynomial of the surface equation - IDGREE,

2-16
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b, The coefficients of the surface 2quations - COEF,
¢, Number of constraints - NSTRT.

d, Type of each of the constraints - KSTRT.

e, Coefficients of the constraint equations - CSTKT,
f. The surface radiation coefficients - COAT.

When a standard basic surface is used, the first five parameters are auto-

matically computed by the related subroutine, When a set of constraints other

than the standard constraints is required, the parameters ''c' through "e"
are obtained by prescribing special constraints according to the steps given
in Subsection 2,2, However, the first five parameters can be read in as
part of the input data,

Yhen tne standerd bhasic surtace is a baifle, four consecutive [SIFACIE
Sumibers 4re required tor the teur surfaces defining the bafrle geometry,
The user inputs anly the first nuniber and one PTLCTR (see Subsections
2.0.9 and 2.1.6). The remalning three numhers are then automaticaily
as60ciated with the baffle and caunaot he used with other syrfaces,

The first parameter [DGREL is used ta describe the type of equation
representing the surface, The follawing three types of equations have hegn
developed in this program,

IDGHEE Equation
1 C7x *CBY +COZ= Clo
I L8 3 2 _ s
2 ( IX rCBY +C32 fC4XY+C5XZf(36Y1. +C7X

+C8Y+(‘9£=C

4 Toruid equation

10

An IDGREE of value 4 is restricted to use with a toroid surface rather than
the generai bi-quadratic equation,

The surface radiation coefficients are input in accardance with the model
description given in Subsection 3,3,

‘.A_‘_L__L‘_.__.A-
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2.3.2 Surface Type - ISFTP

When a ray is intercepted by a surface in the section, it has to be determined
first whether the ray is to be reflected back into the same section or trans-
mitted into an adjacent one. In some cases, e. 1., lens surfaces, the ray
can be split in both directions. The parameter surface type carries such
informations in the following manner:

ISFTP

1 Transmitting surface, e.g., aperture, toward entrance,
i.e., to the next lower numbered section

2 Transmitting surface toward exit, i.e., to the next higher
numbered section

3 Transmitting and reflecting surface, e, g., lens, toward
entrance

4 Transmitting and reflecting surface toward exit

5 Reflecting surface, i.e.,, non-transmitting

The section numbers are assigned in the ascending sequence from the
entrance to the exit, In other words, the first section always has the
entrance aperture as one of its surfaces, Its adjacent section is Section 2
and so on until the last section where the exit aperture or a detector is
located,

When the intercepting surface has a surface type 1 or 3 and the ray is to

be transmitted, the ray is directed into the next section toward the entrance,
Likewise, the ray is directed into the next section toward the exit when the
surface type is 2 or 4,

2.3.3 KX Coefficient - KCOEF

An intercept between a ray and a surface is obtained by solving the simul-
taneous equations of the ray and the surface, Theoretically, the point of
interception thus obtained is on the surface, Unfortunately, the set of
numbers available to a computer is only a finite subset of the entire set of
real numbers and precise solution is exception rather than rule,

Frequently the calculated point of interception falls a short distant in front
of or behind the surface, No particular problem is caused by the first
situation, However when the point is behind the surface, the ray can be
forced to reflect off the surface twice instead of once,
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This is best illustrated by Figure 2-10, A ray at point P is pointing in the
direction p. Looking for interception of this ray by the surface S, we solve
the pertinent simultaneous equations, Due to round-off errors in the cal-
culation, the intercepting point fall a short distance behind S,

The command then goes on to obtain the direction q of the reflected ray
and searches for the subsequent interception, As is clearly seen in the
figure, the ray is intercepted immediately by the same surface at point R,
After another reflection at this point, the ray in effect penetrates the sur-
face even though S is a non-transmitting surface,

This is only one of many examples that a ray is forced into a wrong path
due to round off error in the calculations, However, we will refrain from
exhausting all the other possibilities and be content with describing a
practical remedy which has been mechanized,

In the Cartessian coordinates, we represent a surface by the general
equation:

F (X, Y, Z)=0.

If we substitute the coordinates of a point Py (X, Y, Z,) into the equation
and obtain

F (Xl' Yl' 21)4= 0
we know that P, is not on the surface,

Furthermore, we can show mathematically that in the vicinity of the seg-
ment of surface S, F has a constant sign on each side of the surface. In
other words, if F (X, Y|, Z,)< 0, F < 0 for all points on this side of the
surface S and F > 0 for all points on the opposite side,

This is where the K coefficient comes into play, The coefficient is defined
as follows:

KCOEF
0 Function value of the surface equation is negative in
the region,
1 Function value of the surface equation is positive in

the region

P __.____—_—M
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F<O(0R>0)
F>0(0R<0)

F(X.Y,2)=0

FIGURE 2-10. DOUBLE REFLECTION DUE TO ROUND-OFF ERROR
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A region is used here to represent the spatial domain that is inside the
section,

In the above example, we have

F \.\'l. Yl' Z!)< 0

where P g inside the region; therefore,

KCOEF = 0.
When the program finds that point R is the next intercept and that it is at a
rather short distance from point Q, it tests {(ne validity of this interception.
The coordinates of point Q are substituted into the function F. The sign of
this value compared with KCOEF will immediately tell whether point Q is

inside the region or not. In this particular example, Q is outside the
region, and the interception at point R is ignored,

2.3.4 Ilmportance Sampling Surface - IMPSF

While the importance sampling technique will be discussed in full detail in
Section 4, the procedure of assigning importance sampling surfaces, which
we will simply call important surfaces, will be briefly described here,

In each section, there can be up to three important surfaces, The param-
eter [MPSF given for each surface indicates whether the rays from the
surface will be split such that one or more rays will be directed towards
the important surfaces, Such a decision is specified in the following
manner,

IMPSF
0 No importance sampling
1 Importance sampling toward important surface 1
2 Importance sampling toward important surface 2
3 Importance sampling toward important surface 3
4 Importance sampling toward important surfaces | or 2
5 Importance sampling toward important surfaces | or 3
5 Importance sampling toward impoi-tant surfaces 2 nr 3
7 Importance sampling toward important surfaces 1, 2, or 3

Although more detailed discussion will be presented later, it should be
pointed out here that the above splittings are in addition to those that cover
specular components of the radiation coefficients,
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When IMPSF = 0 for the surface, the ray will not be split, When
IMPSF = 1, 2 or 3, the ray is split toward the particular important surface
named, When IMPS = 4, 5, 6 or 7, a uniform random number is used to

decide which of the important surfaces the splitted important ray is aimed
at,

2-22
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Section 3

STATISTICAL MODELING OF RADIATION

Probability density functions giving the probable paths of the radiant
energy are the heart of the Monte Carlo ray tracing method. Whether it
be a collimated laser beam, slightly divergent solar energy, a reflected
beam off a surface, or an emission off a black body, a well-defined dis-
tribution function has to be determined before we can proceed to obtain
the probable path of the rays,

We present here a number of radiation models that have been used in a
variety of optical systems, FPowever, it should be emphasized that
wdditional models will be needed for certain new probiems. The computer

program is arranged in such a way that it is fairly casy to include additional
models,

Available radiation models up to this point include a collimated or divergent
beam coming into a system through a circular aperture, emission, absorption
(by a surface), specular, near specular, and diffuse reflection, refracted
specular, and diffuse transmission, and diffraction through a circular
aperture.

3.1 EXTERNAL RADIATION

We consider here collimated or divergent adiant energy entering the
system uniformly through a circular aperture. Since a collimated beam
can be obtained by specifving a zero divergence angle to a divergent beam,
we will limit our discussion to the latter,

A typical divergent beam is shown in Figure 3-1, passing through a
circular entrance aperture, The aperture is placed on the x-y plane of
the local coordinates x-y-z, with the z-axis passing through the center,
The local coordinates can be in any orientation with respect to the system
coordinates X-Y-Z.

The direction of the beam as a whole, which we shall call the center heam,
is defined by the elevation and the azimuthal angles, The beam is uni-

formly spread over the solid angle around the center beam within the
divergence angle,
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ENTRANCE
APERTURE

@, ELEVATION ANGLE
0o AZIMUTHAL ANGLE
O DIVERGENCE ANGLE

FIGURE 3-1. EXTERNAL RADIATION MODEL
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it is important to realize that the elevation angle, ¢, and the azimuthal
angle, 6, are defined with respect to the system coordinates. This is
clearly shown in Figure 3-1 where the coordinate system X'-Y'-Z' is a
translation of the system coordinates to point P, the point of interception
between the entering beam and the aperture. ¢o is the angle between the
center beam and the Z'-axis, 0 is the angle between the projection of
the center heam on the X'-Y' plane and the X'-axis.

To generate a ray statistically, we first locate point P on the aperture
with two uniform random numbers. The deviation angles ¢1 and A are
obtained with two additional random numbers, With these angles and the
direction of the center beam, calculation of the ray direction is
straightforward,

3.2 EMISSION

The emissive power of a surface is given by

e =« 0T4A

where ¢ is the emittance, othe Stefan-Boltzmann constant,

T the temperature and A the arca, If the emittance and the temperature
of a surface are known, the emission can be simulated by generating a
series of rays coming off the surface. The starting points of the rays
should be uniformly distributed over the area and the angular distributions
are governed by certain emission models. We shall first concentrate on
the method of picking the starting points uniformly over an area,

The location of a point on a surface is generally defined by two coordinates,
say £ and n. In most cases, the coordinates can be orthogonal and the area
bounded by infinitesimal lengths of the coordinates are simply the product
of the sides, namely AA = AE An. Under this condition the point of uniform
probability is obtained by uniform selection of the coordinates. Planes

and spheres are typical surfaces of this type., Unfortunately a general
surface does not always satisfy this condition. {

[n addition to the above difficulty, excessive calculations are required

when emission is to be considered for a large number of surfaces. First,

1 surface will have to be selected among all the surfaces in accordance with
their area ratios. The chore of calculating areas for all surface elements
becomes extremely complicated for a general program. These difficulties
lead to the idea of selecting the points by following a statistical procedure
and compensating the probability with equivalent areas. The method is
described in detail as follows

—  —— — E ] —— — - - (- @ ] (- R - — — - —
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Consider an enclosure of arbitrary shape shown in Figure 3-2,

1072=-35084A

FIGURE 3-2, EMITTING ENCLOSURE

P is a point on the enclosure surface, while O is anywhere in the space,

If an infinitesimal enclosure surface dA is encompassed by an infinitesimal
solid angle dQ2 as shown in the figure, the area is given by

_ s?4q

" fcos ¢

where S is the length of OP and ¢ is the angle between OP and the surface
normal at P,

We can directly apply the above relation to obtain the emitting point and

the equivalent area of an emitted ray, First, we place a point O, which we
shall designate us a pole, anywhere in the system and generate a series

of pilot rays out of it uniformly over all directions, For each of these
rays, we search for interceptions by the system surfaces.
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Each of these intercepts is an emlmng point with the equivalent emitting
area proportional to the factor S2/ |cos ¢] . If n pilot rays are initiated
and intercepts are sought in both directions of the pilot rays, the equivalent
area of an emitting ray is

27 52

¢ n |cos ¢ |

Thus, the emissive power associated with the emitted ray is

21r82 C oT4

n'cos ¢

Clearly, the above expressions are valid regardless of the shape of the
system surfaces, Furthermore, there can be many or no intercepte for
each of the pilot rays,

An interesting consideration arises in the selection of a pole location, It

is clear from the above discussion that the probability of a surface inter-
cepting a pilot ray is proportional to the factor |cos é| /S2. More often
than not, we are particularly interested in the emission of certain surfaces
and would like to have more rays simulating the emission off these gurfaces.
This is easily achieved by placing the pole at short distances from these
surfaces.

In some systems, the emitting surfaces are so far apart that it is desirable
to initiate pilot rays from different locations. Under these circumstances,
as many poles as necessary are placed at optimum locations and the system
surfaces arc divided into groups, each corresponding to a pole.

The emissive power of a surface is assumed diffusely distributed over the
hemisphere, The direction of a ray is selected in the same way as that

of a diffuse reflection. Also the splitting of rays for importance sampling
can be treated in the same manner as in diffuse reflection. Discussicn of
this matter is included in Subsection 3. 3.

3-5
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3.3 ABSORPTION-REFLECTION-TRANSMISSION

.The tracing of a ray on its interception by a surface is best treated by 1
dividing the probability intn» cnr -+ Lents; namely that of absorption, reflection,
and transmission, Absorption can be easily accounted for by reducing the
energy of the ray, A random number is then used to choose between

reflection and transmission.
* The direction of the reflected or transmitted ray is governed by certain
probability density functions, Calculations will be greatly simplified if
{

[ we can express these functions in analytical forms,

For most reflecting surfaces, the distribution of energy can be approximated
by specular and diffuse components (Reference 3). The specular component
} is a collimated beam leaving the surface in the specular direction. The
energy of the diffuse component is uniformly distributed over the entire
hemisphere and its probability density is given by Lambert's cosine law,

e=e_cos
L ¢

where ep is the probability density in the normal direction and ¢ the angle
between the normal and the emerging ray,

These two components cover the extreme cases of perfect mirrors and
gray bodies. In most real surfaces, however, there is a concentration of
energy within a tinite solid angle around the specular beam with the energy
dropping exponentially from its peak at the specular direction, The
probability density of this near-specular component is

-Ka
const * e

where K is an angular decay constant and a is the angle between the
emerging ray and the specular direction,

While one near-specular component, together with the specular and the
diffuse components, is sufficient to approximate most probability density
functions, it is sometimes necessary to include two such components with
different angular decay constants, This will be demonstrated by an example
later in this section,
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Transmitted energy through a surface is usually well approximated by a
specular ray and diffuse scattering, The specular ray is refracted
according to Snell's law, which we will discuss in more detail in the next
section. The diffuse scattering follows Lambert's cosine law on the back
side of the surface,

Adding up all the components, we have

absorption coefficient

specular reflection coefficient |

C

C2

C3 = diffuse reflection coefficient {
C4 = fi'rst near specular reflection coefficient !
C5 = second near specular reflection coefficient

C6 = specular transmission coefficient

C,7 = diffuse transmission coefficient

The probability density distribution functions for the diffuse and the near-
specular components are given by

-Klu -KZO.
fr=Acos¢+Be +Ce (3-1)

and

ft = D cos ¢' (3-2)

where f,. and f; are, respectively, the reflection and the transmission distri-
bution functions, ¢ is the angle between the reflected ray and the normal,

¢' is the equivalent of ¢ for transmission, a is the angle between the re-
flected ray and the specular ray, and K] and Kg are two angular decay
constants. A, B, C and D are constants determined from the coefficients

Cj in the following manner:

-
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The total energy of a diffuse reflection is obtained by integrating the density
function over the hemisphere, Hence, we have 1

2
(A cos ¢) gsin ¢ d¢ d@

o

2n
c3=f
[o]

where 6 is the azimuthal angle. Integration gives

C3 =7r. A (3'3)

Similarly, we have

/2 -K

T % 1
[ (Be "% sin adads,
o]

2
C, = f
(o]

a good approximation as long as e'Kl“ is negligible when a is replaced by
the minimum angle between the specular ray and the surface tangent.

Integration gives

-K11/2
27B(1 - K, e )

1
C, =
g 1+K12

For Kj >> 5, this can be approximated by

271B
A (3-4)

1+K1

C

Similarly for the second near-specular scattering, we have

27C
5 .—_2 (3'5)

1+K2

C
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A slight modification is introduced here for the near-specular component.
In the model presented above, the radiant density drops down exponentially
from its peak at the specular direction. In most cases, the angular decay
constant is so large that the density is negligible outside a fairly small a
angle. However, when the angular decay constant is small and the incident
ray ie close to the surface tangent, a significant amount of energy would

go into the surface according to the density function. To prevent this
situation from occurring, the probability distribution function is normalized
by one of two methods selected by the user through the parameter IEXP.

Referring to Figure 3-3, we have a ray incident on a surface at point O.
OP is the specular direction and plane = is perpendicular to it at point P.
OQ is the direction under consideration and a is, as defined previously,
the angle between OP and OQ. The plane formed by OPQ is intersected
by the tangent plane at OR. The angle < POR is the maximum value of
the angle a in that direction before the ray will enter the surface.

It IEXP = O, the probability distribution function for a is normalized by
a

Pl):= [ cC Be K17 4 ce *2% 4ing de
o amax

where C = 1
o

max
famax (Be sy + Ce -Kza) sin ada

and Equation (3-1) becomes

f. = Acos¢+C Be =i + Ce K2a (36

amax

Since the exponential factor is independent of the direction of PQ, this
is referred to as ''symmetric' near-specular scatter,

If IEXP = 1, a new variable given by
g% Ta
2a

max
is substituted for a in Equation 3-1 to give

-KIE -K2§
fr=Acos¢+Be +Ce (3-7)

3-9
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FIGURE 3-3. MODIFIED NEAR-SPECULAR REFLECTION MODEL
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The factor = /2 is included here so that ¢ = a for normal incidence. 4

l Since the exponential factor is dependent on the direction PQ through the
variable &, this is referred to as ''skewed'' near-specular scatter,

l The input parameters for a surface are summarized in Table 3-1,

The following example of a typical high quality mirror is presented to

l demonstrate the usage of the various components,

Example: Instead of attempting to match a measured angular radiant k

I energy distribution by trial and error, we shall assume a set of parameters
and plot the resultant distribution of a typical high quality mirror. Using the I

l symmetric near-specular model, we assume the following:

-6

C3 T x 10
l c, =10"° K, = 500
4 1

-7
l C5-5x10 K2-250
l TABLE 3-1. SURFACE RADIANT DISTRIBUTION PARAMETERS

Parameters and Choice
| Input Data of Models J
* £ T
COAT (1, J) CI J is the surface number,

l I s l, 2. o o o, 7 J
COAT (14,J) Kl

f COAT (15,7) K,

' IEXP = 0 Symmetric near-specular model given by Equation 3-6, J
IEXP = 1 Skewed near-specular model given by Equation 3-7. |
Substituting these parameters in Equations 3-3, 3-4, 3-5, and 3-6, we

l obtain the individual and the combined angular radiant density distributions
plotted in Figure 3-4,
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In the simulation of a mirror with a measured biangular radiant energy
distribution, a different set of component coefficients is assumed and
substituted in the equations until the combined density distribution will

represent the measured distribution curve,

3.4 REFRACTION

Given the indices of refraction for both sides of a surface, the direction
of the refracted ray is determined by Snell's law, which states, ''the
refracted ray lies in the plane of incidence, and the sine of the angle of
refraction bears a constant rat.o .c the sine of the angle of incidence"
(Reference 4). In the refraction at a boundary between two substances
having indices of refraction n and n', it may be written in the form

nSiné = n' Sin ¢

where ¢ is the angle between the incident ray and the inward normal and
¢' the angle between the refracted ray and the outward normal,

Tracing of a refracted ray accordingly is straightforward, except in the
case of total internal reflection, where

-'%Sind'zl

and the refracted ray is reflected instead., Lacking a reliable prediction
of the probable path of the ray, we assume that the totally reflected ray
is distributed according to the reflection components.

3.5 DIFFRACTION

Diffraction of a bundle of radiant energy through a plane aperture of
arbitrary shape has been successfully modeled (Reference 2), Besides
those given in the reference, additional tests of the model have been made,
which we will present as examples in Section 9.

3-13
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The procedure to be followed in determining the direction of a diffracted
ray 1s summarized below:

a. Follow the ray until it strikes thc aperture plane. Shown in
Figure 3-5 is such an aperture and P is the point of interception,

b. o) is the shortest distance from P to the aperture edge.

c. Using P as the center and o) as the mirror radius, fit the biggest
cliipse possible inside the aperturc, o2 is the major radius., € - n
are coordinate axes in the directions as shown,

d. Two angle constants are calculated from

PR e G
| 2ko

and

where k is the wave number.
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FIGURE 3-5. TYPICAL APERTURE PLANE
Illustrated in Figure 3-6, A, is the deviation angle of the ray on
the plane given by the incident ray and the axis P§,
Similarly, 63 is the deviation angle in the Pn direction.

The direction of the diffracted ray is determined by the following
probability density functions,

! BYAR%
Pl(ﬂl) * ——— exp |-3(—% (3-8)
v 2:01. R 01
[ 0 2
Pz(oz) P exp | - % < 2.) (3-9)
Vam,* | \%
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INCIDENT RAY

FIGURE 3-6. DEVIATION ANGLE OF RAY

Bending of rays according to the above procedure is available at circular

apertures. In order to include diffraction for certain of those apertures,
the users simply specify

KDIF (I) = 1 for |l = surface numbers.

From the above equations, we sec that the angle constant A% is significant
only when the distance from point P to the aperture edge, o, is in the order
of the wave length and only in this situation that diffraction needs to be
considered. When a ray strikes an aperture plane where diffraction is
called for, the shortest distance to the edge o) is compared with the wave
length, If the ratio of o) to the wave length is bigger than a constant
DEDGE, specified by the users, the diffraction of the ray is neglected.

Since the probability density is distributed over a finite solid angle, a
diffracted ray can be split for importance sampling. The procedure of pre-

scribing such splitting is in the general discussion on importance sampling
in the next section,
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Section 4

IMPORTANCE SAMPLING

The Monte Carlo method, which is the basis of the GUERAP simulation
program, is a statistically accurate, but time=consuming approach to
system analysis. Fortunately, the execution time can be reduced several
orders of magnitude using the importance sampling technique (Reference 1).

When a ray strikes a surface where the energy is to be distributed among
several components, as described in Subsection 3.3, one of the compo-
nents is statistically chosen. If the energy of this component is scattered
over a finite solid angle, the direction of the scattered ray is randomly
selected according to the appropriate probability density function.

In certain surface radiation models, some components have such pre=
dominant probability that an extremely large number of rays will have to
be generated before any rays will select any of the other components.

As the first step in importance sampling, a ray is split into several
rays, each corresponding to one component. To keep the number of rays

“under control, this splitting is done after the energy is reduced by absorp=

tion and the decision has been made between reflection and transmission.
The splitting is automatically performed by the program.

Further importance sampling, which requires specification by the user,
is explained in more detail in the following.

4.1 IMPORTANCE SAMPLING AND SCATTERING

Within a particular component where the cnergy is scattered over a

finite solid angle, the direction of the scattered ray is randomly selected
according to the probability density function. In most analyses, however,
we are most interested in the amount of radiant energy reaching certain
surfaces. If the rays are allowed to sclect their paths randomly, a

great portion of the execution time will be wasted in tracing rays

through arcas of little interest to the user.

The situation can be dramatically improved by the use of importance sampling.
Simfilar to the component splitting given above, a non-specular component is
further split into multiple rays, ecach containing a portion of the scattered
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energy. The directions of all but one of the rays, which we shall

designate as important rays, are chosen by the user to aim toward the
areas of interest, and the fractions of the energy to be assigned to each

ray are calculated from their appropriate probability density functions.

The remaining rays follow the direction statistically selected to complement
the entire probability density function. Its energy is equal to the total
cnergy less that assigned to the important rays but it is restricted to
directions outside the solid angle defined for the important rays.

The importance sampling technique as applied to scattering of energy is
summarized as follows.

Referring to Figure 4=1, we have energy radiating from a surface
element at 0. If Ig is the total energy and E (Q?) is the angular distribution
function of the energy, we have

I,= [[E() dQ
o

It will become clear later that it is not necessary to obtain the function
E (Q) in the process of importance sampling.

The total energy which is simulated by a single ray in the basic Monte
Carlo method is to split into two rays at 0. One of the rays, the important
ray, is aimed at the surface A;, the important surface, specified by the
user. Although A} appears as part of a plane, it could be any type of
surface as far as the importance sampling technique is concerned.

If A) is defined by the orthogonal coordinates £ = n and a point P in A}
is randomly chosen with respect to the coordinates, OP can be used as
the important ray with energy given by
L= [[EE, mdEdn
A1

or

1, =E, €, mA,

where El (€, n) is the average energy per unit area of A;. If a large
number of rays are traced, the average energy can be replaced by the
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